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1 Introduction

Stream Processing/Reasoning, an active research topic [5], has been picked up by
different communities which developed a diversity of stream processors/reasoners. This
however makes empirical evaluation and comparison of these engines a non-trivial
task [4]. Different classes of those engines work on different formats of input data,
use different languages to formulate queries, evaluate these queries using different
semantics and produce different formats of output. To be able to compare such engines,
a benchmarking framework that can cope with this wide diversity is needed.

This paper proposes a generic architecture for generating/gathering, streaming data,
for evaluating different stream processors/reasoners and for running those evaluations.

We show how our framework can be used with the GTFS domain to evaluate the two
representative RDF Stream Processing (RSP) engines C-SPARQL [3] and CQELS [7], and
the Spark engine,1 a powerful tool set for implementing stream processing applications
that is widely used in Big Data. In that, we use the Answer Set Programming (ASP)
engine clingo2 as a base-line for comparing the results.

2 Challenges

The following challenges arised in comparing the aforementioned engines:

− The engines work on different data formats: RSP engines need data in some RDF
serialization, Spark reads CSV files and clingo needs facts in ASP syntax.
− To provide not only fair comparisons but also reproducible tests, live streaming data
has to be captured, so that it can be replayed in a reproducible manner.
− There is no unified way to query the engines: C-SPARQL and CQELS are queried by
SPARQL-like queries, while Spark can be accessed by writing Scala functions using its
API; clingo instead requires one to write logic programs.
− Output has to be generated in a unified format for easy comparison.

? This research has been supported by the Austrian Science Fund (FWF) projects P24090, P26471,
and W1255-N23.

1 http://spark.apache.org/
2 https://github.com/potassco/clingo
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Fig. 1: Component diagram of modules

3 Framework Architecture

We propose a modular architecture composed of small components with clearly defined
tasks and interfaces. Each module tackles one of the challenges described above. This
architecture is generic enough to be implemented using a wide variety of technologies,
from small scripts interacting together to classes in rather monolithic projects. To enable
unified access to different engines, lightweight wrappers are utilized.

Figure 1 shows the modules of our architecture and the resulting data flow. The
converter and capture module can be seen as two parts of a preprocessing module which
is responsible for converting data to a usable format.
Converter is responsible for converting any static data from the provided format to a
format that can be read by an engine. In some cases this module may even be omitted.
Capture extracts relevant data from a data stream and stores it, allowing reproducible
evaluations. The format of the stored data should be generic, so that only minimal
conversions are necessary for a particular engine. Additionally, timing information of
the captured data should be stored, so it can be played back authentically.
Feeder is responsible for replaying the captured streaming data to the engines. It allows
arbitrary fine control over the streaming process. Data may be streamed using authentic
or artificial timing, like streaming a certain amount of data per time unit.
Engine wraps the evaluated engine. Wrappers provide a standardized way of access-
ing/outputting data for different engines but are not allowed to affect their performance.
Output Formatter converts the output data from different engines to a canonical form.

4 Show Case

4.1 General Transit Feed Specification

A public transport scenario offers ample opportunities for interesting data processing
and reasoning tasks. In addition, the open data movement lead to free availability of
public transport data for many cities worldwide. Most public transport data is published
in the GTFS (General Transit Feed Specification) [1] format developed by Google and
the Portland TriMet transit agency. A GTFS feed provides information suitable for
trip planning. Moreover, the standard leaves enough room for extensions beyond these
capabilities. While GTFS specifies static data useful for trip planning, its accompanying
GTFS-realtime extension was developed to describe real-time data.
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Fig. 2: Component diagram for GTFS and CQELS

GTFS-realtime provides TripUpdates and VehiclePositions. A TripUpdate represents
a change to a timetable and consists of possibly multiple delays or new arrival times for
single stops of a trip. A VehiclePosition tells the position of a vehicle relative to a stop.

The public availability of real world data makes GTFS ideal for evaluating stream
processing/reasoning engines.

4.2 Implementation

We implemented the components as Python scripts which communicate using files and
TCP connections. This highly transparent working model allows to exchange single
components easily and to examine intermediate results. By utilizing powerful and well
documented libraries for handling GTFS and RDF data a low entry barrier is maintained.
The following scripts are provided (our code is available at [2]):
− gtfs-converter.py and gtfs-capture.py implement the converter and
capture modules, resp. These scripts are specific to the GTFS use case. All other scripts
and programs are generic and do not make any assumptions about the data domain.
− simple feeder.py, replay feeder.py and triple to asp.py provide
implementations of the feeder module.
− output formatter.py covers the output formatter module.
For the engine module, different wrappers were implemented to access the engines.
Fig. 2 illustrates instantiating the architecture with scripts/programs to evaluate CQELS.

5 Evaluation

This section briefly summarizes the evaluation of the engine described above using our
framework. All the queries used in this evaluation are available at [2].

5.1 Functionality

Our first evaluation was a basic test to determine which features of SPARQL 1.1 are sup-
ported by C-SPARQL and CQELS, namely FILTER, UNION, OPTIONAL, arithmetic,
aggregation such as COUNT, COUNT DISTINCT, MAX, post-processing with ORDER
BY, joining. We also tested which features could be replicated with Spark and clingo.

As a result, all mentioned features are supported by C-SPARQL and can be covered
by clingo, CQELS lacks support for UNION, OPTIONAL and some aggregations. Spark
misses out only ORDER BY.
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5.2 Correctness

When comparing different engines, the underlying semantics cannot be ignored. Thus,
one needs a highly expressive language to serve as an oracle for correct results via simu-
lating input streams. We chose Answer Set Programming as it offers high expressiveness.
Moreover, a number of mature ASP engines have been developed; among them clingo is
of particular interest, as it showed top performance in many ASP competitions.

Note that C-SPARQL, CQELS and Spark generally output a multiset of tuples as
result. Only in queries with an ORDER BY clause, the order of the output is not arbitrary.
On the other hand, clingo always outputs a set as result. Because of this discrepancy
one might argue that ASP is not suitable to serve as an oracle for comparing the other
engines. However, if in practical queries multiple occurrence of a result matters, GROUP
BY and COUNT clauses are used. If a result may occur multiple times but it is not of
interest how often, DISTINCT is used. Therefore, for this fragment, the result will be a
set and using ASP as an oracle is perfectly adequate.

In our run of the evaluation, the results of CQELS and Spark conformed to the results
predicted by clingo. C-SPARQL produced correct results too, but was missing a few lines
of output, compared to the others.

6 Conclusions

We presented a generic benchmarking framework that allows one to easily plug in her
own stream processing/reasoning engine and compare it with stream engines developed
by different communities. The evaluation is done on real public transportation data in
GTFS format, a data domain that allows practical queries to test different interesting
aspects of stream processing/reasoning. We provided a set of queries to test query
functionalities and compared the results of C-SPARQL, CQELS, and Spark using an
oracle built on clingo. For future work, we plan to plug more engines into the framework
and extend the query set to cover more stream processing/reasoning aspects.
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