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Abstract. Recently, the techniques of model-driven engineering (MDE) have
been proven valuable to manage the complexity of modern software systems dur-
ing the software development process. In the area of answer-set programming
(ASP), the focus is set so far on theoretical aspects, applications, and the devel-
opment of efficient solvers, reducing the attention that is paid to the pragmatics
of programming and assisting tools. To address this issue, we propose the MDE-
based program development method VIDEAS by introducing explicit model-to-
code mappings and code generation strategies ensuring compliant specification of
facts and essential constraints. Its practical applicability is realised on the basis
of a prototypical implementation.

1 Introduction

Answer-set programming (ASP) [1] offers a powerful framework for declarative prob-
lem solving based on principles of logic programming. The basic idea of ASP is to
encode problems in terms of answer-set programs whose results (the “answer sets”)
represent the solutions of the original problems. This is in contrast to traditional logic-
based knowledge representation languages like Prolog where the solutions are given by
proofs.
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During the last decade, ASP experienced considerable attention in the academic ar-
tificial intelligence community, leading to successful applications in diverse areas like
planning, diagnosis, symbolic model checking, decision support systems, and bioinfor-
matics, among others, exploiting various sophisticated solvers like DLV5 or clasp6. So
far, ASP research mainly focused on (i) formal properties of the answer-set semantics,
(ii) issues related to using it for knowledge representation and reasoning, and (iii) the
development of efficient ASP solvers, being the trailblazers to the success in the aca-
demic world. However, ASP could not attract the same interest as other programming
languages outside academia. This might be because comparably little attention was paid
to the development of programming methods and tools, which are arguably indispens-
able to convince software engineers and programmers to take advantage of the benefits
of answer-set programming.

In particular, no graphical modelling environment as it is available in traditional
software engineering in terms of the Unified Modeling Language (UML) and in tradi-
tional data engineering in terms of the entity relationship diagram (ER diagram) [2]
has been introduced for ASP so far. One explanation for the absence of such modelling
tools may be seen in the fact that answer-set programs themselves are already defined
at a high level of abstraction—in contrast to imperative programs—and may in turn
be regarded as executable specification themselves. However, practice has shown that
the development of answer-set programs is not always straightforward and that pro-
grams are, as all human-made artefacts, prone to errors. Consider, for example, the
facts airplan(boeing) and airplane(airbus). This small program excerpt
already contains a mistake. A predicate name is misspelled, which might result in some
unexpected program behaviour. Furthermore, most current ASP solvers do not support
type checking. A notable exception is the DLV+ system [3] that supports typing and
concepts from object-oriented programming. If values of predicate arguments are ex-
pected to come from a specific domain only, specific constraints have to be included in
the program. This requires additional programming effort and could even be a further
source for programming errors.

To support answer-set programmers, we developed the tool VIDEAS [4], standing
for “VIsual DEsign support for Answer-Set programming”, which graphically supports
the partial specification of answer-set programs. Due to the close relationship between
answer-set programs and deductive databases, in VIDEAS, ER diagrams are used as
a starting point for the development of answer-set programs. The constraints on the
problem domain from an ER diagram are automatically translated to ASP itself. Having
such constraints as part of a problem encoding can be compared to using assertions in C
programs. To support the development of a fact base, VIDEAS automatically generates a
program providing an input mask for correctly specifying the facts. To realise VIDEAS,
we used well-established technologies from the active field of model-driven engineering
(MDE) which provides tools for building the necessary graphical modelling editors as
well as a code generator.

This paper is structured as follows. First, we review the status quo concerning the
development support for answer-set programs in Section 2. Then, after some back-

5 http://www.dlvsystem.com.
6 http://potassco.sourceforge.net.



ground on ASP in Section 3, we present the basic ideas of the VIDEAS approach where
ER diagrams serve as starting point for the program development and visualisation in
Section 4. To this end, we introduce a mapping between ER diagrams and ASP in Sec-
tion 5. Finally, we discuss the implementation in Section 6 and conclude with an outlook
to future work in Section 7.

2 Related Work

For assisting the development of answer-set programs, much research effort is recently
spent in debugging. For example, debugging concepts for inconsistent answer-sets [5]
and model extensions [6] have been proposed. Likewise, debugging methodologies like
recursive ASP debugging [7, 8], meta-programming techniques [9, 10], translational de-
bugging reformulating programs in natural language [11], justification concepts for
truth values [12], or stepping [13] have been developed. However, only limited effort
is spent on directly supporting the construction phase of programs with few exceptions
like the specification of services with preferences by Confalonieri et al. [14]. There are
also efforts towards the realisation of integrated development environments (IDEs), like
APE [15], ASPIDE [16], SeaLion [17], and iGROM 7, as well as for systems allowing
the visualisation of answer sets, as done in the systems ASPVIZ [18], IDPDraw8, and,
most recently, the Kara [19] plugin of SeaLion.

To derive certain consistency constraints for ensuring data-model compliance with
the program code, Sureshkumar et al. [15] use dependency graphs while Konczak et
al. [20] use colored graphs.

Similar approaches have been introduced by Kehrer and Neumann [21] and by
Amalfi and Provetti [22], where it is proposed to derive logic programs from extended
ER diagrams (EER diagrams). The intention behind that work was not to support the
development of ASP programs, but to use the inference mechanisms of logic program-
ming to reason about the instances of the database.

VisualASP [23] and ASPIDE [16] offer an environment for the graphical speci-
fication of answer-set programs by providing an editor for directly visualising the ASP
concepts. VIDEAS, in contrast, takes advantage of the abstraction power of the ER di-
agram and adopts the query by a diagram approach (cf. the survey article by Catarci
et al. [24]) for program specification. On the other hand, a fact generator concept as
given by Chirila et al. [25]—a language-independent generator of facts for logics—is
transferred to ASP.

Overall, we are not aware of any solutions for introducing modelling techniques
into the ASP context as we discuss in the next sections.

3 Preliminaries

In this section, we recapitulate the basics of ASP. For more details, we refer to the liter-
ature [1]. An answer-set program, Π , or program for short, is defined over an alphabet

7 http://igrom.sourceforge.net/.
8 https://dtai.cs.kuleuven.be/krr/software/visualisation.



AASP = (P,C, V ), where P , C, and V are finite and non-empty sets of predicate sym-
bols, constant symbols, and variables, respectively. Each predicate symbol is assumed
to have a unique natural number assigned, called its arity. A term is either a variable
from V or a constant from C. An atom is an expression of the form p(t1, . . . , tn),
where p is a predicate symbol of arity n ≥ 0 from P , and t1, . . . , tn are terms. A literal
is either an atom p or a negated atom ¬p. The symbol “¬” is referred to as strong nega-
tion. Besides strong negation, there is a second, weaker form of negation, called default
negation, written “not”. Intuitively, not p states that p cannot be proved, where p is a
literal. That is, default negation corresponds to negation as failure.

A rule, r, is an expression of the form

h :− b1, . . . , bk, not bk+1, . . . , not bn,

where h, b1, . . . , bn are literals with n ≥ 0. The informal meaning of rule r is that h is
asserted whenever b1, . . . , bn are derivable whilst bk+1, . . . , bn are not derivable. The
literal h is called the head of r and b1, . . . , bk, not bk+1, . . . , not bn form the body of
r. A rule is a fact if its body is empty, and a constraint if its head is empty. The intuitive
reading of a constraint is that it is forbidden that all literals b1, . . . , bk are true but none
of bk+1, . . . , bn are true. For facts, usually the symbol “: − ” is omitted. We refer to
rules which are neither constraints nor facts as proper rules. An atom, a literal, or a rule
is called ground if it does not contain any variables. An answer-set program is a set of
rules. We call a program positive if none of its rules contains a default-negated literal.
In the following, the language of ASP is referred to as LASP.

The semantics of answer-set programs is defined in terms of consistent sets of liter-
als representing three-valued interpretations (true, false, undefined). Programs without
default negation are associated with their least satisfying consistent set of literals. If
no such set can be found, the program is inconsistent. The semantics of programs con-
taining default negation is defined by a reduction to the least model semantics via the
Gelfond-Lifschitz transformation. For a formal definition of the semantics, we refer to
the textbook by Baral [1].

Example 1 (Three-Colouring Problem). For a given graph consisting of a set of ver-
tices and a set of edges, a three-colouring is an assignment from the vertices into three
colours, say red, green, and blue, such that no two adjacent vertices are assigned the
same colour. Deciding whether such a three-colouring exists is well-known to be NP-
complete, yet colourings can be computed by a simple answer-set program as given
below, containing just three rules and one constraint. The facts are necessary for the
representation of the graph, i.e., for the input.

vtx (a). vtx (b). vtx (c). edge(a, b). edge(a, c). . . .
clrd(V, red) :− vtx (V ),not clrd(V, green),not clrd(V, blue).

clrd(V, green) :− vtx (V ),not clrd(V, red),not clrd(V, blue).
clrd(V, blue) :− vtx (V ),not clrd(V, red),not clrd(V, green).

:− edge(V,U), clrd(V,C), clrd(U,C).

The proper rules state that a node is assigned a certain colour if it is not assigned
any of the other two colours. The constraint guarantees that two adjacent nodes never
have the same colour. The colours are represented by constants red , green , and blue .
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Fig. 1. The development process.

4 Answer-Set Programming with VIDEAS

As we have seen in the previous section, answer-set programs consist of three parts:
(i) the facts, representing the given knowledge, i.e., the database, (ii) the proper rules,
which allow for the inference of new knowledge, and (iii) the constraints, asserting the
integrity of the given as well as of the derived knowledge. The facts together with the
constraints may be used to simulate the functionality offered by a relational database,
whilst the deductive rules introduce reasoning facilities. At the moment, all of these
three blocks involve code-based program development requiring specific ASP knowl-
edge.

In model-driven engineering (MDE) [26], models serve as primary development
artefacts from which code can be generated. Within the development process, models
are more than mere documentation items as in traditional software engineering. Besides
the fact that graphical visualisation is in general easier understandable for the human
software engineer and programmer, models may be automatically transformed into ex-
ecutable code. Consequently, inconsistencies between the models and the code can be
avoided. These advantages are used in VIDEAS to support the definition of facts and to
generate constraints ensuring the data consistency of answer-set programs. In particular,
ER diagrams are used as starting point for the program development.

In the VIDEAS framework, answer-set programs are constructed by three tasks:
(i) modelling, (ii) building a fact base, and (iii) implementation of the program. The
different tasks may be accomplished by people with different backgrounds. Specific
knowledge about ASP is only required in the third step. Figure 1 gives an illustration of
the overall development process with VIDEAS.

Modelling. In the first step, an ER diagram is specified using a graphical modelling
editor that is part of the VIDEAS system (a screenshot of the editor is depicted in
Fig. 3). The diagram describes entities and relations between entities of the problem
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Fig. 2. Example of an ER diagram.

domain under consideration. From the ER diagram, several kinds of constraints
can be derived automatically which may be integrated in the answer-set program
to assure consistency of the program’s answer sets with the data model and to ease
debugging.

Building a fact base. After the modelling phase, the FactBuilder component allows to
safely enter data by means of facts. The FactBuilder tool ensures that the entered
data is consistent with the ER model. The resulting fact base may serve as an as-
sertional knowledge base for the answer-set program. It is also possible to enter the
data at a later point in time or to define multiple knowledge bases which increases
the versatility of problem representations. Figure 5 gives an example exploiting the
FactBuilder tool.

Implementation. Finally, the program under development has to be completed. That
is, all properties of problem solutions beyond the constraints imposed by the ER
diagram have to be formalised in ASP. VIDEAS does not impose any restrictions
on answer-set programmers concerning the implementation step but rather provides
assistance for some parts of the development process by offering modelling and
visualisation techniques as well as the automated generation of constraint systems.

Before we describe how we realised the VIDEAS system, we discuss how the mapping
between ER diagram and ASP is accomplished.

5 Mapping ER Diagrams to Answer-Set Program Code

An explicit mapping strategy for transforming ER diagrams to answer-set programs is
required to allow an automated code generation. In this section, we introduce a formal
description of ER diagrams which we map to ASP. The ER diagram shown in Fig. 2



serves as illustrating example which will be represented as an answer-set program. Note
that we use only standard concepts of ASP as described in Section 3, but no solver-
specific language extensions. Furthermore, for the sake of simplicity, we consider here
only a subset of the language of ER diagrams—in particular, we do not consider arbi-
trary cardinality constraints.

Let LER be the language of ER diagrams defined over an alphabetAER=(R,A,D),
where R denotes a set of relations, A denotes a set of attributes, and D is a non-empty
set called domain. Each attribute a ∈ A is assigned with its associated domain d(a),
which is a subset of D, i.e., d(a) ⊆ D. In the ER diagram of Fig. 2, Airplane/1
and based/2 are examples for relations, ID is an example for an attribute, and the
numbers, referred to as integer/1, are elements of the domain.

In view of our purposes, we define an ER diagram Ω ∈ LER as a triple (E,R, k),
consisting of a set E of entities, a set R of relationships, and a function k : E → N
defining the primary key for each entity. In the following, we introduce these concepts
iteratively and provide a mapping σα : LER × I → LASP from the language LER of
ER diagrams, along with the set I of all instances of entities, to the language LASP of
answer-set programs, parametrised by a mapping α relating the respective alphabets,
which will be formally introduced first.

Definition 1 (Symbol Mapping). Given a language LER over an alphabet AER =
(R,A,D) and a language LASP over an alphabet AASP = (P,C, V ), a symbol map-
ping is an injective function α : R ∪A ∪D → P ∪ C ∪ V such that (i) for any r ∈ R,
α(r) ∈ P , where r and α(r) have the same arity, (ii) for any a ∈ A, α(a) ∈ V , and
(iii) for any d ∈ D, α(d) ∈ C.

Hence, according to this definition, in an answer-set program, relations are repre-
sented by predicate symbols, attributes are represented by variables, and elements of
the domain are represented by constants. Furthermore, a symbol mapping is stipulated
to be injective, which means that for all elements x, y of its domain, we have that x 6= y
implies α(x) 6= α(x). From the definition of a function, this implies in turn that x 6= y
holds precisely in case α(x) 6= α(y) holds. Thus, all terms are uniquely identifiable.

Definition 2 (Entity). Let AER = (R,A,D) be an alphabet. An entity over AER is an
expression of the form e(a1, . . . , an) with e ∈ R and a1, . . . , an ∈ A such that, for
every attribute ai and aj , 1 ≤ i, j ≤ n, it holds that ai 6= aj iff i 6= j. An instance of
an entity e(a1, . . . , an) is an expression of the form e(w1, . . . , wn), where wi ∈ d(ai),
for every 1 ≤ i ≤ n. The term wi is called a value of attribute ai.

An entity is hence characterised by its attributes which in turn range over a given
domain. In an ER diagram, an entity is visualised by a rectangle containing the name of
the entity and the attributes are represented as ellipses which are attached to the entity
they belong to. In Fig. 2, Airport(ID, capacity) and Airplane(regNo) are
examples of entities. Instances are not part of an ER diagram, but they can be seen as
actual entries of a database which is realised according to the schema defined by the ER
diagram. For instance, Airport(‘‘vienna’’, 500) would be an example for an
instance in the ER diagram of Fig. 2.



The entities as introduced above will be used in VIDEAS for the specification of the
FactBuilder which supports the creation of instances which are included in the answer-
set program in terms of facts. The entities will thus be mapped to ASP predicates whilst
their instances are mapped to facts.

Definition 3 (Mapping of Entities). Let AER = (R,A,D) be an alphabet and α a
symbol mapping defined over AER. Let furthermore E be the set of all entities over
AER. An entity mapping relative to α is a function εα : E → LASP such that

εα(e(a1, . . . , an)) = α(e)(α(a1), . . . , α(an)),

for every entity e(a1, . . . , an) ∈ E .

Definition 4 (Mapping of Instances of Entities). Let AER = (R,A,D) be an al-
phabet and α a symbol mapping defined over AER. Let furthermore I be the set of
all instances of entities over AER. An instance mapping relative to α is a function
ια : I → LASP such that, for every instance e(w1, . . . wn) ∈ I,

ια(e(w1, . . . , wn)) = α(e)(α(w1), . . . , α(wn)).

According to this definition, the entity instance Airport(‘‘vienna’’, 500)
is mapped to the fact airport(vienna, 500).

Since we have no type system available in general, which asserts that the attributes
are correctly instantiated, we therefore have to simulate this in ASP, as described in what
follows. This is of particular importance if facts are not only created automatically but
if they are also added manually.

Definition 5 (Mapping Domain Constraints). Let AER = (R,A,D) be an alphabet
and α a symbol mapping defined over AER. Let furthermore E be the set of all entities
overAER. A domain constraint mapping relative to α is a function δα : E → LASP such
that, for every entity e(a1, . . . , an) ∈ E ,

δα(e(a1, . . . , an)) =⋃
1≤i≤n{domainCheck e ai(α(ai)) :− α(e)( , . . . , α(ai), . . . , ),

domain ai(α(ai));
:− not domainCheck e ai(α(ai)),

α(e)( , . . . , α(ai), . . . , )},

where domainCheck e ai is a new predicate symbol used for asserting that instances
of the entity e have valid values for attribute ai and domain ai describes that α(ai) is
in {α(wj)|wj ∈ d(ai)}.

Note that the final program needs to contain facts for domain ai . Furthermore,
predicate domain ai may be substituted by predefined predicates like integer for cer-
tain attributes ai. In the case of Example 1, for instance, it is defined by an explicit
enumeration of the possible colour values.

Definition 6 (Primary Key). Let Ω = (E,R, k) be an ER diagram. Then, the primary
key of an entity e(a1, . . . , an) ∈ E is the k-tuple pk(e(a1, . . . , an)) = (a1, . . . , ak),
where k = k(e(a1, . . . , an)) for the function k : E→ N.



Intuitively, the aim of a primary key is to uniquely identify instances of an entity.
That is, a primary key pk(e(a1, . . . , an)) = (a1, . . . , ak) should entail that for every
set S of instances of the entity e(a1, . . . , an), if s = e(ws1, . . . , w

s
k, w

s
k+1, . . . , w

s
n)

and t = e(wt1, . . . , w
t
k, w

t
k+1, . . . , w

t
n) are two instances in S, then (ws1, . . . , w

s
k) =

(wt1, . . . , w
t
k) implies s = t. In the graphical representation of ER diagrams, primary

key attributes are underlined. In the translation to ASP, we want to have rules asserting
that no two entities with the same primary key exist which are different in the other
attributes.

Definition 7 (Mapping Primary Keys.). Let AER = (R,A,D) be an alphabet and α
a symbol mapping defined over AER. Let furthermore E be the set of all entities over
AER. A primary key mapping relative to α is a function κα : E → LASP such that, for
every entity e(a1, . . . , ak, . . . , an) with primary key (a1, . . . , ak),

κα(e(a1, . . . , ak, . . . , an)) =⋃
k+1≤i≤n{pkViolation e ai(α(a1), . . . , α(ak)) :− εα(e),

α(e)(α(a1), . . . , α(ak), vk+1, . . . , vi, . . . , vn), α(ai) 6= vi;
:− pkViolation e ai(v1, . . . , vk), α(e)(v1, . . . , vk, , . . . , )},

where vi are new ASP variables.

Having the mapping of primary keys at hand, we are now able to establish the
mapping of relationships. As the following definition shows, a relationship is—like an
entity—defined by the means of relations.

Definition 8 (Relationship). Let e1, . . . , en be entities over AER = (R,A,D) with
pk(ei) = (ai1, . . . , a

i
ki

), for 1 ≤ i ≤ n. Then, a relationship between e1, . . . , en is given
by an expression of form r(a1

1, . . . , a
1
k1
, . . . , an1 , . . . , a

n
kn

), where r ∈ R. Relationships
are instantiated the same way as entities.

For example, in Fig. 2, is of and based are relationships. Relationships are rela-
tions like entities, hence the instance mapping for relationships to LASP is given by ια.
However, we have to assert that the entities referred to in a relationship are actually
existing which is achieved by the following rules. Note that cardinality restrictions are
expressed accordingly.

Definition 9 (Mapping Key Reference Constraints). Let AER = (R,A,D) be an
alphabet and α a symbol mapping defined over AER. Let furthermore R be the set of
relationships over AER. A key reference constraint mapping relative to α is a function
γα : R → LASP such that, for every relationship r(a1

1, . . . , a
1
k1
, . . . , an1 , . . . , a

n
kn

),

γα(r(a1
1, . . . , a

1
k1 , . . . , a

n
1 , . . . , a

n
kn

)) =⋃
1≤i≤n

{refKeyCheck r ei(α(ai1), . . . , α(aiki
)):− α(ei)(α(ai1), . . . , α(aiki

), , . . . , ),
α(r)( , . . . , , α(ai1), . . . , α(aiki

), , . . . , );
:− not refKeyCheck r ei(α(ai1), . . . , α(aiki

),
α(r)( , . . . , , α(ai1), . . . , α(aiki

), , . . . , )},

where ei is an entity with pk(ei) = (ai1, . . . , a
i
ki

) and r is a relationship between entities
e1, . . . , en.



Now, we have introduced all components for defining a mapping from ER diagrams
to answer-set programs which is summarised by the following definition:

Definition 10. Let AER be an alphabet and α a symbol mapping over AER. Further-
more, let I be the set of all instances of entities overAER. Then, σα : LER×I → LASP

is the partial function mapping an ER diagram Ω = (E,R, k) over alphabet AER and a
set I ⊆ I of instances into a program over language LASP given by

σα(Ω, I) =
⋃
i∈I

{ια(i)} ∪
⋃
e∈E

κα(e) ∪
⋃
r∈R

γα(r) ∪
⋃
e∈E

δα(e),

providing I contains only instances of entities in E, otherwise σα(Ω, I) is undefined.

With the function σα at hand, we are able to translate the information given by
an ER diagram along with instances provided by the FactBuilder to a corresponding
answer-set program. Note that the full program developed during the modelling phase
may need to make use of entities in terms of their translation under εα. In the following
section, we discuss how σα is actually implemented in VIDEAS.

6 Implementation

6.1 General Aspects

With VIDEAS, we provide a framework which supports the development of answer-
set programs by providing an editor for creating ER diagrams from which ASP code
may be derived as discussed in the previous section. In particular, constraints are au-
tomatically created. To establish the database, i.e., for entering the instances of the ER
diagram, manual user input is required. Based on the constraints specified in the ER
diagram, the FactBuilder tool is automatically generated which provides an input mask
for specifying of the actual data. It asserts that the constraints are obeyed by the user.

VIDEAS has been implemented on top of the Eclipse platform9; the implementation
is available at

https://subversion.assembla.com/svn/videas/.

In particular, technologies provided by the Eclipse Modeling Framework (EMF)10 and
the Graphical Modeling Framework (GMF)11 projects have been used. The meta-model
representing the ER diagram modelling language has been created using the Ecore
modelling language which is specified within the EMF project. Based on this Ecore
model (an implementation for a subset of the Meta Object Facility12), a graphical ed-
itor has been created using GMF. The models created by the graphical model editor
are stored as Ecore XML, models being accessible by EMF libraries, which is a pre-
requisite for the code generation. Visually, n-ary relationships, for arbitrary n, can be

9 https://www.eclipse.org.
10 http://www.eclipse.org/modeling/emf/.
11 http://www.eclipse.org/modeling/gmf/.
12 http://www.omg.org/mof/.



Fig. 3. Screenshot of the ER editor.

constructed, whereas the code generator will only transform binary and unary relation-
ships at present.

The analysis of the constraints and the code generation are implemented in Java
using Eclipse EMF (for deserialising models). This reduces the effort for generating
recurrent code blocks, i.e., literals based on the same entity type or even instance are
represented as literal template. The template information is stored in form of objects
in hash tables, which contain ordered argument sequences (and their properties) for
entities. These sequences already respect the transformation strategy of entities and
relationships, as discussed in Section 5.

In particular, the code generator processes the models from the graphical editor.
Again, this model is formulated in Ecore. The code generation itself can be grouped
into three subsequent activities:

1. The model is analysed in order to compute and store the used literal template.
2. Type and primary key constraints are generated (cf. Fig. 4 for an example).
3. Input forms are prompted which enable a developer to fill in values that are used

for inserting the data—the FactBuilder of VIDEAS (cf. Fig. 5).

The FactBuilder component also implements features like the automated look-up of
values from a known domain. Finally, the constructed facts and constraints may be
serialised to an answer-set program code file. In the VIDEAS prototype, all constraints
and facts are serialised when the user quits the program.

In the following, we first discuss how constraints are derived from the ER diagram
and transferred to ASP code. Then, we give a short overview on the generation of the
FactBuilder.



%%%%%% PRIMARY KEY CONSTRAINT

pkViolation_airport_capacity(ID) :- airport(ID, Capacity),
airport(ID, Capacity2),
Capacity != Capacity2.

:- pkViolation_airport_capacity(ID), airport(ID,_).

%%%%%% REFERENCE TYPE CONSTRAINT

refKeyCheck_isOf_airplaneType(TypeName) :-
airplaneType(TypeName,_),
airplane(_,TypeName,_).

:- not refKeyCheck_isOf_airplaneType(TypeName),
airplane(_,TypName,_).

%%%%%% DOMAIN CONSTRAINT

domainCheck_airport_capacity(Capacity) :- airport(_, Capacity),
integer(Capacity).

:- not domainCheck_airport_capacity(Capacity),
airport(_, Capacity).

Fig. 4. Excerpt of constraints generated from an ER diagram.

6.2 Generation of Constraints

VIDEAS derives multiple types of constraints like primary key constraints and domain
constraints from the ER diagram which are expressed in terms of rules in the resulting
answer-set program, as formally discussed in the previous section.

Primary Key Constraints. For the generation of primary key constraints, the primary
keys are retrieved from the literal template and the mapping from the previous section
is applied. Figure 4 shows an example of a primary key constraint in an answer-set pro-
gram. The first rule evaluates to true if there exist two instances of the entity airport
which have the same values in the key attributes but which differ in their other attributes.
Irrelevant attributes are marked by the symbol “ ” in this rule. Using the same variables
in the two body literals for the key attributes asserts that the values of the key are the
same. The constraint asserts that no answer sets are allowed where the primary key
constraint is violated.

Type Constraints. The type consistency for attributes can be validated by defining an
artificial intermediary type avoiding unintentional specifications of values. For this pur-
pose, two rules are generated for each attribute. The first rule ensures the correctness
of the attribute by validating whether the attribute has the expected type. The second
rule eliminates answer sets comprising attributes violating this condition. In Fig. 4, a



:add airplane
regNr: 1
airplaneType.name: Boeing737
airport.ID: ap1

% RESULTING FACT
airplane(1,Boeing737,ap1).

Fig. 5. An example for the FactBuilder component.

airplane airplaneTypeis_of 1n

person airportboss_of 11

pilot airplaneTypecan_fly
mn

 airport(ID, SIN)

SIN ID

nameregNo

SIN name

 person(SIN)

 airplaneType(name) airplane(regNo, name)

 airport(ID) person(SIN, ID)OR OR

 pilot(SIN)  can_fly(SIN, name)  airplaneType(name)

(i)

(ii)

(iii)

Fig. 6. The cardinalities of relationships of ER diagrams.

generated type constraint for the attribute capacity of the entity airport is given.
Each airport requires this attribute as being of the type integer. For relationships,
the key constraints are defined accordingly.

6.3 Generation of Entity Instances

For supporting the data input, for each ER diagram, the FactBuilder tool is automat-
ically generated. The FactBuilder is a command-line tool which checks that the con-
straints specified in the ER diagram are obeyed when entity instances as well as relation-
ship instances are entered. For example, in Fig. 5, an instance of an airplane is entered.
Note that the 1 : n relationship to the airplane type is already taken into account.

Wildcards (denoted by “?” as input value for an argument) assist the developer in
resolving primary key values of referred entities. Each wildcard opens a dialogue allow-
ing the ad-hoc specification of referred entity instances. The primary keys of the newly
specified instance is automatically merged with the previously entered values forming
the arguments of the created fact. Circular dependencies can be resolved manually. We
aim for extending the VIDEAS tool for allowing the automated resolution of references.

In fact, describing an instance of the entity airplane, the key value to the ref-
erenced airplane type is directly included in the arguments of airplane. This is an op-
timisation of the mapping of one-to-one and one-to-many relationships. In one-to-one



relationships, both entities (and their instances) are symmetrically dependent on each
other, e.g., a person can reference an airport (an argument in person represent-
ing the primary key of an airport), but an airport can also reference a person
(cf. Fig. 6). In order to avoid redundancies, a double-sided linking is avoided, leading
to two potential solution variants. In VIDEAS, one entity is randomly picked to which
a reference to the primary key attributes of the other entity is added. For the mapping
of one-to-many relationships, the primary key value of the entity with cardinality one
is added to every entity instance of the other entity. Note that giving one variant pref-
erence over the other does not result in any loss of information concerning navigability
due to the inference mechanisms of ASP. In contrast, for many-to-many relationships,
two instances are linked with the help of a third additional predicate. This corresponds
exactly to the mapping described in the previous section.

7 Conclusion and Future Work

VIDEAS exploits techniques standard in the discipline of model-driven engineering
(MDE). It focuses on supporting the answer-set programmer during the development
phase by establishing visual program construction methods and automated code gen-
erators. The distinguishing feature of MDE is that models are first-class citizens in the
engineering process rather than mere documentation artefacts.

In VIDEAS the programmers are encouraged to construct their programs as data
models with the help of ER diagrams before implementing a program. The benefit of
an explicit model is that the developer’s attention can be drawn to design decisions,
e.g., naming strategies and relevant relationships, rather than to code specifics. Such
models even serve as basis for the automated generation of constraints, which target
common pitfalls of entity interrelations which are difficult to be addressed by hand—
e.g., an argument value referencing to a wrong entity. Another advantage is the ability
for automatically generating input masks for the consistent definition of a fact base for
an answer-set program. Implicit constraints represented by the ER model, e.g., cardi-
nalities, can be automatically ported into the language of answer-set programs. As a
consequence, all these VIDEAS contributions jointly target to bypass common pitfalls,
to improve the quality of the program code (i.e., explicit designing of literals), and
to reduce efforts for constructing the program basis (i.e., assistance by a code gener-
ator). The generated code—consisting of facts and constraints—does not expose any
restriction on the further development process. Arbitrary rules can be used for comple-
menting the returned code base, and each generated rule can be textually modified or
post-processed by traditional techniques.

For future work, we intend to consider additional model concepts like inheritance
relationship as well as the support for other modelling languages, e.g., subsets of the
UML class diagram. The latter may in particular be a beneficial candidate for answer-
set programs, as the language-inherent extension mechanism of UML profiles may be
used to adapt the UML class diagram to our specific purposes. We also plan to extend
the VIDEAS framework to visualise potential inconsistencies between answer-sets of a
program and the data model directly at the level of the underlying ER diagram. Another
focus for further work is intended to be set around advanced language features such



as relationships involving an arbitrary number of entities. Finally, the full potential of
VIDEAS is exploited if it is included in an integrated development environment like
ASPIDE [16] or SeaLion [17].
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