
Omission-based Abstraction for Answer Set Programs

Zeynep G. Saribatur, Thomas Eiter
Institute of Logic and Computation, TU Wien, Austria

Abstract

Abstraction is a well-known approach to reduce program
complexity by over-approximating the problem with a delib-
erate loss of information. It has not been considered so far
in the context of Answer Set Programming, a convenient tool
for problem solving. In this paper, we introduce a method to
automatically abstract ground ASP programs that preserves
their structure by reducing the vocabulary. Such an abstrac-
tion makes it possible to generate partial answer set candi-
dates, which can help with the approximation of reasoning.
Faithful (non-spurious) abstractions may be used to represent
the projection of answer sets and to guide solvers in answer
set construction. In order to deal with the unavoidably intro-
duced spurious answer sets, we employ an ASP debugging
approach to help with the refinement of the abstraction. We
investigate the usage of such an abstraction to obtain expla-
nations of unsatisfiable programs as a show case.

Introduction
Abstraction is a widely used approach in computing solu-
tions for hard problems by over-approximating them. By
a deliberate loss of information, the problem is approxi-
mated to achieve a smaller or simpler state space, at the
price of spurious counterexamples to the behavior. The well-
known counterexample guided abstraction refinement (CE-
GAR) (Clarke et al. 2003) is based on starting with an ini-
tial abstraction on a given program and checking the desired
property over the abstract program. Upon encountering spu-
rious solutions, the abstraction is refined by removing the
spurious transitions observed through the solution, so that
the spurious solution is eliminated from the abstraction. This
iteration continues until a concrete solution is found.

In this paper, we make the first step towards employing
the concept of abstraction in ASP. We are focused on ab-
straction by omitting atoms from the program and construct-
ing an abstract program with the smaller vocabulary, by en-
suring that the original program is over-approximated, i.e.,
every original answer set can be mapped to some abstract
answer set. Due to the decreased search size, finding an an-
swer set in the abstract program is easier, while one needs to
check whether the found abstract answer set is concrete. As
spurious answer sets can be introduced, one may need to go

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

over all abstract answer sets until a concrete one is found.
If the original program has no answer set, all encountered
abstract answer sets will be spurious. To eliminate spurious
answer sets, we use a CEGAR inspired approach, by finding
a cause of the spuriousness with ASP debugging (Brain et
al. 2007) and refining the abstraction by adding back some
atoms that are deemed to be “badly-omitted”.

An interesting application area for such an omission-
based abstraction in ASP is finding an explanation for unsat-
isfiability of programs. Towards this problem, debugging in-
consistent ASP programs has been investigated (Brain et al.
2007; Oetsch, Pührer, and Tompits 2010; Dodaro et al. 2015;
Gebser et al. 2008), which is based on providing the rea-
son (i.e., occurring violations) on why an expected solu-
tion provided by the user does not exist. However, these
methods do not address the question of why the program
does not give any solutions. We approach the unsatisfiabil-
ity of an ASP program differently with an interest in ob-
taining a projection of the program which shows the cause
of the unsatisfiability, without an initial idea on expected
solutions. The well-known notion of minimal unsatisfiable
subsets (unsatisfiable cores) (Liffiton and Sakallah 2008;
Lynce and Silva 2004) has also been used in the ASP context
(Alviano and Dodaro 2016; Andres et al. 2012) (for further
discussion see Related Work).

Our contributions are briefly summarized as follows.
• We introduce a method to abstract ASP programs Π by

omitting atoms in order to obtain an over-approximation
of the answer sets of Π. That is, a program Π′ is con-
structed such that each answer set I of Π is abstracted to
some answer set I ′ of Π′. While this abstraction is many
to one, spurious answer sets of Π′ may exist that do not
correspond to any answer set of Π. In this paper, we focus
on the ground case.

• We present a refinement method inspired by ASP debug-
ging approaches to catch the badly omitted atoms through
the encountered spurious answer sets.

• We introduce the notion of blocker set as a set of atoms
such that abstraction to it preserves unsatisfiability of a
program. A minimal blocker set then gives a projection of
the program to the minimal cause of unsatisfiability.

• We derive complexity results for the notions, such as for
checking for spurious answer sets, finding minimal sets of

atoms to put back in the refinement to eliminate a spurious
solution, and computing a minimal blocker for a program.

• We report about preliminary experiments focusing on un-
satisfiable programs and investigate computing minimal
blockers of programs. We compare the results of the
abstraction and refinement approach (bottom-up) with a
naive top-down approach and observe that abstraction can
obtain smaller sized blockers.
Overall, abstraction by omission appears to be of inter-

est for ASP, which besides explaining unsatisfiability can be
utilized, among other applications, to over-approximate rea-
soning and to represent projected answer sets.

Preliminaries
A logic program Π is a set of rules r of the form

α0 ← α1, . . . , αm,not αm+1, . . . ,not αn, 0≤m≤n,
where each αi is an atom and not is default negation; r
is a constraint if α0 is falsity (⊥, then omitted) and a fact
if n= 0. We also write α0 ← B+(r),not B−(r), where
B+(r) (positive body) is the set {α1, . . . , αm} and B−(r)
(negative body) the set {αm+1, . . . , αn}, or α0←B(r)
where B(r) = B+(r) ∪ B−(r). We sometimes write B in-
stead of B(r) when talking about a particular rule. To group
the rules with the same head α, we use def (α,Π) = {r ∈
Π | H(r) = α}. Rules with variables stand for the set of
their ground instances. The set of ground atoms of Π is de-
noted by A. Semantically, Π induces a set of answer sets
(Gelfond and Lifschitz 1991), which are Herbrand models
(sets I of ground atoms) of Π justified by the rules, in that
I is a minimal model of fΠI = {r ∈ Π | I |= B(r)}
(Faber, Leone, and Pfeifer 2004). The set of answer sets of
a program Π is denoted as AS(Π). A program Π is un-
satisfiable, if AS(Π) = ∅. Common syntactic extensions
are choice rules of the form {α} ← B, which stands for
the rules α ← B,not α′ and α′ ← B,not α, where α′
is a new atom, and cardinality constraints and conditional
atoms (Simons, Niemelä, and Soininen 2002); in particu-
lar, i`{α1(X) :α2(X) }iu is true whenever at least i` and
at most iu instances of α1(X) subject to α2(X) are true.

An interpretation I falsifies a rule r, if B+(r) ⊆ I and
B−(r) ∩ I = ∅, but H(r) /∈ I . An atom α is unsupported
by an interpretation I if for each r ∈ def (α,Π), B+(r) * I
or B−(r) ∩ I 6= ∅. A set A ⊆ A of atoms is unfounded
w.r.t an interpretation I , if atoms in A only have support by
themselves, i.e., a loop only with positive edges in the de-
pendency graph. The dependency graph of Π, denoted GΠ,
has vertices A, (positive) edges from any α0 ∈H(r) to any
α1 ∈ B+(r) and (negative) edges from any α0 ∈ H(r) to
any α2 ∈ B−(r), for all r ∈ Π. An odd loop means that an
atom α ∈ A depends recursively on itself through an odd
number of negative edges in GΠ. Constraints are viewed as
simple odd loops. As well-known, Π is satisfiable, if it con-
tains no odd loop.

Abstraction by Omission
Our aim is to over-approximate a given program through
constructing a simpler program by reducing the vocabulary

and preserving the behavior of the original program (i.e., the
results of reasoning on the original program are not lost), at
the cost of obtaining spurious solutions.
Definition 1. Given two programs Π and Π′ with |A|≥|A′|,
where A,A′ are sets of ground atoms of Π and Π′, respec-
tively, Π′ is an abstraction of Π if there exists a mapping
m : A → A′ ∪ {>} such that for any answer set I of Π,
I ′ = {m(α) | α ∈ I} is an answer set of Π′.

We refer to m as an abstraction mapping. In this paper,
we focus on an omission-based abstraction.
Definition 2. Given a set A ⊆ A, an omission (abstrac-
tion) mapping is mA :A→A ∪ {>} such that mA(α) =>
if α∈A and mA(α) = α otherwise.

An omission mapping removes the set A of atoms from
the vocabulary and keeps the rest. We refer to A as the omit-
ted atoms. We denote by omit(Π, A) an abstraction of Π
with an omission mapping that omits a set A of atoms.

Next we show a systematic way of building an omission-
based abstraction of a given ASP program. When construct-
ing an abstract program for a given mapping, the aim is
to ensure that every original answer set I is mapped to
some abstract answer set, while (unavoidably) some spuri-
ous abstract answer sets may be introduced. Thus, an over-
approximation of the original program is achieved.

Our basic method is to project the rules to the non-omitted
atoms and introduce choice when an atom is omitted from
a rule body, in order to make sure that the behavior of the
original rule is preserved. In case of omitting non-ground
atoms, all occurrences of the predicate will be omitted and
introducing domain variables may be needed.

Program abstraction. We build from Π an abstract pro-
gram omit(Π, A) according to the abstraction mA. For ev-
ery rule r : α←B in Π, if α ∈ A, then mA(r) = ∅; other-
wise, for α ∈ (A \A) ∪ {⊥} we have

mA(r) =

{
r if A ∩B = ∅,

{α} ← mA(B) if A ∩B 6= ∅ ∧ α 6= ⊥,
∅ otherwise.

We sometimes denote omit(Π, A) as Π̂A, whereA = A\A,
to emphasize that it is an abstract program. For an interpre-
tation I and a collection S of atoms, I|A and S|A denotes
the projection to the atoms in A.

Note that we treat default negated atoms, B−, similarly,
i.e., if some α∈B− ∩A, then we omit not α from B.

Example 1. Consider a program Π and its abstraction Π̂A
for A = {b, d}, according to the above steps.

Π Π̂A

c← not d. {c}.
d← not c.
a← not b, c. {a} ← c.
b← d.

We have AS(Π)={{c, a}, {d, b}} and AS(Π̂A)={{}, {c},
{c, a}}. Every answer set of Π can be mapped to some an-
swer set of Π̂A, when the omitted atoms are projected away,
i.e., AS(Π)|A ⊆ AS(Π̂A).

Notice that in Π̂A, constraints are omitted if the body con-
tains an omitted atom. If instead the constraint gets shrunk
by just omitting the atom from the body, then for some inter-
pretation Î , the body may be satisfied, causing Î /∈AS(Π̂A),
while this was not the case in Π for any I ∈AS(Π) with
I|A = Î . Thus I cannot be mapped to an abstract answer set
of Π̂A, i.e., Π̂A is not an over-approximation of Π.

If in a rule r, the omitted non-ground atom p(V1, . . . , Vn)
in the body shares some arguments, Vi, with the head α, then
α is conditioned for Vi with a domain atom dom(Vi) in the
constructed rule, so that all values of Vi are considered.
Example 2. Consider the following simple program Π:

a(X1, X2)← c(X1), b(X2). (1)
d(X1, X2)← a(X1, X2), X1≤X2. (2)

In omitting c(X), while rule (2) remains the same, rule
(1) changes to 0{a(X1, X2) : dom(X1)}1 ← b(X2). From
Π and the facts c(1), b(2), we get the answer set {c(1), b(2),
a(1, 2), d(1, 2)}, and with c(2), b(2) we get {c(2), b(2),
a(2, 2), d(2, 2)}. After omitting c(X), the abstract answer
sets with fact b(2) become {b(2), a(1, 2), d(1, 2)} and {b(2),
a(2, 2), d(2, 2)}, which cover the original answers, i.e., each
original answer set can be mapped to some abstract one.

For a semantical more fine-grained removal, e.g., remov-
ing c(X) for X<3, rules may be split in cases, e.g., (1) into
X1<3 and X1≥3, and treated after renaming separately.

The following result shows that omit(Π, A) can be seen
as an over-approximation of Π.
Theorem 1. For every answer set I ∈ AS(Π) and atoms
A ⊆ A, it holds that I|A ∈ AS(omit(Π, A)).
By introducing choice rules for any rule that contains an
omitted atom, all possible cases that would be achieved by
having the omitted atom in the rule are covered. Thus, the
abstract answer sets cover the original answer sets.
Definition 3. An answer set I|A ∈ AS(omit(Π, A)) is con-
crete if I ∈ AS(Π)|A, and spurious otherwise.

In other words, a spurious abstract answer set can not be
completed to an original answer set, i.e., for any X ⊆A,
I = I|A ∪X /∈AS(Π). Let QA

Î
denote the query for an an-

swer set that matches Î , i.e., QA
Î

= {⊥←not α |α∈ Î} ∪
{⊥←α | α∈A \ Î}. As an alternative definition, Î is spu-
rious iff Π ∪QA

Î
is unsatisfiable.

Upon encountering spurious answer sets, refinement of
the abstraction is necessary by adding back some of the
omitted atoms. Next, we define a notion to talk about the
set of omitted atoms that need to be added back in order to
get rid of a spurious answer set. The notation Î is sometimes
replaced by I , when the abstraction is clear from the context.
Definition 4. For a spurious I ∈ AS(omit(Π, A)), a put-
back set PBI ⊆ A is a set of atoms such that for A′ =
A \ PBI , @J ∈ AS(omit(Π, A′)) such that J |A = I .

After adding back the put-back atoms in the abstraction,
the spurious answer set I is eliminated in the updated ab-
stract program. Notice that PBI = A also holds, as putting
all the atoms back would eliminate the spurious answer set.

The following properties can be easily seen.

Proposition 2. For any program Π,

(i) omit(Π, ∅) = Π and omit(Π,A) = ∅.
(ii) AS(Π) = ∅ iff I = {} is spurious w.r.t. A = A.

(iii) AS(omit(Π, A)) = ∅ implies AS(Π) = ∅.
(iv) AS(Π) = ∅ iff some omit(Π, A), A ⊆ A, has only

spurious answer sets iff every omit(Π, A), A ⊆ A,
has only spurious answer sets.

Omitting atoms in a program means projecting away those
atoms in the concrete answer sets of a program.

Proposition 3. If I is a concrete answer set of omit(Π, A),
then for every A′ ⊆ A some answer set I ′ of omit(Π, A′)
exists such that I ′|A = I .

The next property is on convexity of spurious answer sets.

Proposition 4. Let I ∈ AS(omit(Π, A)) be spurious and
A′⊆A⊆A. If some I ′ ∈ AS(omit(Π, A′)) exists s.t.
I ′|A = I (i.e., I ′ is spurious), then for every A′′ s.t. A′ ⊆
A′′ ⊆ A, I ′|A′′ is a spurious answer set of omit(Π, A′′).

The next proposition shows that once a spurious answer
set is eliminated by adding back some of the omitted atoms,
this answer set will not show up again when further omitted
atoms are added back.

Proposition 5. Let I ∈ AS(omit(Π, A)) be spurious, and
let A′ = A\PBI be some refinement where I is eliminated.
For allA′′ ⊆ A′, @I ′′ ∈ AS(omit(Π, A′\A′′)) s.t. I ′′|A=I .

Proof. Assume such an A′′ exists. This means that,
after eliminating I by adding back PBI , by adding
further atoms of A′′ back, an interpretation I ′′ ∈
AS(omit(Π, A′ \ A′′)) that can be projected to I , i.e.,
I ′′|A = I , is obtained. However, since omit(Π, A′) is an
over-approximation of omit(Π, A′ \ A′′), by definition,
some I ′ ∈AS(omit(Π, A′)) exists with I ′′|A′ = I ′, a con-
tradiction to the assumption that PBI is a put-back set, i.e.,
@I ′ ∈AS(omit(Π, A′)) s.t. I ′|A = I .

Catching Unsatisfiability Reasons of Programs
For an unsatisfiable program Π, by omitting the atoms and
over-approximating the program one can obtain an abstract
program which has some abstract answer set. Any such an-
swer set will be spurious.

By Proposition 2-(iii), we can use omission abstraction
and refinement to catch the true cause of inconsistency in a
program. For this we introduce the following notions.

Definition 5. A set C ⊆ A of atoms is an (answer set)
blocker set of Π, if AS(omit(Π,A \ C)) = ∅.

In other words, when we keep the setC of atoms and omit
the rest from Π to achieve the abstract program Π′, the latter
is still unsatisfiable. This means the atoms in C are blocking
the occurrence of answer sets. No answer sets are possible
as long as these atoms are present in the program. Notice
that C = A, i.e., no atom is omitted, is also a blocker set,
while C = ∅, i.e., all atoms are omitted, is not such a set
since AS(omit(Π,A)) = {∅}.

Figure 1: A non 2-colorable graph

1

2

3

45

6

7 8

9

Definition 6. A blocker set C ⊆ A is ⊂-minimal, if for all
C ′ ⊂ C, AS(omit(Π,A \ C ′)) 6= ∅.

For a minimal blocker set C, there is a maximal unsatis-
fiable abstraction A \ C, which is the maximal set of atoms
to omit while keeping the unsatisfiability of Π.

Omitting the atoms is about modifying or omitting the
relevant ground rules from Π. The minimality focus can
also be on the rules of the program. A set of (ground) rules
R = {r1, . . . , rn} is the minimal blocker rule set if for any
rule ri ∈ R, Π \ ri is satisfiable.
Example 3 (Graph coloring). Consider the graph coloring
problem for the graph shown in Figure 1, which is not 2-
colorable, due to the clique 1− 2− 3. A common encoding
for this problem is grounded to the given instance to obtain
the below rules for allN∈{1, . . . , 9}, andC,C1, C2∈{1, 2}:
{chosenColor(N,C)}.
colored(N)← chosenColor(N,C). (3)
← not colored(N).

← chosenColor(N,C1), chosenColor(N,C2), C1 6=C2.

In additional, for all nodes N1, N2 that contain an edge and
colors C ∈ {1, 2} there are rules of form

← chosenColor(N1, C), chosenColor(N2, C).

Omitting a node in the graph corresponds to omitting the
ground atoms related to the node. Omitting all the nodes ex-
cept {1, 2, 3} gives the minimal blocker rule set that consists
of the ground rules (3) for N∈{1, . . . , 3} and the following
constraints for C ∈ {1, 2}, N1, N2 ∈ {1, . . . , 3}.
←chosenColor(N1,C), chosenColor(N2,C), N1 6=N2.

This abstract program is unsatisfiable and omitting further
atoms in the abstraction gives spurious satisfiability.

Faithful Abstractions
Ideally, abstraction does not change the semantics of a pro-
gram. Our next notion is to describe such abstractions.
Definition 7. An abstraction omit(Π, A) is faithful, if it has
no spurious answer sets.

Faithful abstractions are a syntactic representation of pro-
jected answer sets, i.e., AS(omit(Π, A)) = AS(Π)|A.
Definition 8. A faithful abstraction omit(Π, A) is refine-
ment-safe, if for all A′ ⊆ A, omit(Π, A′) has no spurious
answer sets.

Notice that if Π is satisfiable, then A = A is a faithful
abstraction, but it is often not refinement-safe, as with atoms
added back choice rules may occur which can cause spurious
answer sets.

Computational Complexity
In this section, we consider the complexity of some reason-
ing tasks associated with abstraction.

We note the following simple lemma and the proposition.

Lemma 6. Given Π and A, (i) the program omit(Π, A) is
constructible in polynomial time, and (ii) checking whether
I ∈ AS(omit(Π, A)) holds for a given I is feasible in poly-
nomial time.

Proposition 7. Given a (ground) program Π, a set of atoms
A, and an interpretation I , deciding whether I|A, is a con-
crete (resp., spurious) abstract answer set of Π w.r.t. A is
NP-complete (resp. coNP-complete).

Indeed, by the lemma we can check nondeterministically
in polynomial time that I|A is an answer set and that some
answer set I ′ of Π exists such that I ′|A = I|A; the NP-
hardness is immediate from the above proposition and the
NP-completeness of answer set existence.

Theorem 8. Given a (ground) program Π and a set of atoms
A, deciding whether some spurious answer set of Π w.r.t. A
exists is Σp2-complete.

Proof (sketch). Some answer set I of omit(Π, A) can be
guessed and checked in polynomial time, and with the help
of an NP oracle we can check whether I is spurious. The
Σp2-hardness can be shown by a reduction from evaluating a
QBF ∃X∀Y E(X,Y), where E(X,Y) =

∨
iDi is a DNF

Construct a program Π as follows;

xi ←not xi. (4)
xi ←not xi. for all xi ∈ X (5)
yj ←yj ,not sat. (6)
yj ←yj ,not sat. for all yj ∈ Y (7)
sat←l∗i1 , . . . l

∗
ini
. (8)

where Di = li1 ∧ · · · ∧ lini
and l∗ is as follows: (l)∗ = xi,

if l = ¬xi; = xi if l = xi; = yj if l = yj ; and yj if l = ¬yi.
For A = Y ∪Y ∪{sat}, the answer sets I of omit(Π, A)

correspond 1-1 to truth assignments σ of X; any such I =
Iσ is spurious iff E(σ(X), Y) is not a tautology.

Recall that we call an abstraction omit(Π, A) faithful, if
omit(Π, A) has no spurious answer sets.

Corollary 9. Deciding, given a program Π and atoms A ⊆
A, whether omit(Π, A) is a faithful abstraction of Π is Πp

2-
complete.

Next let us consider the computation of put-back sets.
We recall that FPNP are the search problems for which
a solution can be computed in polynomial time with an
NP oracle, and FPNP is the same but under the restric-
tion that all oracle calls have to be made at once. The class
FPΣP

k [log, wit], for k ≥ 1, contains all search problems
that can be solved in polynomial time with a witness oracle
for Σpk (Buss, Krajı̀ček, and Takeuti 1993); a witness oracle
for Σpk returns in case of a yes-answer to a instance a poly-
nomial size witness string that can be checked with an Σpk−1
oracle in polynomial time. In particular, for k = 1, i.e., for

FPNP[log, wit], one can use a SAT oracle and the witness
is a satisfying assignment to a given SAT instance, cf. (Jan-
ota and Marques-Silva 2016).

Theorem 10. Given a (ground) program Π, a set of atoms
A, and a spurious answer set I of Π w.r.t. A, computing
some (i) ⊆-minimal resp. (ii) smallest size put-back set S
for I is in case (i) feasible in FPNP and FPNP

‖ -hard resp.

(ii) is FPΣP
2 [log, wit]-complete.

Note that few FPΣP
2 [log, wit]-complete problems are

known. The notions of hardness and completeness are here
with respect to a natural polynomial-time reduction between
two problems P1 and P2: there are polynomial-time func-
tions f1 and f2 such that (i) for every instance x1 of P1,
x2 = f1(x1) is an instance of P2, such that x2 has solu-
tions iff x1 has, and (ii) from every solution s1 of x2, some
solution s1 = f2(x1, s2) is obtainable.

Proof (Sketch). As for (i), we can compute such a set S by
an elimination procedure: starting with A′ = ∅, we repeat-
edly pick some atom α ∈ A \ A′ and test (+) whether for
A′′ = A′ ∪ {α}, the program omit(Π, A′′) has no answer
set I ′′ such that I ′′|A = I; if yes, we set A′ := A′′ and
make the next pick from A′. Upon termination, S = A \ A′
is a minimal put-back set. The test (+) can be done with
an NP oracle. The hardness for FPNP

‖ is shown by a re-
duction from computing, given programs P1, . . . , Pn the an-
swers q1, . . . , qn to whether Pi has some answer set.

The membership in case (ii) can be established by a bi-
nary search over put-back sets of bounded size using a
Σp2 witness oracle. The FPΣP

2 [log, wit] hardness is shown
by a reduction from the following problem: given a QBF
Φ = ∀Y E(X,Y), compute a smallest size assignment σ to
X such that ∀Y E(σ(X), Y) evaluates to true, knowing that
some σ exists, where the size of σ is the number of atoms
set to true. The core idea is similar to the one in the proof of
Theorem 8, but the construction is much more involved and
needs significant modifications and extensions.

Theorem 11. Given a set A0 ⊆ A, computing a (i) ⊆-
maximal setA resp. (ii) largest size setA whereA ⊆ A\A0

such that omit(Π, A) is a refinement-safe faithful abstrac-
tion is in case (i) in FPNP and FPNP

‖ -hard resp. (ii)

FPΣP
2 [log, wit]-complete.

Proof (sketch). (i) One sets A := ∅ and S := A \ A0 in
the beginning and then picks an atom α from S and sets
S := S \ {α}. One tests whether (*) omitting A′ ∪ {α}, for
every subset A′ ⊆ A, is a faithful abstraction; if so, then one
sets A :=A∪{α}. Then a next atom α is picked from S etc.

When this process terminates, we have a largest set A
such that omitting A from Π is a faithful abstraction of Π.

Notably, the omission test (*) can be done with an NP or-
acle: the test fails iff for someA′, the program omit(Π, A′∪
α) has a spurious answer set I ′. In principle, the spuri-
ous check for I ′ is difficult (a coNP-complete problem, by
our results), but we can take advantage of knowing at this
point that the abstraction omit(Π, A′) is faithful: so we only

need to check whether I ′ is extendable to an answer set of
omit(Π, A′), and not of Π itself; i.e., we only need to check
that neither I ′ nor I ′ ∪ α is an answer set of omit(Π, A′).

(ii) The of FPΣP
2 [log, wit]-completeness is similar as

above for Theorem 10. In particular, the minimal put-back
set C computed in the proof of the hardness part there is
such that C is a minimal blocker.

We remark that without refinement safety, the problem is
likely to be more complex: deciding whether an abstraction
is faithful is Πp

2-complete and is trivially reducible to this
problem.

Corollary 12. Computing a (i)⊆-minimal resp. (ii) smallest
size blocker C ⊆ A for a given program Π is (i) in FPNP

and FPNP
‖ -hard resp. (ii) FPΣP

2 [log, wit]-complete.

The membership follows for the case that Π has no answer
sets, and the hardness by the reduction in the proof.

Refinement using Debugging
Over-approximation of a program unavoidably introduces
spurious answer sets, which makes it necessary to have an
abstraction refinement method. We show how to employ an
ASP debugging approach in order to debug the inconsis-
tency of the original program Π caused by checking a spuri-
ous answer set Î , referred as inconsistency of Π w.r.t. Î .

We use a meta-level debugging language (Brain et al.
2007) which is based on a tagging technique that allows one
to control the formation of answer sets and to manipulate
the evaluation of the program. This is a useful technique for
our need to shift the focus from “debugging the original pro-
gram” to “debugging the inconsistency caused by the spuri-
ous answer set”. We alter the meta-program, so that hints
for refining the abstraction can be obtained. Through debug-
ging, some of the atoms are determined as badly omitted,
and by adding them back in the refinement the spurious an-
swer set can be eliminated.

Debugging Meta-program
The meta-program constructed by spock (Brain et al. 2007)
introduces tags to control the formation of answer sets.
Given a program Π overA and a setN of names for all rules
in Π, it creates an enriched alphabetA+ obtained fromA by
adding atoms such as ap(nr), bl(nr), ok(nr), ko(nr) where
nr ∈ N for each r ∈ Π. The atoms ap(nr), bl(nr) express
whether a rule r is applicable or blocked, respectively, while
ok(nr), ko(nr) are used for manipulating the application of
r. We omit the atoms ok(nr), as they are not needed. The
(altered) meta-program that is created is as follows.

Definition 9. Given Π, the program Tmeta[Π] consists of
the following rules for r ∈ Π, α1 ∈ B+(r), α2 ∈ B−(r):

H(r)← ap(nr),not ko(nr).

ap(nr)← B(r).

bl(nr)← not α1.

bl(nr)← not not α2.

The role of ko(r) is to avoid the application of the rule
H(r) ← ap(r),not ko(r) if necessary. We use it for the
rules that are changed due to some omitted atom in the body.

Abnormality atoms are introduced to indicate the cause
of inconsistency: abp(r) signals that rule r is falsified under
some interpretation, abc(α) points out that α is true but has
no support, and abl(α) indicates that α may be involved in
a faulty loop (unfounded or odd).

Definition 10. Given Π over A, the following additional
meta-programs are constructed:

1. TP [Π]: for all r ∈ Π with B(r) ∩A 6= ∅ and H(r) 6= ⊥:

ko(nr).

{H(r)} ← ap(nr).

abp(nr)← ap(nr),not H(r).

2. TC [Π,A]: for all α∈A\A, with def (α,Π)={r1, ...,rk}:

{α} ← bl(nr1), ..., bl(nrk).

abc(α)← α, bl(nr1), ..., bl(nrk).

3. TA[A]: for all α ∈ A:

{abl(α)} ← not abc(α).

α← abl(α).

In TC [Π,A], we do not guess over the atomsA if the rules
that have them in the head are blocked. This helps the search
of a concrete interpretation for the partial/abstract interpre-
tation by avoiding “bad” (i.e., not supported)-guesses of the
omitted atoms. Notice that for the rules ri with H(ri) = α
and empty body, we also put bl(nri) so that abc(α) does not
get determined, since one can always guess over α in Π.

Having abl(α) indicates that α is determined through a
loop, but it does not necessarily show that the loop is un-
founded (as described through loop formulas in (Brain et al.
2007). By checking whether α only gets support by itself,
the unfoundedness can be caught. In some cases, α could be
involved in an odd loop that was disregarded in the abstrac-
tion due to omission, which requires an additional check.

Determining Bad-Omission Atoms
Whether or not Π is consistent, our focus is on debug-
ging the cause of inconsistency introduced through check-
ing for a spurious answer set Î , i.e., Π ∪ QA

Î
. We reason

about the inconsistency by inspecting the reason for having
Î ∈ AS(omit(Π, A)) due to some modified rules.

Definition 11. Let r : α ← B be a rule in Π such that
B ∩A 6= ∅ and α /∈ A. The abstract rule r̂ : {α} ← mA(B)

in omit(Π, A) introduces w.r.t. an abstract interpretation Î ∈
AS(omit(Π, A))

(i) a spurious choice, if Î |= mA(B) and Î |= α, but some
model I of Π \ r exists s.t. I|A = Î and I |= B.

(ii) a spurious support, if Î |= mA(B) and Î |= α, but
some model I of Π exists s.t. I|A = Î and for all r′ ∈
def (α,Π), I 2B(r′).

Any occurrence of the above cases shows that Î is spuri-
ous. In case (i), due to Î |= α, the rule r is not satisfied by I
while I is a model of the remaining rules. In case (ii), an I
that matches Î |= α does not give a supporting rule for l.
Definition 12. Let r : α ← B be a rule in Π such that
B ∩ A 6= ∅. The abstract rule mA(r) introduces a spurious
loop-behavior w.r.t. Î , if some model I of Π exists s.t. I|A =

Î and I |= r, but α is involved in a loop that is unfounded or
is odd, due to some α′ ∈ A ∩B.
We show later in an example the need for reasoning on the
two possible faulty loop behaviors.
Definition 13. An atom α ∈ A is a bad-omission w.r.t. a
spurious answer set Î of omit(Π, A), if some rule r∈Π with
α∈B(r) exists s.t. r̂ introduces either a spurious choice, a
spurious support or a spurious loop-behavior w.r.t. Î .

Intuitively, for case (i) of Defn. 11, as α was decided due
to choice in H(r̂), we infer that the omitted atom which
caused r to become a choice rule is a bad-omission. Also
for case (ii), as α is decided with Î |= B(r̂), we infer that
the omitted atom that caused B(r) to be modified is a bad-
omission. As for case (iii), it shows that the modification
made on r (either omission or change to choice rule) ignores
an unfoundedness or an odd loop. Case (i) also catches the
issues arise due to omitting a constraint in the abstraction.

We now describe how we determine when an omitted
atom is a bad omission.
Definition 14. The bad omission determining program
Tbadomit is constructed using the abnormality atoms ob-
tained from TP [Π], TC [Π,A] and TA[A] as follows:

1. A bad omission is inferred if the original rule is not satis-
fied, but applicable (and satisfied) in the abstract program:

badomit(X, type1)←abp(R), absAp(R),modified(R),

omittedAtomFrom(X,R).

2. A bad omission is inferred if the original rule is blocked
and the head is unsupported, while it is applicable (and
satisfied) in the abstract program:

badomit(X, type2)←bl(R), head(R,H), abc(H),

absAp(R), changed(R),

omittedAtomFrom(X,R).

3. A bad omission is inferred in case there is unfoundedness
or an involvement of an odd loop, via an omitted atom:

faulty(X)←abl(X), inOddLoop(X,X1),

omittedAtom(X1).

faulty(X)←abl(X), inPosLoop(X,X1),

omittedAtom(X1).

badomit(X1, type3)←faulty(X), head(R,X),

modified(R), absAp(R),

omittedAtomFrom(X1, R).

where absAp(r) is an auxiliary atom to keep track of which
original rule becomes applicable with the remaining non-
omitted atoms for the abstract interpretation, changed(r)

shows that r is changed to a choice rule in the abstraction,
and modified(r) shows that r is either changed or omitted
in the abstraction.

For defining type3 , we check for loops using the encoding
in (Syrjänen 2006) and determine inOddLoop and (newly
defined) inPosLoop atoms of Π.

The cases for type2 and type3 introduce as bad omis-
sions the omitted atoms of all the rules that add to abc(H)
being true, or of all rules that haveX in the head for abl(X),
respectively. Modifying badomit determination to have a
choice over such rules to be refined (and their omitted atoms
to be badomit) and minimizing the number of badomit
atoms reduces the number of added back atoms in a refine-
ment step, at the cost of increasing the search space.

In order to avoid the guesses of abl for omitted atoms even
if there is no faulty loop behavior related with them (i.e.,
not the cause of inconsistency of Î), we add the constraint
← abl(X),not someFaulty .

For an abstract answer set Î , we denote by T [Π, Î] the
program Tmeta∪TP [Π]∪TC [Π,A]∪TA[A]∪Tbadomit∪QAÎ .

Example 4. For the following program Π, Î = {b} is a
spurious answer set of the abstraction for A = {a, d}:

Π Π̂a,d

r1 : c← not d. {c}.
r2 : d← not c.
r3 : a← not d, c.
r4 : b← a. {b}.

T [Π, Î] gives the answer set {ap(r2), bl(r1), bl(r4), bl(r3),
abc(b), badomit(a, type2)}.

The next example shows the need for reasoning about the
disregarded positive loops and odd loops, due to omission.
Example 5. Consider the programs Π1,Π2 and their ab-
stractions Π̂1 = Π̂

1{a}, Π̂2 = Π̂
2{a,b}.

Π1 Π̂1 Π2 Π̂2

r1 : a← b. r1 : a← b.
r2 : b← not c, a. {b} ← not c. r2 : b← not a, c.

r3 : c. c.

AS(Π1) = {} and omitting a creates a spurious answer
set {b} disregarding that b in unfounded. T [Π1, {b}] gives
inPosLoop(b, a), ap(r1), ap(r2), abl(b), badomit(a)

The program Π2 is unsatisfiable, due to the odd loop
of a and b. When both atoms are omitted, this odd loop
is disregarded, which causes a spurious answer set {c}.
T [Π2, {c}] gives ap(r3), inOddLoop(b, a), abl(b), ap(r1),
bl(r2), badomit(a).

The following result shows that T [Π, Î] flags in its answer
sets always bad omission of atoms, which can be utilized for
refinement.

Proposition 13. If Î is spurious, then for every answer set
S ∈ AS(T [Π, Î]), badomit(α) ∈ S for some α ∈ A.

Proof (sketch). For a spurious Î , Π ∪ QA
Î

causes an incon-
sistency, which can either be due to (i) an unsatisfied rule,

(ii) an unsupported atom, or (iii) unfoundedness or an in-
volvement in an odd loop, all introduced due to forcing the
answer set to match Î . T [Π, Î] catches all possibilities.

The badly omitted atoms Ao ⊆ A w.r.t a spurious Î ∈
AS(omit(Π, A)) are added back to refine mA. If Î still
occurs in the refined program omit(Π, A \ Ao), i.e., some
Î ′∈AS(omit(Π, A\Ao)) with Î ′|A=Î exists, then T [Π, Î ′]
finds another possible bad omission. In the worst case, all
omitted atoms A are put back to eliminate Î .

Corollary 14. After at most |A| iterations of the program,
the spurious answer set will no longer occur.

Adding back a badly omitted atom may cause a previously
omitted rule to appear as a changed rule in the refined pro-
gram. Due to this choice rule, the spurious answer set might
not get eliminated. To give a (better) upper bound for the
number of required iterations in order to eliminate a spurious
answer set, a trace of the dependencies among the omitted
rules is needed.

The rule dependency graph of Π, denoted GruleΠ , shows
the positive/negative dependencies similarly as inGΠ, but at
a rule-level, where the vertices are rules r ∈ Π. For a set A
of atoms, nA denotes the maximum length of a (non-cyclic)
path in GruleΠ from some rule r with B(r) ∩ A 6= ∅ back-
wards through rules r′ with H(r′)∩A 6= ∅. The number nA
shows the maximum level of direct or indirect dependency
between omitted atoms and their respective rules.

Proposition 15. Given a program Π, a setA of atoms, and a
spurious Î ∈ AS(omit(Π, A)), after at most nA iterations
of finding a bad omission with T [Π, Î] and refinement, no
abstract answer set matching Î will occur.

Proof. Let r0 be a rule with α ∈ B(r0) ∩ A that is changed
to a choice rule due to mA. Let r0, r1, . . . , rnA

be a depen-
dency path whereH(ri)∩A 6= ∅, 0<i≤nA andB(ri)∩A 6=
∅, 0≤i<nA. (In case of more than one such dependency
paths with several rules causing inconsistencies, the returned
set of badomits from T [Π, Î] allows one to refine the rules
in parallel). Let Î∈AS(omit(Π, A)), assume r0 has spuri-
ous behavior w.r.t. Î , and, wlog, Î |= B(ri)\A for all i≤nA.

Due to inconsistency via r0, badomit(α) ∈ AS(T [Π, Î]).
For A′=A \ {α}, mA′(r0) is unchanged, while mA′(r1)
becomes a choice rule (with nA−1 dependency left).
Thus, some I ′ ∈AS(omit(Π, A′)) with I|′

A
= Î can still

exist. Since r1 introduces spuriousness w.r.t. I ′, there is
badomit(α′) ∈ AS(T [Π, I ′]) for α′ ∈ B(r1) ∩A′.

By iterating this process nA times, all omitted rules on
which r0 depends are traced and eventually no abstract an-
swer set matching Î occurs.

Recall that Proposition 5 ensures that adding back fur-
ther omitted atoms will not reintroduce a spurious answer
set. Further heuristics on the determination of bad omission
atoms can be applied in order to ensure that a spurious an-
swer set is eliminated in one step.

Figure 2: Results (with upper limit on badomit # per step)

Π
|Ainit |
|A|

|Afinal |
|A| Ref # t (sec)

| ⊂min |
|A| t (sec)

GC

0.49 0.36 1.1 1.33 0.12 4.42
0.74 0.20 2.6 2.73 0.12 5.78
1.00 0.16 3.2 3.36 0.13 5.97

top-down 0.13 6.86

AA

0.50 0.17 3.1 5.52 0.17 40.58
0.75 0.18 2.9 5.76 0.16 40.35
1.00 0.00 2.0 3.33 0.19 42.60

top-down 0.19 42.19

SC

0.49 0.49 0.0 0.59 0.11 0.91
0.74 0.38 0.7 1.17 0.12 1.13
1.00 0.43 1.0 1.73 0.14 1.16

top-down 0.14 1.69

Evaluation on Unsatisfiable Problems
The aim of these evaluations is to observe the use of abstrac-
tion and refinement for achieving an over-approximation of
a program that is still unsatisfiable and to compute the ⊂-
minimal blockers of the programs, which projects away the
part that is unnecessary for the unsatisfiability.

For finding⊂-minimal blocker sets, we additionally com-
pare the top-down method to the bottom-up method. The
top-down method is by checking if omitting an atom from
Π preserves unsatisfiability, if yes, it is added to A. The
bottom-up method initially omits a certain percentage of
the atoms and refines the abstraction until an unsatisfiable
abstract program is reached. Then, a search for ⊂-minimal
blocker sets is done similarly, with the remaining atoms.

Benchmarks. We consider three benchmark problems,
two of which are based on graphs, and focus on the unsatis-
fiable instances.

Graph Coloring (GC). We obtained the generator for the
graph coloring problem1 submitted to ASPCOMP 2013 (Al-
viano et al. 2013). We generated 30 graph instances with
nodes size varying from 25 to 50, which were mostly 3-
colorable. Thus, in order to have unsatisfiability, we asked
for 2-colorability of the instances.

Abstract Argumentation (AA). Abstract argumentation
frameworks are based on graphs to represent and reason
about arguments. They have a broad set of benchmarks with
different types of graph classes, which are also being used
in competitions (Gaggl et al. 2016). We obtained the Watts-
Strogatz (WS) (Watts and Strogatz 1998) instances that are
generated by (Cerutti, Giacomin, and Vallati 2016) and are
unsatisfiable for existence of stable 2 extensions. We focused
on the instances with 100 arguments (i.e., nodes) where each
argument is connected (i.e., has an edge) to its 6 nearest
neighbor and it is connected to the remaining arguments
with a probability β%, β ∈ {10, 30, 50, 70, 90}.

1www.mat.unical.it/aspcomp2013/
GraphColouring

2www.dbai.tuwien.ac.at/research/project/
argumentation/systempage/Data/stable.dl

Figure 3: Additional results with badomit # minimization

Π
|Ainit |
|A|

|Afinal |
|A| Ref # t (sec)

| ⊂min |
|A| t (sec)

AA
0.50 0.27 6.4 11.22 0.17 36.58
0.75 0.41 8.7 17.23 0.15 31.84
1.00 0.59 19.6 50.00 0.13 22.72

Strategic Companies (SC). As a non-graph problem, we
considered the strategic companies problem with the encod-
ing and simple instances provided in (Eiter et al. 1998). In
order to have unsatisfiability, we added an additional con-
straint to the encoding, which forbids having all of the com-
panies that produces a product to be strategic. SC is an ex-
ample of canonically disjunctive programs. The rules with
disjunctive heads, e.g., a∨ b ← c, can be split into choice
rules {a} ← c; {b} ← c at the cost of introducing spurious
guesses. This program with the split can be seen as an over-
approximation of the original program. The above method
can then be applied similarly to such programs.

Preliminary results. The results are shown in Figure 2.
The tests3 were run on a Intel Core i5-6200U CPU 2.30GHz
machine using Clingo 5.2, under a 600 secs time and 7 GB
memory limit. The initial omission,Ainit, is done by choos-
ing randomly 50%,75% or 100% of the nodes in the graph
problems GC,AA, and of the atoms in SC. We show the
overall average of 10 runs for each instance.

The first three rows under each category show the bottom-
up approach. The columns |Ainit |/|A| and |Afinal |/|A|
show the ratio of the initial omission set Ainit and the fi-
nal omission set Afinal that achieves unsatisfiability after re-
fining Ainit (with shown number of refinement steps and
time). The second part of the columns is on the computa-
tion of the ⊂-minimal blocker set. For bottom-up approach,
search starts fromAfinal and for top-down approach, it starts
from A. In each refinement step, the number of determined
badomit atoms are minimized to be at most |A|/2, while
Figure 3 shows its full minimization.

Figure 2 shows that, as expected, there is a minimal part
of the program which contains the reason for unsatisfiabil-
ity of the program by projecting away the not needed (more
than 80%) atoms. Additionally, with a bottom-up method it
is possible to reach a⊂-minimal blocker set which is smaller
in size than the ones obtained with the top-down method.The
abstraction approach can also be useful if there is a desire to
find some (non-minimal) blocker.

In a refinement step, minimizing the number of badomit
atoms gives the smallest set of atoms to put back. However,
the minimization makes the search more difficult, hence may
reach a timeout, e.g., no optimal solution for 45 nodes inGC
in 10 min. Figure 3 shows the result of applying minimiza-
tion in the refinement for the AA instances. As expected,
adding the smallest set of badomit atoms back makes it pos-
sible to reach a larger omission Afinal that keeps unsatisfi-

3www.kr.tuwien.ac.at/research/systems/
abstraction

ability (e.g., AA with 100% Ainit: Afinal is 59% instead of
0% as in Figure 2). On the other hand, this requires to have
more refinement steps (Ref #) to reach some unsatisfiable
abstract program, which also adds to the overall time.

The ⊂-minimal blocker search algorithm relies on the or-
der of the picked atoms. We considered the heuristics of or-
dering the atoms according to the number of rules that each
shows up in the body, and starting the minimality search by
omitting the least occurring atoms. However, this did not
provide better results than just picking an atom arbitrarily.

We remark that our focus in this initial work is on the use-
fulness of the abstraction approach on ASP, and not on the
scalability. Further implementation improvements and opti-
mizations will make it possible to argue on the efficiency.

Discussion
Extensions. Lifting the framework to strong (classical)
negation is easily possible. In particular, it can be handled
as common, where technically only atoms (positive liter-
als) remain, with neg α representing negative original lit-
erals. We focused in this seminal paper on non-disjunctive
programs. Splitting disjunctive programs yields an over-
approximation, and applying the abstraction method pre-
serves reasons for inconsistency. The approach can be ex-
tended to consider disjunctive programs, by also extending
the existing debugging approaches for use in the refinement.

Non-ground case. In non-ground programs, the current
method removes all occurrences of a predicate from the pro-
gram. Lifting this to a more fine-grained abstraction is eas-
ily possible, by using auxiliary constraints in the rule body.
Basically, if we have an atom α = p(t1, ..., tk) that we
want to omit and α′ = p(t′1,, t

′
k) occurs in the body

of a rule, then (assuming that α and α′ share no variable),
we have to add a constraint θ(var(α′)) to the rule body
to single out the instances of α′ from the ones of α. E.g.,
α= p(a, Y) and α′= p(X,Z) would lead to the constraint
θ(X,Z) = X 6= a. This clearly generalizes the ground case
(the formula θ is either > or ⊥) and also subsumes the cur-
rent case of omitting the predicate by having p(X1, ..., Xk)
and θ(var(α′)) = ⊥.

For determining bad omissions in the non-ground pro-
grams, if lifting the current debugging rules is not scal-
able, other meta-programming ideas (Gebser et al. 2008;
Oetsch, Pührer, and Tompits 2010) can be used. The is-
sue that arises with the non-ground case, is having lots of
guesses to catch the inconsistency. Determining a reason-
able set of bad omission atoms requires optimizations which
makes the solving of the debugging more difficult.

Further optimizations. The selection of atoms to omit
can be done with further heuristics. For example, in order
to determine the set of atoms for initial omission, studying
the dependency graph of the program to catch the atoms that
cause fewest dependencies may be worthwhile.

Related Work
Although abstraction is a well-known approach to reduce
problem complexity, it has not been considered so far in

ASP. Atom omission is different from forgetting (Leite
2017), as it aims at an over-approximation of the original
program that may not be faithful and does not resort to lan-
guage extensions such as nested logic programs that other-
wise might be necessary. Abstraction has been studied in
logic programming (Cousot and Cousot 1992), but stable
semantics was not addressed. Pattern databases (Edelkamp
2001) is a similar abstraction notion considered in planning,
which is on projecting the state space to a set of variables.

ASP Debugging Investigating inconsistent ASP programs
has been addressed with the works on debugging (Brain et
al. 2007; Oetsch, Pührer, and Tompits 2010; Dodaro et al.
2015; Gebser et al. 2008), where the basic assumption is
having an inconsistent program and a candidate solution that
is expected to hold. In our case, we do not have a candidate
solution but are interested in finding the minimal projection
of the program that is inconsistent. Through abstraction and
refinement, we are obtaining candidate abstract answer sets
to check in the original program, but the aim is not to debug
the program itself, but to debug (and refine) the abstraction
that is constructed.

Different from other works, (Dodaro et al. 2015) com-
putes the unsatisfiable cores (i.e., the set of atoms that, if
true, causes inconsistency) for a set of assumption atoms
and finds a diagnosis with it. The user is queried about the
expected behavior, to narrow down the diagnosed set. In our
work, such an interaction is not required and the found set
of blocker atoms points to an abstract program (a projection
of the original program) which shows all the rules (or pro-
jection of the rules) that are related with the inconsistency.

The work by (Syrjänen 2006) is based on identifying the
conflict sets that are of mutually incompatible constraints.
However for large programs, the smallest input program
where the error happens needs to be manually found. An-
other related work (Pontelli, Son, and Elkhatib 2009) is on
giving justifications for the truth values of atoms w.r.t. an
answer set with a graph that encodes the reasons.

Unsatisfiable cores in ASP A well-known notion for un-
satisfiability is the minimal unsatisfiable subset (MUS) (un-
satisfiable cores) (Liffiton and Sakallah 2008; Lynce and
Silva 2004). It is based on computing a minimal subset of
constraints that explains why a given system of constraints
is unsatisfiable.

In the ASP context, the notion of cores has been used for
computing optimal answer sets (Alviano and Dodaro 2016;
Andres et al. 2012), where for a given consistent program,
cores are used as an underestimates for the cost of the op-
timal answer set. However, if the program is inconsistent,
such a core is not obtained. A recent work (Alviano et al.
2018) uses unsatisfiable core computation for cautious rea-
soning.

Relation to spurious answer sets. An unsatisfiable (u-)
core is an assignment IC over C ⊆ A such that Π has no
answer set I ′ compatible with IC , i.e., I ′ = IC . Spurious
answer sets and unsatisfiable cores are related as follows.
Proposition 16. If I is a spurious answer set of omit(Π, A),
then I is a u-core of Π; furthermore, if A is largest, then I
is a minimal core.

However, minimal cores C are not necessarily spurious
answer sets of the corresponding omission A = A\C. E.g.,

r : a← b,not a

has the minimal core C={b}; but C /∈AS(omit({r}, {a})).
Intuitively, the reason is thatC lacks foundedness for the ab-
straction. Thus, spurious answer sets are a more fine-grained
notion of relative inconsistency than u-cores.

Conclusion
In this paper, we have introduced a novel approach for ab-
stracting ASP programs by omitting atoms and constructing
over-approximations. The refinement of the abstraction for
the unavoidably introduced spurious answer sets is based
on debugging the spuriousness through the badly omitted
atoms. This approach can be used for different purposes. We
demonstrate the use in obtaining a representation of projec-
tion of a program and catching the strong cause of inconsis-
tency with obtaining blockers for answer set existence.

Outlook. This first work on abstraction for ASP has poten-
tial for enhancement and further developments. The abstrac-
tion method can be made more sophisticated to avoid intro-
ducing too many spurious answer sets. Better results can be
expected with subtle improvements on the implementation,
while even in the non-optimized way it is still possible to
obtain usable results.

Acknowledgements
This work has been supported by the Austrian Science Fund
(FWF) project W1255-N23. We thank the anonymous re-
viewers for their valuable feedback.

References
Alviano, M., and Dodaro, C. 2016. Anytime answer set
optimization via unsatisfiable core shrinking. Theory and
Practice of Logic Programming 16(5-6):533–551.
Alviano, M.; Calimeri, F.; Charwat, G.; Dao-Tran, M.;
Dodaro, C.; Ianni, G.; Krennwallner, T.; Kronegger, M.;
Oetsch, J.; Pfandler, A.; et al. 2013. The fourth answer
set programming competition: Preliminary report. In Proc.
LPNMR, 42–53. Springer.
Alviano, M.; Dodaro, C.; Järvisalo, M.; Maratea, M.; and
Previti, A. 2018. Cautious reasoning in asp via minimal
models and unsatisfiable cores. CoRR. abs/1804.08480.
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T.
2012. Unsatisfiability-based optimization in clasp. In Proc.
ICLP, volume 17, 211–221. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007. Debugging asp programs by means
of asp. In Proc. LPNMR, 31–43. Springer.
Buss, S.; Krajı̀ček, J.; and Takeuti, G. 1993. On provably
total functions in bounded arithmetic theories. In Clote, P.,
and Krajı̀ček, J., eds., Arithmetic, Proof Theory and Compu-
tational Complexity. Oxford University Press. 116–61.

Cerutti, F.; Giacomin, M.; and Vallati, M. 2016. Gener-
ating structured argumentation frameworks: AFBenchGen2.
In Baroni, P.; Gordon, T. F.; Scheffler, T.; and Stede, M.,
eds., Proc. COMMA, volume 287, 467–468. IOS Press.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2003. Counterexample-guided abstraction refinement for
symbolic model checking. JACM 50(5):752–794.
Cousot, P., and Cousot, R. 1992. Abstract interpretation
and application to logic programs. The Journal of Logic
Programming 13(2):103 – 179.
Dodaro, C.; Gasteiger, P.; Musitsch, B.; Ricca, F.; and
Shchekotykhin, K. 2015. Interactive debugging of non-
ground asp programs. In Proc. LPNMR, 279–293. Springer.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP, 13–24.
Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello,
F. 1998. The KR system dlv: Progress report, comparisons
and benchmarks. Proc. KR 98:406–417.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive ag-
gregates in disjunctive logic programs: Semantics and com-
plexity. In Proc. JELIA, volume 3229 of LNCS, 200–212.
Springer.
Gaggl, S. A.; Linsbichler, T.; Maratea, M.; and Woltran, S.
2016. Introducing the second international competition on
computational models of argumentation. In Proc.SAFA, 4–9.
Gebser, M.; Pührer, J.; Schaub, T.; and Tompits, H. 2008.
A meta-programming technique for debugging answer-set
programs. In Proc. AAAI, volume 8, 448–453.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3):365–385.
Janota, M., and Marques-Silva, J. 2016. On the query com-
plexity of selecting minimal sets for monotone predicates.
Artif. Intell. 233:73–83.
Leite, J. 2017. A bird’s-eye view of forgetting in answer-
set programming. In Balduccini, M., and Janhunen, T., eds.,
Proc. LPNMR, volume 10377 of LNCS, 10–22. Springer.
Liffiton, M. H., and Sakallah, K. A. 2008. Algorithms
for computing minimal unsatisfiable subsets of constraints.
Journal of Automated Reasoning 40(1):1–33.
Lynce, I., and Silva, J. P. M. 2004. On computing minimum
unsatisfiable cores. In Proc. SAT.
Oetsch, J.; Pührer, J.; and Tompits, H. 2010. Catching the
ouroboros: On debugging non-ground answer-set programs.
Theory and Practice of Logic Prog. 10(4-6):513–529.
Pontelli, E.; Son, T. C.; and Elkhatib, O. 2009. Justifications
for logic programs under answer set semantics. Theory and
Practice of Logic Programming 9(1):1–56.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Syrjänen, T. 2006. Debugging inconsistent answer set pro-
grams. In Proc. NMR, volume 6, 77–83.
Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics
of “small-world” networks. Nature 393:440–442.

