
Platform-Agnostic Execution Framework
Towards RDF Stream Processing

Danh Le-Phuoc1, Minh Dao-Tran2, Chan Le Van1, Anh Le Tuan1,
Manh Nguyen Duc1, Tuan Tran Nhat1, and Manfred Hauswirth3

1 Insight Centre for Data Analytics, National University of Ireland, Galway
{danh.lephuoc,chan.levan,anh.letuan,ducmanh.nguyen,tuan.trannhat}@

insight-centre.org
2 Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
dao@kr.tuwien.ac.at

3 Institut für Telekommunikationssysteme, Technische Universität Berlin,
Berlin, Germany

manfred.hauswirth@tu-berlin.de

Abstract. This paper presents a platform-agnostic execution frame-
work towards RDF Stream Processing (RSP), called, Continuous Query
Evaluation over Linked Streams (CQELS). CQELS framework is the
core infrastructure for CQELS engine, one of the initiatives of the RSP
community. Moreover, the framework is platform-agnostic to build other
RSP engines that work on embedded devices as well as cloud infrastruc-
ture. The development roadmap towards platform independent is also
discussed in this paper.

Keywords: RDF Stream Processing, Linked Stream Data, Continuous
Query, Execution Framework

Overview of CQELS Framework
RDF streams

SPARQL-Result streams

Decoder

Dynamic Executor
S I

./

./

[now] [range 3s]

G

S I

./

./

[now]

[range 3s]

G

S I

./

./

[now][range 3s]

G

S I

./

./ [now]

[range 3s] G

D
ic

ito
na

ry

A
daptive

O
ptim

izer

C
Q

E
L

S
queries

Window
Buffer Manager

Cache
Manager

Encoder

Input Manager Cache Fetcher

RDF streams RDF stores
SPARQL endpoints

Fig. 1: Native and Adaptive Execu-
tion Framework of CQELS.

CQELS Framework provides a platform-
independent infrastructure to implement
RSP engines for computing continuous
queries expressed as an extension of
SPARQL 1.1 [7], called CQELS-QL. The
abstract architecture [9] illustrated in Fig-
ure 1 accepts RDF streams and RDF
datasets as inputs and returns RDF
streams or relational streams in the
SPARQL Result format [6] as output. The
output RDF streams can be fed into any
RSP engine, and the relational streams
can be used by other relational stream
processing systems.



The execution framework is composed of native and adaptive components
organised in the processing flow as follows:

– The stream data is pushed to the Input Manager and is then encoded by
the Encoder into a normalised representation. RDF datasets, which can be
hosted in a local RDF store or remote RDF stores with SPARQL endpoints,
are retrieved by the Cache Fetcher. The Cache Fetcher also encodes the data
using the Encoder.

– The Window Buffer Manager and Cache Manager are responsible for man-
aging the input data from the RDF streams and RDF datasets, respectively;
and for feeding them into the Dynamic Executor.

– The Dynamic Executor enables a dynamic execution strategy where the
query plan can be changed during the life time of a continuous query. The
most efficient query plan is continuously advised by the Adaptive Optimizer
based on data statistics and operator costs.

– The outputs of the Dynamic Executor have to be decoded by the Decoder
before being streamed out. The Encoder and Decoder share a Dictionary for
encoding and decoding.

CQELS Engines: Embedded to Cloud

To be a platform-agnostic execution framework, the design of the aforementioned
components of the CQELS Framework is abstract enough to be realized by var-
ious hosting platforms which can provide different library/software stacks as
well as different hardware architectures. The first version of CQELS engine [10]
was implemented as a stand-alone version for PCs. It uses popular libraries
like Apache Jena [13], high performance computing data structures [8] for im-
plementing new data structures for Window Buffer Manager associated with
in-memory incremental evaluation algorithms for sliding window operators [9].
This version is accompanied with several adaptive optimisation algorithms to
boost the processing throughput of CQELS engine.

To build CQELS engines for resource constrained environments like embed-
ded devices, mobile phones, we build embedded CQELS engine by reducing
code footprint. We use light-weight data structures for Window Buffer as well
as reuse RDF On The Go (RDF-OTG) [12] code based for compact versions
of Encoder/Decoder, Dictionary, Cache Manager/Fetcher. Besides, the CQELS
embedded engine extends SPARQL physical query operators of RDF-OTG to
sliding windows operators. The whole embedded CQELS is smaller than 10MB
and needs only 4-6MB of RAM to process millions of triples on various small de-
vices such as BeagleBone [1], Intel Galileo [3], Raspberry PI [4], and any Android
Phones.

For scalability, we use Storm [5] and HBase [2] as underlying software stacks
for coordinating parallel execution processes to build an RSP engine on the cloud
computing infrastructure, called CQELS Cloud [11]. We adapt highly efficient
algorithms of CQELS engine on stand-alone PCs to the distributed share-nothing



architecture, thus, CQELS Cloud can scale up to million inputs per second with
100.000 concurrent queries on a cluster of 32 EC2 computing nodes.

Development Roadmap

Thanks to the RSP working group, the community has brought various inter-
esting use cases that create new requirements to build more features for our
future CQELS engines. The new feature to be implemented in the next release
is supporting event processing pattern with basic reasoning rules such as tem-
poral, spatial and RDFS. In the long term, full pledge stream reasoning will be
enabled along the line with state of the art of emerging research effort on this
area [14]. The rise of Internet of Things inspires us to build much smaller CQELS
engine to be able to run on tiny micro controller, sensor boards which have less
than 50KB of RAM. Moreover, instead of having to embed to the application,
the client/server mechanism will be supported using Websockets and MQTT.
Last but not least, adapting agreed query syntax and data model from the RSP
working group is a step forward to support the standardised CQELS-QL.

Acknowledgment

This publication has emanated from research supported in part by research
grants from Irish Research Council under Grants No. GOIPD/2013/104 and
No. GOIPG/2014/917, European Commission under Grant No. FP7-ICT-608662
(VITAL), and by the Austrian Science Fund (FWF) project P26471.

References

1. Beaglebone. http://beagleboard.org/.
2. Hbase. http://hbase.apache.org/.
3. Intel Galileo. http://www.intel.com/content/www/us/en/do-it-yourself/

galileo-maker-quark-board.html.
4. Raspberry. http://www.raspberrypi.org/.
5. Storm. https://storm.apache.org/.
6. Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format (Second

Edition). http://www.w3.org/TR/rdf-sparql-XMLres/, 2013. [Online; accessed
15-March-2015].

7. Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. http://www.w3.
org/TR/sparql11-query/, 2013. [Online; accessed 15-March-2015].

8. Steve Harris and Andy Seaborne. Fast and compact type-specific collections for
java. http://fastutil.di.unimi.it/, 2015. [Online; accessed 15-March-2015].

9. Danh Le Phuoc. A Native And Adaptive Approach for Linked Stream Processing.
PhD thesis, National University of Ireland, Galway, 2013.

10. Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth.
A native and adaptive approach for unified processing of linked streams and linked
data. In ISWC 2011 (1), pages 370–388, 2011.



11. Danh Le Phuoc, Hoan Nguyen Mau Quoc, Chan Le Van, and Manfred Hauswirth.
Elastic and scalable processing of linked stream data in the cloud. In ISWC 2013
(1), pages 280–297, 2013.

12. Danh Le Phuoc, Anh Lê Tuán, Gregor Schiele, and Manfred Hauswirth. Querying
heterogeneous personal information on the go. In ISWC 2014 (2), pages 454–469,
2014.

13. Andy Seaborne. Apache jena: A free and open source java framework for building
semantic web and linked data applications. https://jena.apache.org/, 2015.
[Online; accessed 15-March-2015].

14. Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s
a streaming world! reasoning upon rapidly changing information. IEEE Intelligent
Systems, 24(6):83–89, 2009.


