
Towards Implementations for Advanced Equivalence
Checking in Answer-Set Programming�

Hans Tompits and Stefan Woltran

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{tompits, stefan}@kr.tuwien.ac.at

Abstract. In recent work, a general framework for specifying program corre-
spondences under the answer-set semantics has been defined. The framework al-
lows to define different notions of equivalence, including the well-known notions
of strong and uniform equivalence, as well as refined equivalence notions based
on the projection of answer sets, where not all parts of an answer set are of rel-
evance (like, e.g., removal of auxiliary letters). In the general case, deciding the
correspondence of two programs lies on the fourth level of the polynomial hierar-
chy and therefore this task can (presumably) not be efficiently reduced to answer-
set programming. In this paper, we describe an approach to compute program
correspondences in this general framework by means of linear-time constructible
reductions to quantified propositional logic. We can thus use extant solvers for
the latter language as back-end inference engines for computing program corre-
spondence problems. We also describe how our translations provide a method to
construct counterexamples in case a program correspondence does not hold.

1 Introduction

Answer-set programming (ASP) is widely recognised as a fruitful paradigm for declar-
ative knowledge representation and reasoning. It is based on the idea that problems are
encoded in terms of theories of some suitable language, associated with a declarative
semantics, such that the solutions of the given problems are determined by the models
of the corresponding theories. Among the different instances of the ASP paradigm, the
class of nonmonotonic logic programs under the answer-set semantics [14], with which
we are concerned with in this paper, represents the canonical and, due to the availability
of efficient answer-set solvers, like DLV [18], Smodels [26], and ASSAT [22], arguably
most widely used ASP approach.

An important issue for the further deployment of ASP is to provide methods and
tools for engineering ASP solutions. This includes techniques for the simplification and
(offline) optimisation of programs, tools for supporting the user with debugging or ver-
ification features, and methods for modular programming. Crucial for all these issues
are mechanisms for determining the equivalence of (parts of) logic programs.

In previous work [13], a general framework for specifying correspondences between
logic programs under the answer-set semantics has been introduced. In this framework,

� This work was partially supported by the Austrian Science Fund (FWF) under grant P18019,
and by the European Commission via projects FET-2001-37004 WASP, IST-2001-33570 IN-
FOMIX, and IST-2001-33123 CologNeT.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 189–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 H. Tompits and S. Woltran

the correspondence of two programs is determined in terms of a class C of context
programs and a comparison relation ρ such that correspondence between two programs
P and Q holds iff the answer sets of P ∪ R and Q ∪ R satisfy ρ, for any program
R ∈ C. The framework includes as special cases the well-known notions of strong
equivalence [20], uniform equivalence [10], and relativised notions thereof [28], as well
as the practicably important case of program comparison under projected answer sets.
In the latter setting, not a whole answer set of a program is of interest, but only its
intersection on a subset of all letters; this includes, in particular, removal of auxiliary
letters in computation.

For the case of propositional disjunctive logic programs, correspondence check-
ing in the above framework under projected answer sets is surprisingly hard, viz. ΠP

4 -
complete in general [13], i.e., lying on the fourth level of the polynomial hierarchy.
Hence, this task can (presumably) not be efficiently reduced to propositional answer-
set programming. Such an approach (used, e.g., by Oikarinen and Janhunen [23] for
ordinary equivalence) reduces equivalence checking to problems like program consis-
tency such that equivalence holds iff the resultant program possesses no answer set.
Taking the results of Eiter et al. [9] into account, a compact reduction as such cannot
even be obtained by using non-ground programs as long as we restrict the arities of
predicates to a fixed constant. This indicates that advanced equivalence tests in answer-
set programming cannot be straightforwardly solved using ASP systems themselves.

In this paper, we describe an approach to compute program correspondences in the
framework of Eiter et al. [13] by means of efficient reductions to quantified propo-
sitional logic. The latter is an extension of classical propositional logic characterised
by the condition that its sentences, usually referred to as quantified Boolean formulas
(QBFs), are permitted to contain quantifications over atomic formulas. More specifi-
cally, our reductions enjoy the following properties:

1. a solution correspondence under projected answer sets between two given logic
programs holds iff the associated QBF is valid in quantified propositional logic,

2. the reduction is constructible in linear time and space, and
3. determining the validity of the resultant QBFs under the translations is not compu-

tationally harder than checking the original correspondence problem.

Besides the reduction of correspondence problems, we also describe how our transla-
tions provide a method to construct counterexamples in case a program correspondence
does not hold.

The rationale to consider a reduction approach to QBFs is twofold: On the one
hand, complexity results about quantified propositional logic imply that decision prob-
lems from the polynomial hierarchy can be efficiently represented in terms of QBFs,
and, on the other hand, several practicably efficient solvers for quantified propositional
logic are currently available (like, e.g., the solvers QuBE [15] and semprop [19]; for
others, cf. [17,16]). Hence, tools of the latter kind can be used as back-end inference
engines to compute the correspondence problems under consideration. We note that a
similar reduction approach to QBFs has been successfully applied in diverse fields like
nonmonotonic reasoning [6,5,12], paraconsistent reasoning [3,1,2], planning [25], and
automated deduction [7].

Towards Implementations for Advanced Equivalence Checking in ASP 191

2 Preliminaries

We deal with propositional disjunctive logic programs, which are finite sets of rules of
form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

with n ≥m ≥ l ≥ 0, and where all ai are propositional atoms from a universe U and
not denotes default negation. We call a rule of the above form a fact if l = 1 and
m = n = 0, and a constraint if l = 0. If all atoms occurring in a program P are from a
given set A ⊆ U of atoms, we say that P is a program over A. The set of all programs
over A is denoted by PA.

Let I be an interpretation, i.e., a set of atoms, and P a program. Following Gelfond
and Lifschitz [14], I is an answer set of P iff it is a minimal model of the reduct P I ,
resulting from P by (i) deleting all rules containing default negated atoms not a such
that a ∈ I and (ii) deleting all default negated atoms in the remaining rules. The set of
all answer sets of P is denoted by AS(P). We also write I |= P to indicate that each
rule in P is true under I (in the sense of classical logic).

Under the answer-set semantics, two programs P and Q are regarded as (ordinarily)
equivalent iff AS(P) = AS(Q). The more restrictive form of strong equivalence [20]
has recently been generalised as follows [28]: Let P, Q be programs over U , and let
A ⊆ U . Then, P and Q are strongly equivalent relative to A iff, for any R ∈ PA

AS(P ∪ R) = AS(Q ∪ R). If A = U , strong equivalence relative to A reduces to
strong equivalence; if A = ∅, we obtain ordinary equivalence.

We use the following notation: For an interpretation I and a set S of interpretations
(resp., pairs of interpretations), we write S|I = {Y ∩ I | Y ∈ S} (resp., S|I =
{(X ∩ I, Y ∩ I) | (X, Y) ∈ S}). If S = {s}, we usually write s|I instead of S|I .

For any A ⊆ U , a pair (X, Y) of interpretations, where Y ⊆ U , is an A-SE-
interpretation (over U) iff either X = Y or X ⊂ Y |A. (X, Y) is an A-SE-model of
a program P iff (i) Y |= P , (ii) for all Y ′ ⊂ Y with Y ′|A = Y |A, Y ′
|= PY , and
(iii) X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′|A = X such that X ′ |= PY

holds. A pair (X, Y) is total iff X = Y , and non-total otherwise. The set of all A-SE-
models of P is denoted by SEA(P).

For A = U , the notion of an A-SE-interpretation (resp., A-SE-model) coincides
with the notion of an SE-interpretation (resp., SE-model) as defined by Turner [27], and
we write SE (P) instead of SEU (P). Thus, (X, Y) ∈ SE (P) iff X ⊆ Y , Y |= P , and
X |= P Y .

Proposition 1 ([28]). Two programs P and Q are strongly equivalent relative to A iff
SEA(P) = SEA(Q).

Example 1. Consider the following two programs, P and Q:

P = P0 ∪ {c ∨ d ← a; c ∨ d ← b},

Q = P0 ∪ {c ∨ d ← a, b; d ← b,not c; c ← a,not d},

for P0 = {a ← c; b ← c; a ← d; b ← d; ← not c,not d}.

192 H. Tompits and S. Woltran

They have the following SE-models:1

SE (P) = {(∅, abc), (∅, abd), (∅, abcd), (abcd, abcd),

(abc, abcd), (abd, abcd), (abc, abc), (abd, abd)},

SE (Q) = SE (P) ∪ {(b, abc), (a, abd), (b, abcd), (a, abcd)}.

Hence, P and Q are not strongly equivalent. On the other hand, AS(P) = AS(Q) = ∅,
i.e., P and Q are (ordinarily) equivalent. Moreover, P and Q are strongly equivalent
relative to A precisely if A ∩ {a, b} = ∅. For A = {a, b}, we get

SEA(P) = {(∅, abc), (∅, abd), (abc, abc), (abd, abd)},

SEA(Q) = SEA(P) ∪ {(b, abc), (a, abd)}.

Thus, P and Q are not strongly equivalent relative to A = {a, b}. For instance, adding
a fact a ← yields AS(P ∪ {a ←}) = {abc, abd}, while AS(Q ∪ {a ←}) = {abc}. �

A set S of SE-interpretations is complete iff, for each (X, Y) ∈ S, also (Y, Y) ∈ S
as well as (X, Z) ∈ S, for any Z such that Y ⊆ Z and (Z, Z) ∈ S. It can be shown
that, for any program P , the set SE (P) of all SE-models of P is always complete. Con-
versely, any complete set S of SE-interpretations can be represented by some program
P . As a general result, taking also a restricted alphabet A into account, the following
result holds:

Proposition 2 ([13]). Let S be a complete set of SE-interpretations, and let A be a set
of atoms. Then, there exists a program PS,A ∈ PA such that SE (PS,A)|A = S|A.

One possibility to obtain PS,A from S is as follows:

1. for each Y ⊆ A with (Y, Y) /∈ S|A, add rules ⊥ ← Y,not (A \ Y), and
2. for each X ⊂ Y with (X, Y) /∈ S|A and (Y, Y) ∈ S|A, add rules∨

p∈(Y \X) p ← X,not (A \ Y).

3 Correspondence Checking

In order to deal with differing notions of program equivalence in a uniform manner,
taking in particular strong equivalence and its relativised version, as well as equivalence
notions based on the projection of answer sets into account, Eiter et al. [13] introduced
a general framework for specifying differing notions of equivalence. In this framework,
one parameterises, on the one hand, the class of programs used to be added to the
programs under consideration, and, on the other hand, the relation that has to hold
between the collection of answer sets of the extended programs.

Definition 1. A correspondence frame, or simply frame, F , is a triple (U , C, ρ), where
(i) U is a set of atoms, called the universe of F , (ii) C ⊆ PU , called the context of F ,
and (iii) ρ ⊆ 22U × 22U

.
For every program P, Q ∈ PU , P and Q are F -corresponding, in symbols P �F Q,

iff, for all R ∈ C, (AS(P ∪ R), AS(Q ∪ R)) ∈ ρ.

1 We write abc instead of {a, b, c}, a instead of {a}, etc.

Towards Implementations for Advanced Equivalence Checking in ASP 193

It is quite obvious that the equivalence notions presented in the previous section
are special cases of F -correspondence. Indeed, for any universe U and any A ⊆ U ,
strong equivalence relative to A coincides with (U , PA, =)-correspondence, and ordi-
nary equivalence coincides with (U , {∅}, =)-correspondence.

Following Eiter et al. [13], we are mainly concerned with correspondence frames of
form (U , PA, ⊆B) and (U , PA, =B), where A, B ⊆ U are sets of atoms, and ⊆B and
=B are projections of the standard subset and set-equality relation, respectively, defined
as follows: for any set S, S′ of interpretations, S ⊆B S′ iff S|B ⊆ S′|B , and S =B S′

iff S|B = S′|B .
A correspondence problem, Π, (over U) is a quadruple (P, Q, C, ρ), where P, Q ∈

PU and (U , C, ρ) is a frame. We say that Π holds iff P �(U ,C,ρ) Q holds. For a cor-
respondence problem Π = (P, Q, C, ρ) over U , we usually leave U implicit, assuming
that it consists of all atoms occurring in P , Q, and C. We call Π an equivalence problem
if ρ is given by =B, and an inclusion problem if ρ is given by ⊆B , for some B ⊆ U .
Note that (P, Q, C, =B) holds iff (P, Q, C, ⊆B) and (Q, P, C, ⊆B) jointly hold.

For inclusion problems, we define the concept of a counterexample, which is easily
extended to equivalence problems.

Definition 2. A pair (Y, R), where Y is an interpretation and R ∈ C, is a counterex-
ample for (P, Q, C, ⊆B) iff (i) Y ∈ AS(P ∪ R) and (ii) Z /∈ AS(Q ∪ R), for each Z
with Z =B Y .

Example 2. We have already seen that for P , Q from Example 1, (P, Q, PA, ⊆U) does
not hold for A = {a, b} and U = {a, b, c, d}. What happens if we restrict the com-
parison of answer sets from U to A, i.e., does (P, Q, PA, ⊆A) hold? Note that, e.g.,
AS(P ∪ {a ←})|A = AS(Q ∪ {a ←})|A = {ab}. Hence, the counterexample
(abc, {a ←}) from Example 1 is no longer a counterexample for (P, Q, PA, ⊆A). As
we shall see below, there still exist counterexamples for this problem, but these are more
involving. �

As shown by Eiter et al. [13], inclusion problems with projection may possess only
counterexamples which are exponential in the size of the compared programs. Hence,
instead of guessing concrete programs and checking whether they are counterexamples
for a given inclusion problem, Eiter et al. provide a semantical structure, called spoiler,
which operates on the compared programs alone, together with the notion of a partial
spoiler.

Definition 3. Let Π = (P, Q, PA, ⊆B) be an inclusion problem, Y an interpretation,
and S ⊆ SEA(Q) ∩ {(X, Z) | Z =A∪B Y } a complete set of A-SE-interpretations.
The pair (Y, S) is a spoiler for Π iff

1. (Y, Y) ∈ SEA(P),
2. each (Z, Z) ∈ SEA(Q) such that Z =A∪B Y is also in S,
3. for each (Z, Z) ∈ S, some non-total (X, Z) ∈ S exists, and
4. for each non-total (X, Z) ∈ S, (X, Y) /∈ SEA(P).

For a spoiler (Y, S), the interpretation Y is referred to as a partial spoiler for Π.

194 H. Tompits and S. Woltran

Intuitively, in a spoiler (Y, S) for (P, Q, PA, ⊆B), the interpretation Y is an answer
set of P ∪ R but not of Q ∪ R, where R is a program which is semantically given by S.

We collect and rephrase the main results from [13].

Proposition 3. Let Π = (P, Q, PA, ⊆B) be an inclusion problem. Then, Π holds iff
there exists no spoiler for Π.

As an immediate consequence, we obtain that a correspondence problem Π holds iff
there exists no partial spoiler for Π. Moreover, we are able to connect spoilers to coun-
terexamples using the generic programs PS,A, as introduced in Section 2.

Proposition 4. If (Y, S) is a spoiler for an inclusion problem Π = (P, Q, PA, ⊆B),
then (Y, PS,A) is a counterexample for Π.

Example 3. For P and Q from Example 1 and A = {a, b}, the pairs (Y1, S) and
(Y2, S) are the only spoilers for (P, Q, PA, ⊆A), where Y1 = {abc} and Y2 = {abd}
are the partial spoilers for (P, Q, PA, ⊆A), and S = {(a, abd), (b, abc), (abc, abc),
(abd, abd)}. Invoking our program construction, we obtain PS,A = {⊥ ← a,not b;
⊥ ← b,not a; ⊥ ← not a,not b; a ∨ b ←}. One can verify that both Y1 and Y2 are
contained in AS(P1 ∪ PS,A), while no interpretation Z with Z =A Y1 is an answer set
of Q ∪ PS,A. �

Finally, we recall the computational complexity of checking whether an equivalence
or inclusion problem holds. As shown by Eiter et al. [13], deciding (P, Q, PA, =B) is
of a significantly higher complexity compared to more restricted notions of equiva-
lence, like strong equivalence (which is coNP-complete) or ordinary equivalence and
relativised strong equivalence (which both are ΠP

2 -complete).

Proposition 5 ([13]). Given programs P , Q, sets of atoms A, B, and ρ ∈ {⊆B, =B},
deciding whether a correspondence problem (P, Q, PA, ρ) holds is ΠP

4 -complete.

4 Reductions

In this section, we provide two approaches to map inclusion problems into quantified
Boolean formulas. By combining the reduction for a problem (P, Q, PA, ⊆B) with that
of (Q, P, PA, ⊆B), we straightforwardly obtain a method to check whether an equiva-
lence problem (P, Q, PA, =B) holds. We start with a brief recapitulation of the basic
facts about the quantified version of propositional logic.

4.1 Quantified Propositional Logic

Quantified propositional logic is an extension of classical propositional logic in which
formulas are permitted to contain quantifications over propositional variables. More for-
mally, formulas of quantified propositional logic are built from atomic formulas using
the primitive sentential connectives ¬ and ∧, the logical constant �, and unary oper-
ators of form ∀p (where p is some atom), called universal quantifiers. The operators
∨, →, and ↔, as well as the symbol ⊥, are defined from the primitive ones, ¬, ∧,
and �, as usual. Furthermore, similar to first-order logic, ∃p is defined as the operator

Towards Implementations for Advanced Equivalence Checking in ASP 195

¬∀p¬, referred to as an existential quantifier. Formulas of this language are also called
quantified Boolean formulas (QBFs) and we denote them by Greek upper-case letters.

An occurrence of an atom p is free in a QBF Φ if it does not occur in the scope of
a quantifier Qp, Q ∈ {∃, ∀}. In what follows, we tacitly assume that every subformula
Qp Φ of a QBF contains a free occurrence of p in Φ, and for two different subformulas
Qp Φ, Qq Ψ of a QBF we require p
= q. Moreover, given a finite set P of atoms, QP Ψ
stands for any QBF Qp1Qp2 . . . QpnΨ such that the variables p1, . . . , pn are pairwise
distinct and P = {p1, . . . , pn}.

Towards the definition of the semantics of QBFs, we introduce the following nota-
tion: For an atom p (resp., a set P of atoms) and a set I of atoms, Φ[p/I] (resp., Φ[P/I])
denotes the QBF resulting from Φ by replacing each free occurrence of p (resp., each
p ∈ P) in Φ by � if p ∈ I and by ⊥ otherwise.

For an interpretation I and a QBF Φ, the relation I |= Φ is inductively defined as
follows:

1. I |= �,
2. I |= p iff p ∈ I ,
3. I |= ¬Φ iff I
|= Φ,
4. I |= Φ1 ∧ Φ2 iff I |= Φ1 and I |= Φ2, and
5. I |= ∀p Φ iff I |= Φ[p/{p}] and I |= Φ[p/∅].

From these conditions, corresponding ones for ⊥, ∨, →, ↔, and ∃p, for any p,
follow in the usual way.

A QBF Φ is true under I iff I |= Φ, otherwise Φ is false under I . A QBF is valid
iff it is true under any interpretation. Note that a closed QBF, i.e., a QBF without free
variable occurrences, is either true under any I or false under any I .

A QBF Φ is said to be in prenex normal form iff it is closed and of the form

QnPn . . . Q1P1 φ, (2)

where n ≥ 0, φ is a propositional formula, Qi ∈ {∃, ∀} such that Qi
= Qi+1 for
1 ≤ i ≤ n − 1, (P1, . . . , Pn) is a partition of the propositional variables occurring in φ,
and Pi
= ∅, for each 1 ≤ i ≤ n. We call a QBF of the form (2) an (n, Qn)-QBF.

Without going into details, we mention that any closed QBF Φ is easily transformed
into an equivalent QBF in prenex normal form such that each quantifier occurrence from
the original QBF corresponds to a quantifier occurrence in the prenex normal form. Let
us call such a QBF the prenex normal form of Φ. Similar as in first-order logic, however,
there are different ways how to obtain an equivalent prenex QBF (cf. [8] for more details
on this issue).

The following property is essential:

Proposition 6. For every k ≥ 0, deciding the truth of a given (k, ∃)-QBF (resp., (k, ∀)-
QBF) is ΣP

k -complete (resp., ΠP
k -complete).

Hence, any decision problem D in ΣP
k (resp., ΠP

k) can be mapped in polynomial
time to a (k, ∃)-QBF (resp., (k, ∀)-QBF) Φ such that D holds iff Φ is valid. In particular,
Proposition 5 implies thus that any correspondence problem (P, Q, PA, ρ), for ρ ∈
{⊆B, =B}, can be reduced in polynomial time to a (4, ∀)-QBF. In what follows, we
construct two such mappings which are actually constructible in linear space and time.

196 H. Tompits and S. Woltran

4.2 Encodings

For our encodings, we use the following building blocks. The idea hereby is to use sets
of globally new atoms in order to refer to different assignments of the atoms from the
compared program within a single formula. More formally, given an indexed set V of
atoms, we assume (pairwise) disjoint copies Vi = {vi | v ∈ V }, for every i ≥ 1.
Furthermore, we introduce the following abbreviations:

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj),
2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi), and
3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is clearly equivalent to
∧

v∈V (vi ↔ vj).

Proposition 7. Let I be an interpretation, and A, X, Y ⊆ V such that, for some i, j,
I|Vi = Xi and I|Vj = Yj . Then,

1. X |A ⊆ Y |A iff I |= (Ai ≤ Aj),
2. X |A ⊂ Y |A iff I |= (Ai < Aj), and
3. X |A = Y |A iff I |= (Ai = Aj).

In accordance to the above renaming of atoms, we use subscripts as a general renaming
schema for formulas and rules. That is, for each i ≥ 1, αi expresses the result of
replacing each occurrence of an atom p in α by pi, where α is any formula or rule.
Furthermore, for a rule r of form (1), we define H(r) = a1 ∨ · · · ∨ al, B+(r) =
al+1 ∧ · · · ∧ am, and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunctions
with ⊥ and empty conjunctions with �. Finally, for a program P , we define Pi,j =∧

r∈P

(
(B+(ri) ∧ B−(rj)) → H(ri)

)
.

Proposition 8. Let P be a program over atoms V , I an interpretation, and X, Y ⊆ V
such that, for some i, j, I|Vi = Xi and I|Vj = Yj . Then, X |= PY iff I |= Pi,j .

Intuitively, this allows to refer to the reduct of P (in case that i
= j) and to the
classical formula associated to P (in case that i = j) simultaneously.

The central characterisation towards our encodings, given next, replaces the concept
of an A-SE-model in Definition 3 by tests over program reducts.

Proposition 9. An interpretation Y is a partial spoiler for (P, Q, PA, ⊆B) iff

(a) Y |= P ,
(b) for each Y ′ ⊂ Y with Y ′ =A Y , Y ′
|= PY , and
(c) for each Z =A∪B Y , Z |= Q implies the existence of an X ⊂ Z such that X |= QZ

and, if X ⊂ Z|A = Y |A, then, for each X ′ ⊆ Y with X ′ =A X , X ′
|= PY .

Definition 4. Let P, Q be programs over V and let A, B ⊆ V . Furthermore, consider
Π = (P, Q, PA, ⊆B). Then,

SΠ(V1) := P1,1 ∧ S1(P, A) ∧ ∀V3
(
S2(Q, A, B) → S3(P, Q, A)

)
, where

S1(P, A) := ∀V2
(
((A2 = A1) ∧ (V2 < V1)) → ¬P2,1

)
,

S2(Q, A, B) :=
(
(A ∪ B)3 = (A ∪ B)1

)
∧ Q3,3, and

S3(P, Q, A) := ∃V4
(
(V4 < V3) ∧ Q4,3 ∧

(
(A4 < A1) →

∀V5
(
((A5 = A4) ∧ (V5 ≤ V1)) → ¬P5,1

)))
.

Towards Implementations for Advanced Equivalence Checking in ASP 197

Lemma 1. Let P and Q be programs over V , and let A, B, Y ⊆ V . Then, Y is a
partial spoiler for Π = (P, Q, PA, ⊆B) iff Y1 |= SΠ(V1).

We do not give a formal proof here, but just provide the following explanations.
The subformula P1,1 ∧ S1(P, A) of SΠ(V1) takes care of Conditions (a) and (b) from
Proposition 9; we use atoms V1 to refer to Y , and atoms V2 to refer to the Y ′ therein.
Note that (A2 = A1) ∧ (V2 < V1) thus guarantees that we take only those Y ′ for
testing Y ′ |= PY into account, where Y ′ ⊂ Y and Y ′ =A Y . The next subformula,
S2(Q, A, B), “returns” all Z (via assignments to V3) such that Z =A∪B Y and Z |= Q.
Finally, for each such Z , S3(P, Q, A) has to be true. On account of (V4 < V3), we let
the assignments to V4 (which refer to the X in Item (c) of Proposition 9) be a proper
subset of those to V3, i.e., we require X ⊂ Z . Then we test whether X |= QZ via Q4,3,
as follows from Proposition 8, and in case that X |A ⊂ Y |A (checked via A4 < A3),
the remaining formula encodes the test whether for all X ′ (assignments to V5) with
X ′ =A X and X ′ ⊆ Y , X ′
|= PY , i.e., P5,1 is false under the current assignment to
V1 and V5.

In what follows, we give a more compact encoding, which in particular reduces the
number of universal quantifications. The idea is to save on the fixed assignments as,
e.g., in S2(Q, A, B) where we have (A ∪ B)3 = (A ∪ B)1. That is, in S2(Q, A, B),
we implicitly ignore all assignments to V3 where atoms from A or B have different
truth values as those in V1. Therefore, it makes sense to consider only atoms from
V3 \ (A3 ∪ B3) and using A1 ∪ B1 instead of A3 ∪ B3 in Q3,3.

This calls for a more subtle renaming schema for programs, however. Let V be a set
of indexed atoms, and let r be a rule. Then, rVi,k results from r by replacing each atom
x in r by xi, providing xi ∈ V , and by xk otherwise. For a program P , we define

PV
i,j,k :=

∧

r∈P

(
(B+(rVi,k) ∧ B−(rVj,k)) → H(rVi,k)

)
.

Moreover, for every i ≥ 1, every set V of atoms, and every set C, V C
i := (V \ C)i.

Definition 5. Let P, Q be programs over V and A, B ⊆ V . Furthermore, let Π =
(P, Q, PA, ⊆B) be an inclusion problem and V = V1 ∪ V A

2 ∪ V A∪B
3 ∪ V4 ∪ V A

5 . Then,

T Π(V1) := P1,1 ∧ T 1(P, A, V) ∧ ∀V A∪B
3

(
QV

3,1,1 → T 3(P, Q, A, V)
)
, where

T 1(P, A, V) := ∀V A
2

(
(V A

2 < V A
1) → ¬PV

2,1,1
)

and

T 3(P, Q, A, V) := ∃V4
((

V4 < ((A∪B)1 ∪ V A∪B
3)

)
∧ QV

4,3,1 ∧
(
(A4 < A1) →

∀V A
5 ((V A

5 ≤ V A
1) → ¬PV

5,1,4)
))

.

Note that the subformula V4 < ((A∪B)1 ∪ V A∪B
3) in T 3(P, Q, A, V) denotes

((
(A ∪ B)4 ≤ (A ∪ B)1

)
∧ (V4 ≤ V1)

)
∧ ¬

((
(A ∪ B)1 ≤ (A ∪ B)4)

)
∧ (V1 ≤ V4)

)
.

Also note that, compared to our first encoding SΠ(V1), we do not have a pendant to
subformula S2 here, which reduces simply to QV

3,1,1 due to the new renaming schema.

Lemma 2. Let P, Q be programs over V , and let A, B, Y ⊆ V . Then, Y is a partial
spoiler for Π = (P, Q, PA, ⊆B) iff Y1 |= T Π(V1).

198 H. Tompits and S. Woltran

Example 4. Consider the two programs P = {a ∨ b ← c} and Q = {a ← c,not b},
A = {a}, and B = {b}. The encodings for the problem Π = (P, Q, PA, ⊆B) are as
follows:

SΠ(V1) = (c1 → a1 ∨ b1) ∧ S1(P, A) ∧
∀a3b3c3(S2(Q, A, B) → S3(P, Q, A)),

S1(P, A) = ∀a2b2c2
(
(a2 ↔ a1) ∧ ({b2, c2} < {b1, c1}) → ¬(c2 → a2 ∨ b2)

)
,

S2(Q, A, B) = (a3 ↔ a1) ∧ (b3 ↔ b1) ∧ (c3 ∧ ¬b3 → a3),
S3(P, Q, A) = ∃a4b4c4

(
({a4, b4, c4} < {a3, b3, c3}) ∧ (c4 ∧ ¬b3 → a4) ∧
(({a4} < {a1}) → ∀a5b5c5((a5 ↔ a4) ∧
({a5, b5, c5} ≤ {a1, b1, c1}) → ¬(c5 → a5 ∨ b5)))

)
;

T Π(V1) = (c1 → a1 ∨ b1) ∧ T 1(P, A, V) ∧
∀c3

(
(c3 ∧ ¬b1 → a1) → T 3(P, Q, A, V)

)
,

T 1(P, A, V) = ∀b2c2(({b2, c2} < {b1, c1}) → ¬(c2 → a1 ∨ b2),
T 3(P, Q, A, V) = ∃a4b4c4

(
({a4, b4, c4} < {a1, b1, c3}) ∧ (c4 ∧ ¬b1 → a4) ∧
(({a4} < {a1}) → ∀b5c5(({b5, c5} ≤ {b1, c1}) →
¬(c5 → a4 ∨ b5)))

)
.

As mentioned before, the optimised encoding T Π(·) saves “fixed assignments”, like
(a2 ↔ a1), which occur in SΠ(·), by employing the advanced renaming schema in
such a way that, instead of atom a2, atom a1 is used in the encoding. One effect of this
refinement is the decrease of universally quantified atoms. �

Theorem 1. For any inclusion problem Π = (P, Q, PA, ⊆B), the following statements
are equivalent: (i) Π holds; (ii) ¬∃V1SΠ(V1) is valid; and (iii) ¬∃V1T Π(V1) is valid.

Corollary 1. Let Π = (P, Q, PA, =B) be an equivalence problem. Then, for Π′ =
(P, Q, PA, ⊆B) and Π′′ = (Q, P, PA, ⊆B), the following statements are equivalent:
(i) Π holds; (ii) ¬∃V1SΠ′(V1) ∧ ¬∃V1SΠ′′(V1) is valid; and (iii) ¬∃V1T Π′(V1) ∧
¬∃V1T Π′′(V1) is valid.

4.3 Applicability and Adequacy of the Encodings

In order to employ off-the-shelves QBF-solvers for deciding answer-set correspon-
dence, we have to transform above encodings into prenex normal form. The propo-
sitional part of these prenex QBFs additionally has to be reduced to CNF, which can be
accomplished by usual techniques. We thus focus here just on possible prenex normal
forms of our encodings.

Recall that there are several ways to transform a QBF into prenex normal form. For
our encodings, the situation is as follows. Take, e.g., the existential closure of SΠ(V1),
given by ∃V1SΠ(V1): for this closed QBF, different prenex forms can be obtained, e.g.,

∃V1∀(V2 ∪ V3)∃V4∀V5 φ or ∃V1∀V3∃V4∀(V5 ∪ V2)φ,

Towards Implementations for Advanced Equivalence Checking in ASP 199

where φ represents the so-called propositional skeleton of the QBF SΠ(V1) (cf. [8]),
which, roughly speaking, results from SΠ(V1) by deleting all quantifiers. For later pur-
poses, we use in the following the second variant, and define Sp

Π := ∃V1∀V3∃V4∀(V5 ∪
V2)φ. Likewise, we use T p

Π := ∃V1∀V A∪B
3 ∃V4∀(V A

5 ∪ V A
2)ψ as a prenex form for

∃V1T Π(V1), where ψ is the propositional skeleton of T Π(V1).

Theorem 2. For any inclusion problem Π = (P, Q, PA, ⊆B), the following statements
are equivalent: (i) Π holds; (ii) ¬Sp

Π is valid; (iii) ¬T p
Π is valid.

These prenex forms also give evidence that our encodings are adequate in a certain
theoretical sense: Following [3], given decision problems D ⊆ L and D′ ⊆ L′ in
languages L and L′, respectively, we call an encoding f : L → L′ adequate iff, for
each s ∈ L, (i) s ∈ D iff f(s) ∈ D′, (ii) f(s) is constructible in polynomial time from
s, and (iii) deciding whether f(s) ∈ D′ is not computationally harder than deciding
whether s ∈ D.

Now, both ¬Sp
Π and ¬T p

Π obviously satisfy these conditions, for every inclusion
problem Π. Indeed, by the above theorem, we have that Π holds iff ¬Sp

Π is valid.
Moreover, ¬Sp

Π is computable in polynomial time (indeed, in linear time) in the size
of Π (as easily verified from the definitions). Finally, ¬Sp

Π can be transformed into a
(4, ∀)-QBF in polynomial time. Hence, Proposition 6 implies that determining the truth
of ¬Sp

Π is thus in the same complexity class (viz. ΠP
4) as the encoded problem. All

these properties hold for ¬T p
Π as well. This proves the adequacy of our encodings.

5 Obtaining Counterexamples

In this section, we provide a theoretical basis how to use our encodings to obtain coun-
terexamples for an inclusion problem (P, Q, PA, ⊆B). To this end, we use the concept
of policies for prenex QBFs, along the lines of Coste-Marquis et al. [4].

Definition 6. The set P (k, Q, Xk, . . . , X1) of policies for a (k, Q)-QBF of the form
QkXk . . . Q1X1φ is inductively defined as follows:

1. P (0, Q) = {λ},
2. P (k, ∃, Xk, . . . , X1) = {(I, π) | I ⊆ Xk, π ∈ P (k − 1, ∀, Xk−1, . . . , X1)}, and
3. P (k, ∀, Xk, . . . , X1) = {π | π : 2Xk → P (k − 1, ∃, Xk−1, . . . , X1)},

where λ represents the empty policy.

Note that policies for (k, ∃)-QBFs are pairs (I, π), where I is an interpretation over
atoms from the outermost group of quantifiers and π is a policy itself, whereas poli-
cies for (k, ∀)-QBFs are functions assigning to each interpretation over atoms from the
outermost group of quantifiers a policy.

Definition 7. A (k, Q)-QBF Φ = QkXk . . . Q1X1φ is satisfied by a policy π (for Φ) iff
one the following conditions applies (inductively):

1. k = 0, π = λ, and φ is true,
2. k > 0, Q = ∃, π = (I, π′), and ∀Xk−1 . . . Q1X1φ[Xk/I] is satisfied by π′,
3. k > 0, Q = ∀, and for any I ⊆ Xk, ∃Xk−1 . . . Q1X1φ[Xk/I] is satisfied by π(I).

Denote by SP(Φ) the set of satisfying policies for a prenex QBF Φ.

200 H. Tompits and S. Woltran

Proposition 10. A prenex QBF Φ is valid iff SP(Φ)
= ∅.

Example 5. Consider φ = (p → q) ∧ (q → p) and the following QBFs:2

Φ1 = ∃pq φ, Φ2 = ∀pq φ, Φ3 = ∃p ∀q φ, and Φ4 = ∀p ∃q φ.

The set of policies for Φ1 is given by {(I, λ) | I ⊆ {p, q}}, i.e., the satisfying policies
for Φ1 are in a one-to-one correspondence to the models of φ, and are given by (∅, λ)
and ({p, q}, λ). For Φ2, the only policy is the function π assigning to each I ⊆ {p, q}
the empty policy λ. Note that π is not satisfying Φ2 since, for instance, with I = {p},
we get π(I) = λ, but φ[{p, q}/I] = (� → ⊥)∧(⊥ → �) is not true. For Φ3, we get as
policies π1 = ({p}; π′) and π2 = (∅; π′), where π′ is defined as π′({q}) = π′(∅) = λ.
It can be shown that neither π1 nor π2 satisfy Φ3, by similar arguments as for the case
of Φ2. Finally, Φ4 yields four policies, given as follows:

π(p) = (q, λ), π(∅) = (q, λ); π′(p) = (q, λ), π′(∅) = (∅, λ);
π′′(p) = (∅, λ), π′′(∅) = (q, λ); π′′′(p) = (∅, λ), π′′′(∅) = (∅, λ).

One can verify that π′ is the only satisfying policy for Φ4. �

We now use the concept of policies to obtain the counterexamples from the satis-
fying policies of our encodings. Note that, in the definition below, we make use of our
renaming schema as used in the encodings; e.g., Z3 = {z3 | z ∈ Z}.

Definition 8. Let Π = (P, Q, PA, ⊆B) be an inclusion problem. Furthermore, let Sp
Π

and T p
Π be as in Subsection 4.3 and Ω ∈ {S, T }. Then,

σ(Ω, Π) := {(Y, ΣΩ,Y,π) | (Y1, π) ∈ SP(Ωp
Π)},

where

ΣS,Y,π := {(X, Z), (Z, Z) | Z =A∪B Y, (Z, Z) ∈ SEA(Q),
π(Z3) = (X4, π

′), for some π′} and

ΣT ,Y,π := {(X, Y +̇Z), (Y +̇Z, Y +̇Z) | (Y +̇Z, Y +̇Z) ∈ SEA(Q),
π(Z3) = (X4, π

′), for some π′},

and Y +̇Z stands for Y |A∪B ∪ Z .

These two projections, σ(S, ·) and σ(T , ·), on the satisfying policies for our two
encodings are actually identical. Hence, our final two results in this section apply to
both encodings.

Theorem 3. Let Π = (P, Q, PA, ⊆B) be an inclusion problem and Ω ∈ {S, T }. Then,
each (Y, Σ) ∈ σ(Ω, Π) is a spoiler for Π.

In view of the construction of Proposition 2, we can thus construct counterexamples
directly from the satisfying policies of our encodings.

2 In what follows, we sometimes omit brackets “{” and “}” for ease of notation.

Towards Implementations for Advanced Equivalence Checking in ASP 201

Corollary 2. Let Π = (P, Q, PA, ⊆B) be an inclusion problem and Ω ∈ {S, T }.
Then, each (Y, Σ) ∈ σ(Ω, Π) induces a counterexample (Y, PΣ,A) for Π.

From Proposition 10 and Theorem 2, in turn, we obtain that in case no satisfying
policy for our encodings exists, the considered inclusion problem holds, and therefore
does not possess any counterexample.

6 Special Cases

Finally, we analyse our encodings in the light of special instantiations of correspon-
dence problems and give pointers to related work.

In what follows, for every equivalence problem Π = (P, Q, PA, =B), let Π′ =
(P, Q, PA, ⊆B) and Π′′ = (Q, P, PA, ⊆B) be the associated inclusion problems (see
also Corollary 1).

In case of strong equivalence [20], i.e., for problems of form Π = (P, Q, PA, =A)
with A = U , the encodings T Π′(V1) and T Π′′(V1), as defined in Definition 5, can be
drastically simplified since V A

2 = V A
3 = V A

5 = ∅. In particular, T Π′(V1) is equivalent
to

P1,1 ∧
(
Q1,1 → ∃V4

(
(V4 < V1) ∧ Q4,1 ∧ ¬P4,1

))
.

Note that the composed encoding for deciding strong equivalence, i.e., the closed QBF
¬∃V1T Π′(V1) ∧ ¬∃V1T Π′′(V1), amounts to a propositional unsatisfiability test, wit-
nessing the coNP-completeness complexity for checking strong equivalence [24]. One
can show that the reductions due to Pearce et al. [24] and Lin [21] for testing strong
equivalence in terms of propositional logic are simple variants thereof.

For strong equivalence relative to a set A of atoms [28], i.e., for Π being of form
(P, Q, PA, =B) with B = U but with arbitrary A, our encodings T Π′(V1) and T Π′′(V1)
can still be simplified since V A∪B

3 = ∅. Indeed, T p
Π′ and T p

Π′′ are then (2, ∃)-QBFs,
reflecting the complexity of strong equivalence relative to A, which is on the second
level of the polynomial hierarchy [28].

Next, we address the case of bounded relativised strong equivalence, as investigated
by Eiter et al. [11]. This notion applies to problems of form Π = (P, Q, PA, =), where
the cardinality of (U \ A), i.e., the number of atoms missing in A, is bounded by a
constant. Hereby, the sets V A

2 and V A
5 , which build the only universal quantifiers in the

encoding T Π′ (V1) for relativised strong equivalence, are sets of a fixed size. Hence,
we can eliminate these quantifiers according to the semantics and still get an adequate
encoding for this particular notion of equivalence. Consequently, bounded relativised
strong equivalence can be checked with a polynomial unsatisfiability test, once again
reflecting the coNP-complexity of this problem [11].

Finally, we address the case of ordinary equivalence, i.e., considering problems of
form Π = (P, Q, PA, =) with A = ∅, which is well known to be ΠP

2 -complete [23].
Here, the encoding SΠ′(V1) from Definition 4 can be simplified as follows:

P1,1 ∧ ∀V2
(
(V2 < V1) → ¬P2,1

)
∧

(
Q1,1 → ∃V4((V4 < V1) ∧ Q4,1)

)
.

One can observe that this encoding is related to encodings for computing stable models
via QBFs, as discussed by Egly et al. [6] and Pearce et al. [24]. Indeed, taking the two

202 H. Tompits and S. Woltran

main conjuncts from SΠ′(V1), Φ = P1,1 ∧∀V2
(
(V2 < V1) → ¬P2,1

)
and Ψ = Q1,1 →

∃V4
(
(V4 < V1) ∧ Q4,1)

)
, we get, for any assignment Y1 ⊆ V1, Y1 |= Φ iff Y is an

answer set of P , and Y1 |= Ψ iff Y is not an answer set of Q. Note that once more
the encodings reflect the inherent complexity of the reduced equivalence checking task,
viz. the ΠP

2 -completeness for ordinary equivalence in this case.

7 Conclusion

In this paper, we discussed a novel decision procedure for advanced program com-
parison in answer-set programming (ASP) via encodings into quantified propositional
logic. This approach was motivated by the high computational complexity we have to
face for this task, making a direct realisation via ASP hard to accomplish. Furthermore,
we showed how to obtain counterexamples from policies, which satisfy these encod-
ings, and discussed special instances of the considered correspondence problems. Since
currently practicably efficient solvers for quantified propositional logic are available,
they can be used as back-end inference engines to compute the correspondence prob-
lems under consideration using the proposed encodings. Moreover, since these corre-
spondence problems are one of the few natural problems lying above the second level
of the polynomial hierarchy, yet still part of the polynomial hierarchy, we believe that
our encodings also provide valuable benchmarks for evaluating QBF-solvers, for which
there is currently a lack of structured problems with more than one quantifier alternation
(see [17,16]).

References

1. O. Arieli. Paraconsistent Preferential Reasoning by Signed Quantified Boolean Formulae. In
Proc. ECAI’04, pages 773–777. IOS Press, 2004.

2. O. Arieli and M. Denecker. Reducing Preferential Paraconsistent Reasoning to Classical
Entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

3. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Representing Paraconsistent Reasoning
via Quantified Propositional Logic. In Inconsistency Tolerance, volume 3300 of LNCS, pages
84–118. Springer, 2005.

4. S. Coste-Marquis, H. Fargier, J. Lang, D. Le Berre, and P. Marquis. Func-
tion Problems for Quantified Boolean Formulas. Technical Report 2003-15-R, In-
stitut de Recherche en Informatique de Toulouse (IRIT), 2003. Available at
http://www.cril.univ-artois.fr/asqbf/pub/files/qbfeng7.pdf.

5. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief
Change Scenarios. Journal of Logic and Computation, 14(6):801–826, 2004.

6. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. In Proc. AAAI’00, pages 417–422. AAAI Press/MIT Press,
2000.

7. U. Egly, R. Pichler, and S. Woltran. On Deciding Subsumption Problems. Annals of Mathe-
matics and Artificial Intelligence, 43(1–4):255–294, 2005.

8. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenex-
ing Strategies for Quantified Boolean Formulas. In Proc. SAT’03, Selected Revised Papers,
volume 2919 of LNCS, pages 214–228. Springer, 2004.

http://www.cril.univ-artois.fr/asqbf/pub/files/qbfeng7.pdf

Towards Implementations for Advanced Equivalence Checking in ASP 203

9. T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltran. Complexity of Answer Set Checking
and Bounded Predicate Arities for Non-ground Answer Set Programming. In Proc. KR’04,
pages 377–387. AAAI Press, 2004.

10. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. In Proc. ICLP’03, number 2916 in LNCS, pages 224–238. Springer, 2003.

11. T. Eiter, M. Fink, and S. Woltran. Semantical Characterizations and Complexity of Equiv-
alences in Answer Set Programming. Technical Report INFSYS RR-1843-05-01, Institut
für Informationssysteme, Technische Universität Wien, Austria, 2005. To appear in ACM
Transactions on Computational Logic.

12. T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Modal Nonmonotonic Logics Revisited:
Efficient Encodings for the Basic Reasoning Tasks. In Proc. TABLEAUX’02, volume 2381
of LNCS, pages 100–114. Springer, 2002.

13. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer Set Program-
ming. In Proc. IJCAI’05, 2005.

14. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing, 9:365–385, 1991.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic
Satisfiability. Artificial Intelligence, 145:99–120, 2003.

16. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation, 2004. Available at http://www.qbflib.org/.

17. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF Arena: the SAT’03 Eval-
uation of QBF Solvers. In Proc. SAT’03, Selected Revised Papers, volume 2919 of LNCS,
pages 468–485. Springer, 2004.

18. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. Technical Report cs.AI/0211004,
arXiv.org. To appear in ACM Transactions on Computational Logic.

19. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formu-
las. In Proc. TABLEAUX’02, volume 2381 of LNCS, pages 160–175. Springer, 2002.

20. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

21. F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. In Proc. KR’02, pages 170–176. Morgan Kaufmann, 2002.

22. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
In Proc. AAAI’02, pages 112–117. AAAI Press / MIT Press, 2002.

23. E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunc-
tive Case. In Proc. LPNMR’04, volume 2923 of LNCS, pages 180–193. Springer, 2004.

24. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Programs
with Nested Expressions. In Proc. EPIA’01, volume 2258 of LNCS, pages 306–320. Springer,
2001.

25. J. Rintanen. Constructing Conditional Plans by a Theorem Prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

26. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138:181–234, 2002.

27. H. Turner. Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.
Theory and Practice of Logic Programming, 3(4-5):602–622, 2003.

28. S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer Set Pro-
gramming. In Proc. JELIA’04, volume 3229 of LNCS, pages 161–173. Springer, 2004.

http://www.qbflib.org/

	Introduction
	Preliminaries
	Correspondence Checking
	Reductions
	Quantified Propositional Logic
	Encodings
	Applicability and Adequacy of the Encodings

	Obtaining Counterexamples
	Special Cases
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

