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Abstract. Answer-set programming (ASP) is a logic programming paradigm for
declarative problem solving which gained increasing importance during the last
decade. However, so far hardly any tools exist supporting software engineers in
developing answer-set programs, and there are no standard methodologies for
handling unexpected outcomes of a program. Thus, writing answer-set programs
is sometimes quite intricate, especially when large programs for real-worldappli-
cations are required. In order to increase the usability of ASP, the development of
appropriate debugging strategies is therefore vital. In this paper, we describe the
systemspock, a debugging support tool for answer-set programs making use of
ASP itself. The implemented techniques maintain the declarative nature of ASP
within the debugging process and are independent from the actual computation
of answer sets.

1 Introduction

Answer-set programming(ASP) [1] is an important logic-programming paradigm for
declarative problem solving, based on principles of nonmonotonic reasoning. Any
answer-set program consists of logical rules specifying a problem, for which each of
the program’s answer sets is a solution. Since every rule of aprogram might signifi-
cantly influence the resulting answer sets, it is hard to find the sources of errors in large
programs in case of a mismatch between the program’s output and the user’s expecta-
tions. For example, consider the problem of inviting gueststo a party at the renowned
starship Enterprise. Sulu wants to give a party for his colleagues, however facing the
complication that some of them would appear only if certain others do or do not attend
the festivity. Knowing the social preferences of potentialparty guests, Sulu tries to get
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an overview of possible invitation scenarios by means of answer-set programming and
ends up with the following rules for a programΠinv , where each atom represents the
actual appearing of a potential party visitor:

r1 = jim ← uhura, r4 = chekov ← not bones ,
r2 = jim ← not chekov , r5 = bones ← jim,
r3 = uhura ← chekov ,not scotty , r6 = scotty ← not uhura.

This program has two answer sets, viz.{chekov , scotty} and {bones , jim, scotty}.
Sulu is quite perplexed by this result, wondering why there is a scenario where only
Chekov and Scotty attend who merely have a neutral relation to each other rather than
a friendship. On the other hand, Sulu is astonished as there is no satisfactory possibility
such that Uhura and Jim can jointly be invited. The only way out appears to consult his
half-Vulcan half-Human friend, Spock, for advice.

In this paper, we describe a system helping developers of answer-set programs to
detect and locate errors in their programs. We call our systemspock, making reference
to its ability of supporting users detecting errors based onprinciples of logic, since the
implemented techniques make use of ASP itself for debugginganswer-set programs. In
contrast to other debugging strategies in logic programming, our methodology works
independently of specific ASP solvers and preserves the declarative nature of ASP.

The theoretical background for our approach was introducedin previous work [2],
and relies on atagging techniqueas used by Delgrande et al. [3] for compiling or-
dered logic programs into standard ones. In our approach, a program to debug,Π, is
translated into another program,TK[Π], equipped with several meta atoms, calledtags,
which allow for controlling the formation of answer sets andreflect different properties
(like the applicability status of a rule, for instance). This way, we have the possibility
of investigating the actual answer sets ofΠ. TK[Π] can be regarded as akernel trans-
formationthat may be extended for further debugging techniques. One such extension,
featured byspock, is the extrapolation of non-existing answer sets in combination
with explanations why an interpretation is not an answer setof Π.

The paper is organised as follows. Section 2 gives the relevant prerequisites about
ASP, while Section 3 reviews the theoretical background of our tool. The main features
of our tool, then, are described in Section 4. The paper is concluded with Section 5
containing some general remarks and a discussion about related work. An appendix
lists specific commands ofspock.

2 Background

A (normal) logic program(over an alphabetA) is a finite set of rules of the form

a← b1, . . . , bm,not c1, . . . ,not cn, (1)

wherea andbi, cj ∈ A are atoms, for0 ≤ i ≤ m, 0 ≤ j ≤ n. A literal is an atoma
or its negationnot a. For a ruler as in (1), lethead(r) = a be theheadof r and
body(r) = {b1, . . . , bm,not c1, . . . ,not cn} the body of r. Furthermore, we define
body+(r) = {b1, . . . , bm} andbody−(r) = {c1, . . . , cn}. The set of atoms occurring



in a programΠ is denoted byAt(Π). For collecting rules sharing the same heada,
we usedef (a,Π) = {r ∈ Π | head(r) = a}. For uniformity, we assume that any
integrity constraint← body(r) is expressed as a rulew ← body(r),not w, wherew
is a globally new atom. Moreover, we allow nested expressions of form not not a,
wherea is some atom, in the body of rules. Such rules are identified with normal rules
in which not not a is replaced bynot a⋆, wherea⋆ is a globally new atom, together
with an additional rulea⋆ ← not a. We also take advantage of (singular)choice rules
of form {a} ← body(r) [4], which are an abbreviation fora ← body(r),not not a.
A programΠ is positiveif body−(r) = ∅, for all r ∈ Π. By Cn(Π), we denote the
smallest model of a positive programΠ.

The definition of an answer set is as follows. Thereduct, ΠX , of a programΠ
relative to a setX of atoms is the positive program{head(r) ← body+(r) | r ∈ Π,
body−(r) ∩X = ∅}. Then,X is ananswer setof Π iff Cn(ΠX) = X. The set of all
answer sets of a programΠ is denoted byAS (Π).

An alternative characterisation of answer sets is providedby the Lin-Zhao Theo-
rem [5], qualifying answer sets as models of thecompletionof a program in the sense
of Clark [6] and theloop formulasof the program. We make use of this perspective on
the answer-set semantics to identify sources of errors whenextrapolating non-existing
answer sets as described in the following section.

3 Tag-Based Debugging Methodology

Our approach relies on thetagging techniqueas used by Delgrande et al. [3]. In what
follows, we sketch the theoretical principles underlying our systemspock. For a more
detailed discussion, we refer to Brain et al. [2].

The basic idea of tagging is to decompose the rules of a program Π overA into
several other rules, in order to gain control over their applicability and for analysing
their mutual interferences. To be able to refer to individual rules, we use a bijection,n,
assigning each ruler overA a unique namenr. We call a pairnr : r, comprising a
ruler and its namenr, a labeled rule, and a set of labeled rules alabeled program. The
semantics of a labeled programΠ is given by the semantics of the ordinary program
{r | nr : r ∈ Π}. In view of this straightforward correspondence between programs
(resp., rules) and labeled programs (resp., labeled rules), we will usually not distinguish
between them in the sequel.

For decomposing the rules of a program, so-calledtagsare introduced, which are
new, pairwise distinct propositional atoms, given byap(nr), bl(nr), ok(nr), ok(nr),
ko(nr), abp(nr), abc(a), andabl(a), for eachr ∈ Π and a ∈ At(Π). Intuitively,
ap(nr) and bl(nr) indicate whether some ruler is currently applicable or blocked,
respectively, whileok(nr), ok(nr), andko(nr) are used to include or exclude particular
rules from a debugging request. Furthermore, theabnormality tagsabp(nr), abc(a),
andabl(a) inform the user what went wrong in case no answer set for the program
under consideration exists. We explain their particular functioning in detail below.

In a first transformation step, thekernel transformation, TK, rewrites a given pro-
gram,Π, such that, for everyr ∈ Π, ap(nr) (resp.,bl(nr)) is contained in an answer
set ofTK[Π] wheneverr can be applied (resp., is blocked). Apart from tags, the answer



sets ofΠ andTK[Π] are preserved. Formally,TK maps a logic programΠ overA into
another programTK[Π] over an extended alphabetA+ in the following way: for every
r ∈ Π, b ∈ body+(r), andc ∈ body−(r), TK[Π] contains

head(r)← ap(nr),not ko(nr), (2)

ap(nr)← ok(nr), body(r), (3)

bl(nr)← ok(nr),not b, (4)

bl(nr)← ok(nr),not not c, (5)

ok(nr)← not ok(nr). (6)

Intuitively, everyr ∈ Π is split into Rules (2) and (3), separating the head and the body
of r, thereby decoupling the applicability ofr, indicated by the tagap(nr), from the
conclusionhead(r) of r. Rules (4) and (5) derive tagsbl(nr) wheneverr is blocked.
The tagok(nr), along withok(nr), provides a handle for switchingr “on or off”.

The programTK[Π] plays the role of a basic module for various debugging requests.
Extension modules may add new rules, using tagsok(nr), ok(nr), andko(nr) for ma-
nipulating the applicability of a ruler, in order to analyse the behaviour ofΠ.

Example 1.Reconsider the programΠinv from the introduction, having the answer sets
{chekov , scotty} and{bones , jim, scotty}. The answer sets ofTK[Πinv ] are

X1 = {chekov , scotty , ap(nr4
), ap(nr6

), bl(nr1
), bl(nr2

), bl(nr3
), bl(nr5

)} ∪OK ,

and

X2 = {bones , jim, scotty , ap(nr2
), ap(nr5

), ap(nr6
), bl(nr1

), bl(nr3
), bl(nr4

)}∪OK ,

whereOK = {ok(nr1
), ok(nr2

), ok(nr3
), ok(nr4

), ok(nr5
), ok(nr6

)}. The presence
of ap(nr4

) in X1 indicates that ruler4 is applicable with respect toX1, and hence
chekov ∈ X1 but bones /∈ X1, while bl(nr3

) ∈ X1 indicates thatr3 is blocked with
respect toX1. This is becausescotty ∈ X1. ♦

As stated above, the tagged kernel programTK[Π] can be used as a basic submod-
ule for more enhanced programs, facilitating debugging requests. One such extension
scenario is the extrapolation of non-existing answer sets of a programΠ overA. Using
further translations of the original program, we may investigate why an interpretation
is not an answer set ofΠ. An answer set,X+, of the transformed program offers in-
formation about the interpretationX = X+ ∩ A of Π in form of the three abnormal-
ity tags,abp(nr), abc(a), andabl(a). Their presence signals whyX is not an answer
set, by detecting problems originating from the program, its completion, and its non-
trivial loop formulas, respectively. For the detection of these three problem sources, we
have the corresponding program translationsTP, TC, andTL, which are used together
with the kernel tagging of the respective program, yieldingan overall transformation
TEx[Π,X] = TK[Π] ∪ TP[Π] ∪ TC[Π,X] ∪ TL[X], whereX ⊆ At(Π).

The program-oriented abnormality tagabp(nr) indicates that ruler is applicable
but not satisfied with respect toX, i.e., body+(r) ⊆ X, body−(r) ∩ X = ∅, but



head(r) /∈ X. The respective translationTP[Π] overA+ is given by the set of all rules

ko(nr)← , (7)

{head(r)} ← ap(nr), (8)

abp(nr)← ap(nr),not head(r), (9)

for r ∈ Π. By adding the facts of form (7), the rules of form (2) are blocked. Their
purpose, deriving the consequences of the original rules, is now fulfilled by the rules of
form (8). However, the head atom of an original ruler is not necessarily derived, even
whenr is applicable. Whenever an applicable rule is not applied, a rule of form (9)
provides the program-oriented abnormality tagabp(nr).

Example 2.Consider programΠp = {nr : chekov ← not bones }. The empty set is
not an answer set ofΠp, sincer is applicable with respect to∅ but chekov /∈ ∅. This is
reflected byTEx[Πp,At(Πp)] in that it possesses an answer setX+ containing abnor-
mality tagabp(nr) andX+ ∩At(Πp) = ∅. ♦

The completion-oriented abnormality tagabc(a) is included inX+ whenevera is
in the considered interpretation but all rules havinga as head are blocked. The logic
programTC[Π,X] overA+, for X ⊆ At(Π), is given by the set of all rules

{a} ← bl(nr1
), . . . , bl(nrk

), (10)

abc(a)← bl(nr1
), . . . , bl(nrk

), a, (11)

for a ∈ X, where{r1, . . . , rk} = def (a,Π).
The rules of form (10) allow an atoma ∈ At(Π) to be derived even if all rules

r ∈ def (a,Π) are blocked. Whenever this happens, a rule of form (11) provides the
completion-oriented abnormality tagabc(a).

Example 3.Consider programΠc = {nr : uhura ← chekov }. The interpretation
X = {uhura} is not an answer set ofΠc, since the only rule derivinguhura is not
applicable. Accordingly, there is an answer setX+ of TEx[Πc,At(Πc)] containing ab-
normality tagabc(uhura) andX+ ∩At(Πc) = X. ♦

Finally, the presence of a loop-oriented abnormality tagabl(a) in X+ indicates that
the occurrence of atoma might recursively depend ona itself and, therefore, violate the
minimality criterion for answer sets. The corresponding translationTL[X] overA+, for
X ⊆ At(Π), is given by the following set of rules, for eacha ∈ X:

{abl(a)} ← not abc(a), (12)

a← abl(a). (13)

The rules of form (12) allow to add a loop-oriented abnormality tagabl(a) for a ∈ X+,
providing a is supported. The rules of form (13) ensure thata is actually contained
in X+.

Example 4.Consider programΠl, consisting of

nr1
: jim ← bones and nr2

: bones ← jim.

The interpretationX = {bones , jim} is a classical model ofΠl but does not satisfy
the loop formulas ofΠl. So, every answer setX+ of TEx[Πl,At(Πl)] such thatX+ ∩
At(Πl) = X includes one of the abnormality tagsabl(bones) or abl(jim). ♦



Table 1.Labeled program syntax ofspock.

program := (
. . .)∗rule((

. . .)∗rule)∗(
. . .)∗

rule := (rulelabel . . . ‘:’ . . . )? (head . . . ‘.’ |
head . . . ‘:-’ . . . body . . . ‘.’ | ‘:-’ . . . body . . . ‘.’)

head := atom
body := literal(‘ , ’ . . . literal)∗

literal := atom | ‘not’ . . . atom
atom := symb (‘(’ . . . term(‘,’ . . . term)∗ . . . ‘)’)?
term := variable | symb
rulelabel := (‘a’ − ‘z’ | ‘A’ − ‘Z’ | ‘0’ − ‘9’)∗

variable := (‘A’ − ‘Z’)(‘a’ − ‘z’ | ‘A’ − ‘Z’ | ‘0’ − ‘9’ | ‘ ’)∗

symb := (‘a’ − ‘z’ | ‘0’ − ‘9’)(‘a’ − ‘z’ | ‘A’ − ‘Z’ | ‘0’ − ‘9’ | ‘ ’)∗

. . . := (. . . )∗ ‘\n’ (. . . )∗

. . . := (‘ ’ | ‘\t’)∗

4 System

Our debugging systemspock implements the program translations described in the
previous section. It is a command-line oriented tool, parsing and translating its input,
which is taken from standard input and text files. The programis written in Java 5.0
and published under the GNU General Public License [7]. It can be used either with
DLV [8] or with Smodels [4] (together withlparse) and is publicly available at

http://www.kr.tuwien.ac.at/research/debug

as a jar-package including binaries and sources.

4.1 Usage

Generally,spock is executed by a shell command of the form

java -jar spock.jar { OPTION | FILENAME }∗ ,

assumingjava is the execution command for the Java virtual machine. If no filename
is given,spock expects input from the operation system’s standard input. Alist of
important options is given in Appendix A.

4.2 System Input

The input primarily consists of the logic programs which areto be debugged. Addition-
ally, spock also accepts debugging statements, and various solver-specific input. The
accepted program syntax is closely related to the core languages ofDLV andSmodels.
Here, we restrict ourselves to labeled normal logic programs albeitspock accepts also
programs with a richer syntax like disjunctive logic programs. The basic input language
of spock is depicted in Table 1 using regular expressions.



<file_n>

<file_1>

<file_2>
... Parser

spock

Arguments
Command Line
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Answer Set
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Answer Sets

Standard Input
Program Syntax
Solver SpecificAnswer Sets

Input Program

Fig. 1.Data flow of answer-set computation for labeled normal programs.

Rule labeling is introduced as a device to explicitly refer to certain rules. As stated in
Table 1, a rule may have its label omitted. For a previously unlabeled rule,spock auto-
matically assigns the labelrn according to the line numbern in which it appears in the
program. Note that duplicate rule labels will produce a warning message. If the input
is spread over multiple input files, their contents will be internally joined as if it were
only one file. Additional content read from standard input when using the ‘--’ flag is
also appended to any input from files.

Since labeled rules cannot be read by conventional ASP solvers, spock offers
an interface toDLV andSmodels providing answer-set computation for labeled pro-
grams, described next.

4.3 Answer-Set Computation for Labeled Normal Programs

In order to perform answer-set computation for labeled programs,DLV or Smodels
(the latter in combination with its grounderlparse) must be found in the command
search path of the used system.

Internally,spock transforms the parsed input programΠ into a solver-compatible
representation before forwarding it to the externally called answer-set solver. The re-
sulting set of answer sets,AS (Π), is then parsed and stored for further processing.
When using flag ‘-o’, spock outputsAS (Π). Command line arguments for exter-
nally called systems can be forwarded using the flags ‘-dlvarg’, ‘ -lparg’, and
‘-smarg’ (see also Appendix A). Fig. 1 illustrates the typical data flow of answer-set
computation withspock.

Example 5.Consider input filefile5, containing our example programΠinv :

r1 : jim :- uhura.
r2 : jim :- not chekov.
r3 : uhura :- chekov, not scotty.
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Fig. 2.Data flow of program translations.

r4 : chekov :- not bones.
r5 : bones :- jim.
r6 : scotty :- not uhura.

The answer sets for this program can be computed usingDLV by the command:

java -jar spock.jar -x -o file5.

Flag ‘-x’ calls DLV externally on the input program and ‘-o’ triggers the output of
its answer sets. Note that the call yields the output of the corresponding answer sets in
lexicographic order:

{bones, jim, scotty}
{chekov, scotty}.

The same result can be achieved usingSmodels andlparse in a similar manner:

java -jar spock.jar -xsm -o file5. ♦

4.4 Kernel Translation

The kernel translationTK[Π] overA+ of a logic programΠ overA can be obtained by
the call

java -jar spock.jar -k FILE1 FILE2 ... ,

where the filesFILE1, FILE2, . . . , contain a representation ofΠ. As visualised in
Fig. 2,spock first creates an internal representation for the input program before com-
puting and returning its translation.

Example 6.For filefile5 from Example 5, when executing the command

java -jar spock.jar -k file5,

spock returns the translated programTK[Πinv ]:



jim :- ap(r1), not ko(r1).
ap(r1) :- ok(r1), uhura.
bl(r1) :- ok(r1), not uhura.
ok(r1) :- not -ok(r1).
jim :- ap(r2), not ko(r2).
ap(r2) :- ok(r2), not chekov.
bl(r2) :- ok(r2), not not chekov.
ok(r2) :- not -ok(r2).
uhura :- ap(r3), not ko(r3).
ap(r3) :- ok(r3), chekov, not scotty.
bl(r3) :- ok(r3), not chekov.
bl(r3) :- ok(r3), not not scotty.
ok(r3) :- not -ok(r3).
chekov :- ap(r4), not ko(r4).
ap(r4) :- ok(r4), not bones.
bl(r4) :- ok(r4), not not bones.
ok(r4) :- not -ok(r4).
bones :- ap(r5), not ko(r5).
ap(r5) :- ok(r5), jim.
bl(r5) :- ok(r5), not jim.
ok(r5) :- not -ok(r5).
scotty :- ap(r6), not ko(r6).
ap(r6) :- ok(r6), not uhura.
bl(r6) :- ok(r6), not not uhura.
ok(r6) :- not -ok(r6).
:- falsum.

When solving this program, we obtain the answer setsX1 andX2 (cf. Example 1). ♦

4.5 Translations for Extrapolating Answer Sets

Translations for the extrapolation of non-existing answersets of a programΠ can be
invoked analogously to the kernel transformation. However, here, the consideration may
be restricted to the generation of extrapolation tagging ona subset ofΠ. This way, the
developer can focus the search for errors on a subprogram. The data flow is still the one
depicted in Fig. 2.

The flags ‘-expo’, ‘ -exco’, and ‘-exlo’ activate the extrapolation translations
TP, TC, andTL, respectively. Instead of using all three flags simultaneously, setting
‘-ex’ produces the union of these program translations. In orderto restrict the genera-
tion of an extrapolation tagging to a subprogram ofΠ, the names of the considered rules
must be explicitly stated in a comma-separated list following the ‘-exrules’ flag.
Since programs translated viaTP, TC, andTL involveSmodels-specific choice rules,
we need to set the ‘-sm’ flag to activateSmodels syntax. Otherwise,spock will
produce disjunctive rules, simulating the respective choice rules.

Example 7.Consider input filefile7:



r1: jim :- not chekov.
r2: bones :- not jim.
r3: chekov :- not bones.

Since Bones would definitely attend if Jim did, the programmer seemed to err when
specifyingr2. By calling

java -jar spock.jar -ex -exrules=r1,r2 -sm file7,

we get the extrapolation tagging of the subprogram consisting of the rules labeledr1
andr2, where we expect an error:

ko(r1).
{jim} :- ap(r1).
ab_p(r1) :- ap(r1), not jim.
ko(r2).
{bones} :- ap(r2).
ab_p(r2) :- ap(r2), not bones.
{bones} :- bl(r2).
ab_c(bones) :- bl(r2), bones.
{chekov}.
ab_c(chekov) :- chekov.
{jim} :- bl(r1).
ab_c(jim) :- bl(r1), jim.
{ab_l(bones)} :- not ab_c(bones).
bones :- ab_l(bones).
{ab_l(chekov)} :- not ab_c(chekov).
chekov :- ab_l(chekov).
{ab_l(jim)} :- not ab_c(jim).
jim :- ab_l(jim).

Since the extrapolation taggings make only sense in conjunction with the kernel
tagging, we usually also use the ‘-k’ flag to output both translations at once. In order
to compute the answer sets of the obtained program, it can be piped from the output of
spock into another instantiation of it:

java -jar spock.jar -k -ex -exrules=r1,r2 -sm file7 |
java -jar spock.jar -xsm -o.

The output of this operation yields nine answer sets; among them are the following:

A1 = {abc(bones), abc(chekov), abc(jim), bl(nr1
), bl(nr2

), bl(nr3
),

bones , chekov , jim} ∪ S ,

A2 = {abc(bones), abl(jim), ap(nr1
), bl(nr2

), bl(nr3
), bones , jim} ∪ S ,

A3 = {abc(bones), ap(nr1
), bl(nr2

), bl(nr3
), bones , jim} ∪ S ,

where
S = {ko(nr1

), ko(nr2
), ok(nr1

), ok(nr2
), ok(nr3

)}.



The conclusions drawn from these answer sets depend on the considered interpreta-
tion. For example, the abnormality tags inA1 provide an explanation why{bones ,
chekov , jim} is not an answer set, because all rules havingbones , chekov , or jim in
their heads are blocked.

InterpretationsA2 andA3 provide information whyI = {bones , jim} is not an
answer set. Note thatA2 is a superset ofA3 and contains the additional abnormality
tagabl(jim). This is a consequence of the definition of translationTL (and the choice
rule used therein). The existence ofA3 makes the information inA2 obsolete, since the
occurrence of atomjim in I is not (positively) depending on itself.

In this debugging situation,A3 delivers the most relevant information for the pro-
grammer since, firstly, he or she expects Bones and Jim to be compatible party guests,
and, secondly,A3 contains only one abnormality tag,abc(bones), focusing the source
of error to the question why Bones is not coming. From that, the programmer can iden-
tify the erroneous ruler2 of file7. ♦

In order to reduce the amount of debugging information in a translated program, one
can make use of standard ASP optimisation techniques, such asminimise statementsin
Smodels or weak constraintsin DLV. The idea is to take only answer sets with a
minimum number of abnormality tags into consideration.

By using the flags ‘-minab’, ‘ -minabp’, ‘ -minabc’, or ‘-minabl’, spock
produces weak constraints for minimising all abnormality tags, all program-oriented
abnormality tags, all completion-oriented abnormality tags, or all loop-oriented abnor-
mality tags, respectively.

Example 8.Let us reconsider the programΠinv from the introduction and recall that
Sulu wanted to know why there is no chance for Uhura and Jim to attend the same party.
For this purpose, we add the two constraints

← not uhura and ← not jim

to Πinv in order to investigate only scenarios including Uhura and Jim as guests. Note
that this restriction could also be achieved by using theassignedstatement of the de-
bugging language presented in our companion work [2], whichis partly implemented in
spock but not further discussed here. The modified program is stored in file file8:

r1 : jim :- uhura.
r2 : jim :- not chekov.
r3 : uhura :- chekov, not scotty.
r4 : chekov :- not bones.
r5 : bones :- jim.
r6 : scotty :- not uhura.

c1 : :- not uhura.
c2 : :- not jim.

The following call returns extrapolation answer sets with aminimum number of abnor-
mality tags:



java -jar spock.jar -k -ex
-exrules=r1,r2,r3,r4,r5,r6 -minab file8 |
java -jar spock.jar -x -as.

Note that we do not use the ‘-sm’ flag since weak constraints for minimisation require
the use ofDLV as external solver. In the present case, choice rules are simulated by
head disjunctions, introducing new auxiliary atoms. They are filtered out automatically,
in the second invocation ofspock, giving the following answer sets as output:

{ab_c(chekov), ap(r1), ap(r3), ap(r5), bl(c1),
bl(c2), bl(r2), bl(r4), bl(r6), bones, chekov, jim,
ko(r1), ko(r2), ko(r3), ko(r4), ko(r5), ko(r6),
ok(c1), ok(c2), ok(r1), ok(r2), ok(r3), ok(r4),
ok(r5), ok(r6), uhura}

{ab_c(uhura), ap(r1), ap(r2), ap(r5), bl(c1), bl(c2),
bl(r3), bl(r4), bl(r6), bones, jim, ko(r1), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(c1), ok(c2),
ok(r1), ok(r2), ok(r3), ok(r4), ok(r5), ok(r6),
uhura}

{ab_p(r5), ap(r1), ap(r3), ap(r4), ap(r5), bl(c1),
bl(c2), bl(r2), bl(r6), chekov, jim, ko(r1), ko(r2),
ko(r3), ko(r4), ko(r5), ko(r6), ok(c1), ok(c2),
ok(r1), ok(r2), ok(r3), ok(r4), ok(r5), ok(r6),
uhura}

The atomab_c(chekov) in the first answer set, corresponding to interpretation
{bones , chekov , jim, uhura}, identifieschekov as not being supported by any applica-
ble rule. The only rule with headchekov , r4, would requirebones not to be in the in-
terpretation in order to be applicable. Analogously,ab_c(uhura) signals thatuhura

lacks support when considering interpretation{bones , jim, uhura}.
The tagab_p(r5) in the third answer set indicates the applicability of the rule

labeledr5 with respect to interpretation{chekov , jim, uhura} and hence Bones’ in-
compatible party participation. Clearly, there is no solution for this problem instance
that is satisfactory for everybody, given that Jim and Uhurashould jointly come and
that the respective social preferences are all respected. However, the last answer set
indicates an obvious solution for Sulu’s diplomatic conflict, viz. not inviting Bones.♦

All three answer sets in Example 8 give us a potential handle for resolving our
problem, each of them involving a minimum number of abnormalities. However, they
are not of the same quality in terms of a real-life solution. So, resolving problems in the
context of ASP still depends in large part on knowledge aboutthe domain.

5 Discussion and Related Work

In this paper, we gave an overview aboutspock, a prototype implementation of a de-
bugging support tool for answer-set programs. The implemented methodology is based



on theoretical results presented in a companion paper [2] and relies on a tagging tech-
nique similar to one used for compiling ordered logic programs into standard ones [3].

With spock, programs to debug are translated into other programs, having answer
sets that offer debugging-relevant information about the original programs. After an
initial kernel transformation, we get insight into the applicability of rules with respect
to individual answer sets. In a further step,spock outputs translations for extrapo-
lating putative, yet non-existing answer sets. In this application scenario, the system
allows to identify explanations why interpretations are not answer sets. Here,spock
distinguishes between abnormalities due to missing or spare atoms, or atoms whose
presence in the interpretation is self-caused. In order to restrict the amount of informa-
tion returned to the programmer, standard ASP optimisationtechniques can be used to
focus on interpretations with a minimal number of abnormalities. Future work includes
the integration of further aspects of the translation approach as well as the design of a
graphical user interface to ease the applicability of the different featuresspock pro-
vides.

Implementations of related techniques includesmdebug [9], a prototype debugger
focusing on odd-cycle-free inconsistent programs. For programs without odd cycles,
inconsistency can always be linked to conflicting integrityconstraints. The system is
designed to find minimal sets of constraints, restoring consistency when removed from
the program. In most real-world applications, odd cycles are bugs, so, on the one hand,
smdebug technically catches many of the common programming errors.On the other
hand, actual error recovery is often related to normal rules, since constraints, used for
restricting the solution space, are more likely to be semantically correct.

Brain and De Vos [10] present the systemIDEAS (Interactive Development and
Evaluation Tool for Answer-Set Semantics), implementing two query algorithms, an-
swering the questions why a setS is in some answer setA and why a setS is not in
any answer set. Both algorithms are procedural and similar to the ones used in ASP
solvers, suggesting that an approach using a program-leveltransformation would be
more practical.

Pontelli and Son [11] developed a preliminary implementation for their adoption
of so-calledjustifications[12–14] to the problem of debugging answer-set programs.
The system is embedded inASP− PROLOG [15] and returns visual output in form of
justifications, which are graphs explaining why an atom is inan answer set.

Appendix A Selected Argument Options ofspock

-- If a filename is given,spock does not read from standard input, un-
less this flag is set.

-p Outputs the given program with rule labels.
-c Outputs the given program without rule labels.
-x RunsDLV on the given program.
-xsm RunsSmodels on the given program.
-n=NR Computes maximallyNR many answer sets.



-sm Formats various output inSmodels syntax, otherwiseDLV syntax is
used.

-o Outputs all computed or read answer sets.
-as Displays all computed or read answer sets in a GUI frame.
-k Outputs the kernel taggingTK[Π] of a given programΠ.
-ex Outputs the extrapolation taggingTEx[Π,At(Π)] of a given program

Π (like -expo -exco -exlo; see next).
-expo Outputs the program-oriented extrapolation taggingTP[Π] of a given

programΠ.
-exco Outputs the completion-oriented extrapolation taggingTC[Π,At(Π)]

of a given programΠ.
-exlo Outputs the loop-oriented extrapolation taggingTL[At(Π)] of a given

programΠ.
-exrules=r,s,... Restricts extrapolation tagging generation to rules labeledr, s, . . .
-minab Outputs weak constraints to minimise abnormality tags (like the ones

described next).
-minabp Outputs weak constraints to minimise program-oriented abnormality

tags.
-minabc Outputs weak constraints to minimise completion-oriented abnormal-

ity tags.
-minabl Outputs weak constraints to minimise loop-oriented abnormality tags.
-koall Outputs atomko(nr) for every ruler in the given program.
-nas Outputs the number of computed or read answer sets.
-cig Outputs the given program, grounded bylparse, having each

ground atom replaced by a constant (Constant Intelligent Grounding;
CIG). Using flag-ca, spock provides a table of these constants to-
gether with the corresponding atoms.

-ca Outputs a table of constant aliases from a CIG, together with the
ground atoms they represent. This list can be used in another invo-
cation ofspock using flag-ocr to re-translate the answer sets of a
CIG.

-ocr Outputs all computed or read answer sets of a CIG, having the constant
aliases substituted by the corresponding ground atoms, provided that
a list of constant aliases was read.

-dlvarg ARG Adds an argument for external calls ofDLV.
-lparg ARG Adds an argument for external calls oflparse.
-smarg ARG Adds an argument for external calls ofSmodels.
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