
The DReW System for Nonmonotonic
DL-Programs

Guohui Xiao1 Thomas Eiter1 Stijn Heymans2

1 Institute of Information Systems Vienna University of Technology, Austria

2 Artificial Intelligence Center, SRI International, United States

CSWS 2012 & CWSC 2012, Shenzhen, 29 Nov 2012

Background: Semantic Web (W3C)

I RDF (Resource Description Framework) is the data model
I RDFS (Schema) enriches RDF by simple taxonomies and

hierarchies
I More expressive: OWL (Web Ontology Language) (2004;

2009)
I strongly builds on Description Logics

I Rule languages: Rule Interchange Format (RIF) (2010)
2/14

dl-Programs

I An extension of answer set programs with queries to DL
knowledge bases (KBs) (through dl-atoms)

I dl-atoms allow to query a DL knowledge base differently

bidirectional flow of information, with clean technical
separation of DL engine and ASP solver (“loose coupling”)

DL EngineASP Solver ?

I Use DL-programs as “glue” for combining inferences on a DL
KB.

I System Prototypes

I NLP-DL http://www.kr.tuwien.ac.at/research/systems/semweblp/

I dlvhex http://www.kr.tuwien.ac.at/research/systems/dlvhex/

I #F-Logic programs (Ontoprise, extension to F-logic programs)

3/14

http://www.kr.tuwien.ac.at/research/systems/semweblp/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

DL-Programs: Network Example

KB = (L,P) Ontology L

n1

n2

n3

n4

n5

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

4/14

DL-Programs: Network Example

KB = (L,P) Ontology L

n1

n2

n3

n4

n5

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

4/14

DL-Programs: Network Example

KB = (L,P) Ontology L

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Program
P

newnode(x1). newnode(x2)

4/14

DL-Programs: Network Example
KB = (L,P) Ontology L

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Program
P

newnode(x1). newnode(x2)

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

I DL atom: DL[wired] connect; HighTrafficNode](X).

I Intuition: extend DL predicate wired by connect, then query
HighTrafficNode

I E.g. Suppose {connect(x1, n3), connect(x2, n3)} ⊆ I

I Then I |= DL[wired] connect; HighTrafficNode](n3)

I Thus I |= overloaded(n3)

4/14

DL-Programs: Network Example

KB = (L,P) Ontology L

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Program
P

newnode(x1). newnode(x2)

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X ,Y)← newnode(X),DL[Node](Y),

not overloaded(Y), not excl(X ,Y).

4/14

DL-Programs: Network Example

KB = (L,P) Ontology L

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Program
P

newnode(x1). newnode(x2)

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X ,Y)← newnode(X),DL[Node](Y),

not overloaded(Y), not excl(X ,Y).

excl(X ,Y)← connect(X ,Z),DL[Node](Y),Y 6= Z .

4/14

DL-Programs: Network Example
KB = (L,P) Ontology L

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Program
P

newnode(x1). newnode(x2)

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X ,Y)← newnode(X),DL[Node](Y),

not overloaded(Y), not excl(X ,Y).

excl(X ,Y)← connect(X ,Z),DL[Node](Y),Y 6= Z .

excl(X ,Y)← connect(Z ,Y), newnode(Z), newnode(X),Z 6= X .

4/14

DL-Programs: Network Example
KB = (L,P) Ontology L

n1

n2

n3

n4

n5

x1?

x2?

X

≥ 1.wired v Node > v ∀wired .Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Program
P

newnode(x1). newnode(x2)

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X ,Y)← newnode(X),DL[Node](Y),

not overloaded(Y), not excl(X ,Y).

excl(X ,Y)← connect(X ,Z),DL[Node](Y),Y 6= Z .

excl(X ,Y)← connect(Z ,Y), newnode(Z), newnode(X),Z 6= X .

excl(x1, n4).

4/14

Semantics of DL-Programs

n1

n2

n3

n4

n5

x1?

x2?

X
I Answer set semantics (Stable

model semantics)
I Extension of answer set

semantics for normal logical
programming

I Multi models

I M1 = {connect(x1, n1), connect(x2, n4), . . .},
I M2 = {connect(x1, n1), connect(x2, n5), . . .},
I M3 = {connect(x1, n5), connect(x2, n1), . . .},
I M4 = {connect(x1, n5), connect(x2, n4), . . .}.

5/14

Semantics of DL-Programs

n1

n2

n3

n4

n5

x1?

x2?

X
I Answer set semantics (Stable

model semantics)
I Extension of answer set

semantics for normal logical
programming

I Multi models

I M1 = {connect(x1, n1), connect(x2, n4), . . .},

I M2 = {connect(x1, n1), connect(x2, n5), . . .},
I M3 = {connect(x1, n5), connect(x2, n1), . . .},
I M4 = {connect(x1, n5), connect(x2, n4), . . .}.

5/14

Semantics of DL-Programs

n1

n2

n3

n4

n5

x1?

x2?

X
I Answer set semantics (Stable

model semantics)
I Extension of answer set

semantics for normal logical
programming

I Multi models

I M1 = {connect(x1, n1), connect(x2, n4), . . .},
I M2 = {connect(x1, n1), connect(x2, n5), . . .},

I M3 = {connect(x1, n5), connect(x2, n1), . . .},
I M4 = {connect(x1, n5), connect(x2, n4), . . .}.

5/14

Semantics of DL-Programs

n1

n2

n3

n4

n5

x1?

x2?

X
I Answer set semantics (Stable

model semantics)
I Extension of answer set

semantics for normal logical
programming

I Multi models

I M1 = {connect(x1, n1), connect(x2, n4), . . .},
I M2 = {connect(x1, n1), connect(x2, n5), . . .},
I M3 = {connect(x1, n5), connect(x2, n1), . . .},

I M4 = {connect(x1, n5), connect(x2, n4), . . .}.

5/14

Semantics of DL-Programs

n1

n2

n3

n4

n5

x1?

x2?

X
I Answer set semantics (Stable

model semantics)
I Extension of answer set

semantics for normal logical
programming

I Multi models

I M1 = {connect(x1, n1), connect(x2, n4), . . .},
I M2 = {connect(x1, n1), connect(x2, n5), . . .},
I M3 = {connect(x1, n5), connect(x2, n1), . . .},
I M4 = {connect(x1, n5), connect(x2, n4), . . .}.

5/14

n1

n2

n3

n4

n5

x1?

x2?

X I Well-founded semantics
I Extension of well-founded

semantics for normal logical
programming

I Single model

I M0 = {overloaded(n2), . . .}

6/14

Loose Coupling - Features

I Advantage:

I Clean semantics, can use legacy systems
I Fairly easy to incorporate further knowledge

formats (e.g. RDF)
I Privacy, information hiding

Rules

Ontology

dl-atom 1

dl-atom 2

Rule
Reasoner

Ontology
Reasoner

Hybrid Reasoner

I Drawback: impedance mismatch, performance

I Evaluation of DL-program needs multiple calls
of a DL-reasoner

I Calls are expensive
I optimizations (caching, pruning ...)

I In some case, exponentially many calls might be
unavoidable

I Even polynomially many calls might be too
costly

7/14

Loose Coupling - Features

I Advantage:

I Clean semantics, can use legacy systems
I Fairly easy to incorporate further knowledge

formats (e.g. RDF)
I Privacy, information hiding

Rules

Ontology

dl-atom 1

dl-atom 2

Rule
Reasoner

Ontology
Reasoner

Hybrid Reasoner

I Drawback: impedance mismatch, performance

I Evaluation of DL-program needs multiple calls
of a DL-reasoner

I Calls are expensive
I optimizations (caching, pruning ...)

I In some case, exponentially many calls might be
unavoidable

I Even polynomially many calls might be too
costly

7/14

Uniform Evaluation

Convert the evaluation problem into one for a
single reasoning engine

L-formulas
Logic L

Reasoner

I This means to transform a dl-program into an (equivalent)
knowledge base in one formalism L for evaluation (uniform
evaluation)

I In this talk, L = Datalog¬

8/14

Reasoning with DL-Programs by Datalog¬ rewriting

1. Rewriting Ontology to Datalog

2. Duplicating rewritten ontologies according to the dl-inputs

3. Rewriting DL-rules to Datalog¬ rules

4. Rewriting DL-atoms to Datalog rules

5. Calling Datalog reasoner

9/14

DReW Reasoner

I DReW is a reasoner for DL-Programs over Datalog-rewritable
Description Logics

I homepage: http://www.kr.tuwien.ac.at/research/systems/drew/

I open sourced: https://github.com/ghxiao/drew

Parse DL-RulesOWL 2 ontology

Choose a DL to
Datalog rewriter

Translate to
Datalog¬

DL profile (OWL 2 RL / EL)

Datalog
Reasoner

Figure : Control Flow of DReW with DL-programs

10/14

http://www.kr.tuwien.ac.at/research/systems/drew/
https://github.com/ghxiao/drew

Features in DReW v0.3

I Ontology component
I OWL 2 RL
I OWL 2 EL

I Semantics
I ASP semantics
I Well-founded semantics

I Rule formalism
I DL-Programs
I Conjunctive Query under DL-safeness
I Terminological default reasoning

11/14

Example Usage

Example with network DL-Programs under ASP semantics

$./drew -rl -ontology sample_data/network.owl \

-dlp sample_data/network.dlp \

-filter connect -dlv $HOME/bin/dlv

{ connect(x1, n1) connect(x2, n5) }

{ connect(x1, n5) connect(x2, n1) }

{ connect(x1, n5) connect(x2, n4) }

{ connect(x1, n1) connect(x2, n4) }

12/14

Example Usage

Example with network dl-Programs under well-founded semantics

$./drew -rl -ontology sample_data/network.owl \

-dlp sample_data/network.dlp \

-filter overloaded -wf -dlv ./dlv-wf

{ overloaded(n2) }

13/14

Summary and Outlook

I Summary
I DL-programs is a strong formalism for combining Ontology

and Rules
I Traditional engine for dl-Programs suffers from the overhead of

calling external DL Reasoner
I By exploiting Datalog-rewritablity, reasoning over dl-programs

can be reduced to Datalog¬

I Try DReW Reasoner!

I Outlook
I More evaluation
I More expressive DL component, e.g. Horn-SHIQ
I More reasoning paradigm support, e.g. Closed World

Assumption

14/14

	DL-Programs
	Reasoning with DL-Programs via Datalog Rewriting
	DReW System
	Summary

