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Abstract

The recent rise of smart applications has drawn interest to
logical reasoning over data streams. Different query lan-
guages and stream processing/reasoning engines were pro-
posed. However, due to a lack of theoretical foundations,
the expressivity and semantics of these diverse approaches
were only informally discussed. Towards clear specifications
and means for analytic study, a formal framework is needed
to characterize their semantics in precise terms. We present
LARS, a Logic-based framework for Analyzing Reasoning
over Streams, i.e., a rule-based formalism with a novel win-
dow operator providing a flexible mechanism to represent
views on streaming data. We establish complexity results for
central reasoning tasks and show how the prominent Contin-
uous Query Language (CQL) can be captured. Moreover, the
relation between LARS and ETALIS, a system for complex
event processing is discussed. We thus demonstrate the ca-
pability of LARS to serve as the desired formal foundation
for expressing and analyzing different semantic approaches
to stream processing/reasoning and engines.

Introduction
The emergence of sensors, networks, and mobile devices has
generated a trend towards pushing rather than pulling of data
in information processing. In stream processing (Babu and
Widom 2001), studied by the database community, input tu-
ples dynamically arrive at systems in form of possibly infi-
nite streams. To deal with unboundedness of data, the sys-
tems typically apply window operators to obtain snapshots
of recent data. The user runs continuous queries on the lat-
ter that are triggered either periodically or by events, e.g.,
by the arrival of new input. A prominent stream processing
language is the Continuous Query Language (CQL) (Arasu,
Babu, and Widom 2006), which has an SQL-like syntax and
a clear operational semantics.

Recently, the rise of smart applications such as smart
cities, smart home, smart grid, etc., has raised interest in
the topic of stream reasoning (Della Valle et al. 2009), i.e.,
logical reasoning on streaming data. Consider the following
example.
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Example 1 To monitor a city’s public transportation, the
city traffic center has a static background data set for the as-
signment of trams to lines of the form line(Id , L), where Id
is the tram and L the line identifier. The planned travelling
time (duration Z) between stops X and Y with line L is
stored by rows plan(L,X, Y, Z). Facts of the form old(Id)
classify old trams which are inconvenient for travelling
with baby strollers. Moreover, sensor data tram(Id , X)
and jam(X) report the appearance of tram Id and traffic
jams at stop X , respectively. Based on this, reports on the
traffic status and suggested updates for travel routes shall be
provided in real time.

Consider Bob travelling with his baby on line `3 (Fig. 1a).
He is currently at Haydn Street (h) and wants to go to Strauß
Avenue (s), so he has different options to change trams
at Mozart Circus (m). Thus, he wants to know (i) the ex-
pected arrival time of the next tram that (ii) is convenient for
the stroller. Fig. 1b depicts arrival times, e.g., tram(a1, b)
at t = 36 represents that tram a1 arrived at stop Beethoven
Square at minute 36. Furthermore, consider the following
background data tables, which specify the planned travel
time between stops (plan), the association between lines and
their trams (line) and which trams are old and thus not suit-
able for strollers (old ).

plan = {(`1, b,m, 8), (`2, g,m, 7), (`3, h,m, 3), . . .}
line = {(a1, `1), (a2, `2), (a3, `3), . . .} old = {(a1), . . .}

Based on this input stream and the static background data,
we expect the following reports (i) and (ii):



(i) Tram a1 is expected to arrive atm at minute 44, and a3
should arrive atm one minute earlier, i.e., at minute 43.

(ii) Switching from line `3 to `1 at m satisfies the short
waiting time requirement. However, since tram a1 is
old, it is not a good connection with the stroller. �

Different research communities have contributed to various
aspects of this topic, leaving several challenges to overcome.
First, these predominantly practical approaches often define
semantics only informally, which makes them hard to pre-
dict and hard to compare. Second, advanced reasoning fea-
tures are missing, e.g., nonmonotonicity, nondeterminism or
model generation. According techniques have been studied
almost exclusively on static data.
Contributions. We present LARS, a Logic-based frame-
work for Analyzing Reasoning over Streams, providing (i) a
rule-based formalism with (ii) different means to refer to or
abstract from time, including (iii) a novel window opera-
tor, i.e., a flexible mechanism to change the view on stream-
ing data. To date, no stream reasoning language with these
features exists. Moreover, LARS features a model-based se-
mantics, and it offers besides monotonic also nonmonotonic
semantics that can be seen as an extension of Answer Set
Programming (ASP) for stream reasoning.

We analyze the complexity of central reasoning tasks
(model checking and satisfiability) in LARS, establishing
that they do not get harder compared to ASP, provided that
nesting of window operators is bounded (in particular, if no
nesting occurs). Moreover, we demonstrate how the seman-
tics of CQL can be expressed in LARS and study the rela-
tion of LARS and ETALIS (Anicic et al. 2010), a monotonic
rule-based system for complex event processing.

The presented framework yields (a) a common ground to
express various semantic concepts of different stream pro-
cessing/reasoning formalisms and engines, which (b) can
now be formally characterized in a common language, and
thus (c) be compared analytically.

Streams
Streaming Data. We use mutually disjoint sets of pred-
icates P and constants C. The set A of atoms is defined
as {p(c1, . . . , cn) | p ∈ P, c1, . . . , cn ∈ C}. If i, j ∈ N, we
call the set [i, j] = {k∈N | i ≤ k ≤ j} an interval. We di-
vide P into two disjoint subsets, namely the extensional
predicates PE and the intensional predicates PI . The for-
mer is used for input streams and background data, while
the latter serves for intermediate and output streams. Addi-
tionally, we assume basic arithmetic operations (+,−,×,÷)
and comparisons (=, 6=, <,>,≤,≥) are predefined by des-
ignated predicates B ⊆ PE , and used also in infix notation.

We now present the central notion of streams.
Definition 1 (Stream) Let T be an interval and υ : N→ 2A

an evaluation function such that υ(t) = ∅ for all t ∈ N \ T .
Then, the pair S = (T, υ) is called a stream, T is the timeline
of S, and the elements of T are time points.

Consider two streams S = (T, υ) and S′ = (T ′, υ′). We
say S′ is a substream or window of S, denoted S′ ⊆ S,
if T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for all t′ ∈ T ′. We call S′

a proper substream of S, denoted S′ ⊂ S, if S′ ⊆ S
and S′ 6= S. Moreover, we define the size #S of S
by Σt∈T max(|υ(t)|, 1). The restriction S|T ′ of S to T ′ ⊆ T
is the stream (T ′, υ|T ′), where υ|T ′ restricts the domain of υ
to T ′, i.e., υ|T ′(t) = υ(t) for all t ∈ T ′, else υ|T ′(t) = ∅. A
data stream contains only atoms with extensional predicates.
Example 2 (cont’d) Consider again the scenario of
Example 1. We can model the input as the data
stream D = (T, υ) with a timeline T = [0, 50] and the eval-
uation υ(36) = {tram(a1, b)}, υ(40) = {tram(a3, h)},
and υ(t) = ∅ for all t ∈ T \ {36, 40}. We will also repre-
sent the evaluation function υ by according mappings, i.e.,
by {36 7→ {tram(a1, b)}, 40 7→ {tram(a3, h)}}. �

Windows. An essential aspect of stream reasoning is to re-
strict data to so-called windows, i.e., recent substreams to
limit the amount of data and forget outdated information.
Definition 2 (Window function) A window function wι of
type ι takes as input a stream S = (T, υ), a time point t ∈ T ,
called the reference time point, and a vector of window pa-
rameters x for type ι and returns a substream S′ of S.
The most common types of windows in practice are time-,
tuple-, and partition-based windows. We associate them with
three window functions wτ , w#, and wp, respectively. Tra-
ditionally (Arasu et al., 2006), these window functions take a
fixed size ranging back in time from a reference time point t;
we generalize this by allowing to look back and forth from t.
Intuitively, these functions work as follows.
• Time-based: x = (`, u, d), where `, u ∈ N ∪ {∞}

and d ∈ N. The function wτ (S, t,x) returns the sub-
stream of S that contains all tuples of the last ` time units
and the next u time units relative to a pivot time point t′
derived from t and the step size d (Fig. 2). We use ` =∞
(resp. u =∞) to take all previous (resp. later) tuples.

• Tuple-based: x = (`, u), where `, u ∈ N. The func-
tionw#(S, t,x) selects a substream of S with the shortest
interval [t`, tu] ⊆ T as timeline, where t` ≤ t ≤ tu, such
that ` tuples are in [t`, t] and u tuples are in [t+ 1, tu].
Exactly `, resp. u tuples are returned. In case of multiple
options due to multiple tuples at time points t`, resp. tu,
only tuples from there are removed at random.

• Partition-based: x = (idx, n) where idx and n are two
total functions idx: A → ∅ ⊂ I ⊂ N and n : I → N× N.
Here, I is a finite index set. Applying wp(S, t,x) first
splits the input stream S = (T, υ) into |I| substreams
Si = (T, υi) by taking υi(t) = {a ∈ υ(t) | idx(a) = i}.
Then, a tuple-based window w# is applied on each Si
with parameters taken from n(i) = (`i, ui). The output
streams after w# are then merged to the result window.

Here, we gave a slight generalization of window functions
as presented (more formally) in (Beck et al. 2014), using the
general parameter vector x. This will be more useful when
we discuss window applications with flexible sizes repre-
sented by variables.

Due to space reason, we present only the adaptation of
time-based windows formally. The same idea can be applied
to other types of windows straightforwardly.
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Figure 2: Time-based window wτ with ` = 3, u = 1, d = 3

Definition 3 (Time-based window func.) Let S = (T, υ)
be a stream, T = [tmin, tmax] and t ∈ T , x = (`, u, d)
where `, u ∈ N∪{∞} and d ∈ N such that d ≤ `+ u. The
time-based window function with range (`, u) and step
size d of S at time t is defined by wτ (S, t,x) = (T ′, υ|T ′),
where T ′=[t`, tu], t` = max{tmin, t′−`} with t′ = b tdc·d,
and tu = min{t′+u, tmax}.
The following example demonstrates the use of time-based
windows.
Example 3 (cont’d) On the data stream D of Example 2,
consider a monitoring use case where we want to know
only the tram appearances reported within the last 4 min-
utes. To this end, we can use a time-based window func-
tion wτ (D, t, (4, 0, 1)) with a step size of 1. Applying it
on D at t = 42 gives wτ (D, 42, (4, 0, 1)) = ([38, 42], υ′),
where υ′ = {40 7→ {tram(a3, h)}}. �

The LARS Framework
We now define LARS, a logic-based framework for analyz-
ing reasoning over streams. We present a logic with differ-
ent means for time reference and time abstraction. On top of
it, we will further introduce a rule language with a model-
based, nonmonotonic semantics.

To account for the aspect of streaming, window operators
of form �x

ι,ch are central to our approach. While a window
function returns a stream S′ based on an input stream S and
a time point t, a window operator takes two streams as input.
This allows us to distinguish between a fixed input stream S?

and the currently considered window S. Therefore, prior to
the application of a window function, a stream choice ch se-
lects a stream S′ based on two streams. We use two straight-
forward stream choices ch1(S?, S)=S? and ch2(S?, S)=S.
Definition 4 (Window operator) Let wι be a window
function of type ι, ch a stream choice function, and x a vec-
tor of window parameters for type ι. Then, �x

ι,ch denotes a
window operator.
We also omit ch2 and simply write �x

ι for �x
ι,ch2

. Further-
more, we use special syntax for typical parameters x for
tuple- and time-based windows with step size d = 1 and
write only ` for x, if u = 0, and +u, if ` = 0. For instance,

�4
τ = �4,0,1

τ,ch2
�+5
τ = �0,5,1

τ,ch2
�1

# = �1,0
#,ch2

Here, all operators extract tuples from the second stream.
The symbol�4

τ abbreviates the time-based window operator

that takes all tuples of the last 4 time points, while�+5
τ takes

all tuples of the next 5 time points. Moreover, �1
# takes the

latest tuple which arrived until the reference time point.
Syntax. In addition to window operators, we use further
means to refer to or abstract from time. Similarly as in modal
logic, we use operators 2 and 3 to represent that a tuple
(atom) or formula holds at all times respectively some time
in a window. Moreover, an exact operator @ is used to refer
to specific time points.
Definition 5 (Formulas) Let a ∈ A be an atom and t ∈ N.
The set F of formulas is defined by the following grammar:

α ::= a | ¬α |α∧α |α∨α |α→ α |3α |2α |@tα |�x
ι,chα

Intuitively, given a stream S? and a considered window S
(which initially is S?), a formula α will be evaluated based
on a reference time point twithin S. An application of a win-
dow operator �x

ι,ch creates a new window S′ that depends
on S? and S as specified by the stream choice. Within the
current window S, 3α (resp. 2α) holds, if α holds at some
time point (resp. at all time points) in S. Relative to t, the
formula α holds if α is true at t, and @t′α holds if t′ is in
the timeline of S and α is true at t′. That is, the operator @
allows to ‘jump’ to a specific time point within the window.
Semantics. In addition to streams, we consider background
knowledge in form of a static data set, i.e., a set B ⊆ A of
atoms which does not change over time. From a semantic
perspective, the difference to streams is that static data is
always available, regardless of window applications.
Definition 6 (Structure) Let S = (T, υ) be a stream,W be
a set of window functions and B ⊆ A a set of facts. Then,
we call M = 〈T, υ,W,B〉 a structure, S the interpretation
stream and B the data set or background data of M .
We now define when a formula holds in a structure.
Definition 7 (Entailment) Let M = 〈T ?, υ?,W,B〉 be a
structure, S? = (T ?, υ?) and let S = (T, υ) be a sub-
stream of S?. Moreover, let t ∈ T . The entailment rela-
tion  between (M,S, t) and formulas is defined as follows.
Let a ∈ A be an atom, and let α, β ∈ F be formulas. Then,
M,S, t  a iff a ∈ υ(t) or a ∈ B,
M,S, t  ¬α iff M,S, t 1 α,
M,S, t  α ∧ β iff M,S, t  α and M,S, t  β,
M, S, t  α ∨ β iff M,S, t  α or M,S, t  β,
M, S, t  α→ β iff M,S, t 1 α or M,S, t  β,
M, S, t  3α iff M,S, t′  α for some t′∈ T,
M, S, t  2α iff M,S, t′  α for all t′∈ T,
M, S, t  @t′α iff M,S, t′  α and t′∈ T,
M, S, t  �x

ι,chα iff M,S′, t  α ,
where S′ = wι(ch(S?, S), t,x).

If M,S, t  α holds, we say that (M,S, t) entails α. More-
over, M satisfies α at time t, if (M,S?, t) entails α. In this
case we write M, t |= α and call M a model of α at time t.
Satisfaction and the notion of a model are extended to sets
of formulas as usual.
Example 4 (cont’d) Let D = (T, υ) be the data stream of
Ex. 3 and S?=(T ?, υ?)⊇D be a stream such that T ?=T and

υ?=

{
36 7→ {tram(a1, b)}, 40 7→ {tram(a3, h),
43 7→ {exp(a3,m)}, 44 7→ {exp(a1,m)}

}
.



Let M = 〈T ?, υ?,W,B〉, where W = {wτ}, and B is the
set of facts from the data tables in Example 1. Then it holds
that M,S?, 42  �+5

τ 3exp(a3,m): The window opera-
tor �+5

τ selects S′ = (T ′, υ′), with timeline T ′ = [42, 47]
and υ′ = {43 7→ {exp(a3,m)}, 44 7→ {exp(a1,m)}}, i.e.,
there is some t′ ∈ T ′ (t′ = 43) s.t.M,S′, t′  exp(a3,m). �

Programs. Now we define a rule language for stream rea-
soning with semantics similar to Answer Set Programming.
Definition 8 (Rule, Program) A program P is a set of
rules, i.e., expressions of the form

α← β1, . . . , βj ,notβj+1, . . . ,notβn , (1)
where α, β1, . . . , βn ∈ F are formulas and α contains only
intensional predicates.
Suppose we want to evaluate a program P on a data
stream D. Let I = (T, υ) be a stream such that D ⊆ I . If
at every time point in T , all atoms that occur in I but not
in D have intensional predicates, then we call I an inter-
pretation stream for D and a structure M = 〈T, υ,W,B〉
an interpretation (for D). Let for any rule r of form (1),
be β(r) = β1 ∧ . . . ∧ βj ∧ ¬βj+1 ∧ . . . ∧ ¬βn. We then say
that M is a model of P (for D at time t), denoted M, t |= P ,
if M, t |= β(r)→ α for all rules r ∈ P .1 We call M
a minimal model, if no model M ′=〈T ′, υ′,W,B〉 of P
(for D at time t) exists such that (T ′, υ′) ⊂ (T, υ). The
reduct of a program P w.r.t. M at time t is defined
by PM,t = {r ∈ P |M, t |= β(r)}, i.e., the subset of rules
whose bodies are satisfied.
Definition 9 (Answer Stream) Let M = 〈T, υ,W,B〉 be a
structure, where I = (T, υ) is an interpretation stream for a
data stream D, let P be a program and t ∈ T . Then, I is
called an answer stream of P for D at time t (relative to W
and B) iff M is a minimal model of the reduct PM,t.
For ASP fragments of LARS, answer streams correspond to
answer sets as defined by the FLP-reduct (Faber et al., 2004),
which we formulated for LARS programs above. More pre-
cisely, consider an interpretation stream I = ({t}, υ′) for a
data stream D = ({t}, υ) and let P be a program where in
each rule of form (1) all body formulas βi are atoms and the
head α is a disjunction of atoms with intensional predicates.
Then, I is an answer stream of P at t relative to some W
and B iff υ′(t) is an answer set of P ∪ υ(t) ∪B.

Towards more conciseness, we consider schematic pro-
grams with variables of two sorts, namely constant variables
and time variables. The semantics of these nonground pro-
grams is given by the answer streams of according ground-
ings, obtained by replacing variables with constants from C,
respectively time points from T , in all possible ways.
Example 5 (cont’d) The requests (i) and (ii) from Exam-
ple 1 can be formulated by rules (2) and (3), respectively.
@T exp(Id , Y ) ← �idx,n

p @T1 tram(Id , X), line(Id , L),

not �20
τ 3jam(X), plan(L,X, Y, Z),

T = T1 + Z. (2)

gc(Id1, Id2, X) ← @T exp(Id1, X),@T �
+5
τ 3exp(Id2, X),

Id1 6= Id2, not old(Id2). (3)

1Thus, “not” and “¬” coincide, as well as “∧” and “,”.

Rule (2) encodes when a tram is expected at later
stops. For the partition-based window operator �idx,n

p ,
we use idx(at) = i for an atom at of form tram(ai, X)
and idx(at) = 0 else. By the tuple-based windows of
sizes n(i) = (1, 0) for i > 0 and n(0) = (0, 0) applied on
the i+ 1 obtained substreams, we thus get for each tram ai
only its most recent appearance at some stop X . Usually,
the expected arrival time on the next stop can be computed
by the travelling duration according to the table plan . For
the case of traffic jams within the last 20 minutes, we block
such conclusions by means of default negation.

Next, rule (3) builds on the expected arrival times of
rule (2) to identify good connections where the targeted tram
is not old and the expected waiting time is at most 5 minutes.
It uses a time-based window that looks 5 minutes ahead from
the time when exp(Id1, X) is concluded and checks the ex-
istence (operator 3) of an expected (different) tram Id2.

We observe that the interpretation stream of the struc-
ture M of Example 4 is an answer stream of P for D at
time t. Note that gc(a3, a1,m) is not derived. Tram a1 ap-
pears one minute after a3 at Mozart Circus, but it is old. �

The next example demonstrates another advantage of our
rule-based approach, namely the possibility to obtain differ-
ent models for nondeterministic choices.
Example 6 (cont’d) Consider an extended scenario
where a tram with identifier a2 of line `2 is reported
at Gulda Lane (g) at time point 38. This updates the
data stream D = (T, υ) in Example 2 to D′ = (T, υ′),
where υ′ = υ ∪ {38 7→ {tram(a2, g)}}. By the en-
tries line(a2, `2) and plan(`2, g,m, 7) in B, rule (2) derives
that tram a2 is expected to arrive at Mozart Circus at t = 45.
Furthermore, we now assume that tram a1 is not old,
i.e., old(a1) 6∈ B. This gives Bob three good connections at
stop m, when leaving tram a3 at minute 43:

G = {gc(a3, a1,m), gc(a1, a2,m), gc(a3, a2,m)}
Bob is not interested in the connection from a1 to a2, since
he is currently travelling with a3. His smart phone streams
an according tuple on(a3) at query time. This leaves him
two options: He can either change to line `1 (and take
tram a1 after 1 minute at time point 44), or to line `2 (and
take tram a2 after 2 minutes at 45). The following two rules
formalize the possibility to either change trams or skip a
good connection:
change(Id1, Id2, X)← on(Id1), gc(Id1, Id2, X),

not skip(Id1, Id2, X). (4)
skip(Id1, Id2, X)← gc(Id1, Id2, X), change(Id1, Id3, X),

Id2 6= Id3. (5)
Consider the program P consisting of the rules (2)-(5).

Moreover, let D′′ = (T, υ′′) be the data stream obtained
from D′ by adding {42 7→ {on(a3)}} to the evaluation and
let I0 = (T, υ0), I1 = (T, υ1) and I2 = (T, υ2) be the fol-
lowing interpretation streams for D′′: We take

υ0 = υ ∪
{

42 7→ G, 43 7→ {exp(a3,m)}
44 7→ {exp(a1,m)}, 45 7→ {exp(a2,m)}

}
,

and for i ∈ {1, 2}, let υi = υ0 ∪ {42 7→ choicei}, where
choice1 = {change(a3, a1,m), skip(a3, a2,m)}, and
choice2 = {change(a3, a2,m), skip(a3, a1,m)}.



α/α− P/P−

MC PSPACE/P PSPACE/co-NP
SAT PSPACE/NP PSPACE/ΣP2

Table 1: Reasoning in ground LARS (completeness results)

Then, I1 and I2 are (the only) two answer streams for P
at time 42 relative to W = {wτ , wp} and B, i.e., we get the
user choices as separate models. �

Note that in this example we did not constrain good connec-
tions by the actual destination Bob wants to reach. By means
of the presented formalism, such reachability relations can
be expressed elegantly through recursion as in Datalog.

Another benefit of our approach for advanced stream rea-
soning is the possibility to retract previous conclusions due
to new input data. Combined with (minimal) model gener-
ation, i.e., alternatives that may be enumerated, compared
under preference etc., such nonmonotonic reasoning allows
for sophisticated AI applications in data stream settings.

Example 7 (cont’d) If the lines `1 and `2 have the same
travelling time from Mozart Circus to Strauß Avenue, Bob
will pick choice1 (answer stream I1), since at t = 42
tram a1 is expected to arrive one minute earlier than tram a2.

Suppose a few seconds later (still at t = 42) a
traffic jam is reported for Beethoven Square. Thus,
we now consider the data stream Dj = (T, υj),
where υj = υ ∪ {42 7→ {on(a3), jam(b)}}. Thus, we
have no expectation anymore when tram a1 will arrive
at Mozart Circus. Now exp(a1,m) cannot be concluded
for t = 44, and as a consequence, gc(a3, a1,m) will not
hold anymore. Thus, the previous two answer streams are
discarded and only change(a3, a2,m) remains recom-
mended in the resulting unique answer stream. �

Complexity of Reasoning in LARS
Let α be a formula, P a program, W a set of window func-
tions evaluable in polynomial time, and let B ⊆ A be a set
of atoms. We say that a stream S = (T, υ) is over A′ ⊆ A,
if v(t) \ A′ = ∅ for all t ∈ T .

We study the complexity of the following reasoning tasks:

(1) Model checking (MC). Given M = 〈T, υ,W,B〉 and a
time point t, check whether

• for a stream S ⊆ (T, υ) and formula α it holds
that M,S, t  α; resp.
• I = (T, v) is an answer stream of a program P

for D ⊆ I at t.

(2) Satisfiability (SAT). For decidability, we assume that
relevant atoms are confined to (polynomial) A′ ⊆ A.
The reasoning tasks are:

• Given W , B, a timeline T and a time point t, is there
an evaluation function υ on T such that M,S, t  α,
where M = 〈T, υ,W,B〉 and S = (T, υ) is over A′?
• Given W , B and a data stream D, does there exist

an answer stream of P for D over A′ (relative to W
and B) at t?

Table 1 shows the complexity of reasoning in ground LARS,
where α−, P− are formulas resp. programs with nesting
of window operators bounded by a constant. Note that the
problems refer to the more general notion of entailment but
(hardness) results carry over to satisfaction. The complexity
of the general case is based on the following theorem.

Theorem 1 Given a structure M = 〈T, υ,W,B〉, a
stream S, a time point t, and an arbitrary ground for-
mula α, deciding M,S, t  α is PSPACE-complete, and
PSPACE-hardness holds for S = (T, υ).

Intuitively, PSPACE-membership can be shown by a depth-
first-search evaluation of a formula along its tree representa-
tion. At each node of the tree, we need to store the content
according to the window operators applied as in the path
from the root, which requires only polynomial space.

The PSPACE-hardness can be shown by a reduction
from evaluating QBFs ∃x1∀x2 . . . Qnxnφ(x) to LARS MC.
A LARS formula α = �13�2 2 . . . φ(x) on the time
line T = [0, 1] is constructed where �i effects the possible
truth assignments to xi at the time points 0 or 1, and 3, 2
naturally encode the quantifiers ∃ and ∀.

The next result addresses the complexity of MC for
ground LARS programs.

Theorem 2 MC for LARS programs, i.e., given a struc-
ture M = 〈T, υ,W,B〉, a data stream D, a program P ,
and a time point t, decide whether I = (T, υ) is an answer
stream of P for D at time t, is PSPACE-complete.

Proof. To decide the problem, we can (a) check that I
is an interpretation stream for D, (b) compute PM,t,
and (c) check that M is a minimal model of PM,t, i.e.,
that (c.1) M, t |= PM,t and (c.2) no M ′ = 〈T ′, υ′,W,B〉,
with (T ′, υ′) ⊂ (T, υ) exists s.t. M ′, t  PM,t. Now,

1. step (a) is trivially polynomial;
2. steps (b) and (c.1) are feasible in polynomial time using

a PSPACE oracle; and
3. step (c.2) is feasible in nondeterministic polynomial

time using a PSPACE oracle (guess (T ′, v′) and
check M ′, t  PM,t).

Overall, the computation is feasible in NPSPACE, thus
in PSPACE (as NPSPACE = PSPACE).
PSPACE-hardness of the problem is immediate from The-

orem 1: letP = {α← >}, where> is an arbitrary tautology
and exploit S = (T, v). 2

Under restrictions, however, MC may be tractable. This
holds e.g. for the important case where only time-based win-
dows are allowed. In case of α−, the evaluation tree for MC
has only polynomially many window contents to process,
and we can use a standard labeling technique to evaluate for-
mulas bottom up (from subformulas) in polynomial time.

SAT for α (resp. α−) is in PSPACE (resp. NP) as guess
and check establishes membership, and hardness is inher-
ited from MC (resp. from propositional SAT). For monotone
(e.g., time-based) window functions, the results apply set-
ting A′ to the atoms in α; also for tuple-based and partition-
based windows reasonable assumptions (e.g., `, u� #S
and idx monotone) yield only polynomially larger A′.



For LARS programs, building the reduct PM,t is for P
(resp. P−) feasible in polynomial space (resp. time); the
minimality check is feasible in polynomial space (resp. re-
quires a polynomial guess to refute minimality). A more
detailed complexity analysis including schematic programs
(with A possibly infinite) is subject to ongoing work.

Capturing CQL
The Continuous Query Language (CQL) (Arasu, Babu, and
Widom 2006) is an SQL based language for maintaining
continuous queries over streaming data. It extends SQL with
different operators. Two important ones are:
− Stream-to-relation (S2R) operators apply window func-
tions to the input stream to create a mapping from execu-
tion times to bags of valid tuples (w.r.t. the window) without
timestamps. This mapping is called a relation.
− Relation-to-relation (R2R) operators can manipulate re-
lations similarly as in relational algebra, respectively SQL.
Example 8 The request (i) from Example 1 can be repre-
sented by the following CQL query.
SELECT ID, PLAN.Y, T2
FROM TRAM[PARTITION BY ID ROWS 1],LINE,PLAN
WHERE TRAM.ID=LINE.ID AND LINE.L=PLAN.L AND

TRAM.ST=PLAN.X AND T2=TRAM.T+PLAN.Z
AND NOT EXISTS

(SELECT * FROM JAM[RANGE 20]
WHERE JAM.ST=TRAM.ST)

Note that these streams have designated timestamp fields. �

To capture CQL queries by LARS programs, we exploit
two well-known translations: from SQL to relational alge-
bra (Dadashzadeh and Stemple 1990) and from relational
algebra to Datalog (Garcia-Molina, Ullman, and Widom
2009). Let us call the former ∆ρ and the latter ∆δ .

The idea is to have a 3-step process, given a CQL query q:
(1) apply a translation ∆SRC (Table 2) to the input streams

(with windows) and tables in the FROM and WHERE
clauses of q. Let ∆SRC(q) denote the result of apply-
ing ∆SRC on the input streams of q. Considering the for-
mulas of ∆SRC(s) as table names, we get an SQL query;

(2) apply ∆ρ on this query to get a relational algebra ex-
pression; and

(3) apply ∆δ on the expression to get a program.
Considering the translated table names as LARS formulas,
we get a LARS program. Formally speaking, the translation
of a CQL query q is ∆(q) = ∆δ(∆ρ(∆SRC(q))), and that of
a set Q of CQL queries is given by ∆(Q) =

⋃
q∈Q ∆(q).

Example 9 The translation of the CQL query in Ex. 8 is:

q1(P1)←�idx,n
p 3tram(Id ,ST ,T1 ), line(Id , L),

plan(L,X, Y, Z),ST = X,T2 = T1 + Z.

q2(P2)←�20
τ 3jam(ST ,T3 ),�idx,n

p 3tram(Id ,ST ,T1 ).

q12(P12)←q1(P1), q2(P2).

q(P)←q1(P1),not q12(P12),

where P1=Id ,ST , X, Y, Z,T1 , T2; P2=Id ,ST ,T1 ,T3 ;
P12=P1,T3 ; P=Id , Y, T2; and idx, n are from Ex. 5. �

Input source s ∆SRC(s)

S S

S[RANGE L] �Lτ3S

S[RANGE L SLIDE D] �L,0,Dτ 3S

S[RANGE UNBOUNDED] �∞τ 3S

S[NOW] S

S[ROWS N] �N#3S

S[PARTITION BY X1,...,Xk ROWS N] �idx,n
p 3S

Table 2: Translation function ∆SRC

To establish the correspondence between the result of a setQ
of CQL queries and its LARS translation ∆(Q), we first
formally build a conversion of CQL streams to a LARS in-
put stream. W.l.o.g., assume that Q is evaluated on a back-
ground data table B and input streams S1, . . . ,Sn, and that
any stream is only used in one place in the FROM clause
in a single query (we can always duplicate streams and re-
name them). These input streams can be represented as the
set S = {〈Si(aij), tij〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.

The corresponding representation of the input stream in
LARS is defined by O(S)=(TS, υS), where for 1 ≤ i ≤ n,
and 1 ≤ j ≤ mi:

TS = [tmin , tmax ] tmin = min{tij}
υS(t′) = {Si(aij) | tij = t′}, t′ ∈ T tmax = max{tij}.

Let res(q, t) denote the set of all answers to q and
let res(Q, t) =

⋃
q∈Q res(q, t). The following theorem

shows that the translation ∆ faithfully captures CQL.
Theorem 3 Let Q be a set of CQL queries to be evaluated
on input streams S = S1, . . . ,Sn and a background data ta-
ble B, P = ∆(Q), and t a time point. Then,
(a) There exists an answer stream I = (T, υ) of P for O(S)

at t, such that υ(t)|Q = res(Q, t).
(b) If I = (T, υ) is an answer stream of P for O(S) at t,

then res(Q, t) = υ(t)|Q.
Intuitively, (b) establishes the soundness and (a) the com-
pleteness of the translation ∆.
Proof (Sketch). Given a set of CQL queries Q and its trans-
lated LARS program ∆(Q), we establish the correspon-
dence between their answers by a translation from Q to a
Datalog program ∆D(Q). Briefly, ∆D(Q) is constructed in
a similar way as ∆(Q), except that the first step translates
the input streams (with windows) to plain table names in-
stead of LARS formulas. Formally speaking, this is done
by a renaming function ren instead of ∆SRC. Then, we ap-
ply ∆ρ and ∆δ to get ∆D(Q) =

⋃
q∈Q ∆δ(∆ρ(ren(q))).

Note that both ∆(Q) and ∆D(Q) are acyclic programs, thus
each of them has a unique minimal model.

By the correctness of ∆ρ and ∆δ , the unique answer set
of ∆D(Q) and the result set ofQ correspond. Moreover, one
can guarantee that ∆(Q) and ∆D(Q) are evaluated essen-
tially on the same input (despite slightly different represen-
tation) when computing answers for the same reference time



point. As moreover the programs are structurally the same,
they correspond on their unique answer set/answer stream.

The two above observations yield the desired correspon-
dence result between the results of Q and the answer stream
of the respective LARS program ∆(Q). 2

Relation to ETALIS
Related to stream processing is complex event processing
(CEP), which is concerned with describing and detecting
complex events (high-level information) based on atomic
events (low-level information) of a stream. Complex events
are typically expressed over time intervals. By briefly study-
ing the well-known CEP language ETALIS (Anicic et al.
2010), we will draw a line between stream reasoning and
complex event processing by means of our formalization.

In ETALIS, an event stream εmaps atomic events (ground
atoms) to time points. Instead of non-negative rational num-
bers, we use natural numbers, which suffice for practi-
cal purposes. Complex events can be constructed by rules
on event patterns, which are similar to interval relations
by Allen (1983). An interpretation I maps atoms to sets of
pairs 〈t1, t2〉 ∈ N× N, which represent intervals [t1, t2]. In-
tuitively, I satisfies a rule a← pt, if the atom a holds at
least in the set of intervals where the event pattern pt holds.
For an event stream ε and a rule baseR, Anicic et al. define
ETALIS semantics in terms of minimal models that (i) map
each atomic event a to the interval 〈t, t〉 if a occurs in ε at
time point t, and (ii) satisfy each rule r ∈ R.
Intervals in LARS. Although LARS is based on time
points, we can express ETALIS patterns that are based
on intervals. Consider a window function wint that se-
lects the substream of (the greatest timeline within) a
given interval [`, u], and a window operator �[`,u] that em-
ploys wint on the input stream. Furthermore, let J`, uK stand
for �[0,∞]@u �[`,u]2, i.e., first create a view on the en-
tire input stream, jump to reference time u, then select the
substream of the timeline [`, u] and apply 2. Then, the for-
mula J`, uKa holds iff a holds at every time point in the in-
terval [`, u], regardless of the query time. Similarly, we can
define J`, uK? such that J`, uK?a holds iff [`, u] is a maximal
interval in which a always holds.
Example 10 Consider the events x and y which hold in the
intervals given by the pairs 〈t1, t2〉 and 〈t3, t4〉, respectively,
where t2 < t3. Then, the ETALIS rule z ← x SEQ y as-
signs the pair 〈t1, t4〉 to z. It may be modelled in LARS by
the rule Jt1, t4Kz ← Jt1, t2K?x, Jt3, t4K?y, t2 < t3, i.e., if x
holds in the entire interval [t1, t2] (but not in any larger in-
terval) and y holds throughout the later interval [t3, t4] (also
maximally), than z must hold throughout [t1, t4]. �

However, we cannot fully express the ETALIS semantics in
LARS by this straightforward encoding, since ETALIS al-
lows atoms to be assigned to multiple intervals that need
not be disjoint. In LARS, we assign atoms to a single time-
line by the evaluation υ : T → 2A. Unless we explicitly use
time points in atoms, we can encode intervals only by as-
signing atoms to consecutive time points. Overlapping or
adjacent intervals for the same atom are indistinguishable
from a merged view of them.

We call I separable, if such overlaps do not occur. If the
minimal model of an event stream ε and a rule baseR is sep-
arable, we also call the pair ε,R separable. In this case, the
approach of Ex. 10 allows us to capture ETALIS. In our sub-
sequent results we confine to positive rule bases, i.e., without
the NOT pattern. Our notion of minimality is based on set
inclusion, whereas ETALIS defines minimality in terms of a
different preference relation that ensures the minimal length
and the supportedness of inferred intervals. By this, the min-
imal model is always unique, while a natural translation of
negation in LARS would give multiple models in general.
Capturing ETALIS’ minimal model semantics of NOT pat-
terns in LARS would require a more involved and less direct
translation (which is beyond the scope of this work).
Theorem 4 Let ε be an event stream, letR be a positive rule
base (i.e. without negation) such that ε,R is separable, and
let I be an interpretation for ε,R. Then one can construct a
LARS input stream ∆ε, a program ∆R, and an interpretation
stream ∆I = (T, υ), such that for each t ∈ T , I is the mini-
mal model for ε,R iff ∆I is the answer stream of ∆R for ∆ε

at time t relative to W = {wint} and B = ∅.
Taking LARS and ETALIS as reference languages, sepa-
rability can thus be regarded as the dividing line between
stream reasoning and complex event processing. Under a
stream reasoning view on ETALIS, focusing on truth at sin-
gle time points, we get correspondence.
Corollary 1 Let ε be an event stream, R be a positive rule
base such that the minimal model I of ε,R is separable and
let ∆I = (T, υ), i.e., the answer stream of ∆R. Then, for all
atoms a ∈ A and for all t ∈ T , a ∈ υ(t) iff there exists an
interval 〈t1, t2〉 ∈ I(a) such that t ∈ [t1, t2].
In summary, we have shown how LARS operators can be
naturally used to reason over time intervals. However, the
presented intuitive approach is less expressive than ETALIS,
where an atom can be assigned to overlapping intervals. On
the other hand, the minimal model of the monotonic ETALIS
semantics can be constructed by computing fixed-points for
intervals of increasing size. Hence, with an explicit encod-
ing of intervals 〈t1, t2〉 into atoms that contain t1 and t2
as terms, one can mimic the bottom-up evaluation of such
models with ASP and thus also with LARS. It is a research
topic on its own to find a suitable extension of LARS for
nonmonotonic complex event processing that builds upon an
evaluation υ : T × T → 2A mapping intervals to atoms.

Related Work
In the Semantic Web area, the SPARQL language was ex-
tended to queries on streams of RDF triples; respective en-
gines such as CQELS (Phuoc et al. 2011), C-SPARQL (Bar-
bieri et al. 2010), and SPARQLStream (Calbimonte, Corcho,
and Gray 2010) follow the snapshot semantics approach of
CQL. However, they face difficulties with extensions in-
corporating the Closed World Assumption, nonmonotonic-
ity, or nondeterminism. Such features are important to deal
with missing or incomplete data, which can, e.g., temporar-
ily happen due to unstable network connections or hardware
failure. In this case, these engines remain idle, while some
output based on default reasoning might be useful.



In KR&R, first attempts towards expressive stream rea-
soning have been recently carried out and reveal many open
problems. The plain approach of Do, Loke, and Liu (2011)
periodically calls the dlvhex solver (Eiter et al. 2006) with-
out incremental reasoning and thus cannot handle heavy data
load. StreamLog (Zaniolo 2012) extends Datalog towards
stream reasoning, based on stratification (which guarantees
a single model), while OSMS (Ren and Pan 2011) considers
streams of ontologies. Both StreamLog and OSMS have no
window mechanisms. Time-decaying logic programs (Geb-
ser et al. 2012) aim to implement time-based windows in
reactive ASP (Gebser et al. 2008), whose relation to other
stream processing/reasoning approaches is unexplored.

Moreover, as observed by Dindar et al. (2013), conceptu-
ally identical queries may produce different results on dif-
ferent engines. This may be due to differences (i.e., flaws) in
implementations, but might also arise from (correct imple-
mentations of) different semantics. Comparisons between
different approaches are confined to experimental analy-
sis (Phuoc et al. 2012) or informal examination on specific
examples. For the user it is important to know the exact ca-
pabilities and semantic behaviors of given approaches for
systematic analysis and comparison.

Conclusion
We presented LARS, an expressive rule-based modelling
language to formalize and analyze stream reasoning seman-
tics. It provides an idealized model-based, nonmonotonic
semantics as timestamps are not dropped but can be ab-
stracted away. LARS allows to distinguish truth of a for-
mula at (i) specific time points, but also (ii) at some resp.
every time point in a window; furthermore, it offers general
window operators that may be nested, which enables reason-
ing over streams within the language. We then considered
the computational complexity of LARS, its capability to ex-
press CQL, and how to encode a stream reasoning view on
ETALIS’ complex event processing in it.

LARS is a starting point for intriguing research issues.
Informally or operationally specified semantics of various
state-of-the-art stream processing/reasoning engines such as
CQELS, C-SPARQL, and SPARQLStream may now be for-
malized, studied and compared rigorously in a common lan-
guage. For practical concerns, tractable and efficient frag-
ments of LARS are of interest; related to this are operational
characterizations of its semantics. Later, along the lines
of (Brewka et al., 2014), we aim at a formalism for stream
reasoning in distributed settings across heterogeneous nodes
that have potentially different logical capabilities.
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