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Abstract—In many applications, faults are triggered by
events that occur in a particular order. In fact, many bugs
are caused by the interaction of only a low number of such
events. Based on this assumption, sequence covering arrays
(SCAs) have recently been proposed as suitable designs for
event sequence testing. In practice, directly applying SCAs for
testing is often impaired by additional constraints, and SCAs
have to be adapted to fit application-specific needs. Modifying
precomputed SCAs to account for problem variations can
be problematic, if not impossible, and developing dedicated
algorithms is costly. In this article, we propose answer-set
programming (ASP), a well-known knowledge-representation
formalism from the area of artificial intelligence based on
logic programming, as a declarative paradigm for computing
SCAs. Our approach allows to concisely state complex coverage
criteria in an elaboration tolerant way, i.e., small variations of
a problem specification require only small modifications of the
ASP representation. Employing ASP for computing SCAs is
further justified by new complexity results related to event-
sequence testing that are established in this work.

Keywords-event-sequence testing; complexity analysis; combi-
natorial interaction testing; answer-set programming.

I. INTRODUCTION

This article is an extension of a previous conference
version [1]. Besides an extended discussion of related work,
the first important extensions is a complexity analysis of the
main computational problem which gives further justification
of our solution approach. The second important extension
is that we use a different problem encoding which is, on
the one hand, simpler than the one used in the previous
conference paper, and, on the the other hand, significantly
improves many results.

In many applications, faults only show up if events occur in
a certain order. An example are atomicity violations in multi-
threaded applications where a pair of shared memory accesses

of one thread is interleaved with an unfortunate access
of another thread. Testing such applications thus requires
exercising event sequences. Since the number of event
sequences is factorial in the number of events, exhaustive
testing is infeasible in general. If we assume that bugs are
triggered by the interaction of only a low number of events,
testing costs can be reduced drastically without sacrificing
much fault-detection potential by using suitable combinatorial
designs [2], [3]. To this end, Kuhn et al. [4] introduced
sequence covering arrays (SCAs) for combinatorial event
sequence testing. An SCA of strength t is an array of
permutations of events such that every ordering of any t
events appears as a subsequence of at least one row. For
illustration, the following matrix is an SCA for four events
{1,2,3,4} with t = 3:

3 1 2 4
1 3 4 2
2 3 4 1
4 1 2 3
2 1 4 3
4 3 2 1

 .

Any ordering of three events can be found as subsequence
of one row. If three particular events occur as subsequence
of a row, we say that a row covers the three events. For
example (1, 2, 3) is a subsequence of the fourth row, (1, 3, 2)
is a subsequence of the second row, (2, 3, 4) is covered by
the third row, and so on and so forth.

SCAs are relevant for testing applications where the order
of events is decisive. Examples of respective event sequences
in such applications are user actions for user-interface testing,
visited web pages in dynamic web applications, method calls
for unit-testing in object-oriented programming, and shared



variable accesses in multi-threaded programs as we already
mentioned. If an SCA of strength t is used as basis for a
test plan for such applications, i.e., each row of the SCA
is turned into the specification of a test run that imposes a
particular order on relevant event, not all permutations of
events will be tested in general, but at least we have the
guarantee that the potential interaction of any t events will
be tested at least once.

In practice, a direct application of SCAs for testing is often
impaired by additional constraints on the order of events.
It can be necessary to exclude, for example, that a “paste”
event happens before a “copy” event when testing a user
interface. Also, the conditions that identify the sequences that
should be covered can vary and often involve quite complex
definitions. For example, to test thread interleavings, one
could require to test all sequences such that one variable
is written by one thread and subsequently read by another
thread such that there is no write operation between them [5],
[6]. Hence, quite expressive constraints and variations from
standard SCAs have to be taken into account. Furthermore,
sometimes certain orderings are regarded as redundant and
should be avoided to reduce testing costs. For example, the
order in which devices are connected to a computer is not
relevant if the computer is not booted.

One approach to address such considerations is to accord-
ingly modify precomputed SCAs as exemplified by Kuhn
et al. [4]. This means that any test sequence which, e.g.,
violates some ordering constraints has to be removed from
the SCA. To maintain coverage, removed sequences have
to be replaced by permutations thereof that comply to the
problem specific requirements. This is not always possible in
a straightforward way and can result in a considerable and
in principle avoidable overhead regarding the size of arrays.
On the other hand, developing and maintaining dedicated
algorithms to compute variations of SCAs usually comes
with high costs and is not preferable if requirements change
over time—which is a daily aspect in real-world system
development—or one wants to experiment with different
designs.

We propose to use answer-set programming (ASP) [7]–
[9] for computing SCAs and variations thereof. ASP is a
genuine declarative programming paradigm where a problem
is encoded by means of a logic program such that the
solutions of a problem correspond to the models, called
answer sets, of the program. On the one hand, as an
expressive high-level specification language, it allows to
state complex coverage criteria, involving constraints and
complex, possibly recursive, definitions, in a concise and
elaboration-tolerant way, i.e., small variations in a problem
specification require only small modifications of the program
representation. On the other hand, SCAs can be efficiently
computed through highly optimised ASP solvers [10], [11].
Since it requires only little effort to state quite complex
coverage conditions in ASP, a tester is able to rapidly specify

and to experiment with different versions of SCAs.
This paper is organised as follows. In Section II, we review

SCAs and ASP. In Section III, we analyse the intrinsic
problem complexity of SCA computation which indeed
shows that ASP is a suitable computational means. Then,
in Section IV, we show how SCAs can be generated using
ASP. We present improved, sometimes optimal, upper bounds
regarding the size of many SCAs. We furthermore present
a greedy algorithm, based on ASP, for computing larger
SCAs. In Section V, we turn towards a real-world example
described by Kuhn et al. [4]. We discuss how the basic ASP
encoding from Section IV can be refined, step-by-step, to
take different constraints and problem variations into account.
The resulting array is significantly smaller than the one of
Kuhn et al. that was created by modifying a precomputed
SCA. In fact, we show that our solution is optimal with
respect to the specified coverage criteria. Finally, we discuss
related work in Section VI and conclude in Section VII.

II. PRELIMINARIES

In this section, we review the formal definition of SCAs
and give a brief background on ASP.

A. Sequence Covering Arrays (SCAs)

SCAs, introduced by Kuhn et al. [4], are combinatorial
designs related to covering arrays. While covering arrays
require that each t-way combination of parameters occurs
at least once in a test case for some fixed t, SCAs take the
order of events into account and require that each t-sequence
of events is tested in at least one test sequence in that order,
where a t-sequence over a set S of symbols is a sequence of
t pairwise distinct elements of S. Following Kuhn et al. [4],
we formally define SCAs as follows.

Definition 1: A sequence covering array (SCA) with
parameters n, S, and t, or an (n, S, t)-SCA for short, is
an n × |S| matrix M of symbols from a finite set S of
symbols such that

(i) each row of M is a permutation of S, and
(ii) for each t-sequence σ = (s1, s2, . . . , st) over S, there

is at least one row % = (ai1, . . . , ai|S|) in M such that
σ is a subsequence of %.

We say that an (n, S, t)-SCA is of strength t and of size n.
Definition 2: The sequence covering array number for S

and t, SCAN(S, t), is the smallest n such that an (n, S, t)-
SCA exists.
An (n, S, t)-SCA is optimal if SCAN(S, t) = n. As usual, l
is a lower bound for SCAN(S, t) if l ≤ SCAN(S, t), and u
is an upper bound for SCAN(S, t) if SCAN(S, t) ≤ u. We
will also denote an (n, {1, . . . , s}, t)-SCA as an (n, s, t)-SCA
with SCAN(s, t) for brevity.



For illustration, the following matrix M constitutes an
optimal (7, 5, 3)-SCA:

M =



5 2 3 1 4
3 2 5 4 1
1 5 4 3 2
3 4 5 1 2
4 2 5 1 3
2 4 3 1 5
1 2 3 4 5


.

Each of the seven rows is a permutation of the set S =
{1, . . . , 5} and each 3-sequence over S is covered by at least
one row. For instance, the 3-sequence (5, 3, 4) is covered by
the first row of M , and (3, 4, 5) is covered by the fourth row
of M (as well, (3, 4, 5) is covered by the last row of M ).
Note that there are 5 · 4 · 3 = 40 such 3-sequences.

A collection of precomputed SCAs of strength 3 and 4
is available online [12]. These SCAs were computed using
a simple greedy algorithm introduced by Kuhn et al. [4].
To compute a t-strength SCA for a set S of events, this
algorithm iteratively computes single rows of the SCA: In
each iteration, it computes a fixed number of permutations
of S. Then, it selects the permutation π that obtains maximal
coverage of previously uncovered t-sequences as the next
row of the SCA. After that, π in reverse order, π′, is added.
Adding π′ is justified because π′ always covers the same
number of previously uncovered t-sequences as π [4]. This
procedure is iterated until all t-sequences are covered.

Recently, this algorithm has been extended to deal with
forbidden orderings of events. In particular, if event x must
not occur before event y in any test case, it is possible to
specify the pair (x, y) as additional input of the algorithm.
Subsequently, only rows that do not contain (x, y) as
subsequence are added. Also, if a constraint is specified,
the heuristic to add rows in reverse order is disabled.

Though the greedy algorithm can take simple constraints
into account, one downside is that more complex constraints
or other variations from plain SCAs arising from the
requirements of different test scenarios are hard to incorporate.
To overcome this shortcoming, we use ASP in what follows
as a declarative tool to compute SCAs and demonstrate that
quite complex constraints can be incorporated into a solution
in a concise and elaboration-tolerant way, and with ease.

B. Answer-Set Programming (ASP)

ASP [7]–[9] is a relatively new declarative programming
paradigm. The underlying idea of ASP is to declaratively
represent a computational problem as a logic program whose
models, called “answer sets” [13], correspond to the solutions,
and to find the answer sets for that program using an ASP
solver. Due to the expressiveness of ASP, allowing, e.g., to
represent aggregates and recursive definitions, and due to the
continuous improvements of the efficiency of ASP solvers,
such as clasp [14], we argue that ASP can efficiently and

effectively be used to compute SCAs. Indeed, ASP has been
used in a wide range of applications from different fields,
such as semantic-web reasoning [15], systems biology [16],
planning [17], diagnosis [18], [19], configuration [20], multi-
agent systems [21], cladistics [22], [23], game content gener-
ation [24], and superoptimisation [25]. For a comprehensive
introduction to ASP, we refer to the textbook by Baral [9].

In what follows, we recapitulate the basic elements of ASP.
An answer-set program is a finite set of rules of the form

a0 :− a1, . . . , am,not am+1, . . . ,not an, (1)

where n ≥ m ≥ 0, a0 (called the head of the rule) is a
propositional atom or ⊥, a1, . . . , an are propositional atoms,
and the symbol “not” denotes default negation. The sequence
a1, . . . , am,not am+1, . . . ,not an comprises the body of the
rule. If a0 = ⊥, then rule (1) is a constraint (in which case
a0 is usually omitted). The intuitive reading of a rule of
form (1) is that whenever a1, . . . , am are known to be true
and there is no evidence for any of the default negated atoms
am+1, . . . , an to be true, then a0 has to be true as well. Note
that ⊥ can never become true.

An answer set for a program is defined following Gelfond
and Lifschitz [26]. An interpretation I is a finite set of
propositional atoms. An atom a is true under I if a ∈ I ,
and false otherwise. A rule r of form (1) is true under I
if {a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅ implies
a0 ∈ I . We say that I is a model of a program P if each
rule r ∈ P is true under I . Finally, I is an answer set of P
if I is a subset-minimal model of P I , where P I is defined
as the program that results from P by deleting all rules
that contain a default negated atom from I , and deleting all
default negated atoms from the remaining rules.

Programs can yield no answer set, one answer set, or many
answer sets. For instance, the program

p :− not q ,
q :− not p (2)

has two answer sets: {p} and {q}.
When we represent a problem in ASP, some rules “gener-

ate” answer sets corresponding to “possible solutions”, and
some “eliminate” the answer sets that do not correspond to
solutions. The rules in program (2) are of the former kind;
constraints are of the latter kind. For instance, adding the
constraint

⊥ :− p

to a program P eliminates all answer sets of P containing
p. In particular, adding ⊥ :− p to program (2) eliminates
the answer set {p}.

When we represent a problem in ASP, we often use special
constructs of the form l{a1, . . . , ak}u (called cardinality
expressions) where each ai is an atom and l and u are
nonnegative integers denoting the lower bound and the upper
bound of the cardinality expression [27]. Programs using



these constructs can be viewed as abbreviations for particular
normal programs [28]. Such an expression describes the
subsets of the set {a1, . . . , ak} whose cardinalities are at least
l and at most u. In heads of rules, cardinality expressions
generate answer sets containing subsets of {a1, . . . , ak}
whose cardinality is at least l and at most u. When used
in constraints, they eliminate answer sets that contain such
respective subsets.

A group of rules that follow a particular pattern can often
be described in a compact way using schematic variables.
For instance, we can write the program pi : − not pi+1,
(1 ≤ i ≤ 7) as follows:

index (1), index (2), . . . , index (7),
p(i) :− not p(i+ 1), index (i).

ASP solvers compute an answer set for a given program that
contains variables after “grounding” the program, e.g., by the
grounder gringo [29]. A grounder systematically replaces
each rule r with variables by its ground instances that result
from r by uniformly replacing each variable by constants
from the program. Variables can also be used “locally” to
describe a list of literals. For instance, the rule 1{p1, . . . , p7}1
can be represented as 1{p(i) : index (i)}1.

In addition to the constructs above, current state-of-the-
art ASP solvers support many further language extensions
like functions, built-in arithmetics, comparison predicates,
aggregate atoms, maximisation and minimisation statements,
as well as weak constraints.

In the remainder of this paper, we use the syntax that is
supported by the solver clasp along with the grounding
tool gringo when presenting programs [30]. Note that, at
term positions, upper-case letters denote variables, while
lower-case letters denote constant symbols.

For illustrating problem solving in ASP, consider the
following encoding of the 3-colorability problem (3COL):

colour(red;green;blue).
1 {asgn(N,C) : colour(C)} 1 :- node(N).
:- edge(X,Y), asgn(X,C), asgn(Y,C).

The first rule abbreviates three facts that state that red, green,
and blue are colours, respectively. The second rule is a choice
rule. Its intuitive reading is that if N is a node, then both an
upper bound and a lower bound on the number of colours
assigned to this node, expressed by asgn(N,C), is 1. This
means that each node gets assigned precisely one colour from
the set of available colours defined by colour/1. The last
rule is a constraint that forbids that there is an edge between
any two nodes with the same colour. If the above program is
joined with facts over edge/2 and node/1 that represent a
graph G, the answer sets correspond one-to-one to the valid
3-colourings of G.

Sometimes, one is not only interested in arbitrary solutions
to a problem but in solutions that are optimal according to
some preference relation. clasp supports maximise and

minimise statements that allow the express such preferences.
For illustration, assume that, for some reason, we want to
minimise the number of blue nodes in the above 3COL
example. This can be expressed by simply adding the
following minimise statement:

#minimize[asgn(N,blue) : node(N)].

The meaning of such a statement is that clasp computes
answer sets where the sum of literals asgn(N,blue),
where N is a node, is minimal among all answer sets.

III. PRELUDE: COMPLEXITY OF SCA GENERATION

Deciding whether a logic program has an answer-set is NP-
complete, thus computing answer-sets can be quite expensive.
Indeed, the runtime of ASP solvers is exponential with
respect to the number of atoms in the worst case. In this
section, we analyse the computational worst-case complexity
of generating SCAs. We assume that the reader is familiar
with the basic concepts of complexity theory. For more
information about complexity theory, we refer to the reference
textbook by Papadimitriou [31].

For our complexity analysis, we actually study a slight
generalisation of the problem of generating SCAs. On the
one hand, usually not all permutations of events are allowed
for testing, some could be excluded for various reasons. On
the other hand, usually not all t-sequences need to be covered,
some may be forbidden or regarded as redundant. We next
formalise this natural generalisation as a decision problem
and study its complexity.

Definition 3: An instance of the generalised event se-
quence testing (GEST) problem is a tuple (S, P, T, k), where
P be is a set of permutations of a set S of symbols, T is
a set of t-sequences over S with t ≥ 2, and k is a positive
integer. A tuple (S, P, T, k) is a yes-instance of GEST iff
there exists a matrix M with at most k rows such that

(i) each row of M is an element from P , and
(ii) for each t-sequence σ = (s1, s2, . . . , st) from T , there

is at least one row % = (ai1, . . . , ai|S|) in M such that
σ is a subsequence of %.

Theorem 1: GEST is NP-complete.
Proof:

Membership. We first show that GEST is in NP. Any
instance (S, P, T, k) of GEST can be decided by non-
deterministically “guessing” a k × |S| matrix M of symbols
from S and checking conditions (i) and (ii) from Definition 3
in polynomial time.

Hardness. To show NP-hardness, we reduce the NP-hard
problem of checking set coverage to GEST. Formally, an
instance of set cover (SC) is a tuple (V, F, k), where V is a
set of elements, F is a collection of subsets of V , and k is
a positive integer. A tuple (V, F, k) is a yes-instance of SC
iff there is a subcollection F ′ ⊆ F of size at most k whose
union contains each element of V . It is well known that SC
is NP-complete [32].



Let (V, F, k) be an instance of SC. Assume that “�” is a
separation symbol not contained in V . Define

S = V ∪ {�} .

For each f ∈ F , construct a permutation πf of S by
arbitrarily arranging the symbols from f before � and the
symbols in V \ f after �. Define

P = {πf | f ∈ F}

and
T = {(v,�) | v ∈ V } .

Note that |P | = |F |. We show that (V, F, k) is a yes-instance
of SC iff (S, P, T, k) is a yes-instance of GEST.

Assume that (V, F, k) is a yes-instance of SC. Hence, there
exists a set F ′ ⊆ F of size at most k whose union contains
each element of V . Construct a matrix M such that πf ∈ P
is a row of M iff f ∈ F ′. Clearly, M is a matrix from
symbols from S that satisfies condition (i) of Definition 3.
We show that M satisfies condition (ii) as well. Towards a
contradiction, assume that there is a 2-sequence (v,�) in
T and there is no row in M such that v occurs before �.
Since (V, F, k) is a yes-instance of SC, F ′ contains at least
one set f with v ∈ f . Since πf is a row of M , and v occurs
before � in πf by construction, we arrive at a contradiction.
Hence, (S, P, T, k) is a yes-instance of GEST.

For the converse, assume that (S, P, T, k) is a yes-instance
of GEST. Hence, there exists a matrix M that satisfies
conditions (i) and (ii) from Definition 3. We show that then
(V, F, k) is a yes-instance of SC. Define set F ′ as a subset
of F that contains an element f ∈ F iff (∗) there is a row
π of M such that all elements of f occur before � in π.
Clearly, F ′ is of size at most k since M consists of at most
k rows, and, for any row of M , precisely one f ∈ F satisfies
(∗). It remains to show that for each v ∈ V , v is contained
in some set in F ′. Towards a contradiction, assume that for
some v ∈ V there is no set in F ′ that contains v. Since
(S, P, T, k) is a yes-instance of GEST, and (v,�) ∈ T , it
follows that in one row πf of M , v occurs before �. By
construction of F ′, F ′ contains a set f ∈ F consisting of
all symbols of πf that occur before �. Hence, v ∈ f which
contradicts the assumption that no such set in F exists. So,
(V, F, k) must be a yes-instance of SC.

Hence, any approach that is capable of deciding problems
in GEST cannot avoid worst-case exponential runtime
behaviour unless P = NP. Note that the SCA generation
problems studied in this paper are instances of GEST.
Moreover, for any problem in NP, there exists a uniform
ASP encoding [33], [34]. Hence, NP-completeness of GEST
further justifies ASP as a tool to formalise and compute such
problems.

Although GEST is NP-complete, one could further ask
whether GEST is fixed-parameter tractable for a suit-
able problem parameter. Roughly speaking, fixed-parameter

tractability means that a problem can be solved efficiently, i.e.,
in polynomial time, for fixed values of the parameter; details
on parameterised complexity can be found elsewhere [35],
[36]. A natural choice for such a parameter for a problem
instance (S, P, T, k) would be the size k of the SCA because
it can be assumed to be small in practice. We denote the
parameterised version of GEST with k as parameter as the
standard parameterisation of GEST.

In more formal terms, a parameterisation of a decision
problem is obtained by assigning a natural number to each
problem instance. A parameterised decision problem is fixed-
parameter tractable if a problem instance x with parameter
k can be decided in running time f(k) · |x|O(1), where f is
a computable function which is independent of |x|.

In standard complexity theory, problems are classified and
ordered into hierarchies using polynomial-time reductions.
Under parameterised complexity, parameterised reductions,
so-called fpt-reductions, are used for this purpose. An fpt-
reduction from a parameterised problem P to a parameterised
problem Q is a function φ such that for any instance x of P

(i) φ(x) can be computed in time f(k) · |x|O(1), where k
is the parameter of x,

(ii) φ(x) is a yes-instance of Q iff x is a yes-instance of
P , and

(iii) if k is the parameter of x and k′ is the parameter of
φ(x), then k′ ≤ g(k), for some computable function g.

The class FPT contains all fixed-parameter tractable
problems. Note that FPT is closed under fpt-reductions.
Similar to the polynomial hierarchy in standard complexity
theory, a hierarchy of classes W[i] has been introduced with
FPT at its lowest level. In particular, FPT = W[0] and
W[i] ⊆W[j], for all i ≤ j. All classes W[i] are closed under
fpt-reductions. Moreover, analogous to P ⊆ NP, it is not
known whether the inclusions W[i] ⊆W[j] are proper, but
most experts believe this to be the case. The following result
implies that GEST is not in FPT unless the W-hierarchy
collapses up to the second level.

Theorem 2: The standard parameterisation of GEST is
W[2]-complete.

Proof:
Consider an instance (V, F, k) of SC. If we take k, i.e.,

the size of the subcollection F ′ ⊆ F whose union contains
each element of V , as parameter, SC is W[2]-complete [35].

Membership. To show membership in W[2], we use an fpt-
reduction from GEST to SC. Let (S, P, T, k) be an instance
of GEST. For any π ∈ P , construct a set fπ ⊆ T that
contains any t-sequence τ ∈ T iff the elements of τ occur
in π in the same order as in τ . Define

F = {fπ | π ∈ P} .

We show that (S, P, T, k) is a yes-instance of GEST iff
(T, F, k) is a yes-instance of SC.

Assume that (S, P, T, k) is a yes-instance of GEST.
Hence, there exists a matrix M satisfying conditions (i)



and (ii) from Definition 3. Define F ′ as the subset of F
that contains fπ iff π is a row of M . Clearly, the size of
F ′ is at most k. It remains to show that the union of the
elements of F ′ contain each τ ∈ T . Towards a contradiction,
assume that there is an element τ ∈ T such that no set in
F ′ contains τ . Since (S, P, T, k) is a yes-instance of GEST,
M contains a row π ∈ P such that the symbols in τ occur
in π in the same order as in τ . Thus τ ∈ fπ . Since fπ ∈ F ′,
we arrive at a contradiction. Therefore, (T, F, k) must be a
yes-instance of SC.

Assume now that (T, F, k) is a yes-instance of SC. Hence,
there is a subset F ′ ⊆ F of size at most k whose union
contains each element of T . Construct a matrix M according
to Definition 3 such that M contains, for each f ∈ F ′, one
row π ∈ P that satisfies fπ = f . Clearly, M consists of at
most k rows from P . It remains to show that M satisfies
condition (ii) of Definition 3. Towards a contradiction, assume
that there is a t-sequence τ ∈ T such that no row contains
the symbols in τ in the same order as in τ . Since (T, F, k)
is a yes-instance of SC, there is a set f ∈ F ′ that contains τ .
Since M contains a row π with fπ = f , it follows from the
construction of fπ that π contains the symbols in τ in the
same order as in τ . We thus arrive at a contradiction, and
so (S, P, T, k) is yes-instance of GEST.

Hardness. To show that GEST is W[2]-hard, we define
an fpt-reduction from SC to GEST. In fact, the reduction
used in the hardness proof of Theorem 1 is such an fpt-
reduction since the problem parameter k is preserved. Hence,
W[2]-hardness of GEST follows.
Hence, even if we are interested only in relatively small
test plans, it is presumably not possible to avoid worst-case
exponential runtime.

IV. SCA COMPUTATION

We now discuss how ASP can be used to generate SCAs.
Our goal is not only to present approaches to compute generic
SCAs, i.e., SCAs created without additional constraints
or requirements, rather we want to demonstrate that ASP
can be used as an efficient and effective declarative tool
to compute SCAs tailored to specific test scenarios. We
in particular demonstrate that (i) the declarative nature of
ASP encodings can help to state complex coverage criteria,
involving constraints and possibly recursive definitions with
ease in a concise and elaboration-tolerant way, and (ii) when
the declarative nature of ASP encodings is coupled with ever-
improving efficiency of ASP solvers, even simple encodings
that closely reflect the problem statement in natural language
can provide better SCAs (e.g., smaller SCAs) compared to
those obtained from a dedicated algorithm.

Ahead of our discussion in Section V addressing how
different problem elaborations can be incorporated into a
single answer-set program, we introduce in what follows
an answer-set program for computing generic SCAs. This
program will serve as basis for further problem elaboration

% ASP encoding for (n,s,3)-SCAs
sym(1..s). row(1..n).

% guess happens-before relation
1{hb(N,X,Y),hb(N,Y,X)}1 :- row(N),

sym(X;Y), X != Y.

% happens-before is transitive
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

% happens-before is irreflexive
:- hb(N,X,X).

% check if each 3-sequence is covered
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- not covered(X,Y,Z),

sym(X;Y;Z), X!=Y, Y!=Z, X!=Z.

Figure 1. ASP encoding Π3(n, s).

discussed in the sequel. We also introduce a new greedy
approach that combines a simple variation of the basic ASP
encoding with an iterative greedy procedure.

A. Basic Encoding

To begin with, we present an ASP program for computing
(n, s, t)-SCAs with t = 3. We assume throughout that s ≥ 3.
Note that this program can be changed in a straightforward
way to obtain encodings for any fixed t > 3. An encoding for
SCAs where t is not fixed can be obtained using disjunctive
ASP [13]—this is, however, beyond the scope of this article.
For the sake of understandability, we introduce our encoding
step-by-step.

1) Encoding: We start by expressing that the symbols of
the array are integers between 1 and s, and row indices of
the SCA correspond to integers 1 to n. Note that s and n
function as parameters of the program:

sym(1..s). row(1..n).

For the representation of the SCA, we use the predicate
hb(N,X,Y) expressing that in row N event symbol X
happens before symbol Y. The basic idea is that we will
define this happens-before relation in a way that it is, for
each row, a strict total order on the event symbols.

The first rule states that for any two distinct symbols X
and Y in each row, either X happens before Y or Y happens
before X:

1 {hb(N,X,Y),hb(N,Y,X)} 1 :- row(N),
sym(X;Y), X != Y.

We need further rules to guarantee that the happens-
before relation is indeed a strict total order. In particular, we
need rules that guarantee that the happens-before relation is
transitive and irreflexive. Now, transitivity can be expressed
in a straightforward way:

hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).



Directly expressing inductive definitions as above is a
particular strength of ASP and distinguishes it from related
declarative approaches that are more based on the semantics
of classical first-order logic.

To state that the happens-before relation is irreflexive, a
simple additional constraint is required.

:- hb(N,X,X).

Hence, it is forbidden that a symbol occurs before itself.
This finally implies that the happens-before relation is

a strict total order on the event symbols {1, . . . , s} which
further implies that each row is a permutation of the event
symbols when we order them according to the happens-before
relation.

It only remains to require that each 3-sequence of symbols
is covered by some row. Observe that a 3-sequence is a
triple of pairwise distinct symbols. A 3-sequence (X,Y,Z)
is covered if X happens before Y and Y happens before Z
in some row N. We finally define covered 3-sequences and
forbid that a 3-sequence is not covered:

covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- not covered(X,Y,Z),

sym(X;Y;Z), X!=Y, Y!=Z, X!=Z.

The entire ASP program Π3(n, s) with parameters n and s
for generating (n, s, 3)-SCAs is given in Figure 1.

Intuitively, each answer set of program Π3(n, s) represents
an (n, s, 3)-SCA. In fact, the answer sets of Π3(n, s) and
the (n, s, 3)-SCAs are in a one-to-one correspondence. This
relation can be formalised as follows:

Definition 4: An answer set X of Π3(n, s), for s ≥ 3,
represents an n×s matrix M iff, for any i, j, 1 ≤ i < j ≤ s,
and any r, 1 ≤ r ≤ n, Mr,i = s1 and Mr,j = s2 precisely
in case X contains the atom hb(r, s1, s2).

Proposition 1: Each answer set of Π3(n, s) represents a
single (n, s, 3)-SCA, and each (n, s, 3)-SCA is represented
by a single answer set of Π3(n, s).

For illustration, to compute a (7, 5, 3)-SCA, gringo and
clasp can be invoked as follows:

gringo sca-3.gr -c n=7,s=5 | clasp .

File sca-3.gr contains program Π3(n, s). The gringo
option -c n=7,s=5 instantiates the program parameters
n and s to 7 and 5, respectively. Any resulting answer set
corresponds to a (7, 5, 3)-SCA. For instance, in some answer
set, the first row of the SCA M given in Section II-A is
encoded by the atoms

hb(1,1,4), hb(1,3,1), hb(1,2,3),
hb(1,5,2), hb(1,5,3), hb(1,2,1),
hb(1,3,4), hb(1,2,4), hb(1,5,4),
hb(1,5,1).

To compute more than one (7, 5, 3)-SCA, an upper bound on
the number of answer sets that clasp should compute can

Table I
UPPER BOUNDS n FOR SCAN(s, 3) OBTAINED BY KUHN ET AL. [4] AND

OUR ASP ENCODING. A STAR INDICATES AN OPTIMAL BOUND.

s n (Kuhn et al. [4]) n (ASP)
5 8 7∗

6 10 8∗

7 12 8∗

8 12 8∗

9 14 9∗

10 14 9∗

11 14 10
12 16 10
13 16 10
14 16 10
15 18 10
16 18 10
17 20 11
18 20 12
19 22 12
20 22 12
21 22 12
22 22 12
23 24 13
24 24 13
25 24 14
26 24 14
27 26 14
28 26 14
29 26 14
30 26 15
40 32 17
50 34 18
60 38 20
70 40 22
80 42 23

be specified as an integer option (0 means that all answer
sets are computed).

2) Discussion: Program Π3(n, s) nicely illustrates how
challenging search problems can be concisely encoded using
ASP: The program consists of only seven rules that closely
reflect the problem statement in natural language. We note
that only little training time is needed to enable a tester to
use ASP for test authoring. This is mainly because of the
genuine declarative nature of ASP, which does not require
specialised knowledge on data structures or algorithms. A
more experienced ASP user needs about 15 minutes to
develop a program such as the one given in Figure 1.

Also, by using our ASP encoding Π3(n, s) and the ASP
solver clasp, we could improve known upper bounds
for many SCAs significantly. A comparison of the SCAs
generated using ASP and the greedy algorithm of Kuhn
et al. [4] is given in Table I. Computation times for the
reported upper bounds range from fractions of a second to
180 minutes. We have considered strength 3 SCAs for five
to 80 events. The known upper bounds reported by Kuhn
et al. [4] could be improved throughout. The more events
are considered, the more drastic are the improvements; for
some arrays, we need up to 46.88% less test sequences. Such
savings are especially significant in settings where running
single test sequences are costly.



For small SCAs—viz. for 5 to 10 events—the new upper
bounds are actually optimal bounds. Optimality of upper
bounds was established using ASP itself. To show that an
(n, s, t)-SCA is optimal, we try to compute an (n− 1, s, t)-
SCA. If this fails, i.e., the ASP solver terminates without
returning an answer set, the (n, s, t)-SCA is indeed optimal.
Since SCAN(10, 3) = 9, 9 is a trivial lower bound for any
SCAN(s, 3) with s > 10. Note that greedy algorithms, or
any approaches based on incomplete search, are unable to
prove optimal bounds or to establish lower bounds at all.

A limitation of using the ASP encoding Π3(n, s) concerns
scalability. Although memory usage is always limited by a
polynomial with respect to the input parameters n and s, the
runtime of clasp is worst-case exponential for encoding
Π3(n, s). On the other hand, the greedy approach of Kuhn et
al. [4] seems to scale quite well; the authors report on SCAs
for up to 80 events not only for strength 3 arrays, but they
also consider arrays of strength 4 where our ASP approach
quickly reaches its limits.

B. Greedy Algorithm

In the remainder of this section, we introduce and discuss
an ASP-based greedy algorithm, inspired by that of Kuhn et
al. [4], for computing larger SCAs. The motivation to study
such an algorithm is to combine the modelling capabilities
of ASP, especially in the light of constraints and problem
elaborations (as detailed in the next section), with the
scalability of a greedy approach.

In this context, we also mention that the greedy algorithm
of Kuhn et al. has a certain weakness, which is related
to the heuristic that for any newly computed sequence the
reverse sequence is added as well (cf. Section II). As we
will show next, this makes the algorithm inherently unable to
compute optimal SCAs in general. Actually, the inability to
find optimal SCAs follows immediately from the observation
that some optimal SCAs, e.g., (7, 5, 3)-SCAs, are of odd
size. However, ASP can be used to show that even optimal
SCAs of even size cannot be found by that greedy approach
in general. The idea is to augment program Π3(n, s) by a
rule that states that every second row is the inversion of the
previous one. This is simply expressed by the following rule:

hb(N,X,Y) :- row(N),hb(N-1,Y,X),
N #mod 2 == 0.

Here, predicate #mod is the usual modulo operation. Hence,
the intuitive reading of this rule is that for any row with
even index N, the happens-before relation is the inverse
of the happens-before relation of the preceding row N-1.
We know already from Table I that any (8, 6, 3)-SCA is
optimal. However, Π3(8, 6) augmented by the above rule
yields no answer set, which shows that (8, 6, 3)-SCAs cannot
be computed by the greedy algorithm of Kuhn et al. [4]. Next,
we present an ASP-based greedy algorithm inspired by that
of Kuhn et al. that does not rely on adding inverted rows.

Require: s is the number of symbols.
Ensure: N represents an (n, s, 3)-SCA.

1: N ⇐ ∅
2: n ⇐ 0
3: repeat
4: n ⇐ n + 1
5: X ⇐ answer set of Π3

grdy(s, n) ∪N
6: N ⇐ N ∪X|hb/3

7: until N represents an (n, s, 3)-SCA

Figure 2. Greedy algorithm for computing an (n, s, 3)-SCA.

1) Encoding: Figure 2 represents our ASP-based greedy
algorithm for computing SCAs. The main idea is to compute
one row of a SCA at a time instead of computing the entire
array. In each iteration, one further row is computed using
ASP where the number of covered 3-sequences is maximised.
For this purpose, we use program Π3

grdy(s, i), which is
depicted in Figure 3. Program Π3

grdy(s, i) takes the number
s of events and a row index i as parameters. Both the ASP
encoding and the greedy algorithm are introduced only for
SCAs of strength 3. However, versions for computing SCAs
of strength greater than 3 are obtained in a straightforward
way. To obtain a program for strength 4 SCAs, for example,
only the last two rules of Π3

grdy(s, i) have to be replaced by
the following two rules:

covered(W,X,Y,Z) :- hb(n,W,X), hb(n,X,Y),
hb(n,Y,Z).

#maximize[covered(_,_,_,_)].

Program Π3
grdy(s, i) is quite similar to Π3(n, s). However,

each answer set of Π3
grdy(s, i) corresponds only to a single

row with index i of an SCA. The idea is to represent
preceding rows with index 1 to i−1 by means of facts hb/3.
These facts are joined with Π3

grdy(s, i). Then, the answer
sets of Π3

grdy(s, i) correspond to those rows that obtain
maximal coverage of previously uncovered 3-sequences. The
encoding follows the guess, check, and optimise pattern, i.e.,
we use guessing rules to span the search space, constraints
to filter unwanted solution candidates, and rules that express
a preference relation on answer sets. In particular, rule

#maximize[covered(_,_,_)].

states that we seek for answer sets with a maximal number
of covered 3-sequences.

The algorithm itself is rather simple (cf. Figure 2): It takes
parameter s as input and computes an (n, s, 3)-SCA. Initially,
the set N that represents a (partial) SCA by means of facts
hb/3 equals the empty set. In each iteration, Π3

grdy(s, i)∪N
is used to compute the next row of the SCA that obtains
maximal increase of previously uncovered 3-sequences. The
respective hb/3 facts for that row are then added to N . This
procedure iterates until no uncovered 3-sequences are left (the
ASP solver itself will indicate that no further optimisation is
possible). Since the computation of optimal answer sets can
become very time consuming, we additionally impose an



% guess single row with index i of an
% (n,s,3)-SCA
sym(1..s).

% guess happens-before relation
1{hb(i,X,Y),hb(i,Y,X)}1 :- sym(X;Y), X != Y.

% happens-before is transitive
hb(i,X,Z) :- hb(i,X,Y), hb(i,Y,Z).

% happens-before is irreflexive
:- hb(i,X,X).

% maximise coverage
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
#maximize[covered(_,_,_)].

Figure 3. ASP encoding Π3
grdy(s, i).

upper bound on the time that is spent for optimising answer
sets, thus improvements in each step will not be maximal in
general. However, this seems to be a reasonable compromise
regarding runtime and the size of computed SCAs. We used
time limits of up to 10 minutes for computing single rows,
depending on the problem size.

2) Discussion: To sum up our results so far, our analysis
of the heuristic proposed by Kuhn et al. [4] using ASP has
pinpointed some shortcomings of the former and has helped
us to learn more about the problem at hand. Furthermore,
we have proposed a new greedy algorithm making use of
a slight variation of Π3(n, s). The ASP solver takes care
entirely of the greedy optimisation of the single rows of the
SCA. The algorithm thus only keeps track of the partial SCA
and incrementally calls the ASP solver to compute new rows.

Table II summarises a comparison of our greedy ASP
algorithm with the greedy algorithm of Kuhn et al. [4] for
strength 3 and 4 SCAs involving 10 to 80 events. For strength
3 SCAs, our algorithm is competitive with that of Kuhn et
al. and upper bounds could be improved throughout by some
rows. For strength 4 SCAs, the greedy ASP approach is
feasible for up to 40 symbols where upper bounds could be
improved even more drastically than for strength 3 SCAs.
However, we were not able to compute SCAs for 40 to
80 symbols, which shows a limitation of our ASP-based
approach that is probably acceptable unless the need for larger
instances with a high level of interaction is indeed motivated
by some application scenario. This limitation basically comes
from the huge number of 4-sequences that need to be covered
and that are represented by the program. Here, it is to mention
that scalability is certainly a characteristic strength of the
simple greedy algorithm of Kuhn et al., since dedicated
data structures, e.g., efficient bit-vectors, can be used for
representing covered sequences. However, by using ASP
we get bounds for strength 3 SCAs for up to 80 symbols
and can also improve bounds for strength 4 SCAs for up
to 40 symbols. Again, we emphasise that our goal is not

Table II
COMPARISON OF OUR GREEDY ASP APPROACH AND THAT OF KUHN ET

AL. [4]: UPPER BOUNDS n FOR SCAN(s, 3) AND SCAN(s, 4).

s t = 3 t = 4
Kuhn et al. [4] ASP Kuhn et al. [4] ASP

10 14 11 66 55
20 22 17 120 104
30 26 22 156 149
40 32 26 182 181
50 34 29 204 -
60 38 32 222 -
70 40 35 238 -
80 42 36 250 -

to compute generic SCAs but to allow a tester to express
different requirements with little effort, by adding or changing
some rules of the ASP program, which can readily be done
using the greedy ASP approach. We pursue this issue in the
next section.

V. PROBLEM ELABORATIONS

Next, we turn to the actual strengths of using ASP as
an elaboration tolerant representation formalism for event
sequence testing. We describe how ASP can be used for
generating SCAs in a scenario that involves additional con-
straints and other problem variations that make it impossible
to directly use precomputed SCAs. In particular, we use a
real-world testing problem described by Kuhn et al. [4] for
making our point. The specification of this testing problem
is as follows: There are five different devices that have to
be connected to a laptop. These devices can be connected
before or after a boot-up phase. Further actions that have
to be performed on the laptop are opening an application
and initiating a scanning process. The peripherals can be
connected to the laptop in any order; however, the order of
events influences the functionality of the system. Thus, SCAs
lend themselves as a basis for a suitable testing plan.

There are eight events relevant for testing: connecting
devices (p1, . . . ,p5), booting the system (boot), starting
an application (appl), and running a scan (scan). Testing in
this scenario is rather time consuming since it requires setting
up the system manually. Therefore, obtaining an optimal test
plan is a clear desideratum. Following Kuhn et al., only
SCAs of strength 3 are considered to keep the size of the
test plan reasonable.

A. Forbidden Sequences

For eight events, optimal SCAs of strength 3 comprise
eight rows. However, we cannot use precomputed (8, 8, 3)-
SCAs since certain constraints regarding the order of events
have to be taken into account. While most events can happen
in any order, starting the application cannot happen before
the system is booted, and running a scan requires that the
application is already running.



1) Encoding: Instead of covering all 3-sequences, we want
to generate SCAs such that (i) in each row, boot happens
before appl and appl happens before scan, and (ii) all 3-
sequences such that boot happens before appl and appl
happens before scan are covered by at least one row. We
only have to slightly modify program Π3(n, s) to account
for (i) and (ii). First, instead of integers to denote events, we
would like to use more descriptive constant symbols. Thus,
we replace sym(1..s) in Π3(n, s) by

sym(boot;p1;p2;p3;p4;p5;appl;scan).

Concerning (i), we define which orderings are excluded and
add a respective constraint that forbids that event a happens
before b if “a before b” is excluded.

excluded(scan,appl).
excluded(appl,boot).
excluded(X,Z) :- excluded(X,Y),

excluded(Y,Z).
:- hb(_,X,Y), excluded(X,Y).

Regarding (ii), we simply define those 3-sequences that are
not consistent with the excluded orderings as already covered:

covered(X,Y,Z) :- excluded(X,Y),
sym(X;Y;Z).

covered(X,Y,Z) :- excluded(X,Z),
sym(X;Y;Z).

covered(X,Y,Z) :- excluded(Y,Z),
sym(X;Y;Z).

We denote the resulting program as Π3
1(n).

2) Discussion: Recall that (8, 8, 3)-SCAs are optimal for
eight symbols. Since, Π3

1(8) does not yield any answer set, it
follows that the stipulation on admissible orderings requires
additional rows. In this case, this is because the number of
3-sequences that can be covered by a single row is reduced if
certain events are required to happen in a strict order. Indeed,
a solution for Π3

1(9) can be computed, hence 9 is an optimal
bound for an SCA satisfying that each row is consistent with
the specified ordering constraints. The solver clasp needs
fractions of a second to find an SCA of size 9 and about
1 minute for checking optimality.

B. Redundant Sequences

Besides forbidden orderings, we also have to deal with
redundant sequences: If devices are connected to the laptop
before the boot-up phase, the order is not relevant. In fact,
we only require strength 3 coverage for events p1, . . . ,p5,
appl, and scan. Concerning the interaction of events
p1, . . . ,p5, and boot, we regard strength 2 coverage
as sufficient, i.e., we are only interested in whether the
connection of the peripherals happens before or after the
boot-up phase. Hence, we need a variable strength SCA, in
which we seek to have strength 2 coverage for one set of
events and strength 3 coverage for another one.

1) Encoding: First, we add two sets of facts to declare
the sets of events for which we want to obtain strength 2
and strength 3 coverage, respectively:

threeWay(p1;p2;p3;p4;p5;appl;scan).
twoWay(boot;p1;p2;p3;p4;p5).

Next, we have to modify some rules where appropriate. In
particular, we only want to cover 3-sequences over symbols
from threeWay/1. Hence, we rewrite rule

threeSeq(X,Y,Z) :- sym(X;Y;Z),X!=Y,Y!=Z,
X!=Z.

into

threeSeq(X,Y,Z) :- threeWay(X;Y;Z),
X!=Y, Y!=Z, X!=Z.

To address two-way coverage of the symbols from predicate
twoWay/1, we add two further rules:

covered(X,Y) :- hb(_,X,Y).
:- twoWay(X;Y), X != Y, not covered(X,Y).

The resulting program is denoted by Π3
2(n).

2) Discussion: Program Π3
2(n) incorporates both forbid-

den configurations and redundant sequences. Respective
SCAs can be obtained for n = 8 already. SCAs of size 8 are
indeed optimal arrays, which follows from the observation
that Π3

2(7) yields no answer set at all. It takes on average
0.1 seconds to compute the first answer set of a size 8 SCA
when using clasp as ASP solver. Showing optimality, i.e.,
that no size 7 SCA exists, needs several minutes.

The solution approach of Kuhn et al. uses a precomputed
(12, 7, 3)-SCA to account for the seven events p1, . . . ,p5,
scan, and appl. In a post-processing step, rows that are
not consistent with the ordering constraints (cf. Section V-A)
are replaced. However, this requires that further rows are
added to preserve coverage. Note that this testing application
was considered before the greedy algorithm was extended to
directly express simple constraints [4]. In a further manual
post-processing step, to account for the two-way coverage
with respect to events p1, . . . ,p5, and boot, Kuhn et al.
add boot as the first event of each row. Finally, an additional
row is added, in which all events p1, . . . ,p5 are arranged
prior to boot, thereby obtaining strength 2 coverage between
boot and events p1, . . . ,p5. The resulting array consists
of 19 rows.

The first thing to note is that using ASP enabled us to
easily embed the additional requirements directly in the ASP
program rather than employing an ad hoc and mostly manual
approach. Furthermore, using ASP significantly reduced
the size of the resulting SCA by eleven rows (57.94%),
cf. Table III.

C. Adding Attributes to Events
The next problem elaboration that we consider is related to

the way the peripherals are connected to the laptop. Devices



Table III
TEST PLAN OF SIZE 8 FOR THE LAPTOP APPLICATION OBTAINED FROM AN ANSWER SET OF Π3

4(8).

row event 1 event 2 event 3 event 4 event 5 event 6 event 7 event 8
1 p3(l) p2(r) p1(b) p4 boot appl scan p5
2 boot p4 p1(r) appl p5 p3(l) scan p2(b)
3 boot appl scan p1(r) p2(b) p4 p3(l) p5
4 p1(r) p2(b) p5 p3(l) boot appl scan p4
5 boot p3(b) p5 p1(r) appl p4 p2(l) scan
6 p4 boot p2(b) p5 appl p1(l) scan p3(r)
7 boot appl scan p5 p3(l) p4 p2(b) p1(r)
8 p5 boot p2(l) p4 p3(r) appl scan p1(b)

p1, p2, and p3 have to be connected to USB ports. Three
ports are available: left, right, and back. In each test
sequence, one port has to be assigned to a USB device.

1) Encoding: Predicate port(N,X,Y) states that USB
device X is connected to port Y in row N of the array. This
assignment should satisfy the following coverage criteria:

(i) each USB device has to be connected to each port at
least once, and

(ii) connections to the ports after the boot event should be
made in any possible order.

The above requirements can be formalised using few further
rules.

In the following rules, we first specify the USB ports
and devices. Then, it is expressed that each USB device is
assigned to precisely one port in each test sequence. Finally,
USB devices must not be connected to the same port in any
sequence.

usbPort(right; left; back).
usbDevice(p1; p2; p3).
1{port(N,X,Y):usbPort(Y)}1 :- row(N),

usbDevice(X).
:- port(N,X,Y), port(N,Z,Y), X != Z.

Next, we state coverage criterion (i):

portCov(X,Y) :- port(N,X,Y).
:- usbDevice(X), usbPort(Y),

not portCov(X,Y).

Lastly, we add rules for coverage criterion (ii):

portSeq(X,Y,Z) :- usbPort(X;Y;Z),
X!=Y, X!=Z, Y!=Z.

seqCov(N,X,Y,Z):- hb(N,boot,X),
hb(N,X,Y),
hb(N,Y,Z).

pSeqCov(R,S,T) :- seqCov(N,X,Y,Z),
port(N,X,R),
port(N,Y,S),
port(N,Z,T).

:- portSeq(X,Y,Z), not pSeqCov(X,Y,Z).

Let us denote the resulting program by Π3
3(n).

2) Discussion: Note that the additional conditions regard-
ing the USB ports do not result in larger SCAs, still SCAs

of size 8 can be obtained by computing the answer sets of
Π3

3(8). Clearly, 8 is also an optimal bound. The runtime of
the ASP solver is not affected by the additional requirements.

Kuhn et al. deal with the issue of USB ports by adding
respective port assignments in a post-processing step once
an SCA is computed. However, they do not provide details
on which basis this is done, i.e., it is not clear if or in what
sense they strive for systematic coverage.

D. Expressing Preferences
Any answer set of Π3

3(n) represents one admissible test
plan for the application under test. Although each such SCA
satisfies all of the requirements discussed so far, different
SCAs could differ in their fault detection potential.

We next augment program Π3
3(n) by rules that state a

preference relation among solutions, similar to program
Π3
grdy(·, ·) from the previous section. In particular, although

any SCA guarantees full three-way interaction coverage for
some specified events, the degree of four-way coverage of
events may differ from one SCA to another. We will use the
number of covered 4-sequences as discrimination criterion
regarding the quality of solutions and consequently prefer
SCAs that cover more 4-sequences over SCAs that cover
fewer.

1) Encoding: We define program Π3
4(n) as Π3

3(n) aug-
mented by the following rules:

covered(W,X,Y,Z) :- hb(N,W,X),hb(N,X,Y),
hb(N,Y,Z).

#maximize[covered(_,_,_,_)].

The first rule defines which 4-sequences are covered, the
second rule states that the number of covered 4-sequences
should be maximised. The complete ASP encoding Π3

4(8) is
given in Figure 4.

2) Discussion: An SCA of size 8 corresponding to an
answer set of Π3

4(8) is given in Table III. In the computation
of the SCA, clasp has been configured to optimise a
solution until no improvements can be found for 15 minutes.

On the other hand, Kuhn et al. [4] have not handled
preferences over solutions at all. The algorithm of Kuhn et al.
is tailored for computing a single SCA. Thus, it may be hard
to use such an algorithm to directly deal with optimisation
issues, since this requires that solutions should be efficiently
enumerated.



This case study demonstrates that often generic SCAs
cannot be used in a real world scenario without significant
modifications. In general, such modifications lead to a
considerable overhead or are not feasible at all. By using
ASP, however, a test author has a tool to state different
requirements relevant for individual scenarios. Often, this
will need only little effort such as adding few rules.

VI. RELATED WORK

The ASP-based approach introduced in this paper is the
first account of an approach for directly generating SCAs
in the presence of expressible constraints and problem
elaborations. We note, however, that after the previous
conference version of this paper [1], our idea was picked
up soon by Banbara et al. [37]. They proposed a constraint-
programming encoding called the incidence-matrix model
for generating SCAs. Although we could either reproduce or
improve all bounds for SCAN(s, 3) reported by Banbara at
al. [37] in this paper, the encoding based on the incidence-
matrix model scales better than ours for SCAN(s, 4) SCAs.

Closely related to our work are techniques for computing
covering arrays (CAs), which we will review next. An
overview of different approaches and tools for generating CAs
is given by Grindal, Offutt, and Andler [2]. There, greedy
algorithms that construct one row at a time are quite common.
The most prominent representative is the AETG system [38].
Our greedy approach to compute SCAs is close in spirit to
AETG-like algorithms since it also proceeds row by row.
Also, meta-heuristics, like simulated annealing, tabu search,
or genetic algorithms, have been applied for constructing
CAs [39], [40] (cf. respective overview articles for more
details [2], [3]). Greedy algorithms usually scale well while
meta-heuristics tend to produce arrays of smaller sizes [39].
However, neither greedy techniques nor meta-heuristics can
guarantee optimal bounds.

As a complete method being able to establish optimality
of arrays, different SAT encodings have been considered [41],
[42]. Similar to our ASP encoding, SAT encodings allow
to compute combinatorial designs as a whole. From a
computational point of view, SAT and ASP are closely related
and ASP solvers like clasp use many techniques also
used by SAT solvers like conflict-driven clause learning.
In fact, clasp can be used as a SAT solver itself—it
even outperformed state-of-the-art SAT solvers at the SAT
2011 competition. A distinctive feature of ASP compared
to SAT is the high-level modelling capabilities of ASP that
allow to model problems concisely at the first-order level
as demonstrated by our SCA encodings. SAT is certainly
a promising approach for tackling problems described in
Section IV, i.e., for computing SCAs and checking optimality
of upper bounds. However, the problem variations discussed
in Section V require a formalism that allows for elaboration-
tolerant representations, which is not a characteristic feature
of SAT. Regarding modelling, it is to mention that Hnich et

% ASP encoding for the laptop example
sym(boot; p1; p2; p3; p4; p5; appl; scan).
row(1..n).

threeWay(p1; p2; p3; p4; p5; appl; scan).
twoWay(boot; p1; p2; p3; p4; p5).

% guess happens-before relation
1{hb(N,X,Y),hb(N,Y,X)}1 :- row(N),

sym(X;Y), X != Y.
% happens-before is transitive
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).
% happens-before is irreflexive
:- hb(N,X,X).

% check three-way and two-way coverage
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- not covered(X,Y,Z),

threeWay(X;Y;Z), X!=Y, Y!=Z, X!=Z.
covered(X,Y) :- hb(_,X,Y).
:- twoWay(X;Y), X != Y, not covered(X,Y).

% excluded orderings
excluded(scan,appl).
excluded(appl,boot).
excluded(X,Z):-excluded(X,Y),excluded(Y,Z).
:- hb(_,X,Y), excluded(X,Y).
covered(X,Y,Z) :- excluded(X,Y), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(X,Z), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(Y,Z), sym(X;Y;Z).

% coverage of USB ports
usbPort(right; left; back).
usbDevice(p1; p2; p3).
1{port(N,X,Y):usbPort(Y)}1 :- row(N),

usbDevice(X).
:- port(N,X,Y), port(N,Z,Y), X != Z.

portCov(X,Y) :- port(N,X,Y).
:- usbDevice(X),usbPort(Y),not portCov(X,Y).

portSeq(X,Y,Z) :- usbPort(X;Y;Z),
X!=Y,X!=Z,Y!=Z.

seqCov(N,X,Y,Z):-hb(N,boot,X),hb(N,X,Y),
hb(N,Y,Z).

pSeqCov(R,S,T) :- seqCov(N,X,Y,Z),
port(N,X,R), port(N,Y,S), port(N,Z,T).

:- portSeq(X,Y,Z), not pSeqCov(X,Y,Z).

% maximise covered 4-sequences
covered(W,X,Y,Z) :- hb(N,W,X),hb(N,X,Y),

hb(N,Y,Z).
#maximize[covered(_,_,_,_)].

Figure 4. ASP encoding Π3
4(8).

al. [41] and Banbara et al. [42] initially considered constraint
programming (CP) models, which are subsequently translated
to SAT. Although this has not been considered, further
constraints, at least forbidden tuples, could be incorporated
rather easily into the CP model. A comparison of ASP and
constraint (logic) programming (CLP) is given in a related



article [43]. There, the authors conclude that ASP allows for
more declarative and concise problem representations and is
easier to learn for beginners than CLP.

The need for stating constraints and other user require-
ments in combinatorial interaction testing for real-world
applications has been discussed by different authors [38],
[44]–[50]. The prevalent approach is to first generate a CA
and then to delete and permute rows that are not consistent
with certain requirements. The number of rows that need
to be replaced can be vast and this approach can lead to a
considerable increase of the array size [49]. This applies not
only for CAs but for SCAs as well as we have illustrated
in the previous section. Another common method requires
remodelling of the specification [38], [45].

The tool PICT [47], also based on an AETG-like greedy
algorithm, allows to directly express constraints; however,
the details how this is realised are not accessible.

Cohen, Dwyer, and Shi [48], [49] introduced approaches
that integrate techniques for generating covering arrays
with SAT to deal with constraints. Forbidden tuples are
represented as Boolean formulas and a SAT solver is used to
compute models. They integrated SAT with greedy AETG-
style algorithms and also with simulated annealing. Hence,
their approach is closely related to our integration of ASP
into a greedy procedure. Calvagna and Gargantini [50] follow
a similar approach but they use an SMT solver instead of a
SAT solver, which offers a richer language than plain SAT
solvers. In their approach, constraints are stated as formal
predicate expressions. Besides SMT, Calvagna and Gargantini
also considered a model checker for verifying test predicates
which would also be suitable for specifications involving
temporal constraints and state transitions.

Bryce and Colbourn [46] distinguish forbidden tuples and
tuples that should be avoided. They refer to the latter as
soft constraints and they present an algorithm for generating
CAs that avoids the violation of soft constraints. However,
their algorithm cannot guarantee that certain tuples are
avoided, hence it cannot deal with forbidden tuples or other
hard constraints. Using ASP, soft constraints can be easily
expressed by means of minimise or maximise statements.
Some ASP solvers, like DLV [51], allow to express soft
constraints even more directly (in the case of DLV, in the
form of weak constraints). We illustrated in the previous
section how one can combine hard integrity constraints with
soft constraints to express that uncovered 4-sequences should
be avoided. For even more fine-grained modelling, ASP
allows to assign different priorities to soft constraints and
maximise, resp., minimise, statements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we dealt with the generation of SCAs,
which have recently been advocated as suitable combinatorial
design concepts for event sequence testing [4]. In particular,
we applied ASP as a declarative approach for generating

SCAs. While the only previously introduced algorithm is
an AETG-like greedy algorithm [4], ASP can be used
as an exact method that combines high-level modelling
capabilities involving recursive definitions, default negation,
hard constraints, soft constraints, and aggregates with highly
performative search engines [10], [11].

Our contributions can be summarised as follows:

• We established new complexity results related to com-
puting SCAs. In particular, we showed that GEST is
NP-complete and its standard parameterisation is W[2]-
complete.

• We introduced a novel technique to use ASP for
computing SCAs as a whole. The SCAs obtained using
ASP are significantly smaller than those generated using
the greedy algorithm of Kuhn et al. [4]. For some SCAs,
optimality of upper bounds could be established.

• We integrated our ASP approach into a greedy algorithm
that allows to compute SCAs in a one-row-at-a-time
fashion. Hence, we obtain a more scalable algorithm
without sacrificing the modelling capacities of ASP for
specifying complex testing problems.

• We dealt with problem elaborations that are indispens-
able for testing real-world applications. In particular,
we addressed how constraints and other application-
specific requirements can be handled directly at the
level of the ASP representation without a further need
for post-processing steps.

To summarise, our contribution is two-fold: On the one
hand, we introduced and showed feasibility of a new approach
for generating SCAs that can be readily used as it is.
On the other hand, we regard this work as a contribution
towards methodology. While ASP is well established in other
communities as a method to address problems from the area
of artificial intelligence and knowledge representation, there
is too little awareness of ASP in the software-engineering
community. Hence, we want to promote ASP as an approach
to tackle challenging problems in the realm of combinatorial
testing. Besides improving the state-of-the-art of event
sequence testing, our aim is to show that ASP provides
a tool that enables a tester to rapidly specify problems and to
experiment with different formulations at a purely declarative
level. ASP solvers are then used for computing solutions
without the need of post-processing steps or developing
dedicated algorithms.

For future work, we plan to deal with versions of SCAs
for different testing applications like testing of concurrent
programs where the order of shared variable accesses was
identified as crucial for triggering certain bugs that are
otherwise hard to evoke [6], [52]. We want to address not only
the problem of statically generating suitable designs, but we
also want to do this in an online fashion where an ASP solver
is coupled with a scheduler to improve coverage with respect
to different interleaving metrics. Such an online approach



would also allow to deal with, e.g., exceptional events in a
more interactive testing environment. In the long term, we
plan to develop support for a tester regarding modelling of
a system’s test space without requiring expert knowledge
on ASP—a front-end language for ASP tailored to specific
testing domains could be the right way of doing this.
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