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Abstract. Description-logic programs (or DL-programs for short) combine logic
programs under the answer-set semantics with description logics for semantic-
web reasoning. In order for a wider acceptance of the formalism among semantic-
web engineers, it is vital to have adequate tools supporting the program devel-
opment process. In particular, methods for debugging DL-programs are needed.
In this paper, we introduce a framework for interactive stepping through a DL-
program as a means for debugging which builds on recent results on stepping for
standard answer-set programs. To this end, we provide a computation model for
DL-programs using states based on the rules that a user considers as active in the
program and the resulting intermediate interpretation. During the course of step-
ping, the interpretations of the subsequent states evolve towards an answer set
of the overall program. Compared to the case of standard answer-set programs,
we need more involved notions of states and computations in the presence of
DL-atoms. In particular, if non-convex DL-atoms are involved, we have to allow
for non-stable computations. Intuitively speaking, we realise this by allowing the
user to assume the truth of propositional atoms which must be justified in subse-
quent states. To keep track of these additional atoms, we extend the well-known
notion of an unfounded set for DL-programs.

1 Introduction

Description-logic programs (or DL-programs for short) [1] have been proposed as a
powerful formalism to couple answer-set programming (ASP) [2] and description logics
(DLs) [3] for semantic-web reasoning. Indeed, DL-programs realise a promising way of
integrating the rules with the ontology layer in the semantic-web architecture. However,
as the formalism is quite recent, it still lacks methods that support semantic-web engi-
neers in developing DL-programs. In particular, no debugging tools for DL-programs
are available.

In this paper, we introduce a stepping approach for DL-programs that allows for
interactive rule-based debugging. As it is based on a sound and complete characteri-
sation of the semantics of DL-programs, it is suited to detect all derivations from the
expected to the actual semantics of a DL-program. Hence, it is not limited to detecting
the source for contradictions in the case of the absence of answer sets, but it also allows
for handling cases where literals are missing or are superfluous in an answer set.
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Step-by-step execution of a program is a standard technique in procedural program-
ming languages, where developers can debug and investigate the behaviour of their
programs in an incremental way. As DL-programs have a genuine declarative semantics
lacking any control flow, it is not obvious how stepping can be realised. Our approach
builds on recent results on stepping of standard logic programs under the answer-set
semantics [4]. Similar to that approach, we introduce a computation model for DL-
programs that is based on states which represent the ground DL-rules that a user con-
siders as active in the program and the resulting intermediate interpretation. The ap-
proach for answer-set programs was based on a simple computation model in which,
at each intermediate state, the interpretation that is induced by the considered rules is
guaranteed to be an answer set of these rules. As this is in general not possible for
DL-programs, we have to extend the previous notions of a state and of the successor
relation determining how to step from one state to another to deal with the presence of
DL-atoms. For achieving this goal, we define the notions of an unfounded set and of the
external support for DL-programs that allow us to keep track of literals that still need to
be justified by a defining rule at a later step in a computation.

Our stepping approach is interactive and incremental, letting the semantic-web en-
gineer choose which rules are added at each step. In our framework, states may serve as
breakpoints from which stepping can be started. We discuss how the user can generate
breakpoints that can be used to jump directly to interesting situations. We also show
how ground rules that are subsequently considered active can be quickly obtained from
the non-ground source code using filtering techniques. Due to the interactive nature of
our proposed approach, the search for bugs can easily be guided by the intuitions of a
developer about which part of the DL-program is likely to be the source of an error.

2 Preliminaries

Intuitively, a DL-program is a combination of a standard DL knowledge base and a
logic program augmented with dedicated atoms realising the coupling. We first recall
syntax and semantics of DLs and then introduce DL-programs based on that.

2.1 Description Logics

As our stepping approach is to a large extent independent of a specific DL, we only
provide background for the basic description logic ALC and refer the interested reader
to the literature [3] for more information on language features beyond ALC.

By a DL-signature we understand a triple Σ = 〈C,R, I〉, where C, R, and I are
pairwise disjoint (denumerable) sets of atomic concepts, role names, and individual
names, respectively. Concepts are inductively defined thus: (i) each atomic conceptA ∈
C, > (the universal concept), and ⊥ (the empty concept) are concepts; (ii) if C and D
are concepts andR ∈ R is a role name, thenCuD (the intersection ofC andD),CtD
(the union of C and D), ¬C (the negation of C), ∃R.C (the existential restriction of C
by R), and ∀R.C (the universal restriction of C by R) are also concepts.

A (DL) knowledge base Φ = 〈T ,A〉, also referred to as a (DL) ontology, consists
of a TBox T , which constitutes the terminological part of the knowledge base, and its



assertional partA, called ABox, which consists of assertions about actual individuals. A
TBox is a finite set of concept inclusion axioms of the form C v D (expressing that the
extension of C is a subset of the extension of D) or C ≡ D (meaning that both C v D
and D v C holds) with C and D being concepts. An ABox is a finite set of concept
assertions of the form C(a) and role assertions of the form R(a, b), where a, b ∈ I are
individual names, C is a concept, and R ∈ R is a role name.

An interpretation I = 〈∆I , ·I〉 consists of a nonempty domain∆I and a mapping ·I
that assigns to each atomic concept C ∈C a subset of ∆I , to each individual o∈I
an element of ∆I , and to each role R∈R a subset of ∆I ×∆I . The mapping ·I is
inductively defined as follows, where C and D are concepts and R ∈ R is a role name:

– >I = ∆I and ⊥I = ∅;
– (C uD)I = CI ∩DI ;
– (C tD)I = CI ∪DI ;
– (¬C)I = ∆I \CI ;
– (∀R.C)I = {x∈∆I | ∀y: 〈x, y〉 ∈RI → y ∈CI}; and
– (∃R.C)I = {x∈∆I | ∃y: 〈x, y〉 ∈RI ∧ y ∈CI}.

The satisfaction relation |= between an interpretation I and a concept inclusion axiom
C v D, a concept assertion C(a), or a role assertion R(a, b) is defined as follows:
(i) I |= C v D iff CI ⊆ DI ; (ii) I |= C(a) iff aI ∈ CI ; and (iii) I |= R(a, b) iff
〈aI , bI〉 ∈ RI . An interpretation I is a model of a TBox T , symbolically I |= T , iff
I |= t for all t ∈ T . Moreover, I is a model of an ABox A, symbolically I |= A, iff
I |= a for all a ∈ A. Finally, I is a model of an ALC knowledge base Φ = 〈T ,A〉 iff
I |= T and I |= A. An axiom or assertion F is a logical consequence of Φ, denoted by
Φ |= F , iff every model of Φ satisfies F .

2.2 DL-Programs

In the following, we briefly summarise syntax and semantics of DL-programs.
A signature Σ = 〈C,R,P, I〉 for DL-programs consists of pairwise disjoint (de-

numerable) sets C, R, P , and I, where 〈C,R, I〉 is a DL-signature and P is a set of
predicate symbols. By a term we understand an individual name from I or a variable.
A (classical) literal is an atom a or its strong negation ∼a. For a literal l, we define
Litl = {l}. A query, Q(t), is either (i) a concept inclusion axiom F or its negation
¬F , (ii) an expression of form C(t) or ¬C(t), where C is a concept and t is a term,
or (iii) an expression of form R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are
terms.

Informally, a DL-program over Σ = 〈C,R,P, I〉 consists of an ontology Φ over
Σo = 〈C,R, I〉 and a normal logic program Π over Σ possibly containing queries to
Φ. In formal terms, a DL-atom a(t) over Σ is defined as an expression of form

DL[S1 op1 p1, . . . , Sm opm pm; Q](t) , m ≥ 0 , (1)

where each Si is either a concept from C or a role predicate from R, opi ∈ {], −∪, −∩},
pi is a unary or binary predicate symbol from P , respectively, and Q(t) is a query. We
call S1 op1 p1, . . . , Sm opm pm the input signature and p1, . . . , pm the input predicate



symbols of a(t). Moreover, literals over input predicate symbols are input literals. We
denote the set of input literals of a DL-atomA by LitA. Intuitively,] (resp., −∪) increases
Si (resp., ¬Si) by the extension of pi, while −∩ constrains Si to pi. A DL-rule r over Σ
has the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m ≥ k ≥ 0 , (2)

where a is a literal and any b1, . . . , bm is a literal or a DL-atom. We call B(r) =
{b1, . . . , bk,not bk+1, . . . ,not bm} the body of r and H(r) = a the head of r. More-
over, we distinguish between the positive body B+(r) = {b1, . . . , bk} and the negative
body B−(r) = {bk+1, . . . , bm} of r. By Litr we denote the set {a} ∪

⋃
1≤i≤m Litbi

.
A DL-rule with B(r) = ∅ is called a fact. DL-rules without a head are also allowed
and are called constraints. These are used to filter out every answer-set candidate that
satisfies their bodies. Finally, a description-logic program, or a DL-program, over Σ =
〈C,R,P, I〉 is a pairKB = 〈Φ,Π〉 consisting of a DL ontologyΦ overΣo = 〈C,R, I〉
and a finite set of DL-rules Π over Σ.

For defining the semantics of DL-programs, let in what follows KB = 〈Φ,Π〉 be
a DL-program over Σ = 〈C,R,P, I〉, where Φ = 〈T ,A〉, and ΣASP = 〈P, I〉. By
gr(Π) we denote the grounding of Π with respect to I, i.e., the set of all ground rules
originating from DL-rules in Π by uniformly replacing, per DL-rule, all variables by
each possible combination of constants in I.

An interpretation I over ΣASP is a consistent subset of literals over ΣASP . We
say that I satisfies a literal l under Φ, denoted by I |=Φ l, iff l ∈ I . Furthermore, I
satisfies a ground DL-atom a = DL[S1op1 p1, . . . , Smopmpm;Q](c) under Φ, denoted
by I |=Φ a, if 〈T ,A ∪ τ I(a)〉 |= Q(c), where τ I(a) =

⋃m
i=1Ai(I) is the extension of

a under I and
– Ai(I) = {Si(t) | pi(t) ∈ I}, for opi = ];
– Ai(I) = {¬Si(t) | pi(t) ∈ I}, for opi = −∪; and
– Ai(I) = {¬Si(t) | pi(t) /∈ I}, for opi = −∩.

An interpretation I satisfies not b under Φ, where b is a literal or a DL-atom, symbol-
ically I |=Φ not b, if I 6|=Φ b. Let S be a set of literals and DL-atoms, each of which
possibly default negated. Then, I satisfies S under Φ, symbolically I |=Φ S, if I |=Φ l
for each l ∈ S. A DL-rule r is active under I and Φ iff I |=ΦB(r). For a ground DL-
rule r under Φ not being a constraint, I satisfies r, symbolically I |=Φr, if I |=Φ B(r)
implies I |=Φ H(r). Furthermore, I is a model of a DL-programKB = 〈Φ,Π〉, denoted
by I |= KB, if I |=Φ r for all r ∈ gr(Π).

We base the semantics of DL-programs on a reduct construction introduced by
Faber, Leone, and Pfeifer [5], which we sometimes refer to as the FLP-semantics.
We consider this semantics rather than the weak or strong semantics of Eiter et al. [1]
because it is the one implemented in DLVHEX1, the state-of-the-art solver for HEX-
programs [6] which generalise DL-programs.

Definition 1. Let Σ = 〈C,R,P, I〉 be a signature for DL-programs, Φ a DL ontol-
ogy over 〈C,R, I〉, Π a set of ground DL-rules over Σ, and I an interpretation over

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/.



ΣASP = 〈P, I〉. Then, the FLP-reduct of Π under Φ relative to I is the set

ΠI
Φ = {r ∈ Π | I |=ΦB(r)}.

We first define answer sets of sets of DL-rules with respect to a DL knowledge base.

Definition 2. Let Σ = 〈C,R,P, I〉 be a signature for DL-programs, Φ a DL ontology
over 〈C,R, I〉, Π a set of DL-rules over Σ, and I an interpretation over ΣASP =
〈P, I〉. Then, I is an answer set of Π with respect to Φ if it is a minimal model of
gr(Π)IΦ. The set of all answer sets of Π with respect to Φ is denoted by AS(Π)Φ.

Based on that, we define answer sets for DL-programs as follows.

Definition 3. Let KB = 〈Φ,Π〉 be a DL-program. An interpretation I is an answer set
of KB if it is is an answer set of Π with respect to Φ. The set of all answer sets of KB
is denoted by AS(KB).

In the absence of DL-atoms in a DL-program KB = 〈Φ,Π〉, Π corresponds to a non-
disjunctive extended logic program whose answer sets as defined by Gelfond and Lif-
schitz [7, 8] coincide with the answer sets of KB. If KB contains neither DL-atoms
nor strong negation, Π is a normal logic program and the answer sets of KB are the
stable models of Π as defined earlier by Gelfond and Lifschitz [9]. Also note that the
semantics we use coincides with the strong answer-set semantics when all DL-atoms
are monotonic [6]:

Definition 4. For a DL-program KB = 〈Φ,Π〉, a ground DL-atom a is monotonic
relative to KB if for all interpretations I and J with I ⊆ J , I |=Φ a implies J |=Φ a.

Moreover, we need the related notion of convex DL-atoms:

Definition 5. For a DL-programKB = 〈Φ,Π〉, a ground DL-atom a is convex relative
to KB if for all interpretations I , J , and K, if I ⊂ J ⊂ K, then, whenever I |=Φ a and
K |=Φ a jointly hold, then also J |=Φ a holds.

3 A Stepping Framework for DL-Programs

In this section, we introduce our framework for stepping through DL-programs. As
noted in the introduction, our approach builds on ideas of previous work on stepping for
normal logic programs under the answer-set semantics [4]. To illustrate the basic idea
of stepping, we first briefly discuss the intuitions of the previous stepping approach.

The general idea is to first take a part of a program and an answer set of this part.
Then, step by step, rules are added by the user such that, at every step, the literal derived
by the new rule is added to the interpretation which remains to be an answer set of the
evolving program part. Hereby, the user only adds rules he or she thinks are active
in the final answer set. The interpretation grows monotonically until it is eventually
guaranteed to be an answer set of the overall program, otherwise the programmer is
informed why and at which step something went wrong. This way, one can in principle
without any backtracking direct the computation towards an expected or an unintended
actual answer set. The individual steps of a computation, referred to as states of the
program, are represented by a set of ground rules which the user considers as active
along with an interpretation that constitutes a partial answer set of the program.



Example 1. Let Π be the normal logic program consisting of the rules

r1 : p1(c)← not p2(c), r2 : p2(c)← not p1(c), and r3 : p3(c)← p1(c).

Following the intuitions above, we express states by pairs 〈Π ′, I ′〉, where Π ′ are the
rules considered active and I ′ is the interpretation derived by those rules. First, we
consider no rule to be active, and hence no atom is derived—the corresponding state is
〈∅, ∅〉. Under the current interpretation ∅, two unconsidered rules are active: r1 and r2.
We choose to consider r1 first and arrive at state 〈{r1}, {p1(c)}〉, as p1(c) is derived
when r1 is assumed to be active. At this point, only r3 is active under {p1(c)}. Hence,
we finally reach state 〈{r1, r3}, {p1(c), p3(c)}〉 whose interpretation {p1(c), p3(c)} is
an answer set of Π . �

Note that in the example, and generally in the case of normal logic programs, stepping
can be done in such a way that every intermediate state in a computation is stable. This
means that the atoms I ′ derived by the currently considered set Π ′ of rules form an
answer set of Π ′. This is in general not possible for DL-programs in the presence of
non-convex DL-atoms. Thus, the previous method for standard logic programs cannot
be applied straightforwardly when DL-atoms are involved, as illustrated next.

Example 2.
Consider the DL-programKB = 〈Φ,Π〉 where Φ = 〈{AuB v Q,¬Cu¬D v Q}, ∅〉
and Π consists of the DL-rules

r1 : p1(c)← DL[A ] p1, B ] p2, C−∩p3, D−∩p2; Q](c),
r2 : p2(c)← p1(c), and
r3 : p1(c)← p2(c),

having unique answer set {p1(c), p2(c)}. The DL-atom involved is non-convex relative
to Φ as it is true under ∅ and {p1(c), p2(c)} but not under {p1(c)} or {p2(c)}. Now,
assume we want to start stepping from the empty interpretation. At the beginning, only
r1 is applicable under ∅, which derives p1(c). We arrive at a state which is not stable
as {p1(c)} is not an answer set of 〈Φ, {r1}〉. Next, we can only choose r2 as next
DL-rule to be considered active. The two active DL-rules already derive the answer
set {p1(c), p2(c)} of Π , but {p1(c), p2(c)} is no answer set of 〈Φ, {r1, r2}〉 because
{p2(c)} is a smaller model of 〈Φ, {r1, r2}〉. However, the computation becomes stable
again when we add r3. �

The example shows that a stepping approach for DL-programs under the FLP-semantics
must allow for non-stable computations. Intuitively, we realise this by allowing the user
to assume the truth of propositional literals which must be justified in subsequent states.
Technically, we use the theory of unfounded sets for guaranteeing stability at a later
point in the computation. To this end, we next introduce the notions of external support
and unfounded sets for DL-programs.

3.1 External Support and Unfounded Sets for DL-Programs

Intuitively, each set of literals in an answer set must be “supported” by an active DL-
rule deriving one of the literals in a non-cyclic way, i.e., the reason for the DL-rule to be
active does not depend on the literal it derives. We call such DL-rules external supports.



Definition 6. Let r be a ground DL-rule, Φ a DL knowledge base, I an interpretation,
and X a set of literals. Then, r is an external support for X with respect to I and Φ if
(i) I |=Φ B(r), (ii) I \X |=Φ B(r), and (iii) H(r) ∈ (X ∩ I).

Next, we show how answer sets can be characterised in terms of external supports.

Theorem 1. Let KB = 〈Φ,Π〉 be a DL-program and I an interpretation. Then, I is
an answer set of KB iff I |=Φ gr(Π) and every X with ∅ ⊂ X ⊆ I has an external
support r ∈ gr(Π) with respect to I and Φ.

We express the absence of an external support in an interpretation by adapting the con-
cept of an unfounded set [10, 11] to DL-programs.

Definition 7. Let X be a set of literals, Π a set of DL-rules, Φ a DL knowledge base,
and I an interpretation. Then, X is unfounded in Π with respect to I and Φ if there is
no DL-rule r ∈ Π that is an external support for X with respect to I and Φ.

Note that ∅ is an unfounded set independent of which DL-rules, interpretations, or DL
knowledge base is chosen. Theorem 1 immediately implies the following result:

Corollary 1. LetKB = 〈Φ,Π〉 be a DL-program and I an interpretation. Then, I is an
answer set of KB iff I |=Φ gr(Π) and there is no X with ∅ ⊂ X ⊆ I that is unfounded
in Π with respect to I .

3.2 States and Computations

Our stepping framework is based on sequences of states, reassembling computations, in
which an increasing number of ground DL-rules are considered that build up a mono-
tonically growing interpretation. Besides that interpretation, states also capture literals
which cannot become true in subsequent steps and sets that currently lack external sup-
port in the state’s interpretation.

Definition 8. A state structure is a tuple 〈Π, I, I−, Υ 〉, where Π is a set of ground DL-
rules, I is an interpretation, I− a set of literals over ΣASP such that I and I− are
disjoint, and Υ is a set of sets of literals.

Given a DL knowledge base Φ, a state structure 〈Π, I, I−, Υ 〉 is a state with respect
to Φ if (i) I |=Φ B(r)∪H(r) for every r ∈ Π , (ii) Litr ⊆ I ∪ I− for every r ∈ Π , and
(iii) Υ = {X ⊆ I | X is unfounded in Π with respect to I and Φ}.

Now we are ready to formally state what we understand by the stability of a state.

Definition 9. A state 〈Π, I, I−, Υ 〉 with respect to a DL knowledge base Φ is Φ-stable
if I ∈ AS(Π)Φ.

Note that a state is Φ-stable exactly when Υ = {∅}.
In what follows, we show how we can proceed forward in a computation, i.e., which

states might follow a given state. This is expressed in the successor relation defined next.



Definition 10. For a state S = 〈Π, I, I−, Υ 〉 with respect to DL knowledge base Φ
and a state structure S′ = 〈Π ′, I ′, I ′−, Υ ′〉, S′ is a Φ-successor of S if there is a DL-
rule r ∈ Π ′ \Π and sets ∆,∆− ⊆ Litr such that (i) Π ′ = Π ∪ {r}, (ii) I ′ = I ∪∆,
I ′
− = I−∪∆−, and (I∪I−)∩(∆∪∆−) = ∅, (iii) Litr ⊆ (I ′∪I ′−), (iv) I |=Φ B(r),

(v) I ′ |=Φ B(r) ∪H(r), and (vi) X ′ ∈ Υ ′ iff X ′ = X ∪∆′, where X ∈ Υ , ∆′ ⊆ ∆,
and r is not an external support for X ′ with respect to I ′ and Φ.

Condition (i) ensures that a successor state considers exactly one DL-rule more to be
active. Conditions (ii) and (iii) express that the interpretations I and I− are extended
by the so far unconsidered literals in ∆ and ∆− appearing in the new DL-rule r. Note
that from S′ being a state structure we get that ∆ and ∆− are distinct. A requirement
for considering r as next DL-rule is that it is active under the current interpretation I ,
expressed by Condition (iv). Moreover, r must be satisfied and still be active under the
succeeding interpretation, as required by Condition (v). The final condition ensures that
the unfounded sets of the successor are extensions of the previously unfounded sets that
are not externally supported by the new DL-rule.

Here, it is interesting that only extended previous unfounded sets can be unfounded
sets in the extended programΠ ′ and that r is the only rule which could provide external
support for them in Π ′ with respect to the new interpretation I ′ and Φ, as seen next.

Theorem 2. Let S = 〈Π, I, I−, Υ 〉 be a state with respect to DL knowledge base Φ
and S′ = 〈Π ∪ {r}, I ′, I ′−, Υ ′〉 a Φ-successor of S, where ∆ = I ′ \ I . Moreover, let
X ′ be a set of literals with ∅ ⊂ X ′ ⊆ I ′. Then, the following statements are equivalent:
(i) X ′ is unfounded in Π ∪ {r} with respect to I ′ and Φ.

(ii) X ′ = ∆′ ∪ X , where ∆′ ⊆ ∆, X ∈ Υ , and r is not an external support for X ′

with respect to I ′ and Φ.

The result shows that determining the unfounded sets in a computation after adding
a further DL-rule r can be done locally, i.e., only supersets of previously unfounded
sets can be unfounded sets, and if such a superset has some external support then it is
externally supported by r. The result also implies that the successor relation suffices to
“step” from one state to another.

Corollary 2. Let S be a state with respect to DL knowledge base Φ and S′ a Φ-succes-
sor of S. Then, S′ is a state with respect to Φ.

Next, we define computations based on the notion of a state.

Definition 11. LetΦ be a DL ontology. AΦ-computation is a sequenceC = S0, . . . , Sn
of states with respect to Φ such that Si+1 is a Φ-successor of Si, for all 0 ≤ i < n.

The following result guarantees the soundness of our stepping framework.

Theorem 3. LetKB = 〈Φ,Π〉 be a DL-program and C=S0, . . . , Sn a Φ-computation
such that Sn = 〈gr(Π)IΦ, I, I

−, {∅}〉. Then, I is an answer set of KB.

The computation model is also complete in the following sense:

Theorem 4. Let S0 = 〈Π, I, I−, Υ 〉 be a state with respect to Φ, KB = 〈Φ,Π ′〉 a DL-
program with Π ⊆ gr(Π ′), and I ′ an answer set of KB with I ⊆ I ′ and I ′ ∩ I− = ∅.
Then, there is a Φ-computation S0, . . . , Sn such that Sn = 〈gr(Π)I

′

Φ , I
′, I ′
−
, {∅}〉.



As the empty state, 〈∅, ∅, ∅, {∅}〉, trivially is a state, we can make the completeness
aspect of the previous result more apparent in the following corollary:

Corollary 3. Let KB = 〈Φ,Π〉 be a DL-program and I ∈ AS(KB). Then, there is a
Φ-computation S0, . . . , Sn with S0 = 〈∅, ∅, ∅, {∅}〉 and Sn = 〈gr(Π)I

′

Φ , I
′, I ′
−
, {∅}〉.

Example 3. Consider KB = 〈Φ,Π〉 from Example 2. Then, the sequence

〈∅, ∅, ∅, {∅}〉, 〈{r1}, {p1(c), p2(c)}, ∅, {∅, {p1(c)}, {p2(c)}}〉,
〈{r1, r2}, {p1(c), p2(c)}, ∅, {∅, {p1(c)}}〉, 〈{r1, r2, r3}, {p1(c), p2(c)}, ∅, {∅}〉

is a Φ-computation, constituting a derivation for the answer set {p1(c), p2(c)} of KB.
The first and the last state in this computation are Φ-stable whereas the other two are
not, as indicated by the presence of non-empty unfounded sets. �

Indeed, the DL-program of Example 2 can be seen as an unlikely worst-case scenario
in which computations are required to be unstable. In fact, whenever a DL-program
does not involve recursion through DL-atoms or contains only convex DL-atoms then
computations with stable states only are sufficient to compute all answer sets. That is,
in such a setting, it is sufficient to add at most a single classical literal to the emerging
interpretation in every subsequent state. Note that DL-atoms that do not involve the
rarely used −∩-operator are always convex.

4 Applying Stepping

In this section, we outline how the stepping framework can be applied in practice. As
it allows for stepwise constructing interpretations following a user’s intuition on which
DL-rule instances to become active next, one may also reach states where there is no
answer set of the overall DL-program extending the state’s interpretation under which
the DL-rules considered active are indeed active. Then, every continuation would reach
a sate where adding a further DL-rule would require to add literals that are inconsistent
with previously chosen active rules. The possibility of such dead-ends is intentional, as
reaching such a point—which can be automatically detected—indicates that and why
the DL-program’s semantics differs from the semantics expected by the user.

In our approach, the user always has two options how to proceed: (i) (re-)initialise
stepping and start a computation with a new state as breakpoint, or (ii) extend the current
computation by adding a further active DL-rule. We first describe the technical aspects
of how to obtain a breakpoint and how ground DL-rule instances can be chosen. Then,
we discuss how stepping can be applied for debugging.

As an example, we consider a situation where a car model should undergo multiple
crash tests under different conditions. We assume that the manufacturer has an ontology
Φex about possible test conditions regarding the car which also contains information on



which conditions cannot hold at the same time. The knowledge base is given as follows:

Φex = {{TestableCond ≡ Testable u Cond},
{Cond(engine running), Cond(engine off ), Cond(battery on),
Cond(battery off ), Cond(front seat adult),
Cond(front seat child), Cond(front seat empty),
Cond(extreme temperature), Cond(low temperature),
Incompatible(engine running , engine off ),
Incompatible(battery on, battery off ),
Incompatible(engine running , battery off ),
Incompatible(front seat adult , front seat child),
Incompatible(front seat adult , front seat empty),

Incompatible(front seat child , front seat empty),
Incompatible(extreme temperature, low temperature)}}.

The axiom states that a testable condition is both in the extension of Testable and Cond ,
where Testable is a concept for which the ontology does not assert any individuals.
The remaining assertions list the conditions that can be set for testing as well as specify
which conditions are incompatible in the sense that they cannot hold at the same time.

The task now is to write DL-rules such that the resulting DL-program creates a fixed
number n of different test configurations in which every compatible pair of testable
conditions is tested at least once in some configuration. Moreover, it should also be ex-
pressed by the DL-rules which conditions are considered testable. However, only those
conditions which are also known in the ontology should be used for testing. Assume
the set Πex, comprising the following DL-rules, realises this task:

r1 : testNo(1 ..n)←,
r2 : testable(engine running)←,
r3 : testable(engine off )←,
r4 : testable(battery on)←,
r5 : testable(battery off )←,
r6 : testable(front seat adult)←,
r7 : testable(front seat child)←,
r8 : testable(front seat empty)←,
r9 : testable(roof opened)←,
r10 : testable(roof closed)←,
r11 : testcond(M)← DL[Testable ] testable; TestableCond ](M),
r12 : incompatible(X,Y )← DL[; Incompatible](X,Y ),
r13 : incompatible(X,Y )← incompatible(Y,X),
r14 : test(T, S)← testcond(S), testNo(T ),not ∼test(T, S),
r15 : ∼test(T, S)← testcond(S), testNo(T ),not test(T, S),
r16 : combination(S1, S2)← testcond(S1), testcond(S2),

not incompatible(S1, S2), S1 < S2,
r17 : combinationTested(S1, S2)← combination(S1, S2),

test(T, S1), test(T, S2),
r18 :← combination(S1, S2),not combinationTested(S1, S2),
r19 :← test(T, S1), test(T, S2),not combination(S1, S2), S1 < S2.



Intuitively, r1 assigns the numbers 1 to n as indices of single tests in any solution while
r2 to r10 define testable conditions. Note that not all conditions in Φex are testable, and
conversely not all testable conditions are conditions in Φex. The DL-rule r11 states
which conditions of the ontology are testable. For that, we send information about
which conditions we consider testable to the ontology and query for the extension of the
TestableCond concept. Due to the axiom in the ontology, we collect the intersection
of conditions in Φex and testable conditions of Πex in the testcond predicate. The DL-
rule r12 imports incompatible conditions from Φex and r13 ensures symmetry of the
incompatible relation. The DL-rules r14 and r15 non-deterministically choose whether
a given condition holds with respect to a given test case. The combination predicate
collects pairs of testable conditions that may occur in the same test case, as realised by
r16. The combinations of testable conditions covered by some test case are derived by
r17. This information is used in constraint r18 which eliminates answer-set candidates
with a combination of testable conditions not tested by any test case. Finally, constraint
r19 filters out candidates in which two incompatible conditions are jointly tested.

Obtaining a breakpoint. Every state may serve as a potential starting point for a step-
ping session. Hence, analogous to stepwise debugging in procedural programming lan-
guages, we can consider a state as a breakpoint from which stepping is started. Having a
suitable breakpoint at hand will often allow for finding a bug in just a few steps. As men-
tioned earlier, the empty state 〈∅, ∅, ∅, {∅}〉 is a trivial state. Besides that, 〈F, F, ∅, {∅}〉,
where F is the set of all facts in a DL-program, is also ensured to be a state (except for
the practically irrelevant case when a literal and its strong negation are jointly asserted).

Example 4. Let us consider the case n = 7 in our running example, and let F be the
set of facts in Πex, given thus:

F ={testNo(1), testNo(2), testNo(3), testNo(4), testNo(5), testNo(6), testNo(7),
testable(engine running), testable(engine off ), testable(battery on),
testable(battery off ), testable(front seat adult), testable(front seat child),
testable(front seat empty), testable(roof opened), testable(roof closed)}.

Note that S0 = 〈F, F, ∅, {∅}〉 is a state. From here, we can start stepping by choosing,
e.g., the ground DL-rule r = state(engine running) ← DL[Testable ] testable;
TestableCond ](engine running), being an instance of r11 and active under F and
Φex, as next rule to be added. We obtain the Φex-computation C = S0, S1 with S1 =
〈F ∪ {r}, F ∪ {state(engine running)}, ∅, {∅}〉 . �

Often, it is useful to have states other than the empty or the fact-based state as start-
ing points for stepping, since to reach an answer set I of a DL-program, the minimum
length of a computation starting from the empty state is |I|. We now discuss how to
generate states that may serve as breakpoints using conditions the user finds relevant.

Stable states can be obtained by computing an answer set I of a trusted subset of
the DL-rules (or their grounding) and selecting rule instances active under I .

Proposition 1. Let KB = 〈Φ,Π〉 be a DL-program and Π ′ ⊆ Π ∪ gr(Π) such that
I ∈ AS(Π ′)Φ. Then, 〈gr(Π ′)IΦ, I,

⋃
r∈gr(Π′) Litr \ I, {∅}〉 is a state.



Hence, it suffices to find an appropriate Π ′ in order to get breakpoints. One option for
doing so is to let the user manually specify Π ′ as a subset of Π (including facts).

Example 5. Assume we want to step through the DL-rules that derive the test/2 atoms.
The respective definitions rely on the available testable conditions of the car. Hence,
we use a breakpoint where all instances of DL-rule r11, deriving testcond/1-atoms,
were already applied. Following Proposition 1, we calculate an answer set of program
Π ′ex = F ∪ {r11} with respect to Φex. The unique answer set of Π ′ex is

I3 =F∪{testcond(front seat empty), testcond(front seat child),
testcond(front seat adult), testcond(battery off ),
testcond(battery on),testcond(engine off ),testcond(engine running)}.

The desired breakpoint for subsequent stepping is S3 = 〈gr(Π ′ex)
I3
Φex

, I3, ∅, {∅}〉. �

Note that if the subprogramΠ ′ for breakpoint generation has more than one answer set,
the selection of the set I ∈ AS(Π ′)Φ is based on the programmer’s intuition, similar to
selecting the next DL-rule in stepping.

Another use of Proposition 1 is jumping from one state to another by considering
further non-ground DL-rules. This makes sense, e.g., in a debugging situation where
the user initially started with a breakpoint S that is considered as an early state in
a computation. After few steps, reaching state S′ = 〈ΠS′ , IS′ , IS′

−, ΥS′〉, the user
realises that the computation from S to S′ is as intended and wants to proceed to a point
where more literals have already been derived, i.e., after applying a selectionΠ ′′ of non-
ground DL-rules from Π on top of the interpretation IS′ . Then, Π ′ from Proposition 1
is given by Π ′ = ΠS′ ∪Π ′′. Note that, for an arbitrary answer set I of AS(Π ′)Φ, it is
not ensured that there is a computation starting from S′ that ends with the state gr(Π ′)IΦ
because there might be DL-rules in ΠS′ that are not active under I . For assuring that
there is a computation ofΠ starting from S′ and ending with gr(Π ′)IΦ,Π ′ can be joined
with ConS′ = {←not l | l ∈ B+(r), r ∈ ΠS′} ∪ {←l | l ∈ B−(r), r ∈ ΠS′}.

Example 6. Starting from state S3 obtained in Example 5, we start stepping through
the DL-rules that derive the test/2 atoms, i.e., instances of DL-rule r14. Hence, as next
DL-rule to be added, we choose

r′ : test(1, engine running)← testcond(engine running), testNo(1),
not ∼test(engine running , 1)

and obtain as succeeding state

S4 = 〈Π4, I3 ∪ {test(1, engine running)}, {∼test(1, engine running)}, {∅}〉,

where Π4 = gr(Π ′ex)
I3
Φex
∪ {r′}. As the DL-rule instance works as expected, we now

want to apply the full non-ground DL-rule r14. We use Proposition 1 by first computing



an answer set of Π5 = Π4 ∪ {r14}, e.g.,

I5 = I3 ∪ {test(1, engine off ), test(1, engine running), test(1, front seat adult),
test(2, battery on), test(2, engine running),
test(2, front seat empty), test(3, battery off ),
test(4, battery on), test(4, engine running), test(4, front seat child),
test(5, battery off ), test(5, engine off ), test(5, front seat child),
test(6, battery off ), test(6, front seat adult),
test(7, battery off ), test(7, engine off ), test(7, front seat empty)}.

The new state is S5 = 〈gr(Π5)I5Φex
, I5, I5

−, {∅}〉, where

I5
− = {∼test(1, engine off ),∼test(1, engine running),

∼test(1, front seat adult),∼test(2, battery on),
∼test(2, engine running),∼test(2, front seat empty),
∼test(3, battery off ),∼test(4, battery on),∼test(4, engine running),
∼test(4, front seat child),∼test(5, battery off ),∼test(5, engine off ),
∼test(5, front seat child),∼test(6, battery off ),
∼test(6, front seat adult),∼test(7, battery off ),∼test(7, engine off ),
∼test(7, front seat empty)}.

�

Assisted stepping. To obtain a Φ-successor of a given state S = 〈ΠS , I, I
−, Υ 〉 in

the context of a DL-program KB = 〈Φ,Π〉, by Definition 10 we need a DL-rule
r ∈ gr(Π) \ΠS such that S′ = 〈ΠS ∪ {r}, I ∪∆, I− ∪∆−, Υ ′〉 is also a state, where
∆∪∆− ⊆ Litr. One can proceed in the following fashion: First, a non-ground DL-rule
r ∈ Π with H(r) 6= ∅ is selected for instantiation. Then, the user assigns constants
to the variables occurring in r. Both steps can be assisted by filtering techniques. In-
formation which non-ground DL-rules in Π have instances that are active under I but
not contained in ΠS can be done, e.g., by using the formalism of DL-programs itself,
through meta-programming techniques like tagging transformations [12, 13].

Example 7. When a computation reached state S5 of our running example, only ground
instances of r12, r15, r16, and r19 are active under I5 but not contained in Π5. Thus,
they can be pre-filtered for the user’s disposal. �

Assistence can also be given when the variables in r are assigned one after the other.
Then, the domains of the remaining ones can be accordingly restricted such that there is
still a compatible ground instance of r that is active under I . Consider a partial substi-
tution ϑ assigning constants inΠ to some variables in r. When fixing the assignment of
a further variable X occurring in B(r), where ϑ(X) is yet undefined, we may choose
only a constant c such that there is a substitution ϑ′ with ϑ′(X ′) = ϑ(X ′), where ϑ(X ′)
is defined, ϑ′(X) = c, and I |=Φ B(r)ϑ′. A simple meta-DL-program can be used to
compute potential values of ϑ′(X), given r, ϑ, and I , checking the above conditions and
whether rϑ′ /∈ ΠS . This is computationally not harder than evaluating the DL-program
to debug and in practice often easier, as no guessing is needed in the meta-DL-program.



Once a substitution ϑ for all variables in r is found, ∆ and ∆− must be determined.
Again, a system assisting the stepping process can identify respective subsets of Litr \
(I ∪ I−) such that the obtained state satisfies the final condition of Definition 10, i.e.,
that all DL-rules in the potential successor state of S are active.

Example 8. For obtaining a successor of state S5, we like to apply an instance of

r12 = incompatible(X,Y )← DL[; Incompatible](X,Y ).

Two variables are contained in r12, X and Y . Assume we already assigned the constant
front seat adult to variable X . Then, a filtering system can help to find a substitution
for Y where I5 |=Φ B(r12)ϑ′. This amounts to querying for Incompatible-successors
in Φex. The resulting choices for Y are front seat child and front seat empty . �

Stepping-based debugging. Besides getting insights into the interplay of DL-rules of a
DL-program, stepping is beneficial when it comes to detecting the reason for an error,
i.e., an unexpected outcome, of a DL-program. After a user detected unintended seman-
tics of his or her program, e.g., answer sets that are not expected or missing answer sets,
stepping can be started from a state that considers only a trusted subset of the current
DL-program. In particular, during development, states obtained in previous stepping
sessions can often be reused for extended versions of the evolving DL-program.

Example 9. Let us assume that Π ′ex is identical to Πex except that it does not contain
DL-rule r13 that ensures the symmetry of the incompatible predicate. Forgetting this
DL-rule can be considered a typical programming mistake. It turns out that Π ′ex has an
answer set IΠ′ex

such that I5 ⊆ IΠ′ex
. This is in contradiction to our expectations as

I5 contains both test(1, engine off ) and test(1, engine running), stating that in test
1 the engine of the car is off and running at the same time. Constraint

r19 =← test(T, S1), test(T, S2),not combination(S1, S2), S1 < S2

is meant to eliminate such answer sets. To find the bug, we start stepping at state S5

and instantiate r19, replacing T by 1, S1 by engine off , and S2 by engine running .
Now, the user sees that the grounded DL-rule is active under I5 and Φex. We have an
indication that the atom combination(engine off , engine running) must become true
in subsequent steps, as we know that this rule is not active under IΠ′ex

and continue with

r16 = combination(S1, S2)← testcond(S1), testcond(S2),
not incompatible(S1, S2), S1 < S2 ,

the only DL-rule inΠ ′ex that derives atoms of the combination predicate, and substitute
S1 and S2 like before. Indeed, the resulting ground DL-rule is applicable under I5 and
DLex as incompatible(engine off , engine running) is not in I5 which should not be
the case in an answer set. Finally, we check the instance

incompatible(engine off , engine running)←
DL[; Incompatible](engine off , engine running)



of DL-rule r12 being the only one in the grounding of Π ′ex that might derive the atom
incompatible(engine off , engine running). Here, a query to the ontology reveals that
Incompatible(engine off , engine running) is not a consequence ofΦex. Instead, only
Incompatible(engine running , engine off ) is asserted in Φex. Now it is obvious that
the encoding does not enforce the expected symmetry of predicate incompatible. �

5 Related Work

There has been little work on debugging DL-programs. In fact, we are only aware of one
approach that aims for diagnosing minimal sets of ground DL-atoms in an inconsistent
DL-program that would restore consistency when the Boolean results of the query of
these DL-atoms are inverted [14]. Besides that, a refined semantics for DL-programs
to overcome counter-intuitive results that may emerge when input literals of DL-atoms
cause inconsistency in the ontology was presented by Pührer et al. [15].

Within the last years, there has been a considerable amount of work on debugging
answer-set programs. The idea of stepping, adapted in this paper for DL-programs, was
initially introduced for normal logic programs [4]. Other debugging methods related
to stepping are, on the one hand, finding reasons why some interpretation is not an
answer set of a program by identifying unfounded loops or unsatisfied rules [12] and,
on the other hand, explaining why a program yields no answer sets at all by means of
pinpointing unintentionally active constraints [16]. Brain and De Vos [17] used a simple
algorithm to recursively find active rules that explain why an atom is in some answer
set or why no such rules exist. Similar debugging questions have been considered by
Brain et al. [13] using a meta-programming approach based on ASP itself. While our
approach is independent of a concrete solver implementation, a method to directly trace
derivations for atoms was realised for the ASP solver DLV [18].

The notion of computations for stepping is related to work by Pontelli et al. [19] who
used justifications for similar purposes. Justifications are labelled directed graphs that
explain the truth value of a literal l in some answer set in terms of truth values of literals
l depends on. Computations in our sense, however, are more related to progressions of
active rules, which can be identified in a program following a programmer’s intuition
that explain how partial interpretations evolve towards answer sets. Quite in the spirit
of our notion of computation is that of Liu et al. [20] introduced for characterising the
answer sets of logic programs with arbitrary abstract constraints as a sequence of evolv-
ing interpretations. As DL-programs can be seen as abstract constraint programs [21],
the framework of Liu et al. [20] is, in turn, relevant for our work. Besides differences
in the semantics, our notion of computations explicitly takes the rules that are active in
some state into account since our motivation is debugging and program analysis.

There exists work focussing on efficient evaluation of restricted classes of DL-
programs by rewriting them to datalog with negation [22]. In principle, for this type
of DL-programs, the result of this transformation can be used for stepping also through
the DL-part of the DL-program. Clearly, this requires the user’s familiarity with the
translation. In general, for a debugging approach that covers also the ontology part,
our approach for stepping of DL-rules can be combined with work on finding faults in
DLs. Such methods include explaining concept subsumption [23–25], i.e., giving rea-



sons why for given concepts C and D, CI ⊆ DI hold for every model I of a TBox T .
Subsumption checking can be used to identify incoherent concepts, i.e., concepts that
can be proven to have no satisfying instances. Moreover, it can be used to check whether
two concepts C and D are equivalent and thus one of them can be regarded as redun-
dant. Another approach is axiom pinpointing [26], where axioms causing a concept to
be unsatisfiable with respect to a TBox are detected.

6 Conclusion

We presented a framework for stepping through DL-programs that can be used for de-
bugging based on the intuitions of the user on which DL-rules to apply next. It rests
on a computation model where rules are subsequently added to a state. Moreover, we
introduced unfounded sets and the notion of external support for DL-programs. We
discussed how to obtain states that may serve as breakpoints from which stepping is
started. By keeping these breakpoints during development, stepping sessions can be
quickly initiated from situations the semantic-web engineer is already familiar with.

As a debugging methodology, our approach focuses on the rules part of a DL-
program as the DL ontology is treated as a black box. For future work, it would be
interesting to explore how our method can be combined with existing explanation tech-
niques for DLs. That is, when during stepping a DL-atom is or is not satisfied although
the opposite is expected, a hybrid debugging approach could provide reasons in terms
of axioms and assertions in the DL knowledge base.
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