
Towards Spatial Ontology-Mediated Query Answering
over Mobility Streams

Thomas Eiter1, Josiane Xavier Parreira2, and Patrik Schneider1,2

1 Vienna University of Technology, Vienna, Austria
2 Siemens AG Österreich, Vienna, Austria

Abstract. The development of (semi)-autonomous vehicles, communication be-
tween vehicles and infrastructure (V2X) will aid to improve road safety by iden-
tifying dangerous traffic scenes. A key to this is the Local Dynamic Map (LDM),
which acts as an integration platform for static, semi-static, and dynamic information
about traffic in a geographical context. At present, the LDM approach is purely
database-oriented with simple query capabilities, while an elaborate domain model
as captured by an ontology and queries over data streams that allow for semantic
concepts and spatial relationships are still missing. To fill this gap, we present an
approach in the context of ontology-mediated query answering that features con-
junctive queries over DL-LiteA ontologies allowing spatial relations and window
operators over streams having a pulse. Query evaluation is possible by rewriting to
ordinary DL-LiteA that involves transformation of spatial relations and epistemic
aggregate queries.

1 Introduction
The development of (semi)-autonomous vehicles needs extensive communication between
vehicles and the infrastructure, which is covered by Cooperative Intelligent Transport
Systems (ITS). These systems collect temporal data (e.g., traffic light signal phases) and
geospatial data (e.g., GPS positions), which is exchanged by vehicle-to-vehicle, vehicle-to-
infrastructure, and combined communications (V2X). V2X allows to improve road safety
by processing and understanding traffic scenes, e.g., red light violation, thad could lead to
accidents. A key technology for this is the Local Dynamic Map (LDM) [2], which acts as
an integration platform for static, semi-static, and dynamic information in a geographical
context. Current approaches for an LDM are purely database-oriented with simple query
capabilities. An elaborate domain model, captured by a mobility ontology, and extended
queries over data streams allowing spatial relations are still missing.

Our aim is to enable spatial-stream conjunctive queries (CQ) over a semantically
enriched LDM for safety applications, such as detection of red light violations on complex
intersections. To realize spatial query answering (QA) over mobility streams, spatial and
streaming data must be lifted to the setting of ontology-mediated QA with the frequently
used ontology language DL-LiteA. However, bridging the gap between stream processing
and ontology-mediated QA is not straightforward, as the semantics of DL-LiteA must be
extended with spatial relations and stream queries using window operators. For this, we
build on the work on spatial QA in [13] and extend ontology-mediated QA with epistemic
aggregate queries (EAQ) [11] to detemporalize the streams. The extension preserves first-
order rewritability, which allows us to evaluate a CQ with spatial atoms over a stream
RDBMS. Our contributions are summarized as follows:
- We outline the field of V2X integration using LDMs in the mobility context (Sec. 2);

2 Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider

- we introduce a data model and query language suited for mobility streams (Sec. 3,4);
- we present a spatial-stream QA approach for DL-LiteA defining its semantics and

showing the preservation of FO-rewritability. The QA approach is based on CQ over
DL-LiteA ontologies, which combines window operators over streams having a pulse
and spatial relations over spatial objects (Sec. 5);

- we provide a technique for query rewriting taking the above into account. For query
evaluation, we extend and apply the known techniques of (a) transformation of spatial
objects resp. relations into ordinary DL-LiteA; (b) epistemic aggregate queries, e.g.,
average, for a “detemporalization” of the streams; and (c) provide a technique for query
rewriting with EAQs (Sec. 6).

In Sec. 7 and 8, we describe related work and conclude with future work.

2 V2X Integration using Local Dynamic Maps
The base communication technologies (i.e., the IEEE 802.11p standard) allow wireless
access in vehicular environments, which enables messaging between vehicles themselves
and the infrastructure, called V2X communication. Different types of messages are broad-
cast every 100ms by traffic participants and will inform others about their current state
such as position, speed, vehicle type; the detailed topology of an intersection, including its
lanes and their connections; the projected signal phases (e.g., green) for each lane; and
information on specific events like road works in a designated area [2].
Local Dynamic Maps. As a comprehensive integration effort of V2X messages, the
SAFESPOT project [2] introduced the concept of an LDM as an integration platform to
combine static geographic information system (GIS) maps with dynamic environmental
objects (e.g., vehicles, pedestrians). The integration was motivated by advanced safety ap-
plications as red light violation, which need an “overall” picture of the traffic environment.
The LDM consists of the following four layers (see Fig. 1):
- Permanent static: the first layer contains static information obtained from GIS maps and

includes roads, intersections, and points-of-interest;
- Transient static: the second layer extends the static map by detailed local traffic informa-

tions such as fixed ITS stations, landmarks, and intersection features like lanes;
- Transient dynamic: the third layer contains temporary regional information like weather,

road or traffic conditions (e.g., traffic jams), and traffic light signal phases;
- Highly dynamic: The fourth layer contains dynamic information of road users detected

by V2X messages, in-vehicle sensors like the GPS module.
Current research (e.g., [17], [20], [21]) on the LDM architecture identified that it can be
built on top of a spatial RDBMS enhanced with streaming capabilities. As recognized by
[17], an LDM should be represented by a world model, world objects, and data sinks on
the streamed input. However, an elaborate domain model, captured by an LDM ontology,
and extended queries over data streams allowing spatial relations are still missing in
current approaches. The ontology represents an integration schema, which we modeled as
a DL-LiteA LDM ontology capturing the different layers of an LDM (cf. [12]).
Safety Applications on Intersections. “Road intersection safety” is an important appli-
cation for improving road safety [2]. Intersections are the most complex environments
and need special attention, where hazardous situations like obstructed view or red-light
violation might lead to accidents. We take them as a motivation and running example.

Towards Spatial Ontology-Mediated Query Answering over Mobility Streams 3

Example 1. The following query detects red-light violations on intersections by searching
for vehicles y with speed above 30km/h on lanes x whose signals will turn red in 8s:

q1(x, y) : LaneIn(x) ∧ hasLocation(x, u) ∧ intersects(u, v) ∧ pos(line, 4s)(y, v)
∧ V ehicle(y) ∧ speed(avg, 4s)(y, r) ∧ (r > 30) ∧ isManaged(x, z)
∧ SignalGroup(z) ∧ hasState(first, −8s)(z, Stop)

Fig. 1: The four layers of a LDM [2]

Query q1 exhibits the different dimensions
which need to be combined: (a) V ehicle(y)
and isManaged(x, z) are ontology atoms,
which have to be unfolded in respect to the
ITS domain ontology; (b) intersects(u, v)
and hasLocation(x, u) are spatial atoms,
where the first checks spatial intersection
and the second the assignment of a geom-
etry to an object; (c) speed(Avg 2s)(y, v) de-
fines a window operator that aggregates
the average speed of the vehicles over the
stream and hasState(first, −8s) gives us the
next upcoming traffic light state.

3 Streams, Pulses, and Spatial Databases
We now introduce the data model and sources which are used in spatial-stream QA.
Streams and Pulses. Our data model is point-based (vs. interval-based) and captures the
valid time (vs. transaction time) saying that some data item is valid at that time point. We
extend this validity of time, and say that a data item is valid from its time point until the
next data item is added to the stream. To capture streaming data, we introduce the timeline
T, which is a closed interval of (N,≤). A (data) stream is a triple F = (T, v, P), where
T is a timeline, v : T→ 〈F ,SF 〉 is a function that assigns to each element of T, called
timestamp (or time point), data items (called membership assertions) of 〈F ,SF 〉, where
F (resp. SF) is a stream (resp. spatial with streams) database, and P is an integer called
pulse defining the general interval of consecutive data items on the timeline (cf. [6,18]). A
pulse generates a stream of data items with the frequency derived from the interval length.
We always have a main pulse PT with a fixed interval length (usually 1) that defines the
lowest granularity of the validity of data items. The pulse also aligns the data items, which
arrive asynchronously in the database, to the timeline.

Extending [18], we allow additional larger pulses that generate streams with a lower
frequency allowing larger intervals. Larger pulses also imply that their generated data items
are valid longer than items from the main pulse, thus allowing us to resize the window size
of a query and perform optimizations such as caching. Furthermore, pull-based queries
are executed at any single time point i denoted as Ti. Push-based queries are evaluated
asynchronously where the lowest granularity is given by PT.
Example 2. For the timeline T = [0, 100], we have the stream F1 = (T, v, 1) of vehicle
positions and speed at the assigned time points v(0) = {speed(c1, 30), pos(c1, (5, 5)),
speed(b1, 10), pos(b1, (1, 1))}, v(1) = {speed(c1, 29), pos(c1, (6, 5)) speed(b1, 5),
pos(b1, (2, 1))}, and v(2) = {speed(c1, 34), pos(c1, (7, 5))} for the individuals c1 and
b1. A second “slower” stream F2 = (T, v, 5) captures the next signal state of a traffic light:

4 Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider

v(0) = {hasState(t1, Red)} and v(5) = {hasState(t1, Green)}. As F2 has a pulse of
p = 5, we know v(4) = ∅ but under an alternative semantics with an inertia assumption,
we could conclude v′(4) = {hasState(t1, Red)}. Further, the static ABox contains the
assertions Car(c1), Bike(b1), and SignalGroup(t1).
Spatial Databases and Topological Relations. We recall the essential idea based on
Point-Set Topological Relations (see [13]). Spatial relations are defined via pure set
theoretic operations based on PE ⊆ R2 of all points in the plane. An admissible geometry
g(s) is a sequence p = (p1, . . . , pn) of points over PF , where PF ⊆ PE . We define
a spatial database over ΓS as a pair S = (PF , g) of a point set PF and a mapping
g : ΓS →

⋃
i≥1 PF

i, where ΓS is a set of spatial objects. The extent of a geometry p
(full point set) is given by the function points(p) as a (possibly infinite) subset of PE .
For a spatial object s, we let g(s) be its geometry and points(s) := points(g(s)). For
our KB, we consider the following types of admissible geometries p over PF , and let
PE =

⋃
s∈ΓS points(s) (see [13] for more):

- points are the sequences p = (p1), where points(p1) = {p1};
- line segments are sequences p = (p1, p2), and points(p) = {αp1 + (1 − α)p2 |α ∈
R, 0 ≤ α ≤ 1};

We use points to evaluate the spatial relations of two spatial objects via their respective
geometries and define the relations in terms of pure set operations (see [13] for more):
- Contains(x, y) : points(y)⊆points(x), Intersect(x, y) : points(x) ∩ points(y) 6=∅.
A spatial relation S(s, s′) with s, s′ ∈ΓS holds on a spatial database S , written S |=S(s, s′),
if S(g(s), g(s′)) evaluates to true. Relative to points, this is easily captured by a first-
order (FO) formula over (R2,≤), and with regard to geo-spatial RDBMS trivially FO
expressible and rewritable into FO queries.

4 Syntax and Semantics of DL-LiteA (S,F)
We start from previous work in [13], which introduced spatial CQ answering for DL-LiteA,
and lift the semantics from the spatial DL-LiteA KB to the spatial-stream KB.
Syntax and Semantics of DL-LiteA . We consider a vocabulary of individual names
ΓI , domain values ΓV (e.g., N), and spatial object ΓS . Given atomic concepts A, atomic
roles P , and atomic attributes E, we define (a) basic concepts B, and basic roles Q, and
(b) complex concepts C and complex role expressions R, complex attributes V , basic
value-domains E (range of attributes), and value-domain expressions D:

B ::= A | ∃Q | δ(UC) C ::= >C | B | ¬B | ∃Q.C ′
E ::= ρ(UC) D ::= >D | D1 | . . . | Dn

Q ::= P | P− R ::= Q | ¬Q V ::= U | ¬U
where (c) P− is the inverse of P , >D is the universal value-domain and >C is the
universal concept; and UC is a given attribute with δ(UC) (resp. ρ(UC)) as its domain
(resp. range). A DL-LiteA knowledge base (KB) is a pair K = (T ,A) where the TBox
T (resp. ABox A) consists of a finite set axioms such as (see [10] for a complete list):
- inclusion assertions of the form B v C, Q v R, E v D, and U v V ;
- membership assertions of the form A(a), D(c), P (a, b), and U(a, c), where a resp. b

are individual names in ΓI and c is a value in ΓV .
We denote by pred(T) the set of all concept and role names. The semantics of DL-LiteA
is given in terms of FO interpretations I = (∆I , ·I), where ∆I is a nonempty domain,

Towards Spatial Ontology-Mediated Query Answering over Mobility Streams 5

the disjoint union of ∆II of ∆IV , and ·I is an interpretation function as usual (see [10]).
Satisfaction of axioms and logical implication are denoted by |=. We assume the unique
name assumption (UNA) holds for different individuals resp. values and adopt the constant
domain assumption, saying that all models share the same domain. Checking satisfiability
of DL-LiteA ontologies is FO rewritable [10], i.e., for every T , there is a Boolean FO
query qT (constructible from T) s.t. for every A, T ∪ A is satisfiable iff DB(A) 6|= qT ,
where DB(A) is the least Herbrand model of A.
Syntax DL-LiteA (S,F). Let T be a timeline and let ΓS , ΓI , and ΓV be pairwise
disjoint sets as defined above. A spatial-stream knowledge base is defined as a tuple
KSF = 〈T ,A,SA, 〈F ,SF 〉 ,B〉, where T (resp. A) is a DL-LiteA TBox (resp. ABox),
SA is a spatial database, and 〈F ,SF 〉 is a stream database with support for spatial data.
Furthermore, B ⊆ ΓI×ΓS is a partial function called the spatial binding fromA to SA and
F to SF . In case we restrict to a spatial KB resp. stream KB, we haveKS = 〈T ,A,SA,B〉
resp. as KF = 〈T ,A,F〉.

We introduce for DL-LiteA the ability to specify the localization of pred(T). For this,
we extend the syntax similar to [13] and include concept and role localization:

C ::= >C | B | ¬B | ∃Q.C ′ | (loc A) | (locs A)
R ::= Q | ¬Q | (loc Q) | (locs Q),

where s ∈ ΓS and the concept and roles are as before. Intuitively, (loc A) is the set of
individuals in A that can have a spatial extension, and (locs A) is the subset which have a
single extension s. The extension with streaming is captured by the following axioms:

(streamF C), (streamF R),

where F is a particular stream over either complex concepts C or roles R in 〈F ,SF 〉.
Example 3. For Ex. 2 , a simple TBox contains (streamF1

speed), (streamF1
(loc pos)),

(streamF1
V ehicle), and (streamF2

hasState). Further, we have the axioms Car v
Vehicle , Bike v Vehicle , and Ambulance v ∃hasRole.Emergency .

Semantics DL-LiteA (S,F). We give a semantics to the localization (loc Q) and (locs Q)
for individuals of Q with some spatial extension resp. located at s, such that a KB KS =
〈T ,A,S,B〉 can be readily transformed into an ordinary DL-LiteA KB KO = 〈T ′,A′〉,
using the fresh spatial top concept CST and spatial concepts Cs. An interpretation of
KS is a structure IS=

〈
∆I , ·I , bI

〉
, where 〈∆I , ·I〉 is an interpretation of 〈T ,A〉 and

bI ⊆ ∆I × ΓS is a partial function that assigns some individuals a location, such that for
every a ∈ ΓI , (a, s) ∈ BA implies bI(aI) = s. We extend the semantics with (loc Q)
and (locs Q), where Q is an atomic role in T by ((loc A) and (locs A) are accordingly):

(loc Q)IS ⊇ {(a1, a2) | (a1, a2) ∈ QI ∧ ∃s ∈ ΓS : (a2, s) ∈ bI},
(locs Q)IS = {(a1, a2) | (a1, a2) ∈ QI ∧ (a2, s) ∈ bI}.

The transformation of KS to an ordinary DL-LiteA KB KO adds the spatial concepts CS
and Cs for every s ∈ ΓS to T ′. Then, each loc Q (resp. (locs Q)) is replaced in T ′ by
the axioms ∃Q.CS (resp. ∃Q.Cs) and Cs is connected to the top concepts by Cs v CS .
Finally, the binding is compiled into T ′ by adding Cs(a) for every (a, s) ∈ B. Following
the approach in [13], it can be shown that the models of KS and KO correspond wrt.
the same domain and pred(T). As a consequence, satisfiability checking for DL-LiteA
ontologies is in LOGSPACE (in fact FO-rewritability), the same holds for DL-LiteA(S) .

The idea of an initial streaming semantics is by interpreting the stream over the full
timeline, which can be captured by FA as a finite sequence of temporal ABoxes, such

6 Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider

that FA = (Fi)Tmin≤i≤Tmax , which is obtained via the evaluation function v on F and
T (cf. [7], [14]). Then, we define the interpretation of the point-based model over T as
a sequence IF=(Ii)Tmin≤i≤Tmax

of interpretations Ii=
〈
∆I , ·Ii

〉
. IF is a model of KF ,

such that IF |= KF iff Ii |= Fi and Ii |= T , for all i ∈ T.
The semantics of the (streamF C) and (streamF R) axioms is along the same line.

A stream axiom is satisfied, if a complex concept C (resp. role R) holds over all the time
points of stream F = (T, v, P); thus we restrict our models such that:

(streamF C)
I =

⋃
i∈tp(T,P)({e ∈ ∆I | e ∈ CIi}),

(streamF R)
I =

⋃
i∈tp(T,P)({(a1, a2) | (a1, a2) ∈ RIi}),

where tp(T, P) is a set of time points determined by the segmentation of T by P . This
allows us to check for the satisfiability of a KB and gives us a global consistency, which is
of theoretical nature, since we would need to know the full timeline.

5 Spatial-Stream Query Language over DL-LiteA (S,F)
We next define spatial-stream conjunctive queries (STCQ) over KSF . Such queries may
contain ontology, spatial, and stream predicates. An STCQ q(x) is a formula:

l∧
i=1

QOi(x,y) ∧
n∧
j=1

QSj (x,y) ∧
m∧
k=1

QFk(x,y) (1)

where x are the distinguished (answer) variables and y are either non-distinguished (exis-
tentially quantified) variables, individuals from ΓI , or values from ΓV . Each QOi(x,y)
has the form A(z) or P (z, z′), with A resp. P from pred(T) and z, z′ from x ∪ y.
Each atom QSj (x,y) is from the vocabulary of spatial relations (see Sec. 3) and of
the form S(z, z′), with z, z′ from x ∪ y; QFj (x,y) is similar to QOi(x,y) but adds
the vocabulary for stream operators, which are taken from [6] and relate to CQL op-
erators [4]. Moreover, we have a window � over a stream that is derived from L (in
Z+ for past or in Z− for future time units) resp. Ti, and an aggregate function agr ∈
{count,min,max, sum, avg, first, last} (see Sec. 6) that is applied to the data items
in the window:3

- QFj �LT agr represents the aggregate of last/next L time units of (stream Fj);
- QFj �T represents the current tuples of Fj with L = 0;
- QFj �OT agr: represents the aggregate of all previous L time units of Fj ;
Example 4. We modify q1(x, y) of Ex. 1 and use the stream operators instead:

q1(x, y) : LaneIn(x) ∧ hasLocation(x, u) ∧ intersects(u, v) ∧ position�4
T
line(y, v)

∧ V ehicle(y) ∧ speed�4
T
avg(y, r) ∧ (r > 30) ∧ isManaged(x, z)

∧ SignalGroup(z) ∧ hasState�−8
T

first
(z, Stop)

Certain Answer Semantics. In the streamless setting, due to the OWA, queries are
evaluated over all (possibly infinitely many) models. Certain answers retain the tuples that
are answers in all possible models. More formally, a match for q(x) in an interpretation
I=
〈
∆I , ·I

〉
of K is a function π : x ∪ y→ ∆I such that π(c) = cI , for each constant c

in x ∪ y, and for each i = 1, . . . n:
– (i) π(z) ∈ AI , for QOi(x,y) = A(z); and
– (ii) (π(z), π(z′)) ∈ P I , for QOi(x,y) = P (z, z′).

3 This would be represented in CQL as R[Range L], R[Now], R[Range L Slide D], etc.

Towards Spatial Ontology-Mediated Query Answering over Mobility Streams 7

Then, a tuple c = c1, . . . , ck over ΓI is a certain answer for q(x) in I , x = x1, . . . , xk, if
q(x) has some match π in I such that π(xi) = ci, i = 1, . . . , k; and c is a certain answer
for q(x) over K, if it is a certain answer in every model I of K. The result of q(x) over K,
denoted Cert(q(x),K), is the set of all its (certain) answers. If we drop T , we have a DB
setting and denote with Eval(q(x), I) the set of matches of q(x) over a single model (a
database instance) I of A that coincides with DB(A).
Spatial Queries. For spatial CQ we have additionally spatial atoms and extend a match
for q(x) and j = 1, . . . ,m as follows:

– (iii) ∃s, s′ ∈ ΓS : (π(z), s) ∈ bI ∧ (π(z′), s′) ∈ bI ∧S |= S(s, s′), for QSj (x,y) :=
S(z, z′).

For spatial atoms individuals must have (unique) spatial extensions and the relationship
between them must hold. As shown in [13], the semantic correspondence between KO
and KS guarantees that we can transform q(x) into an equivalent query over KS′ =
〈T ′,A′,SA〉 by replacing each spatial atom S(z, z′) in q(x) with qSj (z, z

′):∨
s,s′∈ΓS (Cs(z) ∧ Cs′(z

′) ∧ S(s, s′));
it is easily transformed to a union of CQs (UCQ): uq(x) = qS0(x) ∧ · · · ∧ qSn(x) ∧
qrest(x), where qrest(x) is the rewriting of the non-spatial part of q(x). A tuple c is
then an answer in uq(x) over KS′ iff it is an answer in every model I ′ of KS′. Using
the above rewriting and the semantic correspondence of KO and KS , spatial atoms can
be rewritten into a “standard” DL-LiteA UCQ, and conclude that Cert(q(x),KS) =
Cert(uq(x),KS′). Thus, answering spatial CQs is still FO-rewritable (details in [13]).
QA over Streams. The standard certain answers semantics for ontology-mediated QA
can be extended to streams in different ways. A possible approach is described in [8], [7],
and [14], where a boolean CQ is evaluated over KF with A by rewriting T such that for
every time point i ∈ T: T ,A,T |= q iff DB(Ai) |= qT , for all i ∈ T,
where qT is the FO rewriting of q in T and DB(Ai) is the least Herbrand model of A at
time point Ti. This approach is extended by either evaluation over the entire history of A
using temporal operators (e.g., always) from Linear Temporal Logic (LTL) [7], or by using
time intervals and a temporal query language with less/greater operators [14]. Our approach
aims at answering queries at a single time point Ti with stream atoms that define aggregate
functions on different windows sizes relative to Ti; thus we ignore LTL operators and
time intervals. We consider a semantics based on epistemic aggregate queries (EAQ) over
ontologies [11] by dropping the order of time points for the membership assertions and
handle the (streamed) assertions as bags, which is similar to “normal” stream processing
approaches. As described in [11], aggregate queries are defined over bags of numeric
and symbolic values, called groups and denoted as {| · |}. Aggregates cannot be directly
transferred to DL-Lite, thus [11] extended the database semantics for aggregates with
an epistemic operator K and a two-layer evaluation using the completion w.r.t T . More
formally, an EAQ is defined as qa(x, agr(y)) : K x, y, z. φ, 4

where x are the grouping variables, agr(y) is the aggregate function and variable, and
φ is a CQ called main conditions; z are the disjoint existential variables of φ. We call
w := x ∪ y ∪ z the K-variables of φ. The definition of a group was extended in [11] by a
multiset Hd of groups d, called K-group, as:

Hd := {| π(y) | π ∈ KSatI,K(z;φ) and π(x) = d |},
4 We simplified EAQs of [11] by omitting ψ and consider only aggregates with a single variable.

8 Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider

where KSat are the satisfying K-matches of φ for the model I of K and given by:
KSatI,K(w;φ) := {π ∈ Eval(φ, I) | π(w) ∈ Cert(auxqa ,K)},

where auxqa(w)← φ is the auxiliary atom used to map w only to known solutions. The
set of K-answers for an EAQ query q over I and K can now be derived as:

qIa := {(d, agr(Hd)) | d = π(x), for some π ∈ KSatI,K(w;φ)}.
The epistemic certain answersECert(qa,K) for a query qa overK is the set of K-answers
that are answers in every model I of K. To compute ECert(qa,K), [11] gave a “general
algorithm” GA that (1) computes the certain answers, (2) projects on the K-variables, and
(3) aggregates the resulting tuples. Importantly, evaluating EAQs reduces to standard CQ
evaluation over DL-LiteA with LOGSPACE data complexity.

6 Query Rewriting by Stream Aggregation
As discussed above, we drop the temporal order by evaluating the EAQ queries over the
bag of temporal ABox assertions. Thus, we evaluate the EAQ over several filtered and
merged temporal ABoxes that are created according to the window operator and Ti. The
filtering and merging, relative to the window size and Ti, creates a windowed ABox A�

that is the union of a static ABox A and the filtered stream ABoxes from F . The EAQ
aggregates can be applied on normal objects by counting, on concrete values by aggregate
functions like sum, and on spatial objects by applying geometrical functions that create
geometries like line. More formally, a stream atom φ�LT agr is evaluated as an EAQ over
ontologies defined as follows: qφ(x, agr(y)) : K x, y, z. φ �LT ,
where x is the grouping variables and y the aggregate variable, z are the disjoint existential
variables, and φ is a subquery of q with atoms in the same scope of the window operator
�LT and aggregate function agr.
Example 5. For query q1(x, y) of Ex. 4, we have three EAQs represented as:

qpos(y, line(v)) :K y, v. V ehicle(y) ∧ position(y, v);
qspeed(y, avg(r)) :K y, r. V ehicle(y) ∧ speed(y, r);

qstate(z, first(m)) :K z,m. hasState(z,m)

We extend the evaluation of EAQs for the stream setting, such that an EAQ is evaluated
over the window relative to Ti, the window operator �LT , and the pulse P . KSat is now
the set of K-matches of φ for a model I� of K�, where the windowed ABox A� is
defined as A� = A ∪

⋃
{Ai | ws ≤ i ≤ we}. We have four cases for the window size L

and a pulse P , where P enlarges L according to its interval length:
- a current window with L = 0 that is ws = we = Ti ;
- a past window with L > 0 leading to ws = (Ti − L) and we = Ti;
- a future window with L < 0 that is ws = Ti and we = (Ti + L);
- the entire history with O resulting in ws = 0 and we = Ti.

We obtain KBK� = 〈T ,A�〉 as above; the epistemic certain answersECert�(qφ,K�)
for qφ over K� are the K-answers that are answers in every model I� of K� as:

q
I�
φ := {(d, agr(Hd)) | d = π(x), for some π ∈ KSatI�,K�

(w;φ)}.
In ECert�, we have not addressed yet the validity of a membership assertion, say inA�1

,
to the next assertion in A�3

. There are two suggestive semantics: in the first, we ignore
intermediate time points, and thus A�2

will be unknown. The second semantics fills the
missing gaps with the previous assertion, i.e. copies the assertion from A�1

to A�2
. For

specific aggregation functions, e.g., max, min, or last, the two semantics coincide, but
for sum, avg, and count, this leads to different results.

Towards Spatial Ontology-Mediated Query Answering over Mobility Streams 9

Example 6. We pose the query q1(x, y) at T1 and replace the stream atoms with auxiliary
atoms related to the EAQ of Ex. 5:

q1(x, y) : LaneIn(x) ∧ hasLocation(x, u) ∧ intersects(u, v) ∧ qpos(y, v) ∧ qspeed(y, r)
∧(r > 30) ∧ isManaged(x, z) ∧ qstate(z, Stop)

The queries are computed using the ABoxes A�[0,1] = A ∪ A0 ∪ A1 and A�[1,4] =
A
⋃

1≤i≤4Ai. This leads under ECert� for qspeed to the groups Gc1={|30, 29, 34|}
and Gb1={|10, 5|}, which results in qspeed={(c1, 31), (b1, 7.5)}. The results for the other
EAQ are qstate={(t1, Red)} and qpos={(c1, ((5, 5), (6, 5), (7, 5))), (b1, ((1, 1), (2, 1)))}.

ECert� gives the certain answers for a single EAQ including the streamless atoms in
the same scope as the stream atoms. Answering the full CQ, denotedECertAll(q,KF ,Ti),
can be done by answering each EAQ qφj byECert�(qφj ,K�w(φj,Ti)

) separately and com-
bining the answers as follows, where w(φj ,Ti) is the computed window size:

KF ,Ti |= qφ1
∧ qφ2

iff KF ,Ti |= qφ1
and KF ,Ti |= qφ2

Details on deriving each qφj from q via hypertree decomposition is left for future work.
We now introduce the algorithm NSQ (see Alg. 1), where zφ are the non-distinguished

variables in φ and PerfectRef (resp. Answer) is the “standard” query rewriting (resp.
evaluation) as in [10]. NSQ extends the GA of [11] to compute the answers for stream
CQs as follow: (1) calculate the epistemic answer for each stream atom over the different
windowed ABoxes and store the result in an auxiliary ABox using new atoms. Further,
replace each stream atom with a new auxiliary atom; (2) calculate the certain answers over
A and the auxiliary ABox, using the “standard” DL-LiteA query evaluation.
Theorem 1. Correctness of NSQ. For every stream CQ q, KB KF , and time point Ti, it
holds that ECertAll(q,KF ,Ti) = NSQ(q,KF ,Ti).
Our proof sketch considers that q has to be restricted by T and standard aggregates have to
fullfill aggregate conditions (see below). Correctness is based on the idea, that we exploit
the computational property of decoupling answering each EAQ (Step 1) from answering
the full CQ as follows (similar to [9]):
1. we let qFOL(x) be the FOL query obtained from q(x) by replacing each EAQ qφi by

a new predicate Rφi with the same arity;
2. we define Iq,KF as the FOL interpretation over ∆I

′
for Rφi such that (i) ∆I = ∆I

′

(same domain) and (ii) the extension of Rφi is R
Iq,KF
φi

= ECert�(qφi ,K�).
For Step 2, we let Eval(qFOL, Iq,KF) be the result of evaluating qFOL over Iq,KF .
The semantic correspondence between Eval(qFOL, Iq,KF) and ECertAll(q,KF ,Ti) is
guaranteed under the following conditions:
1. The evaluation of qFOL should not be over a possibly infinite domain ∆I , thus

allowing FOL queries that are domain independent;
2. the extension of Rφi in Iq,KF needs to be finite, or else the evaluation is infeasible.

Domain independence is ensured by using special interpretation based on the active
domain, denoted as ∆IAdom. The active domain is a subset of ∆I built from all constants
in KF , T, and q. Furthermore, FOL queries under active domain semantics are equivalent
to range-restricted relational calculus (RRC) queries, with allows the translation from FOL
into RRQ queries as shown in [1].
Standard Aggregates. Different aggregation functions for use in ECert(q,K) were
already provided in [11]. For this,K, q andHd have to fulfill aggregate conditions to avoid

10 Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider

Algorithm 1: NSQ - Answer Naive Stream Query
Input: A stream conjunctive query q, time point Ti, and a KBKF
Output: Set of tuplesO
/* Step 1: Detemporalize */
foreachQFi of q do
A�i

← A
⋃
ws≤j≤we Aj according to �LT and Ti ;

K�i
← 〈T ,A�i

〉 ;

build auxi(x, y, z) from φ�LT agr ofQFi ;
build qi,1(x, y, zφ) from PerfectRef(auxi, T)(x, y, z) ;
build qi,2(x, agr(y)) from qi,1(x, y, z

φ) and φ�LT agr ;
Ri,1 := evaluate Answer(auxi,K�i

) (Certain answers) ;
Ri,2 := evaluate qi,1 overRi,1 (K projection) ;
Ri := evaluate qi,2 overRi,2 (Aggregation) ;
AddRi toAaux and replaceQFi in q withRi(x, y) ;

/* Step 2: Standard evaluation */
O := evaluate Answer(q, 〈T ,A ∪Aaux〉) ;

“wrong” aggregation and ensure correctness: (1) q has to be non-trivial and coherent, such
that q is satisfiable regarding T ; (2) the variables in q must be restricted, which introduces
functional dependency on epistemic variables; (3) q has uniform grouping; (4) dropping
zero groups, i.e., groups having only zero values (see [11] for details). For concrete values,
the following aggregation functions were introduced based on ECert(q,K) for every A:
(i) count,min,max: (1) has to hold for q and K; (ii) sum: (1), (2), and (4) have to hold
for q and K; (iii) avg: (1), (2), and (3) have to hold for q and K.

For last and first, we extend the definition of Hd, as the sequence of time points is
lost. However, by iteratively checking if we have a match in some ABox A�i , ws ≤ i ≤
we, at a single time point, we can determine where we have the first resp. last match. We
extend Hd for first as follows (last is similar):

H ′d := {| π(y) | (π ∈ π(x) = d and (π ∈ KSatI0,K(z;φ) or
(π ∈ KSatI1,K(z;φ) and π 6∈ KSatI[0,0],K(z;φ)) or ... or
(π ∈ KSatIn,K(z;φ) and π 6∈ KSatI[0,n−1],K(z;φ))) |},

where KSatIi,K, resp. KSatI[i,j],K, is the set of satisfying K-matches for a model Ii of
〈T ,A ∪Ai〉, resp. I[i,j] of 〈T ,A ∪Ai ∪ · · · ∪ Aj〉.
Spatial Aggregates. For spatial objects, we define aggregation functions applied on the
multiset of Hd. As the order of assertions (i.e., points) is lost, we must rearrange them
to an admissible geometry that is a point sequence p = (p1, . . . , pn) as defined in Sec. 3.
We thus extend agr with the new functions agrpoint and agrline on Hd to create new
admissible geometries g(sd):
- agrpoint: we evaluate the function last (as shown before) to get the last available

position p1 and assign it to g as g(sd) = (p1);
- agrline: we create the sequence (p1, . . . , pn), where p1 6= pn and determine a total

order on the bag of points in each K-group. The total order is defined such that we have
a starting point using last and search backwards using last subsequently.

Further functions such as computing a polygon could be defined. We must consider
the binding B for spatial aggregates, hence we add ∃s ∈ ΓS : (π(y), s) ∈ bI to
KSat. In contrast to numerical aggregates, spatial aggregates introduce for each K-
group (d, agr(Hd)) a new spatial object sd of ΓS and an admissible geometry g(sd) with

Towards Spatial Ontology-Mediated Query Answering over Mobility Streams 11

agr(Hd) = (p1, . . . , pn). This is achieved by adding a binding (d, sd) to B and creating
a new mapping g : sd → (p1, . . . , pn) in Saux.
Combining KF and KS . We combine the spatial and temporal elements of a query q
and KB K as follows: (1) detemporalize the stream atoms using EAQs; (2) transform
the spatial query and the KB to an ordinary UCQ and KB as shown in Sec. 4. We keep
LOGSPACE data complexity, as evaluating an EAQ is in LOGSPACE and the number
of EAQ computations is limited by the number of aggregate atoms. Spatial binding and
relations do not increase the data complexity.

7 Related Work
Data stream management systems (DSMSs) such as STREAM [4], were built supporting
streaming applications by extending RDMBS. More recently, RDF stream processing
engines, such as C-SPARQL [5], SPARQLstream [8], and CQELS [16], have been pro-
posed to enable the processing of RDF streams integrated with other Linked Data sources.
Besides C-SPARQL, most of them follow the DSMSs paradigm and do not support stream
reasoning. EP-SPARQL [3] resp. LARS [6] proposes a language that extends SPARQL
resp. CQ with stream reasoning, but translated their KB into expressive (less efficient)
logic programs. For spatio-temporal RDF stream processing, a few SPARQL extensions
have been proposed, such as st-SPARQL [15]. Besides [7] and [14] (see Sec. 5), closest
to our work are: (i) [19] is a framework for efficient spatio-temporal queries that sup-
port spatial operators and aggregation over temporal features; (ii) [8] allows evaluating
ontology-mediated QA queries over a range of data streaming systems, and (iii) [18]
extends SPARQL using state sequences and aggregates, which are evaluated over streamed
ABoxes. Our work differs regarding: (a) the evaluation approach based on EAQ with
aggregations and (b) the main focus on querying streams of spatial data. We use results on
EAQ in [11], but introduce streams over spatial data and give an initial implementation.

8 Conclusion and Future Work
Our work is sparked by the LDM for V2X communications, which serves as an integration
effort for streaming data (e.g., vehicle movements) in a spatial context (e.g., intersections)
over a complex domain (e.g., a mobility ontology). We introduced a suitable approach using
ontology-mediated QA for realizing the LDM. For spatial-streaming queries, bridging the
gap between stream processing and ontology-mediated QA is not straightforward. Thus, we
provide an extension using epistemic aggregate queries to detemporalize the stream sources
and extend previous work in [13]. The detemporalization preserves FO-rewritability,
which allows us to evaluate conjunctive queries with spatial atoms over existing stream
RDBMS. Currently, we are working on a technique for suitable query execution plans
using hypergraph decomposition. We have been implementing an experimental prototype
to check the feasibility of our approach on initial experiments with mobility data (details
on www.kr.tuwien.ac.at/research/projects/loctrafflog/sr2016/).

Future research aims at the theoretical and practical side of our approach. On the former,
complexity results for our algorithm under different aggregate functions are of interest, as
well as dealing with consistent QA. Our bag semantics could introduce inconsistencies
in larger windows, we thus may consider different repairs as in belief revision. On the
later, the implementation could be extended to pull-based QA and constraints such as
guaranteed latency. This requires optimizations, such as caching, window size adaptation,

www.kr.tuwien.ac.at/research/projects/loctrafflog/sr2016/

12 Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider

and efficient query rewriting techniques. Also more complex spatial aggregation, i.e.,
polygons or trajectories, are of interest. Finally, evaluation and testing using e.g., the
SUMO traffic simulation (http://sumo.dlr.de/) under real conditions is desired.

References
1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical Level. Addison-

Wesley Longman Publishing Co., Inc. (1995)
2. Andreone, L., Brignolo, R., Damiani, S., Sommariva, F., Vivo, G., Marco, S.: Safespot final

report. Tech. Rep. D8.1.1 (2010), available online.
3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event

processing and stream reasoning. In: Proc. of WWW 2011. pp. 635–644 (2011)
4. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations

and query execution. VLDB J. 15(2), 121–142 (2006)
5. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: a continuous query

language for rdf data streams. Int. J. Semantic Computing 4(1), 3–25 (2010)
6. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for analyzing

reasoning over streams. In: Proc. of AAAI 2015. pp. 1431–1438 (2015)
7. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over knowl-

edge bases. J. Web Sem. 33, 50–70 (2015)
8. Calbimonte, J., Mora, J., Corcho, Ó.: Query rewriting in RDF stream processing. In: Proc. of

ESWC 2016. pp. 486–502 (2016)
9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Eql-lite: Effective

first-order query processing in description logics. In: Proc. of IJCAI 2007. pp. 274–279 (2007)
10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and

efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning 39(3),
385–429 (2007)

11. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over ontologies. In: Proc.
of ONISW 2008. pp. 97–104 (2008)

12. Eiter, T., Füreder, H., Kasslatter, F., Parreira, J.X., Schneider, P.: Towards a semantically enriched
local dynamic map. In: Proc. of ITS World Congress 2016. To appear.

13. Eiter, T., Krennwallner, T., Schneider, P.: Lightweight spatial conjunctive query answering using
keywords. In: Proc. of ESWC 2013. pp. 243–258 (2013)

14. Klarman, S., Meyer, T.: Querying temporal databases via OWL 2 QL. In: Proc. of RR 2014. pp.
92–107 (2014)

15. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web:
The model strdf and the query language stsparql. In: Proc. of ESWC 2010. pp. 425–439 (2010)

16. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for
unified processing of linked streams and linked data. In: ISWC 2011. pp. 370–388 (2011)

17. Netten, B., Kester, L., Wedemeijer, H., Passchier, I., Driessen, B.: Dynamap: A dynamic map
for road side its stations. In: Proc. of ITS World Congress 2013 (2013)

18. Özçep, Ö.L., Möller, R., Neuenstadt, C.: Stream-query compilation with ontologies. In: Proc. of
AI 2015. pp. 457–463 (2015)

19. Quoc, H.N.M., Le Phuoc, D.: An elastic and scalable spatiotemporal query processing for linked
sensor data. In: Proc. of SEMANTICS 2015. pp. 17–24. ACM (2015)

20. Shimada, H., Yamaguchi, A., Takada, H., Sato, K.: Implementation and evaluation of local
dynamic map in safety driving systems. J. Transportation Technologies 5(2), 102–112 (2015)

21. Ulbrich, S., Nothdurft, T., Maurer, M., Hecker, P.: Graph-based context representation, environ-
ment modeling and information aggregation for automated driving. In: Proc. IEEE Intelligent
Vehicles Symposium 2014. pp. 541–547 (2014)

http://sumo.dlr.de/

	Towards Spatial Ontology-Mediated Query Answering over Mobility Streams

