
Lightweight Spatial Conjunctive Query Answering
using Keywords - Extended Version?

Thomas Eiter, Thomas Krennwallner, and Patrik Schneider

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,tkren,patrik}@kr.tuwien.ac.at

Abstract. With the advent of publicly available geospatial data, ontology-based
data access (OBDA) over spatial data has gained increasing interest. Spatio-
relational DBMSs are used to implement geographic information systems (GIS)
and are fit to manage large amounts of data and geographic objects such as points,
lines, polygons, etc. In this paper, we extend the Description Logic DL-Lite with
spatial objects and show how to answer spatial conjunctive queries (SCQs) over
ontologies—that is, conjunctive queries with point-set topological relations such as
next and within—expressed in this language. The goal of this extension is to enable
an off-the-shelf use of spatio-relational DBMSs to answer SCQs using rewriting
techniques, where data sources and geographic objects are stored in a database
and spatial conjunctive queries are rewritten to SQL statements with spatial func-
tions. Furthermore, we consider keyword-based querying over spatial OBDA data
sources, and show how to map queries expressed as simple keyword lists describ-
ing objects of interest to SCQs, using a meta-model for completing the SCQs with
spatial aspects. We have implemented our lightweight approach to spatial OBDA
in a prototype and show initial experimental results using data sources such as
Open Street Maps and Open Government Data Vienna from an associated project.
We show that for real-world scenarios, practical queries are expressible under
meta-model completion, and that query answering is computationally feasible.

1 Introduction

By the ever increasing availability of mobile devices, location-aware search providers
are becoming increasingly commonplace. Search providers (e.g., Google Maps http:
//maps.google.com/ or Nokia Maps http://here.net) offer the possibility to
explore their surroundings for desired locations, also called points-of-interest (POIs),
but usually miss the possibility to express spatial relations (e.g., next and within). For
an expressive location-aware search, the combination of Semantic Web techniques and
spatial data processing (with spatial relations) is appropriate, given they provide a data
backbone for spatial and taxonomic information to query semantically-enriched POIs.

To realize location-aware semantic search support, one needs to capture categories
of POIs (e.g., Italian restaurant), their relations to additional qualitative attributes (e.g.,
having a guest garden). Further, one needs to capture the spatial relations between
? Supported by the Austrian Research Promotion Agency (FFG) project P828897, and the

Austrian Science Fund (FWF) project P20840.

Shop v SpatialFeat hasOp v hasQVal Op v QVal

∃hasQVal− v SpatialFeat Shop v ∃hasOp Wlan v QVal

Park v SpatialFeat ∃hasOp− v Op GuestGarden v QVal

Supermarket v Shop QVal v ∃hasQVal SpatialFeat v ¬Geometry

Walmart v Op

Fig. 1: Ontology with integrated meta-model (TBox excerpt; role names start lowercase)

POIs (e.g., located inside a park). For modeling and interpreting a user’s intention, it
seems suggestive to use ontology languages and associated reasoning services. However,
for spatial aspects we need to extend or combine them with spatial data reasoning.
Furthermore, we must respect that ordinary users of location-aware search need a plain
query interface; they are not experts in query languages, and an interface to express
search intentions by lists of keywords in a Google-like manner would be desirable.

However, we face several obstacles for a seamless keyword-based querying and
integration of geospatial data sources and ontologies. First, for a meaningful search
result, we need to consider data obtained by integrating multiple data sources, which may
be provided by autonomous vendors in heterogeneous formats (e.g., OpenStreetMap
or Open Government Data data, a restaurant guide, etc). Using various data sources of
substantial size gives the opportunity to find intended POIs, which may fall into multiple
concepts ranging from rather generic to more detailed ones such as “restaurant” vs.
“pizzeria.” Moreover, we can exploit the structure of the taxonomic information that is
implicit in the data sources by making it concrete in an ontology. Such ontology-based
data access can be used to answer broad queries like “restaurants with Italian Cuisine,”
that should return pizzerias, trattorias, and osterias.

Second, from keyword-based input, we must generate meaningful formal queries
to an ontology. In that, we must respect that the users may have no prior knowledge of
the domain. Thus, we must be able to recognize and generate relevant combinations of
possible keywords according to the ontology that represents the domain.

Third, as we query mainly spatial data, we need to capture spatial relations between
different spatial objects and give users the possibility to use a fixed set of keywords to
express them. For spatial querying answering, we must define an appropriate semantics
and provide techniques that combine spatial with ontological query answering.

Fourth, a lot of research has been put into efficient query answering techniques over
lightweight ontology languages, such as the DL-Lite family [7]. Conjunctive query (CQ)
evaluation over DL-Lite ontologies can be delegated, by first-order query rewriting,
to a Relational Database Management System (RDBMS), which facilitates scalable
query processing. To secure this for an extension with spatial reasoning, the first-order
rewritability of the latter is desirable. Furthermore, as first-order rewritings of queries
might get prohibitively large in general (a known feature), also issues of manageable
query generation from keywords must be respected.

We address the above issues with the following approach outlined in a nutshell.
• Various data sources are integrated via a global schema represented by an DL-LiteR
ontology that is enriched with spatial information. The ontology-based knowledge base
(KB) is separated into a TBox, an ABox with normal individuals and a spatio-relational

database with spatial objects. We apply a mild extension to DL-LiteR by associating
individuals to spatial objects by a predefined binding. A preprocessor creates this binding
using a domain-specific heuristic (which is not considered here).
• The enriched ontology can be accessed, at the system level, by spatial conjunctive
queries (SCQ), which extend conjunctive queries with spatial predicates (e.g. intersects).
In such queries, individuals can be located with spatial objects whose relationships are
determined. By rewriting techniques, and in exploiting the PerfectRef algorithm [7],
SCQs can be rewritten to a union of conjunctive queries (UCQ). Under certain syntactic
conditions, a 2-stage evaluation—evaluation of the ontology part of the query (over the
ABox, which is stored in an RDBMS) followed by filtering via spatial conditions—is
possible, which makes this approach attractive for practical realization.
• For keyword-based query answering, concepts of the ontology are labeled with key-
words. On query evaluation, the keywords which the user enters are mapped to concepts
and roles from the ontology; an auto-completion service aids the user to compensate lack
of domain knowledge. Based on the keyword structure, a feasible CQ is generated and
extended with spatial predicates to SCQs; in that, we use a specific meta-model that is
stored in the ontology. Fig. 1 shows an excerpt of the ontology; the concept SpatialFeat
intuitively says that the individual has spatial features, which is extended by the sub-
roles of hasQVal with qualitative values, which are asserted to subconcepts of QVal .
Furthermore, the individual is represented by a geometry, asserted to subconcepts of
Geometry . However, also normal role assertions for qualitative attributes are considered
(e.g., a restaurant with a guest garden).

We have implemented this approach in an experimental prototype, which is part of a
more extensive system for smart, semantically enriched route planning system (MyITS,
http://myits.at/) over real world data sources such as OpenStreetMap (OSM),
Open Government Data (OGD) of Vienna, and the Falter restaurant guide for Vienna.
The data sources are integrated by a global schema represented by an ontology expressed
in DL-LiteR. It turns out that naively generated UCQs may be too large for execution on
conventional RDBMS. We thus improved our approach by exploiting the structure of the
TBox in an optimized generation of queries from keyword, to eventually obtain smaller
UCQs. First experiments show that this approach is feasible in a real-world scenario.
Furthermore, we show that the optimizations described are important for feasibility. An
extended version of this paper provides more details that are omitted for space reasons.1

2 Preliminaries

We adopt DL-LiteR [7] as the underlying ontological language and introduce an approach
in which the FO-rewriting of PerfectRef (see [7] and [6] for details) is strictly separated
from spatial querying. As a result of this separation, we only allow spatial predicates
(e.g., Contains) on the top level of the query structure. Regarding the semantics, we
following partly the ideas of [15], but focus primarily on query answering (not solely
satisfiability). Furthermore, we use a different notion for spatial relations.
Point-Set Topological Relations. We follow the point-set topological relation model
in [13], where spatial relations are defined in terms of pure set theoretic operations. The

1 http://www.kr.tuwien.ac.at/staff/patrik/ESWC2013Ext.pdf

realization of spatial objects is based on a set PE ⊆ R2 of points in the plane; the (names
of) spatial objects themselves are in a set ΓS . While the set of points for a spatial object
s is infinite (unless it is a point), it can be finitely defined by an associated admissible
geometry g(s). The geometries are defined by sequences p = (p1, . . . , pn) of points that
induce a point (n = 1), a line segment (n = 2), a line (n > 2), or a polygon. All points
used for admissible geometries are from a finite set PF ⊆ PE of points.
Spatio-relational Database. Thus, we define a spatio-relational database over ΓS as a
pair S = (PF , g) of a point set PF ⊆ R2 and a mapping g : ΓS →

⋃
i≥1 PF

i.
The extent of a geometry p (full point set) is given by the function points(p) and is a

(possibly infinite) subset of PE . For a spatial object s, we let points(s) = points(g(s)).
We need points to evaluate the spatial relations of two spatial objects via their respective
geometries. For our spatio-thematic KBs, we consider the following types of admissible
geometries p over PF (with their representation), and let PE =

⋃
s∈ΓS

points(s): a
– point is a sequence p = (p1), where points(p1) = {p1};
– line segment is a sequence p = (p1, p2), and points(p) = {αp1 + (1− α)p2 |α ∈

R, 0 ≤ α ≤ 1};
– line is a sequence p = (p1, . . . , pn) of line segments (pi, pi+1), 1 ≤ i < n, the first
(p1, p2) and last (pn−1, pn) segments do not share an end-point, and points(p) =⋃n−1
i=1 points(pi);

– polygon is like a line but (p1, p2) and (pn−1, pn) share an end point; we have
points(a) =

⋃n−1
i=1 points(pi)∪ int(lc), where int(lc) is the interior built from the

separation of PE by p into two disjoint regions.
Some s ∈ ΓS may serve to define via g a bounding box. We omit more complex
geometries like areas or polygons with holes. Based on points(x), we can define the
spatial relation of point-sets in terms of pure set operations:

– Equals(x, y) : points(x)=points(y) and NotEquals(x, y) : points(x)6=points(y);
– Inside(x, y) : points(x)⊆points(y) and Outside(x, y) : points(x)∩points(y)=∅;
– Intersect(x, y) : points(x) ∩ points(y) 6= ∅ and NextTo(x, y) : b(x) ∩ b(y) 6=
∅, where b(z) = {a ∈ PE | dist(a, points(z)) ≤ dB} for a distance function
dist : R2 → R+

0 and a distance value dB ∈ R.
Now for any spatial relation S(s, s′) and s, s′ ∈ΓS , holds on a spatio-relational DB S,
written S |=S(s, s′), if S(g(s), g(s′) evaluates to true. Relative to points and dist (and
dB), this is easily captured by a first-order formula over (R2,≤), and with regard to
geo-spatial RDBMS trivially first-order expressible.

Note that the space model of [13] differs from the more detailed 9-Intersection
model (DE-9IM) of [10], which considers strict separation of the interior and object
boundary; this leads to 9 instead of 5 spatial relations. We also omit spatial predicates in
the signature, assuming a “standard” point-set interpretation of the spatial-relations [13].
Our approach is modular and flexible enough to allow further relations (e.g., connects)
or use other interpretations such as DE-9IM.
Syntax and Semantics of DL-LiteR . We recall the definitions from [7]. Consider a
vocabulary of individual names ΓI , atomic concepts ΓC , and atomic roles ΓR. Given
atomic concepts A and atomic roles P , we define basic concepts B and basic roles R,
complex concepts C and complex role expressions E, and P− be the inverse of P as

B ::= A | ∃R C ::= B | ¬B R ::= P | P− E ::= R | ¬R .

A DL-LiteR knowledge base is a pair K = (T ,A) where the TBox T consists of a
finite set of inclusion assertions of the form B v C and R v E, and the ABox A is
a finite set of membership assertions on atomic concepts and on atomic roles of the
form A(a) and P (a, b), where a and b are individual names.

The semantics of DL-LiteR is given in terms of FO interpretations I = (∆I , ·I),
where ∆I is a nonempty domain and ·I an interpretation function such that aI ∈ ∆I
for all a ∈ ΓI , AI ⊆ ∆I for all A ∈ ΓC , P I ⊆ ∆I × ∆I for all P ∈ ΓR, and
(P−)I =

{
(a2, a1) | (a1, a2) ∈ P I

}
; (∃R)I =

{
a1 | ∃a2 ∈ ∆I s.t. (a1, a2) ∈ RI

}
;

(¬B)I = ∆I \BI ; and (¬R)I = ∆I ×∆I \RI .
The notions of satisfaction of inclusion axioms and assertions, TBox and ABox resp.

knowledge base is as usual, as well as logical implication; both are denoted with |=. We
assume the unique name assumption holds for different individuals and values.

Checking satisfiability of DL-LiteR ontologies is first-order (FO) rewritable [7], i.e.,
for all T , there is a Boolean FO query QT (constructible from T) s.t. for everyA, T ∪A
is satisfiable iff DB(A) 6|= QT , where DB(A) is the least Herbrand model of A.

3 DL-LiteR(S)

In this section, we extend DL-LiteR with spatial objects to DL-LiteR(S). We present its
syntax and semantics, a transformation of to DL-Lite, and show that satisfiability and
conjunctive query answering over DL-LiteR(S) KBs are FO-rewritable.

Syntax. Let ΓS and ΓI be pairwise disjoint sets as defined above. A spatio-thematic
knowledge base (KB) is defined as LS = 〈T ,A,S,B〉, where T (resp. A) is defined
as a DL-LiteR TBox (resp. ABox), S is a spatio-relational database, and B ⊆ ΓI × ΓS
is a partial function called the binding from A to S, similar to [15]; we apply a mild
extension to DL-LiteR by associating individuals from A to spatial objects from S.

We assume B to be already given. Furthermore, we extend DL-LiteR with the ability
to specify the localization of a concept. For this purpose, we extend the syntax with

C ::= B | ¬B | (loc A) | (locs A), s ∈ ΓS ,
where A is an atomic concept in T ; intuitively, (loc A) is the set of individuals in A that
can have a spatial extension, and (locs A) is the subset which have extension s.

Semantics. Our aim is to give a semantics to the localization concepts (loc A) and
(locs A) such that a KB LS = 〈T ,A,S,B〉 can be readily transformed into an ordinary
DL-LiteR KB KS = 〈T ′,A′〉, using concepts CST and Cs for individuals with some
spatial extension resp. located at s. Note that CST cannot be forced to be the union of all
Cs, as this would introduce disjunction (this hinders the passing from the open to the
closed world assumption, which is important for the FO-rewriting of DL-Lite).

An (DL-LiteR) interpretation of LS is a structure I=
〈
∆I , ·I , bI

〉
, where 〈∆I , ·I〉

is an interpretation of 〈T ,A〉, and bI ⊆ ∆I ×ΓS is a partial function that assigns some
individuals a location, such that for every a ∈ ΓI , (a, s) ∈ B implies bI(aI) = s.

We extend the semantics of the previous section with (loc A), (locs A), where A is
an atomic concept in T :

(loc A)I ⊇ {e ∈ ∆I | e ∈ AI ∧ ∃s ∈ ΓS : (e, s) ∈ bI},
(locs A)

I = {e ∈ ∆I | e ∈ AI ∧ (e, s) ∈ bI}.

The interpretation of complex concepts, satisfaction, etc. is then as usual. For ex-
ample, A v (locs A) expresses that all individuals in A are located at s; B v (loc A)
states that individuals in B can have a location if they are in A.
Transformation to DL-LiteR. Let CST and Cs, for every s ∈ ΓS , be fresh concepts.
We transform LS to KS = 〈T ′,A′〉, where T ′ = τ(T)∪ TS and A′ = τ(A)∪AB, and

– τ(X) replaces each occurrence of (loc A) and (locs A) in X with CST u A and
Cs uA, respectively, and splits u up;

– TS represents generic localization information via concepts, and contains the axiom
Cs v CST , and the constraints Cs v ¬Cs′ for all s 6= s′ ∈ ΓS ;

– AB represents the concrete bindings between A and ΓS , and for every (a, s) ∈ B,
we add Cs(a) in AB. Note that we do not assert ¬Cs(a) for (a, s) 6∈ B, keeping the
open world assumption for bindings.
For example, let A (resp. CST) be the concept Park (resp. SpatialFeat), cp be the

spatial object of “City Park,” and the polygon poly_cp representing cp’s spatial extend.
The KB has the assertions Park v (loc Park), CityParkCafe v (loccp Park), and
CityParkCafe(c). Then, the transformation produces Park v (SpatialFeat u Park),
CityParkCafe v (Cpoly_cp u Park), Cpoly_cp v SpatialFeat , and Cpoly_cp(cp).

Note that KS is indeed a DL-LiteR ontology, by the syntactic restrictions on lo-
calization concepts. It is not hard to verify that the models of LS and KS with the
same domain (∆I = ∆I

′
) coincide on common concepts and roles as follows: (i) if

I |= LS , then I ′ |= KS where CI
′

s = {e ∈ ∆I | (e, s) ∈ bI}, CI′ST =
⋃
s∈ΓS

CI
′

(= dom(bI)); conversely, (ii) if I ′ |= KS , then I |= LS where bI = {(e, s) | e ∈ CI′s }
and (loc A)I = CI

′

ST ∩A
I′ . As an easy consequence of this correspondence, we obtain:

Proposition 1. Satisfiability checking and CQ answering for ontologies in DL-LiteR(S)
is FO-rewritable.

As the models of LS and KS correspond, we can check satisfiability on KS , i.e., a
standard DL-LiteR KB. An ontology CQ q over LS is easily rewritten to a CQ over KS .

4 Query Answering in DL-LiteR(S)

We next define spatial conjunctive queries (SCQ) over LS = 〈T ,A,S,B〉. Such queries
may contain ontology and spatial predicates. Formally, an SCQ q(x) is a formula

QO1
(x,y) ∧ · · · ∧QOn

(x,y) ∧QS1
(x,y) ∧ · · · ∧QSm

(x,y), (1)
where x are the distinguished variables and y are either non-distinguished (bound)
variables or individuals from ΓI . Each QOi

(x,y) is an atom for T and of the form A(z)
or P (z, z′), with z, z′ from x ∪ y; the atoms QSj

(x,y) are over the vocabulary for the
spatial relations in Sec. 2 and of the form S(z, z′), with z, z′ from x ∪ y.

For example, q(x) = Playground(x) ∧Within(x, y) ∧ Park(y) is a SCQ which
intuitively returns the playgrounds located in parks.
Semantics. Let I=

〈
∆I , ·I , bI

〉
be an interpretation of LS . A match for q(x) in I

is a function π : x ∪ y → ∆I such that π(c) = cI , for each constant c in x ∪ y,
and for each i = 1, . . . n and j = 1, . . . ,m, (i) π(z) ∈ AI , if QOi(x,y) = A(z);
(ii) (π(z), π(z′)) ∈ P I , if QOi(x,y) = P (z, z′); and (iii) ∃s, s′ ∈ ΓS : (π(z), s) ∈

bI ∧ (π(z′), s′) ∈ bI ∧ S |= S(s, s′), if QSj (x,y) = S(z, z′). That is, for spatial
predicates individuals must have (unique) spatial extensions and the relationship between
them must hold.

Then, a tuple c = c1, . . . , ck over ΓI is an answer for q(x) in I , x = x1, . . ., if q(x)
has some match π in I such that π(xi) = ci, i = 1, . . . , k; furthermore, c is an answer
for q(x) over LS , if it is an answer in every model I of LS . The result of q(x) over LS ,
denoted res(q(x),LS), is the set of all its answers.

The semantic correspondence between LS and KS = 〈T ′,A′〉 guarantees that we
can transform q(x) into an equivalent query over LS′ = 〈T ′,A′,S,B〉 by replacing
each spatial atom S(z, z′) in q(x) with∨

s,s′∈ΓS
(Cs(z) ∧ Cs(z′) ∧ S(s, s′)). (2)

The resulting formula is easily cast into form uq(x) = q1(x) ∨ · · · ∨ ql(x), i.e., a union
of CQs qi(x). The answers of uq(x) in an interpretation I ′ of LS′ are the answers of all
qi(x) in I ′, and res(uq(x),LS′) is defined in the obvious way. We then can show:

Proposition 2. For every SQC q(x) over LS , res(q(x),LS) = res(uq(x),LS′).

Hence, answering SCQs in DL-LiteR(S) ontologies is FOL-rewritable. In particular,
for fixed S, we can eliminate S(s, s′) from (2), which yields a pure ontology query.
Alternatively, we can replace it with Ss,s′(z), where Ss,s′ is a fresh concept, and add
Cs v Ss,s′ to the TBox T ′ iff S |= S(s, s′), thus changing S more flexibly.

Spatial Conjunctive Query Evaluation. The above SCQ rewriting is exponential in
the number of spatial atoms, which incurs limitations. However, if no bounded variables
occur in spatial atoms, we can separate query answering into an ontology part and a
spatial query part, which can be efficiently evaluated in two stages:
(1) evaluate the ontology part of the query q(x) (i.e., drop all spatial atoms) over LS′.

For that we can apply the standard DL-LiteR query rewriting of PerfectRef and
evaluate the result over the ABox, stored in an RDBMS.

(2) filter the result of Step (1), by evaluating the formulas (2) on the bindings π for the
distinguished variables x (which are mapped to individuals). For that, retrieve in
Step (1) also all instances of Cs, for all s ∈ ΓS .
Step (2) amounts to computing a spatial join ./S , for which (at least) different

evaluation strategies exist. One strategy, denoted as OD, relies entirely on the functions
of a spatial-extended RDBMS. The other, denoted as OI , relies on an internal evaluation
of ./S , i.e., spatial relations, where the intermediate results are kept in-memory.

We have considered both strategies, restricting to acyclic queries (i.e., the query
hypergraph is tree-shaped; see e.g. [12] for a definition). For such queries, join trees can
be built, which can be processed in a bottom up manner. In doing so, we distinguish
between ontology and spatial nodes, and actually interleave the DL-LiteR query rewriting
(Step (1)) and spatial join checking (Step (2)). In the following, we describe the main
steps of our query evaluation:

First, a join tree JT is build from the SCQ. We refer to [12] for a discussion of
efficient methods to do so.

Second, each node nT in JT is visited in a bottom-up left-to-right order. We distin-
guish two cases depending on the type of the node nT :

(1) nT is an ontological node with an atom of QO:
We keep track of all atoms, adding them to a set SSub. If the parent of nT is a QS ,
we apply the rewriting of PerfectRef on the conjunction of SSub and keep the
result in a temporary relation called RSub (which is RDBMS view);

(2) nT is a spatial node with an atoms of QS :
We process the spatial join ./S of all children nT1 , · · · , nTn in nT using either
strategy OD or OI :
(a) For OD, we use a classical join ./ with the spatial relation as the selection

condition. In this case, we utilize existing spatial functions of the RDBMS,
where the optimization is left to the RDBMS. This leads to the case, that the
whole join tree NT is evaluated as a single large query (rewritten to a SQL
expression) over A and S.

(b) For OI , we evaluate every nT1 , · · · , nTn in nT separately and calculate the
spatial relations in-memory. This strategy implies that no spatial functions of the
RDBMS is used. However, the intermediate results have to be stored in-memory,
as these results will be used in the higher level spatial joins of JT .

Note that for strategy OD, we rewrite the spatial atoms (Contains, Within, etc.)
directly to corresponding functions (cf. [8] for details) of the spatial-extension of the
RDBMS. The different strategies noticeably affect the performance (see Sec. 8).

5 From Keywords to Spatial Conjunctive Queries

In this section, we provide the details for the generation of SCQ from a valid sequence
of keywords; We shall consider in the next section how such sequences are obtained in a
controlled way, by automatic completion and checking keyword combinations.

We assume an ontology OU , which has an associated meta-model for structuring
the query generation (described below). The generation is realized in three steps. First,
the keywords are mapped to concepts from OU and to spatial predicates. Then, a set of
completion rules (which regard the meta-model) is applied to the resulting sequence of
atomic formulas. Finally the completed sequence is converted into a SCQ.

We assume that spatio-thematic KBs are labeled, i.e., they are of the form LS =
〈T ,A,S,B,N〉, whereN is a set of textual labels representing keywords. The labels of
N are assigned by rdfs:label to the concepts of T . Multiple labels can be assigned
to a single element, which allows to have synonyms. Further, translations for keywords
in different languages can be enabled by the assignments.

Meta-Model for Structured Query Generation. We require on the top level of the
ontology in use a strict separation of the concepts for spatial features SpatialFeat (e.g.,
Park , Restaurant , etc.), qualitative values QVal (e.g., operator Op, Cuisine , etc.), and
Geometry (e.g., Point , Polygon , etc.). Since our approach is designed to query spatial
objects, every query has to be related to some SpatialFeat , which is extended by the
subroles of hasQVal with qualitative values (asserted to QVal) and is represented by the
role hasGeometry as a geometry (asserted to Geometry). By this separation on the top
level (which also exists in GeoOWL http://www.w3.org/2005/Incubator/geo/

XGR-geo/), we have a meta-model, which is then used for the generation of “meaningful”

(R1) If C1 v SpatialFeat and C2 v QualAttribute rewrite to (C1 hasQVal C2);
(R2) If C1 v SpatialFeat , C2 v QualAttribute , C3 v QualAttribute rewrite

to ((C1 hasQVal C2) hasQVal C3);
(R3) If C1 v QualAttribute rewrite to (SpatialFeat hasQVal C1);
(R4) If C1 v QualAttribute and C2 v QualAttribute rewrite

to ((SpatialFeat hasQVal C1) hasQVal C2);
(R5) If E1 v SpatialFeat or E1 is a SQ, E2 v SpatialFeat or E2 is SQ, and S is a

spatial predicate rewrite to ((E1) S E2);
(R6) If E1 v SpatialFeat or E1 is a SQ, and E2 v SpatialFeat or E2 is SQ rewrite

to ((E1) NextTo E2);

Table 1: Completion rules; the result of rules (R1)–(R4) is denoted as subquery (SQ)

queries. Any ontology used with our approach has to be structured according to the
meta-model. Fig. 1 shows some axioms of the meta-model for a specific ontology.

Generation of SCQs from Keywords. The automatic completion and combination
step produces a set of valid keyword sequences, from which one sequence K = (k1,
k2, . . . , kn) is chosen (unless the user determines one). Each keyword ki represents either
a concept or a spatial predicate. We must connect all ki according to the meta-model to
obtain SCQs, which then evaluate to spatial objects.

The rewriting ofK to a SCQQ is based on three steps that resemble a transducer with
a context-free (left-recursive) grammar and a set of completion rules. The latter are impor-
tant, because even if the transducer generates syntactically correct queries, their results
might not consist of spatial objects. E.g., we could have a query ItalianCuisine(x), but
the results R = (pizza, pasta, ...) could not be located on a map. Therefore, we have to
extend the query as follows:Restaurant(x)∧hasCuisine(x, y)∧ItalianCuisine(y).

In the following, we describe the three steps in the rewriting of K in detail:
(1) We obtain a new sequence K ′ from the sequence K by replacing every keyword

with either a concept from T or a predefined spatial predicate. We check whether
the keywords are associated to a concept in N , otherwise we ignore it.

(2) We apply the completion rules in Table 1 on K ′ in a left-to-right order until no rules
are applicable, resulting in a sequence K ′′.

(3) We generate the query q(x) from K ′′ according to the function
f(K ′′) = (· · · ((C1(x1) ∧ E1,1(x1, y1) ∧ E1,2(y1)) ∧ χ2) ∧ · · ·) ∧ χn

where χi = Ei,1(ϑ(Ei−1,1), yi) ∧ Ei,2(yi) and C1 is a concept atom; each Ei,1
is either empty, a role atom, or a spatial atom, and each Ei,2 is either empty or
a concept atom; ϑ(Ei,1) is xi if Ei,1 is a spatial atom, and xi−1 if Ei,1 is a role
atom. These assignments ensure that the spatial atoms are always related to the top
concept, while role atoms are related to the next level in the query tree.
After these steps, we obtain a valid SPQ q(x) for query evaluation (Sec. 4). For

rules (R2)–(R4), Table 1 shows in fact a simplified version, as they could be extended
to arbitrary sequences of QualAttributes. Furthermore, rule (R6) defines a default
relationship, if two spatial features are queried. Rewriting them to a simple conjunction
between C1(x) and C2(x) would often lead to empty results, as two identical objects
assigned to different concepts do not often exist within geospatial data sources.

Example 1. Given the keywords K = (italian cuisine, non-smoking, in, park), we
apply the first step, where we replace every ki with an associated concept Ci from
N : K ′ = (ItalianCuisine,NonSmoking ,Within,Park). In the second step we ap-
ply the completion rules to obtain K ′′ = (((SpatialFeat hasQVal ItalianCuisine)
hasQVal NonSmoking) Within Park). Finally we get a SCQ q(x1, x2)=f(K

′′) with
SpatialFeat(x1) ∧ hasQVal(x1, y1) ∧ ItalianCuisine(y1) ∧ hasQVal(x1, y2)∧

NonSmoking(y2) ∧Within(x1, x2) ∧ Park(x2) .

6 Generating Keyword Sequences

Since our approach is designed to have a single text-field for the keyword entries, we aim
to provide fast automatic completion, keywords detection, and keyword combination
functions. If a user enters keywords on a user interface (UI), we guide her by automatic
completion and by showing possible combinations compliant with the ontology. For that,
we must take the structure of the KB into account. Furthermore, as many combinations
may be compliant, a selection of “relevant” combinations must be provided.

As the need for very low response time (e.g., below 100ms) makes on-demand
calculation from the KB infeasible, a prefix index is created offline that stores all possible
prefixes for a label of N . It amounts to a function fP (e) which maps a string e to all
possible labels of N , such that

⋃
n∈N (Pref (e) ⊆ Pref (n)).

For example, the labels N = {pub, public, park}, fP map p, pub, and park as
follows: {p} → {park, pub, public}, {pu} → {pub, public}, {park} → {park}.
Syntactic Connectivity of Concepts. As multiple keywords are entered, we need to
determine which concepts are connectable. We use a notion of syntactic connectivity
C based on the syntactic structure of the KB, which captures the connection between
two concepts through subconcepts and roles, but also through a common subsumer. For
two concepts, we follow the inclusion assertion and check whether they share a common
subsumer denoted asCS , excluding the top concept. As the KB is based on DL-LiteR, we
can capture the following inclusion assertions: (i) concept inclusion MC : C1 v C2, role
hierarchies MH : R1 v R2; (ii) role membership which covers the range (resp. domain)
of a role as MR : ∃R− v C (resp. MD : ∃R v C); and (iii) mandatory participation
MP : C v ∃R. We deliberately do not consider disjoint concepts as C1 v ¬C2 in the
inclusions, and distinguish direct and indirect connections between two concepts.

A direct connection between concepts CA and CB exists, denoted φD(CA, CB), if
a sequence CA −→M ∃R1 −→M C1 −→M ∃R1 . . . Cn −→M ∃Rn −→M CB exists, where
M =MD ∪MH ∪MC ∪MR ∪MP . Furthermore, an indirect connection between CA
and CB exists, denoted φI(CA, CB), if φD(CA, CS)∧φD(CB , CS) holds for some CS .

Example 2. In the example Fig. 1, the concepts Supermarket and Op are directly
connected: Supermarket −→MC

Shop −→MP
∃hasOp −→MR

Op. On the other hand,
GuestGarden and Wlan are indirectly connected: GuestGarden −→MC

QV al −→MP

∃hasQV al −→MR
SpatialFeat ←−MR

∃hasQV al←−MP
QV al←−MC

Wlan.

In general, several sequences that witness φD(CA, CB) resp. φI(CA, CB) exist.

Automatic Completion, Detection, and Combination of Keywords. As we get a
sequence of entered strings E = (e1, e2, . . . , en), we need several steps to create the
completed keywords, as the strings could be prefixes or misspelled.

First, we obtain the set of labels L ⊆ N by applying the prefix function fP (ei) for
every ei ∈ E. Second, we build several levels of labels L1, · · · , Lm based on the size of
the subsets of L. As every Li has the subsets Li,1, · · · , Li,o of the same size, we check
for every Li,j , if every pair of concepts (assigned to the labels of Li,j) is syntactically
connected at least in one direction. If we have found a Li,j with connected concepts, we
add all sets of Li (which are connectable) to the results. This is done by concatenating
the labels of every set of Li and add them to the result strings. We refer to Algorithm 1
for a detailed description.

By introducing an iterative algorithm, we return the largest possible combinations
of keywords, thus excluding misspelled strings. However, we have in the worst-case
exponentially many connectivity checks in the lengths of E.

Algorithm 1: Create Keywords Combinations
Input: A sequence of words E = (e1, e2, . . . , en)
Output: Set of keyword combinations K = {k1, k2, . . . , kn}
K ← ∅;
L← get all possible keywords for E applying the prefix function ;
P ← build the power set from keywords L ;
while K = ∅ and P 6= ∅ do

Pi ← get the largest subset of P , if some have same size, take one by one;
Oi ← ∅;
foreach keyword kj in set Pi with len(kj) > 1 do

Oi ← add the set of concepts assigned to kj ;

Ti ← add a pair 〈CA, CB〉 for each possible combinations of concepts in Oi ;
combine← True ;
foreach element 〈CA, CB〉 in Ti do

if 〈CA, CB〉 are not syntactic connected then
combine← False

if combine = True then
concatenate Pi and add to R ;

else
remove Pi from P

Example 3. Given E = (rest, in, non-smok), we obtain the labels L = {restaurant,
indian food, intl food, non-smoking}. The first level of L contains the sets L1,1 =
{restaurant, indian food, non-smoking} and L1,2 = {restaurant, intl food, non-smoking}.
The concepts assigned to them areC1,1 = {Restaurant , IndianCuisine,NonSmoking}
and C1,2 = {Restaurant , IntlCuisine, NonSmoking}. Then, we check for C1,1, if ev-
ery pair (C,C ′), C 6=C ′ ∈ C1,1, is syntactically connected, and likewise for C1,2. The
first two pairs are directly connected and the last pair is indirectly connected by the com-
mon subsumer SpatialFeat . Hence, the concepts in C1,1 (and in C1,2) are connectable.
Then, we concatenate L1,1 (resp. L1,2) and add the strings to the results.

7 Refinement of Conjunctive Query Generation

While FO-rewritability of CQ answering over DL-LiteR KBs implies tractable data
complexity, the size of the rewriting can increase exponentially with the number of
atoms in the input CQ. Empirical findings [20] are that queries with more than 5-7 atoms
can lead to large UCQs (e.g., unions of thousands of CQs) which cannot be handled by
current RDBMS. Similar problems emerge with our generated SCQ (Sec. 8). One reason
is the completion step in the SCQ generation. The generated SCQ can be too general, as
we complete the intermediate sequence K ′ (Sec. 5) with the concept SpatialFeat and
role hasQVal , which are at the top-level (by our meta-model) of an ontology.

The refinementOQ of the completion step is applied on every ontological subquery of
a SCQ of the form S(x1)∧R1(x1, y1)∧C1(y1)∧ . . .∧Rn(xn−1, yn)∧Cn(yn), where
S v SpatialFeat, {R1 . . . , Rn} v hasQV al, and {C1, . . . , Cn} v QualAttribute
holds. It is based on the following ideas:

– Reduce the concept and role hierarchies: every edge in a path of φD or φI is an
inclusion assertion, which increases the size of the rewritten UCQ; in particular, role
inclusions can cause an exponential blow up [7];

– keep connectivity: by choosing paths according to φI , we keep the domain, range,
mandatory participation, regarding the roles connecting S to {C1, . . . , Cn}.
Before applying OQ, note that so far, S is a most common subsumer different from

the top concept with respect to φI ; i.e., for every pairs (S,C1), . . . , (S,Ci), φI(S,Cj)
holds for all j and the sum of path lengths for φI(S,Cj) is maximal. Thus, we try to
minimize the path lengths under the constraint that φI is fulfilled for all pairs φI(S,Cj).

Briefly, it works as follows. We start the refinement OQ by taking every subconcept
Si of S. We choose a shortest path, say pj , according to φI for every pair (Si, Cj),
1 ≤ j ≤ n, and we add up all path lengths |pj | to lenSi

. Finally, we choose the Si with
the lowest lenSi

as a replacement of S and R1 . . . , Rn, where the latter are replaced
with the roles appearing on the shortest paths pj for Si. We refer to Algorithm 2 to give
a more detailed view.

Example 4. Let q(x1) be SpatialFeat(x1)∧ hasQVal(x1, y1)∧ ItalianCuisine(y1)∧
hasQVal(x1, y2)∧NonSmoking(y2). For the pairs (Rest , ItalianCuisine) and (Rest ,
NonSmoking), we have a path p1 of length 2 (Rest→∃hasCuisine→ItalianCuisine)
and another path p2 of length 2 (Rest → ∃provides → NonSmoking). Hence, the
refinement OQ produces the optimized query q′(x1), as the original paths are both of
length 3 and Rest is a subconcept of SpatialFeat : Rest(x1) ∧ hasCusine(x1, y1) ∧
ItalianCuisine(y1) ∧ provides(x1, y2) ∧NonSmoking(y2).

We point out that after applying OQ, we may lose completeness with respect to the
original SCQ, as shown by the following example. Given a spatio-thematic KB containing
ABox assertions Rest(i1), hasCuisine(i1, i2), ItalianCuisine(i2), SpatialFeat(i3),
hasQVal(i3, i2), and ItalianCuisine(i2), such that hasCuisine has defined domain
Rest and range Cuisine. The query q(x1) = SpatialFeat(x1)∧ hasQVal(x1, y1)∧
ItalianCuisine(y1) evaluates to {i1, i3}. If we refine q(x1) to the SCQ q′(x1) =
Rest(x1) ∧ hasCuisine(x1, y1) ∧ ItalianCuisine(y1), we just get {i1} as a result.
Informally, completeness can be lost if the ABox assertions are very general. One way

Algorithm 2: Optimization OQ
Input: S subconcept of SpatialFeat, (R1, . . . , Rn) subroles of hasQV al,

(C1, . . . , Cn) subconcepts of QualAttribute, and TBox T
Output: Concept S′ and roles (R′1, . . . , R′n)
lenT ← 0;
foreach Si v S of T do

sequence T ← ∅ and lenSi ← 0 ;
foreach Cj of (C1, . . . , Cn) do

if φI(Si, Cj) then
path pj ← get the shortest path between Si and Cj keeping φI ;
lenSi ← lenSi+ length of pj ;
get (Rj1 , . . . , Rjn) from pj with every role which is a subrole of hasQV al ;
add (Rj1 , . . . , Rjn) to T ;

if lenSi < lenT then
lenT ← lenSi , S′ ← Si, and (R′1, . . . , R

′
n)← T ;

to keep completeness is thus to impose conditions on the ABox, which ensure that ABox
assertions have to fulfill certain conditions.

8 Implementation and Experimental Results

We have implemented a prototype of our keyword-based query answering approach. It
is developed in Java 1.6 and uses PostGIS 1.5.1 (for PostgreSQL 9.0) as spatial-extended
RDBMS. For the FO-rewriting of DL-LiteR, we adapted OWLGRES 0.1 [22] to obtain
the perfect rewriting (with PerfectRef) of a CQ and the TBox. We evaluate spatial atoms
in two different ways (Sec. 4), namely as OD by using the query evaluation of PostGIS
or as OI as a built-in component of our query evaluation algorithm. For OD, we use the
PostGIS functions for evaluation, e.g., ST_Contains(x, y), and for OI , we apply the
functions of the JTS Topology Suite (http://tsusiatsoftware.net/jts).

As part of a consortium with AIT Mobility Department (routing), Fluidtime (UI),
ITS Vienna Region (data and routing), we have integrated our prototype for the keyword-
based query answering in the MyITS system for intention-oriented route planning
(http://myits.at/). Currently, the following services are available:
1. Neighborhood routing, where a user desires to explore the neighborhood for a

keyword-based query; and
2. Via routing, where a route is calculated between a given origin-destination pair via

some POI, which is dynamically determined by a keyword-based query.
Scenario. Our benchmarks are based on the usage scenarios of MyITS, which has
a DL-LiteR geo-ontology with the following metrics: 324 concepts (with 327 inclu-
sion assertions); 30 roles (with 19 inclusion assertions); 2 inverse roles; 23 (resp. 25)
domains (resp. ranges) of roles; 124 normal individuals; a maximal depth of 7 (4)
in the concept (role) hierarchy (http://www.kr.tuwien.ac.at/staff/patrik/
GeoConceptsMyITS-v0.9-Lite.owl). For the spatial objects, we added and mapped

the POIs of greater Vienna contained in OSM (≈ 70k instances), in the Falter database
(≈ 3700 instances), and parts of the OGD Vienna data (≈ 7200 instances). The anno-
tation step created ≈18700 individuals, which lead to ≈18700 concepts and ≈26000
role assertions. The low annotation rate of 23% is related to the exclusion of some OSM
POIs (e.g., benches, etc.) and the ongoing extensions of the mapping framework.

Experiments. We conducted our experiments on a Mac OS X 10.6.8 system with an Intel
Core i7 2.66GHz and 4 GB of RAM. We increased shared_buffers and work_mem
of PostgreSQL 9.0 to utilize available RAM. For each benchmark, the average of five
runs for the query rewriting and evaluation time was calculated, having a timeout of 10
minutes, and a memout of 750 MB for each run. The results shown in Table 2 present
runtime in seconds and query size (number of atoms in the CQ), and use —s to denote
DB errors (e.g., the stack depth limit of Postgres 9.0 is reached), —m for Java heap
space limit has been reached (750 MB), and —t for timeout.

Benchmarks. We designed the first benchmark B1 based on keywords to measure the
refinement OQ on CQ without spatial predicates. The queries used in B1 are
Q1: (spar) matches individuals run by “Spar”;
Q2: (guest garden) returns the individuals with a guest garden;
Q3: (italian cuisine, guest garden) retrieves individuals that serve italian cuisine (in-

cluding Pizzerias, etc.) and have a guest garden;
Q4: (italian cuisine, guest garden,wlan) gives individuals of Q3 that in addition pro-

vide WLAN; and
Q5: (italian cuisine, guest garden,wlan, child friendly) returns individuals of Q4

that in addition are child-friendly.
As described above, the keywords are completed to SCQ prior to evaluation as described.

The benchmark B2 aims at comparing the database (denoted OD) and internal
evaluation of spatial predicates (denoted OI) under the refinement OQ. Its queries are
Q6: (playground ,within, park) returns playgrounds in a park;
Q7: (supermarket ,next to, pharmacy) matches supermarkets next to a pharmacy;
Q8: (italian cuisine, guest garden,next to, atm,next to,metro station) gives indi-

viduals with Italian food and a guest garden, whereby these individuals are next
to an ATM and a metro station. The nesting of the query is as previously defined
(((italian cuisine, guest garden),next to), . . . ,metro station); and

Q9: (playground , disjoint , park) retrieves playgrounds outside a park.
As the results in Table 2 show, the refinement OQ is essential for feasibility. Without

it, Java exceeds heap space limitation during perfect rewriting in most cases, and SQL
queries become too large for the RDBMS. The ontology of our scenario is big, yet
captures only a domain for cities using OSM, OGD Vienna, and Falter.

As ground truth we assume the unrefined query. We lost completeness only in Q1;
this is due to three objects, which were tagged in OSM as shops but not supermarkets.
With respect to the benchmark queries, the OSM tagging and our (heuristic) mapping
has a minor effect on the completeness. Further, the results for Q2 to Q5 reflect the fact
that adding keywords extends the selectivity of the query (smaller results), but enlarges
the UCQ considerably.

We were surprised by the large difference between internal and external evaluation
of the spatial relations. We would have expected the external evaluation by the RDBMS

Table 2: Benchmark Results (Evaluation time in secs), unrefined results in parentheses
(a) Benchmark B1

Instances Query Size Time

Q1 106 (109) 438 (2256) 1.66 (4.96)
Q2 1623 (1623) 51 (2256) 1.23 (5.59)
Q3 204 (—s) 28 (71712) 1.14 (—s)
Q4 32 (—m) 56 (—m) 1.48 (—m)
Q5 3 (—m) 112 (—m) 4.11 (—m)

(b) Benchmark B2, time only with OQ

Instances Query Size Time
OI OD

Q6 93 (93) 2 (2) 1.54 19.3
Q7 378 (378) 4 (4) 2.22 —t

Q8 26 (—s) 30 (71714) 3.37 —t

Q9 151 (151) 2 (2) 2.02 —t

is more efficient. Rewritten SQL queries have a three-leveled nesting, which consists
of spatial joins (./S) on the first, unions (∪) on the second, and normal joins (./) on
third level. It seems that standard query evaluation and optimization (in Postgres 9.0) are
overwhelmed by such complex structures.

9 Related Work and Conclusion

Regarding SCQ, the closest to our work is [18], where crisp results for the combination
of FO-rewritability of DL-Lite combined with the RCC -family (which offers qualitative
models of abstract regions in topological space) are provided. For more expressive DLs,
Lutz et al. [17] introduced the notion of ω-admissibility, which allows the combination
of ALC and RCC8 [19], for subsumption testing. In PelletSpatial [21], the authors
implemented a hybrid combination of SHOIN and RCC8 . We follow a different
approach in which the spatial regions are considered as point sets as in [14, 15]. However,
we focus on scalable query answering (without distance primitives) and the related
implementation issues. In this way, we face similar challenges as recent Geo-SPARQL
engines did (e.g., Strabon [16] and Parliament [3]). However, we have a stronger focus
on ontology-based data access than on linked open-data (with an RDF data model).

Keyword-based search on the Semantic Web is a well-covered field of research. A
necessarily incomplete list of relevant approaches is SemSearch [24], XXploreKnow [23],
and QUICK [25] which are general purpose search engines. The KOIOS [4], DO-
ROAM [9], and the system of [2] support (text-based) spatial queries using ontologies.
Our approach differs from these systems regarding the expressivity of DL-Lite, with the
addition of spatial querying; the use of a meta-model for suitable query generation; and
a focus on gradual extendibility with new data sources.

In this paper, we presented an extension of DL-LiteR with spatial objects using point-
set topological relations for query answering. The extension preserves FO-rewritability,
which allows us to evaluate a restricted class of conjunctive queries with spatial atoms
over existing spatio-relational RDBMS. Second, we provided a technique for the gener-
ation of spatial conjunctive queries from a set of keywords. For this, we introduced a
combination of a meta-model and completion rules to generate “meaningful” queries.
Third, we implemented a prototype and performed experiments to evaluate the applica-
bility in a real-world scenario. From our point of view, the first results are encouraging,

as the evaluation time appeared to be moderate (always below 5 secs). Furthermore, our
keyword-based approach is easy to extend, the text-based input is lightweight, and it has
a reasonable precision through auto-completion and keyword combinations. However,
precision could be improved by more advanced query expansion techniques (cf. [11]).

Future research is naturally directed to variants and extensions of the presented
ontology and query language. E.g., one could investigate how spatial conjunctive queries
work over EL [1] or Datalog± [5]. For our motivating application, the point set model
was sufficient, but extending our approach with the DE-9IM model [10] would be appeal-
ing and introduce further spatial relations. Then, one could work on query expansion
techniques and on refinement of query generation, in a way such that completeness is
ensured. Finally, regarding the implementation, one could investigate the reason for
the unexpected performance on very large queries with spatial functions and conduct
further experiments on larger geospatial DBs, possibly comparing our approach to the
mentioned Geo-SPARQL engines.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI 2005. pp. 364–369.
Morgan-Kaufmann Publishers (2005)

2. Baglioni, M., Masserotti, M.V., Renso, C., Spinsanti, L.: Improving geodatabase seman-
tic querying exploiting ontologies. In: GeoS 2011. LNCS, vol. 6631, pp. 16–33. Springer,
Heidelberg (2011)

3. Battle, R., Kolas, D.: Enabling the geospatial Semantic Web with Parliament and GeoSPARQL.
Semantic Web Journal 3(4), 355–370 (2012)

4. Bicer, V., Tran, T., Abecker, A., Nedkov, R.: Koios: Utilizing semantic search for easy-access
and visualization of structured environmental data. In: ISWC 2011. LNCS, vol. 7032, pp.
1–16. Springer, Heidelberg (2011)

5. Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence 193, 87–128 (2012)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Reasoning Web 2009. LNCS,
vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

7. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

8. Clementini, E., Sharma, J., Egenhofer, M.J.: Modelling topological spatial relations: Strategies
for query processing. Computers & Graphics 18(6), 815 – 822 (1994)

9. Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R.: DO-ROAM: Activity-oriented
search and navigation with OpenStreetMaps. In: GeoS 2011. LNCS, vol. 6631, pp. 88–107.
Springer, Heidelberg (2011)

10. Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. International Journal of
Geographical Information Systems 5(2), 161–174 (1991)

11. Fu, G., Jones, C.B., Abdelmoty, A.I.: Ontology-based spatial query expansion in information
retrieval. In: OTM Conferences 2005, Part II. LNCS, vol. 3761, pp. 1466–1482. Springer,
Heidelberg (2005)

12. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. Journal
of the ACM 48(3), 431–498 (2001)

13. Güting, R.H.: Geo-relational algebra: A model and query language for geometric database
systems. In: EDBT 1988. LNCS, vol. 303, pp. 506–527. Springer, Heidelberg (1988)

14. Haarslev, V., Lutz, C., Möller, R.: A description logic with concrete domains and a role-
forming predicate operator. Journal of Logic and Computation 9(3), 351–384 (1999)

15. Kutz, O., Wolter, F., Zakharyaschev, M.: A note on concepts and distances. In: DL 2001.
CEUR-WS, vol. 49 (2001)

16. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A semantic geospatial DBMS.
In: ISWC 2012. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012)

17. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and
general TBoxes. Journal of Automated Reasoning 38(1-3), 227–259 (2007)

18. Özçep, Ö.L., Möller, R.: Scalable geo-thematic query answering. In: ISWC 2012. LNCS, vol.
7649, pp. 658–673. Springer, Heidelberg (2012)

19. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: KR
1992. pp. 165–176. Morgan Kaufmann (1992)

20. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: KR 2010.
pp. 290–300. AAAI Press (2010)

21. Stocker, M., Sirin, E.: Pelletspatial: A hybrid RCC-8 and RDF/OWL reasoning and query
engine. In: OWLED 2009. Springer, Heidelberg (2009)

22. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: OWLED 2008. Springer,
Heidelberg (2008)

23. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of keywords for
semantic search. In: ISWC 2007. LNCS, vol. 4825, pp. 523–536. Springer, Heidelberg (2007)

24. Uren, V.S., Lei, Y., Motta, E.: Semsearch: Refining semantic search. In: ESWC 2008. LNCS,
vol. 5021, pp. 874–878. Springer, Heidelberg (2008)

25. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic queries -
incremental query construction on the semantic web. J. Web Semant. 7(3), 166–176 (2009)

