
Abstraction for
Non-Ground Answer Set Programs

Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

Institute of Logic and Computation,
TU Wien, Vienna, Austria

Abstract. We address the issue of abstraction, a widely used notion to
simplify problems, in the context of Answer Set Programming (ASP),
which is a highly expressive formalism and a convenient tool for declara-
tive problem solving. We introduce a method to automatically abstract
non-ground ASP programs given an abstraction over the domain, which
ensures that each original answer set is mapped to some abstract an-
swer set. We discuss abstraction possibilities on several examples and
show the use of abstraction to gain insight into problem instances, e.g.,
domain details irrelevant for problem solving; this makes abstraction at-
tractive for getting to the essence of the problem. We also provide a tool
implementing automatic abstraction from an input program.

1 Introduction

Abstraction is an approach that is widely used in Computer Science and AI to
simplify problems [8, 23, 2, 16, 14]. By omitting details, scenarios are reduced to
ones that are easier to deal with and to understand; in fact, abstraction is ubiqui-
tous in building models of reality, which approximate the latter to meet specific
application purposes. Surprisingly, abstraction has not been considered much
in the context of nonmonotonic knowledge representation and reasoning, and
specifically not in Answer Set Programming (ASP) [7]. Simplification methods
such as equivalence-based rewriting [12, 26], partial evaluation [6, 21], or forget-
ting [24], have been extensively studied. However, they strive for preserving the
semantics, while abstraction may change it and lead to an over-approximation
of the models (answer sets) of a program, in a modified language.

Recently, such an approach was presented in [29] that omits atoms from an
ASP program, similar in spirit to abstraction in planning problems [18]. The
approach is propositional in nature and does not account for the fact that in
ASP, non-ground rules talk about a domain of discourse; e.g., a rule

col(X, r)← node(X),not col(X, g),not col(X, b).

may express that node X must be red if it is neither green nor blue; or the rule

{moveToTable(B,A, T)} ← on(B,B1, T), free(B, T)

that the block B on top of a stack may at time T be moved to a table area A.
For the (non)existence of an answer set, the precise set of elements (nodes resp.

2 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

Fig. 1. Initial state of a blocksworld with multiple tables (concrete
m→ abstract).

b1
 t1

b3

 t2

b2

 t10

b1 b3

 tˆ2

b2m

 tˆ1

blocks and areas) may not matter, but rather how certain elements are related;
for that, some elements may be abstracted into single elements. Then, a coloring
of the abstracted graph, if one exists, may be refined to the original graph; if
not, the latter is not colorable. Similarly, a plan for a blocksworld problem with
abstract areas may be turned into a concrete one by instantiating them.

Example 1 Figure 1 depicts a generalized blocks world with multiple tables. The
(natural) encoding (cf. Appendix A1) contains the actions moveToT (B,Ta, T)
and moveToB(B,B′, T) that denote moving block B onto table Ta and onto
block B′, resp., at time T . Initially, blocks can be located anywhere; the goal is to
pile them up at a picked table, say t1. An abstraction that distinguishes table t1
and clusters all other tables, leads to a concrete abstract answer set containing
moveToT (b2, t̂2, 0),moveToT (b3, t̂1, 1),moveToB(b2, b3, 2),moveToB(b1, b2, 3).
The abstraction shows that, for solving the problem, it is essential to distinguish
the picked table from all others and that the number of tables is irrelevant.

Although lots of advanced solving techniques are available for ASP, the support
for program analysis, especially in singling out relevant objects, is scarce. It is
unexplored how, for a non-ground ASP program Π, given an abstraction over
its domain, a suitable abstract program Π ′ can be automatically constructed
and evaluated. We tackle this issue and make the following contributions.

• We introduce the notion of domain abstraction for ASP programs. For that,
an abstraction of domain elements for a program Π is supplied with an abstract
program Π ′ so that each answer set of Π maps to an abstract answer set of Π ′.
• We provide a method to automatically construct such an abstract program
Π ′. It works modularly on the syntactic level, by constructing for each rule ab-
stract rules with a similar structure, where uncertainty caused by the abstracted
domain is carefully respected.
• We show how abstract answer sets can be computed and further processed.
This includes a concreteness check, with possible output of an answer set of the
original program, and a refinement strategy to deal with spurious answer sets
using local search. The whole approach is implemented in a tool that provides
automatic abstraction from an input program.
• We consider the domain abstraction approach for several examples, where
we also discuss how to use it for subdomains (sorts) such as time, and how to
compose sort abstractions. An experimental evaluation shows the potential of
the approach in finding non-trivial abstractions for various applications.
1 http://www.kr.tuwien.ac.at/staff/zeynep/pub/jelia/SSE19appendix.pdf

Abstraction for Non-Ground Answer Set Programs 3

2 Domain Abstraction for ASP

ASP. We adopt as a function-free first order language, in which a logic program
Π is a finite set of rules r of the form α←B(r) where α is an atom and the
body B(r) = l1, . . . , ln is a set of positive and negative literals li of the form β
or not β, respectively, where β is an atom and not is default negation; B+(r)
and B−(r) are the sets of all positive resp. negative literals in B(r). A rule r is a
constraint if α is falsity (⊥, then omitted). A rule r resp. program Π is ground,
if it is variable-free, and r is a fact if moreover n= 0. Rules r with variables
stand for the sets grd(r) of their ground instances, and semantically Π induces
a set AS (Π) of stable models (or answer sets) [15] which are Herbrand models
(i.e., sets I of ground atoms) of Π justified by the rules, in that I is a ⊆-minimal
model of fΠI = {r ∈ grd(Π) | I |= B(r)} [11], where grd(Π) =

⋃
r∈Π grd(r).

A program Π is unsatisfiable, if AS (Π) = ∅. A common syntactic extension are
choice rules of the form {α}←B, which stands for the rules α←B,not α′ and
α′←B,not α, where α′ is a fresh atom.

To illustrate various challenges of abstraction we use the following example.

Example 2 (Running example) Consider the following example program Π
with domain predicate int/1 for an integer domain D = {0, . . . , 5}.

c(X)← not d(X), X < 5, int(X). (1)

d(X)← not c(X), int(X). (2)

b(X,Y)← a(X), d(Y), int(X), int(Y). (3)

e(X)← c(X), a(Y), X ≤ Y, int(X), int(Y). (4)

← b(X,Y), e(X), int(X), int(Y). (5)

We furthermore have facts a(1), a(3), int(0), . . . , int(5).

Abstraction. A generic notion of abstraction is as follows.

Definition 1 Given ground programs Π and Π ′ on sets A and A′ of atoms,
respectively, where |A| ≥ |A′|, Π ′ is an abstraction of Π, if a mapping m :A →
A′ exists s.t. for each I ∈AS (Π), I ′= {m(a) | a∈ I} is an answer set of Π ′.

We refer to m as an abstraction mapping. This notion aims at the grounding
(propositional) view of programs. In this paper, we take a first-order view in
which A is the Herbrand base of Π, which results from the available predicate
symbols and the constants symbols (the domain D of discourse, i.e., the Her-
brand universe), which are by default those occurring in Π. Domain abstraction
induces abstraction mappings in which constants are merged.

Definition 2 Given a domain D of Π, a domain (abstraction) mapping is a

function m :D→ D̂ for a set D̂ (the abstracted domain) with |D̂| ≤ |D|.

Thus, a domain mapping divides D into clusters of elements {d∈D |m(d) = d̂},
where d̂∈ D̂, seen as equal; if unambiguous, we also write d̂ for its cluster m−1(d̂).

4 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

Example 3 (ctd) A possible abstraction mapping for Π with D̂1 = {k1, k2, k3}
clusters 1, 2, 3 to the element k1 and 4 and 5 to singleton clusters, i.e., m1 = {{1,
2, 3}/k1, {4}/k2, {5}/k3}. A naive mapping is m2 = {{1, .., 5}/k} with D̂2={k}.

Each domain mapping m naturally extends to ground atoms a= p(v1, . . . , vn)
by m(a) = p(m(v1), . . . ,m(vn)). To obtain for a program Π and a Herbrand base
A, an induced abstraction mapping m : A → A′ where A′ = m(A) = {m(a) |
a ∈ A}, we need a program Π ′ as in Definition 1. However, simply applying m to
Π does not work. Moreover, we want domain abstraction for non-ground Π that
results in a non-ground Π ′. Building a suitable Π ′ turns out to be challenging
and needs to solve several issues, which we gradually address in the next section.

3 Towards an Abstract Program

Handling built-ins and (in)equalities. Original rules may rely on certain
built-in relations involving variables, such as <,≤ in (1) and (4), or = and 6=. The
idea is to lift the rules by lifting these relations and dealing with the uncertainty
caused by the domain clustering.

Example 4 (ctd) We abstract from Π using m2. The rule (3) has no built-in
relation and thus it is lifted with no change:

b(X,Y)← a(X), d(Y), înt(X), înt(Y);

however, lifting rule (4) simply to

e(X)← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

does not work, as X ≤Y behaves differently over the cluster k. As k≤ k, when-
ever c(k) and a(k) holds the lifted rule derives e(k). This applies, e.g., to the
abstraction of I = {a(1), a(3), c(4), d(0), . . . , d(3)}, where (4) derives no e-atom
as 4� 3 and 4� 1. However, I is an answer set of Π and must not be lost in the
abstraction. Thus, when a cluster causes uncertainties over built-ins, we permit
e(k) to be false even if c(k) and a(k) holds by creating instead the following rule:

{e(X)} ← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

Negation. A naive abstraction approach is to turn all rule heads into choices.
However, negative literals or certain built-ins (e.g., 6=, <) may cause a loss of
original answer sets in the abstraction.

Example 5 (ctd) We change in (4) the symbol ≤ to 6= and consider

{e(X)} ← c(X), a(Y), X 6=Y, înt(X), înt(Y).

As k= k, the abstract body is never satisfied and e(k) is never derived. However,
Π has answer sets containing c(2), a(3), and thus also e(2), as 2 6= 3; they are
all lost. Adding a choice rule with a flipped relation, X =Y , catches such cases.

Similarly, let us change a(Y) in (4) to not a(Y). When the rule is lifted to

{e(X)} ← c(X),not a(Y), X ≤ Y, înt(X), înt(Y),

Abstraction for Non-Ground Answer Set Programs 5

e(k) is not derived as a(k) holds and originally a holds only for 1 and 3. Thus,
original answer sets I may contain e(2) or e(4) but they are lost in the abstrac-
tion. Such cases are caught by additional rules with reversed negation for a(Y):

{e(X)} ← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

Constraints. Naively lifting the constraints to the abstract rules would result
in losing answer sets for the non-singleton domain clusters. For example, if the
constraint (5) is lifted with no change, then b(k, k) and e(k) would never occur in
the abstract answer sets, while in the original program, answer sets can contain
b(x1, y) and c(x2) as long as x1 6= x2.

In conclusion, only creating choices is not enough to preserve all original an-
swer sets; we need a fine-grained systematic approach to deal with uncertainties.

3.1 Lifted Built-in Relations

As shown before, built-in relations need special treatment, and so do multiple
usages of a variable in a rule. To unify both issues, we focus on rules of form

r : l← B(r), Γrel(r)

where the variables in B(r) are standardized apart and Γrel consists of built-in
atoms that constrain the variables in B(r). E.g., the rule (3) has Γrel(r) =>
while the rule (5) must be standardized apart into ← b(X,Y), e(X1), Γrel with
Γrel = (X =X1).

Uncertainty is caused by relation restrictions over non-singleton clusters (i.e.,

|d̂| > 1) or by negative literals mapped to non-singleton abstract literals. For
simplicity, we first focus on binary built-ins, e.g., =, <,≤, 6=, and a Γrel(r) of
the form rel(X, c) or rel(X,Y). When the relation rel is lifted to the abstract

domain, the following cases τI–τIV for rel(d̂1, d̂2) occur in a mapping:

τ relI (d̂1, d̂2): rel(d̂1, d̂2)∧∀x1 ∈ d̂1, ∀x2 ∈ d̂2. rel(x1, x2)

τ relII (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∀x1 ∈ d̂1, ∀x2 ∈ d̂2.¬rel(x1, x2)

τ relIII (d̂1, d̂2): rel(d̂1, d̂2)∧∃x1 ∈ d̂1, ∃x2 ∈ d̂2.¬rel(x1, x2)

τ relIV (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∃x1 ∈ d̂1, ∃x2 ∈ d̂2. rel(x1, x2)

If rel(d̂1, d̂2) holds for some d̂1, d̂2 ∈ D̂, type III is more common in domain

abstractions with clusters, while type I occurs for singleton mappings (i.e., |d̂1| =
|d̂2| = 1) or for relations such as 6=, <.

Example 6 Consider a mapping m= {{1}/k1, {2, 3}/k2, {4, 5}/k3}. For the
relation “=”, k1 = k1 holds and for any x1, x2 ∈ k1 = {1}, x1 =x2 holds and type
I applies. In contrast, k2 = k2 holds while 2, 3 ∈ k2 and 2 6= 3; so type III applies.
Further, k2<k3 holds and for any x ∈ k2 = {2, 3} and y ∈ k3 = {4, 5}, we have
x<y and so type I applies.

If rel(d̂1, d̂2) does not hold for some d̂1, d̂2 ∈ D̂, type II is common, e.g., =,≤,
whereas type IV may occur for 6=, <.

6 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

Example 7 (ctd) Reconsider m. Then k2 6= k2 does not hold while k2 = {2, 3}
has different elements 2 6= 3 (type IV). Moreover, k1 = k2 does not hold in D̂
nor does x= y for every x ∈ k1 = {1} and y ∈ k2 = {2, 3} (type II).

For an abstraction m, we let Tm be the set of all atoms τ relι (d̂1, d̂2) where

ι ∈ {I, . . . , IV} is the type of the built-in instance rel(d̂1, d̂2) for m; note that Tm
is easily computed.

4 Abstract Program Construction

By our analysis, the basic idea to construct an abstract program for a program
Π with a domain mapping m is as follows. We either just abstract each atom in
a rule, or in case of uncertainty due to domain abstraction, we guess rule heads
to catch possible cases, or we treat negated literals by shifting their polarity
depending on the abstract domain clusters.

For ease of presentation, we first consider programs Π with rules having (i)
at most one negative body literal which shares an argument with the relation,
(ii) a single, binary built-in literal and (iii) no cyclic dependencies between non-
ground atoms. For any rule r and ∗∈ {+,−}, let the set S∗rel(r) = {lj ∈ B∗(r) |
arg(lj)∩{t1, t2} 6= ∅} be the positive and negative body literals, respectively, that
share an argument with rel(t1, t2). By assumption (i), we have B−(r) ⊆ S∗rel(r).

Definition 3 Given a rule r : l← B(r), rel(t1, t2) as above and a domain map-
ping m, the set rm contains the following rules:

(a) m(l)←m(B(r)), rel(t̂1, t̂2), τ relI (t̂1, t̂2).

(b) {m(l)}←m(B(r)), rel(t̂1, t̂2), τ relIII (t̂1, t̂2).

(c) {m(l)}←m(B(r)), rel(t̂1, t̂2), τ relIV (t̂1, t̂2).

(d) For li∈S−rel(r):
(i) {m(l)}←m(Bsh

li
(r)), rel(t̂1, t̂2), τ relIII (t̂1, t̂2).

(ii) {m(l)}←m(Bsh
li

(r)), rel(t̂1, t̂2), τ relIV (t̂1, t̂2).

(iii) {m(l)}←m(Bsh
li

(r)), rel(t̂1, t̂2), isCluster(li).

where Bsh
li

(r)=B+(r)∪ {li},not B−(r)\{li}, rel denotes the complement of rel ,

and for j ∈{1, 2}, if tj is a constant then t̂j =m(tj), else t̂j = tj, i.e., variables
are not mapped. The auxiliary atom isCluster(li) holds true if a variable from
arg(li) is mapped to a non-singleton cluster.

In step (a), the case of having no uncertainty due to abstraction is applied.
Steps (b) and (c) are for the cases of uncertainty. The head becomes a choice,
and for case IV, we flip the relation, rel , to catch the case of the relation holding
true (which is causing the uncertainty). Constraints (e.g., (5)) are omitted in
the cases with uncertainty (i.e., all steps except (a)).

Example 8 (ctd) Consider Ex 2 with domain mapping m= {{1}/k1,{2, 3}/k2,
{4, 5}/k3}. In rule (4), the relation X ≤Y has S+

≤(r) = {c(X), a(Y)}. We have

Abstraction for Non-Ground Answer Set Programs 7

τ≤I (x, y) true for (x, y)∈{(k1, k1), (k1, k2), (k1, k3), (k2, k3)}, and τ≤III(x, y) true
for (x, y)∈ {(k2, k2), (k3, k3)}, and only type II for all other tuples (x, y). The
abstract rules for (4) are:

e(X)← c(X), a(Y), X ≤ Y, τ≤I (X,Y), înt(X), înt(Y).

{e(X)}← c(X), a(Y), X ≤ Y, τ≤III(X,Y), înt(X), înt(Y).

In step (d) of Definition 3, rel(t1, t2) shares arguments with a negative body
literal. We grasp the uncertainty arising from negation by adding rules where
the related literal is shifted to the positive body via Bsh

li
(r). (d-iii) shifts the

negative literal only if it shares arguments mapped to a non-singleton cluster.

Example 9 (ctd) Rule (1) has a negative literal, not d(X), and the relation
X < 5 with shared argument X. When it is lifted to X <k3, it has τ<II (a, b) true
for (a, b)∈ {(k3, k1), (k3, k2)}, τ<IV(k3, k3), and type I for all other tuples (a, b).

By case (1), it is abstracted without change for τI abstract values, while for
τIV specially treated rules are added:

c(X)← not d(X), X < k3, τ
<
I (X, k3), înt(X).

{c(X)}← not d(X), X ≥ k3, τ<IV(X, k3), înt(X).

{c(X)}← d(X), X ≥ k3, τ<IV(X, k3), înt(X).

{c(X)}← d(X), X < k3, isCluster(d(X)), înt(X).

The abstract program is now as follows.

Definition 4 Given a program Π as above and a domain abstraction m, the
abstract program for m consists of the rules

Πm =
⋃
r: l←B(r),rel(t1,t2)∈Π r

m ∪ {x. |x∈Tm} ∪ {m(p(c)). | p(c). ∈ Π}.

Notably, the construction of Πm is modular, rule by rule.

Theorem 1 Let m be a domain mapping of a program Π under the above as-
sumptions (i)–(iii). Then for every I ∈ AS (Π), m(I) ∪ Tm ∈ AS (Πm).

Proof (sketch). The rules added in steps (a)-(b) are to ensure that m(I) is a
model of Πm, as either the original rule is kept or it is changed to a choice rule.
Steps (c)-(d) serve to catch the cases that may violate the minimality of the
model due to a negative literal or a relation over non-singleton clusters.

Abstract Program (General Case). We now describe how to remove the
restrictions (i)–(iii) on programs from above.

(i) Multiple negative literals. If rule r has |B−(r)|>1, we shift each negative
literal that either (a) shares an argument with the abstracted relation rel , or (b)
shares arguments mapped to a non-singleton cluster. Thus, instead of having
Bsh
l (r) for one literal, we consider the shifting of multiple literals at a time

Bsh
L (r)=B+(r) ∪ L,not B−(r)\L, and all combinations of (non-)shifting of the

literals in L ∈ B−(r).

(ii) Multiple relation literals. A simple approach to handle a built-in part
Γrel = rel(t1,1, t2,1), .. , rel(t1,k, t2,k), k > 1, is to view it as literal of an 2k-ary

8 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

built-in rel ′(X1,1, X2,1, .. , X1,k, X2,k). The abstract version of such rel ′ and the
cases I-IV are lifted from x1, x2 to x1, .. , xn. E.g., for Γrel = (X1=X2, X3=X4),

we use a new relation rel ′(X1, X2, X3, X4). For abstract values d̂1, .. , d̂4 s.t.

d̂1 = d̂2 ∧ d̂3 = d̂4 holds, we have type τI if all d̂i are singleton clusters and τIII if
some d̂i is non-singleton; otherwise (i.e., rel ′(d̂1, d̂2, d̂3, d̂4) holds) type τII applies.

(iii) Cyclic dependencies. Rules which are involved in a cyclic dependency
containing at least one negation between two literals need special consideration.

Example 10 Consider the rules (1)-(2)(Ex. 2) and the mapping {{1, . . . ,5}/k}.
The abstract rules for them are

{c(X)} ← not d(X), X ≥ k, τ<IV(X, k), înt(X).

{c(X)} ← d(X), X ≥ k, τ<IV(X, k), înt(X). (6)

{c(X)} ← d(X), X < k, isCluster(d(X)), înt(X). (7)

{d(X)} ← c(X), înt(X). (8)

in addition to the abstracted rules due to step (a). While {c(k), d(k)} is a
model of the rules, it is not minimal and hence not an answer set. However, the
original rules have “choice” answer sets with c- and d-atoms, e.g., I = {c(0),
d(1), c(2), d(3), c(4), d(5)}; they are lost by the abstraction.

To resolve this, we preprocess the program Π and mark atoms involved in a
negative cyclic dependency. Then, in step (3) of Definition 3, we modify Bsh

li
(r)

to eliminate marked literals li instead of shifting their polarity. For example, we
eliminate d(X) and c(X) from the bodies of abstract rules (6)–(8).

Let Πm denote the program obtained from a general program Π with the
generalized abstraction procedure. Then:

Theorem 2 Let m be a domain mapping of a program Π. Then for every
I ∈AS (Π), Î =m(I)∪Tm is an answer set of Πm.

Proof (sketch). For (i) and (iii), shifting the polarity of each negative literal
related with a non-singleton cluster and omitting the ones that are involved in a
negative cycle with the head of the rule ensures that the minimality is preserved.
The approach in (ii) is a simple combination of the relations.

Over-approximation. The abstraction yields in general an over-approxima-
tion of the answer sets of a program. This motivates the following notion.

Definition 5 An abstract answer set Î ∈AS (Πm) is concrete, if Î =m(I)∪Tm
for an I ∈AS (Π), else it is spurious.

A spurious abstract answer set has no corresponding concrete answer set. (Non-)
existing spurious answer sets allow us to infer properties of the original program.

Proposition 3 For any program Π,

(i) AS (Πmid) = {I ∪Tmid
| I ∈AS (Π)} for identity mid = {{x}/x |x∈D}.

Abstraction for Non-Ground Answer Set Programs 9

(ii) AS (Πm) = ∅ implies that AS (Π) = ∅.
(iii) AS (Π) = ∅ iff some Πm has only spurious answer sets.

Checking spuriousness has the following complexity.

Theorem 4 Given a program Π, a domain mapping m and an abstract answer
set Î ∈ AS (Πm), deciding whether Î is not spurious is NEXP-complete in
general and Σp

2 -complete for bounded predicate arities.

That is, the worst case complexity is the one of answer set existence for non-
ground programs; the two problems can be reduced to each other in polynomial
time. However, it drops to Σp

2 if the domain size |D| is polynomial in the ab-

stracted domain size |D̂|; e.g., if each abstract cluster is small (and multiple
clusters exist). As for testing faithfulness, we note the following result:

Theorem 5 Given a program Π and a domain mapping m, deciding whether
Πm is faithful, i.e., has no spurious answer set, is co-NEXPNP-complete in
general and Πp

3 -complete for bounded predicate arities (i.e., by a constant).

Membership is shown by a guess & check algorithm resorting to answer set exis-
tence, and hardness by encoding the evaluation of suitable second-order formulas.

5 Abstract Answer Set Computation

After constructing the abstract program Πm, we can run an ASP solver to obtain
abstract answer sets Î for the program Π with the mapping m. We then need
to check its concreteness, which can be done as follows.

Concreteness check. Let Qm
Î

be the following constraints:

⊥←{α |m(α) = α̂} ≤ 0. α̂∈ Î \ Tm (9)

⊥←α. α̂ /∈ Î \ Tm,m(α) = α̂ (10)

Here (9) ensures that a witnessing answer set I of Π contains for every non-τι,

abstract atom in Î some atom that is mapped to it. The constraint (10) ensures

that I has no atom that is mapped to an abstract atom not in Î. We then obtain:

Proposition 6 Î is spurious iff Π ∪Qm
Î

is unsatisfiable.

Refining Abstractions. After checking an abstract answer set, one can either
continue finding other abstract answer sets and check their correctness, or refine
the abstraction to reach an abstraction where less spurious answer sets occur.

Definition 6 Given a domain mapping m : D → D′, a mapping m′ : D → D′′

is a refinement of m if for all x ∈ D, m′−1(m′(x)) ⊆ m−1(m(x)).

Refinement is on dividing the abstract clusters to a finer grained domain. As
an example, mapping m′= {{1}/k1, {2}/k2,1, {3}/k2,2, {4, 5}/k3} is a refinement
of mapping m= {{1}/k1, {2, 3}/k2, {4, 5}/k3}.

10 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

5.1 Implementation

We have implemented the workflow described above in a tool2 that uses Python
and Clingo 5 [13]. We next discuss practical implementation issues.

Concreteness check and debugging. We use a non-ground version of Qm
Î

:

⊥← in(α̂), {α : map(X1, X̂1), . . . ,map(Xk, X̂k)} ≤ 0.

⊥←α,not in(α̂),map(X1, X̂1), . . . ,map(Xk, X̂k)

where α = p(X1, ..., Xk) and α̂ = p(X̂1, ..., X̂k), and map(Xi, X̂i) expresses the

abstract mapping, with the set of facts {in(α̂). | α̂ ∈ Î}.
If an abstract answer set Î is spurious, Π∪Qm

Î
is unsatisfiable; this gives us no

information on the reason of spuriousness. To overcome this, we add abnormality
atoms, ab, in the rules of Π that contain arguments from the domain. This
approach is inspired from [5] that introduces tagging atoms to the rules. We use
a simplified encoding by disregarding loop formulas (cf. Appendix B); thus, we
deal with tight programs only. E.g., in Example 2 rule (3) is converted to

b(X,Y)← a(X), d(Y), int(X), int(Y),not ab(r3, X, Y).

and new rules for a guess over ab at a cost for its existence in the answer set
are added. This extended program, Πab, gives us the possibility to catch the
rules that need to be deactivated in order to keep satisfiability while checking
the concreteness of an abstract answer set Î, in case it is spurious.

Refinement search. We run a basic search among all possible refinements
of a given initial abstraction (by default, the mapping m= {D/k1}) until an
abstraction that gives a concrete answer set is reached. For a refinement m′ of
m, we check the first abstract answer set, Î, of Πm′

, using Πab, i.e., Πab ∪Qm
′

Î
,

to see if Î is concrete. We then choose the answer set with the smallest number
of ab atoms in it; we call this number the cost of the refinement m′. Then, we
perform a local distance-based search, where the distance between an abstraction
and its refinement is the difference in the number of abstract clusters. We pick
the refinement with the least cost as the new abstraction until cost 0 is achieved.

Further features. In our implementation, strong negated literals ¬α are en-
coded, at a preprocessing step, as neg α and constraints of form ← α,neg α
are added to the encoding. Choice rules are treated specially by ensuring that
the abstraction is done on the body, and the choice over the head is kept. We
precompute the deterministic part of a program (i.e., not involved in unstrati-
fied negation resp. guesses) and encode it as facts which are then lifted without
introducing (unnecessary) nondeterminism.

6 Applications

Applications usually contain sorts that form subdomains of the Herbrand uni-
verse. For example, blocksworld contains sorts for blocks and time while in

2 http://www.kr.tuwien.ac.at/research/systems/abstraction/

Abstraction for Non-Ground Answer Set Programs 11

Fig. 2. Graph 3-coloring instance and abstract solution

1(blue) a1

3(red) a3 2 a2 (green)
4

5 6

a4 = {4, 5, 6}
(red)

scheduling there are sorts of tasks and time or in coloring there are sorts for
nodes and colors. We define an abstraction over a sort as follows.

Definition 7 An abstraction is limited to a sort Di ⊆ D, if all elements x∈D\
Di form singleton clusters {x}/x.

For practical purposes, sorts can use overlapping elements of the domain, pro-
vided that all occurrences of the sort are guarded by domain predicates.

We next show our abstraction method on examples.

Example 11 Consider the following 3-coloring encoding:

col(X1, r)←not col(X1, g),not col(X2, b), X1 =X2.

col(X1, g)←not col(X1, r),not col(X2, b), X1 =X2.

col(X1, b)←not col(X1, g),not col(X2, r), X1 =X2.

hasEdgeTo(X,C)← edge(X,Y1), color(Y2, C), Y1=Y2.

← hasEdgeTo(X1, C), col(X2, C), X1 =X2.

←node(X),not colored(X).

colored(X)← col(X,C),node(X).

and the graph with 6 nodes in Figure 2. The abstraction {{1}/a1, {2}/a2, {3}/a3,
{4, 5, 6}/a4}, which distinguishes the nodes in the clique 1-2-3 and clusters all

others, has only concrete abstract answer sets, one of them is Î = {col(a1, b),
col(a2, g), col(a3, r), col(a4, r)} where the nodes 4,5,6 clustered to a4 are red.

Abstraction over Time. In ASP, it is customary to represent time by an
additional argument in atoms. Abstraction over time is handled equivalently
as for other domains. This can be useful e.g. in scheduling for abstracting time
intervals where ‘nothing changes’ in a schedule into single time points. Moreover,
time is an ordered domain which must be respected by the refinements, e.g., by
splitting intervals.

Example 12 Consider the disjunctive scheduling problem of [1]: given tasks I
with fixed duration D (task(I,D)), earliest start time S (est(I, S)), latest end
time E (let(I, E)), and disjunctive constraints (disj (I, I ′)) for tasks that cannot
overlap, assign to each task a start time such that all constraints are satisfied. We
use the provided encoding (with variables standardized apart) and precomputed
deterministic part of the program. For an instance {task(a, 7), est(a, 1), let(a, 8),
task(b, 5), est(b, 3), let(b, 10), task(c, 2), est(c, 8), let(c, 10), disj (a, c), disj (b, c)},
we reach from {{1, . . . ,10}/k} the abstraction {{4, . . . , 7}/k1, {9, 10}/k2} where

12 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

Fig. 3. Abstract and concrete plan of Example 13

 bˆ bˆ

 moveToT(,)bˆ tˆ moveToB(, , ′)bˆ bˆ tˆ

b2

b1

b3

b2

b1
 moveToT(, 1)b1

 moveToT(, 2)b2

 moveToB(, , 3)b3 b4

 moveToB(, , 4)b2 b3

 moveToB(, , 5)b1 b2
b4 b4b3

only two abstract answer sets exist, and a concrete one is easily identified; it
yields a solution time(a, 1), time(b, 3), time(c, 8).

Abstraction over Multiple Sorts. While time is important in scheduling and
planning, abstracting only over time may not suffice for planning as spurious
abstract answer sets with an incorrect order of action execution may occur.
This can be countered by additional abstraction over other sorts in the agent
domain, which allows for more abstract instances of actions that abstract from
the concrete order of application as shown in Example 13 below. It is particularly
desirable that the individual abstractions fulfill the following property.

Definition 8 For a program Π and domain D, subdomains D1, . . . , Dn⊆D are
independent, if no rel-atom in Π shares arguments from Di and Dj, 1≤i<j≤n.

For independent sorts, abstractions can be composed.

Proposition 7 For domain mappings m1 and m2 over independent domains
D1 and D2, (Πm2)

m1 = (Πm1)
m2 .

This property readily extends to multiple sorts. Note that sorts in the problems
above mentioned are often independent; e.g., blocks, tables and time in Exam-
ple 1. However, if block number i can not be put on table number j if i= j, then
the above property can not hold.

Abstraction over time and the agent domain allows us to obtain abstract
plans representing sequences of concrete actions.

Example 13 Consider the blocksworld problem with a single table in Fig.3. The
encoding of Example 1 is modified for a single table (table argument omitted from
moveToT/onT). The encoding gets standardized apart according to the block sort
and the time sort.

Suppose further rules realize a policy that first puts all blocks on the table
and piles them up in a second phase. (heads of form 1{. . .} choose at least one
element and can here be treated like explained before):

existsOnBlock(T)← onB(B,B1, T).

allOnTable(T)← not existsOnBlock(T), time(T).

atPhase2 (T1)← allOnTable(T), T < T1.

1{moveToT (B, T) : onB(B,B1, T)} ← T < tmax ,not atPhase2 (T),not allOnTable(T).

1{moveToB(B,B1, T) : onT (B, T), block(B1)} ← T < tmax , allOnTable(T).

1{moveToB(B,B1, T) : onT (B, T), onB(B1, B2, T)} ← T < tmax , atPhase2 (T).

Abstraction for Non-Ground Answer Set Programs 13

Table 1. Experimental results for 3-coloring (above) and scheduling (below).

full projected full projected

number of steps 7.65 5.25 trivial abstractions (id) 47% 6%
abs domain size 8.65 6.19 faithful & non-trivial abs. 27% 43%
faithful abs domain size 7.42 6.32 non-faithful abstraction 26% 51%

t = 10: v1 v2 t = 20: v1 v2 t = 30: v1 v2

number of steps 7.25 3.7 14.6 5.2 22.6 7.4
abs domain size 8.25 8.6 15.6 13.9 23.6 20

Given the initial state {onT (b4, 1), onT (b3, 1), onB(b2, b3, 1), onB(b1, b2, 1)} and

the time domain {1, . . . , 6}, we abstract using the block mapping {{b1, . . . , b4}/b̂}
and the time mapping {{1, 2}/t̂, {3, . . . , 6}/t̂′}. The constructed abstract program

has 8 answer sets, including {onB(b̂, b̂, t̂), onT (b̂, t̂),moveToT (b̂, t̂), onB(b̂, b̂, t̂′),

onT (b̂, t̂′), moveToB(b̂, b̂, t̂′)} which contains the abstract actions moveToT (b̂, t̂)

and moveToB(b̂, t̂′) (see Fig.3).

7 Experiments

To see whether our approach automatically finds non-trivial domain abstractions
that yield concrete answer sets, we conducted several experiments.

3-Coloring. We randomly generated 20 graphs on 10 nodes with edge probabil-
ity 0.1, 0.2, . . . , 0.5 each; out of the 100 graphs, 74 were 3-colorable. We evaluated
the abstraction m reached from the initial single-cluster abstraction, by checking
whether the corresponding abstract program has spurious answer sets (if not, m
is faithful). In addition, we considered a projected notion of concreteness that
limits the checking to a set of relevant atoms. E.g., only the colors of nodes
1-3 may be relevant, and an abstraction that assigns colors to them may be
sufficient. Table 1 shows the collected results. The left side shows the average
number of steps needed until a concrete answer was found, and the average of
the resulting abstract domain sizes. The right side shows the percentage of the
observed properties of the resulting abstractions. Trivial abstraction (id) corre-
sponds to the case where the abstraction is refined back to the original domain.
Observe that faithful and non-trivial abstractions were achieved, which shows
the potential of the approach in singling out relevant objects. In case of projec-
tion, the trivial abstraction is reached (in 9 steps) much less than in the full case;
moreover, more non-trivial faithful abstractions are reached, which is beneficial.
Furthermore, 80% of the non-colorable graphs were revealed by non-trivial full
abstractions, and 77% under projection; hence, abstraction may be useful to
catch and explain unsolvability.

Disjunctive scheduling. For each t∈{10, 20, 30}, we generated 20 instances
with 5 tasks over time {1, . . . , t}. Table 1 shows the collected results. For the
refinement search, we considered besides the one from above (v1) another one
that looks at the domain elements in the ab atoms and guides the refinement

14 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

either to not map these elements to the same cluster or to map them into single-
ton clusters (v2). Observe that in v2 the number of steps to obtain a solution is
greatly reduced which moreover has fewer clusters (except for t= 10 as creating
singleton clusters quickly ends up with the trivial abstraction). The results show
that with larger domains, the effect of the abstraction can be seen much better,
e.g., the average abstract domain size reached for t= 30 is 66.6% (=20/30) of
the original domain, while for t= 10, it shrinks to 86%. Note that with more
sophisticated refinement methods, better abstractions can be reached.

Multi-table blocksworld. We considered varying numbers of blocks and ta-
bles, starting with 5 each. Faithful abstractions readily resulted by 1-step refine-
ments which separated the chosen table from the rest. However, as the abstrac-
tion is syntactic, other encodings may need more steps (e.g., bad auxiliary rules
causing choices/spuriousness).

8 Conclusion

Related Work. Apart from simplification approaches to ASP we mentioned
earlier, abstraction has been studied in logic programming [9]. However, the focus
was on the use of abstract interpretations and termination analysis, and stable
semantics was not addressed. In planning, plan refinement [28, 22] uses abstract
plans computed in an abstract space to find a concrete plan, while abstraction-
based heuristics [10, 17] use the costs of abstract solutions to guide the plan
search. Pattern databases [10] project the state space to a set of variables (a
’pattern’), while merge & shrink abstraction [17] starts with a suite of single pro-
jections, and then computes an abstraction by merging them and shrinking. In
[19], abstraction for numeric planning problems by reduction to classical plan-
ning is studied. Recently, the same authors used abstraction for problems that
contain quantifiable objects [20], e.g., some number of packages to deliver to
points A and B, to find generalized plans by abstracting away from the quantifi-
cation that works for multiple instances of the problem. For this, they build a
quantified planning problem by identifying sets of indistinguishable objects using
reformulation techniques [27] to reduce symmetry, and then use an algorithm to
compute a general policy. With our method, abstracting over the packages and
time is possible as done in Example 13. It constructs an abstract program which
contains a generalized plan (among possible spurious ones) for all instances of the
problem. Furthermore, if the package delivery problem is extended with having
a choice of points to pass through when moving from A to B, then abstracting
over the points passed to reach B from A is possible with our method. Such
a constraint is not representable by [20] due to the quantifiability conditions.
Nevertheless, our method has the orthogonal potential drawback of producing
spurious answers.

Abstraction was also studied for agent verification in situation calculus ac-
tion theory [2] and multi-agent systems against specifications in epistemic logic
[25] and temporal logic [3]. Lomuscio and Michaliszyn [25] present an automated

Abstraction for Non-Ground Answer Set Programs 15

predicate abstraction method in 3-valued semantics, and interpolant-based re-
finement [4]. All these works are quite different from ours; they address specific
applications and are based on different (monotonic) logic formalisms.

Outlook. This seminal work has room for improvement, especially in the search
for a refinement, where different heuristics may be employed. It can also be
made more sophisticated by using domain-specific knowledge. Furthermore, the
current quality assessment of refinements can be advanced by considering more
than one abstract answer set or making the largest cluster size a parameter in
determining the refinement quality. Predicate abstraction would be an interesting
extension of this work. Our aim was not to increase reasoning efficiency, but this
is an interesting future direction that needs significant follow-up work.

Acknowledgements

This work has been supported by Austrian Science Fund (FWF) project W1255-
N23 and Austrian Federal Ministry of Transport Innovation and Technology
(BMVIT) project 861263 (DynaCon).

References

1. ASPCOMP-11: Third (open) answer set programmming competition: Disjunctive
scheduling (2011), www.mat.unical.it/aspcomp2011

2. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus
action theories. In: Proc. of AAAI. pp. 1048–1055 (2017)

3. Belardinelli, F., Lomuscio, A.: Abstraction-based verification of infinite-state reac-
tive modules. In: Proc. of ECAI. pp. 725–733 (2016)

4. Belardinelli, F., Lomuscio, A., Michaliszyn, J.: Agent-based refinement for predi-
cate abstraction of multi-agent systems. In: ECAI. pp. 286–294 (2016)

5. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
asp programs by means of asp. In: Proc. LPNMR. pp. 31–43. Springer (2007)

6. Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial
evaluation. J. Log. Program. 32(3), 207–228 (1997)

7. Brewka, G., Eiter, T., Truszczyski, M.: Answer set programming at a glance. Com-
munications of the ACM 54(12), 92–103 (2011)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
TOPLAS pp. 1512–1542 (1994)

9. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
The Journal of Logic Programming 13(2), 103 – 179 (1992)

10. Edelkamp, S.: Planning with pattern databases. In: Sixth European Conf. on Plan-
ning (2001)

11. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Proc. JELIA. pp. 200–212. Springer (2004)

12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Proc. ICLP. pp. 190–205 (2008)

13. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam Answer Set Solving Collection. AI Comm. 24(2), 107–
124 (2011)

16 Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

14. Geißer, F., Keller, T., Mattmüller, R.: Abstractions for planning with state-
dependent action costs. In: ICAPS. pp. 140–148 (2016)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. pp. 1070–1080 (1988)

16. Giunchiglia, F., Walsh, T.: A theory of abstraction. AIJ 57(2-3), 323–389 (1992)
17. Helmert, M., Haslum, P., Hoffmann, J., Nissim, R.: Merge-and-shrink abstraction:

A method for generating lower bounds in factored state spaces. JACM 61(3), 16
(2014)

18. Hoffmann, J., Sabharwal, A., Domshlak, C.: Friends or Foes? an AI planning per-
spective on abstraction and search. In: ICAPS. pp. 294–303 (2006)

19. Illanes, L., McIlraith, S.A.: Numeric planning via search space abstraction. In:
Proc. KnowProS@IJCAI (2016)

20. Illanes, L., McIlraith, S.A.: Generalized planning via abstraction: Arbitrary num-
bers of objects. In: AAAI (2019)

21. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality
and disjunctions in stable model semantics. ACM TOCL 7(1), 1–37 (Jan 2006)

22. Knoblock, C.A.: Automatically generating abstractions for planning. Artificial in-
telligence 68(2), 243–302 (1994)

23. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of
robot swarms. In: Proc. of AAAI (2015)

24. Leite, J.: A bird’s-eye view of forgetting in answer-set programming. In: Proc.
LPNMR. pp. 10–22 (2017)

25. Lomuscio, A., Michaliszyn, J.: Verification of multi-agent systems via predicate
abstraction against ATLK specifications. In: Proc. of AAMAS. pp. 662–670 (2016)

26. Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen,
B., Lifschitz, V. (eds.) Logic Programming. pp. 210–224 (2004)

27. Riddle, P., Douglas, J., Barley, M., Franco, S.: Improving performance by refor-
mulating pddl into a bagged representation. In: HSDIP@ICAPS. pp. 28–36 (2016)

28. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artificial intelligence
5(2), 115–135 (1974)

29. Saribatur, Z.G., Eiter, T.: Omission-based abstraction for answer set programs. In:
Proc. KR. pp. 42–51 (2018)

