
A Rule-based Framework for Creating Instance Data
from OpenStreetMap

Thomas Eiter1, Jeff Z. Pan3, Patrik Schneider1,4, Mantas Šimkus1, and Guohui Xiao2

1 Institute of Information Systems, Vienna University of Technology, Austria
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

3 University of Aberdeen, UK
4 Vienna University of Economics and Business, Austria

Abstract. Reasoning engines for ontological and rule-based knowledge bases
are becoming increasingly important in areas like the Semantic Web or informa-
tion integration. It has been acknowledged however that judging the performance
of such reasoners and their underlying algorithms is difficult due to the lack of
publicly available data sets with large amounts of (real-life) instance data. In this
paper we describe a framework and a toolbox for creating such data sets, which is
based on extracting instances from the publicly available OpenStreetMap (OSM)
geospatial database. To this end, we give a formalization of OSM and present a
rule-based language to specify the rules to extract instance data from OSM data.
The declarative nature of the approach in combination with external functions and
parameters allows one to create several variants of the data set via small modifica-
tions of the specification. We describe a highly flexible engine to extract instance
data from a given OSM map and a given set of rules. We have employed our tools
to create benchmarks that have already been fruitfully used in practice.

1 Introduction

Reasoning over ontological and rule-based knowledge bases (KBs) is receiving increas-
ing attention. In particular Description Logics (DLs), which provide the logical foun-
dations to OWL ontology languages [26], are a well-established family of decidable
logics for knowledge representation and reasoning [3]. They offer a range of expressiv-
ity well-aligned with computational complexity. Furthermore, DLs have been enriched
with rules in different approaches (see [9]). Moreover, several systems have been de-
veloped in the last decade to reason over DL KBs, which usually consist of a TBox that
describes the domain in terms of concepts and roles, an ABox that stores information
about known instances of concepts and their participation in roles. 5

Naturally, classical reasoning tasks like TBox satisfiability and subsumption under
a TBox have received most attention and many reasoners have been devoted to them
(e.g. FaCT++ [31], HermiT [29], or ELK [17]). These and other mature systems geared
towards TBox reasoning have been rigorously tested and compared (e.g., JustBench [4])
using several real-life ontologies like GALEN and SNOMED-CT.

5 Further components might be present depending on the DL, e.g., rules as for OWL 2 RL

A different category are reasoners for ontology-based query answering (OQA),
which are designed to answer queries over DL KBs in the presence of large data in-
stances (see e.g. Ontop [20], Pellet [28],and OWL-BGP [19]). TBoxes in this setting
are usually expressed in low complexity DLs, and are relatively small in size compared
to the instance data. These features make reasoners for OQA different from classical
(TBox) reasoners. The DL community is aware that judging the performance of OQA
reasoners and their underlying algorithms is difficult due to the lack of publicly avail-
able benchmarks consisting of large amounts of real-life instance data. In particular,
the popular Lehigh University Benchmark (LUBM) [15] only allows to generate ran-
dom instance data, which provides only a limited insight into the performance of OQA
systems (see Section 8 for further related work).

In this paper, we consider publicly available geographic datasets as a source of test
data for OQA systems and other types of reasoners. For the benchmark creation, we
need a framework and a toolbox for extracting and enhancing instance data from Open-
StreetMap (OSM) geospatial data. 6 The OSM project aims to collaboratively create
an open map of the world. It has proven hugely successful and the map is constantly
updated and extended. OSM data describes maps in terms of (possibly tagged) points,
geometries, and more complex aggregate objects called relations. We believe the fol-
lowing features make OSM a good source to obtain instance data for reasoners:
- Datasets of different sizes exist; e.g., OSM maps for all major cities, countries, and

continents are directly available or can be easily generated.
- Depending on the location (e.g., urban versus rural), the density, separation, and com-

pactness of object location varies strongly. 7

- Spatial objects have an inherent structure of containment, bordering, and overlapping,
which can be exploited to generate spatial relations (e.g., contains).

- Spatial objects are usually tagged with semantic information like the type of an object
(e.g., hospitals, smoking/non-smoking area), or the cuisine of a restaurant. In the DL
world this information can be naturally represented in terms of concepts and roles.

Motivated by this, we present a rule-based framework and a toolbox to create bench-
mark instances from OSM datasets. Briefly, our contributions are the following:
- We give a model-based formalization of OSM datasets which aims at abstracting from

the currently employed but rather ad-hoc XML or object-relational representation. It
allows one to view OSM maps as relational structures, possibly enriched with com-
putable predicates like the spatial relations contains or next.

- Building on the above formalization, we present a rule-based language to extract in-
formation from OSM datasets (viewed as relational structures). In particular, a user
can specify in a declarative way rules which prescribe how to transform points/-
geometries/relations of an OSM map into ABox assertions. Different benchmark
ABoxes can be created via small modifications of external functions, input param-
eter, and the rules of the specification.

- Our language is based on an extension of Datalog, which enjoys clear and well ac-
cepted semantics [1]. It has convenient features useful for benchmark generation.

6 http://www.openstreetmap.org
7 E.g., visible in https://www.mapbox.com/osm-data-report/

- We have implemented an engine to create ABoxes from given input sources (e.g. an
OSM database) and a given set of rules, which may be recursive and use negation. The
engine is highly configurable and can operate on various input and output sources,
like text files, RDF datasets, or geospatial RDBMSs, and even integrate computation
using external functions.

- By employing the above generation toolbox, we show on a proof-of-concept bench-
mark, how parameterizable and extensible the framework is. The toolbox has been
already fruitfully been used for two benchmarks [8, 12].

In summary, our framework and toolbox provide an attractive means to develop
tailored benchmarks for evaluating reasoning engines, to gain new insights about the
underlying algorithms.

2 Formalization of OSM
In this section we formally describe our model for OSM data, which we later employ
to describe our rule-based language to extract instance data from OSM data. Maps in
OSM are represented using four basic constructs (a.k.a. elements): 8

- nodes, which correspond to points with a geographic location;
- geometries (a.k.a. ways), which are given as sequences of nodes;
- tuples (a.k.a. relations), which are a sequences of nodes, geometries, and tuples;
- tags, which are used to describe metadata about nodes, geometries, and tuples.

Geometries are used in OSM to express polylines and polygons, in this way describing
streets, rivers, parks, etc. OSM tuples are used to relate several elements, e.g. to indicate
the turn priority in an intersection of two streets.

To formalize OSM maps, which in practice are encoded in XML, we assume in-
finite mutually disjoint sets Mnid,Mgid,Mtid and Mtags of node identifiers, geometry
identifiers, tuple identifiers and tags, respectively. We let Mid = Mnid ∪Mgid ∪Mtid and
call it the set of identifiers. An (OSM) map is a tripleM = (D, E ,L) as follows.

1. D ⊆ Mid is a finite set of identifiers called the domain ofM.
2. E is a function from D such that:

(a) if e ∈ Mnid, then E(e) ∈ R×R;
(b) if e ∈ Mgid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D ∩Mnid;
(c) if e ∈ Mtid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D.

3. L is a labeling function L : D → 2Mtags .

Intuitively, in a map M = (D, E ,L) the function E assigns to each node identifier a
coordinate, to each geometry identifier a sequence of nodes, and to each tuple identifier
a sequence of arbitrary identifiers.

Example 1. Assume we want to represent a bus route that, for the sake of simplicity,
goes in a straight line from the point with coordinate (0, 0) to the point with coordinate
(2, 0). In addition, the bus stops are at 3 locations with coordinates (0, 0), (1, 0) and
(2, 0). The names of the 3 stops are S0, S1 and S2, respectively. This can be represented
via the following mapM = (D, E ,L), where

- D = {n0, n1, n2, g, t} with {n0, n1, n2} ⊆ Mnid, g ∈ Mgid and t ∈ Mtid,

8 For clarity, we rename the expressions used in OSM

- E(n0) = (0, 0), E(n1) = (1, 0), E(n2) = (2, 0),
- E(g) = (n0, n2) and E(t) = (g, n0, n1, n2),
- L(n0) = {S0}, L(n1) = {S1} and L(n2) = {S2}.

The tuple (g, n0, n1, n2) encodes the 3 stops n0, n1, n2 tied to the route given by g.

Enriching Maps with Computable Relations The above formalizes the raw representa-
tion of OSM data. To make it more useful, we support incorporation of information that
need not be given explicitly but can be computed from a map. In particular, we allow to
enrich maps with arbitrary computable relations over Mid. Let Mrels be an infinite set of
map relation symbols, each with an associated nonnegative integer, called the arity.

An enriched map is a tupleM = (D, E ,L, ·M), where (D, E ,L) is a map and ·M is
a partial function that assigns to a map relation symbolR ∈ Mrels a relationRM ⊆ Dn,
where n is the arity of R. In this way, a map can be enriched with externally computed
spatial relations like the binary relations “is closer than 100m”, “inside a country”,
“reachable from”, etc. For the examples below, we assume that an enriched mapM as
above always defines the unary relation Tagα for every tag α ∈ Mtags. In particular,
we let e ∈ TagMα iff α ∈ L(e), where e ∈ D. We will also use the binary relation
Inside(x, y), which captures the fact that a point x is located inside a geometry y.

3 A Rule Language for Data Transformation

We define a rule-based language that can be used to describe how an ABox is created
from an enriched map. Our language is based on Datalog with stratified negation [1].

Let Drels be an infinite set of Datalog relation symbols, each with an associated arity.
For simplicity, and with a slight abuse of notation, we assume that DL concept and role
names form a subset of Datalog relations. Formally, we take an infinite set Dconcepts ⊆
Drels of unary relations called concept names and an infinite set Droles ⊆ Drels of binary
relations called role names. Let Dvars be a countably infinite set of variables. Elements
of Mid ∪ Dvars are called terms.

An atom is an expression of the form R(t) or not R(t), where R is a map or a
Datalog relation symbol of arity n, and t is an n-tuple of terms. We call R(t) and
not R(t) a positive atom and a negative atom, respectively. A rule r is an expression
of the form B1, . . . , Bn → H, where B1, . . . , Bn are atoms (called body atoms) and
H is a positive atom with a Datalog relation symbol (called the head atom). We use
body+(r) and body−(r) for the sets of positive and negative atoms in {B1, . . . , Bn},
respectively. We assume (Datalog) safety, i.e. each variable of a rule occurs in some
positive body atom. A program P is any finite set of rules. A rule or program is ground
if it has no occurrences of variables. A rule r is positive if body−(r) = ∅. A program P
is positive if all rules of P are positive. A program P is stratified if it can be partitioned
into programs P1, . . . , Pn such that:

(i) If r ∈ Pi and not R(t) ∈ body−(r), then there is no j ≥ i such that Pj has a
rule with R occurring in the head.

(ii) If r ∈ Pi and R(t) ∈ body+(r), then there is no j > i such that Pj has a rule
with R occurring in the head.

The semantics of a program P is given relative to an enriched mapM. The ground-
ing of a program P w.r.t.M is the (ground) program ground(P,M) that can be ob-
tained from P by replacing in all possible ways the variables in rules of P with identi-
fiers occurring inM or P . We use a variant of the Gelfond-Lifschitz reduct [14] to get
rid of map atoms in a program. The reduct of P w.r.t.M is the program PM obtained
from ground(P,M) as follows:

(a) Delete from the body of every rule r every map atom not R(t) with t 6∈ RM.
(b) Delete every rule r whose body contains a map atom not R(t) with t ∈ RM.

Observe that PM is an ordinary stratified Datalog program with identifiers acting as
constants. We let PM(M, P) denote the perfect model of the program PM. See [1]
for the construction of PM(M, P) by fix-point computation along the stratification.
We are now ready to extract an ABox. Given a mapM and a program P , we denote by
ABox(M, P) the restriction of PM(M, P) to the atoms over concept and role names.

We next illustrate some features of our rule language. The basic available service is
to extract instances of concepts or roles by posing a standard conjunctive query over an
OSM map. F.i., the following rule collects in the role hasCinema the cinemas of a city
(we use sans-serif and typewriter font for map and Datalog relations, respectively):

Point(x),Tagcinema(x),Geom(y),Tagcity(y), Inside(x, y)→ hasCinema(y, x).

Negation in rule bodies can be used for default, closed-world conclusions. E.g., the
rule states that recreational areas include all parks that are not known to be private:

Geom(x),Tagpark(x),not Tagprivate(x)→ RecreationalArea(x)

Another use of negation is for data cleaning purposes. Indeed, one of the major
problems in OSM is duplicate information about a single real-life object. For an ex-
ample, assume we are extracting shops and thus collecting points tagged with Store.
However, due to the possible duplication, we want to omit points that are close (≤10m)
to a point with the more informative tag GroceryStore. This can be easily expressed
with the following rules, where next10m is an external relation for pairs of points with
10m distance:

next10m(x, y),Point(y),TagGroceryStore(y)→ hasCloseStore(x)

Point(x),TagStore(x),not hasCloseStore(x)→ Shop(x).

Recursion is also useful and e.g., allows to deal with reachability, which appears nat-
urally and in many forms in the context of geographic data. E.g. suppose we want to
collect pairs b1, b2 of bus stops such that b2 is reachable from b1 using public buses. To
this end, we can assume the availability of an external binary relation hasStop which
relates bus routes and their stops, i.e. hasStop(x, y) is true in case x is a geometry iden-
tifier corresponding to a bus route and y is a point identifier corresponding to a bus stop
in the route represented by x. Then the desired pairs of bus stops can be collected in the
role ReachByBus using the following recursive rules:

hasStop(x, y1), hasStop(x, y2)→ ReachByBus(y1, y2)

ReachByBus(y1, y2), ReachByBus(y2, y3)→ ReachByBus(y1, y3).

4 Extending the Rule Language with ETL Features
In this section we introduce the custom language for the benchmark generation, which
extends the Datalog language of the previous section with extract, transform, and load
(ETL) features. The combined language consequently consisting of Data Source Dec-
larations, Mapping Axioms, and Datalog Rules.

We address simplicity and extensibility as our main goal on two levels. The first
level concerns the extensibility of the mapping language and the related evaluation
method by providing the following modes: A Direct mode which resembles a simple
extract, transform, and load (ETL) process of classical data transformation tools. Based
on the Direct mode, we offer a Datalog mode which includes the rule language from
the previous section. The second level concerns data sources (e.g., OSM databases) and
external evaluation (e.g., calculating spatial relations). In simple cases, we do not need
to deal with implementation details, as the data is read from OSM tables stored in an
(geospatial) RDBMS and the results are mapped directly to the output files.
Data Source Declarations. The first section of a benchmark generation definition
contains general declarations like RDBMS connection strings. The following declara-
tions are available at present, whereby every definition has an identifier denoted as id
which is used for the referencing in the mapping axioms. We allow declarations for
PostgreSQL/PostGIS connections, Text files, Python scripts, and Constants.
Mapping Axioms. A mapping axiom defines a single ETL step, where the syntax is an
extension of the Ontop mapping language. 9 It is defined either as a pair of source and
target or as a triple of source, transform, and target:

Source source id source parameter

Transform transform id transform parameter

Target target id target parameter

where the first column is constant, the second column refers to the data source decla-
rations, and the third column has to be configured according to the source, target, or
transformation, respectively. The Transform is intended for adding scripts to provide
a mapping of values from the source to the target (see Section 5).
Available Sources. The following sources are currently available: 10

PostgreSQL/PostGIS Queries: In this case, the source parameter defines an SQL
Select-From-Where statement which is executed on the referenced database. The result
is processed as a set of tuples, which can be accessed by its index in the target step.
Text Files: The referenced file in source id is read line-by-line and converted into
tuples using a field delimiter (e.g., a semicolon). In case the source parameter is
defined, only the lines fulfilling its regular expression are returned.
RDF Files: A SPARQL query in source parameter is computed over the referenced
file. As with SQL queries, the result is converted into tuples, accessible by its index.
Constants: Constants are the simplest sources. They are defined by Source constant

id1 id2 etc. and directly written to the target.
9 https://github.com/ontop/ontop/wiki/ontopOBDAModel

10 Text and RDF files are needed as sources since in a large generation process, intermediate
results are kept as RDF triples

Example 2. We read all the parks from a OSM database defined in the data sources:

Source osmVienna Select osm id, name, ST AsEWKT(way) AS geo From
planet osm polygon Where leisure = ’park’.

Available Targets. For producing the results the following targets are available:
PostgreSQL/PostGIS Tables: The definition is similar to the PostgreSQL sources, how-
ever the target parameter is an SQL Insert statement. The later should be a template,
where the tuples from the sources are referenced by its index (in curly brackets).
Text Files: Text files are linked similarly as in the sources. However, target parameter

has to be a textual template representing the result. Usually, the template contains mul-
tiple lines and represents triples that are defined according to the benchmark ontology.
Stdout: The target is similar to text files, but the result is written directly to the standard
output stream (Stdout).

Example 3. For instance, we write three triples to a file which represent an instance of
type Playground and NamedIndividual with a name and a polygon assigned to it:

Target file1 :{1} rdf:type tuwt:Playground, owl:NamedIndividual;
gml:featurename ”{2}”ˆˆxsd:string;
geo:polygon ”{3}”ˆˆxsd:string.

Datalog Rules. For the evaluation in the Datalog mode, one needs first to create the
Extensional Database (EDB) atoms (facts) with a previous ETL step. Then, the rules,
also called Intensional Database (IDB), have to be defined by external files written in
(disjunctive) Datalog. In our case, the syntax of the Datalog rules is taken from DLV,
since DLV is our main evaluation engine. 11 The EDB and IDB have to be defined into
the mapping as a source by Source evaluateDatalog fileEDB fileIDB. The result
is a tuple of the form (predicate, value1, ..., valuen). and should be be combined with
Transform and Target.

Example 4. The following rules are the DLV encoding of the example from Section 2:
reachByBus(X,Z) :- hasStop(X,Y), hasStop(Z,Y).
reachByBus(X,Z) :- reachByBus(X,Y), reachByBus(Y,Z).

The above rules are defined in file edb and are referenced as follows:

Source evaluateDatalog file edb file idb
Target file1 :{2} tuwt:reachedBy :{3}.

5 Benchmarking Framework
The extended rule languageL of the previous section gives us solely the means to define
the data transformations. We combine the language with an OSM database S, a bench-
mark ontology O, a set Q of conjunctive or SPARQL queries, a set P of generation
parameters, and external functions F . The combination leads to the benchmark frame-
work denoted as F = 〈S,O,Q,L,P,F〉 and produces a TBox T and a set of ABox
instances denoted as A = (A1, . . . , An). Note that T is build from O and (normally

11 http://www.dlvsystem.com/dlv/

small) modifications done by F . Further, we need a clear workflow to clarify how to
apply the framework for instance data generation.

Workflow. The workflow of creating a benchmark and evaluating the respective rea-
soners can be split into an initial and a repeating part. In case of solely TBox reasoning
(e.g., subsumption with respect to a TBox), the repeating part can be ignored. The initial
part consists of the following elements:

First, one has to choose the ontology for O and decide which ontology language
should be investigated. The ontology statistics gives a first impression on the expres-
sivity of the language such as DL-LiteR [7] or EL [2]. Then, O has to be customized
(e.g., remove axioms which are not in the language) and loaded to the TBox T of the
system. For Q, either handcrafted queries (related to a practical domain) have to built
or synthetic queries have to be generated. 12 After the initial part is finished, we are able
to generate the instance data for the fixed O and Q. This part of the workflow can be
repeated until certain properties are reached. It has the following steps:
1. Creating an OSM database S with several instances, i.e., cities or countries; 13

2. Applying dataset statistics to get a broad overview of the dataset, which leads to
the selection of “interesting” datasets from S;

3. Creating the rules of L to define the needed transformation for the instance gener-
ation from the datasets;

4. Defining the parameters P and choosing the needed external functions of F ;
5. Calling the generation toolbox (see Section 6) and create the instances of A;
6. Using ABox statistics to evaluate A′s quality, if not satisfactory, repeat from 3.;
7. Load the instances ofA to the KB of the systems and apply necessary conversions;
8. Finally, the benchmark can be evaluated on the tested reasoners, measuring the fol-

lowing attributes: evaluation time, loading time, memory consumption, complete-
ness, and evaluated query size. These attributes are defined previously by the person
doing the testing.

Descriptive Statistics. For the benchmark creation, descriptive statistics serves two
purposes. First, we need a broad picture of the datasets, which is important to formulate
the mapping rules. E.g., we could see what kind of supermarkets exist in a city. Second,
we use the statistics to guide and fine tune the instance generation. I.e., for generating
the next relation, different distances can be calculated leading to different sizes of A.

Descriptive statistics can be applied on the following three levels. On the ontology
level, ontology metrics regardingO can be produced using owl-toolkit 14 to calculate the
number of concepts, roles, and the different types of axioms (e.g., sub-concept, sub-role,
and, inverse roles). On the dataset level, we provide general information on the selected
OSM DB instance including the main constructs Points, Lines, Roads, and Polygons
and details about frequent item sets [6] of keys and tags (e.g. landuse=forest). 15 On the
ABox level we provide the statistics of the generated instances in A. For this, we count
the assertion for every existing concept or role name of T .

12 We refer to Sygenia [16] as a possible generation tool
13 See Prerequisites and Tools in https://github.com/ghxiao/city-bench
14 https://github.com/ghxiao/owl-toolkit
15 Statistics of all tags and keys is available on https://taginfo.openstreetmap.org/

Further, we provide the assertion statistics of A by stating which instances are as-
serted to the concept and role hierarchies of T under the deductive closure, denoted as
closure(T ∪ A). We extend the notion of a subsumption graph defined for DL-LiteR
in [22]. The DL-LiteR notion cannot be used for EL [2] and more expressive DLs, since
a hyper-graph is needed to capture axioms like ∃R.A v B (see [23]). Our notion of the
subsumption graph is built from a normalized TBox TN (we refer to [3]). TN contains
general concept inclusions (GCIs) of the form A v B, A1 u A2 v B, A v ∃R.B, and
∃R.A v B, where A, A1, A2, B are atomic concepts and role inclusions (RI) of the
form R1 v R2.

A subsumption graph for TN is a directed graphGT = (V,E, L), where L is the set
of labels av ∈ L(v), where av represent the number of instance assertions overAv resp.
Rv under closure(T ∪A). The vertices V represent either concept or role names of TN .
The edges E represent the inclusion axioms as follows: If there is a GCI or RI of the
form A v B, where A and B are concept resp. role names, we create an edge e(A,B).
In case of A u B v C resp. ∃R.A v B, we create two edges of the form e(A,C) and
e(B,C) resp. e(R,B) and e(A,B). Note that we split the hyper-edge as defined in [23]
into two normal graph edges, this would lead to an over-count of instance assertions,
which is overcome by (3) described in the next paragraph. In case of A v ∃R.B, we
create two edges of the form e(A,R) and e(A,B).

Then, we calculate the assertion statistics of T as follows. Normalize T to TN and
translate TN into the subsumption graph GT . For each vertex v ∈ V get either Av or
Rv and calculate av ∈ L(v) as follows. We start with vertices v ∈ V which have only
outgoing edges (sources) and traverse GT using breadth first search. For each vertex v
proceed as follows:
1. v is a source: count the instance assertions of Av or Rv in A and assign it to av;
2. v has one incoming edge e(A,B): add aA ∈ L(A) to aB ∈ L(B);
3. v has multiple incoming edges: we use a “standard” OQA system for instance re-

trieval, such that T ∪ A |= Cv(a) resp. T ∪ A |= Rv(a, b) for every a ∈ A resp.
(a, b) ∈ A; then we count the number of entailments and assign it to av .

For future work, we aim to avoid in (3) calling an OQA system and we will build our
own instance estimation based on sampling and the information about the selectivity of
assertions between different concepts and roles.

External Functions and Parameters. External functions bridge the gap between L
and external computations. They allow us to develop dataset-specific customization
and functionalities, where the results (atoms) are associated with predicates from L.
In Table 1, we list the currently available external functions. In addition, we provide the
functions deleteRandom and deleteByFilter which drop instances randomly or filter out
instances from A.

The parameters are the means to fine-tune the generation. They are often not di-
rectly observable, hence we need the statistics tool to get a better understanding of data
sources. From recent literature [30, 24, 5], we identified the following parameters for
the instance generation:
- ABox Size: choice of the OSM instance (e.g., major cities or countries), but also by

applying deleteRandom and deleteByFilter;

Table 1: Available External Functions
Name Description Associated

Predicate

transformOSM generates from OSM or other tags (e.g., landuse=park) atoms
which represent concepts/roles of O. It has to be customized to
the signature of O.

TagPark(x)

transformOSM-
Random

instead of generating directly from OSM tags, it generates
atoms according to a probabilities P assigned to a set O of OSM
tags, e.g., P (PublicPark)=0.8 and P (PrivatePark)=0.2.

TagP,O(x)

generateRandom-
Values

simply generates random numeric values from a fixed domain. Random(x)

generateSpatial-
Relation

generates the spatial relations contains or next, where we
need a threshold parameter for the distance between objects.

next10m(x, y)

generateStreet-
Graph

generates the road/transport graph by creating instances for
edges and vertices based on streets and corners between them.

connected(x, y)
Tagcorner(x)

- ABox Completeness: can be indirectly manipulated by the use of Datalog rules in L
to generate instances which otherwise would be deduced. As shown in Example 4,
we generate the transitive closure of the main roads;

- Distribution/Density of Nominal Values: input for transformOSMRandom;
- Distribution/Density of Numeric Values: input for generateRandomValues;
- Selectivity of Concept/Role Assertions: input for transformOSM and transformOSM-

Random and choice of OSM instances;
- Graph Structure: choice of OSM instance and selected graph (e.g., road vs. public

transport network) for generateStreetGraph.

6 Implementation
We have developed for the framework a generation toolbox in Python 2.7. The main
script generate.py is called as follows: generate.py –mappingFile mapping.txt

Modes. As already mentioned, we provide two different modes with different evalua-
tion strategies. The Direct mode is designed for simple bulk processing, where scalabil-
ity and performance is crucial and complex calculations are moved to custom external
scripts. We implemented the computation in a data streaming-based manner. There-
fore, the data source components represent iterators, such that only a single tuple at a
time is in-memory. External source scripts can be implemented as custom iterators, by
returning result tuples with the command yield. The target components could also be
extended to data writers for custom triple stores like Jena TDB. The mapping axioms
are evaluated in sequential order, hence dependencies between sources and targets are
not considered. The Datalog mode extends the Direct mode and is designed for Data-
log programs using the DLV system for evaluation. The Datalog results are calculated
in-memory and we follow a three-layered computation:
1. Previous ETL steps are evaluated to create the fact files for the EDB;
2. The defined Datalog programs (maintained in external files) are evaluated on the

EDB files with the DLV module;

E

TL
 M

od
e

D
at

al
og

 M
od

e

Transformation Step

Postgres
Databases

RDF Files

Datalog Evaluation

Text Reader

Database
Reader

RDF Reader

External
Script

Reader

External
Scripts

Text Files

Text Writer

Database
Writer

Stdout

reads
reads

reads

executes

writes

writes

executes

writes

Mapping File

Input

executes

Fig. 1: System architecture, full lines are the control and dotted lines are the data flow

3. The (filtered) results (i.e., perfect models) are parsed and converted to tuples which
then can be used by any target component. At the time of writing, we only have a
single model due to our restriction to stratified Datalog.

Architecture. In Figure 1, we show the architecture of the framework. It naturally re-
sults from the two modes and the source and target components. The following source
and target components are implemented. For Text files, we use the standard functions of
python for reading, writing, and evaluating regular expressions. For RDF files, which
are accessed by SPARQL queries, we leverage the functions of the rdflib library. At
present for RDBMSs, we only include access to the spatial-extended RDBMS Post-
GIS 2.12 (for PostgreSQL), which is the most common database system for OSM.
However, the database component is easily extendible to other RDBMSs.

External Functions and Statistics. Besides the main script, we provide the external
functions from Section 5 developed as Python scripts for processing the (OSM) data.

GenerateSpatialRelation.py calculates the spatial relations reading from RDF
files, which have to contain triples including GeoRSS (e.g., geo:point). GenerateSpatial
RelationDatabase.py provides a more efficient way for large data sets using PostGIS
directly to calculate the spatial relations between two sources.

GenerateStreetGraph.py processes the street and transport graph of OSM. From
the street/transport network all nodes and edges are extracted and merged into a single
graph. We exploit that in the model of OSM that the connected streets share the same
point when they cross. Further, we connect other objects (e.g., shops) to the closest
points on the street graph by computing the next relation with a distance of 50m.

StatsOSM.py and StatsABox.py are the statistical scripts for estimating the struc-
ture of the ABox and the main OSM elements Points, Lines, Roads, and Polygons. It

Table 2: TBox Metrics
Metric # Metric #

Concepts 350 Inverse Role Axioms 4
Roles 38 Domain Role Axioms 22
Sub-Concept Axioms 354 Range Role Axioms 24
Disj. Concept Axioms 1 Sub Concept Depth 7
Sub-Role Axioms 22 Sub Property Depth 3

Table 3: Cities Dataset
City #Points #Lines #Polygons

Cork 6 068 14 378 4 934
Riga 19 172 43 042 67 708
Bern 68 831 83 351 151 195
Vienna 245 107 151 863 242 576
Berlin 236 114 218 664 430 652

Table 4: Road Network Instances
City #Road #Node #connect #Shop #Bank #hasBankOp #next50

Cork 6 476 45 459 46 013 278 36 36 750
Riga 6 620 35 107 37 007 827 102 102 1 408
Bern 17 995 130 849 134 670 1 539 120 120 10 285
Vienna 40 915 191 220 207 429 5 259 506 506 23 151
Berlin 46 320 204 342 226 554 9 791 588 588 81 911

calculates the values for the most used field/tag combination, e.g. field Amenity has 50
“Restaurant” and 20 “Fuel” tags. Additionally, we find the most frequent item sets using
the FP-Growth algorithm. 16 For the ABox, we use rdflib library to count and report all
concept and role assertions (under closure).

7 Example Benchmark

In this section we introduce a proof-of-concept benchmark to show how extensible
and parameterizable the framework is, in order to generate challenging benchmarks for
OQA systems. All the mapping files, test datasets, and statistics are available online. 17

OSM Dataset, Benchmark Ontology, and Queries. The whole OSM database (ca.
400GB) is clearly too large for a benchmark. However, it offers different subsets of
different sizes and structures since OSM is a collaborative project. For the base dataset
we chose the cities of Cork, Riga, Bern, Vienna, and Berlin. 18 Using the dataset statis-
tics module for Vienna, we observe for the field Shop has 816 supermarkets, 453 hair-
dressers, and 380 bakeries related. For the field Highway, we have 29 392 residential,
4 087 secondary, and 3 973 primary streets with several edges.

The selected DL-LiteR [7] ontology for the benchmarks is taken from the MyITS
project [11]. It is tailored to geospatial data sources and beyond to MyITS specific
sources (e.g., a restaurant guide). The metrics of the ontology is shown in Table 2. The
ontology is for OQA systems of average difficulty, because it has only a few existential
quantification on the right-hand side of the inclusion axioms. However, due to its size

16 https://github.com/enaeseth/python-fp-growth
17 https://github.com/ghxiao/city-bench
18 Downloaded on the 1.10.14 from http://download.bbbike.org/osm/bbbike/ and loaded

with osm2pgsql into PostGIS

and concept and role hierarchy depth, it poses a challenge regarding the rewritten query
size to some systems. We choose an exemplary query q1 which is based on the extracted
road graph. It queries the combination of the street graph, spatial relations and concept
hierarchies and computes all the small banks which are connected by two edges to a
shop. Only the residential street edges of the graph are queried.

q1(x, y)← Shop(x), next(x, u), Point(u), path(u, v),
path(v, w), Point(w), next(y, w), Bank(y), hasOperator(y, z),
BankSmallOp(z), isPartOf(u, t), ResidentialRoute(t)

Creation of the Street Network Benchmark. In this benchmark, we extract the road

network of the mentioned cities using the external function generateStreetGraph. Be-
sides creating the concept assertions for banks and shops, we extract the entire street
network of the city and encode the different roads into a single road graph. The road
graph is represented by nodes which are asserted to the concept Point, and edges which
are asserted to the role connected. By increasing the distances (e.g., from 50m to
100m) we could saturate the next relation and generate more instances. We also illus-
trate the generation of additional instances by using Datalog to calculate all paths (i.e.
the transitive closure) of the street graph using:

connected(x, y)→ path(x, y)
path(x, y), path(y, z)→ path(x, z).

Note that this rule calculates the transitivity closure of selected parts of the graph, which
saturates the ABox with instances which cannot be deduced by a DL-LiteR reasoner.

We calculated the ABox statistics shown in Table 3, the cities are of increasing size,
starting with Cork containing 25 000 objects and ending with Berlin having 885 000
objects. All these cities are European major cities with an old city center; they have
high data density of objects in the center and decreasing density towards the outskirts.

8 Related Work
In addition to the “de facto” standard benchmark LUBM [15] and extended LUBM [24]
with randomly generated instance data with a fixed ontology, several other works deal
with testing OQA systems which can be divided along conceptional reasoning, query
generation, mere datasets, synthetic and real-life instance generation. The benchmarks
provided by Perez-Urbina et al. [27] consist of a set of ontologies and handcrafted
queries, tailored for testing query rewriting techniques. These benchmarks are a popular
choice for comparing the sizes of generated queries. Recently Stoilos et al. [30] have
provided tools to generate ABoxes for estimating the incompleteness of a given OQA
system. In a similar spirit, Imprialou et al. [16] design tools to automatically generate
conjunctive queries for testing correctness of OQA systems. The same authors also
provide a collection of benchmarks for evaluating query rewriting systems. They did not
offer any novel generation tool [25]. The NPD benchmark [21] for OBDA is designed
based on real data from the Norwegian Petroleum Directorate FactPages. However,
the focus of the NPD benchmark is solely on a fixed DL-LiteR ontology and queries.
None of the above benchmarks provide large amounts of real-life instance data and an

extended framework including various parameters and external functions. Furthermore,
most of the mentioned approaches do not consider an iterative generation process using
statistics to guide the generation.

In the area of Spatial Semantic Web systems, a couple of benchmarks have been
proposed to test geospatial extensions of SPARQL including the spatial extension of
LUBM in [18] and the Geographica benchmark [13]. These benchmarks were pre-
computed by the authors and cannot be easily modified. They are geared towards test-
ing spatial reasoning capabilities of systems, but not designed with OQA in mind. We
note that the mapping language of this paper is a close relative of R2RML, a language
proposed by W3C for mapping relational data to RDF triples. Our language lacks some
features of R2RML, but is equipped with powerful means for benchmark generation, as
calls to external functions and Datalog evaluation.

9 Conclusion and Outlook
In this paper, we have presented a flexible framework for generating instance data from
a geospatial database for OQA systems. In particular, we have introduced a formaliza-
tion of OSM and a Datalog-based mapping language as the formal underpinning of the
framework. Datalog offers convenient features such as recursion and negation, which
are useful for benchmark generation. We have implemented an instance generation tool
supporting the main Datalog mode and a simple Direct (extract-transform-load) mode
for several types of input sources. Finally, we have demonstrated our approach on a
proof-of-concept benchmark.

Future research is naturally directed to variants and extensions of the presented
framework. We aim to extend the implementation to capture more input and output
sources, further parameters (e.g. various degrees of graph connectedness) and services.
Furthermore, a tighter integration of the Datalog solver/engine and the source/target
components using dlvhex [10] is desired, which leads to a more efficient evaluation
and more advanced capabilities (e.g., creating different ABoxes using all calculated an-
swer sets). An important functional extension would be to allow removing some or all
assertions that are implied by the input ontology, in this way the information incom-
pleteness could be better controlled. Then, we aim to apply our framework to generate
benchmarks for an extensive study of different OQA reasoners with different underlying
technologies. Further, we aim to extend the assertion statistics for instances regarding
the concept and role hierarchies. In particular, we aim to replace the used OQA reasoner
with our own estimation mechanism.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. F. Baader, S. Brand, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI 2005, pages

364–369. Morgan-Kaufmann Publishers, 2005.
3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The

Description Logic Handbook: Theory, Implementation and Applications. 2nd edition, 2007.
4. S. Bail, B. Parsia, and U. Sattler. Justbench: A framework for OWL benchmarking. In

Proc. of ISWC 2010, pages 32–47. Springer, 2010.

5. C. Bizer and A. Schultz. The berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst.,
5(2):1–24, 2009.

6. C. Borgelt. Frequent item set mining. Wiley Interdisc. Rew.: Data Mining and Knowledge
Discovery, 2(6):437–456, 2012.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

8. T. Eiter, M. Fink, and D. Stepanova. Computing repairs for inconsistent dl-programs over
EL ontologies. In Proc. of JELIA 2014, pages 426–441, 2014.

9. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the Semantic Web. Artificial Intelligence, 172(12-
13):1495–1539, 2008.

10. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules
with external evaluations for semantic-web reasoning. In ESWC 2006, volume 4011, pages
273–287. Springer, 2006.

11. T. Eiter, T. Krennwallner, and P. Schneider. Lightweight spatial conjunctive query answering
using keywords. In Proc. of ESWC 2013, pages 243–258, 2013.

12. T. Eiter, P. Schneider, M. Simkus, and G. Xiao. Using openstreetmap data to create bench-
marks for description logic reasoners. In 3rd International Workshop on OWL Reasoner
Evaluation (ORE 2014), July 2014.

13. George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A benchmark for
geospatial rdf stores (long version). In Proc. of ISWC 2013, pages 343–359. Springer, 2013.

14. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, volume 88, pages 1070–1080, 1988.

15. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. Web
Semantics, 3(2-3):158 – 182, 2005.

16. M. Imprialou, G. Stoilos, and B. Cuenca Grau. Benchmarking ontology-based query rewrit-
ing systems. In Proc. of AAAI 2012, 2012.

17. Y. Kazakov, M. Krötzsch, and Simancı́k F. Concurrent classification of EL ontologies. In
Proc. ISWC 2011, pages 305–320, Berlin, Heidelberg, 2011. Springer.

18. D. Kolas. A benchmark for spatial semantic web systems. In 4th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS2008), October 2008.

19. I. Kollia and B. Glimm. Optimizing SPARQL query answering over OWL ontologies. J.
Artif. Intell. Res. (JAIR), 48:253–303, 2013.

20. R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. Answer-
ing SPARQL queries over databases under OWL 2 QL entailment regime. In Proc. of
ISWC 2014. Springer, 2014.

21. D. Lanti, M. Rezk, G. Xiao, and D. Calvanese. The NPD benchmark: Reality check for
OBDA systems. In Proc. of EDBT 2015. ACM Press, 2015.

22. D. Lembo, V. Santarelli, and D. F. Savo. Graph-based ontology classification in OWL 2 QL.
In Proc. of ESWC 2013, pages 320–334, 2013.

23. M. Ludwig and D. Walther. The logical difference for ELH-terminologies using hyper-
graphs. In Proc. of ECAI 2014, pages 555–560, 2014.

24. L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology
benchmark. In Proc. of ESWC 2006, pages 125–139. Springer.

25. J. Mora and O. Corcho. Towards a systematic benchmarking of ontology-based query rewrit-
ing systems. In Proc. of ISWC 2013, pages 376–391. Springer, 2013.

26. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation, 27 October 2009.

27. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for OWL 2. In
Proc. of ISWC 2009, pages 489–504, 2009.

28. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. J. Web Sem., 5(2):51–53, 2007.

29. G. Stoilos, B. Glimm, I. Horrocks, B. Motik, and R. Shearer. A novel approach to ontology
classification. Web Semantics: Science, Services and Agents on the WWW, 14(0), 2012.

30. G. Stoilos, B. Cuenca Grau, and I. Horrocks. How incomplete is your semantic web rea-
soner? In Proc. of AAAI 2010. AAAI Press, 2010.

31. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description. In
Proc. of IJCAR 2006, pages 292–297, Berlin, Heidelberg, 2006. Springer.

