
Dynamic Logic Programming and world state evaluation in

computer games

Jozef Šǐska

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava, Slovakia,

siska@ii.fmph.uniba.sk

Abstract. In this paper we propose a framework for world state evaluation in computer
games based on Dynamic Logic Programming (DynLoP).

Computer games (especially role-playing and adventure games) offer an exact, coherent and
relatively small and simple world description and are usually built on game engines, which
provide scripting capabilities. A common task of game scripting involves evaluation of the
world state in a game, usually to find out whether a player has already completed a task
(game quest).

In this paper we describe a framework for building a Dynamic Logic Program based on a
description of a game world, quests and events in the game. Stable models of such a program
are then used to determine the status of a quest or the whole game. Because of declarative
nature of DynLoP, its use allows easier and simpler queries and quest (task) characterization
than current imperative scripting languages used in game engines. Furthermore, the world
of a computer game provides an excellent environment for evaluation of DynLoP and its
various semantics.

1 Introduction and Motivation

Thinking about research in the area of computer games, most people imagine algorithms and
hardware for fast and nice 3D graphics or realistic real-time simulations. Although that is really
the largest portion of research done in this area, there are communities with other goals, some of
them more tied to the area of artificial intelligence and, more specifically, knowledge representation,
planning and natural language processing. These share the ultimate goal of a virtual world with
artificial computer controlled characters, which would behave and could be talked to just like
humans.

Logic programming (LP) is a formalism used in knowledge representation. Although there are
few applications of LP in the area of computer games, they usually demonstrate possibilities of
LP from a users(players) point of view[12]. In this paper we introduce a framework that uses
Dynamic Logic Programming (DynLoP) – an extension of Logic Programming – to enhance and
ease development of a certain type of computer games

Every computer game takes place in a specific world. Some kinds of games, mainly role-playing
(RPG) and adventure games are based primarily on players interaction with such a world. In
RPG games the player assumes the “role” of a character in a made up world and controls how the
character interacts with the world, influencing it. In Adventure games player’s interaction with
surrounding world is more constricted, as the player tries to solve puzzles and task. In both kinds
of games however creativity plays the main part. The more ways to finish a task (and the more
creative and full of fun) the better the game. It is therefore a constant goal to make the game
world as open as possible and generic.

Games are not always written from scratch. Game engines are used, which provide communi-
cation with the player and a scripting interface in which specific games are ”scripted”. The more
complex the quests are, the harder the creation of the game becomes. It is very common that a
game does not consider a task finished, even when from players perspective it is. Such ”scripting
glitches” then negatively influence players experience and perception of the game.

Dynamic Logic Programming and world state evaluation in computer games 65

In this article we propose a framework for game world evaluation using dynamic logic program-
ming. Game mechanics, world and quest definitions are represented by dynamic logic programs.
Stable models are then used to determine the state of the game and quests. As the semantics
of DynLoP handles inference and conflicts, the creation and maintenance of rules – programs is
much simpler and very complex quests are easier to describe. The main goal of this framework is
to incorporate LP into game engines and thus provide a base for further LP research like planning
in a game world.

The rest of the paper is organized as follows: in the next section we recall basic definitions from
the area of DynLoP as well as the stable model semantics for DynLoP. Then in the third section
we describe the world of a computer game in detail relating it to the usual setting of multi-agent
systems and also describe common game engine setups as well as scripting systems. The fourth
section contains the description of our presented framework along with examples and a discussion.
In the fifth section we provide some considerations for practical implementations. The last section
presents some possibilities of future work and adds some concluding remarks.

2 Dynamic Logic Programming

In this paper we concentrate on a class of logic programs called Dynamic Logic Programs [9] which
are a generalization of Logic Programs. First we recall some basic concepts and notation. Then
we characterize some classes of logic programs and recall the definition of the class of Dynamic
Logic Programs.

Let A be a set of propositional atoms (also called objective literals). For an atom A, not A is
called a default literal. We denote by L = {A,not A|A ∈ A} the set of all literals. For a literal
L ∈ L, we use not L to denote its opposite counterpart. Thus not L = not A iff L = A and
not L = A iff L = not A. We call L and not L conflicting literals and denote it by L ./ not L.
For a set of literals M ⊆ L we denote M+ the set of all objective literals and M− the set of all
default literals from M . A set of literals M is called consistent if it does not contain two conflicting
literals, otherwise it is inconsistent.

A generalized logic program P is a countable set of rules of the form L← L1, L2, . . . , Ln, where
L and each of Li are literals. If all literals are objective, P is called a definite logic program.

For a rule r of the form L ← L1, L2, . . . , Ln we call L the head of r and denote by head(r).
Similarly by body(r) we denote the set {L1, L2, . . . , Ln} and call it the body of r. If body(r) = ∅
then r is called a fact. Throughout this paper we will use interchangeably the sets of literals and
sets of facts having these literals as heads, although they are formally different. Two rules r and
r′ are called conflicting (opposite) if head(r) and head(r′) are conflicting and we denote this by
r ./ r′.

An interpretation is any consistent set of literals I. I is called a total interpretation if for each
A ∈ A either A ∈ I or not A ∈ I. A literal L is satisfied in an interpretation I (I |= L) if L ∈ I.
A set of literals S ⊂ L is satisfied in I (I |= S) if each literal L ∈ S is satisfied in I. A rule r

is satisfied in I (I |= r) if I |= body(r) implies I |= head(r). A total interpretation M is called a
model of the logic program P if for each rule r ∈ P M |= r. We also say that M models P and
write M |= P .

For a generalized logic program P we denote least(P) the least model of the definite logic
program P and by τ(P) (τ(M)) the program (model) obtained from P (M) by changing each
default literal not A into a new atom not A. According to [4] we can define stable models of a
generalized logic program as those models M for which

τ(M) = least
(

τ
(

P ∪M−
))

.

Dynamic Logic Programs as an extension of Logic Programs provide a way to express changing
knowledge. Knowledge is structured into a sequence of logic programs. Conflicts between rules are
resolved based on causal rejection of rules – for two conflicting rules, the more recent one overrides
the older. Thus more recent programs contain more important rules which override older rules.

66 Jozef Šǐska

A Dynamic Logic Program is a sequence of generalized logic programs P = (P1, P2, . . . Pn). We
use ρ(P) to denote the multiset of all rules ρ(P) =

⋃

1≤i≤n Pi.
A total interpretation M is a Refined Dynamic Stable Model of P iff

M = least ([ρ(P) \Rej(P,M)] ∪Def(ρ(P),M))

where

Rej(P,M) = {r | r ∈ Pi,∃r
′ ∈ Pj : r ./ r′, i ≤ j,M |= body(r′)}

Def(ρ(P),M) = {not A | A ∈ L, 6 ∃r ∈ ρ(P) : M |= body(r),

head(r) = A}

The set Rej(P,M) contains all rejected rules from P i.e. rules for which there is a conflicting
rule satisfied in M in a more important program. The set Def(M) contains default negations of
all unsupported atoms.

The previous definition defines the Refined Dynamic Stable Model semantics (RDSM) [3]. All
other semantics for DynLoP based on causal rejection of rules [2, 9, 6, 7, 10, 11] can be achieved by
corresponding definitions of the sets Rej(P, s,Ms) and Def(ρ(Ps,Ms).

A transformational semantics equivalent to the DSM semantics can be defined for DynLoP[9].
This semantics transforms the DynLoP into a generalized logic program with a set of models that
corresponds to that of the DynLoP. This allows for direct implementation of the DSM semantics
for DynLoP by using existing LP solvers.

3 The world of a computer game

In this section we take a closer look on the world of a computer game. We describe the basic
elements, how game engines usually handle them and compare them to the elements of a multi-
agent system.

Throughout this paper we will be interested in role-playing and adventure computer games.
World of such games consist of objects, such as characters (NPCs), items or even abstract items
(sounds,light). Objects can be passive or active. Active objects can execute actions. Passive objects
are usually just targeted by actions, thus changing their properties.

A special active object in a game is the player object, which is controlled by the player. It
represents usually the character or item the player controls, although there are games where
player controls more characters. Or in the case of multiplayer games, more players can play the
game at a time.

Game objects have properties, which can be changed as a result of actions. Some properties
and their changes are given by the basic mechanics of the game (position, motion, . . .). Other
properties are determined specially, by game scripts. This usually includes tracking the progress
of the game or quest.

Because of the size, world is generally divided into locations. Most objects are active only in
one (or very few) location(s) and disregarded elsewhere1. Only player objects and game-important
objects persist between the locations. Information about quests that span over multiple locations
is therefore usually recorded as properties of player object itself in some condensed form.

Given a base mechanics of the game, the game world is exactly described. Although such a
world can be large and can make a challenge for smooth and realtime play, it is still relatively
small compared to real world applications. One important aspect of such worlds is that they are
scarcely ambiguous.

Existing game engines usually vary in the level of generalization, from very specific with most
of the game mechanics and other things hardcoded, to general engines resembling just an user

1 There are games which give an illusion of continuous world. These is however almost always achieved
by switching the locations in background.

Dynamic Logic Programming and world state evaluation in computer games 67

interface. Engines also offer various levels of scripting support, ranging from very simple and limited
to full featured, object oriented, event driven scripting languages. All are however procedural and
usually every non-trivial event in a game has to have a complex script associated with it. The
quality and consistency of these scripts then forms a major factor of games’ quality and impression.

As evaluation of more complex quests or game states can become very complicated a well
designed game usually uses a kind of in place inference. Scripts infer small descriptions of game
state (atoms) and store them as properties of objects. The evaluation of a more complex quest
then resembles a logic program represented ad-hoc in the scripting language.

4 Game world evaluation

In this section we describe a simple use of Logic Programs in evaluation of the state of a game
world. We represent the state of the world using the language of LP. Then we can pose queries
as logic programs. As the state of the game world changes over time, we can use the benefits of
DynLoP.

When posing queries in LP, usually two logic programs are considered: a database P and a
query program Q. These are put together as one logic program P ∪Q and it’s stable models are
determined. The answers are then based on these models, usually the truth value of an atom, or
the absence or presence of a specific model is considered.

This however requires that all three programs P , Q and P ∪ Q are coherent. With Dynamic
Logic Programming, only P and Q themselves need to be coherent. Inconsistencies between these
two programs will be resolved preferring information from the latter one. Furthermore, using
DynLoP we can combine more programs in such a way that the more specific ones override the
others.

With a game world in mind, the process involves creating logic programs for the game mechanics
and quests and using those together with program(s) representing current state of the game. These
are then combined into a DynLoP and its dynamic stable models are determined.

A dynamic logic view of a game world with regard to a certain quest/task can be represented
as follows:

Consider the DynLoP P and a set of atoms Qa, where

P = {P0, P1, P2, . . . , Pn, Pg, Pq}

P0 represents the initial configuration of the game (facts at the beginning). P1 through Pn represent
the updates of facts (either as results of player actions or game created events). Pg is a program
containing all the rules describing the general game mechanics and Pq represents the rules special
for the evaluation of this quest (i.e., describing the quest). The set Qa contains the atoms we will
be interested in when deciding the result of the query.

The program containing the game mechanics is easily developed once for the whole game,
quest programs are written for each quests and are used only when determining the state of that
particular quest, most probably through a query from a script.

Programs P1 through Pn represent a dynamic view of the changes in game world. These pro-
grams would contain only facts, and could be easily transformed into one program preserving the
latest observation about atoms, thus reducing the complexity of the whole dynamic program. This
makes even more sense in real applications, where the state of the game will be held internally in
the engine, not in a DynLoP, and the logic program would be created from the internal represen-
tation just before the execution of a query. In such setup it makes more sense to construct just
one program containing the current game state. Note that P0 is still needed as it contains initial
configuration of the game and as such may contain information that is not included in the game’s
state. This leads to a simpler program

P = (P0, P1, Pg, Pq)

Game engines are used in creation of more games than one. Although they provide some basic
mechanics of the game world, they allow game creators to design also their own rules for the

68 Jozef Šǐska

specific game. These rules are not part of the engine enforced ruleset, but still are global to the
game when compared with rules specific to the quests. Thus a more refined layout of the DynLoP
makes more sense:

P = (P0, P1, Pe, Pg, Pq)

Program Pe now refers to the rules of the engine, while Pg retains the rules specific for the game.
This way a program for the basic mechanics of the engine can be clearly separated and attached
to the engine. Also game specific rules can easily override engine provided rules as they are now
more preferred (and any inconsistency will be resolved according to the DynLoP semantics).

Dynamic stable models of P are then used to determine the state of the quest. This is done by
considering the number of models and how many of them satisfy Qa, i.e., whether the atoms we
are interested in are satisfied in all possible explanations of the world, in some of them or in none.
The game engine can then decide whether to accept a quest if there is just a possible explanation
(like a quest to persuade an NPC about something) or may require complete certainty.

Example 1. Consider the following DynLoP P = (P0, P1, Pg, Pq):

P0 = { . . . alive(King); alive(General); speak(King); speak(General); . . . }

P1 = { killed(Player, King); }

Pg =
{

. . . not alive(X)← killed(Y, X); alive(X)← ressurect(Y, X); . . .

. . . not speak(X)← spell(Silence, X); . . .

}

Pq =

{

war ← alive(King), influenced(King, X);
influenced(King, X)← alive(X), wants war(X);

wants war(General);

}

The program P0 contains the initialization of the game. P1 contains the description of the current
state. Pg are the common engine rules for the game mechanics. Pq contains the description of a
quest to prevent a kingdom to go into a war.

Example 2.

P0 = { . . . alive(King); alive(General); speak(King); speak(General); . . . }

P1 = { cast spell(Player, Silence, General); }

Pg =
{

. . . not alive(X)← killed(Y, X); alive(X)← ressurect(Y, X); . . .

not speak(X)← spell(Silence, X); . . .

}

Pq =

{

war ← alive(King), influenced(King, X);
influenced(King, X)← alive(X), wants war(X), speak(X);

wants war(General);

}

This example shows the advantages of LP representation. A small change (the prerequisite to
speak to be able to influence) adds more possibilities of solving a quest. While this is nothing
monumental, adding same extensions to scripts might easily become unbearable.

5 Implementation considerations

In this section we put forward a few implementation specific considerations. An implementation
of the framework described in this paper consists basically of two parts: a software architecture
to allow queries to the DynLoP engine from the game engine and the representation of game
mechanics and quest information written as a set of dynamic logic programs. A most simple

Dynamic Logic Programming and world state evaluation in computer games 69

approach to this would take an existing game engine and extend its scripting language with calls
to the LP system.

Two most popular systems for Logic Programming are DLV[5] and SMODELS[13]. Both of
these systems support Logic Programs with both kinds of negations and also disjunctive programs.
¿From an evaluational point of view, a possibility to switch between these implementations is
important. Unfortunately these systems differ slightly in syntax of the input programs and thus
switching between them as the backend engine for LP solving is not straightforward. A class of
Logic Programs that has common syntax in both systems has to be chosen or a transformation of
the input programs for each syntax has to be implemented.

Many game engines are developed as open source projects, thus making it feasible to add new
functionality to their scripting languages. Such project also frequently include relatively small
examples of games which can be built on them. Such games present a better opportunity to use
logic programming, than working with large games or starting a new game from scratch.

Examples of such open source engines include Adonthell[1] or GemRB[8]. The first is an ex-
ample of a pure general engine, the latter being a free remake of commercial Infinity engine used
Black Isle and Bioware games.

The implementation should make it possible for the designer to independently create a set of
logic programs with a defined ordering – background knowledge, common quest information, quest
specific programs. The scripting interface should then allow to designate a subset of the programs
and ask the LP engine for results. These should be provided in the form of a number of all models
and a number of models satisfying the queried atoms.

6 Conclusion

We described the world of (a certain kind of) a computer game from the point of view of a multi-
agent system and provided a framework for its evaluation using dynamic logic programming. The
main goal of this framework is to find a way to incorporate logic programming into game engines
thus allowing the research of more complicated uses of LP.

The framework is very simple and can be easily added on top of existing scripting systems
in game engines, allowing game designers to use the full power of LP when identifying situations
in the game world. Being a simple and straightforward application of DynLoP in game design, it
opens possibilities for further research.

The framework addresses static knowledge about the game world observed in a certain mo-
ment. One area of possible improvement would thus be to consider the dynamic game world and
formalism as temporal logic.

Another natural area to explore is LP based planning in a game world. Even the simplest tasks
in computer games, such as pathfinding (calculating a path for a character to take through the
game world, avoiding obstacles) provide interesting challenges. Such a world with NPCs and other
active objects is then an excellent place to research planning and decision making.

Acknowledgements: This work was supported by Research and Development Support Agency
under the contract No. APVV-20-P04805. We further acknowledge financial support from the grant
No. 314/2005 awarded by Comenius University and VEGA grant No. 1/0173/03.

References

1. Adonthell Game Engine, http://adonthell.linuxgames.com/
2. J.J.Alferes, J.A.Leite, L.M.Pereira, H.Przymusinska, and T.C.Przymusinski. Dynamic logic program-

ming. In Procs. of KR’98. Morgan Kaufmann, 1998.
3. J. J. Alferes, F. Banti, A. Brogi and J. A. Leite. The Refined Extension Principle for Semantics of

Dynamic Logic Programming. Studia Logica 79(1): 7-32, 2005
4. J.J.Alferes, J.A.Leite, L.M.Pereira, H.Przymusinska, and T.C.Przymusinsky. Dynamic updates of non-

monotonic knowledge bases. The Journal of Logic Programming, 45(1-3):43-70, September/October
2000

70 Jozef Šǐska

5. A disjunctive datalog system. http://www.dbai.tuwien.ac.at/proj/dlv.
6. T.Eiter, M.Fink,G.Sabbatini, and H.Tompits. On Updates of Logic Programs: Semantics and Prop-

erties. INFSYS Research Report 1843-00-08, 2001.
7. T.Eiter, M.Fink,G.Sabbatini, and H.Tompits. On properties of update sequences based on causal

rejection. Theory and Practice of Logic Programming, 2(6), 2002.
8. GemRB Game Engine, http://gemrb.sourceforge.net/
9. J.A.Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artifical Inteligence and Applications.

IOS Press, 2003.
10. J.A.Leite, L.M.Pereira. Generalizing updates: From models to programs. In Procs. of LPKR’97, volume

1471 of LNAI. Springer Verlag, 1997.
11. J.A.Leite, L.M.Pereira. Iterated logic program updates. In Procs. of JICSLP’98. MIT Press, 1998.
12. L.Padovani, A.Proverti. Qsmodels: ASP Planning in Interactive Gaming Environment. In Procs. of

the 9th European Conference on Logics in Artificial Intelligence (JELIA’04), Springer-Verlag, LNAI
3229, 2004.

13. The SMODELS system. http://www.tcs.hut.fi/Software/smodels/.

