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Abstract. The increasing popularity of RDF Stream Processing has led
to the developments of several RSP engines. Among these, CQELS has
been developed with a native and adaptive approach, which gives it a
performance advantage over other engines. However, it currently does
not support two important features, namely Complex Event Process-
ing and RDFS reasoning. We propose in this paper an extension of the
CQELS query language and semantics towards enriching CQELS with
these attractive functionalities.
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1 Introduction

Following the trend of using RDF as a unified data model for integrating diverse
web data sources across systems under different controls, RDF Stream Processing
(RSP) extends RDF to addresses the challenges in querying heterogeneous data
streams coming from dynamic data sources of emerging ICT systems such as
IoT and Smart Cities. This research field has being increasingly getting more
attention with the developments of several RSP engines such as C-SPARQL [5],
CQELS [17], EP-SPARQL [3], SPARQLStream [7], and Sparkwave [13] which
mainly aim at providing stream processing functionalities.

Among these engines, CQELS engine was designed to achieve the strict per-
formance requirements of stream processing engines [20] with native physical
query operators. The current implementation of CQELS engine provides high
throughput physical operators to cover the combination of CQL operators and
SPARQL 1.1 with CQELS query language (CQELS-QL). It has been shown to
have a performance advantage over other RSP engines [18].

However, CQELS currently does not support two important features, namely
Complex Event Processing (CEP) and RDFS reasoning. The former play an im-
portant role in handling and analyzing complex relation over high volume of
dynamic data [1], while the latter allows reasoning about types and brings addi-
tional expressiveness for RSP. Having them in CQELS will enable a new range of
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Fig. 1: Public Transportation Scenario

applications that require not only high performance but also high expressiveness,
for example, as in the motivating scenario below.

Towards a more powerful CQELS, in this paper, we enrich the current query
language of CQELS to support the desired features. Our contributions are:

– extending the RDF stream processing model to work on time intervals in-
stead of time points;

– proposing an extension of the CQELS-QL to handle navigational paths and
complex event processing. For the former, we make use of nSPARQL [16]
and SPARQL 1.1 property paths; for the latter, we start the sequence oper-
ator SEQ, which is the most popular CEP operator in practice;

– giving a semantics of the new language in the SPARQL style, by lifting the
join and sequence-related operators to work on sets of mappings with inter-
vals, and introducing evaluation functions that make use of these operators.

The proposed new language features and semantics will be illustrated with the
following scenario.

Motivating Scenario. Suppose that the traffic center at city of Vienna wants
to improve the quality of public transportation by means of smart services. For
this purpose, the center has background datasets regarding available vehicles
such as subways, trams, buses, and connections between every pair of consecutive
stops, including the stop names, types of vehicles and the duration of time needed
to travel between them. Moreover, the center receives sensor data reporting the
arrival and delay of vehicles with respect to stops. Passengers who register to
the smart service also provide their locations as input streams.

On top of these background and streaming data, the center can offer smart
services (i) to aid traffic officers in monitoring and quickly identifying potential
problems in the transportation network or (ii) to notify passengers of potential
traffic delays and recommend alternative routes.

Example 1 To make sure smooth connections to the city center, a continuous
query can be placed to notify about recent repeated delays of subways follow-
ing by no arrival at stops that according to the network plan can be reached by
subways. When such information is instantly available to an officer, he/she can
immediately react by triggering rerouting or providing complementary vehicles
to solve the traffic.



Take a simplified public transportation map in Figure 1 where `1 and `2 are
subway lines, and `3 is a tram line. Assume that delays and arrivals of vehicles
wrt. stops are reported along the time lines. At time point 14, a repeated delay
for the subway d1 on the way to h is detected, but this is not reported as getting
from h to c needs to use the tram line `3. At time point 16, the repeated delay for
the subway a1 at m is however reported as one can get from m to c by subways. �

2 Preliminaries

This section briefly reviews the basic building blocks of this work, namely RDF,
SPARQL, RDF stream processing, the navigation language nSPARQL, and CEP.

2.1 RDF and SPARQL

RDF is a W3C recommendation for data interchange on the Web [8]. It models
data as directed labeled graphs whose nodes are resources and edges represent
relations among them. Each node can be a named resource (identified by an IRI),
an anonymous resource (a blank node), or a literal. We denote by I, B, L the sets
of IRIs, blank nodes, and literals, respectively. Let IB = I ∪B, IBL = I ∪B∪L.

A triple (s, p, o) ∈ IB × I × IBL) is an RDF triple, where s is the subject, p
the predicate, and o the object. An RDF graph is a set of RDF triples.

Example 2 (cont’d) The background dataset in Example 1 can be represented
by the following RDF graph:

D=



:conn1 :beg :m, :conn1 :end :b, :conn1 :means :subway, :conn1 :dur :3m,
:conn2 :beg :b, :conn2 :end :c, :conn2 :means :subway, :conn2 :dur :2m,
:conn3 :beg :h, :conn3 :end :g, :conn3 :means :subway, :conn3 :dur :3m,
:conn4 :beg :g, :conn4 :end :c, :conn4 :means :tram, :conn4 :dur :5m,

...
:a1 rdf:type :subway, :d1 rdf:type :subway,

...


A triple pattern is a tuple (sp, pp, op) ∈ (IB ∪ V )×(I ∪ V )×(IBL∪ V ), where V
is a set of variables. A basic graph pattern is a set of triple patterns.

SPARQL [12], a W3C recommendation for querying RDF graphs, is essen-
tially a graph-matching query language. A SPARQL query is of the form H ← B,
where B, the body of the query, is a complex RDF graph pattern composed of
basic graph patterns with different algebraic operators such as UNION, OPTIONAL,
etc.; and H, the head of the query, is an expression that indicates how to con-
struct the answer to the query [15].

The semantics of SPARQL is defined via mappings. A mapping is a partial
function µ : V → IBL. The result of a SELECT SPARQL query is a set of mappings
that match the query’s body, projected to the variables specified in the SELECT

clause. However, one-shot queries by themselves are not able to give answers
under dynamic input as in the running scenario. For this purpose, we need RDF
stream processing.



2.2 RDF Stream Processing

RDF Streams and Temporal RDF Graphs. In continuous query process-
ing over dynamic data, the temporal nature of the data is crucial and needs
to be captured in the data representation. This applies to both Linked Stream
Data and Linked Data, as updates in Linked Data collections are also possible.
In [17], RDF streams and instantaneous RDF datasets were defined by intro-
ducing timestamps (time points) to input triples of the former and RDF graphs
of the latter. In this paper, we adapt these notions by using time intervals as
timestamps. Thereby,

1. An RDF graph at timestamp t, denoted by G(t), is a set of RDF triples valid
at time t and called an instantaneous RDF graph. A temporal RDF graph is
a sequence G = [G(t)], t ∈ N, ordered by t.

2. An RDF stream S is a sequence of elements 〈g : [t1, t2]〉, where g is an RDF
graph and [t1, t2] is a time interval.

Example 3 (cont’d) The sensor data regarding delay and arrival of vehicles
as in Figure 1 can be represented as the following RDF stream.3

S =
〈{(a1, delay, m)}, [10, 10]〉, 〈{(d1, delay, h)}, [12, 12]〉,

〈{(d1, delay, h)}, [14, 14]〉, 〈{(a1, delay, m)}, [16, 16]〉, . . . �

Continuous Queries. Queries in CQELS are inspired by the Continuous Query
Language (CQL) [4], where a continuous query is composed from three classes
of operators, namely stream-to-relation (S2R), relation-to-relation (R2R), and
relation-to-stream (R2S) operators. In CQELS, the former are captured by ex-
tending SPARQL 1.1 grammar4 with a “stream graph” pattern, while the latter
are taken care of by SPARQL’s operators. For more details on the query syntax,
we refer the reader to [17].

Example 4 (cont’d) The following continuous query in the CQELS-QL noti-
fies stops with delays of subways during the last 10 minutes to users:

1 SELECT ?s

2 FROM ex:transportationMap

3 FROM NAMED WINDOW :W ON ex:publicTransport [RANGE 10m]

4 WHERE {

5 WINDOW :W { ?v :delayAt ?s }

6 ?v rdf:type :subway.

7 }

3 Note that the notification of delay or arrival here is considered atomic event; there-
fore, the time intervals associated with this data is of the form [t, t]. On the other
hand, the output of a CQELS query containing non-atomic events (cf. Example 9)
can be fed as input stream to another query. In such situation, input events are
associated with time interval [t1, t2] with t1 ≤ t2.

4 http://www.w3.org/TR/sparql11-query/#grammar



[[self ::a]]G = {(a, a)}
[[next ::a]]G = {(x, y) | ∃z : (x, z, y) ∈ G}

[[axis−1 ::a]]G = {(x, y) | (y, x) ∈ [[axis ::a]]G}, where axis ∈ {next, node, edge}
...

Table 1: Formal semantics of nested regular expressions

2.3 Navigating RDF Graphs with nSPARQL

For a data model with graph structure like RDF, being able to navigate through
the graphs is fundamentally important. In [16], the authors proposed nSPARQL,
a language that incorporates navigational capabilities to a fragment of SPARQL
using nested regular expressions. nSPARQL allows to pose interesting and nat-
ural queries over RDF data, and has an attractive computational property that
nested regular expressions can be efficiently evaluated in polynomial time.

The new SPARQL 1.1 query language introduced property paths5 that covers
a fragment of nSPARQL without nesting. In this paper, we augment CQELS-QL
with the full functionalities of nSPARQL based on the syntax of SPARQL 1.1.
We now briefly recall nSPARQL, the following grammar defines the syntax of
nested regular expressions:

exp ::= axis | axis :: a(a ∈ IBL) | axis :: [exp] | exp/exp | exp|exp | exp∗ | exp+,

where axis ∈ {self, next, next−1, edge, edge−1, node, node−1}. The evaluation
of a nested regular expression exp in a graph G is formally defined as a binary
relation [[exp]]G, denoting the pairs of nodes (x, y) such that y is reachable from x
in G by following a path that conforms to exp. Table 1 partly shows the formal
semantics of nSPARQL on constructs that are used in our running example. For
the full semantics, we refer the reader to [16].

Example 5 (cont’d) To find all stops from which one can reach the city center
by subway connections, we can use the following expression:

?s (next−1::beg[next::means/self::subway]/next::end)+ :c. �

Based on nSPARQL, we define an extended triple pattern as either a triple pat-
tern or a triple (sp, exp, op), where sp, op ∈ I ∪L∪V and exp is a nested regular
expression. An extended graph pattern P is a set of extended triple patterns.

2.4 Complex Event Processing

Complex Event Processing [14] emerged from publish-subscribe systems [19].
While the latter refer only to single isolated events, CEP aims at timely detecting

5 http://www.w3.org/TR/sparql11-query/#propertypaths



high-level events as complex patterns of incoming single atomic events whose
order is crucial. The defined complex events can in turn be used to compose
even more complex events and so forth.

To express ordering between events, CEP languages assign time intervals
as timestamps for events and make use of operators rooted from Allen’s in-
terval algebra [2]. In this paper, we take the first step to incorporate CEP
into CQELS-QL by adopting the sequencing operator SEQ from the SASE sys-
tem [21] and applies it to time intervals. The version of SEQ with time points
in SASE can be briefly described as follows.

Let Ai be an event type. Its semantics represented as Ai(t), is that at a
given point t in time, Ai(t) is True if an Ai type event occurs at t, and is False
otherwise. The SEQ operator takes a list of n > 1 event types as its parameters,
e.g., SEQ(A1, . . . , An) and specifies a particular order in which the events of
interest should occur. Formally speaking:

SEQ(A1, . . . , An) ≡ ∃ t1 < t2 < . . . < tn : A1(t1) ∧A2(t2) ∧ . . . ∧An(tn).

When an event type is negatively specified in the sequence, that is:

SEQ(A1, . . . , Ai−1, !Ai, Ai+1, . . . , An),

this corresponds to the SEQ WITHOUT operator (abbreviated as SEQ WO in
this paper), which intuitively detects sequences of events of types A1, . . . , Ai−1,
Ai+1, . . . , An where no event of typeAi occurs in between two events of typesAi−1
and Ai+1. Formally:

SEQ(A1, . . . , Ai−1, !Ai, Ai+1, . . . , An) ≡
∃t1< . . .<ti−1<ti+1< . . .<tn : A1(t1)∧ . . .∧Ai−1(ti−1)∧Ai+1(ti+1)∧ . . .∧An(tn)

∧ (∀ti ∈ (ti−1, ti+1) : ¬Ai(ti)).

In this paper, we extend the SEQ operator to work with time intervals and RDF
triple patterns, as shown next.

3 Complex Events with Graph Pattern Matching and
Navigational Path

This section proposes the first step to extend CQELS with CEP and naviga-
tional capabilities by augmenting its syntax and semantics with the sequence
operator SEQ and nested regular expressions from nSPARQL.

3.1 Extending CQELS Query Language

Let TrTemp be the short-cut for the TriplesTemplate pattern in SPARQL 1.1.
The syntax for triple sequence patterns TSP , window specifications WinSpec,



and event clauses EC is defined by the following grammar:

TSP ::= TrTemp

| SEQ ‘(’ TrTemp (‘, ’ TrTemp)∗ (‘, !’ TrTemp) (‘, ’ TrTemp)∗ ‘)’

| SEQ ‘(’ (‘, ’ TrTemp)∗ (‘, !’ TrTemp) (‘, ’ TrTemp)∗ TrTemp ‘)’

WinSpec ::= ‘WINDOW ’ :WName ON VarOrIRIref ‘[’Window ‘]’ ‘{’ TSP ‘}’

EC ::= WName

| SEQ ‘(’ WName (‘, ’ WName)∗ (‘, !’WName)? (‘, ’ WName)∗ ‘)’

| SEQ ‘(’ (WName ‘, ’)∗ (‘!’WName ‘, ’)? (WName ‘, ’)∗ WName ‘)’

To add the navigational capabilities as in nSPARQL to the CQELS-QL, we
extend the grammar of the SPARQL 1.1 property paths with one more case for
nested path, namely elt ::= elt [elt ], where elt is a path element. We call the new
query language CQELS-CEP.

Example 6 (cont’d) The following continuous query in CQELS-CEP identify
stops (i) from which one can travel to the city center by subways, and (ii) report
repeated delays of a subway during the last 10 minutes.

1 SELECT ?s

2 FROM ex:transportationMap

3 FROM NAMED WINDOW :W ON ex:publicTransport [RANGE 10m]

4 WHERE {

5 WINDOW :W {

6 SEQ({?v :delayAt ?s}, {?v :delayAt ?s}, !{?v :arriveAt ?s})

7 }

8 ?v rdf:type :subway.

9 ?s (^:beg/[: means :subway ]/:end)+ :c.

10 }

Line 6 uses operator SEQ to specify an event pattern in which two delays of
the same vehicle ?v wrt. a stop ?s was reported following by no arrival of ?v

at ?s. Line 9 is the expression in Example 5 in SPARQL 1.1 syntax extended
with nested regular expression described above. �

3.2 Modeling

This section presents a formal model for the syntax proposed in Section 3.1.
Let P1, . . . , P` be basic graph patterns. A triple sequence pattern TSP is either
a graph pattern Pj or a sequence of graph patterns having at most one element
negated by ‘!’, i.e., TSP = SEQ(P1, . . ., Pi−1, !Pi, Pi+1, . . ., P`).

A window specification is a tuple W = (s, ω,TSP) where s is an IRI identify-
ing an input stream Ss, ω is a window expression, and TSP is a triple sequence
pattern. Intuitively, ω specifies how a snapshot of recent input is extracted from
the (potentially infinite) stream s. However, unlike traditional stream processing
approaches that drop temporal information after the application of windows, this
information is kept in our setting. The pattern TSP is then carried out based on



the temporal information of valid triples according to the window applications.
Given a window specification W , its negated version is denoted by !W .

An event clause EC is either a window specification W or a sequence of them
having at most one element negated by ‘!’, i.e., of the form

EC = SEQ(W1, . . . ,Wi−1, !Wi,Wi+1, . . . ,Wn).

In [9], the authors model an RSP query as a tuple Q = (V, P,D,S) where V
is a result form, P is a graph pattern, D is a static background dataset, and S
is a set of input stream schemas. Under the extension of CQELS queries with
triple sequence patterns, window specifications, and event clauses, we extend
this idea and model CQELS queries with CEP and navigation path as tuples of
the form Q = (V,P,D, EC), where V is a result form, P is an extended graph
pattern (RDF graphs with nested regular expressions, cf. Section 2.3), D is a set
of instantaneous RDF datasets, and EC is a set of event clauses. To concentrate
on the main contribution of this work on CEP and navigation features, we assume
that the size of D is 1 and write D to refer to the single element of D.

Example 7 (cont’d) The query in Ex. 6 can be modeled as Q = (V,P, D, EC),
where

– V = {?s},
– D = ex:transportationMap,
– P = {?v rdf:type :subway. ?s (^:beg/[:means :subway]/:end)+ :c.},
– EC = {(ex:publicTransport, [RANGE 10m],SEQ(P1, P1, !P2))},

where P1 = {?v :delayAt ?s} and P2 = {?v :arriveAt ?s}. �

4 Semantics

We now give a semantics in the SPARQL style [15] for the proposed language.
Section 4.1 adapts the notion of window functions to work on input streams
whose elements are associated with time intervals. In Section 4.2 we associate
time intervals with SPARQL’s traditional mappings, thus work on sets of map-
pings with intervals. We extend the join, union operators in [15] and introduce
sequence-related operators to work on this input. Based on these basic opera-
tors, Section 4.3 defines an evaluation function that captures the semantics of
the proposed language.

4.1 Window Functions

A window function wι takes as input an RDF stream S, time point t, a collection
of parameters for type ι, and returns a sub-bag of S. For example, for time-based
the window function with sliding size 1, the parameter is a range T of how far
the window looks back in time to collect valid input. It can be formally stated
as follows.

wRANGE (S, t, T ) = {〈g, [t′1, t′2]〉 | 〈g, [t1, t2]〉 ∈ S∧
t′1 = max(t1, t− T ) ∧ t′2 = min(t2, t)}.



Each window expression then corresponds to a window function with its parame-
ters fully specified. Let ω be a window expression, we denote by wtype(ω) the win-
dow type and by wparams(ω) the parameters of the corresponding window func-
tion. For example, with ω = [RANGE 10m], we have that wtype(ω) = RANGE
and wparams(ω) = 10m.

4.2 Operators on Mappings with Intervals

A mapping with interval is a pair 〈µ, [t1, t2]〉 where µ is a mapping and [t1, t2]
is a time interval satisfying that t1 ≤ t2. Note that two mappings are called
compatible, denoted by µ1

∼= µ2 iff ∀x ∈ dom(µ1) ∩ dom(µ2) : µ1(x) = µ2(x).
Let Ω1, Ω2, Ω3 be sets of mappings with intervals. We define the following

operators on these sets:

JOIN(Ω1, Ω2) = {〈µ1 ∪ µ2, [max(t1, t3),min(t2, t4)]〉 |
〈µ1, [t1, t2]〉 ∈ Ω1 ∧ 〈µ2, [t3, t4]〉 ∈ Ω2∧
µ1
∼= µ2 ∧max(t1, t3) ≤ min(t2, t4)}

OR(Ω1, Ω2) = {〈µ, [t1, t2]〉 | 〈µ, [t1, t2]〉 ∈ Ω1 ∨ 〈µ, [t1, t2]〉 ∈ Ω2}

SEQ(Ω1, Ω2) = {〈µ1 ∪ µ2, [t1, t4]〉 | 〈µ1, [t1, t2]〉∈Ω1 ∧ 〈µ2, [t3, t4]〉∈Ω2

∧ µ1
∼= µ2 ∧ t2 < t3}

SEQ WO(Ω1, Ω2, Ω3) = {〈µ1 ∪ µ2, [t1, t6]〉 | 〈µ1, [t1, t2]〉 ∈ Ω1 ∧ 〈µ3, [t5, t6]〉 ∈ Ω3

∧ µ1
∼= µ2 ∧ t2 < t5∧

(@〈µ2, [t3, t4]〉 ∈ Ω2 : µ2
∼= µ1 ∪ µ3 ∧ [t3, t4] ⊂ [t2, t5])}

NO HEAD(Ω1, Ω2) = {〈µ2, [t3, t4]〉∈Ω2 | @〈µ1, [t1, t2]〉∈Ω1 : µ1
∼= µ2 ∧ t2 < t3}

NO TAIL(Ω1, Ω2, t) = {〈µ1, [t1, t2]〉∈Ω1 | @〈µ2, [t3, t4]〉∈Ω2 : µ1
∼= µ2 ∧ t2<t3 ∧ t4≤t}

JOIN and OR are natural extensions of the AND and OR operators in the [15]
with time intervals. Note that we use the name JOIN instead of AND in order
not to be confused with operator AND in ETALIS [3] where it means taking the
smallest interval that covers both [t1, t2] and [t3, t4], i.e., [min(t1, t2),max(t3, t4)].
We, on the other hand, take the “intersection” of [t1, t2] and [t3, t4].

Operator SEQ will be use to combine mappings with time intervals in a
sequencing order. SEQ WO(Ω1, Ω2, Ω3) combines compatible sequences of map-
pings in Ω1 and Ω3 without a compatible mapping in Ω2 (the negative ele-
ment). The last two operators NO HEAD and NO TAIL are two special cases
of SEQ WO where the sequence starts or end with a negative element.

Example 8 (cont’d) Let Ω3 = ∅ and

Ω1 = {〈{?v 7→ a1, ?s 7→ m}, [10, 10]〉, 〈{?v 7→ d1, ?s 7→ h}, [12, 12]〉}

Ω2 = {〈{?v 7→ a1, ?s 7→ m}, [16, 16]〉, 〈{?v 7→ d1, ?s 7→ h}, [14, 14]〉}
We have that

Ω4 = NO TAIL(SEQ(Ω1, Ω2), Ω3, 16) =

{
〈{?v 7→ a1, ?s 7→ m}, [10, 16]〉,
〈{?v 7→ d1, ?s 7→ h}, [12, 14]〉

}
�



4.3 Evaluation Function

Let Q = (V,P, D, EC) be a query, EC 1, . . . ,ECm be event clauses, W ,W1, . . . ,
Wn, be window specifications, P, P1, . . . , P` be graph patterns, and t be a time
point. The evaluation of Q at t is recursively defined by the function [[., .]] as
follows.

Case (1) breaks the evaluation into evaluating the event clauses on stream-
ing data and the extended graph pattern on the background data. Case (2)
uses JOIN and the evaluation of single event clause to evaluate a set of event
clauses.

[[Q, t]] = [[(V,P, D, EC), t]] = {〈µ|V , [t1, t2]〉 | 〈µ, [t1, t2]〉 ∈ JOIN([[EC, t]], [[P, t]]D)} (1)

[[{EC 1,EC 2, . . . ,ECm}, t]] = JOIN([[EC 1, t]], [[{EC 2, . . . ,ECn}, t]]) (2)

The evaluation of an event clause is shown in (3)-(8). Cases (3) and (4) are resp.
the inductive and base cases for positive sequences of window specifications.

[[SEQ(W1,W2, . . . ,Wn), t]] = [[SEQ(W1,SEQ(W2, . . . ,Wn)), t]] (3)

[[SEQ(W1,W2), t]] = SEQ([[W1, t]], [[W2, t]]) (4)

Cases (5)-(7) and (8) are the inductive and base cases for sequences of window
specifications with one negative element, respectively. Note that when the nega-
tive element is at the beginning or the end of the sequence, we need the special
operators NO HEAD and NO TAIL.

[[SEQ(W1, . . . ,Wi−1!Wi,Wi+1, . . .,Wn), t]] =

[[SEQ WO(SEQ(W1, . . . ,Wi−1),Wi,SEQ(Wi+1, . . .,Wn), t]] (5)

[[SEQ(!W1,W2, . . . ,Wn), t]] = NO HEAD([[W1, t]], [[SEQ(W2, . . . ,Wn), t]]) (6)

[[SEQ(W1, . . . ,Wn−1, !Wn), t]] = NO TAIL([[SEQ(W1, . . . ,Wn−1), t]], [[Wn, t]]) (7)

[[SEQ WO(W1,W2,W3), t]] = SEQ WO([[W1, t]], [[W2, t]], [[W3, t]]) (8)

Now consider evaluating window specification W , Case (9) brings it to evaluating
the triple sequence pattern of W under the window expression ω and the input
stream Ss identified by s. Then, the evaluation of a sequence of extended graph
patterns are shown in Cases (9)-(10) for positive sequences, and in Cases (12)-



(15) for sequences with one negative element.

[[W , t]] = [[(s, ω,TSP), t]] = [[TSP , t]]ωSs
(9)

[[SEQ(P1, P2, . . . , P`), t]]
ω
S = [[SEQ(P1, SEQ(P2, . . . , P`)), t]]

ω
S (10)

[[SEQ(P1, P2), t]]ωS = SEQ([[P1, t]]
ω
S , [[P2, t]]

ω
S) (11)

[[SEQ(P1, . . . , Pi−1, !Pi, Pi+1, . . . , P`), t]]
ω
S =

[[SEQ WO(SEQ(P1, . . . , Pi−1), Pi,SEQ(Pi+1, . . . , P`)), t]]
ω
S (12)

[[SEQ(!P1, P2, . . . , P`), t]]
ω
S = NO HEAD([[P1, t]]

ω
S , [[SEQ(P2, . . . , P`), t]]

ω
S) (13)

[[SEQ(P1, P2, . . . , !P`), t]]
ω
S = NO TAIL([[SEQ(P1, . . . , Pn−1), t]]ωS , [[P`, t]]

ω
S) (14)

[[SEQ WO(P1, P2, P3), t]]ωS = SEQ WO([[P1, t]]
ω
S , [[P2, t]]

ω
S , [[P3, t]]

ω
S) (15)

Finally, (16) and (17) show how (extended) graph patterns are evaluated. The for-
mer evaluates graph patterns on an input stream S and a window expression ω,
by taking into account from S only valid input triples at the time point t accord-
ing to the window function of type wtype(ω) with the parameters wparams(ω),
and then applying standard SPARQL pattern matching. The latter evaluates
an extended graph pattern, i.e., with nested regular expressions, on an instan-
taneous background data D. We take the data in D at t, and assign the time
label [t1, t] to the output mappings, where D has not changed since t1.

[[P, t]]ωS =


〈µ, [t1, t2]〉 | dom(µ) = var(P )∧

µ(P ) ⊆ g∧
〈g, [t1, t2]〉 ∈ wwtype(ω)(S, t,wparams(ω))

 (16)

[[P, t]]D =


〈µ, [t1, t]〉 | µ ∈ [[P]]D(t)∧

∀t′ ∈ [t1, t] : D(t′) = D(t)∧
(t1 = 0 ∨D(t1 − 1) 6= D(t))

 (17)

Example 9 (cont’d) Consider evaluating the query Q = (V,P, D, EC) in Ex. 7
at time point 16 on the background dataset D from Ex. 2 and the input stream S
from Ex. 3. The evaluation uses the equations (1), (9), (13), (16), (17).

One can see that Ω4 in Example 8 is the result of [[EC, 16]]. On the other hand,
Ω5 = [[P, t]]D = {{?v 7→ a1, ?s 7→ m}}. The mapping {?v 7→ d1, ?s 7→ h} is not
concluded in Ω5 because there is no all-subway path from h to c. Joining Ω4

and Ω5 and project the output to V gives us a single answer ?s 7→ m. �

5 Related Work

A number of RSP engines have been developed by the RSP community, namely
C-SPARQL [5], CQELS [17], EP-SPARQL/ETALIS [3], SPARQLStream [7], and
Sparkwave [13]. Among them, C-SPARQL provides a function to extract times-
tamps of the input triples, and by applying comparison on them, one can mimic



the sequence operator without negation. However, it cannot capture complicated
event patterns as time points-based semantics cannot cover multiple overlapping
time intervals. Sparkwave provides RDFS entailment, which is subsumed by the
navigational paths proposed in this work.

Only EP-SPARQL/ETALIS explicitly provides CEP functionalities via oper-
ators such as SEQ, PAR, DURING, etc. SEQ with negation is not directly offered
but can be mimicked by existing operators. EP-SPARQL is actually just a frag-
ment of ETALIS to work with RDF streams. ETALIS offers a Prolog rule-based
semantics, and execution of the semantics boils down to backward chaining. On
the other hand, we propose here an operational semantics in the SPARQL style.
It is interesting to later on have a detail comparison of these two semantics.

Regarding more recent work, [11] proposed a data model for Semantically
enabled Complex Event Processing in which RDF is considered as a first-class
citizen. This model can be seen as an adaptation of the SASE approach [21]
to work with RDF triples. LARS [6] is a logic-based framework for analyzing
stream reasoning. It has a high expressiveness as the consequence of having a
semantics based on Answer Set Programming [10] with advanced features such
as recursion, non-monotonic reasoning, etc. It also provides different ways to
refer to time using temporal operators. However, LARS has a similar problem
as C-SPARQL in capturing CEP as it bases on time points. Furthermore, LARS
has been developed mainly for the purpose of theoretical analysis instead of
practical implementation.

6 Conclusions and Outlook

We propose an extension of the CQELS-QL to CQELS-CEP to handle naviga-
tional paths and complex event processing, starting with operator SEQ, which
requires to enhance the current RSP query model to work with time intervals.
We also give a semantics of the extended language in the SPARQL style. Future
work needs to be done on both theoretical and practical sides. For the former,
we will extend the semantics to handle Kleene closure of CEP operators, and
compare our semantics with that of EP-SPARQL/ETALIS. More effort will be
spent on analyzing the complexity of CQELS-CEP. Regarding practical work,
efficient data structures and algorithms will be designed and implemented to
realize the proposed semantics.
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15. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL.
ACM Trans. Database Syst., 34:16:1–16:45, September 2009.

16. J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for
RDF. J. Web Sem., 8(4):255–270, 2010.

17. D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In
ISWC (1), pages 370–388, 2011.

18. D. L. Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink. Linked
stream data processing engines: Facts and figures. In ISWC - ET, pages 300–312,
2012.

19. D. S. Rosenblum and A. L. Wolf. A Design Framework for Internet-Scale Event
Observation and Notification. In ESEC / SIGSOFT FSE, pages 344–360, 1997.
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