
On Testing Answer-Set Programs1

Tomi Janhunen,2 Ilkka Niemelä,2 Johannes Oetsch,3 Jörg Pührer,3 and Hans Tompits3

Abstract. Answer-set programming (ASP) is a well-acknowledged
paradigm for declarative problem solving, yet comparably little effort
has been spent on the investigation of methods to support the devel-
opment of answer-set programs. In particular, systematic testing of
programs, constituting an integral part of conventional software de-
velopment, has not been discussed for ASP thus far. In this paper,
we fill this gap and develop notions enabling the structural testing of
answer-set programs, i.e., we address testing based on test cases that
are chosen with respect to the internal structure of a given answer-set
program. More specifically, we introduce different notions of cov-
erage that measure to what extent a collection of test inputs covers
certain important structural components of the program. In particu-
lar, we introduce metrics corresponding to path and branch coverage
from conventional testing. We also discuss complexity aspects of the
considered notions and give strategies how test inputs that yield in-
creasing (up to total) coverage can be automatically generated.

1 INTRODUCTION
Answer-set programming (ASP) is not only one of the currently most
widely-used computational approaches for realising nonmonotonic
reasoning but also constitutes a viable paradigm for declarative prob-
lem solving. Indeed, the development of increasingly efficient solver
technology allowed ASP to become an important host language for
computing reasoning problems from diverse areas of AI like plan-
ning, diagnosis, information integration, and inheritance reasoning.
The basic idea of ASP is to encode a problem instance as a logic pro-
gram such that its models, referred to as answer sets, provide the so-
lutions to the given instance (see the article by Gelfond and Leone [5]
for an overview on ASP).

Although ASP is regarded as a programming paradigm, compa-
rably little effort has been spent on the investigation of methods to
support the development of answer-set programs. In particular, the
systematic testing of programs, constituting a key element in a typi-
cal software development process, has been identified as a potentially
crucial step in an answer-set programming methodology [3] but has
not been formally studied for ASP so far. In this paper, we fill this
gap and lay down the foundations for testing answer-set programs.

In a conventional setting, testing aims at increasing the reliabil-
ity of a software component by executing the code with the intent
of finding errors, i.e., mismatches between the actual and expected
program output for some given input [12]. Contrary to verification,
testing is in general unsuitable to establish total correctness of a pro-
gram relative to some specification but can be seen as a computation-

1 This research has been partially supported by the Academy of Finland under
project #122399 and the Austrian Science Fund (FWF) under grant P21698.

2 Aalto University, Department of Information and Computer Science, P.O.
Box 15400, FI-00076 Aalto, Finland.

3 Technische Universität Wien, Institut für Informationssysteme 184/3, Fa-
voritenstraße 9–11, A-1040 Vienna, Austria.

ally lighter approach where programming mistakes can be detected
from the actual code. An obvious desideratum in testing is to obtain
small collections of test cases with a high potential to detect errors. In
this paper, we focus on test strategies that deduce test cases from the
internal program structure. Hence, we follow principles of structural
testing, also known as white-box testing [7, 12, 13].

In structural testing, test coverage plays an important role to mea-
sure the degree to which extent test cases cover the logic of a pro-
gram. In procedural languages, the concept of path coverage aims at
test cases that try out each execution path through a program compo-
nent at least once. Although this sounds like a reasonable objective in
the first place, complete path coverage is not feasible in general due
to a combinatorial explosion. This is why weaker notions of cover-
age such as branch coverage have been introduced. Branch coverage
requires only test cases such that each edge in the control-flow graph
of the program is traversed at least once. More precisely, a branch is
a decision that can have a true or a false outcome, like, e.g., check-
ing the conditions of if-then-else and do-while statements.
As ASP lacks an explicit notion of execution, conventional coverage
notions do not apply and novel declarative concepts that reflect the
structure of answer-set programs are required.

Structural testing for logic programming has been considered al-
ready for Prolog [8, 2]. In particular, Belli and Jack [2] have devel-
oped coverage notions based on the computational model of Prolog:
A program is executed by posing a query against it, and answers are
computed using SLD resolution. Consequently, goals are understood
as input while the output corresponds to specific information that is
extracted from a program via resolution and unification. In contrast,
output in ASP corresponds to the answer sets of a program and in-
put corresponds to a set of facts. Hence, the setting in these works is
quite incompatible with that in ASP and cannot be used directly.

Our goal is to develop a general approach to systematic structural
testing of answer-set programs. In particular, we focus on the anal-
ysis of different coverage notions and propose methods for test au-
tomation in ASP. The main contributions of this paper are as follows:

• We introduce a general framework for testing answer-set pro-
grams, specifying conditions under which a particular test case
passes or fails, and define basic test coverage notions correspond-
ing to path and branch coverage.

• We study results on the relations between the different test cover-
age notions and analyse their computational complexity.

• We lay down basic techniques for test automation using ASP it-
self, viz. for deciding test verdicts, determining coverage, and gen-
erating test cases with increasing coverage.

2 PRELIMINARIES
A normal logic program, or simply a program, is a finite set of rules
of form

a← b1, . . . , bm, not c1, . . . , not cn, (1)

where a, b1, . . . , bm, c1, . . . , cn are propositional atoms from some
fixed denumerable alphabet At , and “not” denotes default negation.
For a rule r of form (1), define the head of r as H(r) = {a}, the pos-
itive body of r as B+(r) = {b1, . . . , bm}, and the negative body of
r as B−(r) = {c1, . . . , cn}. Furthermore, the body of r is B(r) =
B+(r) ∪ not B−(r), where not B−(r) = {not c | c ∈ B−(r)}.
A fact is a rule r satisfying B(r) = ∅.

An interpretation is a finite set of atoms from At . Given some
rule r, an interpretation I satisfies B(r), denoted I |= B(r), iff both
B+(r) ⊆ I and B−(r) ∩ I = ∅. The interpretation I satisfies a rule
r of form (1), denoted I |= r, iff I∩H(r) 6= ∅ whenever I |= B(r).
An interpretation I is a model of P , I |= P , if I |= r, for each rule
r ∈ P .

Let HBP denote the Herbrand base of a program P . Given an
atom a ∈ HBP , DefP (a) = {r ∈ P | H(r) = {a}} is the set
of defining rules of a in P , i.e., the definition of a. Furthermore,
SuppR(P, I) = {r ∈ P | I |= B(r)} is the set of supporting rules
of P under an interpretation I .

The positive dependency graph of a program P is the directed
graph 〈V, A〉 where V = HBP and 〈a, b〉 ∈ A iff there is a rule
r ∈ P such that a ∈ H(r) and b ∈ B+(r). A non-empty set L of
atoms is a loop of a program P iff, for each pair a, b ∈ L of atoms,
there is a path π of length greater than or equal to 0 from a to b in
the positive dependency graph of P such that each atom in π is in L.

Following Gelfond and Lifschitz [6], the reduct of a program P
with respect to an interpretation I is the program P I = {H(r) ←
B+(r) | r ∈ P and B−(r) ∩ I = ∅}. An interpretation I is an
answer set of P iff I is a minimal model of the reduct P I . By AS(P),
we denote the collection of all answer sets of P . We say that an atom
a is a brave (resp., cautious) consequence of P if a is in some (resp.,
each) answer set of P . Likewise, not a is a brave (resp., cautious)
consequence of P if a is not in some (resp., each) answer set of P .

3 TEST CASES FOR ASP
To apply systematic testing to answer-set programs, we make the no-
tions of input and output for a program explicit. In this respect, we
aim at a setting that reflects the common practice in ASP to write
a program as a uniform problem encoding that, given a problem in-
stance as input in form of a set of facts, has answer sets filtered to
dedicated output atoms encoding the desired solutions. Hence, for
distinguishing specific signatures for input and output symbols (as
done in other work [4, 9]), we assume two finite sets IP , OP ⊆ At
of atoms for each program P , where IP is the input alphabet of P
and OP is the output alphabet of P .

We first address the output of a program subject to input and output
alphabets. Given a collection S of interpretations and some set A ⊆
At , S|A denotes the collection of interpretations in S projected on
the atoms in A, formally S|A = {I ∩A | I ∈ S}.

Definition 1. For a program P with input and output alphabets IP

and OP , an input of P is any set I ⊆ IP of atoms, and the output of
P with respect to some input I of P is the set P [I] = AS(P ∪I)|OP ,
where P ∪ I stands for P augmented by a fact a← for each a ∈ I .

Example 1. Consider a program P based on the following rules:
e ← d, not f ; d ← a, b, not c; f ← c, not e; and c ← e, f .
Assume that IP = {a, b, c} and OP = {e, f, g}. Let I1 = {a, b}
and I2 = {c} be two inputs of P . Then, the resulting sets of outputs
are P [I1] = AS(P ∪ {a, b})|OP = {{e}} and P [I2] = {{f}}.

Following conventional software testing [12], a test case for a pro-
gram P consists of a precise description of the correct output of P
given some input of P . Since answer-set programs are inherently
non-deterministic, there can be several outputs or even no output for
an actual input I ⊆ IP supplied to a program P . Thus, we define
a specification for a program P as a mapping σ from sets over IP

to collections of sets over OP . Then, the correct outputs for P for a
given input I are determined by σ(I). A specification σ can be seen
as a test oracle determining the correct outputs for any input.

Definition 2. Let P be a program and σ a specification for P . Then,
a test case T for P and σ is a pair 〈I, O〉, where I ⊆ IP is an input
of P and O = σ(I). The sets I and O are denoted by inp(T) and
out(T), respectively.

Definition 3. A test suite S for some program P and some specifica-
tion σ for P is a collection of test cases for P and σ. The collection
of inputs of S is given by inp(S) = {inp(T) | T ∈ S}.

The exhaustive test suite for P and σ is the suite EP,σ = {〈I, O〉 |
I ⊆ IP and O = σ(I)}.

As for each program P and each specification σ for P it holds that
inp(EP,σ) = 2IP , we call 2IP the exhaustive input collection for P .
Note that, for brevity, we usually leave the specification σ implicit
and simply write EP instead of EP,σ in such a case.

Definition 4. Let P be a program and T = 〈I, O〉 a test case for P .
Then, P passes T if P [I] = O, otherwise P fails T .

Likewise, a program P passes a test suite S for P if P passes each
test case T ∈ S and fails S otherwise.

To distinguish a slightly weaker notion, we say that P is compliant
with a test case T = 〈I, O〉 iff P [I] ⊆ O, i.e., P provides only
correct but not necessarily all outputs for the input I .

Example 2. The program P from Example 1 fails the test case T =
〈{a, b}, {{e}, {f}}〉 but is compliant with T .

Definition 5. Let P be a program and σ a specification for P . Then,
P is correct with respect to σ if P passes the test suite EP,σ .

Having fixed basic terminology and notation for testing, we pro-
ceed with our central concepts to realise structural testing in ASP.

4 COVERAGE METRICS
In this section, we present concepts analogous to path and branch
coverage from conventional software testing for ASP. We first define
the concept of a coverage function and show its inherent boundaries.
Then, we define specific coverage functions for different entities, like
rules, programs, definitions, and loops, respectively, and analyse the
interconnections of these metrics. Finally, an example is given which
illustrates the usefulness of our notions for identifying relevant test
cases.

4.1 Coverage Functions
Traditionally, coverage is a relation between the input of test cases
and particular syntactic entities (branching statements, execution
paths, etc.) of a program. Coverage can thus be quantified by the
sum of covered elements relative to the total number of (coverable)
elements. The following central notion adopts conditions following
Jack [8].

Definition 6. A function γ from programs and collections of test
inputs to the interval [0, 1] is a coverage function if, for each program
P and each collection I ⊆ 2IP of inputs of P ,

(i) γ(I, P) = 1 if I = 2IP , and
(ii) γ(I′, P) ≤ γ(I, P), for each collection of inputs I′ ⊆ I of P .

We say that a collection I ⊆ 2IP of inputs of a program P yields
total coverage for P with respect to γ if γ(I, P) = 1. Likewise, a
test suite S yields total coverage for P with respect to γ if inp(S)
yields total coverage for P with respect to γ. Note that the exhaustive
input collection 2IP trivially yields total coverage for any P with
respect to γ. Thus, we call a coverage function γ trivial if, for any
program P , only the input collection 2IP yields total coverage for γ.

We call γ clairvoyant if, for each program P , each specification σ
for P , and each test suite S for P and σ, if P passes S and S yields
total coverage for P with respect to γ, P is correct with respect to σ.

It is well-known in traditional software testing that the correctness
of a program cannot be established by structural testing because this
kind of testing is inherently unable to detect that certain parts of a
specification are not implemented. This limitation, made explicit in
the following theorem, can be observed for testing in ASP as well,
no matter how a notion of structural testing is designed.

Theorem 1. No coverage function is both non-trivial and clairvoy-
ant.

Proof. Assume γ is a non-trivial and clairvoyant coverage function.
As γ is non-trivial, there is a program P , a specification σ for P , and
a test suite S for P and σ with inp(S) ⊂ 2IP and γ(inp(S), P) = 1.
Since γ is clairvoyant, P is correct with respect to σ. From inp(S) ⊂
2IP , it follows that there is a test case T with T ∈ EP,σ but T 6∈
S. Define specification σ′ for P as σ except that σ′(inp(T)) = ∅
if σ(inp(T)) 6= ∅, and σ′(inp(T)) = {∅} otherwise. Clearly, S
is a test suite for P and σ′. Furthermore, S yields total coverage
for P with respect to γ and P passes S but P is not correct with
respect to σ′, as it fails the test case 〈inp(T), σ′(inp(T))〉. This is a
contradiction to the assumption that γ is clairvoyant.

Note that Theorem 1 is a very general result, not depending on the
computational model of ASP, that carries over to structural testing in
other programming paradigms when coverage functions of the kind
as defined above are considered.

In what follows, we define specific coverage functions based on
different notions of coverage. In particular, for a given class X of
entities (like programs, rules, loops, etc.), we provide a function
coveredX(I, P)—being, roughly speaking, determined as the num-
ber of entities in X which are covered by some input I from a collec-
tion I of inputs of P—from which coverage with respect to X is de-
fined by means of what we call the basic coverage function schema:

CX(I, P)=

8<:
coveredX(I, P)

coveredX(2IP , P)
, if coveredX(2IP , P) > 0,

1, otherwise .
(2)

Based on this schema, we introduce the notion of program cover-
age in the next subsection that can be seen as a declarative analogue
of path coverage for answer-set programs. In Section 4.3, we provide
the notions of rule, loop, definition, and component coverage that
amount to branch-coverage counterparts of program coverage. For
each branch-like coverage notion X, positive and negative X cov-
erage are defined such that total X coverage holds exactly if both
total positive and total negative X coverage do. Note that the no-
tions considered in this paper are tailored towards testing consistent
answer-set programs.

Path-like Coverage

Program Cov.

Branch-like Coverage

Rule Cov.

Definition Cov.

Loop Cov.

Component Cov.

+

+

Figure 1. Relations between total coverage of different notions.

Figure 1 summarises the central relations between the coverage
metrics as discussed below. An unlabelled edge from notion X to
notion Y means that for a program P and a collection I of inputs of
P , total X coverage for I and P implies total Y coverage for I and
P . Moreover, an edge labelled with “+” means that total positive X
coverage for I and P implies total positive Y coverage for I and P .

4.2 Path-like Test Coverage

We first define the notion of program coverage as an analogue of path
coverage in conventional testing.

Definition 7. Let P be a program, I an input of P , and P ′ ⊆ P .
Then, I covers P ′ if P ′ = SuppR(P, X), for some X ∈ AS(P ∪I).
Furthermore, a test case T for P covers P ′ if inp(T) covers P ′.

Given a collection I of inputs of P , by coveredP(I, P) we un-
derstand the number of subsets of P that are covered by some input
I ∈ I. It is easy to check that instantiating the basic coverage func-
tion schema (2) with coveredP(·, ·) (i.e., setting X = P) yields a
coverage function. Accordingly, we call CP(I, P) the program cov-
erage of I for P .

Note that program coverage is a non-trivial coverage function.
Thus, by Theorem 1, total program coverage for a program P and a
test suite S for P does not necessarily imply that P is correct when-
ever P passes S.

The significance of the following result is that total program cov-
erage for a test suite S and a program P enforces that each answer
set (modulo projection) of P joined with some input of P can be
obtained by considering the inputs from the test cases in S only.

Theorem 2. Let P be a program, S a test suite for P , and A the set
of all atoms a ∈ HBP such that DefP (a) 6= ∅.

Then, CP(inp(S), P) = 1 implies that, for each input I of P
and for each X ∈ AS(P ∪ I), S contains a test case T such that
X ∩A = Y ∩A, for some Y ∈ AS(P ∪ inp(T)).

Path coverage in conventional testing considers test cases to ex-
ercise each execution path of a component’s control-flow graph. The
number of paths is exponential in the number of branching statements
in the worst case. Analogously, program coverage in ASP yields test
cases that consider all possible bi-partitions of P into supporting and
non-supporting sets of rules with respect to some answer set. The
number of such partitions is exponential in the number of rules in
general. While path coverage yields exhaustive test cases concerning
the possible paths through a component, program coverage is exhaus-
tive regarding the possible answer sets of a program (see Theorem 2).

4.3 Branch-like Test Coverage Notions
As an approximation of path coverage in conventional testing, branch
coverage considers only test cases that cover each edge in the control-
flow graph of a component at least once. The following notions ap-
proximate program coverage and thus aim at modelling branch cov-
erage in ASP.

Rule coverage. We start with rule coverage that relates test cases
to individual rules of a program such that single rules in a program
are supporting at least once.

Definition 8. Given a program P and an input I of P , a rule r ∈ P
is positively covered by I if X |= B(r) for some answer set X ∈
AS(P ∪ I), and r is negatively covered by I if X 6|= B(r) for some
answer set X ∈ AS(P ∪ I). Furthermore, r is positively (resp.,
negatively) covered by a test case T for P if it is positively (resp.,
negatively) covered by inp(T).

Given a collection I of inputs of P , by coveredR+(I, P) (resp.,
coveredR−(I, P)) we understand the number of rules in P that are
positively (resp., negatively) covered by some input I ∈ I. More-
over, coveredR(I, P) = coveredR+(I, P) + coveredR−(I, P).
We define, mutatis mutandis, the values CR+(I, P), CR−(I, P), and
CR(I, P) as instances of schema (2) as before (again giving rise to
coverage functions) and refer to them as positive rule coverage, neg-
ative rule coverage, and rule coverage of I for P , respectively.

Example 3. Recall program P from Example 1 with IP = {a, b, c}
and OP = {e, f, g}. Consider the inputs I1 = {a, b} and I2 =
{c} of P . Since the unique answer set of P ∪ I1 is {a, b, d, e}, I1

covers the first and the second rule in P positively and all other rules
negatively. For I2, the unique answer set of P ∪ I2 is {c, f} which
covers the third rule positively and all other rules negatively.

Note that it is not always possible to positively or negatively cover
a rule by an input. Re-examining the rules from Example 1 reveals
that no test case is able to positively cover the last rule. On the other
hand, facts are rules which cannot be negatively covered. Further-
more, for the program P and an input collection I consisting of I1

and I2 from Example 3, we get a coverage of CR(I, P) = 1. Thus,
we obtain total rule coverage using two test cases only.

The next result shows how rule and program coverage are related:

Theorem 3. For each program P and each collection I of inputs of
P , total program coverage implies total rule coverage of I for P .

Proof. Assume that I yields total program coverage but not total rule
coverage for P , i.e., some input I ∈ 2IP positively (or negatively)
covers a rule r ∈ P but no input in I positively (or negatively)
covers r. As I positively (negatively) covers r, we have r ∈ P ′ (r 6∈
P ′), for an X ∈ AS(P∪I) with P ′ = SuppR(P, X). By definition,
I covers P ′. From total program coverage, some I ′ ∈ I must cover
P ′. Thus, for some X ′ ∈ AS(P ∪I ′), P ′ = SuppR(P, X ′). As r ∈
P ′ (r 6∈ P ′), I ′ positively (negatively) covers r which contradicts
that no input in I positively (negatively) covers r.

We continue with coverage notions that complement rule coverage
to yield relevant test cases which would be missed otherwise.

Loop coverage. While rule coverage is related to classical mod-
els of a program, the following coverage notion is concerned with
loops which capture positive recursion between rules. The relevance
of loops for ASP is well acknowledged in the literature [11, 10].

Definition 9. Let P be a program and I an input of P . A loop L of
P is positively covered by I if there is an answer set X ∈ AS(P ∪I)
such that for every atom a ∈ L there is a rule r ∈ SuppR(P, X)
that defines a, and L is negatively covered by I if for some X ∈
AS(P ∪ I) there is an a ∈ L such that DefP (a) 6= ∅ and no rule
r ∈ SuppR(P, X) defines a. As well, L is positively (resp., neg-
atively) covered for a test case T if inp(T) positively (resp., nega-
tively) covers L.

Similar to the above, we define, mutatis mutandis, the (posi-
tive or negative) loop coverage values CL+(I, P), CL−(I, P), and
CL(I, P) like their corresponding notions for rule coverage.

Example 4. Consider the program P = {a← b, c; b← a, d; e←
b, c, not d} with IP = {a, b, c, d}. Besides the singleton loops {a},
{b}, {c}, {d}, and {e}, P has the loop L = {a, b}. It is easily
verified that rule coverage can be achieved with inputs {b, c} and
{a, d}. Notably, neither of these test cases accounts for the mutual
dependency of the first and the second rule due to the loop L. Loop
coverage, however, would require an input, e.g., {a, c, d}, that ex-
plicitly covers L.

Note that rule coverage and loop coverage are not directly compa-
rable; neither notion implies the other. However, we can relate loop
coverage and program coverage by the following result:

Theorem 4. For each program P and each collection I of inputs of
P , total program coverage implies total loop coverage for I and P .

The proof is analogous to the proof of Theorem 3. Loop coverage
comes with a decisive drawback: a program contains, in general, ex-
ponentially many loops compared to the number of rules. We thus
introduce next two coverage notions that further approximate loop
coverage. On the one hand, definition coverage will address single-
ton loops, and, on the other hand, component coverage will address
maximal loops. Both the number of singletons and maximal loops
are bounded by the number of rules in a program.

Definition coverage. Rule coverage concentrates on the satisfac-
tion of rule bodies in a program P . Each body B(r) can be viewed
as a conjunction, but there are also disjunctions implicitly present in
a logic program: Given a program P , the rules involved in the defi-
nition of DefP (a) = {r1, . . . , rn} of an atom a ∈ HBP effectively
stand for B(r1) ∨ . . . ∨ B(rn). If we try to cover both truth values
of such disjunctions, we arrive at the following notion:

Definition 10. Let P be a program and I an input of P . An atom
a is positively covered by I if there is some r ∈ SuppR(P, X) that
defines a for an answer set X ∈ AS(P ∪ I), and a is negatively
covered by I if DefP (a) 6= ∅ and no r ∈ SuppR(P, X) defines a
for an X ∈ AS(P ∪ I). Moreover, a is positively (resp., negatively)
covered by a test case T for P if it is positively (resp., negatively)
covered by inp(T).

Again, we define the (positive or negative) definition coverage
values CD+(I, P), CD−(I, P), and CD(I, P) similar to rule and
loop coverage. Since atoms can be regarded as conditions in a rule
body that trigger the activation of a rule, definition coverage, roughly
speaking, relates to condition coverage for conventional software
testing which requires that all Boolean subexpressions are exercised.

Example 5. Recall program P from Example 1 and the inputs I1

and I2 from Example 3. It can be verified that the input collection
{I1, I2} yields total definition coverage for P .

Definition coverage is a special case of loop coverage in the sense
that a is positively (resp., negatively) covered by some input I iff the
singleton loop {a} is positively (resp., negatively) covered by I .

Theorem 5. For each program P and each collection I of inputs of
P , total loop coverage implies total definition coverage for I and P .

Furthermore, total positive rule coverage implies total positive
definition coverage for I and P .

Component coverage. The subset-maximal loops of a program P
correspond to the sets of nodes of the strongly connected components
(SCC) of the positive dependency graph of P . Vis-à-vis to definition
coverage, we define (strongly connected) component coverage as an
approximation of loop coverage.

Definition 11. Let P be a program and I an input of P . An SCC C of
P is positively covered by I if there is an answer set X ∈ AS(P ∪I)
such that for every node a in C, there is some r ∈ SuppR(P, X)
that defines a, and C is negatively covered by I if there is some X ∈
AS(P ∪ I) such that for every node a in C, DefP (a) 6= ∅ and there
is no r ∈ SuppR(P, X) that defines a.

As for rules, loops, and definitions, we define the (positive or
negative) component coverage values CC+(I, P), CC−(I, P), and
CC(I, P) using the general schema (2).

Theorem 6. For each program P and each set I of inputs of P , total
program coverage implies total component coverage for I and P .

Furthermore, total positive loop coverage implies total positive
component coverage for I and P .

Note that the latter property holds by definition, as every SCC cor-
responds to a maximal loop. Negative component coverage requires
that no node in the component is supported whereas only one un-
supported atom is sufficient for negative loop coverage. Hence, total
negative loop coverage does not guarantee total negative component
coverage. Component coverage is, however, designed as an approxi-
mation of loop coverage. This is formalised by the next result:

Theorem 7. Given a program P , an input I of P , and an SCC C
of P with set L of nodes, positive component coverage for C by I
implies positive loop coverage for each loop L′ ⊆ L of P by I .
Likewise, negative component coverage for C implies negative loop
coverage for each L′ ⊆ L.

4.4 An Illustrative Example
We round off this section by elucidating the advantages of structure-
based testing compared to random testing by means of an example
that is concerned with the formalisation of some logical condition—a
rather common pattern in logic programming.

Assume that we want to encode the condition

ϕn = (p1 ∧ · · · ∧ pn−1)→ pn

by a logic program Pn such that IPn = {p1, · · · , pn}, OPn = {t},
and Pn[I] = {{t}} iff I |= ϕn.

Consider the following incorrect realisation of the program Pn:
{c ← p1, . . . , pn−1; f ← c, pn; t ← not f}. The first rule states
that the conjunction in ϕn is true iff all its operands are true. The
second rule is a failed attempt to express that the implication in ϕn is
false iff the antecedent is true and the conclusion is false: a negation
preceding pn was accidentally omitted by the programmer. The third
rule states that I |= ϕn iff I 6|= ϕn does not hold.

Note that the exhaustive test suite EPn for Pn consists of 2n test
cases but P fails only two test cases. If we randomly pick a test
case T from EPn , the limit probability that P fails T is 0 as n ap-
proaches infinity; thus, random testing is unlikely to reveal this error
for large n.

We next consider rule coverage to guide the generation of test
cases. To positively cover the second rule, we need a test case with
input I = {p1, . . . , pn}, which covers the first rule positively and the
third rule negatively as well. This test input reveals the error already
since Pn[I] yields{∅} instead of {{t}}. A second test case suffices
to obtain total rule coverage, hence we need only two test cases to
obtain total rule coverage and to reveal the error.

5 COMPLEXITY ASPECTS
We now turn to complexity issues related to coverage problems and
analyse the inherent complexity of relevant decision problems. We
assume that the reader is familiar with basic notions from complexity
theory. Recall that Dp is the class of decision problems that can be
characterised by a conjunction of an NP and an independent coNP
problem. First, we note that in the general case determining the test
verdict for a test case is a challenging computational task:

Theorem 8. Given a program P and a test case T , determining
whether P passes T is Dp-complete.

Proof (sketch). Given a program P and a test case T , determining
whether P is compliant with T can be shown to be coNP-complete.
The problem of deciding whether out(T) ⊆ P [inp(T)] holds can be
shown to be NP-complete. It follows that deciding whether P passes
T is Dp-complete.

Theorem 9. Given a program P , P ′ ⊆ P , and an input I of P ,
deciding whether I covers P ′ is computable in polynomial time.

Proof (sketch). The following procedure decides whether I covers
P ′ in polynomial time: Define X as the smallest set such that (i) I ⊆
X and (ii) for each r ∈ P ′, H(r) ∪B+(r) ⊆ X . Then, I covers P ′

iff P ′ = SuppR(P, X) and X ∈ AS(P ∪ I).

Theorem 10. Given a program P and an input I of P , deciding
whether (i) a rule r, (ii) an atom a, (iii) a loop L, or (iv) an SCC
C in P is positively (resp., negatively) covered by I is NP-complete,
respectively.

Proof (sketch). For membership, guess an interpretation X over
HBP ∪ I and check in polynomial time whether X ∈ AS(P ∪ I)
and (i) X |= B(r), for positive rule coverage, (ii) DefP (a) ∩
SuppR(P, X) 6= ∅, for positive definition coverage, (iii) for each
m ∈ L, DefP (m)∩ SuppR(P, X) 6= ∅, for positive loop coverage,
and (iv) for each n ∈ C, DefP (n)∩SuppR(P, X) 6= ∅, for positive
component coverage. Membership for notions of negative coverage
can be shown analogously. Also, hardness follows by suitable reduc-
tions from the problem of deciding brave consequence.

Theorem 11. Given a program P and a collection of its inputs I,
deciding whether (i) I yields total program coverage for P is coNP-
complete, (ii) I yields total rule, definition, or component coverage
for P is in ∆P

2 , and (iii) I yields total loop coverage for P is in ΠP
2 .

Proof (sketch). We give a schema for showing membership that ap-
plies to cases (i)–(iii). To decide the complementary problem of total
coverage, for some X in P , where X is a set of rules, a rule, a defini-
tion, a loop, etc., check if both (a) some test input in 2IP∩HBP covers

X and (b) no test input in I covers X. For Item (i), (a) and (b) can
be decided in polynomial time. This implies coNP-membership for
deciding total program coverage. Hardness can be shown by a simple
reduction from program inconsistency to total program coverage. For
Item (ii), |P | is an upper bound for the number of rules and SCCs in
a program, as well as of the number of atoms in a definition. Thus, X
can be enumerated in polynomial time. Problem (a) can be decided in
NP and (b) can be decided in coNP which implies ∆P

2 membership
for total rule, definition, or component coverage. For Item (iii), X can
be guessed. Problem (a) can be decided in NP and (b) can be decided
in coNP which implies ΠP

2 membership for total loop coverage.

Note that, for a program P , 2|P | is an asymptotic upper bound
for the size of a minimal test suite S for P that yields total program
or loop coverage. For rule, definition, and component coverage, a
respective upper bound is |P |. Hence, the possibility of a compact
test suite for the latter case—essential for testing in practice—comes
at a computational cost which is presumably unavoidable.

6 TEST AUTOMATION
For automating key tasks of testing answer-set programs, we could
use any suitable programming paradigm. However, in this section,
we discuss how the key tasks can be implemented using ASP tech-
niques so that ASP solvers can be used directly for test automation.

Determining test verdicts. In testing, one of the key tasks is to
decide test verdicts. We start by outlining how to use ASP techniques
for this. Given a program P and a test case T = 〈I, O〉, we assume
that the correct outputs O are given by an ASP program. A natural
way is to encode each set O′ = {a1, . . . , an} ∈ O as a rule

r(O′) : ok ← a1, . . . , an, not b1, . . . , not bm,

where {b1, . . . , bm} = OP \ {a1, . . . , an}. More compact encod-
ings are often possible where the idea is that for the encoding pro-
gram Π(O) we set the input alphabet IΠ(O) = OP and the output
alphabet OΠ(O) = {ok} such that Π(O)[O′] = {{ok}} iff O′ ∈ O.
Now, P is compliant with a test case T = 〈I, O〉 iff ok is a cautious
consequence of the program P ∪ I ∪ Π(O). A program P passes a
test case T = 〈I, O〉 iff P is compliant with T and O ⊆ P [I]. A
straightforward approach to checking the latter condition is by de-
termining whether for every O′ ∈ O, ok is a brave consequence of
P∪I∪{r(O′)}. Using a more involved translation, deciding whether
O ⊆ P [I] holds can be reduced to a single brave consequence check
as suggested by Theorem 8.

Checking coverage. Given a test input, evaluating coverage for
the branch-like notions is NP-hard as shown in Theorem 10. How-
ever, we can use ASP techniques to check coverage. E.g., given a pro-
gram P and an input I of P , we can determine whether a rule r ∈ P
is covered positively (resp., negatively) by I by checking whether sat
(resp., not sat) is a brave consequence of P ∪ I ∪ {sat ← B(r)}.
Other coverage notions can be handled in a similar way.

Generating covering test cases. In testing, there are various
strategies to obtain coverage. In randomised testing, the idea is to
generate random test inputs and observe how different coverage met-
rics evolve when more tests are run. This approach can be used for
testing ASP programs, too. When using randomly generated test in-
puts, it is typically possible to increase coverage only up to a lim-
ited degree. For a more intelligent goal directed testing, techniques

for generating test inputs guaranteed to increase coverage (up to
total coverage) are needed. ASP techniques can also be used for
this task, for example, by adding to a program P the set of rules
C(IP) = {a ← not a′ | a ∈ IP } ∪ {a′ ← not a | a ∈ IP }. Then,
test inputs covering a given element (a rule, a loop, etc.) can be ob-
tained using brave reasoning techniques as described above provided
that witnessing input for a brave consequence is returned by the rea-
soning engine. For example, a test input covering a rule r positively
can be obtained (if it exists) by checking whether sat is a brave con-
sequence of P∪C(IP)∪{sat← B(r)}, provided that the reasoning
engine answering this query is able to accommodate a witnessing an-
swer set from which a test input can be extracted (if such an answer
set exists). A simple way of implementing such a brave reasoning en-
gine is to use an ASP solver to look for an answer set of the program
P ∪ C(IP) ∪ {sat← B(r)} ∪ {← not sat}.

7 CONCLUSION
In this paper, we laid the foundation for a formal and systematic study
of testing for ASP. Besides fostering future research, a direct benefit
of this work is that it forms the basis for tools that support the gen-
eration of high coverage test suites. We expect that such tools will
significantly facilitate the development of answer-set programs, es-
pecially as part of integrated-development environments (IDEs).

For the sake of a clear presentation, we restricted ourselves to
propositional normal programs. Further classes of programs, like
disjunctive programs or programs with variables, are left for future
work. Also, coverage notions designed to yield test cases for detect-
ing program inconsistencies are not discussed here due to space rea-
sons. Another interesting question is how different notions of modu-
larity can be employed to reduce the computational costs of testing.
Complementing this work on structural testing, we also plan to study
principles from functional or black-box testing [12, 1].

REFERENCES
[1] B. Beizer, Black-Box Testing: Techniques for Functional Testing of Soft-

ware and Systems, John Wiley & Sons, 1999.
[2] F. Belli and O. Jack, ‘Declarative paradigm of test coverage’, Softw.

Test, Verif. Reliab, 8(1), 15–47, (1998).
[3] M. Brain, O. Cliffe, and M. De Vos, ‘A pragmatic programmer’s guide

to answer set programming’, in Proc. SEA, pp. 49–63, (2009).
[4] M. Gelfond and A. Gabaldon, ‘Building a knowledge base: An exam-

ple’, Annals of Mathematics and Artificial Intelligence, 25(3-4), 165–
199, (1999).

[5] M. Gelfond and N. Leone, ‘Logic programming and knowledge repre-
sentation - the A-Prolog perspective’, Artificial Intelligence, 138(1-2),
3–38, (2002).

[6] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, in Proc. ICLP/SLP, pp. 1070–1080, (1988).

[7] J. C. Huang, ‘An approach to program testing’, ACM Computing Sur-
veys, 7(3), 113–128, (September 1975).

[8] O. Jack, Software Testing for Conventional and Logic Programming,
Walter de Gruyter & Co. Hawthorne, NJ, USA, 1996.

[9] T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran, ‘Modularity
aspects of disjunctive stable models’, Journal of Artificial Intelligence
Research, 35, 813–857, (August 2009).

[10] J. Lee, ‘A model-theoretic counterpart of loop formulas’, in Proc. IJCAI
2005, pp. 503–508. Professional Book Center, (2005).

[11] F. Lin and Y. Zhao, ‘ASSAT: Computing answer sets of a logic program
with SAT solvers’, Artificial Intelligence, 157(1–2), 115–137, (2004).

[12] G. J. Myers, Art of Software Testing, John Wiley & Sons, Inc., New
York, NY, USA, 1979.

[13] S. C. Ntafos, ‘A comparison of some structural testing strategies’, IEEE
Transactions on Software Engineering, 14(6), 868–874, (June 1988).

