# Inconsistency Measurement based on Variables in Minimal Unsatisfiable Subsets 

Guohui Xiao Yue Ma<br>Institute of Informatics，Vienna University of Technology<br>Theoretical Computer Science，Dresden University of Technology

ECAI 2012 －August 30， 2012

## Overview

（1）Motivation
（2）Preliminaries
（3）Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
（5）Experiments
（6）Summary

## Outline

(1) Motivation

(2) Preliminaries
(3) Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
(5) Experiments
(6) Summary

## Background

- Consistent KBs are useful, but inconsistent KBs imply any conclusion (meaningless!)
- Inconsistency measurement:
from "is inconsistent" to "how inconsistent"
- Ideas and approaches:
- based on different views of atomicity of inconsistency
- Semantics based approaches
- Syntax based approaches
- Semantics - syntax combined approaches (this paper)


## Outline

## (1) Motivation

(2) Preliminaries
(3) Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
(5) Experiments
(6) Summary

## Inconsistency Measurement by Multi-valued Semantics

## Inconsistency Measurement by Multi-valued Semantics

- Multi-Valued Semantics
- 4-valued, 3-valued, $L P_{m}$, Quasi-Classical, ...
- I: Var $(K) \rightarrow\{t, f$, Both, None $\}$


## Inconsistency Measurement by Multi-valued Semantics

- Multi-Valued Semantics
- 4-valued, 3-valued, $L P_{m}$, Quasi-Classical, ...
- I: Var $(K) \rightarrow\{t, f$, Both, None $\}$
- ID of $K$ respect to $I$ under $i$-semantics $\left(i=3,4, L P_{m}, Q\right)$

$$
I D_{i}(K, I)=\frac{\left|\left\{p \mid p^{\prime}=B, p \in \operatorname{Var}(K)\right\}\right|}{|\operatorname{Var}(K)|}, \text { if } I \models_{i} K
$$

## Inconsistency Measurement by Multi-valued Semantics

- Multi-Valued Semantics
- 4-valued, 3-valued, $L P_{m}$, Quasi-Classical, ...
- I: Var $(K) \rightarrow\{t, f$, Both, None $\}$
- ID of $K$ respect to $I$ under $i$-semantics $\left(i=3,4, L P_{m}, Q\right)$

$$
I D_{i}(K, I)=\frac{\left|\left\{p \mid p^{\prime}=B, p \in \operatorname{Var}(K)\right\}\right|}{|\operatorname{Var}(K)|}, \text { if } I \models_{i} K
$$

- ID of $K$ under under $i$-semantics $\left(i=3,4, L P_{m}, Q\right)$

$$
I D_{i}(K)=\min _{I \models i K} I D_{i}(K, I)
$$

## Inconsistency Degree under 4-valued Semantics

Truth values: $\{t, f, B, N\}$
4-model I:
$K \rightarrow\{t, B\}$

$$
\begin{aligned}
\bullet & I D_{4}(K, I)=\frac{\left|\left\{p \mid p^{\prime}=B, p \in \operatorname{Var}(K)\right\}\right|}{|\operatorname{Var}(K)|} \\
& I D_{4}(K)=\min _{I \models 4} K I D_{4}(K), \\
\rightsquigarrow & K=\{p, \neg q, \neg p \vee q, r \vee s\} \\
\rightsquigarrow & I_{1}: p^{I_{1}}=B, q^{I_{1}}=f, r^{I_{1}}=t, s^{I_{1}}=t, \\
& I_{2}: p^{I_{2}}=B, q^{I_{2}}=B, r^{I_{2}}=t, s^{I_{2}}=t \\
& I_{3}: p^{I_{3}}=B, q^{I_{3}}=B, r^{I_{3}}=t, s^{I_{3}}=N \\
\rightsquigarrow & I D_{4}\left(K, I_{1}\right)=\frac{1}{4}, I D_{4}\left(K, I_{2}\right)=\frac{2}{4} \\
& I D_{4}\left(K, I_{3}\right)=\frac{2}{4} \\
& I D_{4}(K)=\frac{1}{4}
\end{aligned}
$$



Figure: Four-Valued Logic

## Inconsistency Degree under Quasi-Classical Semantics

Quasi-Classical (Q) interpretation:

- 4-valued interpretation
- Resolution laws are satisfied

$$
\begin{aligned}
& I \models_{Q} \alpha \vee \beta, \\
& I \models_{Q} \neg \beta \vee \gamma \\
& \Rightarrow I \models_{Q} \alpha \vee \gamma
\end{aligned}
$$

$$
\begin{gathered}
\text { - } I D_{Q}(K, I)=\frac{\left|\left\{p \mid p^{\prime}=B, p \in \operatorname{Var}(K)\right\}\right|}{|\operatorname{Var}(K)|} \\
I D_{Q}(K)=\min _{I \models \models_{Q} K} I D_{Q}(K),
\end{gathered}
$$

$$
\begin{aligned}
\rightsquigarrow & K=\{p, \neg q, \neg p \vee q, r \vee s\} \\
\rightsquigarrow & I_{1}: p^{I_{1}}=B, q^{l_{1}}=f, r^{I_{1}}=t, s^{l_{1}}=t- \\
& I_{2}: p^{I_{2}}=B, q^{I_{2}}=B, r^{I_{2}}=t, s^{I_{2}}=t \\
& I_{3}: p^{I_{3}}=B, q^{I_{3}}=B, r^{I_{3}}=t, s^{I_{3}}=N \\
\rightsquigarrow & \operatorname{ID}_{Q}\left(K, I_{1}\right)=\frac{1}{4}, I D_{Q}\left(K, I_{2}\right)=\frac{2}{4} \\
& I D_{Q}\left(K, I_{3}\right)=\frac{2}{4} \\
& I D_{Q}(K)=\frac{2}{4}
\end{aligned}
$$

Remark: $I D_{4}(K)=I D_{3}(K)=I D_{L P m}(K) \leq I D_{Q}(K)$ [Xiao et al., 2010]

## MUS and MCS

## Definition

A subset $U \subseteq K$ is an Minimal Unsatisfiable Subset (MUS), if

- $U$ is unsatisfiable and
- $\forall C_{i} \in U, U \backslash\left\{C_{i}\right\}$ is satisfiable.


## Definition

A subset $M \subseteq K$ is an Minimal Correction Subset (MCS), if

- $K \backslash M$ is satisfiable and
- $\forall C_{i} \in M, K \backslash\left(M \backslash\left\{C_{i}\right\}\right)$ is unsatisfiable.


## Example

Let $K=\{p, \neg p, p \vee q, \neg q, \neg p \vee r\}$. Then
$\operatorname{MUSes}(K)=\{\{p, \neg p\},\{\neg p, p \vee q, \neg q\}\}$ and
$\operatorname{MCSes}(K)=\{\{\neg p\},\{p, p \vee q\},\{p, \neg q\}\}$.

## Inconsistency Measurement by MUSes and MCSes

## [Hunter and Konieczny, 2008]

The MI inconsistency measure is defined as the numbers of minimal inconsistent sets of $K: I_{M I}(K)=|\operatorname{MUSes}(K)|$.
(minimal inconsistent sets $=$ minimal unsatisfiable subsets)

## Example

Let $K=\{p, \quad \neg p, \quad p \vee q, \quad \neg q, \quad \neg p \vee r\}$.

- $\operatorname{MUSes}(K)=\{\{p, \neg p\}, \quad\{\neg p, p \vee q, \neg q\}\}$
- $I_{M I}(K)=2$
- Note that $I_{M I}(K)$ can be exponentially large


## Why another Inconsistency Measurement?

- Combination of Semantics and Syntax based IDs
- Shapley inconsistency measures [Hunter and Konieczny, 2006]: distribution of $I D_{\{4, Q, \ldots\}}$ among different formulas
- Ours:
combination of semantics and syntax based IDs in the KB level
- Expected properties:
- Easier to compute than $I_{M I}$ :
$\star I_{M I}$ tends to be difficult to compute or approximate because of exponentially many MUSes
- More intuitive:
$\star$ For $K=\{a \wedge \neg a\}$ and $K^{\prime}=\{a \wedge \neg a \wedge b \wedge \neg b\}$, we have $I_{M I}(K)=I_{M I}\left(K^{\prime}\right)=1$, which is unintuitive
* Later we see $I D_{4}$ tends to be "small", while $I D_{Q}$ tends to be "large"


## Outline

## (1) Motivation

(2) Preliminaries
(3) Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
(5) Experiments
(6) Summary

## Inconsistency Measurement by Variables in MUSes

## Definition

For a given set of variables $S$ and a given knowledge base $K$ such that $\operatorname{Var}(K) \subseteq S$, its MUS-variable based inconsistency degree, written I $D_{\text {MUS }}(K)$, is defined as:

$$
I D_{\text {MUS }}(K)=\frac{|\operatorname{Var}(M U S e s(K))|}{|S|} .
$$

## Example

Let $K=\{p, \neg p, p \vee q, \neg q, \neg p \vee r\}$ and $S=\operatorname{Var}(K)=\{p, q, r\}$, $\operatorname{MUSes}(K)=\{\{p, \neg p\},\{\neg p, p \vee q, \neg q\}\}$. Then $I D_{\text {Mus }}(K)=2 / 3$.

## Example

For $K=\{a \wedge \neg a\}$ and $K^{\prime}=\{a \wedge \neg a \wedge b \wedge \neg b\}$, let $S=\operatorname{Var}(K) \cup \operatorname{Var}\left(K^{\prime}\right)=\{a, b\}$. Then we have $\operatorname{MUSes}(K)=\{\{a \wedge \neg a\}\}$ and $\operatorname{MUSes}\left(K^{\prime}\right)=\{\{a \wedge \neg a \wedge b \wedge \neg b\}\}, I D_{M U S}(K)=1 / 2$ and

## Inconsistency Measurement by Variables in MCSes

Similarly to $I D_{M U S}(K)$, we can define another inconsistency degree through MCS as follows:

## Definition

For a given set of variables $S$ and a given knowledge base $K$ such that $\operatorname{Var}(K) \subseteq S$, its MCS-variable based inconsistency degree, written $I D_{M C S}(K)$, is defined as follows:

$$
I D_{M C S}(K)=\frac{|\operatorname{Var}(M C \operatorname{Ses}(K))|}{|S|}
$$

## Example

Let $K=\{p, \neg p, p \vee q, \neg q, \neg p \vee r\}$ and $S=\operatorname{Var}(K)$,
$\operatorname{MCSes}(K)=\{\{\neg p\},\{p, p \vee q\},\{p, \neg q\}\}$, then $I D_{M C S}(K)=2 / 3$.

## $I D_{M U S}=I D_{M C S}$

- $\operatorname{MUSes}(K)$ and $\operatorname{MCSes}(K)$ are hitting sets dual of each other [Liffiton and Sakallah, 2008]

$$
\begin{aligned}
& \Rightarrow \bigcup \operatorname{MUSes}(K)=\bigcup M C S e s(K) \\
& \Rightarrow \operatorname{Var}(\cup M U \operatorname{Ses}(K))=\operatorname{Var}(\cup M C S e s(K)) \\
& \Rightarrow I D_{M U S}(K)=I D_{M C S}(K)
\end{aligned}
$$

In the rest of the talk, the discussion is only about $I D_{\text {MUS }}(K)$,

## $I D_{4}$ and $I D_{M U S}$

Corollary
Let $U$ be an $M U S$, then $I D_{4}(U)=1 /|\operatorname{Var}(U)|$.
The following theorem shows that $I D_{4}(K)$ can be determined by the cardinality minimal hitting sets of $\operatorname{MUSes}(K)$.

Theorem
For a given KB K,

$$
I D_{4}(K)=\frac{\min _{H}\{|H| \mid \forall U \in \operatorname{MUSes}(K), \operatorname{Var}(U) \cap H \neq \emptyset\}}{|\operatorname{Var}(K)|} .
$$

> Corollary
> $I D_{\operatorname{MUS}}(K) \geq I D_{4}(K)$

## $I D_{Q}$ and $I D_{M U S}$

## Lemma

Let $U$ be an MUS, then $U$ has only one $Q$-model which assigns $B$ to all of its variables. Hence $I D_{Q}(U)=1$.

## Proposition



Corollary
Let $K$ be a $K B$, then $I D_{Q}(K) \geq I D_{M u s}(K)$.

## Outline

## (1) Motivation

(2) Preliminaries
(3) Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
(5) Experiments
(6) Summary

## Complexity Results

- ID-MUS $\sum_{\geq k}$ : Given a CNF KB, and a number $k$, deciding $I D_{\text {MUS }}(K) \geq k$.
- ID-MUS: Functional complexity of computing $I D_{M U S}$

| Problem | Complexity |
| :--- | ---: |
| $I D-M U S_{\geq k}$ | $\Sigma_{2}^{p}$-complete |
| ID-MUS $\leq k$ | $\Pi_{2}^{p}$-complete |
| ID-MUS $=k$ | $D_{2}^{p}$-complete |
| ID-MUS | $\mathrm{FP}^{\Sigma_{2}^{p}[\log ]}$ |

Table: Complexity Results

- All the results are in the second layer of polynomial hierarchy
- Recall that $I D_{4}$ and $I D_{Q}$ are in first layer


## Outline

## (1) Motivation

(2) Preliminaries
(3) Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
(5) Experiments
(6) Summary

## Anytime Algorithm

- Using MCS finder to find $\operatorname{MCSes}(K)$
- Update $I D_{\text {MUS }}$ by newly found MCS

Algorithm: Anytime Algorithm for $I D_{M U S}(K)$;
Input: $K$ : KB as a set of clauses
Output: $I D_{\text {MUS }}(K)$
$B \leftarrow\}$
$N \leftarrow|\operatorname{Var}(K)|$
foreach $M \in \operatorname{MCSes}(K)$
// variable set
do
$B \leftarrow B \cup \operatorname{Var}(M)$
// update B
id $\leftarrow|B| / N$
print 'id_mus $(\mathrm{K}) \geqslant$ ', id
end
print 'id_mus(K) = ', id
return id

## Prototype Implementation

- prototype implementation, called CAMUS_IDMUS
- by adapting the source code of CAMUS_MCS $1.02^{1}$.

[^0]
## Experiments

Table : Evaluation of CAMUS_IDMUS on DC Benchmark

| Instance | \#V | \#C | \#M |  | \#Q | \#VM | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C168_FW_SZ_41 | 1,698 | 5,387 | >30,104 | 1 | 211 | $>124$ | 600.00 |
| C168_FW_SZ_66 | 1,698 | 5,401 | $>16,068$ | 1 | 182 | > 69 | 600.00 |
| C168_FW_SZ_75 | 1,698 | 5,422 | $>37,317$ | 1 | 198 | $>116$ | 600.00 |
| C168_FW_SZ_107 | 1,698 | 6,599 | >51,597 | 1 | 189 | > 92 | 600.00 |
| C168_FW_SZ_128 | 1,698 | 5,425 | $>25,397$ | 1 | 211 | $>66$ | 600.00 |
| C168_FW_UT_2463 | 1,909 | 7,489 | >109,271 | 1 | 436 | $>168$ | 600.00 |
| C168_FW_UT_2468 | 1,909 | 7,487 | $>54,845$ | 1 | 436 | $>138$ | 600.00 |
| C168_FW_UT_2469 | 1,909 | 7,500 | $>56,166$ | 1 | 436 | $>150$ | 600.00 |
| C168_FW_UT_714 | 1,909 | 7,487 | >84,287 | 1 | 436 | > 92 | 600.00 |
| C168_FW_UT_851 | 1,909 | 7,491 | 30 | 1 | 436 | 11 | 0.35 |
| C168_FW_UT_852 | 1,909 | 7,489 | 30 | 1 | 436 | 11 | 0.35 |
| C168_FW_UT_854 | 1,909 | 7,486 | 30 | 1 | 436 | 11 | 0.35 |
| C168_FW_UT_855 | 1,909 | 7,485 | 30 | 1 | 436 | 11 | 0.35 |
| C170_FR_SZ_58 | 1,659 | 5,001 | 177 | 1 | 157 | 54 | 0.46 |
| C170_FR_SZ_92 | 1,659 | 5,082 | 131 | 1 | 163 | 46 | 0.10 |
| C170_FR_SZ_95 | 1,659 | 4,955 | 175 | 1 | 23 | 23 | 0.20 |
| C170_FR_SZ_96 | 1,659 | 4,955 | 1,605 | 1 | 125 | 43 | 0.36 |

## Anytime Property of CAMUS_IDMUS



Figure: Anytime Property of CAMUS_IDmUS

## Outline

## (1) Motivation

(2) Preliminaries
(3) Inconsistency Measurement by Variables in MUSes

4 Computational Complexities
(5) Experiments
(6) Summary

## Summary

- $I D_{\text {MUS }}$ : inconsistency measurement by counting variables in MUSes
- $I D_{4} \leq I D_{M U S}=I D_{M C S} \leq I D_{Q}$
- Complexity of $I D_{\text {MUS }}$ is intractable: second layer of polynomial hierarchy
- The anytime algorithm and experiments show feasibility
- As a by-product, the relationship between MUSes, 4-models, Q-models are also interesting: informally, variables in $\operatorname{MUSes}(K)$ are in between of the minimal 4-models and Q-models


## Future Work

- Different inconsistency measurements have different views on inconsistency, we should combine them
- More efficient algorithm and implementations are needed


## References



Grégoire, É., Mazure, B., and Piette, C. (2007).
Boosting a complete technique to find MSS and MUS thanks to a local search oracle.
In Veloso, M. M., editor, IJCAI, pages 2300-2305.
Hunter, A. and Konieczny, S. (2006).
Shapley inconsistency values.
In Proc. of KR'06, pages 249-259.


Hunter, A. and Konieczny, S. (2008).
Measuring inconsistency through minimal inconsistent sets.
In Proc. of KR'08, pages 358-366.


Liffiton, M. H. and Sakallah, K. A. (2008).
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1-33.

Xiao, G., Lin, Z., Ma, Y., and Qi, G. (2010).
Computing inconsistency measurements under multi-valued semantics by partial max-SAT solvers.
In Proc. of KR'10, pages 340-349.

## Thanks!

## MUS/MCS Finders

The state-of-the-art MCS/MUS finders are highly optimized Some of them are

- CAMUS (open sourced) [Liffiton and Sakallah, 2008],
- HYCAM [Grégoire et al., 2007].

Common steps in MUSes finders:

1. Computing MCSes with an incremental SAT solver
2. Using Hitting sets algorithm to find MUSes

## Hitting Set


http://www.nature.com/nature/journal/v451/n7179/
fig_tab/451639a_F1.html

- $H$ is a hitting set of a set of sets $\Omega$ if $\forall S \in \Omega, H \cap S \neq \emptyset$.
- A hitting set $H$ is irreducible if there is no other hitting set $H^{\prime}$, s.t. $H^{\prime} \subsetneq H$.
- Remark: Hitting set problem in NP-complete


## MUS/MCS Duality

Theorem [Liffiton and Sakallah, 2008]
Given an inconsistent knowledge base $K$ :

- A subset $M$ of $K$ is an MCS of $K$ iff $M$ is an irreducible hitting set of MUSes(K);
- A subset $U$ of $K$ is an MUS of $K$ iff $U$ is an irreducible hitting set of MCSes(K).


## Example

Let $K=\{p, \quad \neg p, \quad p \vee q, \quad \neg q, \quad \neg p \vee r\}$.

- $\operatorname{MUSes}(K)=\{\{p, \neg p\}, \quad\{\neg p, p \vee q, \neg q\}\}$
- $\operatorname{MCSes}(K)=\{\{\neg p\}, \quad\{p, p \vee q\}, \quad\{p, \neg q\}\}$.

Clearly, $\operatorname{MUSes}(K)$ and $\operatorname{MCSes}(K)$ are hitting set duals of each other.


[^0]:    ${ }^{1}$ http://www.eecs.umich.edu/~liffiton/camus/

