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Abstract. While the purpose of conventional proof calculi is to axiomatise the set
of valid sentences of a logic, refutation systems axiomatise the invalid sentences.
Such systems are relevant not only for proof-theoretic reasons but also for realising
deductive systems for nonmonotonic logics. We introduce Gentzen-type refutation
systems for two basic three-valued logics and we discuss an application of one of
these calculi for disproving strong equivalence between answer-set programs.

1 Introduction

In contrast to conventional proof calculi that axiomatise the valid sentences of a logic,
refutation systems, also known as complementary calculi or rejection systems, are
concerned with axiomatising the invalid sentences. Axiomatic rejection was introduced
in modern logic by Jan Łukasiewicz in his well-known treatise on analysing Aristotle’s
syllogistic [1]. Subsequently, refutation systems have been studied for different logics [2–
8] (for an overview, cf., e.g., the papers by Wybraniec-Skardowska [9] and by Caferra
and Peltier [10]). Such systems are relevant not only for proof-theoretic reasons but
also for realising deductive systems for nonmonotonic logics [11]. Moreover, axiomatic
refutation provide the means for proof-theoretic investigations concerned with proof
complexity, i.e., with the size of proof representations [12].

In this paper, we introduce analytic Gentzen-type refutation systems for two particular
three-valued logics, L and P , following Avron [13]. The notable feature of these logics
is that they are truth-functionally complete, i.e., any truth-functional three-valued logic
can be embedded into these logics. In particular, Gödel’s three-valued logic [14] is
expressible in L, and since equivalence in this logic amounts to strong equivalence
between logic programs under the answer-set semantics, in view of the well-known
result by Lifschitz, Pearce, and Valverde [15], we can apply our refutation system for L
to disprove strong equivalence between programs in a purely deductive manner, which
will be briefly discussed in this paper as well. Finally, there is a Prolog implementation
of our calculi available, which can be downloaded at
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2 Preliminaries

Unlike classical two-valued logic, three-valued logics admit a further truth value besides
true and false. Let t and f be the classical truth values, representing true and false
propositions, respectively, and i the third one. Semantically, there are only two major
classes of three-valued logics: those where i is designated, i.e., associated with truth,
and those where i is not designated. In this paper, we are concerned with two logics, L
and P [13]. Logic L can be considered as a prototypical logic where i is not designated,
whilst P is a prototypical logic where i is designated. Both logics are fully expressive,
meaning that they allow to embed any truth-functional three-valued logic from the
literature in it.

Both L and P are formulated over a countably infinite universe U of atoms including
the truth constants T, F, and I. Based on the connectives ¬, ∨, ∧, and ⊃, the set of
well-formed formulae is defined as usual. A set of literals is consistent if it does not
contain both an atom and its negation. In P , t and i are designated, while in L, the only
designated truth value is t.

By an interpretation, we understand a mapping from U into {t, f , i}. For any inter-
pretation I , I(T) = t, I(F) = f , and I(I) = i. As usual, a valuation is a mapping from
formulae into the set of truth values. We assume the ordering f < i < t on the truth
values in what follows. The valuation vI

L(·) of a formula in L given an interpretation
I is is inductively defined as follows: (i) vI

L(ψ) = I(ψ), if ψ is an atomic formula;
(ii) vI

L(¬ψ) = t if vI
L(ψ) = f , vI

L(¬ψ) = f if vI
L(ψ) = t, and vI

L(¬ψ) = i otherwise;
(iii) vI

L(ψ ∧ ϕ) = min(vI
L(ψ), vI

L(ϕ)); (iv) vI
L(ψ ∨ ϕ) = max(vI

L(ψ), vI
L(ϕ)); and

(v) vI
L(ψ ⊃ ϕ) = vI

L(ϕ) if vI
L(ψ) = t, and vI

L(ψ ⊃ ϕ) = t otherwise. The valuation
vI
P(·) of a formula in P given an interpretation I is defined like vI

L(·) except for the
condition of the implication: vI

P(ψ ⊃ ϕ) = vI
P(ϕ) if vI

P(ψ) = t or vI
P(ψ) = i, and

vI
P(ψ ⊃ ϕ) = t otherwise.

A formula ψ is true under an interpretation I in L if vI
L(ψ) = t. Likewise, ψ is true

for I in P if vI
P(ψ) = t or vI

P(ψ) = i. If ψ is true under I in L (resp., P), I is a model
of ψ in L (resp., P). For a set Γ of formulae, I is a model of Γ in L (resp., P) if I is a
model in L (resp., P) for each formula in Γ. A formula is valid in L (resp., P) if it is
true for each interpretation in L (resp., P).

3 The Refutation Calculi SRCL and SRCP

Bryll and Maduch [16] axiomatised the invalid sentences of Łukasiewicz’s many-valued
logics including the three-valued case by means of a Hilbert-type calculus. Since their
calculus is not analytic, its usefulness for proof search in practice is rather limited. In
this paper, we aim at analytic Gentzen-style refutation calculi for three-valued logics.
The first sequential refutation systems for classical propositional logic was introduced
by Tiomkin [4]; equivalent systems were independently discussed by Goranko [6] and
Bonatti [5]. We pursue this work towards similar refutation systems for the logics L and
P , which we will call SRCL and SRCP, respectively.



Γ a ∆, ψ
(⊃ l)1

Γ, ψ ⊃ ϕ a ∆

Γ, ϕ a ∆
(⊃ l)2

Γ, ψ ⊃ ϕ a ∆

Γ, ψ a ∆, ϕ
(⊃ r)

Γ a ∆, ψ ⊃ ϕ

Γ, ψ, ϕ a ∆
(∧ l)

Γ, ψ ∧ ϕ a ∆

Γ a ∆, ψ
(∧ r)1

Γ a ∆, ψ ∧ ϕ
Γ a ∆, ϕ

(∧ r)2
Γ a ∆, ψ ∧ ϕ

Γ, ψ a ∆
(∨ l)1

Γ, ψ ∨ ϕ a ∆

Γ, ϕ a ∆
(∨ l)2

Γ, ψ ∨ ϕ a ∆

Γ a ∆, ψ, ϕ
(∨ r)

Γ a ∆, ψ ∨ ϕ

Fig. 1. Standard rules of SRCL and SRCP.

By an anti-sequent, we understand a pair of form Γ a ∆, where Γ and ∆ are finite
sets of formulae.1 Given a set Γ of formulas and a formula ψ, following custom, we
write “Γ, ψ” as a shorthand for Γ ∪ {ψ}. An interpretation I refutes Γ a ∆ in L (resp.,
P) iff I is a model of Γ in L (resp., P) and all formulae in ∆ are false under I in L
(resp., P). Moreover, an anti-sequent is refutable in L (resp., P) iff it is refuted by some
interpretation in L (resp., P).

The postulates of the calculi SRCL and SRCP are as follows: Let Γ and ∆ be two
disjoint sets of literals such that ¬T,F 6∈ Γ and T,¬F 6∈ ∆. Then, Γ a ∆ is an axiom
of SRCL iff {I,¬I} ∩ Γ = ∅ and Γ is consistent, and Γ a ∆ is an axiom of SRCP
iff {I,¬I} ∩ ∆ = ∅ and ∆ is consistent. The inference rules of SRCL and SRCP
comprise the standard rules depicted in Fig. 1 and the non-standard rules depicted in
Fig. 2. The standard rules introduce one occurrence of ∧, ∨, or ⊃ at a time. Note that
they coincide with the respective introduction rules in the refutation systems for classical
logic [4, 6, 5]. The non-standard rules introduce two occurrences of a connective at the
same time, in particular this concerns negation in combination with all other connectives.
Note that the logical rules of SRCL and SRCP coincide, so the difference between
the two calculi lies only in their axioms.

Theorem 1 (Soundness and Completeness). For any anti-sequent Γ a ∆, (i) Γ a ∆
is provable in SRCL iff Γ a ∆ is refutable in L, and (ii) Γ a ∆ is provable in SRCP
iff Γ a ∆ is refutable in P .

Note that our calculi are, in a sense, refutational counterparts of the Gentzen-type
calculi of Avron [17] for axiomatising the valid sentences of L and P . In fact, for each
unary rule in Avron’s systems, our system contains a respective rule were “`” is replaced
by “a”, whilst for each binary rule of form

Γ′ ` ∆′ Γ′′ ` ∆′′

Γ ` ∆

of Avron, our systems contain two rules

Γ′ a ∆′

Γ a ∆
and

Γ′′ a ∆′

Γ a ∆
.

1 The symbol “a”, the dual of Frege’s assertion sign “`”, is due to Ivo Thomas.



Γ, ψ a ∆
(¬¬ l)

Γ,¬¬ψ a ∆

Γ a ∆, ψ
(¬¬ r)

Γ a ∆,¬¬ψ

Γ,¬ψ a ∆
(¬∧ l)1

Γ,¬(ψ ∧ ϕ) a ∆

Γ,¬ϕ a ∆
(¬∧ l)2

Γ,¬(ψ ∧ ϕ) a ∆

Γ a ∆,¬ψ,¬ϕ
(¬∧ r)

Γ a ∆,¬(ψ ∧ ϕ)

Γ,¬ψ,¬ϕ a ∆
(¬∨ l)

Γ,¬(ψ ∨ ϕ) a ∆

Γ a ∆,¬ψ
(¬∨ r)1

Γ a ∆,¬(ψ ∨ ϕ)

Γ a ∆,¬ϕ
(¬∨ r)2

Γ a ∆,¬(ψ ∨ ϕ)

Γ, ψ,¬ϕ a ∆
(¬⊃ l)

Γ,¬(ψ ⊃ ϕ) a ∆

Γ a ∆, ψ
(¬⊃ r)1

Γ a ∆,¬(ψ ⊃ ϕ)

Γ a ∆,¬ϕ
(¬⊃ r)2

Γ a ∆,¬(ψ ⊃ ϕ)

Fig. 2. Non-Standard rules of SRCL and SRCP.

Hence, as already remarked by Bonatti [5], exhaustive search in the standard system
becomes non-determinism in the refutation system—a property that often allows for
quite concise proofs and thus helps to reduce the size of proof representations.

Contrary to standard sequential systems, our systems do not contain binary rules.
Hence, proofs in our systems are not trees but sequences, and consequently each proof
has a single axiom. In fact, a proof of a formula ψ does not represent a single counter
model for ψ, rather it represents an entire class of counter models for ψ, in view of the
following property underlying the soundness of our calculi: each interpretation I that
refutes the axiom Γ a ∆ in a proof of a ψ in SRCL (resp., in SRCP), also refutes
a ψ in SRCL (resp., in SRCP).

4 An Application for Disproving Strong Equivalence

We outline an application scenario that is concerned with logic programs under the
answer-set semantics [18]. In a nutshell, a (disjunctive) logic program is a set of rules of
form a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . .not an, where all ai are atoms over
some universe U and “not” denotes default negation. The answer-sets of a program are
sets of atoms defined using a fixed-point construction based on the reduct of a program
relative to an interpretation [18].

Two logic programs are equivalent if they have the same answer sets. In contrast
to classical logic, equivalence between programs fails to yield a replacement property.
The notion of strong equivalence circumvents this problem: two programs P and Q
are strongly equivalent iff, for each program R, P ∪R and Q ∪R are equivalent. For
instance, consider P = {a ← not b, b ← not a} and Q = {a ∨ b}. P and Q are
equivalent but not strongly equivalent.



Γ,¬ψ a ∆
(∼ l)

Γ,∼ψ a ∆

Γ a ∆,¬ψ
(∼ r)

Γ a ∆,∼ψ

Γ a ∆, ψ,¬ϕ
(→G l)1

Γ, ψ →G ϕ a ∆

Γ, ϕ a ∆
(→G l)2

Γ, ψ →G ϕ a ∆

Γ,¬ψ a ∆
(→G l)3

Γ, ψ →G ϕ a ∆

Γ, ψ a ∆, ϕ
(→G r)1

Γ a ∆, ψ →G ϕ

Γ,¬ϕ a ∆,¬ψ
(→G r)2

Γ a ∆, ψ →G ϕ

Γ a ∆,¬ψ
(¬∼ l)

Γ,¬∼ψ a ∆

Γ,¬ψ a ∆
(¬∼ r)

Γ a ∆,¬∼ψ
Γ,¬ϕ a ∆,¬ψ

(¬→G l)
Γ,¬(ψ →G ϕ) a ∆

Γ a ∆,¬ϕ
(¬→G r)1

Γ a ∆,¬(ψ →G ϕ)

Γ,¬ψ a ∆
(¬→G r)2

Γ a ∆,¬(ψ →G ϕ)

Fig. 3. Derived rules for three-valued Gödel logic.

The central observation connecting strong equivalence with three-valued logics is the
well-known result [15] that strong equivalence between two programs P and Q holds iff
P and Q, interpreted as theories, are equivalent in Gödel’s three-valued logic [14]. The
connectives of three-valued Gödel logic are ∧, ∨, ∼, and→G, which can be defined in
L as ∼ψ = ¬(¬ψ ⊃ ψ) and ψ →G ϕ = ((¬ϕ ⊃ ¬ψ) ⊃ ψ) ⊃ ϕ. In view of this, we
can extend SRCL by derived rules for ∼and→G, which are given in Fig. 3.

To verify that P and Q are not strongly equivalent, it suffices to give a proof of one
of P a Q or Q a P in SRCL.2 While Q a P is not provable, there is a proof of P a Q:

a a, b,¬a,¬b
(∼ r), (∼ r)a a, b,∼a,∼b
(→G l)1, (→G l)1∼a→G b,∼b→G a a a, b

(∨ r)∼a→G b,∼b→G a a a ∨ b
(∧ l)

(∼a→G b) ∧ (∼b→G a) a a ∨ b

Hence, P and Q are indeed not strongly equivalent. In fact, as detailed below, a concrete
program R such that P ∪ R and Q ∪ R have different answer sets, i.e., a witness that
P and Q are not strongly equivalent, can be immediately constructed from the axiom
a a, b,¬a,¬b of the above proof: R = {a← b, b← a}. Indeed, P ∪R has no answer
set while Q ∪R yields {a, b} as its unique answer set.

The general method to obtain a witness theory (asR above) from an axiom in SRCL
is as follows: Given an axiom Γ a ∆, construct some interpretation I that refutes Γ a ∆.
For the above example, an interpretation that assigns both a and b to i would refute the
axiom already. Note that I then refutes P a Q as well. Based on I , a witness program

2 We interpret programs as a theories, i.e., as the conjunctions of rules, where rules are interpreted
as implications.



R can always be constructed by using the next proposition which immediately follows
from the proof of the main theorem by Lifschitz, Pearce, and Valverde [15]:

Proposition 1. Let P and Q be two programs such that an I is a model of P but not
of Q in three-valued Gödel logic, and let J be the classical interpretation defined by
setting J(a) = f iff I(a) = f , and define R′ = {a | I(a) = t or I(a) = i} and
R′′ = {a | I(a) = t} ∪ {a →G b | I(a) = I(b) = i}. Then, P ∪ R and Q ∪ R are
not strongly equivalent, where R = R′ if J is not a classical model of Q, and R = R′′

otherwise.

Note that a proof that two programs are not strongly equivalent represents, in general,
not only a single witness program but an entire class of programs which distinguishes
our axiomatic approach from approaches based on finding counter models.
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