
Computing Inconsistency Measurements under Multi-Valued Semantics by Partial
Max-SAT Solvers

Guohui Xiao1,2, Zuoquan Lin1, Yue Ma3 and Guilin Qi4
1Department of Information Science, Peking University, China

2 Institute of Information Systems, Vienna University of Technology, Austria
3 Laboratoire d’Informatique de l’université Paris-Nord, Université Paris Nord - CNRS, France

4School of Computer Science and Engineering, Southeast University, China
{xgh,lz}@is.pku.edu.cn, yue.ma@lipn.univ-paris13.fr, gqi@seu.edu.cn

Abstract
Measuring the inconsistency degree of a knowledge base can
help us to deal with inconsistencies. Several inconsistency
measures have been given under different multi-valued se-
mantics, including 4-valued semantics, 3-valued semantics,
LPm and Quasi Classical semantics. In this paper, we first
carefully analyze the relationship between these inconsis-
tency measures by showing that the inconsistency degrees
under 4-valued semantics, 3-value semantics, LPm are the
same, but different from the one based on Quasi Classical se-
mantics. We then consider the computation of these inconsis-
tency measures and show that computing inconsistency mea-
surement under multi-valued semantics is usually intractable.
To tackle this problem, we propose two novel algorithms that
respectively encode the problems of computing inconsistency
degrees under 4-valued semantics (3-valued semantics, LPm)
and under Quasi Classical semantics into the partial Max-
SAT problems. We implement these algorithms and do ex-
periments on some benchmark data sets. The preliminary but
encouraging experimental results show that our approach is
efficient to handle large knowledge bases.

1. Introduction
Inconsistency handling is one of the traditional topics in the
field of knowledge representation and reasoning. Recently,
there is an increasing interest in quantifying inconsistency
in a knowledge base (KB). This is because it is not fine-
grained enough to simply say that two inconsistent KBs con-
tain the same amount of inconsistency. Indeed, quantifying
inconsistency provides useful context information to resolve
inconsistency (Hunter 2002; Hunter and Konieczny 2005;
2006). First, we can compare the quality of different knowl-
edge bases based on their inconsistency degrees, i.e., those
with less inconsistency degrees should be preferred (Hunter
2002). Second, we can decide how to act on inconsistency
(Hunter 2006), i.e. to ignore or to resolve it, by considering
the inconsistency degree of a knowledge base. Measuring
inconsistency has several applications, such as ranking on-
tologies in the Semantic Web (Zhou et al. 2009).

Different approaches to measuring inconsistency were de-
veloped based on different views of atomic inconsistency
(Hunter and Konieczny 2005). Syntactic views put the in-
consistency atomicity to formulas, such as taking maximal

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

consistent subsets of formulas (Knight 2002) or minimal in-
consistent sets (Hunter and Konieczny 2008). Semantic ones
put the inconsistency atomicity to propositional variables,
such as considering the conflicting propositional variables
based on some kind of multi-valued model (Grant 1978;
Hunter 2002; Hunter and Konieczny 2005; Grant and Hunter
2006; Ma et al. 2007; Grant and Hunter 2008; Zhou et al.
2009). There are also ways to combine these two approaches
such as the computation of the responsibility/contribution of
each formula to the overall inconsistency in the knowledge
base (Hunter and Konieczny 2006).

In this paper, we focus on the semantics based inconsis-
tency measures which belong to the latter category. In this
category, several types of multi-valued semantics have been
used, including Quasi Classical semantics (Hunter 2000), 3-
valued semantics (Levesque 1984), LPm semantics (Priest
1991), and 4-valued semantics (Belnap 1977), which pro-
duce in turn various inconsistency measures denoted by
IDQ, ID3, IDLPm

and ID4 in this paper, respectively.
While all of these inconsistency measures are proposed sep-
arately, there is no work formally discussing the relationship
among them. In this paper, we will show that inconsistency
degrees under 3-valued, 4-valued and LPm are the same,
which means that we only need to consider ID4 and IDQ

in the future.
In our previous work (Ma et al. 2009), we have shown

that given a propositional knowledge base K, computing in-
consistency degrees under 4-valued semantics is usually in-
tractable. We extend this complexity result to the inconsis-
tency measurements under 3-valued, LPm and Quasi Clas-
sical semantics and show that all of these problems are NP-
hard thus intractable.

One way to tackle such a complex problem is to develop
an algorithm with heuristic search and then apply pruning
strategies. Following the principle of approximating logi-
cal reasoning (Schaerf and Cadoli 1995), (Ma et al. 2009)
proposed an anytime algorithm to compute approximating
inconsistency degrees of a propositional knowledge base.
However, when the size of a knowledge base becomes large,
the execution time of that algorithm may be still unaccept-
able such that further optimizations are required. In this pa-
per, we take another direction which is to reduce the problem
of measuring inconsistency to some existing problems with
highly optimized solvers. Particularly, we propose two novel

algorithms encoding the problems of computing inconsis-
tency degrees to partial Max-SAT problems so that we take
fully use of the power of the state of the art partial Max-SAT
solvers. Our experiment results show that this approach is
efficient to handle large knowledge bases, and outperforms
our previous approximating algorithm (Ma et al. 2009).

The remainder of this paper is structured as follows: In
Section 2, we recall several inconsistency measures and
some satisfiability problems. Section 3 discusses the rela-
tionship among different inconsistency measures. The com-
plexity results of inconsistency measures are shown in Sec-
tion 4. In Section 5, we propose two novel algorithms en-
coding the problems of computing various inconsistency de-
grees to the partial Max-SAT problems. Section 6 describes
the implementation and evaluation. We conclude this paper
and outlook our future work in Section 7.

2. Preliminaries
In this paper, we consider a propositional language LA with
a finite set of propositional variables A = {p1, . . . , pn}. A
literal is a variable p or its negation ¬p. A knowledge base
is a set of propositional formulas built from A. Var(K) de-
notes the set of variables occurring in K and |S| denotes the
cardinality of a set S.

A clause γ = l1 ∨ l2 ∨ . . . ∨ lk is a disjunction of literals.
A CNF formula is a conjunction of clauses, which is usually
represented as a set of clauses K = {γ1, γ2, . . . , γm}.

2.1 Inconsistency Measures by Multi-Valued
Semantics

Several important inconsistency measures have been de-
fined by multi-valued semantics, such as four-valued seman-
tics (4-semantics) (Hunter 2006; Ma et al. 2009), three-
valued semantics (3-semantics) (Grant 1978), LPm seman-
tics (Grant and Hunter 2006), and quasi-classical semantics
(Q-semantics) (Hunter 2002). All of these multi-valued se-
mantics use a third truth value B to stand for the contradic-
tory information.

To distinguish from multi-valued semantics, we call the
original two-valued semantics of propositional logic as the
classical semantics throughout the paper. And we use |= for
the entailment under the classical semantics.

We provide a uniform definition of an inconsistency de-
gree under these semantics as follows:

Definition 1. Suppose I is a multi-valued interpretation
under i-semantics (i = 3, 4, LPm, Q). The inconsistency
degree of knowledge base K with respect to I , denoted
IDi(K, I), is a value in [0, 1] defined as

IDi(K, I) =
|{p ∈ V ar(K) | pI = B}|

|V ar(K)|
,

where the numerator {p ∈ V ar(K) | pI = B} is called the
conflicting set of I with respect toK, written Conflict(K, I).

The inconsistency degree of K under i-semantics, de-
noted IDi(K), is defined as

IDi(K) = min
I|=iK

{IDi(K, I)},

where I |=i K means that I is a model of K under i-
semantics.

We give a brief introduction to each of these multi-valued
semantics below.
Four-valued Semantics Compared to two truth values
used by classical semantics, the set of truth values for 4-
valued semantics (Belnap 1977; Arieli and Avron 1998) con-
tains four elements: true, false, unknown and both, written
by t, f,N,B, respectively. The truth value N allows to ex-
press incompleteness of information. The four truth values
together with the ordering � defined below form a lattice
FOUR = ({t, f, B,N},�): f � N � t, f � B � t,N 6�
B,B 6� N .

The 4-valued semantics of connectives ∨,∧ are defined
according to the upper and lower bounds of two elements
based on the ordering �, respectively, and the operator ¬ is
defined as ¬t = f,¬f = t,¬B = B, and ¬N = N .

The designated set of FOUR is {t, B}. So a 4-valued
interpretation I is a 4-model of a knowledge baseK denoted
I |=4 K if and only if for each formula φ ∈ K, φI ∈ {t, B}.
A knowledge base which has a 4-model is called 4-valued
satisfiable. A knowledge base K 4-valued entails a formula
ϕ, written K |=4 ϕ, if and only if each 4-model of K is a
4-model of ϕ.

Example 1. Given a propositional knowledge base K =
{p,¬p∨q,¬q∨r,¬r, s∨u}. Consider three 4-valued models
I1, I2 and I3 of K defined as:

pI1 = t, qI1 = B, rI1 = f, sI1 = t, uI1 = N ;

pI2 = B, qI2 = f, rI2 = B, sI2 = t, uI2 = N ;

pI3 = B, qI3 = B, rI3 = B, sI3 = t, uI3 = N.

Obviously, ID4(K, I1) = 1
5 , ID4(K, I2) = 2

5 and
ID4(K, I3) = 3

5 . Moreover, since K is 2-valued unsatis-
fiable, every 4-model of K contains at least one contradic-
tion. So ID4(K) = 1

5 .

Quasi-Classical Semantics (Q-semantics) Let A+
− be a

set of objects defined as follows:

A+
− = {+p,−p | p ∈ A}.

We call any I ∈ ℘(A+
−) a Q-interpretation, where ℘(A+

−)

is the power set of A+
−. Let l1, . . . , ln be literals. The focus

of l1∨ . . .∨ln by li, denoted by⊗(l1∨ . . .∨ln, li), is defined
as follows (Hunter 2000):

⊗(l1 ∨ . . . ∨ ln, li) = l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ ln.

For a knowledge base K in CNF (Conjunctive Normal
Form), Q-semantics is defined as follows:

Definition 2 (Q-models(Besnard and Hunter 1995)). Sup-
pose p is an atomic propositional variable, γ1, . . . , γm are
propositional formulas and l1, . . . , ln are literals. Let |=Q

be a satisfiability relation such that |=Q⊆ ℘(A+
−) × LA.

For I ∈ ℘(A+
−) we define |=Q in the following way:

I |=Q p iff + p ∈ I;
I |=Q ¬p iff − p ∈ I;
I |=Q l1 ∨ . . . ∨ ln iff [I |=Q l1 or . . . or I |=Q ln]

and [for all i, if I 6|=Q ¬li
then I |=Q ⊗(l1 ∨ . . . ∨ ln, li)];

I |=Q {γ1, ..., γm} iff I |=Q γi(1 ≤ i ≤ m).

For a knowledge base K in arbitrary form, its Q-models
are defined as the Q-models of CNF (K), where CNF (K)
is the set of clauses obtained by the classical transformation
of K into CNF.

Similarly to Belnap’s 4-valued logic, Q-semantics can
also be regarded as assigning one of the four truth values
{B, t, f,N} to symbols in A in the following way, which
enables the uniform way to define inconsistency degrees as
given in Definition 1.

pI =

t iff + p ∈ I and − p 6∈ I;
f iff + p 6∈ I and − p ∈ I;
B iff + p ∈ I and − p ∈ I;
N iff + p 6∈ I and − p 6∈ I.

Example 2 (Example 1 Continued). K = {p,¬p ∨ q,¬q ∨
r,¬r, s ∨ u}. Consider the following 4-models I1 , I2 and
I3 of K:

pI1 = t, qI1 = B, rI1 = f, sI1 = t, uI1 = N ;

pI2 = B, qI2 = f, rI2 = B, sI2 = N, uI2 = t;

pI3 = B, qI3 = B, rI3 = B, sI3 = t, uI3 = N.

By definition 2, I1 and I2 are not Q-models of K, although
they are 4-models of K. In fact, I3 is a Q-model of K and we
have IDQ(K) = IDQ(K, I3) = 3

5 .

Three-Valued and LPm Semantics A 3-interpretation I
is a 4-interpretation with the restriction that for every p ∈ A,
pI 6= N (Levesque 1984). Similarly we can define satisfia-
bility relation |=3.

An LPm interpretation (Priest 1991) is a 3-valued inter-
pretation with the restriction that only “most classical” 3-
valued models are considered as LPm models. Formally,
I |=LPm

α if and only if I |=3 α and there does not exist
any other 3-valued model J of α such that {p | pJ = B} (
{p | pI = B}.

2.2 Satisfiability Problems
Deciding if a knowledge base in CNF is satisfiable is called
a satisfiability (SAT) problem which is NP -complete. Even
though the SAT problem is intractable, the state of the art
SAT solvers are highly optimized and can deal with large
size inputs.

As an extension of SAT, partial Max-SAT (the partial
maximum satisfiability problem) has gotten deep study re-
cently. Formally, a partial MaxSAT problem is of the form
P = (H,S), where H is a set of clauses, called the hard
part; And S is the other set of clauses, called the soft part.

The objective is to ask for a classical variable assignment
that satisfies all hard clauses in H together with the maxi-
mum number of the soft ones in S. That is, an answer should
be a two-valued interpretation Î such that |{γ | γ ∈ S, Î |=
γ, Î |= H}| = maxI |{γ | γ ∈ S, I |= γ, I |= H}|.

The state of the art partial MaxSAT solvers such as SAT4j
MaxSAT (Berre 2009), MSUnCore (Marques-Silva 2009)
and Clone (Pipatsrisawat and Darwiche 2007) are highly
optimized and scalable as shown in the third1 and fourth2

MaxSAT Evaluations. Moreover, they are free to download
and to use for academic research purpose.

3. Relationship among Different
Inconsistency Measures

This section analyzes the relationship among different in-
consistency measures. It turns out that ID3, ID4 and
IDLPm are the same for any given knowledge base, but dif-
ferent from IDQ.

Proposition 1. Let K be a propositional knowledge base.
Then ID3(K) = ID4(K).

Proof. (1) We first prove that ID4(K) ≤ ID3(K):
If I |=3 K, then I |=4 K.

ID4(K) = min{ID4(K, I) | I |=4 K}
≤ min{ID4(K, I) | I |=3 K}
= min{ID3(K, I) | I |=3 K}
= ID3(K).

(2) Then we show that ID4(K) ≥ ID3(K):
Given a 4-interpretation I of K, we can define a 3-

interpretation I ′ as follows,

pI
′
=

{
pI if pI 6= N

t if pI = N

It is easy to see that if I |=4 K then I ′ |=3 K. More-
over, we have {p | pI = B} = {p | pI′

= B}, which
in turn means ID4(K, I) = ID3(K, I

′). Therefore, by the
definition of ID4(K) and ID3(K), we have ID4(K) ≥
ID3(K).

In all, ID4(K) = ID3(K) holds.

Example 3 (Example 2 Continued). K = {p,¬p ∨ q,¬q ∨
r,¬r, s∨u}. Consider a 4-model I1 of K defined as follows:

pI1 = t, qI1 = B, rI1 = f, sI1 = t, uI1 = N.

By changing uI1 from N to t, we can get the following
3-model I ′1 of K:

pI
′
1 = t, qI

′
1 = B, rI

′
1 = f, sI

′
1 = t, uI

′
1 = t.

Clearly, ID4(K, I1) = ID3(K, I
′
1).

Proposition 2. IDLPm
(K) = ID3(K).

1http://www.maxsat.udl.cat/08/
2http://www.maxsat.udl.cat/09/

Proof. (1) ID3(K) ≤ IDLPm(K).
Since every LPm-model is also a 3-model, ID3(K) ≤

IDLPm
(K) follows.

(2) ID3(K) ≥ IDLPm(K).
Assume that ID3(K) < IDLPm

(K), then there ex-
ist two 3-interpretation I0, J0, s.t. I0 |=3 K, J0 |=LPm

K, ID3(K, I0) = ID3(K) and IDLPm
(K,J0) =

IDLPm
(K). So ID3(K, I0) < IDLPm

(K,J0). Then we
have |{p | pI0 = B}| < |{p | pJ0 = B}|, and we know
no other 3-model can have less conflicting set by the defini-
tion of I0, so I0 is an LPm model of K. IDLPm

(K, I0) <
IDLPm(K,J0) leads to a contradiction.

Example 4. K = {p,¬p ∨ q,¬q ∨ r,¬r, s ∨ u}. Consider
again the 3-model I ′1 defined in Example 3. We can see that
I ′1 is an LPm model of K because I ′1 |=3 K and any other
3-models J satisfying {p | pJ = B} ⊆ {p | pI′

1 = B}
can only be a classical interpretation which in turn cannot
not satisfy K. So IDLPm

(K) = minI|=LPmK IDLPm
(K, I) =

IDLPm
(K, I ′1) = 1/5 = ID3(K).

Proposition 3. ID4(K) ≤ IDQ(K).

Proof. Since every Q-model of K is also a 4-model of K,
the conclusion is obvious.

In example 2, we have seen that ID4(K) = 1
5 < 3

5 =
IDQ(K). This shows that ID4(K) can be strictly less than
IDQ(K).

In summary, by Propositions 1, 2, and 3, we have the fol-
lowing theorem.

Theorem 4. ID3(K) = IDLPm
(K) = ID4(K) ≤

IDQ(K).

4. Computational Complexities
Apart from any particular algorithm, let us study the compu-
tational complexity of the inconsistency degree to see how
hard the problem itself is. In (Ma et al. 2009), the complex-
ity results of problems related to ID4 have been discussed.
These results can be extended to other measurements paral-
lel as shown below.

We first define the following computation problems re-
lated to inconsistency degrees under i-semantics (i =
3, 4, LPm,Q):

• IDi,≤d (resp. IDi,<d, IDi,≥d,IDi,>d): Given a propo-
sitional knowledge base K and a number d ∈ [0, 1],
is IDi(K) ≤ d (resp. IDi(K) < d, IDi(K) ≥ d,
IDi(K) > d)?

• EXACT-IDi: Given a propositional knowledge base K
and a number d ∈ [0, 1], is IDi(K) = d?

• IDi: Given a propositional knowledge baseK, what is the
value of IDi(K)?

Obviously, we have two trivial instances IDi,≤1 and
IDi,≥0 with answer “yes” and another two trivial instances
IDi,<0 and IDi,>1 with answer “no”.

In general cases, the complexity of these computational
problems is shown by following theorems.

Theorem 5. IDi,≤d and IDi,<d (i = 3, 4, LPm, Q) are NP-
complete ; IDi,≥d and IDi,>d (i = 3, 4, LPm, Q) are coNP-
complete.

Proof. We prove these results separately as follows:
IDi,≤d is NP-complete:
The membership of IDi,≤d (i = 3, 4, Q) in NP is achieved

by the following non-deterministic algorithm:

1. Guess an i-interpretation I over Var(K);

2. Check that I is an i-model ofK and |Conflict(I|
|Var(K)| ≤ d, which

can be done in deterministic polynomial time.

IDLPm,≤d is in NP follows from IDLPm
(K) = ID4(K)

by Theorem 4.
The NP-hardness comes from the following reduction

from checking the satisfiability of K under classical 2-
valued semantics, which is known to NP-complete, to this
problem. The reduction is that K is 2-valued satisfiable if
and only if IDi(K) ≤ 0 which is obvious by the definition
of inconsistency degree.

IDi,<d is NP-complete:
Similarly to the case of IDi,≤d, the membership in NP

holds obviously. The NP-hardness holds by the reduction
that K is 2-valued satisfiable if and only if IDi(K) < 1

2|Var| .
This is because, by the definition of IDi(K), the smallest
value of IDi(K) for an inconsistent knowledge base is 1

|Var| .

IDi,≥d and IDi,>d are coNP-complete:
This is because IDi,≥d is the complementary problem of

IDi,<d and IDi,>d is the complementary problem of IDi,≤d.

Theorem 6. EXACT-IDi (i = 3, 4, LPm, Q) is DP-
complete 3.

Proof. To show that it is in DP, we have to exhibit two lan-
guages L1 ∈ NP and L2 ∈ coNP such that the set of all
“yes” instances of EXACT-IDi is L1 ∩ L2. This is easy by
setting L1 = {K | IDi(K) ≤ d} and L2 = {K | IDi(K) ≥
d}.

To show the completeness, let L = L1 ∩ L2 be any lan-
guage in DP. We have to show that L can be reduced to
EXACT-IDi. To this end, recall that IDi,≤ is NP-complete
and IDi,≥ is coNP-complete, that is, there is a reduction
R1 from L1 to IDi,≤ and a reductionR2 from L2 to IDi,≥.
Therefore, the reductionR fromL to EXACT-IDi can be de-
fined as follows, for any input x: R(x) = (R1(x), R2(x)).
We have that R(x) is a “yes” instance of EXACT-IDi if and
only if R1(x) is a “yes” instance of IDi,≤ and R2(x) is a
“yes” instance of IDi,≥, which is equal to x ∈ L.

Due to the fact that ID4(K) = ID3(K) = IDLPm
(K),

the complexity result of ID4 (Ma et al. 2009) can be ex-
tended as the following theorem.

3A language L is in the class DP (Papadimitriou 1994) iff there
are two languages L1 ∈ NP and L2 ∈ coNP such that L =
L1 ∩ L2.

Theorem 7. IDi(i=3, 4, LPm) is FPNP[log n]-complete4.

However, the functional complexity of IDQ is still an open
problem. In spite of this, because of the DP-completeness
result of Exact-IDQ 6, we can conclude that the problem of
computing IDQ is intractable.

5. Encoding Algorithms
In previous section, we have shown that computing inconsis-
tency degrees is an intractable task generally. In this section,
we propose two novel algorithms which encode the problem
of computing inconsistency degrees to the partial Max-SAT
problem, so that we can take full advantage of the state of
the art partial Max-SAT solvers.

In this section, without loss of generality, we assume that
all the KBs are given in CNF, i.e. a set of clauses, because
any knowledge base can be transformed to a CNF in polyno-
mial time while preserving satisfiability. By Theorem 4, we
only need to consider the computations of ID4 and IDQ.

5.1 Computing Inconsistency Degree under
4-valued Semantics

Given a knowledge base K = {γi | i = 1, . . . , n} over
variables set A, it is well-known that the 4-valued reason-
ing on K can be simulated by the 2-valued reasoning on
4(K), where 4(·) is the transformation function from (a set
of) clauses to (a set of) clauses defined as follows (Cadoli
and Schaerf 1996):

4({γ1, γ2, . . . , γn}) = {4(γ1), 4(γ2), . . . , 4(γn)} ;
4(l1 ∨ . . . ∨ lk) = 4(l1) ∨ . . . ∨ 4(lk) ;

4(p) = +p ;

4(¬p) = −p .

That is, 4(K) is a knowledge base over variables A+
− =

{+p,−p | p ∈ V ar(K)}. Obviously, computing 4(K)
from K can be done in linear time.

A 4-valued interpretation I on A can also be seen as a
2-valued interpretation on variablesA+

−. The corresponding
relation can be described as follows:

pI = B iff +pI = t and −pI = t;

pI = f iff +pI = f and −pI = t;

pI = t iff +pI = t and −pI = f ;

pI = N iff +pI = f and −pI = f.

In the rest, we will refer to either of these two views without
explicit explanation.

Theorem 8. (Cadoli and Schaerf 1996) Given a proposi-
tional knowledge base K and a 4-valued interpretation I ,
we have I |=4 K iff I |= 4(K).

4Complexity PNP[log n] is defined to be the class of all lan-
guages decided by a polynomial-time oracle machine which on in-
put x asks a total ofO(log |x|) SAT (or any other problem in NP)
queries. FPNP[log n] is the corresponding class of functions.

Example 5. Let K = {¬p, p ∨ q,¬q, r}. We have 4(K) =
{−p,+p ∨ +q,−q,+r}. Consider the interpretation I1 =
{+p,−p,−q,+r}. I1 can be seen as a 4-interpretation on
{p, q, r} with pI1 = B, qI1 = f, rI1 = t. I1 can also be
viewed as a 2-interpretation on {+p,−p,+q,−q,+r,−r}
which assigns variables in I1 true and other variables false,
i.e. in the following way:

+pI1 = t,−pI1 = t,+qI1 = f,

−qI1 = t,+rI1 = t,−rI1 = f.

It is easy to check that I1 |=4 K and I1 |= 4(K).

Corollary 9. Given a knowledge base K over A, the in-
consistency degree of K under 4-valued semantics can be
computed by 2-valued semantics over A+

−:

ID4(K, I) =
|b(K, I)|
|Var(K)|

;

ID4(K) = min
I|=4(K)

ID4(K, I) =

min
I|=4(K)

|b(K, I)|

|Var(K)|
.

where b(K, I) = {p ∈ Var(K) | +pI = t and − pI = t}.

Proof. By Definition 1 and the fact that pI = B iff +pI =
t and − pI = t, this corollary holds obviously.

Based on Corollary 9, next we study an encoding algo-
rithm that reduces the computation of four-value semantics
based inconsistency degree to a partial Max-SAT instance.
First of all, note that

min
I|=4(K)

|{p | p ∈ Var(K),+pI = t and − pI = t}|

= min
I|=4(K)

|{p | p ∈ Var(K), (¬+ p ∨ ¬ − p)I = f}|

= max
I|=4(K)

|{p | p ∈ Var(K), (¬+ p ∨ ¬ − p)I = t}|.

This motivates us to use partial Max-SAT problem solvers
to compute ID4 by considering the following partial Max-
SAT instance:

Definition 3. Given a propositional knowledge base K =
{γ1, . . . , γn}, Var(K) = {p1, . . . , pm}, the corresponding
partial Max-SAT problem for the 4-semantics based incon-
sistency degree ID4, written P4(K) = (H4(K), S4(K)), is
defined as follows:

H4(K) = {4(γ) | γ ∈ K};
S4(K) = {¬+p ∨ ¬ −p | p ∈ Var(K)}.

Then we have the following theorem.

Theorem 10. Suppose I is a solution to the partial Max-
SAT problem P4(K). Let b(I,K) = |{p ∈ Var(K) | +pI =
t,−pI = t}| and m(K) = |Var(K)|. Then we have that
ID4(K) = b(I,K)/m(K).

Proof. By the definition of P4(K), I satisfies that for any
other J, b(I,K) ≤ b(J,K). By Corollary 9, this theorem
holds.

Theorem 10 can be described by the following algorithm.
The algorithm first generates P4(K) in line 4 to line 9, then
computes a solution of P4(K) by calling a partial Max-SAT
solver in line 10, and computes the value of inconsistency
degree by theorem 10 in line 11 to 12.

Algorithm 1 Computing ID4 by Partial Max-SAT Solver
1: procedure ID4(K)
2: P ← {}
3: m← |Var(K)|
4: for all Clause γ ∈ K do
5: P.addHardClause(4(γ))
6: end for
7: for all Variable p ∈ Var(K) do
8: P.addSoftClause(¬+ p ∨ ¬ − p)
9: end for

10: I ← PartialMaxSATSolver(P)
11: b = |{p | +pI = t ∧ −pI = t}|
12: return b/m
13: end procedure

Corollary 11 (Correctness of Algorithm 1). For any given
knowledge base K, Algorithm 1 is sound and complete
for computing the four-value based inconsistency degree
of K. That is, Algorithm1(K) = ID4(K), where
Algorithm1(K) is the value returned by Algorithm 1 with
K as the input.

Proof. This conclusion easily follows from Theorem
10.

Next example gives a further illustration of Algorithm 1.

Example 6. Let K = {p ∨ q,¬p,¬q, r}. We have 4(K) =
{+p ∨ +q,−p,−q,+r}. Then, by Definition 3, the hard
clause set of P4(K) is {+p∨+q,−p,−q,+r}, and the soft
clause set is

P4(K) = {¬+ p ∨ ¬ − p,¬+ q ∨ ¬ − q,¬+ r ∨ ¬ − r}.

For P4(K), we have the following one optimized solution I0
by a partial Max-SAT solver:

+ pI0 = t,−pI0 = t,+qI0 = f,

− qI0 = t,+rI0 = t,−rI0 = f.

The corresponding 4-model ofK is pI0 = B, qI0 = f, rI0 =
t, from which we have that ID4(K) = 1/3 by Algorithm 1,
coinciding with its theoretical value.

5.2 Computing Inconsistency Degree under QC
Semantics

Since QC-semantics based inconsistency degree is different
from that based on four-value semantics as discussed in Sec-
tion 3.. In this section, we study an algorithm for computing
QC-based inconsistency degree.

Firstly, similar with 4-valued semantics, we have that
reasoning under QC semantics can be reduced to 2-valued
logic.

To simplify notations, for every literal l, we denote:

+l = +p if l = p, +l = −p if l = ¬p,
−l = −p if l = p, −l = +p if l = ¬p.

Definition 4 (QC Transformation). (Marquis and Porquet
2001) Given a knowledge base K = {γ1, . . . , γn} in CNF. ,
the QC transformation of K is defined as follows,

Q({γ1, . . . , γn}) = {Q(γ1), . . . , Q(γn)},

Q(l1 ∨ . . . ∨ ln) =

n∨
i=1

(+li ∧ ¬ − li) ∨
n∧

i=1

(+li ∧ −li).

Theorem 12. (Marquis and Porquet 2001) Let K be a
knowledge base and I be a QC interpretation. Then

I |=Q K iff I |= Q(K).

Example 7. Let K = {¬p, p ∨ q,¬q, r}. Then we have
4(K) = {−p,+p ∨+q,−q,+r}, but Q(K) = {−p, (+p ∧
¬ − p) ∨ (q ∧ ¬ − q) ∨ (+p ∧ −p ∧ +q ∧ −q),−q,+r},
where means that 4(K) is not the same as Q(K) in general.

Now we can compute IDQ by classical semantics accord-
ing to the following corollary. Its proof is similar to that of
Corollary 9.

Corollary 13. Given a knowledge baseK, the inconsistency
degree of K over the variable set A under Q-semantics can
be computed by the 2-valued semantics over the variables
set A+

−:

IDQ(K, I) =
|{p ∈ V ar(K) | +pI = t ∧ −pI = t}|

|V ar(K)|
;

IDQ(K) = min
I|=Q(K)

IDQ(K, I) .

Compared with 4(·), the transformation functionQ(·) can
not maintain CNF. Thus Q(l1 ∨ . . .∨ ln) can not be directly
used in a partial Max-SAT solver in general. Besides, direct
transformation of Q(l1 ∨ . . . ∨ ln) into CNF by distribu-
tion laws can give a formula of exponential size. To avoid
this problem, we adopt a technique given in(Baaz, Egly, and
Leitsch 2001) that introduces new variables in the transfor-
mation to preserve equisatisfiability under 2-valued seman-
tics in the following way:

yi := +li ∧ ¬ − li, i = 1, . . . , n ;

z := ∧ni=1(+li ∧ −li) .

Subsequently, we define the transformation function Q′(·):

Q′({γ1, . . . , γn}) = {Q′(γ1), . . . , Q′(γn)}

Q′(l1 ∨ . . . ∨ ln) = (

n∨
i=1

yi ∨ z) ∧
n∧

i=1

(¬yi ∨+li)

∧
n∧

i=1

(¬yi ∨ ¬ − li)

∧
n∧

i=1

(¬z ∨+li) ∧
n∧

i=1

(¬z ∨ −li).

Obviously, each clause of length n is transformed to 4n+
1 clauses by Q′(·). It is easy to check that Q′(p) ≡ +p and
Q′(¬p) ≡ −p.

By the following proposition, we can see that the compu-
tation of IDQ can be simulated by 2-valued logic.

Proposition 14. For any knowledge base K, we have

IDQ(K) =

min
I|=Q′(K)

|{p ∈ V ar(K) | +pI = t,−pI = t}|

|V ar(K)|
.

Proof. Given an interpretation I on variables {+p,−p | p ∈
V ar(K)}, s.t. I |= Q(K), we can extend I to I ′ on vari-
ables {+p,−p | p ∈ V ar(K)}∪{yi}∪{z} s.t. I ′ |= Q′(K)
by

yI
′

i = (+li ∧ ¬ − li)I , i = 1, . . . , n ;

zI
′

= (∧ni=1(+li ∧ −li))I .

On the other hand, if J |= Q′(K), then J can also be
viewed as an interpretation for Q(K) and J |= Q(K) .

So {p | p ∈ V ar(K),+pI = t,−pI = t, I |= Q′(K)} =
{p | p ∈ V ar(K),+pI = t,−pI = t, I |= Q(K)}.

Then by corollary 13, the conclusion follows.

Definition 5. Given a propositional knowledge base K =
{γ1, . . . , γn}, the corresponding partial Max-SAT problem
PQ(K) = (HQ(K), SQ(K)) for IDQ is defined as follows:

HQ(K) ={Q′(γ) | γ ∈ K};
SQ(K) ={¬+p ∨ ¬ −p | p ∈ Var(K)}.

Similar to Theorem 10, we have the following theorem
holds which gives a reduction from the computation of Q-
semantics based inconsistency degree to the partial Max-
SAT problem.

Theorem 15. Given a knowledge base K, suppose I is
a solution to the partial Max-SAT problem PQ(K). Let
b(I,K) = |{p | +pI = t ∧ −pI = t}|, m(K) = |Var(K)|.
Then IDQ(K) = b(I,K)/m(K).

Example 8. LetK = {¬p, p∨q,¬q, r}. Then the hard part
of PQ(K) is Q′(K) = {Q′(¬p), Q′(p∨q), Q′(¬q), Q′(r)},
where Q′(¬p) = −p,Q′(¬q) = −q,Q′(r) = +r, and

Q′(p ∨ q) =(yp ∨ yq ∨ z) ∧ (¬yp ∨+p) ∧ (¬yp ∨ ¬ −p)
∧ (¬yq ∨+q) ∧ (¬yq ∨ ¬ − q) ∧ (¬z ∨+p)

∧ (¬z ∨ −p) ∧ (¬z ∨+q) ∧ (¬z ∨ −q).

The soft part of PQ(K) is {¬ + p ∨ ¬ − p,¬ + q ∨ ¬ −
q,¬ + r ∨ ¬ − r}. One solution to PQ(K) is I0 such
that +pI0 = t,−pI0 = t,+qI0 = t,−qI0 = t,+rI0 =
t,−rI0 = f, yp

I0 = f, yq
I0 = f, zI0 = t. So IDQ(K) = 2

3
by Theorem 15.

Theorem 15 motivates the following algorithm. The
propositional variables yi and z are introduced by the trans-
formation function Q′(·).

Algorithm 2 Computing IDQ by Partial Max-SAT Solver
1: procedure IDQ(K)
2: P ← {}
3: m← |Var(K)|
4: for all Clause γ = {l1, . . . , ln} ∈ K do
5: P.addHardClause(y1 ∨ . . . ∨ yn ∨ z)
6: for i = 1 to n do
7: P.addHardClause(¬yi ∨+li)
8: P.addHardClause(¬yi ∨ ¬ − li)
9: P.addHardClause(¬z ∨+li)

10: P.addHardClause(¬z ∨ −li)
11: end for
12: end for
13: for all p ∈ Var(K) do
14: P.addSoftClause(¬+p ∨ ¬ −p)
15: end for
16: I ← PartialMaxSATSolver(P)
17: b = |{p | +pI = t ∧ −pI = t}|
18: return b/m
19: end procedure

Corollary 16 (Correctness of Algorithm 2). For any given
knowledge base K, Algorithm 2 is sound and complete for
computing the QC-based inconsistency degree of K. That
is, Algorithm2(K) = IDQ(K), where Algorithm2(K)
is the value returned by Algorithm 2 with K as the input.

Proof. This conclusion easily follows from Theorem
15.

6. Experimental Evaluation
This section describes the experimental results to show the
efficiency of our encoding algorithms. To this end, we used
three state of the art partial Max-SAT solvers, namely SAT4j
MaxSAT (Berre 2009), MsUncore (Marques-Silva 2009)
and Clone (Pipatsrisawat and Darwiche 2007), to implement
our encoding algorithms.

The experiments were performed on an Intel Pentium 4
(3.00GHz) machine with 1G Memory running OpenSuse
and the results were shown in Tables 1, 2 and 3. Both the
program and test data can be found online 5. We ran every
instance against each solver with a timeout of 240 seconds
and used “*” to indicate the occurrence of a timeout. The
meaning of each column of these tables is given as follows:

– “name”: the name of the instance used as test datum;

– “#V” and “#C”: the number of variables and clauses in
the instance;

– “ID4” and “IDQ”: the values of inconsistency degrees
under 4-semantics and Q-semantics, respectively;

– “AnyTime”: the final time in seconds that produces the
exact value by the any time algorithm in (Ma et al. 2009);

– “Encoding Algorithm”: time consumed in seconds by en-
coding algorithms based on each partial Max-SAT solver.

5http://www.is.pku.edu.cn/˜xgh/id/

Table 1 shows the comparison of Algorithm 1 with the
anytime algorithm proposed in (Ma et al. 2009). The any-
time algorithm (Ma et al. 2009) computes upper and lower
bounds of inconsistency degrees (under four-valued seman-
tics) by polynomial times invoking of a polynomial proce-
dure that decides the satisfiability of a set of CNFs in re-
stricted forms. The approximating inconsistency degrees are
shown converging to exact inconsistency degrees as more
and more computing resource is available. Please refer to
(Ma et al. 2009) for more details. For the comparison,
the data set we test is the same as that used in (Ma et al.
2009), that is, inputs are KN = {pi, qj ,¬pi ∨ ¬qj | 1 ≤
i, j ≤ N} for N = 1, 2, 5, 7, 10, 20, 50, 100. Obviously,
|V ar(KN)| = 2N and |KN | = N2 + 2N . From Table
1, we can see that our encoding algorithm outperforms the
anytime algorithm in (Ma et al. 2009) when N > 10. Fur-
thermore, the anytime algorithm cannot deal with the inputs
with N > 20, whilst our encoding algorithm can handle
them easily. Note that the anytime algorithm cannot handle
even one instance in the data sets used to test our encoding
algorithms given in Tables 2 and 3. This shows the advan-
tage of taking existing optimized partial Max-SAT solvers.

Instance AnyTime Encoding Algorithm
name #V #C ID4 sat4j msuncore clone

001.cnf 2 3 0.500 0.001 0.351 0.016 0.566
002.cnf 4 8 0.500 0.003 0.351 0.016 0.571
005.cnf 10 35 0.500 0.268 0.365 0.016 0.635
007.cnf 14 63 0.500 4.477 0.360 0.017 0.732
010.cnf 20 120 0.500 228.754 0.353 0.018 0.960
020.cnf 40 440 0.500 * 0.457 0.031 1.396
050.cnf 100 2600 0.500 * 0.858 0.188 4.209
100.cnf 200 10200 0.500 * 3.513 1.570 17.876

Table 1: Comparison of AnyTime and Encoding Algorithm

Table 2 gives the results of Algorithm 1 performing on
two groups of data set. One group (group A), with the prefix
“uuf” of each instance, is obtained from the SAT benchmark
SATLIB 6. The other group (group B), with the prefix “C”,
is a large set of unsatisfiable CNF benchmarks from automo-
tive product configuration (Sinz, Kaiser, and Küchlin 2003),
each of which encodes a set of available configurations for
a product, along with constraints enforcing a specific prop-
erty to be checked. Due to space limitations, only part of
the results in groups A and B are shown. Observed from Ta-
ble 2, we can see that nearly all the instances can be handled
by the implementation based on any partial Max-SAT solver,
except uuf100-0103 and C168 FW SZ 107 which cannot be
handled by that based on Clone before timeout.

Table 3 describes the computation of IDQ by the encod-
ing algorithm (Algorithm 2) on the same data sets as those
used in Table 2. We can see that implementation based on
SAT4j can handle all the instances of group A in less than
1 second and handle all the data of group B in 9 seconds
to 14 seconds; the implementation based on MsUncore can-
not handle even one instance; the implementation based on
Clone can deal with all the instances in less than 2 seconds.

6http://www.satlib.org

Instance Encoding Algorithm
name #V #C ID4 sat4j msuncore clone

uuf50-0101 50 218 0.02000 0.396 0.026 1.119
uuf50-0102 50 218 0.02000 0.398 0.020 1.121
uuf50-0103 50 218 0.02000 0.450 0.044 1.142
uuf50-0104 50 218 0.02000 0.397 0.027 1.279
uuf75-011 75 325 0.01330 0.496 0.031 1.379
uuf75-012 75 325 0.01330 0.447 0.030 1.355
uuf75-013 75 325 0.01330 0.443 0.033 1.333
uuf75-014 75 325 0.01333 0.494 0.029 1.372

uuf100-0101 100 430 0.01000 0.545 0.045 1.748
uuf100-0102 100 430 0.01000 0.918 0.053 2.088
uuf100-0103 100 430 0.02000 3.951 2.592 *

C168 FW SZ 107 1698 5401 0.00059 0.698 0.120 *
C168 FW SZ 128 1698 5422 0.00059 0.601 0.090 13.191
C168 FW SZ 41 1698 7489 0.00059 0.849 0.085 11.939

Table 2: Computing ID4 by Encoding Algorithm

Instance Encoding Algorithm
name #V #C IDQ sat4j msuncore clone

uuf50-0101 50 218 1.000 0.445 * 0.428
uuf50-0102 50 218 1.000 0.444 * 0.446
uuf50-0103 50 218 1.000 0.449 * 0.246
uuf50-0104 50 218 1.000 0.494 * 0.433
uuf75-011 75 325 1.000 0.544 * 0.434
uuf75-012 75 325 1.000 0.548 * 0.435
uuf75-013 75 325 1.000 0.455 * 1.338
uuf75-014 75 325 1.000 0.646 * 0.437

uuf100-0101 100 430 1.000 0.709 * 0.478
uuf100-0102 100 430 1.000 0.803 * 0.438
uuf100-0103 100 430 1.000 0.749 * 0.445

C168 FW SZ 107 1698 5401 0.124 9.269 * 1.487
C168 FW SZ 128 1698 5422 0.107 9.916 * 0.792
C168 FW SZ 41 1698 7489 0.117 13.627 * 0.738

Table 3: Computing IDQ by Encoding Algorithm

From all of the tests given above, we can get the following
conclusions for tested data sets:

• For most of these large sized instances, our algorithms can
terminate in short time, which indicates the efficiency of
our approach.

• The performance of the implementation of each of our
algorithms relies heavily on the underlying partial Max-
SAT solver. For example, in our experiment, the imple-
mentation based on MsUnCore is the fastest solver that
can handle all the instances for ID4. In constrast, the
implementation based on Clone performs best for most
of the instances for IDQ. Compared with other solvers,
SAT4j based implementation can handle all the instances
for both ID4 and IDQ

One observation is that the values of ID4 and IDQ are
usually different. Which measurement is more useful de-
pends on the concrete context and the application. In our ex-
periment, we found that the computation of ID4 ran faster
than that of IDQ in most cases. This can be explained by the
more complex transformation function Q′(·) used by Algo-
rithm 2 than 4(·) used by Algorithm 1.

7. Conclusion and Future Work
Several inconsistency measures under different multi-valued
semantics, including 4-valued semantics, 3-valued seman-
tics, LPm and Quasi Classical semantics were proposed in
the literature. In this paper, we first carefully analyzed the
relationship among all of these different inconsistency mea-
sures. We showed that the inconsistency measures under 4-
valued semantics, 3-value semantics, and LPm are the same.
Moreover, the inconsistency degree of an arbitrary inconsis-
tent knowledge base under these semantics is less than or
equal to that under Quasi Classical semantics.

The complexity analysis showed that the computation of
the inconsistency degrees is a hard task. In order to use these
inconsistency degrees in practice, an efficient algorithm for
the computation of the inconsistency measures is essential.
To tackle this problem, in this paper, we made some effort
to explore a linear encoding of the computation of incon-
sistency degrees to the partial Max-SAT problem. Our en-
coding algorithms for computing i-semantics based incon-
sistency degrees (i = 4, 3, LPm, Q) were tested on sev-
eral benchmarks and the experiment results showed the effi-
ciency of this approach. The advantage of our algorithms is
that they can benefit from the high optimizations of the state
of the art partial Max-SAT problem solvers.

In the future, we will extend our algorithms with the abil-
ity to compute approximating inconsistency degrees. This
is possible because according to the output specification of
the SAT competition7, partial Max-SAT solvers should out-
put the current optimal solution as soon as they find a new
one, which can be used to get an upper bound of the incon-
sistency degrees. Additionally, we will study other methods
for the encodings of inconsistency degrees, such as the en-
coding of the computation of inconsistency degrees to the
pseudo boolean problem which has mature solvers (Berre
2009). Moreover, since there are several powerful par-
tial Max-SAT solvers, we are interested in training a meta
framework which can automatically choose proper solvers
to the computation of different inconsistency degrees of a
given knowledge base. Finally, we plan to apply our method
to measure inconsistency in other logic systems such as De-
scription Logics and Logic Programming.

Acknowledgments We acknowledge support by the Eu-
ropean Commission under the project OntoRule (IST-2009-
231875), by the National Natural Science Foundation of
China under number 60973003, and by The Ph.D. Programs
Foundation of Ministry of Education of China. This work
was partly realized as part of the Quaero Programme, funded
by OSEO, French State agency for innovation. Guilin Qi is
partially supported by Excellent Youth Scholars Program of
Southeast University under grant 4009001011 and National
Science Foundation of China under grant 60903010.

References
Arieli, O., and Avron, A. 1998. The value of the four
values. Artificial Intelligence 102:97–141.

7www.maxsat.udl.cat/09/index.php?disp=requirements

Baaz, M.; Egly, U.; and Leitsch, A. 2001. Normal Form
Transformations. Elsevier Science. chapter 5, 273–333.
Belnap, N. D. 1977. A useful four-valued logic. In Modern
uses of multiple-valued logics, 7–73. Reidel.
Berre, D. L. 2009. SAT4J: A Satisfiability Library for Java.
http://www.sat4j.org.
Besnard, P., and Hunter, A. 1995. Quasi-classical logic:
Non-trivializable classical reasoning from incosistent in-
formation. In Proc. of ECSQARU’95, 44–51. Springer.
Cadoli, M., and Schaerf, M. 1996. On the complexity of
entailment in propositional multivalued logics. Annals of
Mathematics and Artificial Intelligence 18(1):29–50.
Grant, J., and Hunter, A. 2006. Measuring inconsistency
in knowledgebases. Journal of Intelligent Information Sys-
tems 27(2):159–184.
Grant, J., and Hunter, A. 2008. Analysing inconsis-
tent first-order knowledge bases. Artificial Intelligence
172:1064–1093.
Grant, J. 1978. Classifications for inconsistent theories.
Notre Dame Journal of Formal Logic 19(3):435–444.
Hunter, A., and Konieczny, S. 2005. Approaches to mea-
suring inconsistent information. In Inconsistency Toler-
ance, 191–236. Springer.
Hunter, A., and Konieczny, S. 2006. Shapley inconsistency
values. In Proc. of KR’06, 249–259. AAAI Press.
Hunter, A., and Konieczny, S. 2008. Measuring inconsis-
tency through minimal inconsistent sets. In Proc. of KR’08,
358–366. AAAI Press.
Hunter, A. 2000. Reasoning with contradictory informa-
tion using quasi-classical logic. Journal of Logic and Com-
putation 10(5):677–703.
Hunter, A. 2002. Measuring inconsistency in knowledge
via quasi-classical models. In Proc. of AAAI’02, 68–73.
AAAI Press.
Hunter, A. 2006. How to act on inconsistent news: Ig-
nore, resolve, or reject. Data & Knowledge Engineering
57(3):221–239.
Knight, K. 2002. Measuring inconsistency. Journal of
Philosophical Logic 31(1):77–98.
Levesque, H. J. 1984. A logic of implicit and explicit
belief. In Proc. of AAAI’84, 198–202. AAAI Press.
Ma, Y.; Qi, G.; Hitzler, P.; and Lin, Z. 2007. Measuring in-
consistency for description logics based on paraconsistent
semantics. In Prof. of ECSQARU’07, 30–41. Springer.
Ma, Y.; Qi, G.; Xiao, G.; Hitzler, P.; and Lin, Z. 2009. An
anytime algorithm for computing inconsistency measure-
ment. In Proc. of KSEM’09, 29–40. Springer.
Marques-Silva, J. 2009. The msuncore maxsat solver.
Technical report, CASL/CSI, University College Dublin.
Marquis, P., and Porquet, N. 2001. Computational as-
pects of quasi-classical entailment. Journal of Applied
Non-Classical Logics 11(3–4):295–312.
Papadimitriou, C., ed. 1994. Computational Complexity.
Addison Wesley.

Pipatsrisawat, K., and Darwiche, A. 2007. Clone: Solving
weighted max-sat in a reduced search space. In Proc. of
AI’07, 223–233. Springer.
Priest, G. 1991. Minimally inconsistent LP. Journal Studia
Logica 50(2):321–331.
Schaerf, M., and Cadoli, M. 1995. Tractable reasoning via
approximation. Artificial Intelligence 74(2):249–310.
Sinz, C.; Kaiser, A.; and Küchlin, W. 2003. Formal meth-
ods for the validation of automotive product configuration
data. Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing 17(1):75–97.
Zhou, L.; Huang, H.; Qi, G.; Ma, Y.; Huang, Z.; and Qu,
Y. 2009. Measuring inconsistency in DL-Lite ontologies.
In Proc. of WI’09, 349–356. Springer.

