
Bachelorarbeit für Informatik und Wirtschaftsinformatik
LVA-Nr. 184.713

Data Generation for Stream
Reasoning Benchmarking

Andreas Moßburger
Matrikel-Nr. 1029147

19. Nov. 2015

Contents

1 Introduction 2

2 State of the Art 3

3 Technical Background 3
3.1 RDF Stream Processors . 3
3.2 Apache Spark . 5
3.3 Answer Set Programming . 6

4 Architecture for Data Stream Generator 6
4.1 Architecture . 6
4.2 Module Descriptions . 7

5 Show Case 9
5.1 GTFS Domain . 9

5.1.1 Static Data Model . 10
5.1.2 Streaming Data . 11

5.2 Implementation . 13
5.3 Execution . 21
5.4 Evaluation . 22

5.4.1 Functionality . 24
5.4.2 Correctness . 25

1

1 Introduction

Motivation Today’s digital world generates vast amounts of data every
second. While a lot of the produced data is rather static and won’t change
after it has been produced, there’s also a significant amount of data that
is only valid for a short time. For other applications, older data may stay
valid, but only the most recent data is of interest. In those cases we speak of
streaming data opposed to static data. Examples of scenarios, where such
streaming data may occur, are sensor networks, transportation networks or
social networks.

Problem Handling this rising tide of streaming data is a very active area
of research and a lot of different data stream management systems (DSMS),
stream processors and stream reasoners have been developed. Unfortunately,
the diversity of these approaches make empirical evaluation and comparison
of these engines a difficult task. Different classes of those engines work on
different formats of input data, use different languages to formulate queries,
evaluate these queries using different semantics and produce different for-
mats of output. Therefore, a benchmarking framework that can cope with
this wide diversity is needed. This benchmarking framework should use
data that not only allows evaluation of very simple queries, but also of com-
plex query features. Additionally, the used data should represent real life
applications, so the engines can be tested under realistic conditions.

Scope In this work, we consider several different stream processing en-
gines. In Section 3 they are explored in depth. First of all, there are the
RDF stream processing engines. Their development was sparked by the idea
to extend the powerful reasoning capabilities of semantic web technologies
to a streaming context. We work with C-SPARQL [18] and CQELS [22] two of
the most prominent candidates from this category. Stream processing obvi-
ously is also an important topic in the cluster computing community. High
performance and throughput is the focus of the engines developed there.
Rapid developments are made in this community and some of the projects
enjoy a high influx of contributors. We took a closer look at Apache Spark
[2], one of the most active projects in the Apache Software Foundation, as a
representative of this group. In order to establish a reliable baseline against
which we can compare the results of those stream processing engines we
need to provide an oracle which tells the expected result of a query. We
implemented this oracle by simulating data streaming statically and eval-
uating queries with an Answer Set Programming (ASP) [21] solver. ASP
provides an universal solving mechanism which can easily cover the capabil-
ities of stream processing engines and is powerful enough to go beyond pure
processing into stream reasoning. It allows to define expected results in a
clean and formal way.

2

Proposed Solution In Section 4 we propose a generic architecture for
generating, or rather gathering, streaming data for evaluation of different
stream processing engines and for running those evaluations. It is highly
modular and each module addresses a specific challenge that arises from
this task. We show the merits of this architecture in Section 5, by imple-
menting it for a public transport scenario and running several evaluations of
C-SPARQL, CQELS and Apache Spark, with clingo [19] serving as an oracle.

2 State of the Art

Linear Road [17] is a benchmarking system for DSMSs. It generates data by
simulating a variable tolling system for a fictional net of expressways and
scores engines based on the maximum size of this net where they can still
meet time and correctness constraints. Because Linear Road was specifically
developed for evaluation of DSMSs it is based on a relational data model and
not suitable for serving as a more generic benchmarking system. SRBench

[24] assesses the capabilities of RDF stream processing engines. It does
so, using the LinkedSensorData [10] data set containing data of weather
stations in the United States. SRBench provides a functional evaluation of
RDF stream processing engines, determining which features of the SPARQL

[16] language an engine supports and is therefore not particularly suited for
evaluating other engines. LSBench [23] simulates social network activities of
users to generate data for its evaluations. It evaluates engines considering
functionality, correctness and performance. It also addresses the need of
covering technical and conceptual differences of engines, but still limits its
scope to linked stream data engines.

3 Technical Background

In this section different stream processing engines are introduced. First we
describe engines that work on RDF data using extensions of the SPARQL

language. In particular we take a look at C-SPARQL [18] and CQELS [22].
Then we cover Apache Spark [2], a cluster computing framework which offers
a high level API for querying and manipulating streaming data. Following
that, we address the topic of Answer Set Programming, which we use to
determine expected results of queries.

3.1 RDF Stream Processors

The Resource Description Framework data format is one of the core tech-
nologies of the W3C Semantic Web standards. It’s a very simple data model,
representing all data as triples of form s p o, which intuitively can be seen

3

<http://kr.tuwien.ac.at/dhsr/trip/5977790> ns1:hasDirection "0" ;

ns1:hasStt <http://kr.tuwien.ac.at/dhsr/stoptime/59777901>,

<http://kr.tuwien.ac.at/dhsr/stoptime/59777902>,

<http://kr.tuwien.ac.at/dhsr/stoptime/59777903>,

ns1:isonRoute <http://kr.tuwien.ac.at/dhsr/route/1> .

<http://kr.tuwien.ac.at/dhsr/stoptime/59777901>

ns1:atStop <http://kr.tuwien.ac.at/dhsr/stop/9303> ;

ns1:hasArrtime 82860 ;

ns1:hasDeptime 82860 ;

ns1:isSeq 1 .

<http://kr.tuwien.ac.at/dhsr/stop/9303> ns1:hasName "NW 5th & Couch MAX Station" .

Figure 1: Some RDF data in Turtle serialization format.

REGISTER QUERY q01 AS

PREFIX ns1: <http://kr.tuwien.ac.at/dhsr/>

SELECT ?stt_id ?arr

FROM STREAM <http://kr.tuwien.ac.at/dhsr/stream> [RANGE 1s STEP 1s]

WHERE {

{?stt_id ns1:hasArrived ?arr .}

}

Figure 2: Query 01 in C-SPARQL syntax.

as binary predicates p(s, o) that relate a subject s with an object o. A serial-
ization of such a data model can be seen in Figure 1. This simplicity gives
rise to a powerful tool set to model various kinds of data. The standard
language to query and manipulate RDF data sets is called SPARQL [16]. It
has an SQL-like syntax and allows to select triples based on patterns. RDF
was conceived for representing static data. However, it can be extended so
it can also be used in a streaming context. In this case there might exist
some static data in addition to a stream of RDF triples representing rapidly
changing data, which might only be valid for a short time frame. There exist
multiple projects with the aim to adapt the data processing capabilities of
SPARQL over RDF formatted static data to a streaming data context. In
the following we take a closer look at C-SPARQL and CQELS.

C-SPARQL C-SPARQL [18] extends SPARQL by adding a FROM STREAM clause
to the grammar of SPARQL 1.1 which allows to reference an RDF stream
instead of an RDF graph i.e. a set of triples, as can be seen in the example
in Figure 2. It also introduces the notion of windows.
Because streaming data typically is produced at a high rate and valid or
relevant only for a short time, usually only recent data is of interest. To

4

PREFIX ns1: <http://kr.tuwien.ac.at/dhsr/>

SELECT ?stt_id ?del

FROM NAMED <http://kr.tuwien.ac.at/dhsr/>

WHERE {

STREAM <http://kr.tuwien.ac.at/dhsr/stream> [RANGE 1s TUMBLING]

{?stt_id ns1:hasArrived ?del}

}

Figure 3: Query 01 in CQELS syntax.

determine which triples of the stream will be considered when evaluating a
query, according windows can be defined. Windows can either be defined by
the number of triples (e.g. the 50 most recent triples) or by a time interval
(e.g. all triples occurring in the last 5 seconds). C-SPARQL evaluates queries
at the end of every window, by taking a union of the triples of the current
window and an optional static data set and evaluating the query using a
regular SPARQL engine as a black box. Because C-SPARQL works on static
snapshots of streaming data it pulls from the stream, we say it uses snapshot
semantics and operates on a pull principle. C-SPARQL is written in Java and
can be interfaced with by building a Java application on top of it.

CQELS Like C-SPARQL, CQELS [22] extends the grammar of SPARQL 1.1 to
allow references to streams and declaring windows, but does so in the place
of a graph pattern in the WHERE clause, as can be seen in Figure 3.
Another main difference to C-SPARQL is that CQELS uses a native imple-
mentation for evaluating queries, instead of using a SPARQL engine as black
box. This allows to adapt to changes in the input data and improve query
evaluation strategies. Additionally it can benefit from caching and encoding
of intermediate results. Those performance improvements allow CQELS to
work on a push principle opposed to a pull principle like C-SPARQL. That
means every incoming triple triggers an evaluation of the query and may
generate output immediately instead of evaluation only happening at the
end of a window. Just like C-SPARQL, CQELS is written in Java and can be
interfaced with by building a Java application on top of it.

3.2 Apache Spark

Apache Spark is a cluster computing framework for large-scale data pro-
cessing. It can access data from a multitude of distributed storage systems
like Hadoop Distributed File System, Apache Cassandra, Apache HBase or
Amazon S3. Spark works batch oriented, but Spark Streaming extends those
capabilities to stream processing by dividing an input stream into so-called
micro batches. Streaming data can be ingested using a multitude of tech-
nologies common in the big data world like Apache Flume, Apache Kafka

5

val windowed = triple_objects.window(Seconds(1), Seconds(1))

val arrived = windowed.filter(_(1).contains("hasArrived"))

val result = arrived.map(x => (x(0), x(2)))

Figure 4: Query 01 in Scala using Apache Spark.

or Amazon Kinesis. Apache Spark makes no assumptions about the under-
lying data model. Its API exposes the data as collections and offers high
level transformation functions like windows, map, reduce, filter and join.
Programs for querying or manipulating data can be written in Scala, Java
or Python. An example for a query written in Scala can be seen in Figure 4.
Although typically Spark applications run on clusters, they can also be run
in local mode on a single computer.

3.3 Answer Set Programming

Answer Set Programming (ASP) is a logic-oriented form of declarative prob-
lem solving for combinatorial problems. It’s based on the stable model se-
mantics [20] and is tailored for Knowledge Representation and Reasoning
applications. We use Answer Set Programming in order to provide an or-
acle which tells us the expected result of a query for each window. To do
so, we simulate a tumbling window on the streaming data by feeding only
the data of a single window at a time into the ASP solver. This gives us
an expected result for each window. This approach can be compared to
how C-SPARQL implements windowing and then uses a SPARQL engine as a
black box. However, since we use ASP only as an oracle this process does
not have to happen in real-time. As a solver, we use the Potassco Project’s
clingo [19], which combines the grounder gringo and the solver clasp into a
single monolithic system.

4 Architecture for Data Stream Generator

In this chapter we introduce the architecture we developed for evaluating
stream processing engines. In the first section we present the challenges
that arise from working with widely different engines and what we have
done to meet those challenges. Then we go into detail how the modules of
our architecture work together and how each of them addresses the needs
described.

4.1 Architecture

When trying to compare multiple stream processing engines, diverse ap-
proaches in the engines give rise to a number challenges. The aim of our

6

architecture is to unify interfaces where possible and bridge differences where
needed. First of all, the engines are not all provided with high-level inter-
faces that make them ready to use for our tasks. C-SPARQL and CQELS are
written in Java and can be interfaced with by writing a program instantiat-
ing their classes. Apache Spark isn’t a stream processor per se, but rather a
powerful framework and to utilize its stream processing capabilities a pro-
gram using its API has to be written. clingo can directly work on input files
containing data and queries. The next difficulty is that the engines work
on different data formats. The RDF engines need data in some RDF seri-
alization, Apache Spark can easily read simple comma separated data files
and clingo needs facts in ASP syntax. Therefore any static data needs to be
converted to a format that can be read by an engine. In order to provide
not only a fair comparison but also reproducible tests, evaluations have to
be run on a fixed data set. Therefore, live streaming data cannot be used,
but rather has to be captured so it can be used repeatedly. Additionally, re-
playing this captured data into the engines has to happen in a reproducible
manner. Last but not least, output has to be generated in a unified format
for easy comparison.
We decided on a modular architecture composed of small components with
clearly defined tasks and interfaces. This allows to easily swap out or extend
single modules, in order to fulfill new requirements. Each module tackles
one of the challenges described above. This architecture is generic enough
to be implemented using a wide variety of technologies, whether as small
scripts interacting together or as classes in a rather monolithic project. To
enable unified access to the different engines, lightweight wrappers or shims
are utilized. They read data and queries from clearly defined, universal
interfaces, bridging the gaps the out-of-the-box provided interfaces leave.

4.2 Module Descriptions

Fig. 5 shows the modules of our architecture and the resulting data flow. As
can be seen, there’s one module addressing one of the challenges mentioned
in the previous section each. The converter and the capture module can
be seen as two parts of a preprocessing module which is responsible for
converting data to a usable format.

Converter The converter module is responsible for converting any static
data from the provided format to a format that can be read by an engine.
It typically takes its input from a file and also outputs a file. Depending on
how different the provided format of the data and the format needed by the
engine are, this module may be very complex or very simple and in some
cases not even needed.

• Input: Static data in domain specific format

7

• Output: Static data in engine specific format

Capture The capture module extracts required data from a data stream
and stores it, so it can be used for evaluations again and again. The format of
the stored data should be general enough, so that only minimal conversions
have to be done for particular engines. Additionally, timing information of
the captured data should be stored, so it can be played back just like it was
captured.

• Input: Data stream in domain specific format

• Output: Captured streaming data in generic format

Feeder This module is responsible for replaying the captured streaming
data to the engines. It allows arbitrary fine control over the streaming
process. Data may be streamed using the same timing it was captured with
or using custom timing, like streaming a certain amount of data per time
unit. It is important that this module can reproduce this timing reliably in
order to provide a level playing field to all the engines.

• Input: Captured streaming data in generic format

• Output: Data stream, possibly in engine specific format

Engine This module consists not only of the engine to be evaluated, but
also of the wrapper that may have been written to make the engine accessi-
ble. This allows to read static data and the query used for evaluation from
files. The streaming data is typically received through a TCP socket and
results are written to a file. Great care should be taken to not introduce
artificial bottle necks in the interface to the engine, e.g. by reading data in
an inefficient way or by buffering incoming data by accident.

• Input: Query, data stream and optionally static data in engine specific
format

• Output: Results in engine specific format

Output Formatter Different engines may output data in different for-
mats. To allow comparisons of results, it is necessary to bring this output
to a canonical form. This module addresses that need.

• Input: Results in engine specific format

• Output: Results in canonical, engine agnostic format

8

Figure 5: Component diagram of modules

5 Show Case

In this chapter we will illustrate how to apply our architecture to a specific
use case. First we introduce the GTFS domain of public transport data.
Then we describe how we implemented the architecture described in Sec-
tion 4 for use with this domain and the engines described in Chapter 3 using
a collection of small programs and scripts. Afterwards we depict how to run
evaluations with this implementation and how the programs and scripts in-
teract together. Finally we present some evaluations we ran using the GTFS
domain.

5.1 GTFS Domain

A public transport scenario offers ample opportunities for interesting data
processing and reasoning tasks. In addition, the rise of the open data move-
ment lead to public availability of public transport data for many cities world
wide. The vast amount of different data formats used by different transit
agencies around the world made the need for a common standard appar-
ent. To meet this need, Google and the Portland TriMet transit agency
developed the General Transit Feed Specification (GTFS) [5]. A GTFS feed
provides information suitable for trip planning functionality, but the stan-
dard leaves enough room for extensions to go beyond these capabilities. A
list of publicly available GTFS feeds can be found at the GoogleTransit-
DataFeed project site [6] or at the GTFS Data Exchange website [7]. While
GTFS only specifies static data useful for trip planning, its accompanying
GTFS-realtime specification was developed to describe real-time data about
updates to the schedule, service alerts and positions of vehicles. The public
availability of real world data with decent complexity makes GTFS perfect
for evaluating stream processing engines.

9

trip_id,arrival_time,departure_time,stop_id,stop_sequence

AWE1,0:06:10,0:06:10,S1,1

AWE1,,,S2,2

AWE1,0:06:20,0:06:30,S3,3

AWE1,,,S5,4

AWE1,0:06:45,0:06:45,S6,5

AWD1,0:06:10,0:06:10,S1,1

AWD1,,,S2,2

AWD1,0:06:20,0:06:20,S3,3

AWD1,,,S4,4

AWD1,,,S5,5

AWD1,0:06:45,0:06:45,S6,6

Figure 6: Part of a stop times.txt file

5.1.1 Static Data Model

A GTFS feed is provided as a .zip file containing multiple comma-separated
values (CSV) files. Each of these files contains entities of a different type.
For our needs, the stops.txt, routes.txt, trips.txt and stop times.txt files are
relevant. Fig. 6 shows an example of an stop times.txt file. We will now
describe the files and entities they contain. A complete specification of the
files and their fields can be found at the GTFS reference website [8].

Stop A stop entity represents a single stop in the transit network. The
only attribute of this entity we use is the stop name, but latitude and lon-
gitude, the identifier (id) of the fare zone and whether wheelchair boarding
is possible at the stop might also be of interest.

Route A route represents a line in the transit network. Examples might
be the subway line U2 or the tramway line 5. Interesting attributes of a line
are its name and the type of the route, meaning is it a subway line, a bus
line, or something else. A route can be seen as a set of trips.

Trip A trip represents a single trip on a route, for example the trip on line
U2 starting at 10:32 from the stop Karlsplatz towards the stop Seestadt. A
trip’s attributes may contain the id of the route it is on, the direction the
trip is going, whether it is wheelchair accessible or not and whether bicycles
can be taken on the trip.

Stop time A trip consists of several stop time elements, each describing
when the trip is scheduled to reach a stop. The order of the stops is given

10

Figure 7: RDF data model of GTFS

by an ascending sequence number. A stop time entity has an arrival and a
departure time.

This GTFS data model and its entities can easily be transformed into a
triple based RDF data model. Fig. 7 shows the result of this transformation.

5.1.2 Streaming Data

There are 3 different types of real-time data offered by GTFS-realtime. For
our needs, TripUpdates and VehiclePositions are useful. A Trip Update
represents a change to the timetable and consists of possibly multiple Stop-
TimeUpdates, which each contain either delays or new arrival times for single
stop time entities of a trip. Vehicle Positions serve data concerning the po-
sition of a vehicle. A trip descriptor tells which trip a vehicle is serving.
VehicleStopStatus gives the position of the vehicle relative to a stop and
can be Incoming at, Stopped at or In transit to. GTFS-realtime feeds can
typically be accessed by HTTP protocol and data is provided in a format
based on Protocol Buffers [12], a serialization mechanism for structured data
emphasizing performance. Fig. 8 shows how entities of those feeds look like.
When capturing these data streams we extract the stop time id using the
trip id and stop sequence and save it together with the delay or timestamp
of the arrival at the stop.

11

entity {

id: "2913"

vehicle {

trip {

trip_id: "5391900"

route_id: "93"

}

position {

latitude: 45.3898277283

longitude: -122.804138184

bearing: 51.0

}

current_stop_sequence: 14

current_status: STOPPED_AT

timestamp: 1429474116

stop_id: "4316"

vehicle {

id: "2913"

label: "93 To Tigard TC"

}

}

}

(a) Vehicle Position

entity {

id: "5390417"

trip_update {

trip {

trip_id: "5390417"

}

stop_time_update {

stop_sequence: 1

arrival {

delay: 32

}

}

stop_time_update {

stop_sequence: 35

arrival {

delay: 32

}

}

}

}

(b) Trip Update

Figure 8: Examples of entities from a GTFS-realtime feed

12

5.2 Implementation

In this section we describe how we realize the modules of our architecture
for the GTFS domain use case. We decided to implement the components as
small scripts, communicating using files and TCP connections. This highly
transparent working model allows to exchange single components very easily
and allows to examine intermediate results. By utilizing powerful and well
documented libraries for handling GTFS and RDF data a low entry barrier
is maintained. Following scripts are provided:
First there are the gtfs-converter.py and the gtfs-capture.py scripts,
which implement the converter and capture modules respectively. These
scripts are the only ones specific to the GTFS use case. All the other scripts
and programs are generic and don’t make any assumptions about the data
domain. Then we cover the simple feeder.py, replay feeder.py and the
triple to asp.py scripts which provide implementations of the feeder mod-
ule. The output formatter.py script covers the output formatter module.
Finally we describe the programs written to provide access to the different
stream processing engines. All our code is available at github [14].

Converter The gtfs-converter.py script is the implementation of the
converter module. It reads an unzipped GTFS data set and converts it to
our RDF data model (Fig. 7). The output can be chosen from several RDF
serializations or one can choose to output ASP facts. Fig. 9 shows how to
use the script. The --limit argument can be used to limit the number of
trips to convert, in order to obtain a smaller subset of the data set. This can
be helpful when running evaluations, because a big data set might signifi-
cantly hinder performance of some engines. However, it may eliminate data
referenced by captured streaming data. The gtfs-converter.py script uti-
lizes the transitfeed [15] and RDFLib [13] libraries, which help with reading
GTFS data sets and handling RDF data respectively.

• Input: GTFS data set as a number of CSV files

• Output: File containing RDF data set as RDF/XML, Turtle or N-Triples
serialization or as ASP facts

Capture The gtfs-capture.py script implements the capture module.
It captures GTFS-realtime streams. The URLs of the streams which are
to be captured have to be configured in the streams.ini file found in the
directory of the script. The script can capture a trip update stream or
a vehicle stream or both. If no --limit is given it continues to capture
data from the streams until it is stopped. Fig. 10 shows how to call the
script. Because incremental fetching of data is currently unsupported in the
GTFS-realtime standard, polling a stream will produce a lot of duplicate

13

usage: gtfs-converter.py [-h] [-f {asp,xml,turtle,nt}] [-l LIMIT]

gtfs_path output_file

Convert GTFS data set to RDF or ASP.

positional arguments:

gtfs_path path to the GTFS data set

output_file output file

optional arguments:

-h, --help show this help message and exit

-f {asp,xml,turtle,nt}, --format {asp,xml,turtle,nt}

-l LIMIT, --limit LIMIT

maximum number of trips to convert

Figure 9: Usage of gtfs-converter.py script

data. This duplicate data is eliminated at the end of the gtfs-capture.py

script.

• Input: GTFS-realtime streams in Protocol Buffers format accessed via
HTTP

• Output: File containing captured stream triples with timestamps

Feeder We provide several implementations of the feeder module covering
different purposes.

simple feeder.py Our first implementation of the feeder module is the
simple feeder.py script. It can be configured with a fixed delay which it
will use between each triple it sends. This provides a constant stream of data
useful for benchmarking. Fig. 11 shows how to use it. The script simply
outputs data to stdout, allowing flexible usage. For example, one can pipe
it into netcat [11] to send it’s data to a TCP socket. It can also be piped into
the kafka-console-producer.sh script provided with an Apache Kafka
installation to interface with Apache Spark. In order to not hinder this
flexibility, the output data is serialized using JSON [9], a standard format
for information exchange on the web.

• Input: Capture file containing stream triples with timestamps

• Output: Stream triples as JSON to stdout

14

usage: gtfs-capture.py [-h] [-t {t,v,b}] [-l LIMIT] output_file

Capture GTFS-realtime stream to file.

positional arguments:

output_file output file

optional arguments:

-h, --help show this help message and exit

-t {t,v,b}, --type {t,v,b}

capture (t)rip updates, (v)ehicles or (b)oth

-l LIMIT, --limit LIMIT

maximum number of triples to capture

Figure 10: Usage of gtfs-capture.py script

usage: simple_feeder.py [-h] [-d DELAY] capture_file

Stream triples read from capture_file to stdout

positional arguments:

capture_file

optional arguments:

-h, --help show this help message and exit

-d DELAY, --delay DELAY

Figure 11: Usage of simple feeder.py script

15

usage: replay_feeder.py [-h] capture_file

Stream triples read from capture_file to stdout using the timing

provided in the capture file

positional arguments:

capture_file

optional arguments:

-h, --help show this help message and exit

Figure 12: Usage of replay feeder.py script

replay feeder.py The replay feeder.py script is another implementa-
tion of the feeder module. It uses the timing information captured with the
streaming data to replay the stream exactly like it was captured. This pro-
vides a stream that represents real world conditions, opposed to the artificial
timing of the simple feeder.py script. It’s usage is described in Fig. 12.
Just like with the simple feeder.py script, data is output to stdout seri-
alized as JSON.

• Input: Capture file containing stream triples with timestamps

• Output: Stream triples as JSON to stdout

triple to asp.py The triple to asp.py script takes the place of the
feeder module when evaluating queries with an ASP solver. We simu-
late a stream and window operations on this stream by splitting the cap-
tured streaming data into files, each representing a window. Our script
can simulate the streaming behavior of the replay feeder.py and the
simple feeder.py scripts or it can simply create triple based windows.
Additionally this script also converts the engine agnostic format of the cap-
tured streaming to ASP facts. Fig. 13 shows how to call the script for each
of the available operating modes.

• Input: Capture file containing stream triples with timestamps

• Output: Stream triples as ASP facts in files representing windows

Output Formatter Our implementation of the output formatter module
is the output formatter.py script. It only takes the path to a directory as
argument, as can be seen in Fig. 14. In this directory there may be several

16

usage: triple_to_asp.py [-h] {replay,simple,triples} ...

Convert captured triples to ASP facts, split into multiple files, each

corresponding to a tumbling window.

positional arguments:

{replay,simple,triples}

operation mode

replay mimic the replay_feeder script

simple mimic the simple_feeder script

triples fixed number of triples per window

usage: triple_to_asp.py replay [-h] window input_file output_directory

positional arguments:

window window size in seconds

input_file input file containing captured triples

output_directory directory where the output files containing facts

will be created

usage: triple_to_asp.py simple [-h] window delay input_file output_directory

positional arguments:

window window size in seconds

delay delay between triples

input_file input file containing captured triples

output_directory directory where the output files containing facts

will be created

usage: triple_to_asp.py triples [-h] size input_file output_directory

positional arguments:

size number of triples per window

input_file input file containing captured triples

output_directory directory where the output files containing facts

will be created

Figure 13: Usage of triple to asp.py script

17

usage: output_formatter.py [-h] [-s] path

Converts results to a single comparable format.

positional arguments:

path path to the results

optional arguments:

-h, --help show this help message and exit

-s, --sort sort results inside a window

Figure 14: Usage of output formatter.py script

subdirectories containing results of evaluations. One example for the struc-
ture of such a directory can be seen in Fig. 15. The script will then create a
subdirectory called formatted and duplicate this directory structure in there,
containing result files using a canonical format. This means replacing URL
style names used in the RDF processing engines, replacing facts obtained
from an ASP reasoner and joining the multiple output files generated by
Apache Spark.

• Input: File or files containing results in engine specific format

• Output: File containing results in a canonical, engine agnostic format

Engines Descriptions of the wrappers or shims providing access to the
engines follow in the next paragraphs.

csparql shim The csparql shim program encapsulates and provides an
interface to version 0.9.5.1 of the C-SPARQL [18] engine, available at C-SPARQL’s
maven repository [3]. The program reads a query in the extended SPARQL

grammar defined by C-SPARQL from a file. It can also read an optional static
data set from a file formatted in an RDF serialization. Streaming data can
be sent to the engine by establishing a TCP connection to it. This can easily
be done by combining one of our feeder scripts with netcat [11]. Any output
generated by evaluation of the given query will be written to a specified
output file. Fig. 16 shows how to call the program.

• Input: File containing a query, stream triples over TCP, optionally a
file containing a static data set in an RDF serialization

• Output: File containing results

18

results

|-- asp

| ‘-- query01.txt

|-- cqels

| ‘-- cqels_query01.txt

|-- csparql

| ‘-- csparql_query01.txt

‘-- spark

|-- Query01-1446839885000

| |-- _SUCCESS

| ‘-- part-00000

|-- Query01-1446839886000

| |-- _SUCCESS

| |-- part-00000

| |-- part-00001

| |-- part-00002

| |-- part-00003

| ‘-- part-00004

|-- Query01-1446839887000

| |-- _SUCCESS

| |-- part-00000

| |-- part-00001

| ‘-- part-00002

‘-- Query01-1446839898000

|-- _SUCCESS

‘-- part-00000

Figure 15: Example of results directory structure

usage: java -jar CsparqlShim.java port queryfile outputfile [static_dataset]

Provides a standardized interface to the C-SPARQL engine.

propositional arguments:

port port for listening for streaming data

queryfile file containing a query

outputfile output file

optional arguments:

static_dataset file containing a static data set

Figure 16: Usage of csparql shim program

19

usage: java -jar CqelsShim.jar cqels_home port queryfile

outputfile [static_dataset]

Provides a standardized interface to the CQELS engine.

positional arguments:

cqels_home working directory used by CQELS engine

port port for listening for streaming data

queryfile file containing a query

outputfile output file

optional arguments:

static_dataset file containing a static data set

Figure 17: Usage of cqels shim program

cqels shim The cqels shim program encapsulates and provides an inter-
face to version 1.0.1 of the CQELS [22] engine, available at the projects Google
Code page [4]. The program operates in a similar way as the csparql shim

program, reading a query and optionally static data from files, listening for
streaming data on a TCP port and writing output to a specified output file.
Fig. 17 shows how to call the program.

• Input: File containing a query, stream triples over TCP, optionally a
file containing a static data set in an RDF serialization

• Output: File containing results

Spark Processor This program implements a simple streaming data pro-
cessing engine by leveraging Apache Spark’s [2] stream processing API. Since
Spark doesn’t offer any intermediate language for writing queries, they have
to be written as Scala functions in classes. They will be compiled when
building the project and can then be loaded during runtime using reflection.
Using language features of Scala and Spark’s API makes it easy to work on
data provided in a CSV format, so the files from a GTFS data set can be
directly read into the Processor without any conversion.
Spark is a powerful cluster-computing framework. In order to not impair
the capabilities to run on a cluster, we decided to not use TCP sockets for
listening to streaming data. Instead we use Apache Kafka [1], a message
broker system widely used in the area of cluster-computing. Fig. 18 shows
which arguments the program takes. Because of the distributed computing
architecture of Spark, output can’t be generated in a single file but rather
one output file per worker is generated in an output directory.

20

usage: Processor zk_quorum query output_dir [static_dataset]

propositional arguments:

zk_quorum Zookeeper quorum, where to listen for

streaming data using Kafka

query class name of query to run

output_dir directory where to output data

optional arguments:

static_dataset file containing a static data set

Figure 18: Usage of Spark Processor program

• Input: Scala class containing a query, stream triples over Kafka, op-
tionally a CSV file containing a static data set

• Output: One directory per window containing multiple files containing
results

ASP (clingo) We use the ASP solver clingo to provide an oracle that tells us
what results to expect for a query. In order to do this we simulate a tumbling
window on the captured streaming data using the triple to asp.py script.
Then we call clingo on the data from a single window, the query and optional
static data to obtain the expected result for this window. This execution
happens off-line, meaning we disregard the time needed to calculate the
result of a window.

5.3 Execution

In this section we illustrate how to evaluate queries on the GTFS domain
using C-SPARQL, CQELS, Spark and clingo respectively. We particularly focus
on which of the previously described scripts and programs are used and how
they interact.

RDF stream processors Fig. 19 shows, which scripts are run when eval-
uating CQELS or C-SPARQL. First of all, the gtfs-converter.py script is run
to convert a GTFS data set to RDF format. Then GTFS-realtime streams
are captured using the gtfs-capture.py script. After both static and
streaming data set are ready, the evaluation can be run. The cqels shim

or csparql shim program is started and given a file containing the converted
static data set and a file containing a query. Then either the simple feeder.py

or the replay feeder.py script is started with the file containing the cap-
tured streaming data and its output is piped into netcat in order to stream

21

Figure 19: Component diagram for GTFS and CQELS

the data over TCP to the engine. When the evaluation is complete, the out-
put file generated by the engine is run through the output formatter.py

script, to allow comparison with the output from other engines.

Spark Processor Fig. 20 shows how the scripts interact when the Spark
Processor is used for evaluating queries. The main difference to the case of
the RDF stream processors is that the gtfs-converter.py script doesn’t
have to be run, because the Spark Processor can easily work directly on the
GTFS files in CSV format. Another difference is that the communication
between the feeder and the engine happens using Kafka instead of a TCP
connection. Therefore the output of the feeder has to be piped into the
kafka-console-producer.sh script instead of netcat. Also, the query is
loaded from a Scala class using Reflection instead of reading directly from a
file, because Spark doesn’t provide a parseable language for writing queries.

ASP (clingo) In Fig. 21 the structure of an evaluation using clingo can
be seen. The difference here to the case of the RDF stream processors is
that clingo expects its input files to contain logic programs. Therefore the
gtfs-converter.py script has to be called with the -f asp parameter in
order to generate ASP facts. Additionally the feeder is replaced by the
triple to asp.py script, which generates multiple capture files, represent-
ing a single window each. Then clingo has to be called with the file containing
the static data set and the file containing the query for each of the capture
files. The output formatter.py script then converts the facts representing
the results to a format better suited for comparison with the other engines.

5.4 Evaluation

In this section a few evaluations in the GTFS domain are introduced. First
is a coarse functionality test. Then some important aspects of correctness

22

Figure 20: Component diagram for GTFS and the Spark Processor

Figure 21: Component diagram for GTFS and clingo

23

tests are discussed. Finally, an example of an evaluation is described step
by step.

5.4.1 Functionality

Our first evaluation was a basic test determining which features of SPARQL 1.1

are supported by C-SPARQL and CQELS, similar to SRBench [24]. We also
tested which of those features we could replicate with Spark and clingo. All
the queries used in this evaluation are available in a github repository [14].
A description of the queries follows.

Queries

01 Simply output all hasArrived triples.

02 Use FILTER to output only hasDelay triples with a delay greater than a
certain value.

03 Use UNION to output both hasDelay and hasArrived triples.

04 Use OPTIONAL to output hasDelay and optionally a hasArrived triple of
the same stop.

05 Calculate a value (delay in minutes) directly in SELECT clause.

06 Calculate a value (delay in minutes) using a BIND clause.

07 Aggregate function COUNT.

08 Aggregate function COUNT DISTINCT.

09 Aggregate function MAX.

10 ORDER BY

11 Simple join combining streaming and static data.

12 Simple join combining streaming and static data, using OPTIONAL clause.

Table 1 shows the results of this evaluation. As can be seen, C-SPARQL

supports all language features that were tested. This can be attributed to
the use of a SPARQL engine as a black box inside of C-SPARQL. CQELS is
still under heavy development and doesn’t support UNION, OPTIONAL, cal-
culating values in the SELECT clause, BIND and MAX. ORDER BY can not be
implemented in Spark. Data within a micro batch can be sorted, but sorting
across multiple batches conflicts with Spark’s concept of operation. Because
clingo produces an answer set where the order of results is arbitrary it
doesn’t support any sorting of results either. However, by creating a linear
order explicitly, sorting of results can be simulated.

24

Queries
01 02 03 04 05 06 07 08 09 10 11 12

C-SPARQL X X X X X X X X X X X X
CQELS X X - - - - X X - X X -

Spark X X X X X X X X X - X X
clingo X X X X X X X X X X X X

Table 1: Results of functionality test (Xquery produced output, - query
resulted in error or didn’t return anything)

5.4.2 Correctness

When comparing different engines, the underlying semantics cannot be ig-
nored. C-SPARQL, CQELS and Spark generally output a multiset as result.
Only in queries with an ORDER BY clause, the order of the output isn’t ar-
bitrary. As the name suggests, Answer Set Programming solvers such as
clingo always output a set as result. Because of this discrepancy one might
argue that ASP isn’t suitable to serve as an oracle for comparing the other
engines. However, in natural queries, if it is of interest, whether a result
occurs multiple times, GROUP BY and COUNT clauses are used. If it is known
that a result may occur multiple times, but it is not of interest how often,
DISTINCT is used. Therefore, for regular queries, using ASP as oracle is
perfectly fine. If a query has no ORDER BY clause, the arbitrary order of
the output makes it difficult to directly compare results. The set semantics
allow to sort the results of a single window when comparing. Sorting across
window borders however, is not allowed.

In the following example we show how to run an evaluation comparing the
output of the engines for query 11 from the previous section.

Example 1 First of all, a GTFS data set has to be obtained. We used the
data set provided by Portland’s TriMet transit agency, available at http://
developer.trimet.org/GTFS.shtml. Using the gtfs-converter.py script
this data set is converted to RDF and ASP formats:

$ python sr_data_generator/converter/gtfs-converter.py \

-f turtle gtfs_portland/ data_portland.ttl

$ python sr_data_generator/converter/gtfs-converter.py \

-f asp gtfs_portland/ data_portland.lp

Then the URLs of TriMet’s GTFS-realtime feeds have to be configured in
the streams.ini file in the directory of the capture.py script. Once this
is done, the streams can be captured:

$ python sr_data_generator/capture/gtfs-capture.py \

capture_portland.triple

25

http://developer.trimet.org/GTFS.shtml
http://developer.trimet.org/GTFS.shtml

Once sufficient streaming data has been captured, the script can be stopped
and evaluation can begin. First the C-SPARQL engine is run and then stream-
ing of the captured data is started:

$ java -jar sr_data_generator/csparql_shim/target/CsparqlShim-0.0.1.jar \

9999 sr_data_generator/queries/csparql/query11.rq \

results/csparql/query11.txt data_portland.ttl

$ python sr_data_generator/feeder/replay_feeder.py \

capture_portland.triple | nc localhost 9999

After this evaluation is done, the same is done for the CQELS engine:

$ java -jar sr_data_generator/csparql_shim/target/cqels_shim-1.0-w-deps.jar \

~/cqels 9999 sr_data_generator/queries/cqels/query11.rq \

results/cqels/query11.txt data_portland.ttl

$ python sr_data_generator/feeder/replay_feeder.py \

capture_portland.triple | nc localhost 9999

And for the Spark Reasoner:

$ spark-submit --class "Reasoner" --master ’local[4]’ \

target/scala-2.10/gtfs-reasoner-assembly.jar localhost \

Query11 results/spark/ gtfs_portland/stop_times.txt

$ python sr_data_generator/feeder/replay_feeder.py \

capture_portland.triple | kafka-console-producer.sh \

--broker-list localhost:9092 --topic gtfs

To provide the baseline for the comparison, windows are simulated using
the triple to asp.py script and clingo is run on the data and query:

$ python sr_data_generator/triple_to_asp/triple_to_asp.py replay 1 \

capture_portland.triple capture_asp/

$ for f in capture_asp/*; \

do clingo 1 --outf=1 sr_data_generator/queries/asp/query11.lp \

data_portland.lp $f >> results/asp/query11.txt; done

Finally, the output formatter.py script is run to convert the outputs to a
canonical format:

$ python sr_data_generator/output_formatter/output_formatter.py \

-s results/

Now the results of the engines can easily be compared against the baseline:

$ diff results/formatted/asp/query11.txt \

results/formatted/csparql/query11.txt

In our run of the evaluation, the results of CQELS and Spark conformed to
the results predicted by clingo. C-SPARQL produced correct results too, but
was missing a few lines of output. It probably couldn’t keep up with the
fast stream and dropped some triples.

26

References

[1] Apache Kafka. https://kafka.apache.org/. [Online; accessed: 2015-
11-10].

[2] Apache Spark. https://spark.apache.org/. [Online; accessed: 2015-
11-10].

[3] C-SPARQL maven repository. http://streamreasoning.org/maven.
[Online; accessed: 2015-11-10].

[4] CQELS Google Code page. https://code.google.com/p/cqels/.
[Online; accessed: 2015-11-10].

[5] General Transit Feed Specification. https://developers.google.

com/transit/. [Online; accessed: 2015-11-10].

[6] GoogleTransitDataFeed project site. https://code.google.com/p/

googletransitdatafeed/wiki/PublicFeeds. [Online; accessed: 2015-
11-10].

[7] GTFS Data Exchange. http://www.gtfs-data-exchange.com/. [On-
line; accessed: 2015-11-10].

[8] GTFS reference. https://developers.google.com/transit/gtfs/

reference. [Online; accessed: 2015-11-10].

[9] JSON Data Interchange Format. https://tools.ietf.org/html/

rfc7159. [Online; accessed: 2015-11-13].

[10] LinkedSensorData. http://wiki.knoesis.org/index.php/

LinkedSensorData. [Online; accessed: 2015-11-10].

[11] netcat. http://nc110.sourceforge.net/. [Online; accessed: 2015-
11-10].

[12] Protocol Buffers. https://developers.google.com/

protocol-buffers/. [Online; accessed: 2015-11-13].

[13] RDFLib. https://github.com/RDFLib/rdflib. [Online; accessed:
2015-11-10].

[14] sr data generator github repository. https://github.com/mosimos/

sr_data_generator/. [Online; accessed: 2015-11-10].

[15] transitfeed library. https://github.com/google/transitfeed. [On-
line; accessed: 2015-11-10].

[16] W3C Recommendation of the SPARQL 1.1 Query Language. http:

//www.w3.org/TR/sparql11-query/. [Online; accessed: 2015-11-13].

27

https://kafka.apache.org/
https://spark.apache.org/
http://streamreasoning.org/maven
https://code.google.com/p/cqels/
https://developers.google.com/transit/
https://developers.google.com/transit/
https://code.google.com/p/googletransitdatafeed/wiki/PublicFeeds
https://code.google.com/p/googletransitdatafeed/wiki/PublicFeeds
http://www.gtfs-data-exchange.com/
https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs/reference
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
http://wiki.knoesis.org/index.php/LinkedSensorData
http://wiki.knoesis.org/index.php/LinkedSensorData
http://nc110.sourceforge.net/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/RDFLib/rdflib
https://github.com/mosimos/sr_data_generator/
https://github.com/mosimos/sr_data_generator/
https://github.com/google/transitfeed
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

[17] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier,
Anurag Maskey, Esther Ryvkina, Michael Stonebraker, and Richard
Tibbetts. Linear road: A stream data management benchmark.
In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
(e)Proceedings of the Thirtieth International Conference on Very Large
Data Bases, Toronto, Canada, August 31 - September 3 2004, pages
480–491. Morgan Kaufmann, 2004.

[18] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri,
Emanuele Della Valle, and Michael Grossniklaus. C-SPARQL: a
continuous query language for RDF data streams. Int. J. Semantic
Computing, 4(1):3–25, 2010.

[19] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Clingo = ASP + control: Preliminary report. CoRR,
abs/1405.3694, 2014.

[20] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth A. Bowen, ed-
itors, Logic Programming, Proceedings of the Fifth International Con-
ference and Symposium, Seattle, Washington, August 15-19, 1988 (2
Volumes), pages 1070–1080. MIT Press, 1988.

[21] Vladimir Lifschitz. What is answer set programming? In Dieter Fox and
Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008, pages 1594–1597. AAAI Press, 2008.

[22] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A native and adaptive approach for unified processing of
linked streams and linked data. In Lora Aroyo, Chris Welty, Harith
Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Frid-
man Noy, and Eva Blomqvist, editors, The Semantic Web - ISWC 2011
- 10th International Semantic Web Conference, Bonn, Germany, Oc-
tober 23-27, 2011, Proceedings, Part I, volume 7031 of Lecture Notes
in Computer Science, pages 370–388. Springer, 2011.

[23] Danh Le Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter A. Boncz,
Thomas Eiter, and Michael Fink. Linked stream data processing en-
gines: Facts and figures. In Philippe Cudré-Mauroux, Jeff Heflin,
Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth,
Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bern-
stein, and Eva Blomqvist, editors, The Semantic Web - ISWC 2012
- 11th International Semantic Web Conference, Boston, MA, USA,

28

November 11-15, 2012, Proceedings, Part II, volume 7650 of Lecture
Notes in Computer Science, pages 300–312. Springer, 2012.

[24] Ying Zhang, Minh-Duc Pham, Óscar Corcho, and Jean-Paul Calbi-
monte. Srbench: A streaming RDF/SPARQL benchmark. In Philippe
Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Eu-
zenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus
Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, The Se-
mantic Web - ISWC 2012 - 11th International Semantic Web Con-
ference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part
I, volume 7649 of Lecture Notes in Computer Science, pages 641–657.
Springer, 2012.

29

	Introduction
	State of the Art
	Technical Background
	RDF Stream Processors
	Apache Spark
	Answer Set Programming

	Architecture for Data Stream Generator
	Architecture
	Module Descriptions

	Show Case
	GTFS Domain
	Static Data Model
	Streaming Data

	Implementation
	Execution
	Evaluation
	Functionality
	Correctness

