
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

MAINTENANCE GOALS OF AGENTS IN A

DYNAMIC ENVIRONMENT: FORMULATION

AND POLICY CONSTRUCTION

Chitta Baral Thomas Eiter Marcus Bjäreland
Mutsumi Nakamura

INFSYS RESEARCHREPORT1843-04-04

OCTOBER2004

INFSYS RESEARCHREPORT

INFSYS RESEARCHREPORT1843-04-04, OCTOBER2004

MAINTENANCE GOALS OF AGENTS IN A DYNAMIC ENVIRONMENT:
FORMULATION AND POLICY CONSTRUCTION

Chitta Baral1 Thomas Eiter2 Marcus Bj̈areland3 Mutsumi Nakamura1

Abstract.The notion of maintenance often appears in the AI literaturein the context of agent behav-
ior and planning. In this paper, we argue that earlier characterizations of the notion of maintenance
are not intuitive to characterize the maintenance behaviorof certain agents in a dynamic environ-
ment. We propose a different characterization of maintenance and distinguish it from earlier notions
such asstabilizability. Our notion of maintenance is more sensitive to a good-natured agent which
struggles with an “adversary” environment, which hinders her by unforeseeable events to reach her
goals (not in principle, but in case). It has a parameterk, referring to the length of non-interference
(from exogenous events) needed to maintain a goal; we refer to this notion ask-maintainability. We
demonstrate the notion on examples, and address the important but non-trivial issue of efficient con-
struction of maintainability control functions. We present an algorithm which in polynomial time
constructs ak-maintainable control function, if one exists, or tells that no such control is possible.
Our algorithm is based on SAT Solving, and employs a suitableformulation of the existence ofk-
maintainable control in a fragment of SAT which is tractable. For smallk (bounded by a constant),
our algorithm is linear time. We then give a logic programming implementation of our algorithm
and use it to give a standard procedural algorithm, and analyze the complexity of constructingk-
maintainable controls, under different assumptions such ask= 1, and states described by variables.
On the one hand, our work provides new concepts and algorithms for maintenance in dynamic envi-
ronment, and on the other hand, a very fruitful application of computational logic tools.

Keywords: intelligent agents, maintenance goals, maintainability,agent control, policy construc-
tion, declarative logic programming, SAT solving, computational complexity, discrete event dy-
namic systems.

1Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85233, USA.
Email: {chitta, mutsumi}@asu.edu

2Institut für Informationssysteme, Knowledge Based Systems Group, Technische Universiẗat Wien, Favoritenstraße
9-11, A-1040 Vienna, Austria. E-mail: eiter@kr.tuwien.ac.at.

3AstraZeneca R&D, S-43183 M̈olndal, Sweden. Email: marcus.bjareland@astrazeneca.com

Acknowledgements: This work was partially supported by FWF (Austrian Science Funds) projects
P-16536-N04 and Z29-N04, a research collaboration grant byTU Wien, the European Commission under
grant IST 2001-37004 WASP, the NSF (National Science Foundation of USA) grant numbers 0070463, and
0412000, NASA grant number NCC2-1232, and an ARDA contract.

A preliminary version of the formulation part, entitled “A formal characterization of maintenance goals,”
has been presented at AAAI’00, and a preliminary version of the algorithm part entitled “A polynomial time
algorithm for constructingk-maintainable policies” has been presented at ICAPS’04. The current version
revises and combines both of them with additional elaborations, examples, results, and proofs.

Copyright c© 2007 by the authors

INFSYS RR 1843-04-04 I

Contents

1 Introduction and Motivation 1

2 Background: Systems, Goals, Control, Stability and Stabilizability 3
2.1 Stabilizability .5

3 Example Scenario: Two Finite Buffers 6

4 Limited Interference and k-Maintainability 8
4.1 An alternative characterization ofk-maintainability . 11

5 Polynomial Time Methods to Constructk-Maintainable Controls 12
5.1 Deterministic transition functionΦ(s, a) . 13

5.1.1 Horn SAT encoding .. 15
5.2 Non-deterministic transition functionΦ(s, a) . 18

5.2.1 Horn SAT encoding (general case) 20
5.3 Genuine algorithm .. . 23

6 Encoding Maintainability for an Answer Set Solver 24
6.1 Input representation 25
6.2 Deterministic transition functionΦ . 25
6.3 Nondeterministic transition functionΦ . 27
6.4 Layered use of negation 28
6.5 State descriptions by variables 29

7 Computational Complexity 30
7.1 Problems considered and overview of results 30
7.2 Enumerative representation 32
7.3 State variables 36

8 Discussion and Conclusion 39
8.1 Other related work 39
8.2 Future work and open issues 41

INFSYS RR 1843-04-04 1

1 Introduction and Motivation

For an agent situated in a static environment, the goal is often to reach one out of several states where certain
conditions are satisfied. Such a goal is usually expressed by a formula in propositional or first-order logic.
Sometimes the goal requires constraining the path taken to reach one of the states. In that case, the goal can
be expressed by a formula in temporal logic [1, 41, 4].
Our concern in this paper is about agents in a dynamic environment. In that case, things are more complex
since the state of the world can change through both actions of the agent and of the environment. The agent’s
goal in a dynamic environment is then often more than just achieving a desiredstate, as after the agent has
successfully acted to reach a desired state, the environment may change that state. In such a case, a common
goal of an agent is to ‘maintain’ rather than just ‘achieve’ certain conditions. The goal of maintaining certain
conditions (or a set of states that satisfy these conditions) is referred to as maintenance goals. Maintenance
goals are well-known in the AI literature, e.g., [52, 30, 1, 42], and have counterparts in other areas such as
in stability theory of discrete event dynamic systems [43, 45, 47, 46, 51] and in active databases [10, 38].
However, as we argue in this paper, earlier characterizations of maintenance goals are not adequate under
all circumstances.
To see what is wrong with earlier definition of maintenance goals, suppose an agent’s goal is to maintain
a fluentf , i.e., the propositionf should be true. A straightforward attempt1 to express it using temporal
operators is the formula2f , where2 is the temporal operator “Always” and2f means thatf is true in all
the future states of the world. This is too strong a condition, as maintaining inherently means that things go
out of shape and they have to be maintained back to shape. A better temporallogic representation of this
goal is thus the formula23f , where3 is the temporal operator “Eventually.” Intuitively, the formula23f
is satisfied by an infinite trajectory of states of the forms0, s1, s2, . . ., if at any stagei ≥ 0, there exists
some stagej ≥ i such thatf is true insj . An agent’s control is said to satisfy23f if all trajectories that
characterize the evolution of the world due to the environment and the agent’s control satisfy23f . At first
glance the formula23f seems to express the goal of maintainingf , as it encodes that iff becomesfalse
in any state in the trajectory then it becomestrue in a later state.
We consider23f to be also too strong a specification—in many situations—to express the intuitive notion
of ‘maintainingf ’, if we take on a more refined view of the (sometimes nasty) part which the environment
might play, which we illustrate by some examples. Supposef denotes the condition that the Inbox of a
customer service department be empty. Here the environment makesf false by adding new requests to the
Inbox while the agent tries to makef true by processing the messages in the Inbox and removing them from
it. If the agent is diligent in processing the message in the Inbox and makes it empty every chance the agent
gets, we would then like to say that agent maintains the Inbox empty. But such acontrol does not satisfy the
formula23f under all circumstances, because there will be trajectories where the agent is overwhelmed by
the environment (flooding the Inbox) andf never becomestrue.
Another example in support of our intuition behind maintainability is the notion of maintaining the consis-
tency of a database [10, 38, 53]. When direct updates are made to a database, maintaining the consistency
of the database entails the triggering of additional updates that may bring about additional changes to the
database so that in the final state (after the triggering is done) the databasereaches a consistent state. This
does not mean that the database will reach consistency if continuous updates are made to it and it is not
given a chance to recover. In fact, if continuous update requests aremade we may have something similar

1All through the paper we consider the evaluation of linear temporal formulas with respect to all ‘valid’ trajectories. An
alternative approach would be to use a variation of the branching time quantifier A, such as the operatorAπ from [6], before the
linear temporal formulas.

2 INFSYS RR 1843-04-04

to denial service of attacks. In this case we can not fault the triggers saying that they do not maintain the
consistency of the database. They do. It is just that they need to be given a window of opportunityor a
respite from continuous harassment from the environment to bring aboutthe additional changes which are
necessary to restore database consistency. The same holds for maintaining a room clean; we can not fault
the cleaning person if he or she is continually sent away because the roomis being continuously used.
Another example is a mobile robot [8, 35] which is asked to ‘maintain’ a state where there are no obstacles
in front of it. Here, if there is a belligerent adversary that keeps on putting an obstacle in front of the robot,
there is no way for the robot to reach a state with no obstacle in front of it. But often we will be satisfied if
the robot avoids obstacles in its front when it is not continually harassed.Of course, we would rather have
the robot take a path that does not have such an adversary, but in the absence of such a path, it would be
acceptable if it takes an available path and ‘maintains’ states where there areno obstacles in front.
The inadequacy of the expression23f in expressing our intuition about ‘maintainingf ’ is because23f
is defined on trajectories which do not distinguish between transitions due to agent actions and environment
actions. Thus we can not distinguish the cases

(i) where the agent does its best to maintainf (and is sometimes thwarted by the environment) and can
indeed makef true in some (say,k) steps if there is no interference from the environment during those
steps; and

(ii) where the agent really does not even try.

We refer to (i) ask-maintainabilityin this paper. The expression23f can not express the idea of awindow
of opportunity(or window of non-interference) during which an agent can perform the actions necessary
for maintaining. In fact, none of the standard notions of temporal logics [12, 36], which are defined on
trajectories that do not distinguish between the cause behind the transitions (whether they are due to agent’s
actions or due to the environment), can express the idea behindk-maintainability.
The main contributions of this paper can be summarized as follows.

1. We introduce and formally define the notion ofk-maintainability, and distinguish it from earlier no-
tions of maintainability, in particular the specification23f and the similar notion of stabilizability
from discrete event dynamic systems.

2. We provide polynomial time algorithms that can constructk-maintainable control policies, if one
exists. (In the rest of the paper we will refer to ‘control policy’ simply by ‘control’.) Our algorithm is
based on SAT Solving, and employs a suitable formulation of the existence ofk-maintainable control
in a tractable fragment of SAT. We then give a logic programming implementation ofthis method,
and finally distill from it a standard procedural algorithm.

3. We analyze the computational complexity of constructingk-maintainable controls, under different set-
tings of the environment and the windows of opportunity open to the agent, aswell as under different
forms of representation. We show that the problem is complete forPTIME in the standard setting,
where the possible states are enumerated, and complete forEXPTIME in a STRIPS-style setting
where states are given by value assignments to fluents. Furthermore, we elucidate the impact of the
different factors and show, by our proofs of the hardness results,that the full problem complexity is
inherent already to certain restricted cases.

Overall, our work not only provides new concepts and algorithms for realizing maintenance of an agent in
dynamic environment, but also illustrates a very fruitful application of computational logic tools.

INFSYS RR 1843-04-04 3

The rest of this paper is organized as follows. In Section 2 we present the background definitions of a
system with an agent in an environment and define the notions of stability and stabilizability. In Section 3
we describe a running example of a system with two buffers. We use this example for illustrating the
concepts of stabilizability andk-maintainability, which is formally defined in Section 4. In Section 5 we
present our algorithms for constructingk-maintaining controls, based on SAT Solving as well as a genuine
algorithm extracted from it. In Section 6 we present an encoding for computing a control function using a
logic programming engine and devote Section 7 to complexity analysis. Finally, in Section 8 we conclude,
mention related work and outline some future directions.

2 Background: Systems, Goals, Control, Stability and Stabilizability

In this paper, we are concerned with goal-directed agents in a dynamic world. Such agents can perform
actions that change the state of the world. Because of the dynamic nature ofthe world, certain changes can
happen to the state of the world beyond the control of an agent. The agent’s job is thus to make the world
evolve in a way coherent with a goal assigned to it. As for the agent control, we adopt here that an agent
follows a Markovian control policy to do its job; that is, its control is a functionfrom the set of states to the
set of actions, detailed as follows.

Definition 1 (System)A systemis a quadrupleA = (S,A,Φ, poss), where

• S is the set of system states;

• A is the set of actions, which is the union of the set of agents actions,Aagent, and the set of environ-
mental actions,Aenv;

• Φ : S × A → 2S is a non-deterministic transition function that specifies how the state of the world
changes in response to actions; and

• poss : S → 2A is a function that describes which actions are possible to take in which states.

The above notion of system is used in the discrete event dynamic systems community, for instance in [43, 45,
47, 46, 51]. In practice, the functionsΦ andposs are required to be effectively (and efficiently) computable,
and they may often be specified in a representation language such as in [25, 23, 48]. The possibility of an
action has different meaning depending on whether it is an agent’s action or whether it is an environmental
action. In case of an agent’s action, it is often dictated by the policy followedby the agent. For environmental
actions, it encodes the various possibilities that are being accounted for inthe model. We tacitly assume
here that possible actions lead always to some successor state, i.e., the axiom thatΦ(s, a) 6= ∅ whenever
a ∈ poss(s) holds for any states and actiona, is satisfied by any system.
An example of a systemA = (S,A,Φ, poss), whereS = {b, c, d, f, g, h}, A = { a, a′, e}, and the
transition functionΦ is shown in Figure 1, wheres′ ∈ Φ(s, a) iff an arcs → s′ labeled witha is present
andposs(s) are all actions that label arcs leavings. Notice that in this example,Φ(s, a) is deterministic,
i.e.,Φ(s, a) is a singleton if nonempty.
The evolution of the world with respect to a system is characterized by the following definition.

Definition 2 (Trajectory) Given a systemA = (S,A,Φ, poss), an alternating infinite sequence of states
and actionss0, a1, s1, a2, . . . , sk, ak+1, sk+1, . . . is said to be atrajectory consistent withA, if sk+1 ∈
Φ(sk, ak+1), andak+1 ∈ poss(sk). 2

4 INFSYS RR 1843-04-04

b

c

f

d

h

g

a
a

a

a

e

a′

Figure 1: Transition diagram of systemA

A common restriction on how the world evolves is defined using the notion ofstability. The following
definition of stability is adapted from [43] and has its origin in control theory and discrete event dynamic
systems [43, 45, 47, 46].

Definition 3 (Stable state 1)Given a systemA = (S,A,Φ, poss) and a set of statesE, a states is said
to bestablein A w.r.t. E if all trajectories consistent withA and starting froms go through a state inE
in a finite number of transitions and they visitE infinitely often afterwards. A set of statesS is stable with
respect toE if all states inS are stable with respect toE.

We sayA = (S,A,Φ, poss) is astable system, if all states inS are stable inA with respect toE. 2

Although the above definition of stability is with respect to a set of statesE, it can be easily adapted to a
formulaϕ that can be evaluated at the states of systemA. In that caseE = {s ∈ S | A, s |= ϕ}, i.e., it is
the set of statess at whichϕ is true.
An alternative approach to characterize the evolution of states is through temporal operators. Some of the
important temporal operators talking about the future are (cf. [36, 21]): Next (©), Always (2), Eventually
(3), and Until (U). Their meaning with respect a trajectoryτ = s0, a1, s1, . . . , sk, ak+1, sk+1, . . . is defined
as follows.
Let (τ, j), for j ≥ 0, denote the remainder ofτ starting atsj ; then

• (τ, j) |= p iff p is true insj , for any propositionp;

• (τ, j) |=©φ iff (τ, j + 1) |= φ;

• (τ, j) |= 2φ iff (τ, k) |= φ, for all k ≥ j.

• (τ, j) |= 3φ iff (τ, k) |= φ, for somek ≥ j.

• (τ, j) |= φ1 U φ2 iff there existsk ≥ j such that(τ, k) |= φ2 and for alli, j ≤ i < k, (τ, i) |= φ1.

The standard Boolean connectives∧, ∨, and¬ are defined as usual. An alternative definition of stability can
then be given as follows:

Definition 4 (Stable state 2)Given a systemA = (S,A,Φ, poss) and an objective formulaϕ (i.e., without
temporal operators), letEφ = {s ∈ S | φ is true ins}. A states is then said to bestablein A w.r.t. E
if for all trajectoriesτ of the formτ = s0, a1, s1, . . . , sk, ak+1, sk+1, . . . consistent withA, it holds that
(τ, 0) |= 23ϕ. 2

INFSYS RR 1843-04-04 5

In fact, this definition is equivalent to Definition 3. The advantage of using temporal operators, as in the
above definition, instead of Definition 3 is that the former allows us to specify alarger class of goals and
build on top of the notion of stability. For example, a notion similar to stability, referred to as aresponse
property[36], is of the form2(p→ 3q).

2.1 Stabilizability

The notion of stability is defined with respect to a system and the evolution of theworld consistent with the
system. When we focus on an agent and its ability to make a system stable, we need a notion ofstabilizability
which intuitively means that there exists a control policy which the agent can use to fashion a stable system.
Given a systemA = (S,A,Φ, poss), when discussing stabilizability of the system, we need to consider the
following additional aspects:

• the set of actionsAagent which the agent is capable of executing in principle (whereAagent ⊆ A);

• the set ofexogenous actionsthat may occur in the states, beyond the agent’s control, modeled by
a functionexo : S → 2Aenv , whereexo(s) ⊆ poss(s) for each states (recall thatAenv are the
environmental actions). We call any suchexo anexogenous function.

Intuitively, given a systemA = (S,A,Φ, poss),Aagent, exo, andE, a states is stabilizable with respect to
E, if we are able to find a policy orcontrol functionsuch that the agent picks an action it can do ins, we
have stability if all other agent actions ins and the other states that are reached are disabled, and no state is
reached froms where no further actions are possible.
The last condition is referred to as aliveness. It is formally defined by thefollowing two definitions, the first
of which defines the setR(A, s) of states that can be reached froms in the systemA.

Definition 5 Given a systemA = (S,A,Φ, poss) and a states, R(A, s) ⊆ S is the smallest set of states
that satisfying the following conditions:

1. s ∈ R(A, s),

2. If s′ ∈ R(A, s), anda ∈ poss(s′), thenΦ(s′, a) ⊆ R(A, s). 2

Definition 6 (Aliveness)Given a systemA=(S,A,Φ, poss) and a states, we says is alive if poss(s′) 6= ∅,
for all s′ ∈ R(A, s). We sayA=(S,A,Φ, poss) is alive if all states inS are alive. 2

The notion of control function is formally defined as follows.

Definition 7 (Control) Given a systemA = (S,A,Φ, poss) and a setAagent ⊆ A of agent actions, a
control function forA w.r.t.Aagent is a partial function

K : S → Aagent,

such thatK(s) ∈ poss(s) wheneverK(s) is defined. 2

We are now ready to formally define the notion of stabilizability.

Definition 8 (Stabilizability) Given a systemA = (S,A,Φ, poss), a setAagent ⊆ A, a functionexo as
above, and a set of statesE, we say thats ∈ S is stabilizablewith respect toE, if there exists a control
functionK : S → Aagent for A w.r.t.Aagent with the following properties:

6 INFSYS RR 1843-04-04

1. s is stable with respect toE in the systemAK,exo = (S,A,Φ, possK,exo), where, for any states′,
possK,exo(s′) = {K(s′)} ∪ exo(s′); and

2. s is alive inAK,exo .

A set of statesS ⊆ S is stabilizable with respect toE, if there is a control functionK for A w.r.t.Aagent

such that every states ∈ S is stabilizable with respect toE witnessed byK. 2

Having provided this definition, we shall illustrate it on an elaborated example inthe next section, where we
describe an intuitive control function for the management of two finite buffers.
Before closing this section, we introduce for later use the notion of a supercontrol.

Definition 9 (Super-control) Given a systemA = (S,A,Φ, poss) and a setAagent ⊆ A of agent actions,
a partial functionK : S → 2Aagent such thatK(s) ⊆ poss(s) andK(s) 6= ∅ wheneverK(s) is defined, is
calledsuper-controlfor A w.r.t.Aagent. 2

Informally, a super-control is an envelope for multiple control functions,which result by refiningK to some
arbitrary action inK(s) wheneverK(s) is defined; the notion of stabilizability is defined similar as for
control functions, with the only change that inAK,exo , we setpossK,exo(s′) = K(s′) ∪ exo(s′) in place of
possK,exo(s′) = {K(s′)} ∪ exo(s′).
The following proposition is immediate.

Proposition 1 Given a systemA = (S,A,Φ, poss), a setAagent ⊆ A, and a functionexo, a set of states
S ⊆ S is stabilizable with respect to a set of statesE ⊆ S under a control functionK for A w.r.t.Aagent iff
S is stabilizable with respect toE under a super-controlK+ for A w.r.t.Aagent . Furthermore, each such
K is a refinement of someK+ with this property (i.e., for eachs, K(s) ∈ K+(s) andK(s) is defined iff
K+(s) is defined), and each refinementK of K+ is a control function witnessing stabilizability ofS with
respect toE.

3 Example Scenario: Two Finite Buffers

In this section, we introduce a running example which we will use in illustrating thenotion of stabilizability
and also other concepts in the rest of the paper.
We imagine a system with two finite buffers,b1 andb2, where objects are added tob1 in an uncontrollable
way. An agent moves objects fromb1 to b2 and processes them there. When an object has been processed,
it is automatically removed fromb2. This is a slight modification of a finite buffer example from [45] and
generalizes problems such as ftp agents maintaining a clean ftp area by movingsubmitted files to other
directories, or robots moving physical objects from one location to another.
In our framework, we shall describe a systemAb which models this scenario. For simplicity, we assume
that the agent has three control actionsM12 that moves an object fromb1 to b2 (if such an object exists), the
opposite action,M21 that moves an object fromb2 to b1, andProc that processes and removes an object in
b2. There is one exogenous action,Ins, that inserts an object into bufferb1. The capacities ofb1 andb2 are
assumed to be equal.
Let us assume that the control goal of this system is to keepb1 empty. Then, the system is not stabilizable,
since objects can be continually inserted before the agent has a chance toempty the buffer. However, if
no insertions are performed for a certain window of non-interference,the agent can always emptyb1. This
implies that the system is maintainable but not stabilizable. We now make the above argument explicit by
using a concrete instance ofAb.

INFSYS RR 1843-04-04 7

Example 1 (Running Example)
We assume that the maximum capacity of the buffersb1 andb2 is 3. The components ofAb = (Sb,Ab,Φb,
possb) are then as follows.

• We model every state by the current number of objects inb1 andb2. That is, a states is identified by
a pair of integers〈i, j〉 wherei denotes the number of objects inb1 andj the number of objects inb2.
With the maximum capacity of 3, the set of states,Sb, consists of4× 4 = 16 states and is given by

Sb = {0, 1, 2, 3} × {0, 1, 2, 3}.

• The set of actions isAb = {M12,M21,Proc, Ins}.

• We assume that the transition functionΦb is deterministic, i.e.,|Φb(s, a)| ≤ 1, defined as follows,
where we writeΦb(s, a) = s′ for Φb(s, a) = {s′}. For everyi, j ∈ {0, . . . , 3}, let

Φb(〈i, j〉,M12) = 〈i− 1, j + 1〉

Φb(〈i, j〉,M21) = 〈i+ 1, j − 1〉,

Φb(〈i, j〉,Proc) = 〈i, j − 1〉,

Φb(〈i, j〉, Ins) = 〈i+ 1, j〉,

where addition and subtraction are modulo3, and and in all other casesΦb(s, a) = ∅.

• The enabling function,possb, is defined by

M12 ∈ possb(〈i, j〉) iff i ≥ 1 andj ≤ 2

M21 ∈ possb(〈i, j〉) iff i ≤ 2 andj ≥ 1

Proc ∈ possb(〈i, j〉) iff j ≥ 1

Ins ∈ possb(〈i, j〉) iff i ≤ 2

It is easy to see that forS = {〈0, 0〉} (no objects in the buffers) andE = {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈0, 3〉} (that
is, we want to keepb1 empty)S is not stabilizable w.r.t.E, since the exogenous actionIns can always
interfere in the task of bringing the system back toE. For example, consider the controlKb defined as
follows:

Kb(〈i, j〉) = M12 wheni ≥ 1 andj < 3, and

Kb(〈i, j〉) = Proc when (i = 0 andj ≥ 1) or j = 3.

Intuitively, the above control directs the transfer of objects from buffer 1 to 2 whenever possible, and if that
is not possible it directs processing of objects in buffer 2 if that is possible. In Figure 1, which shows the
transition diagram between states, the transitions by the controlKb are marked withM12 andProc.
Consider the following trajectory consistent with the control systemAK,exo = (Sb,Ab,Φb, possbKb,exo

):

τ = 〈0, 0〉, Ins, 〈1, 0〉, Ins, 〈2, 0〉,M12, 〈1, 1〉, Ins, 〈2, 1〉,M12, 〈1, 2〉, Ins, 〈2, 2〉,M12, 〈1, 3〉,Proc.

8 INFSYS RR 1843-04-04

〈0,0〉 〈1,0〉 〈2,0〉 〈3,0〉
InsInsIns

Proc

〈0,2〉 〈1,2〉 〈2,2〉 〈3,2〉
InsIns Ins

Proc Proc Proc

〈0,1〉 〈1,1〉 〈2,1〉 〈3,1〉
InsIns Ins

Proc Proc Proc

M21

M21

M12

M21

M12

M21

M12

M21

M12

M21

M12

M21

〈0,3〉 〈1,3〉 〈2,3〉 〈3,3〉
InsIns Ins

Proc Proc Proc

M12

M21

M12

M21

M12

M21

Proc

Proc

Figure 2: The transition diagram of the buffer systemAb for the concrete instance (buffer capacity 3).

It consists of a prefix〈0, 0〉, Ins, . . . ,M12 and a cycle〈1, 2〉, . . . ,Proc. In τ , no state inE is ever reached
after the starting state〈0, 0〉. Similar trajectories can be found for any control and henceS is not stabilizable
with respect toE.
On the other hand,S = {〈0, 0〉} is stabilizable w.r.t.E′ = {0, 1, 2} × {0, 1, 2, 3} (that is, we want to
have at most two objects inb1 at any time): FollowingKb we can go from any of the states inSb \ E

′ =
{〈3, 0〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉} to E′ with the execution of at most two control actions, while no exogenous
actions are possible for those states. 2

4 Limited Interference and k-Maintainability

As we mentioned in Section 1, our main intuition behind the notion of maintainability is thatmaintenance
becomes possible only if there is a window of non-interference from the environment during which main-
tenance is performed by the agent. In other words, an agentk-maintains a conditionc if its control (or its
reaction) is such that if we allow it to make the controlling actions without interference from the environment
for at leastk steps, then it gets to a state that satisfiesc within thosek steps.
Our definition of maintainability has the following parameters:

(i) a set of initial statesS that the system may be initially in,

(ii) a set of desired statesE that we want to maintain,

(iii) a systemA = (S,A,Φ, poss),

(iv) a setAagent ⊆ A of agent actions,

(v) a functionexo : S → 2Aenv detailing exogenous actions, such thatexo(s) ⊆ poss(s), and

(vi) a control functionK (mapping a relevant part ofS toAagent) such thatK(s) ∈ poss(s).

INFSYS RR 1843-04-04 9

The next step is to formulate when the controlK maintainsE assuming that the system is initially in one of
the states inS. The exogenous actions are accounted for by defining the notion of a closure ofS with respect
to the systemAK,exo = (S,A,Φ, possK,exo), denoted byClosure(S,AK,exo); wherepossK,exo(s) is the
set{K(s)} ∪ exo(s). This closure is the set of states that the system may get into starting fromS because
of K and/orexo. Maintainability is then defined by requiring the control to be such that if the system is
in any state in the closure and is given a window of non-interference fromexogenous actions, then it gets
into a desired state during that window.One of the importance of using the notion of closure is that one can
focus only on a possibly smaller state of states, rather than all the states, thuslimiting the possibility of an
exponential blow-up - as warned in [26] - of the number of control rules.
Now a next question might be: Suppose the above condition of maintainability is satisfied, and while the
control is leading the system towards a desired state, an exogenous actionhappens and takes the system off
that path. What then? The answer is that the state the system will reach afterthe exogenous action will be a
state from the closure. Thus, if the system is then left alone (without interference from exogenous actions)
it will be again on its way to a desired state. So in our notion of maintainability, the control is always taking
the system towards a desired state, and after any disturbance from an exogenous action, the control again
puts the system back on a path to a desired state.
We now formally define the notions of closure and maintainability.

Definition 10 (Closure)Let A = (S,A,Φ, poss) be a system and letS ⊆ S be a set of states. Then the
closure ofA w.r.t.S, denoted byClosure(S,A), is defined byClosure(S,A) =

⋃

s∈S R(A, s). 2

Example 2 In the systemA in Figure 1, we have thatR(A, d) = {d, h} andR(A, f) = {f, g, h}, and
thereforeClosure({d, f}, A) = {d, f, g, h}. 2

We note some properties ofClosure(S,A), which follow immediately from the definition ofR(A, s).

Lemma 2 LetA = (S,A,Φ, poss) be a system andS ⊆ S be a set of states. Then,

1. Closure(S,A) satisfies the Kuratowski closure axioms [32], i.e.,

• Closure(∅, A) = ∅,

• S ⊆ Closure(S,A),

• Closure(Closure(S,A), A) = Closure(S,A), and

• Closure(S1 ∪ S2, A) = Closure(S1, A) ∪ Closure(S2, A));

2. if s ∈ Closure(S,A), anda ∈ poss(s), thenΦ(s, a) ⊆ Closure(S,A). 2

Next we define the notion of unfolding a control.

Definition 11 (Unfoldk(s,A,K)) LetA=(S, A, Φ, poss) be a system, lets∈S, and letK be a control for
A. ThenUnfoldk(s,A,K) is the set of all sequencesσ = s0, s1, . . . , sl wherel≤k ands0=s such that
K(sj) is defined for allj<l, sj+1∈Φ(sj ,K(sj)), and if l<k, thenK(sl) is undefined. 2

Intuitively, an element ofUnfoldk(s,A,K) is a sequence of states of length at mostk+1 that the system may
go through if it follows the controlK starting from the states. The above definition ofUnfoldk(s,A,K) is
easily extended to the case whenK is a super-control, meaningK(s) is a set of actions instead of a single
action. In that case, we overloadΦ and for any set of actionsa∗, defineΦ(s, a∗) =

⋃

a∈a∗ Φ(s, a).
We now define the notion ofk-maintainability. This definition can be used to verify the correctness of a
control.

10 INFSYS RR 1843-04-04

Definition 12 (k-Maintainability) Given a systemA = (S,A,Φ, poss), a set of agents actionAagent ⊆ A,
and a specification of exogenous action occurrenceexo, we say that a control2 K for A w.r.t. Aagent k-
maintainsS ⊆ S with respect toE ⊆ S, wherek ≥ 0, if for each states ∈ Closure(S,AK,exo) and each
sequenceσ = s0, s1, . . . , sl in Unfoldk(s,A,K) with s0 = s, it holds that{s0, . . . , sl} ∩ E 6= ∅.
We say that a set of statesS ⊆ S (resp.A, if S = S) is k-maintainable, k ≥ 0, with respect to a set of states
E ⊆ S, if there exists a controlK which k-maintainsS w.r.t. E. K is then referred to as the witnessing
control function. Furthermore,S (resp.A) is calledmaintainablew.r.t E, if S (resp.A) is k-maintainable
w.r.t.E for somek ≥ 0. 2

We often will omit explicit mention ofAagent, S, andE for control functions and maintainability if they are
clear from the context.
Intuitively, the condition{s0, s1, . . . , sl} ∩E 6= ∅ above means that we can get from a states0 outsideE to
a state inE within at mostk transitions—where each transition is dictated by the controlK—if the world
were to unfold as ins = s0, s1, . . . , sl. In particular, 0-maintainability means that the agent has nothing to
do: after any exogenous action happening, the system will be in a state fromE. Therefore, a trivial control
K will do which is undefined on every state.

Example 3 Reconsider the systemA in Figure 1. Let us assume thatAagent = { a, a′ }, that exo(s)
= { e } iff s = f and thatexo(s) = ∅ otherwise. Suppose now that we want a 3-maintainable control
policy for S = {b} w.r.t. E = {h}. Clearly, such a control policyK is to takea in b, c, andd. Indeed,
Closure({b}, AK,exo) = {b, c, d, h} andUnfold3(b, A,K) = {〈b, c, d, h〉}, Unfold3(c, A,K) = {〈c, d, h〉},
andUnfold3(d,A,K) = {〈d, h〉}; furthermore, each sequence containsh.
Suppose now thatΦ(c,a)={d, f} instead of{d} (i.e., nondeterminism inc). Then, nok-maintainable
control policy forS = {b} w.r.t.E = {h} exists for anyk ≥ 0. Indeed, the agent can always end up in the
dead-endg. If, however, in additionΦ(g,a′) = {f, h} anda

′ ∈ poss(g), a 3-maintainable control policyK
isK(s) = a for s ∈ {b, c, d, f} andK(g)= a′. 2

Example 4 Buffer Example (cont’d)
Earlier we showed that inAb, S = {〈0, 0〉} is not stabilizable w.r.t.E = {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈0, 3〉}.
Thus, we might ask whetherS is at least maintainable w.r.t.E? The answer is positive: For the worst case
system state,〈3, 3〉, a control can move the system to〈3, 0〉 (by three transitions executingProc) without
interfering occurrences of exogenous actions. If there then are three further transitions without interference,
the control can applyM12 three times and effect the state〈0, 3〉. This implies thatS is 6-maintainable w.r.t.
E. We can, with a similar argument show thatA is 9-maintainable w.r.t.{〈0, 0〉}. A similar argument can
be made with respect to the controlKb of Example 1.
However, we have thatA is not maintainable w.r.t., for example,{〈0, 3〉} (Since we cannot go from, for
example,{〈0, 0〉}, to {〈0, 3〉} with control actions only). 2

As the above example points out, it is possible thatS is maintainable but not stabilizable with respect toE.
The converse is also possible. In other words, in certain cases we may have a system where a givenS is
stabilizable with respect to a setE, but yet is not maintainable. This happens when every path between a
state inS and a state inE involves at least one exogenous action. In that case the agent, who does not have
control over the exogenous actions, can not on its own make the transition from a state inS to a state inE.
However, often for each exogenous action there are equivalent (in terms of effects) agent actions. In that
case, any stabilizable system is also maintainable.

2Note that here onlyK(s) for s ∈ Closure(S, AK,exo) is of relevance. For all others, K(s) can be arbitrary or undefined.

INFSYS RR 1843-04-04 11

We note the following monotonicity property ofk-maintainability, which is an easy consequence of the
definition:

Proposition 3 Suppose that for a systemA = (S,A,Φ, poss), a set of agents actionAagent ⊆ A, and
a specification of exogenous action occurrenceexo, the control functionK k-maintainsS ⊆ S w.r.t.
E ⊆ S. Then,K also k-maintains any setS′ ⊆ Closure(S,AK,exo) with respect to any setE′ ⊆
Closure(S,AK,exo) such thatE ⊆ E′. 2

4.1 An alternative characterization ofk-maintainability

The characterization of stability and stabilizability in Section 2 is based on imposingconditions on trajec-
tories obtained from the transition graph of a system. Such a characterization has the advantage that it is
amenable to developing temporal operators that can express more general conditions.
In contrast, the definition of maintainability in Definition 12 is not based on trajectories. Nonetheless, one
can give an alternative characterization based on trajectories, which wedo next. To bridge from finite trajec-
tories (which are relevant with respect to maintainability), to infinite ones as in Definition 2, we consider for
each systemA = (S,A,Φ, poss) an extension,A∞, which results by adding a fresh environmental action
anop such that inA∞, for each states we haveΦ(s, anop) = {s} andanop ∈ poss(s) if poss(s) = ∅ in A.
Informally,A∞ adds infinite loops to halting states ofA.

Proposition 4 Given a systemA = (S,A,Φ, poss), a set of agents actionAagent ⊆ A, a specification of
exogenous action occurrenceexo, and a set of statesE, a set of statesS is k-maintainablewith respect to
E, k ≥ 0, if and only if there exists a controlK for A w.r.t.Aagent such that for each states in S and every
trajectory of formτ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . consistent withA ∞

K,exo ands0 = s, it holds that
{ai+1, . . . , ai+k} ⊆ Aagent or ai+k = anop for somei ≥ 0 implies that{si, . . . , si+k} ∩ E 6= ∅. 2

Proof. For the only if direction, suppose thatS is k-maintainable w.r.t.E, witnessed by the control function
K. Let s ∈ S andτ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . be consistent withA ∞

K,exo such thats0 = s and
{ai+1, . . . , ai+k} ⊆ Aagent or ai+k = anop, for somei ≥ 0. Then, we havesi ∈ Closure(S,A ∞

K,exo). If
k = 0, then sinceK is a witnessing control, we havesi ∈ E, and thus{si, si+1, . . . , si+k} ∩ E 6= ∅ holds.
Consider thusk > 0. If ai+k ∈ Aagent (which implies{ai+1, . . . , ai+k} ⊆ Aagent), then the sequence
si, si+1, . . . , si+k belongs toUnfoldk(si, A,K). SinceK is a witnessing control function, we again have
{si, si+1, . . . , si+k} ∩ E 6= ∅. Otherwise, ifai+k = anop, let l ≥ 1 be the least index such thatal = anop.
By definition ofA ∞

K,exo , we have thatK(sl−1) is undefined. Hence, the sequenceσ = sl−1 belongs to
Unfoldk(sl−1, A,K). SinceK is a control, it follows thatsl−1 ∈ E. Sincesj = sl−1 for eachj ≥ l, and in
particularsi+k = sl−1, it follows again that{si, si+1, . . . , si+k} ∩E 6= ∅. This proves the only if direction.
Conversely, supposeK is a control forA w.r.t. Aagent such that for eachs ∈ S and trajectoryτ =
s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . consistent withA ∞

K,exo and s0 = s, it holds that{ai+1, . . . , ai+k} ⊆
Aagent or ai+k = anop for somei ≥ 0 implies that{si, si+1, . . . , si+k} ∩ E 6= ∅. We claim thatK wit-
nessesk-maintainability ofS w.r.t.E. Towards a contradiction, suppose the contrary. Hence, it follows from
the definition ofA ∞

K,exo , that there is some states ∈ S and trajectoryτ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . .
consistent withA ∞

K,exo and s0 = s, such that for somej ≥ 0 we havesj ∈ Closure(S,A ∞
K,exo) and

sj , sj+1, . . . , sj+l is in Unfoldk(sj , A,K), wherel ≤ k, butE ∩ {sj , . . . , sj+l} = ∅.
By definition of Unfoldk(sj , A,K), we have that{aj+1, . . . , aj+l−1} ⊆ Aagent and thataj+l = aj+l+1

= · · · = aj+k = anop. By hypothesis,E ∩ {sj , . . . , sj+k} 6= ∅ holds. Thus, we conclude thatE ∩
{sj+l+1, . . . , sj+k} 6= ∅ must hold, and hencel < k. However, by definition ofΦ(s, anop) we havesj+l =

12 INFSYS RR 1843-04-04

sj+l+1 = · · · = sj+k. This implies thatE ∩{sj , . . . , sj+l} 6= ∅, which is a contradiction. This proves thatK
witnessesk-maintainability ofS w.r.t.E. 2

While this result shows that we could equally well have developed our notionof k-maintainability on the
basis of trajectories, in the rest of this paper we shall stick to the setting whichuses closure and unfolding.
We find the latter more intuitive, as well as more convenient for designing algorithms and for proofs. Fur-
thermore, this setting requires no special handling of possible finite trajectories, which complicates matters
as becomes apparent from Proposition 4.

5 Polynomial Time Methods to Constructk-Maintainable Controls

Now that we have defined the notion ofk-maintainability, our next step is to show how somek-maintainable
control can be constructed in an automated way. We start with some historicalbackground. There has been
extensive use of situation control rules [17] and reactive control in theliterature. But there have been far
fewer efforts [30] to define correctness of such control rules3, and to automatically construct correct control
rules. In [31], it is suggested that in a control rule of the form: “if condition c is satisfied then do action
a”, the actiona is the action thatleads tothe goal from any state where the conditionc is satisfied. In [5] a
formal meaning of “leads to” is given as: for all statess that satisfyc, a is the first action of a minimal cost
plan froms to the goal. Using this definition, an algorithm is presented in [39] to constructk-maintainable
controls. This algorithm is sound but not complete, in the sense that it generates correct controls only, but
there is no guarantee that it will find always a control if one exists. The difficulty in developing a complete
algorithm – also recognized in [29] in a slightly different context – can be explained as follows. Suppose
one were to do forward search from a state inS. Now suppose there are multiple actions from this state that
‘lead’ to E. Deciding on which of the actions or which subsets one needs to chose is a nondeterministic
choice necessitating backtracking if one were to discover that a particularchoice leads to a state (due to
exogenous actions) from whereE can not be reached. Same happens in backward search too.In this paper
we overcome the problems one faces in following the straightforward approaches and give a sound and
complete algorithm for constructingk-maintainable control policies.
We provide it in two sets: First we consider the case when the transition function Φ is deterministic, and then
we generalize to the case whereΦ may be non-deterministic. In each case, we present different methods,
which illustrates our discovery process and also gives a better grasp ofthe final algorithm. We first present
an encoding of our problem as a propositional theory and appeal to propositional SAT solvers to construct
the control. As it turns out, this encoding is in a tractable fragment of SAT, for which specialized solvers (in
particular, Horn SAT solvers) can be used easily. Finally, we present adirect algorithm distilled from the
previous methods.
The reasoning behind this line of presentation is the following:

(i) It illustrates the methodology of using SAT and Horn SAT encodings to solve problems;

(ii) the encodings allow us to quickly implement and test algorithms;

(iii) the proof of correctness mimics the encodings; and

(iv) we can exploit known complexity results for Horn SAT to determine the complexity of our algorithm,
and in particularly to establish tractability.

3Here we exclude the works related to MDPs as it is not known how to express the kind of goal we are interested in – such ask

maintenance goals – using reward functions.

INFSYS RR 1843-04-04 13

As for (ii), we can make use of Answer Set Solvers such as DLV [20, 33] or Smodels [40, 50] which extend
Horn logic programs by nonmonotonic negation. These solvers allow efficient computation of the least
model and some maximal models of a Horn theory, and can be exploited to construct robust or “small”
controls, respectively.
The problem we want to solve, which we refer to ask-MAINTAIN , has the following input and output:

Input: An input I is a systemA = (S, A, Φ, poss), sets of statesE ⊆ S andS ⊆ S, a setAagent ⊆ A, a
functionexo, and an integerk ≥ 0.
Output: A controlK such thatS isk-maintainable with respect toE (using the controlK), if such a control
exists. Otherwise the output is the answer that no such control exists.
We assume here that the functionsposs(s) andexo(s) can be efficiently evaluated; e.g., when both functions
are given by their graphs (i.e., in a table).

5.1 Deterministic transition function Φ(s, a)

We start with the case of deterministic transitions, i.e.,Φ(s, a) is a singleton set{s′} whenever nonempty.
In abuse of notation, we simply will writeΦ(s, a) = s′ in this case.
Our first algorithm to solvek-MAINTAIN will be based on a reduction to propositional SAT solving. Given
an inputI for k-MAINTAIN , we construct a SAT instancesat(I) in polynomial time such thatsat(I) is
satisfiable if and only if the inputI allows for ak-maintainable control, and that the satisfying assignments
for sat(I) encode possible such controls.
In our encoding, we shall use for each states ∈ S propositional variabless0, s1, . . . ,sk. Intuitively, si will
denote that there is a path from states to some state inE using only agent actions and at mosti of them, to
which we refer as “there is an a-path froms toE of length at mosti.”
The encodingsat(I) contains the following formulas:

(0) For alls ∈ S, and for allj, 0 ≤ j < k:

sj ⇒ sj+1

(1) For alls ∈ E ∩ S:

s0

(2) For any two statess, s′ ∈ S such thatΦ(a, s) = s′ for some actiona ∈ exo(s):

sk ⇒ s′k

(3) For any states ∈ S \E and alli, 1 ≤ i ≤ k:

si ⇒
∨

s′∈PS(s) s
′
i−1, where

PS(s) = {s′ ∈ S | ∃a ∈ Aagent ∩ poss(s) : s′ = Φ(a, s)};

(4) For alls ∈ S \ E:

sk

(5) For alls ∈ S \E:

¬s0

14 INFSYS RR 1843-04-04

The intuition behind the above encoding is as follows. The clauses in (0) statethat if there is an a-path from
s toE of length at mostj then, logically, there is also an a-path of length at mostj+1. Next, the clauses in
(1) say that for statess in S ∩ E, there is an a-path of length 0 froms to E. Next, (4) states that for any
starting states in S outsideE, there is an a-path froms toE of length at mostk, and (5) states that for any
states outsideE, there is no a-path froms toE of length 0. The clauses in (3) state that if, for any states,
there is an a-path froms toE of length at mosti, then for some possible agent actiona and successor state
s′ = Φ(a, s), there is an a-path froms′ toE of length at mosti-1. When looking fork-maintainable controls
the clauses in (2) take into account the possibility thats may be in the closure. If indeeds is in the closure
and there is an a-path froms toE of length at mostk, then the same must be true with respect to the states
s′ reachable froms using exogenous actions. When looking for super-control they play a role in computing
maximal super-controls. The role of each of the above clauses become more clear when relating the models
of sat(I) with controls thatk-maintain.
Given any modelM of sat(I), we can extract a desired controlK from it by definingK(s) = a for all s
outsideE with sk true inM , wherea is a possible agent action ins such thats′ = Φ(s, a) ands′ is closer
toE thans is. In case of multiple possiblea ands′, onea can be arbitrarily picked. Otherwise,K(s) is left
undefined.
In particular, fork = 0, only the clauses from (1), (2), (4) and (5) do exist. As easily seen,sat(I) is
satisfiable in this case if and only ifS ⊆ E and no exogenous action leads outsideE, i.e., the closure ofS
under exogenous actions is contained inE. This means that no actions of the agent are required at any point
in time, and we thus obtain the trivial 0-controlK which is undefined on all states, as desired.
The next result states that the SAT encoding works properly in general.

Proposition 5 Let I consist of a systemA = (S, A, Φ, poss) whereΦ is deterministic, a setAagent ⊆ A,
sets of statesE ⊆ S andS ⊆ S, an exogenous functionexo, and an integerk. For any modelM of sat(I),
let CM = {s ∈ S | M |= sk}, and for any states ∈ CM let ℓM (s) denote the smallest indexj such that
M |= sj (i.e.,s0, s1,. . . ,sj∗−1 arefalse andsj∗ is true), which we call thelevelof s w.r.t.M . Then,

(i) S is k-maintainable w.r.t.E iff sat(I) is satisfiable.

(ii) Given any modelM of sat(I), the partial functionK+
M : S → 2Aagent defined onCM \ E such that

K+
M (s) = {a ∈ Aagent ∩ poss(s) | Φ(s, a) = s′,

s′ ∈ CM , ℓM (s′) < ℓM (s)},

is a valid super-control forA w.r.t.Aagent;

(iii) any controlK which refinesK+
M for some modelM of sat(I) k-maintainsS w.r.t.E. 2

Proof. Since the if direction of (i) follows from (ii) and (iii), it is sufficient to show the only if direction of
(i), and then (ii) and (iii).
As for the only if direction of (i), supposeS is k-maintainable w.r.t.E. Then there exists a controlK such
that for each states ∈ Closure(S,AK,exo), and for each sequenceσ = s(0), s(1), . . . , s(l) wheres(0) = s in
Unfoldk(s,A,K), {s(0), . . . , s(l)} ∩ E 6= ∅. We now construct an interpretationM for sat(I) as follows.
SinceΦ is deterministic, for eachs in Closure(S,AK,exo) there is a unique sequences(0) (=s), s(1), . . ., s(l)

in Unfoldk(s,A,K). Let i (≥ 0) be the smallest index such thats(i) ∈ E. We assignfalse to s0, s1,. . . ,
si−1 and assigntrue to si, si+1,. . . ,sk. All other propositions are assignedfalse. We now argue thatM is
a model ofsat(I).

INFSYS RR 1843-04-04 15

It is straightforward to see thatM satisfies the formulas generated by (0), (1), (4) and (5). Now consider the
formulas generated in (2). Ifsk is true, thens ∈ Closure(S,AK,exo) by construction. In this case, in order to
k-maintainS w.r.t.E, for anys′ = Φ(a, s) of an exogenous actiona, one of the states inUnfoldk(s

′, A,K)
must be inE. Hence,s′k has been assigned true inM . Now let us consider the formulas generated in (3).
If si is true for somei ≤ k, then there must be an a-path froms to E of length at mosti, emerging from
possible agent actions only (via controlK). Let s′ be the next state in this path. Obviously, there must be an
a-path froms′ toE of length at mosti−1 (viaK). Hence,s′i−1 must be true inM . Thus,M is a model of
sat(I), which means thatsat(I) is satisfiable.
To show (ii), let us assume thatsat(I) has a modelM and consider the partial functionK+

M : S → 2Aagent

which is defined onCM \ E byK+
M (s) = {a ∈ Aagent ∩ poss(s) | Φ(s, a) = s′, s′ ∈ CM andℓM (s′) <

ℓM (s)}; and for any others, K+
M (s) is undefined. ForK+

M to be a valid super-control it must satisfy the
following conditions: (a)K+

M (s) ⊆ poss(s), and (b)K+
M (s) 6= ∅ wheneverK+

M (s) is defined. Condition
(a) is true by virtue of the construction ofK+

M . Condition (b) is true becauseK+
M (s) is defined when

s ∈ CM \ E which meansM |= sk for somek > 0, which in turn means thatℓM (s) > 0, thus making
K+

M (s) 6= ∅.
Now to show (iii), letK be any control which refinesK+

M for some modelM of sat(I). Let the distance
dK(s, S) of a states from the set of statesS be the minimum number of transitions – through exogenous
actions and/or control actions dictated by the controlK – needed to reachs from any state inS.
We will show, by using induction ond(s, S) ≥ 0, that for every states ∈ Closure(S,AK,exo) and every
sequenceσ = s(0), s(1), . . . , s(l) with s = s(0) in Unfoldk(s,A,K), the set{s(0), . . . , s(l)} intersects with
E and thatM |= sk (i.e.,s ∈ CM). This proves the claim.
The base case,d(s, S) = 0, is about statess ∈ S. From the formulas in (0), (1), and (4) we haveM |= sk

for every such states. Then from the construction ofK+
M above and the formulas in (3), it follows that

for any such states and for every sequenceσ = s(0), s(1), . . . , s(l) with s = s(0) in Unfoldk(s,A,K), the
set{s(0), . . . , s(l)} intersects withE. Indeed, by taking the actionK(s(i)) (∈ K+

M (s(i))) in s(i), a state
s(i+1) = Φ(s,K(s(i+1))) is reached, such thatℓM (s(i+1)) < ℓM (s(i)). If l = k, then clearlyℓM (s(l)) = 0;
otherwise, ifl < k, thenK(s(l)) must be undefined, which again impliesℓM (s(l)) = 0. Thus,s(l) ∈ E,
which means that{s(0), . . . , s(l)} ∩ E 6= ∅.
Thus the statement holds in the base case. Now for the induction step, let us assume that it holds for every
states ∈ Closure(S,AK,exo) at distanced ≥ 0 fromS. Let us now consider a states ∈ Closure(S,AK,exo)
at distanced+1 fromS. Then there is a states′ at distanced from S such thats = Φ(a, s′) and either (i)
a ∈ exo(s′) or (ii) a = K(s′). In both cases, we have by the induction hypothesis thatM |= s′k, and
using (2), (3), and (1) we can concludeM |= sk; Furthermore, by construction ofK and the formulas in
(3), we have by similar arguments as above that for each sequenceσ = s(0), s(1), . . . , s(l) with s = s(0) in
Unfoldk(s,A,K), {s(0), . . . , s(l)} ∩ E 6= ∅.
This proves our claim. Now each controlK as in (ii) is a refinement ofK+

M . This completes the proof.2

5.1.1 Horn SAT encoding

While sat(I) is constructible in polynomial time fromI, we can not automatically infer that solvingk-
MAINTAIN is polynomial, since SAT is a canonical NP-hard problem. However, a closer look at the structure
of the clauses insat(I) reveals that this instance is solvable in polynomial time. Indeed, it is areverse Horn
theory; i.e., by reversing the propositions, we obtain a Horn theory. Let us use propositionssi whose intuitive
meaning is converse of the meaning ofsi. Then the Horn theory corresponding tosat(I), denotedsat(I),
is as follows:

16 INFSYS RR 1843-04-04

(0) For alls∈S andj, 0≤j<k:

sj+1 ⇒ sj .

(1) For alls ∈ E ∩ S:

s0 ⇒ ⊥.

(2) For any statess, s′ ∈ S such thats′=Φ(a, s) for some actiona∈exo(s):

s′k ⇒ sk.

(3) For any state inS \ E, and for alli, 1 ≤ i ≤ k:
(

∧

s′∈PS(s) s
′
i−1

)

⇒ si, where

PS(s)={s′∈S | ∃a∈Aagent∩poss(s): s
′=Φ(a, s)}.

(4) For alls ∈ S \ E:

sk ⇒ ⊥.

(5) For alls ∈ S \ E:

s0.

Here,⊥ denotes falsity. We then obtain a result similar to Proposition 5, and the modelsM of sat(I) lead
to k-maintainable controls, which we can construct similarly; just replace in part(ii) CM with CM = {s ∈
S | M 6|= sk}. Notice thatCM coincides with the set of statesC

M
for the modelM of sat(I) such that

M |= p iff M 6|= p, for each atomp.
We now illustrate the above Horn encoding with respect to an example.

Example 5 Consider the systemA = (S,A,Φ, poss), whereS = {b, c, d, f, g, h},A = { a, a′, e}, and the
(deterministic) transition functionΦ was shown in Figure 1, whereΦ(s, a) = s′ iff an arcs → s′ labeled
with a is present andposs(s) are all actions that label arcs leavings.
ForA = { a, a′ } andexo(s) = { e} iff s = f andexo(s) = ∅ otherwise, this leads forS = {b},E = {h},
andk = 3 to the following Horn encodingsat(I):

(From 0)

b1 ⇒ b0. b2 ⇒ b1. b3 ⇒ b2. c1 ⇒ c0. c2 ⇒ c1. c3 ⇒ c2.
d1 ⇒ d0. d2 ⇒ d1. d3 ⇒ d2. f1 ⇒ f0. f2 ⇒ f1. f3 ⇒ f2.
g1 ⇒ g0. g2 ⇒ g1. g3 ⇒ g2. h1 ⇒ h0. h2 ⇒ h1. h3 ⇒ h2.

(From 1)

(From 2)

g3 ⇒ f3.

(From 3)

INFSYS RR 1843-04-04 17

c0 ∧ f0 ⇒ b1. c1 ∧ f1 ⇒ b2. c2 ∧ f2 ⇒ b3.
d0 ⇒ c1. d1 ⇒ c2. d2 ⇒ c3.
h0 ⇒ d1. h1 ⇒ d2. h2 ⇒ d3.
h0 ⇒ f1. h1 ⇒ f2. h2 ⇒ f3.

g1. g2. g3.

(From 4)

b3 ⇒ ⊥.

(From 5)

b0. c0. d0. f0. g0.

This theory has the least model

M = {g3, g2, g1, g0, f3, f2, f1, f0, b2, b1, b0, c1, c0, d0};

hence,CM = {b, c, d, h}, which gives rise to the super-controlK+ such thatK+(s) = {a} for s ∈ {b, c, d}
andK+(s) is undefined fors ∈ {f, g, h}. In this case, there is a single controlK refiningK+, which has
K(s) = a for s ∈ {b, c, d} and is undefined otherwise. This is intuitive: The agent must reachh, and has
to avoid takinga′ in b since then it might arrive at the no-good stateg. Thus, she has to takea in b and, as
the only choice, in the subsequent statesc andd. Also, we might not add any state apart fromb, c, andd
without losing3-maintainability. In this particular case,M is also maximal on the propositionss3, where
s ∈ S \E = {b, c, d, f, g}: By (4), we can not addb3, and by (0) and the clausesc2 ∧ f2 ⇒ b3 andd1 ⇒ c2
in (3) then also neitherc3 nor d3. Thus, the above controlK is also smallest and, in fact, the only one
possible for 3-maintainability. 2

As computing a model of a Horn theory is a well-known polynomial problem [16], we thus obtain the
following result.

Theorem 6 Under deterministic state transitions, problemk-MAINTAIN is solvable in polynomial time.2

An interesting aspect of the above is that, as well-known, each satisfiable Horn theoryT has the least model,
MT , which is given by the intersection of all its models. Moreover, the least model is computable in linear
time, cf. [16, 37]. This model not only leads to ak-maintainable control, but also leads to amaximalcontrol,
in the sense that the control is defined on a greatest set of states outsideE among all possiblek-maintainable
controls forS′ w.r.t.E such thatS ⊆ S′. This gives a clear picture of which other states may be added to
S while k-maintainability is preserved; namely, any states inCMT

. Furthermore, any controlK computed
fromMT applying the method in Proposition 5 (usingCMT

) works for such an extension ofS as well.
On the other hand, intuitively ak-maintainable control constructed from some maximal model ofsat(I) with
respect to the propositionssk is undefined to a largest extent, and works merely for a smallest extension.
We may generate, starting fromMT , such a maximal model ofT by trying to flip first, step by step all
propositionssk which arefalse to true, as well as other propositions entailed. In this way, we can generate
a maximal model ofT on {sk | s ∈ S \ E} in polynomial time, from which a “lean” control can also be
computed in polynomial time.

18 INFSYS RR 1843-04-04

5.2 Non-deterministic transition function Φ(s, a)

We now generalize our method for constructingk-maintainable controls to the case in which transitions due
to Φ may be non-deterministic. As before, we first present a general propositional SAT encoding, and then
rewrite to a propositional Horn SAT encoding. To explain some of the notations, we need the following
definition, which generalizes the notion of an a-path to the non-deterministic setting.

Definition 13 (a-path) We say that there exists an a-path of length at mostk ≥ 0 from a states to a set of
statesS′, if either s ∈ S′, or s /∈ S′, k > 0 and there is some actiona ∈ Aagent ∩ poss(s) such that for
everys′ ∈ Φ(s, a) there exists an a-path of length at mostk − 1 from s′ to S′. 2

In the following encoding of an instanceI of problemk-MAINTAIN to SAT, referred to assat′(I), si will
again intuitively denote that there is an a-path froms toE of length at mosti. The propositions ai, i > 0,
will denote that for suchs there is an a-path froms toE of length at mosti starting with actiona (∈ poss(s)).
The encodingsat′(I) has again groups (0)–(5) of clauses as follows:

(0), (1), (4) and (5) are the same as insat(I).

(2) For any states ∈ S ands′ such thats′ ∈ Φ(a, s) for some actiona ∈ exo(s):

sk ⇒ s′k

(3) For every states ∈ S \ E and for alli, 1 ≤ i ≤ k:

(3.1) si ⇒
∨

a∈Aagent∩poss(s) s ai;

(3.2) for everya ∈ Aagent∩poss(s) ands′∈Φ(s, a):

s ai ⇒ s′i−1;

(3.3) for everya ∈ Aagent ∩ poss(s), if i < k:

s ai ⇒ s ai+1.

Group (2) above is very similar to group (2) ofsat(I) in the previous subsection. The only change is that
we now haves′ ∈ Φ(a, s) instead ofs′ = Φ(a, s). The main difference is in group (3). We now explain
those clauses. The clauses in (3.1) and (3.2) together state that if there is an a-path froms toE of length at
mosti, then there is some possible actiona for the agent, such that for each states′ that potentially results
by takinga in s, there must be an a-path froms′ to E of length at mosti-1. The clausess ai ⇒ s ai+1

in (3.3) say that on a longer a-path froms the agent must be able to picka also. Notice that there are no
formulas insat′(I) which forbid to pick different actionsa anda′ in the same states, and thus we have a
super-control; however, we can always refine it easily to a control.

Proposition 7 Let I consist of a systemA = (S, A, Φ, poss), a setAagent ⊆ A, sets of statesE,S ⊆ S,
an exogenous functionexo, and an integerk. For any modelM of sat′(I), letCM = {s ∈ S | M |= sk},
and for any states ∈ CM \ E let ℓM (s) denote the smallest indexj such thatM |= s aj for some action
a ∈ Aagent ∩ poss(s), which we call thea-levelof s w.r.t.M . Then,

(i) S is k-maintainable w.r.t.E iff sat′(I) is satisfiable;

(ii) given any modelM of sat′(I), the partial functionK+
M : S → 2Aagent which is defined onCM \ E by

K+
M (s) = {a |M |= s aℓM (s)}

is a valid super-control; and

INFSYS RR 1843-04-04 19

(iii) any controlK which refinesK+
M for some modelM of sat′(I) k-maintainsS w.r.t.E.

Proof. The proof follows the line of argumentation in the proof of Proposition 5. Itis sufficient to show the
only if direction of (i) and both (ii) and (iii).
As for the only if direction of (i), supposeS is k-maintainable w.r.t.E. Then there exists a control
K such that for each states ∈ Closure(S,AK,exo), and for each sequenceσ = s(0), s(1), . . . , s(l) in
Unfoldk(s,A,K) wheres(0) = s, {s(0), . . . , s(l)} ∩ E 6= ∅. We now construct an interpretationM for
sat′(I) as follows.
For eachs ∈ Closure(S,AK,exo), let in each sequenceσ = s(0), s(1), . . ., s(l) in Unfoldk(s,A,K) with
s = s(0), the numberiσ (≥ 0) be the smallest indexi such thats(i) ∈ E, and leti∗ be the maximum over all
iσ for s. Intuitively, i∗ is the length of the longest path in the tree with roots where each noden not inE is
sprouted by taking the control actionK(n) and adding each state inΦ(n,K(n)) as a child. Then, we assign
true to si∗ , si∗+1,. . . ,sk and, ifi∗ > 0, to s ai∗ , s ai∗+1,s ak, whereK(s) = a. All other propositions
are assignedfalse in M . We now argue thatM is a model ofsat(I).
It is straightforward to see thatM satisfies the formulas generated by (0), (1), (4) and (5). Now consider the
formulassk ⇒ s′k generated in (2). Ifsk is true, thens ∈ Closure(S,AK,exo) by construction. In this case,
for anys′ ∈ Φ(a, s) of an exogenous actiona, we haves′ ∈ Closure(S,AK,exo), and sinceK k-maintains
S w.r.t.E, s′i is true in M for somei ≤ k which implies, by construction, thats′k is assignedtrue in M .
Let us finally consider the formulas generated in (3). Ifsi, wheres ∈ S \E, is assignedtrue inM for some
i ∈ {1 ≤ i ≤ k}, thens ∈ Closure(S,A,Kexo) holds by construction ofM . SinceK is ak-maintaining
control ands /∈ E, we must haveK(s) defined and thus, by construction ofM , we haves K(s)i assigned
true inM . SinceK(s) ∈ Aagent ∩ poss(s), the clause (3.1) is thus satisfied. Furthermore, each clause in
(3.2) is satisfied whena 6= K(s), since thensai

is assignedfalse in M . For a = K(s), propositionsai

is true in M and thus, by construction, alsosi. SinceK is k-maintaining control, every states′ ∈ Φ(s, a)
belongs toClosure(S,A,Kexo). Let, for each sequenceσ′ = s(0), s(1), . . ., s(l) in Unfoldk(s,A,K) such
thats(0) = s′, the sequenceP (σ) = s(0), s(1), . . . , s(i) be the shortest prefix ofσ such thats(i) ∈ E (notice
thati < k). Then, the sequences, P (σ) is a prefix of some sequence inUnfold(s,A,K). Hence, it follows
that in the construction ofM , the numberi∗ for s is larger than the one fors′. Thus, by construction ofM ,
it follows thats′i−1 is assigned true inM . This means that the formulas in (3.2) are satisfied inM . Finally,
the clauses (3.3) are clearly satisfied inM by construction ofM . Thus,M is a model ofsat′(I), which
means thatsat′(I) is satisfiable.
To show (ii), let us assume thatsat′(I) has a modelM , and consider the partial functionK+

M : S → 2Aagent

which is defined onCM \ E by K+
M (s) = {a | M |= s aℓM (s)}. We thus have to show thatK+

M (s) ⊆

poss(s) andK+
M (s) 6= ∅ whenK+

M (s) is defined. By clause (3.1), and the definition ofCM , ℓM , andK+
M

this is immediate.
To show (iii), letK be any control which refinesK+

M for some modelM of sat′(I). Let the distance
dK(s, S) of a states from the set of statesS be as in the proof of Proposition 5. i.e., the minimum number
of transitions – through exogenous actions and/or control actions dictatedby the controlK – needed to reach
s from any state inS.
We will show, by using induction ond(s, S) ≥ 0, that for every states ∈ Closure(S,AK,exo) and every
sequenceσ = s(0), s(1), . . . , s(l) with s = s(0) in Unfoldk(s,A,K), the set{s(0), . . . , s(l)} intersects with
E and thatM |= sk (i.e.,s ∈ CM). This proves thatK k-maintainsS w.r.t.E.
The base case,d(s, S) = 0, is about statess ∈ S. From the formulas in (0), (1), and (4) we haveM |= sk for
every such states. Consider any sequenceσ = s(0), s(1), . . . , s(l) in Unfoldk(s,A,K) such thats = s(0).
If s ∈ E, then we must havel = 0, and{s(0), . . . , s(l)} ∩ E 6= ∅. Otherwise,M |= sak

wherea = K(s).

20 INFSYS RR 1843-04-04

We then haves(1) ∈ Φ(s, a), and thus by our construction ofK and the clauses in (3.2) we have that

M |= s
(1)
k−1. Repeating this argument, we can infer thats

(0)
k , s(1)k−1, . . . ,s(l)k−l are all assignedtrue in M . If

k = l, it follows from the clauses in (5) thats(l) ∈ E. Otherwise, ifl < k, thenK must be undefined on
s(l); by the clauses (1), this again meanss(l) ∈ E. Hence,{s(0), . . . , s(l)} ∩ E 6= ∅.
Thus the statement holds in the base case. Now for the induction step, let us assume that it holds for
every states ∈ Closure(S,AK,exo) at distanced(s, S) = d ≥ 0 from S. Let us now consider a state
s ∈ Closure(S,AK,exo) at distanced(s′, S) = d+1 fromS. Then there is a states′ at distanced(s, S) = d
from S such thats ∈ Φ(a, s′) and either (i)a ∈ exo(s′) or (ii) a ∈ K(s′). In both cases, we have by the
induction hypothesis thatM |= s′k, and we can concludeM |= sk from the clauses in (2) in case (i) and
from our construction ofK and the clauses in (3.2), (1), and (0) in case (ii), respectively. Furthermore, by
similar argumentation as in the cased = 0 above, we obtain that for each sequenceσ = s(0), s(1), . . . , s(l)

in Unfoldk(s,A,K) with s = s(0) it holds that{s(0), . . . , s(l)} ∩ E 6= ∅. This concludes the induction and
the proof of (iii). 2

One advantage of the encodingsat′(I) over the encodingsat(I) for deterministic transition functionΦ
above is that it directly gives us the possibility to read off a suitable control from thes ai propositions,a ∈
poss(s), which are true in any modelM that we have computed, without looking at the transition function
Φ(s, a) again. On the other hand, the encoding is more involved, and uses a largerset of propositions.
Nonetheless, the structure of the formulas insat′(I) is benign for computation and allows us to compute a
model, and from it ak-maintainable control in polynomial time.

5.2.1 Horn SAT encoding (general case)

The encodingsat′(I) is, like sat(I), a reverse Horn theory. We thus can rewritesat′(I) similarly to a Horn
theory,sat′(I) by reversing the propositions, where the intuitive meaning ofsi ands ai is the converse of
the meaning ofsi ands ai respectively. The encodingsat′(I) is as follows:

(0), (1), (4) and (5) are as insat(I)

(2) For every statess, s′ ∈ S such thats′ ∈ Φ(a, s) for some actiona ∈ exo(s): s′k ⇒ sk.

(3) For every states ∈ S \ E and for alli, 1 ≤ i ≤ k:

(3.1)
(

∧

a∈Aagent∩poss(s) s ai

)

⇒ si;

(3.2) for everya ∈ Aagent∩poss(s) ands′∈Φ(s, a):

s′i−1 ⇒ s ai;

(3.3) for everya ∈ Aagent ∩ poss(s), if i < k:

s ai+1 ⇒ s ai.

We obtain from Proposition 7 easily the following result, which is the main result of this section so far.

Theorem 8 Let I consist of a systemA = (S, A, Φ, poss), a setAagent ⊆ A, sets of statesE,S ⊆ S, an
exogenous functionexo, and an integerk. Let, for any modelM of sat′(I), CM = {s | M 6|= sk}, and let
ℓM (s) = min{j |M 6|= s aj , a ∈ Aagent ∩ poss(s)} for everys ∈ S. Then,

(i) S is k-maintainable w.r.t.E iff the Horn SAT instancesat′(I) is satisfiable;

INFSYS RR 1843-04-04 21

(ii) Given any modelM of sat′(I), every controlK such thatK(s) is defined iffs ∈ CM \E and satisfies

K(s) ∈ {a ∈ Aagent ∩ poss(s) |M 6|= s aj , j = ℓM (s)},

k-maintainsS w.r.t.E. 2

Corollary 9 Problemk-MAINTAIN is solvable in polynomial time. More precisely, it is solvable in time
O(k‖I‖), where‖I‖ denotes the size of inputI. 2

Proof. A straightforward analysis yields that the size ofsat
′
(I), measured by the number of atoms in it,

is O(k(|S| + |Φ| + |poss|)), if Aagent, S, E, Φ, poss andexo are stored in a standard way as bitmaps,
i.e., a (multi-dimensional) array with value range{0,1} (thus,‖I‖ = O(|S|2|A| + log k)). Furthermore,
the clauses insat′(I) can be easily generated within the same time bound. Since the least model of any
Horn theoryT is computable in timeO(|T |) where |T | is the number of atoms in it [16, 37], deciding
satisfiability and computing some modelM of sat′(I) is feasible inO(k‖I‖) time. Furthermore,CM and
{(s, ℓM (s)) | s ∈ S} are computable fromM in linear time in the number of atoms, using suitable data
structures, and from this a controlK as in Theorem 8.(ii) in the same time. Hence, ak-maintaining control
for S w.r.t.E is computable inO(k‖I‖) time.
Note that a more economic representation storesS, E, Aagent as sets (i.e., lists) andΦ, poss, andexo by
their graphs in tables, i.e., sets of tuples{〈s, a,Φ(s, a)〉 | s ∈ S, a ∈ A}, {〈s, poss(s)〉 | s ∈ S}, and
{〈s, exo(s)〉 | s ∈ S}. Also under this representation, and if moreover tuples whereΦ(s, a)=∅ (resp.,
poss(s)=∅ andexo(s)=∅) are not stored (which is of the same order as storing the sets of tuples{〈s, a, s′〉 |
s′ ∈ Φ(a, s)}, {〈s, a〉 | a ∈ poss(s)}, {〈s, a〉 | a ∈ exo(s)}), theO(k‖I‖) time bound holds. Indeed, arrays
storingS,E, andAagent for lookup inO(1) time are constructible in timeO(|S|+ |A|). Then,possagent =
{〈s, a〉 ∈ poss | a ∈ Aagent} storingAagent ∩ poss(s) for all s is constructible inO(|poss|) time. From
this, all clauses ofsat′(I) except (2) and (3.2) can be readily generated in timeO(k(|S| + |possagent|)).
The clauses (2) and (3.2) can be easily constructed fromΦexo = {〈s, a, s′〉 ∈ Φ | a ∈ exo(s)} and
Φposs = {〈s, a, s′〉 ∈ Φ | a ∈ poss(s)} in timeO(|Φexo |) andO(k|Φposs |), respectively. The setsΦexo and
Φposs can be generated fromΦ andexo in timeO(|Φ|+ |exo|+poss|), using an auxiliary arrayaux[A,S] to
enable random access toΦ(a, s); notice thataux[a, s] needs not be defined ifΦ(a, s) = ∅. In total,sat′(I)
is constructible inO(|A|+ |exo|+ k(|S|+ |Φ|+ |poss|)) = O(k‖I‖) time. 2

Thus in particular, finding a maintaining control under a small window of opportunity, a k-maintaining
control fork bounded by a constant, is feasible inlinear timein the size of the input.
Similar as in Section 5.1.1, the least model of the theory given bysat

′
(I), M

sat
′

(I)
, leads to amaximal

control in the sense that the pre-image ofK outsideE, i.e., the states outsideE in whichK is defined, is
greatest among all possiblek-maintaining controls which includeS. Furthermore, a smallestk-maintaining
control can be similarly computed from any maximal model ofsat

′
(I) with respect to the propositionssk

wheres is outsideE, which can be generated fromM
sat

′

(I)
by stepwise maximization. Again, both maximal

and smallest controls can be computed in polynomial time.

Example 6 Reconsider the systemA = (S,A,Φ, poss) from Example 5. Let us modify the transition
functionΦ such thatΦ(c,a) = {d, f} instead ofΦ(c,a) = {d}. Then, for the respective modified instance
I of 3-MAINTAIN , denotedI1, the encodingsat′(I1) looks as follows.

(0), (1), (2), (4), and (5) are as insat(I1) in Example 5;

22 INFSYS RR 1843-04-04

(3.1): b a1 ∧ b a′
1 ⇒ b1. b a2 ∧ b a′

2 ⇒ b2. b a3 ∧ b a′
3 ⇒ b3.

c a1 ⇒ c1. c a2 ⇒ c2. c a3 ⇒ c3.
d a1 ⇒ d1. d a2 ⇒ d2. d a3 ⇒ d3.
f a1 ⇒ f1. f a2 ⇒ f2. f a3 ⇒ f3.

g1. g2. g3.

(3.2): h0 ⇒ d a1. h1 ⇒ d a2. h2 ⇒ d a3. h0 ⇒ f a1. h1 ⇒ f a2. h2 ⇒ f a3.
d0 ⇒ c a1. d1 ⇒ c a2. d2 ⇒ c a3. f0 ⇒ c a1. f1 ⇒ c a2. f2 ⇒ c a3.
c0 ⇒ b a1. c1 ⇒ b a2. c2 ⇒ b a3. f0 ⇒ b a′

1. f1 ⇒ b a′
2. f2 ⇒ b a′

3.

(3.3): d a2 ⇒ d a1. d a3 ⇒ d a2. f a2 ⇒ f a1. f a3 ⇒ f a2. c a2 ⇒ c a1.
c a3 ⇒ c a2. b a2 ⇒ b a1. b a3 ⇒ b a2. b′ a2 ⇒ b′ a1. b′ a3 ⇒ b′ a2.

It turns out thatsat′(I) has no models: Fromg3, the clauseg3 ⇒ f3 in (2), and clauses in (0), we obtain
thatfi, i ∈ {0, . . . , 3}, is true in every modelM of sat′(I1). Hence, by the clausef2 ⇒ b a3 in (3.2), also
b a′

3 is true inM . On the other hand, from the formulaf1 ⇒ c a2 in (3.2), we obtain thatc a2 must be true
in M , and thus by the clausesc a2 ⇒ c2 in (3.1) andc2 ⇒ b a3 in (3.2) thatb a3 is true inM . The clause
b a3∧ b a′

3 ⇒ b3 thus implies thatb3 is true inM . However, by the formulab3 ⇒ ⊥ in (4), b3 must be false
in M . Thus, no modelM of sat′(I1) can exist, which by Theorem 8 means that there is no3-maintaining
control forS = {b} w.r.t E = {h}. Indeed, regardless of whether a control functionK selectsa or a′ in
stateb, within at most 2 steps fromb the statef might be reached, from which the exogenous function might
move the system to the no-good stateg.
Suppose now again thatΦ(c,a) = {d, f} and that the agent can takea′ in g, which results in eitherh or f
(i.e.,Φ(g,a′) = {f, h} anda

′ ∈ poss(g)). Then the Horn encodingsat′(I1) changes as follows:

In (3.1), the factsgi, i ∈ {1, 2, 3}, are replaced byg ai ⇒ gi;

In (3.2.), the clauses fora′ andf, h are added,i ∈ {1, 2, 3}:

f0 ⇒ g a′
1. f1 ⇒ g a′

2. f2 ⇒ g a′
3. h0 ⇒ g a′

1. h1 ⇒ g a′
2. h2 ⇒ g a′

3.

In (3.3), the clauses fora′ andg are added:

g a′
2 ⇒ g a′

1. g a′
3 ⇒ g a′

2.

In this encodingsat′(I2) of the modified instanceI2, we now longer have a factg3 in (3.1.) and thus the
above derivation of a contradiction for the truth value ofb3 in any model ofsat′(I2) is not applicable. In
fact,sat′(I2) is satisfiable, and its least model is

M = {b0, c0, d0 f0, g0, b a1, c a1, b a′
1, g a′

1, b1, c1, g1, b a2}.

Then, we haveCM = {b, c, d, f, g, h}, ℓM (b) = ℓM (c) = ℓM (g) = 2 andℓM (d) = ℓM (f) = 1, which
leads to a single 3-maintaining controlK such thatK(s) = a for s ∈ {b, c, d, f} andK(g)= a′. Note that
sinceK is defined on every state excepth, it 3-maintains every setS w.r.t. everyE which includesh. As
for S = {b}, K(c) andK(d) could remain undefined, since they are not in the closure ofb (which can be
easily detected) at the price of losing robustness with respect to enlargingS. There is an alternative solution
in whichK(b) = a′ instead ofK(b) = a. HereK(s) can not be made undefined on anys 6= h.2

INFSYS RR 1843-04-04 23

5.3 Genuine algorithm

From the encoding to Horn SAT above, we can distill a direct algorithm to construct ak-maintainable
control, if one exists. The algorithm mimics the steps which a SAT solver might takein order to solve
sat′(I). It uses countersc[s] andc[s a] for each states ∈ S and possible agent actiona in states, which
range over{−1, 0, . . . , k} and{0, 1, . . . , k}, respectively. Intuitively, valuei of counterc[s] (at a particular
step in the computation) represents that so fars0, . . . , si are assigned true; in particular,i = −1 represents
that nosi is assigned true yet. Similarly, valuei for c[s a] (at a particular step in the computation) represents
that so fars a1, . . . , s ai are assigned true (and in particular,i = 0 that nos ai is assigned true yet).
Starting from an initialization, the algorithm updates by demand of the clauses insat

′
(I) the counters (i.e.,

sets propositions true) using a commandupd(c, i) which is short for “if c < i then c := i,” towards a
fixpoint. If a counter violation is detected, corresponding to violation of a clauses0 → ⊥ for s ∈ S ∩ E in
(1) orsk → ⊥ for s ∈ S \E in (4), then no control is possible. Otherwise, a control is constructed from the
counters.
In detail, the algorithm is as follows:

Algorithm k-CONTROL

Input: A systemA = (S,A,Φ, poss), a setAagent ⊆ A of agent actions, sets of statesE,S ⊆ S, an
exogenous functionexo, and an integerk ≥ 0.

Output: A controlK whichk-maintainsS with respect toE, if any such control exists. Otherwise, output
that no such control exists.

(Step 1) Initialization

(i) SetΦexo = {〈s, a, s′〉 | s ∈ S, a ∈ exo(s), s′ ∈ Φ(s, a)}, ΦE
poss

= {〈s, a, s′〉 | s ∈ S \ E, a ∈
poss(s), s′ ∈ Φ(s, a)}, and for everys ∈ S, possag(s) = Aagent ∩ poss(s).

(ii) For everys in E, setc[s] := −1.

(iii) For everys in S \ E, setc[s] := k if s ∈ S andpossag(s) = ∅; otherwise, setc[s] := 0.

(iv) For everys in S \E anda ∈ possag(s), setc[s a] := 0.

(Step 2) Repeat the following steps until there is no change orc[s]=k for somes ∈ S \ E or c[s]≥0 for
somes ∈ S ∩ E:

(i) For any〈s, a, s′〉 ∈ Φexo such thatc[s′]=k do upd(c[s], k).

(ii) For any〈s, a, s′〉 ∈ ΦE
poss

such thatc[s′]=i and0 ≤ i < k do upd(c[s a], i+ 1).

(iii) For any states ∈ S \ E such thatpossag(s) 6= ∅ and i= min(c[s a] | a ∈ possag(s))
do upd(c[s], i).

(Step 3) Ifc[s]=k for somes ∈ S\E or c[s]≥0 for somes ∈ S∩E, then output thatS is notk-maintainable
w.r.t.E and halt.

(Step 4) Output any controlK : S \ E → Aagent defined on all statess ∈ S \ E with c[s] < k and such
thatK(s) ∈ {a ∈ possag(s) | c[s a] = minb∈possag(s) c[s b] < k}. 2

24 INFSYS RR 1843-04-04

The above algorithm is easily modifiable if we simply want to output a super-control such that each of its
refinements is ak-maintainable control, leaving a choice about the refinement to the user. Alternatively, we
can implement in Step 4 such a choice based on preference information.
The following proposition states that the algorithm works correctly and runsin polynomial time.

Proposition 10 Algorithm k-CONTROL solves problemk-MAINTAIN , and terminates for any inputI in
polynomial time. Furthermore, it can be implemented to run inO(k‖I‖) time.

Proof. The correctness of the algorithms follows from Theorem 8 and the fact that k-CONTROL mimics,
starting from facts in (5) and (3.1), the computation of the least model ofsat

′
(I) by a standard fix-point

computation. As for the polynomial time complexity, since counters are only increased, and the loop in
Step 2 is reentered only if at least one counter has increased in the latest run, it follows that the number of
iterations is polynomially bounded. Since the body of Step 2 and each other step is polynomial, it follows
thatk-CONTROL runs in polynomial time.
For the more detailed account, note that bitmaps forS, E andA (if not available in the input) can be
generated in timeO(|S|+ |A|). In (i) of Step 1, the setsΦexo andΦE

poss
can be constructed in timeO(|Φ|+

|exo|) andO(|Φ|+ |poss|+ |S|), respectively, using an auxiliary array for random access toΦ(a, s) in case
if the functions are given by their graphs (cf. proof of Corollary 9). Constructingpossag(s) for all s∈S takes
O(|poss|) time, and (ii)–(iv) of Step 1 is feasible in timeO(|S|+ |poss|).
Using flags to signal changes to countersc[s], c[sa], and auxiliary counters formin(c[s a] | a ∈ possag(s)),
the number of calls ofupd in Step 2 isO(k(|Φexo | + |Φposs| + |S|)), and each call takesO(1) time. The
loop condition can be checked inO(m) time wherem is the number of changes in the loop. Hence, the total
time for Step 2 isO(k‖I‖). Step 3 isO(1) if a flag is set in Step 2 indicating the reason for the loop exit.
Finally, in Step 4, a controlK can be easily output in timeO(|poss|). In total, the time isO(k‖I‖) 2

Thus, fork bounded by a constant,k-CONTROL can be implemented to run in linear time. We remark that
further improvements are possible. For example, states may be eliminated beforehand which will not be
reachable from any state inS under any control that is eventually constructed. This can be done efficiently
by computing an upper bound ofClosure(S,KA,exo) in which all possible actions at any state are merged
into a single action. We leave a detailed discussion of this and further refinements for future work.

6 Encoding Maintainability for an Answer Set Solver

In this section, we use the results of the previous section to show how computing ak-maintainable control
can be encoded as finding answer sets of a non-monotonic logic program.More precisely, we describe an
encoding to non-monotonic logic programs under the Answer Set Semantics [24], which can be executed on
one of the available Answer Set Solvers such as DLV [20, 33] or Smodels[40, 50]. These solvers support the
computation of answer sets (models) of a given program, from which solutions (in our case,k-maintaining
controls) can be extracted.
The encoding is generic, i.e., given by afixed programwhich is evaluated over the instanceI represented
by input factsF (I). It makes use of the fact that non-monotonic logic programs can have multiplemodels,
which correspond to different solutions, i.e., differentk-maintainable controls.
In the following, we first describe how a system is represented in a logic program, and then we develop
the logic programs for both deterministic and general, nondeterministic domains.We shall follow here the
syntax of the DLV system; the changes needed to adapt the programs to other Answer Set Solvers such as
Smodels are very minor.

INFSYS RR 1843-04-04 25

6.1 Input representation

The inputI of problemk-MAINTAIN , can be represented by factsF (I) as follows.

• The systemA = (S,A,Φ, poss) can be represented using predicatesstate, transition, and
poss by the following facts:

– state(s), for eachs ∈ S;

– action(a), for eacha ∈ A;

– transition(s,a,s′), for eachs, s′ ∈ S anda ∈ A such thats′ ∈ Φ(s, a);

– poss(s,a), for eachs ∈ S anda ∈ A such thata ∈ poss(s).

• the setAagent⊆A of agent actions is represented using a predicateagent by factsagent(a), for
eacha∈Aagent;

• the set of statesS is represented by using a predicatestart by factsstart(s), for eachs ∈ S;

• the set of statesE is represented by using a predicategoals by factsgoal(s), for eachs ∈ E;

• the exogenous functionexo is represented by using a predicateexo by factsexo(s,a) for eachs∈S
anda∈exo(s).

• finally, the integerk is represented using a predicatelimit by the factlimit(k).

Example 7 Coming back to Example 3, the inputI is represented as follows:

state(b). state(c). state(d). state(f). state(g). state(h).

action(a). action(a1). action(e).

trans(b,a,c). trans(b,a1,f). trans(c,a,d). trans(d,a,h).
trans(f,a,h). trans(f,e,g).

poss(b,a). poss(b,a1). poss(f,a). poss(f,e).
poss(c,a). poss(d,a).

agent(a). agent(a1).

start(b). goal(h).

exo(f,e).

limit(3). 2

6.2 Deterministic transition function Φ

The following is a program, executable on the DLV engine, for deciding the existence of ak-control. In
addition to the predicates for the input factsF (I), it employs a predicaten path(X,I), which intuitively
corresponds toXI , and further auxiliary predicates.

% Define range of 0,1,...,k for stages.
range(I) :- #int(I), I <= K, limit(K).

% Rule for (0).
n_path(X,I) :- state(X), range(I), limit(K), I<K, n_path(X,J), J = I+1.

26 INFSYS RR 1843-04-04

% Rule for (1).
:- n_path(X,0), goal(X), start(X).

% Rule for (2)
n_path(X,K) :- trans(X,A,Y), exo(X,A), n_path(Y,K), limit(K).

% Rules for (3)
n_path(X,I) :- state(X), not goal(X), range(I), I>0, not some_pass(X,I).

some_pass(X,I) :- range(I), I>0, trans(X,A,Y), agent(A),
poss(X,A), not n_path(Y,J), I=J+1.

% Rule for (4)
:- n_path(X,K), limit(K), start(X), not goal(X).

% Rule for (5)
n_path(X,0) :- state(X), not goal(X).

The predicaterange(I) specifies the index range from0 to k, given by the inputlimit(k). The rules
encoding the clause groups (0) – (2) and (4), (5) are straightforward and self explanatory. For (3), we need to
encode rules with bodies of different size depending on the transition functionΦ, which itself is part of the
input. We use that the antecedent of any implication (3) is true if it is not falsified, where falsification means
that some atoms′i−1, s′ ∈ PS(s), is false; to assess this, we use the auxiliary predicatesome pass(X,I).
To compute the super-controlK+, we may add the rule:

% Define C M
cbar(X) :- state(X), not n_path(X,K), limit(K).

%Define state level L
level(X,I) :- cbar(X), not n_path(X,I), I > 0, n_path(X,J), I=J+1.

level(X,0) :- cbar(X), not n_path(X,0).

% Define super-control k_plus
k_plus(X,A) :- agent(A), trans(X,A,Y), poss(X,A), level(X,I),

level(Y,J), J<I, not goal(X).

In cbar(X), we compute the states inCM , and inlevel(X,I) the levelℓ
M

(s) of each states ∈ CM

(=C
M

for the corresponding modelM of sat(I)). The super-controlK+
M is then computed ink plus(X,A).

Finally, by the following rules we can nondeterministically generate any control which refinesK+
M :

% Selecting a control from k_plus.
control(X,Y) :- k_plus(X,Y), not exclude_k_plus(X,Y).

exclude_k_plus(X,Y) :- k_plus(X,Y), control(X,Z), Y<>Z.

The first rule enforces that any possible choice forK(s) must be taken unless it is excluded, which by the
second rule is the case if some other choice has been made. In combination thetwo rules effect that one and
only one element fromK+

M (s) is chosen forK(s).

INFSYS RR 1843-04-04 27

Example 8 If the input representation of Example 5 is in a fileexa3.dlv and the above program, denoted
by Πdet, in a filedet.dlv, the DLV engine can be invoked e.g. by

dlv exa3.dlv det.dlv -N=3 -filter=control

which outputs the controls; here-N=3 sets the range of integers dynamically supported by the engine to 3,
and -filter=control effects that the answer sets are clipped to the predicatecontrol. In the particular case,
the output on the call is (apart from system version information)

control(b,a), control(c,a), control(d,a)

yielding the unique control which exists in this case. If we would add a further agent actiona2 to the action
set, and extend the transition function byΦ(b,a2) = c, then a call of DLV for the respective representation
would yield

{control(b,a2), control(c,a), control(d,a)}
{control(b,a), control(c,a), control(d,a)}

corresponding to the two alternative controls which emerge, since the agent can take either actiona or action
a2 in statea.

6.3 Nondeterministic transition function Φ

As for deciding the existence of ak-maintaining control, the only change in the code for the deterministic
case affects Step (3). The modified code is as follows, wheren apath(X,A,I) intuitively corresponds to
X AI .

% Rules for (3); different from above

% (3.1)
n_path(X,I) :- state(X), not goal(X), range(I), I>0, not some_apass(X,I).

some_apass(X,I) :- range(I), I>0, agent(A), poss(X,A), not n_apath(X,A,I),
not goal(X).

% (3.2)
n_apath(X,A,I) :- agent(A), trans(X,A,Y), poss(X,A), range(I), I>0,

n_path(Y,J), I=J+1, not goal(X).

% (3.3)
n_apath(X,A,I) :- agent(A), poss(X,A), range(I), I>0, limit(K), I<K,

n_apath(X,A,J), J=I+1, not goal(X).

Here,some apass(X,A,I) plays for encoding (3.1) a similar role assome pass(X,I) for encoding
(3) in the deterministic encoding.
To compute the super-controlK+

M , we may then add the following rules:

% Define C M
cbar(X) :- state(X), not n_path(X,K), limit(K).

28 INFSYS RR 1843-04-04

% Define state action level, alevel (>=1)
alevel(X,I) :- alevel_leq(X,I), I=J+1, range(J), not level_leq(X,J).

alevel_leq(X,I) :- cbar(X), not goal(X), poss(X,A), agent(A), I>0,
range(I), not n_apath(X,A,I).

% Define super-control k_plus
k_plus(X,A) :- agent(A), alevel(X,I), poss(X,A), not n_apath(X,A,I).

Here, the value ofℓM (s) is computed inalevel(X,I), using the auxiliary predicatealevel leq(X,I)
which intuitively means thatℓM (X) ≤ I.
For computing the controls refiningK+

M , we can add the two rules for selecting a control fromk plus
from the program for the deterministic case.

Example 9 Let us revisit the instanceI1 in Example 6. We get the DLV representation ofI1 by adding the
facttrans(c,a,f). to the representation forI. Assuming that it is in a fileexa4.dlv and the program
Πndet in a filendet.dlv, a call

dlv exa4.dlv ndet.dlv -N=3 -filter=control

yields no output (apart from some system version print), which is correct. On the other hand, if we consider
the inputI2 for the variant of Example 6 (with agent actiona′ possible ing andΦ(g,a′) = {f, h}), then the
output is

{control(b,a1), control(c,a), control(d,a), control(f,a), control(g,a1)}
{control(b,a), control(c,a), control(d,a), control(f,a), control(g,a1)}

(wherea1 encodesa′). Again, this is the correct result.

6.4 Layered use of negation

An important note at this point is that the programsΠdet andΠndet do not necessarily have models which
correspond to the least models of the Horn theoriessat(I) andsat′(I), respectively. The reason is that the
use of negationnot some pass(X,I) and resp.not some apass(X,I) may lead through cycles
in recursion. Thus, not each control computed is necessarily maximal (even though the maximal controls
will be computed in some models). Furthermore, because of cyclic negation it isnot a priori clear that the
part of the program deciding the existence of a control is evaluated by DLV in polynomial time. However,
consistency (i.e., existence of an answer set) is guaranteed wheneversat(I) resp.sat′(I) has a model.
It is possible to modifyΠdet such that the use of negation in recursion cycles is eliminated, by using standard
coding methods to evaluate the body of the rule in (3). Namely, introduce forΠdet a predicateall true
and replacenot some pass(X,I) in the code for (3) withall true(X,I), which is defined such
thatall true(s, i) represents that everys′i−1 ∈ PS(s) is assigned true, which can be checked using a
linear ordering≤ onPS(s). However, we refrain from this here.
Notice that in the case wherePS(s) has size bounded by a constantc, we can use a predicateps of arity
c + 1 to representPS(s) = {s(1), . . . , s(l)} by a single factps(s, s(1), . . . , s(l), . . . , s(l)) wheres(l) is
reduplicated ifl < c. It is then easy to express the clause (3).
We can similarly modifyΠndet such that the use of negation in recursion cycles is eliminated, where we
use a linear ordering onAagent ∩ poss(s) (or simply onAagent, assuming that there are not many agent

INFSYS RR 1843-04-04 29

actions overall). Finally, we can also use for the programΠdet simply an ordering ofAagent, since the
deterministic transformationΦ(s, a) is a (partial) surjective mapping ofA ontoPS(s), which guarantees
that viaA ∩ poss(s) eachs′ ∈ PS(s) can be accessed throughΦ.
The modified programs use negation only in a stratified manner, and thus will beevaluated by DLV in
guaranteed polynomial time in the size of the DLV representation ofsat(I) andsat′(I), respectively.

6.5 State descriptions by variables

In many cases, states of a system are described by a vector of values for parameters which are variable over
time. It is easy to incorporate such state descriptions into the LP encoding from above, and to evaluate them
on Answer Set Solvers provided that the variables range over finite domains. In fact, if any states is given
by a (unique) vectors = 〈s1, . . . , sm〉 m > 0, of valuessi, 1 ≤ i ≤ m, for variablesXi ranging over
nonempty domains, then we can represents as factstate(vi

1,...,v
i
ri
) and use a vectorX1,...,Xm

of state variables in the DLV code, in place of a single variable,X. No further change of the programs from
above is needed.
Similarly, we can easily accommodate actionsa(P1, P2, . . . , Pm) with parametersP1, . . . , Pm (which is
important) from a finite set if desired. However, here rule the definingexclude k plus(X,Y) should be
replaced by all rules emerging if the atomY <> Z in the body is replaced byYi <> Zi, i ∈ {1,...,m}
(assuming thatY andZ are replaced byY1,...,Ym andZ1,...,Zm, respectively).
Another possibility to handle state descriptions by variables would be to implementa coding scheme, which
maps each vectors = 〈s1, . . . , sm〉 into an integeri(s), represented by factcode(i(s), s1, . . . , sm).
Furthermore, we point out that the input need not consist merely of facts, but may also involve rules to define
the predicates of the input representation more compactly. Finally, the facts for action can be dropped,
since they are not referenced by any rule in programsΠdet andΠndet.
For illustration, we consider the buffer example from Section 3.

Example 10 Recall that states in the buffer example are given by pairs of integers〈i,j〉 wherei andj are
the numbers of objects in bufferb1 andb2, respectively. We thus use variablesX1,X2 andY1,Y2 in place
of X andY, respectively.
For buffer capacity of 3,S = {〈0, 0〉}, E = {〈0, j〉 | 1 ≤ j ≤ 3}, andk = 6, the input can be represented
as follows:

state(X1,X2) :- #int(X1), #int(X2), X1 <= 3, X2 <= 3.

start(0,0).

goal(0,X2) :- state(0,X2).

trans(X1,X2,m_12,Y1,Y2) :- state(X1,X2), state(Y1,Y2), X1=Y1+1, Y2=X2+1.
trans(X1,X2,m_21,Y1,Y2) :- state(X1,X2), state(Y1,Y2), Y1=X1+1, X2=Y2+1.
trans(X,X2,proc,X,Y2) :- state(X,X2), state(X,Y2), X2=Y2+1.
trans(X1,X,ins,Y1,X) :- state(X1,X), state(Y1,X), Y1=X1+1.

poss(X1,X2,m_12) :- state(X1,X2), 1 <= X1, X2 <= 2.
poss(X1,X2,m_21) :- state(X1,X2), 1 <= X2, X1 <= 2.
poss(X1,X2,proc) :- state(X1,X2), 1 <= X2.
poss(X1,X2,ins) :- state(X1,X2), X1 <= 2.

30 INFSYS RR 1843-04-04

agent(m_12). agent(m_21). agent(proc). exo(ins).

limit(6).

Here, equalitiesX1=0 for X1,X2 in the rule defininggoal andX1=Y1 in the definition oftrans(X,X2,
proc,X,Y2) etc are pushed through.
Invoking DLV, assuming the representation is stored in fileexa-buffer.dlv and the expanded version
of Πdet in a filedet2.dlv, with

dlv exa-buffer.dlv det2.dlv -N=6 -filter=control

yields 13 models, of which encode different controls. Among the maximal controls is

{ control(1,0,m_12), control(1,1,m_12), control(1,2,m_12), control(1,3,proc),
control(2,0,m_12), control(2,1,m_12), control(2,2,proc), control(2,3,proc),
control(3,0,m_12), control(3,1,proc), control(3,2,proc), control(3,3,proc)}

which is defined on all states outsideE, and thus constitutes a6-maintaining control for the whole system.

7 Computational Complexity

In this section, we consider the complexity of constructingk-maintainable controls under various assump-
tions. To this end, we first describe the problems analyzed and give an overview of the complexity results.
After that, the results are established in a separate subsection; the readerwho is not interested in the technical
proofs might safely skip it.

7.1 Problems considered and overview of results

Following the common practice, we consider here the decision problem associated withk-MAINTAIN , which
we refer to ask-MAINTAINABILITY : Given a systemA = (S,A,Φ, poss), a setAagent ⊆ A of agent
actions, sets of statesE,S ⊆ S, an exogenous functionexo, and an integerk ≥ 0, decide whetherS is
k-maintainable with respect toE in A. Furthermore, we also considerω-MAINTAINABILITY , which has
the same input exceptk and asks whetherS is maintainable with respect toE in A.
We consider the problems in two different input settings, in line with the previous sections:

Enumerative representation: The constituents of an instanceI are explicitly given, i.e., the sets (A,S,
Aagent, S, andE) in enumerative form and the functions (Φ(a, s), poss(s), andexo) by their graphs
in tables.

State variables representation:A system states is represented by a vectors = (v1, . . . , vm) of val-
ues for variablesf1,. . . ,fm ranging over given finite domainsD1, . . . , Dm, whileA andAagent are
given in enumerative form. We assume that polynomial-time procedures for evaluating the following
predicates are available:

• in Phi(s, a, s′), in poss(s, a), andin exo(s, a) respectively for decidings′ ∈Φ(s, a),
a∈ poss(s), anda∈ exo(s), respectively.

• in S (s) andin E (s) for deciding whethers∈S ands∈E, respectively.

INFSYS RR 1843-04-04 31

+/- exogenous actions k-MAINTAINABILITY ω-MAINTAINABILITY

givenk constantk ≥ 1

deterministic P / NL (Th.11/15) P / in LH (⊂ L) (Th.11/16) P / NL (Co.12/Th.15)

nondeterministic P (Th.11/13) P / in LH (⊂ L) (Th.11/16) P (Co.12/Th.13)

Table 1: Complexity of decidingk- andω-MAINTAINABILITY under enumerative representation (logspace
completeness)

+/- exogenous actions k-MAINTAINABILITY ω-MAINTAINABILITY

givenk constantk ≥ 1

deterministic EXP / PSPACE(Th.18/21) EXP / co-NP (Th.18/22) EXP / PSPACE(Co.19/Th.21)

nondeterministic EXP (Th.18/20) EXP / co-NP (Th.18/22) EXP (Co.19/Th.20)

Table 2: Complexity of decidingk- and ω-MAINTAINABILITY under state variables representation
(logspace completeness)

Orthogonal to this, we also consider (1) generalk versus constantk, in order to highlight the complexity of
small windows of opportunity for maintenance; (2) absence of exogenous actions, to see what cost intuitively
is caused by an adversary; and (3) nondeterministic versus deterministic actions.
The results of the complexity analysis are compactly summarized in Tables 1 and 2, in which unless stated
otherwise, the entries stand for completeness results under logspace reductions. We assume that the reader
is familiar with the classesP (polynomial time),EXP (exponential time),L (logarithmic workspace),NL
(nondeterministic logarithmic work space), co-NP (co-nondeterministic polynomial time), andPSPACE
(polynomial space) appearing in the tables, and refer to [44] and references therein for further background
on complexity. ByLH we denote the logarithmic time hierarchy [7, 27], which is given byLH =

⋃

i≥0 Σlog
i ,

whereΣlog
i denotes the decision problems solvable on an alternating Turing machine in logarithmic time

with at mosti−1 alternations between existential and universal states, starting in an existential state. Note
thatLH is strictly included inL . A more refined complexity assessment is given in Section 7.2. However,
we refrain here from providing a sharp complexity characterization of theproblems classified withinLH in
terms of completeness under a suitable notion of reduction, since they are not central to the maintainability
issue under an “adversarial” environment.
Under enumerative representation (Table 1),k- andω-MAINTAINABILITY have the same complexity as
Horn SAT, which isP-complete [44]. Thus, according to widely believed complexity hypotheses,the prob-
lem is difficult to parallelize and to solve within poly-logarithmic workspace. In fact, this holds also for
the case of constantk= 1 and the restriction that all actions are deterministic and that there is a single ex-
ogenous action. Thus, even in the simplest setting with an adversary according to the dimensions above,
the problem already harbors its full complexity; excluding nondeterministic actions and/or fixingk does not
make the problems simpler. Intuitively, this is because with the help of exogenous actions, one can simulate
nondeterminism and split sequences of agent maintenance actions into small segments.
On the other hand, when exogenous actions are excluded (listed under “-”), k- andω-MAINTAINABILITY

are always easier when the actions are deterministic or the window of opportunity is small (k is constant).
In summary, the results show that exogenous actions cannot be compiled efficiently away (with reasonable
complexity) to an instance of maintainability under a small window opportunity, and that nondeterministic

32 INFSYS RR 1843-04-04

actions are indispensable for such a compilation.
The reason is that in absence of exogenous actions,k-MAINTAINABILITY is akin to a graph reachability
resp. planning problem (for the latter, see Section 8.1). Indeed, definefor a fixed systemA=(S,A,Φ, poss),
a set of agent actionAagent ⊆ A, and setsE,S ⊆ S of states the predicatesri(s), i ≥ 0, on s ∈ S
inductively by

r0(s) = s ∈ E,

ri+1(s) = s ∈ E ∨ ∃a ∈ Aagent ∩ poss(s)

∀s′ ∈ S(s′ ∈ Φ(s, a)⇒ ri(s
′)), for i ≥ 0. (1)

Informally,ri(s) expresses that some state inE can be reached fromswithin i agent actions, and it holds that
S is k-maintainable with respect toE, exactly ifrk(s) holds for everys in S (as proved in Lemma 1 below).
The predicaterk(s) is definable in first-order predicate logic with a suitable relational vocabulary (using
the predicates given for enumerative representation). As well-known,the first-order definable properties are
those which can be decided inLH [7, 27]. SinceLH is considered to contain problems which have much
lower complexity than hard problems inP, the effect of exogenous actions is drastic in complexity terms.
Furthermore, problems inLH are amenable to parallelization (see [27]).
Under state variables representation (Table 2), the complexity of the problems, with few exceptions increases
by an exponential. This increase is intuitively explained by the fact that statevariables permit in general an
exponentially smaller input representation, which must be unpacked for solving the problem. The exception
for constantk in absence of exogenous functions, where the complexity increases from within LH to co-NP,
is intuitively explained by the fact that the quantifier “∃a ∈ Aagent ∩ poss(s)” in equation (1), as opposed
to “∀s′ ∈ S”, ranges over a polynomial set of values (in the input size), and thus can be deterministically
eliminated.
The EXP-completeness means that the problems are provably intractable, i.e., have anexponential lower
bound in this setting. Even in the “cheapest” cases under state variable representation, the problems are
intractable. Exogenous actions cannot be compiled efficiently away in the same cases as under enumerative
representation.

7.2 Enumerative representation

We start with the case of enumerative representation. Our first result is the following.

Theorem 11 Problemk-MAINTAINABILITY is P-complete (under logspace reductions). TheP-hardness
holds under the restriction thatk= f(A,S,E) is any function ofA, S, andE such thatf(A,S,E)≥ 1 (in
particular, for fixedk ≥ 1), even if in addition all actions are deterministic and there is only one exogenous
action.

Proof. The membership ofk-MAINTAINABILITY in P follows from Corollary 9.
We proveP-hardness under the stated restriction by a reduction from deciding logical entailmentπ |= q of a
propositional atomq from a propositional Horn logic program (PHLP)π, which is a set of rules of the form

b0 ← b1, . . . , bn, n ≥ 0, (2)

and eachbi is a propositional atom from an underlying atom setAt; b0 is the head andb1, . . . , bn is the body
of the rule.

INFSYS RR 1843-04-04 33

As well-known,π |= q holds iff there is a sequence of rulesr1, r2, . . . , rm, m ≥ 1, from π whereri
is of form bi0 ← bi1 , . . . , bin , such that{bi1 , . . . , bin} ⊆ {b10

, . . . , bi−10
}, for all i ∈ {1, . . . ,m} (thus

in particular,1n = 0) and bm0
= q, called aproof of q from π. Informally, q is derived by successive

application of the rulesr1, . . . , rm, whereri “fires” after all previous rulesr1, . . . , ri−1 have fired.
A natural idea is to represent backward rule applicationrm, rm−1, . . . , r1 through agent actions; for a rule
r of form (2), there is an agent actiona r which applied to a statesb0 representingb0, brings the agent
nondeterministically to any statesbi

representingbi, i ∈ {1, . . . , n}. Given a statesq encodingq, S = {sq}
is maintainable w.r.t. a set of statesE encoding the facts inπ if q has a proof fromπ. However, this does
not account for the restriction thatk = f(A,S,E) for any suchf . The key for this is to establish the result
for the extremal case wherek= 1 is constant (i.e., for 1-MAINTAINABILITY) and then to extend it to the
general case.
Using a constrained rule format inπ and an exogenous action, we can emulate nondeterministic agent
actions and sequences of agent actions with some coding tricks by alternating sequences of deterministic
agent and exogenous actions, such that provability ofq from π corresponds to1-maintainability ofS w.r.t.
a setE in a systemA constructible in logarithmic workspace fromq andπ.
Without loss of generality, we assume that each rule has either zero or two atoms in the body (i.e.,n = 0
or n = 2 in (2)). We construct fromπ andq a systemA = (S,A,Φ, poss), sets of statesS andE, a set
Aagent ⊆ A, and a functionexo as follows:

b3

c3

a3 r3

1

r3

3

r3

2

c2

a2

b2

r2

3

r2

2

r2

1

c1

b1

a1 r1

1

r1

2

r1

3

a0

b0

c0

(b, c)2 (b, c)1 (b, c)0

a r1

a r2

a r3

e

a r2

a r3

e

a r2

a r3

a r2 a r2

S

E

e

eee

a r1 a r1

Figure 3: Transition diagram of the system forπ = {a← b, c; b← ; c←} andq = a (S andE encircled).

1. S: For each atomf in π and ruler ∈ π, f0, . . . fm andr1, . . . , rm are states inS. Furthermore, if the
body ofr is u, v then(u, v)0, . . . , (u, v)m−1 are states inS.

2. A = {a r | r ∈ π} ∪ {e}.

3. Φ: For any ruler ∈ π with headf , Φ(a r, f i) = {ri} for i ∈ {1, . . . ,m} andΦ(a r, (u, v)i) = {ri},
for (u, v)i ∈ S, i ∈ {1, . . . ,m − 1}. If moreoverr has bodyu, v, thenΦ(e, ri) = {(u, v)i−1}, and
Φ(e, (u, v)i−1) = {vi−1}, for i ∈ {1, . . . ,m− 1}. In all other cases,Φ(a, s) = ∅.

4. poss: For each states, poss(s) = {a ∈ A | Φ(a, s) 6= ∅}.

5. E = {r1, . . . , rm | r ∈ π}

34 INFSYS RR 1843-04-04

6. S = {qm}.

7. Aagent = A \ {e}.

8. exo: for all rulesr ∈ π of form f ← u, v, exo(ri) = {e} for i ∈ {1, . . . ,m} andexo((u, v)j) = {e}
for j ∈ {1, . . . ,m− 1}. For all other statess, exo(s) = ∅.

The transition diagram for the system constructed forπ = {a ← b, b ←, c ←} is shown in Figure 7.2.
Intuitively, the statef i encodes thatf can be derived fromπ with a proof of length at mosti. This is
propagated in backward rule application. Each agent actiona r selects a ruler to prove an atomf ; if the
rule has a bodyu, v, the exogenous action pushes the agent to prove bothu (from (u, v)) andv within
decreased recursion depth.
We claim thatπ |= q iff there exists some 1-maintaining controlK for S with respect toE in A.
Suppose first thatπ |= q. We then construct a 1-maintaining controlK for S with respect toE as follows.
Let P = r1, . . . , rk be a proof ofq from π such that, without loss of generality, all rulesri have different
heads. SetD = {qm} and iterate the following untilD remains unchanged: For eachf i ∈ D resp.(u, v)i ∈
D, i ≥ 0, let rj be the rule with headf resp.u in P . DefineK(f i) = {a rj} resp.K((u, v)i) = {a rj},
and add, ifrj has bodyu′, v′ the states(u, v)i−1 andv′i−1 toD. SinceP is a proof ofq from π, the rulerj
always exists, and for each states in Closure(S,AK,exo) \ E (=D),K(s) is defined andΦ(K(s), s) yields
some state inE. Hence,K is a 1-maintaining control forS with respect toE in A.
Conversely, supposeK is a 1-maintaining control forS with respect toE in A. Without loss of gener-
ality, K(s) is undefined for all statess ∈ E. An easy induction oni ≥ 1 shows that for eachf i ∈
Closure(S,AK,exo) resp.(u, v)i ∈ Closure(S,AK,exo), it holds thatπ |= f resp.π |= u andπ |= v. For
i=1, suppose firstK(f1) = a r. Ruler must have formf ← ; otherwise, some states(u, v)0, v0 would
be inClosure(S,AK,exo), which contradicts thatK is a 1-maintaining control. Hence,π |= f . Next sup-
poseK((u, v)1) = a r. Then, for similar reasons,r must be of formu ←, henceπ |= u. Furthermore,
v1 ∈ Closure(S,A,exo) and as already establishedπ |= v. For i > 1, supposeK(f i) = a r. Then eitherr
is of formf ← and thusπ |= f , or of formf ← u, v. In the latter case,(u, v)i−1 ∈ Closure(S,AK,exo) and
hence, by the induction hypothesis,π |= u andπ |= v. Consequently,π |= f . Similarly, ifK((u, v)i) = a r,
then eitherr is of form u ← or of form u ← u′, v′ and(u′, v′)i−1 ∈ Closure(S,AK,exo), which by the
induction hypothesis impliesπ |= u′ andπ |= v′, thusπ |= u. Sincevi ∈ Closure(S,AK,exo), as already
establishedπ |= v. Consequently,π |= f . This proves the statement fori > 1, and concludes the induction.
Sinceqm ∈ Closure(S,AK,exo), we haveπ |= q. This proves our claim.
Notice thatA, S andE can be constructed in logarithmic workspace fromπ andq. This provesP-hardness
of 1-MAINTAINTABILITY . An easy observation is that every agent action in the systemA leads to some
state in the setE described. Hence,S is 1-maintainable with respect toE in A iff S is k-maintainable
with respect toE in A for anyf(A,S,E) such thatf(A,S,E) ≥ 1. Hence,P-hardness under the stated
restriction follows. 2

The following result is immediate from this result and the fact that maintainability is equivalent tok-
maintainability wherek= |S| is the number of states.

Corollary 12 ω-MAINTAINABILITY is P-complete. TheP-hardness holds even if all actions are determin-
istic and there is only one exogenous action.

The following result states a furtherP-complete restriction of the above problems.

Theorem 13 k-MAINTAINABILITY andω-MAINTAINABILITY without exogenous actions areP-complete.

INFSYS RR 1843-04-04 35

Proof. Membership inP was established above. TheP-hardness follows from Theorem 11 by merging the
(single) exogenous actione into the agent actions as follows: For each states such thate ∈ exo(s), redefine
every actiona ∈ poss(s) ∩ Aagent by Φ(s, a) := Φ(s, a) ∪ Φ(s, e). It is easy to see that givenS andE, S
is |S|-maintainable w.r.t.E in the resulting systemA′ iff S is |S|-maintainable w.r.t.E in A. Furthermore,
A′ is computable in logspace fromA. This implies the result. 2

The hardness results above are at the border of the hardness frontier, in the sense that in the absence of
exogenous actions and, in case ofω-MAINTAINABILITY also nondeterminism, the problems are no longer
P-hard. The following lemma gives a useful characterization ofk-maintainability for this purpose.

Lemma 14 Given a systemA = (S,A,Φ, poss), a set of agents actionAagent ⊆ A, and a set of statesE, a
set of statesS is k-maintainable with respect toE in absence of exogenous actions (i.e.,exo is void),k ≥ 0,
iff rk(s) as in (1) holds for alls ∈ S.

Proof. For the only if direction, consider any 1-maintaining controlK which without loss of generality is
undefined on everys ∈ E. For every states ∈ Closure(S,AK,exo) = Closure(S,AK), letds be the distance
of s fromE underK, i.e., the largesti such thatσ = s0, s1, . . . , si ∈ Unfoldk(s,A,K) wheres0 = s. By
an easy induction onds ≥ 0, we obtain usingK(s) as witness fora in (1), thatrds

(s), rds+1(s), . . . , rk(s)
must hold fors. Hence,rk(s) holds for everys ∈ S.
Conversely, let for eachs ∈ S be is the least integeri such thatri(s) holds. If is > 0, then define
K(s) := a for some arbitrary actiona ∈ Aagent ∩ poss(s) witnessing (1) fori + 1 = is, otherwise
(i.e., if is = 0 or ri(s) does not hold for anyi ≥ 0) let K(s) undefined. Then,K is a k-maintaining
control forS with respect toE, since by definition of the relationsri, for eachs ∈ Closure(S,AK), and
σ = s0, s1, . . . , sl ∈ Unfoldk(s,A,K) such thats0 = s it holds thatl ≤ k andsl ∈ E (recall that, as tacitly
assumed,Φ(a, s) 6= ∅ for eacha ∈ poss(a)). Hence,S is k-maintainable with respect toE. 2

We then establish the following result.

Theorem 15 k-MAINTAINABILITY andω-MAINTAINABILITY for systems with only deterministic actions
and no exogenous actions areNL -complete.

Proof. In this case, decidingri(s) for given s∈S and i≥ 0 is in NL : If s /∈E, a propera in (1) and
s′ = Φ(s, a) can be guessed and, recursively,rk−1(s

′) established, maintaining a counteri. This is feasi-
ble in logarithmic workspace in the representation size ofA. By looping through alls∈S, it thus follows
from Lemma 14 that deciding whetherS is k-maintainable with respect toE, wherek ≤ |S|, is nonde-
terministically feasible in logarithmic workspace. This impliesNL -membership ofk-MAINTAINABILITY

andω-MAINTAINABILITY . The hardness follows from a simple reduction of the well-knownNL -complete
REACHABILITY problem [44] tok- resp.ω-MAINTAINABILITY : Given a directed graphG = (V,E) and
nodess, t ∈ V , decide whether there is a directed path froms to t in G. DefineA = (S,A,Φ, poss) such
thatS = A = V , Φ(v, w) = w, andposs(v) = {w | v → w ∈ E}. Then, forAagent = A, S = {s} is
|V |-maintainable w.r.t.E = {t} in A iff there is a directed path froms to t in G. Clearly,A is constructible
in logarithmic workspace fromG. This shows theNL -hardness. 2

In case of constantk, equation (1) is decidable by a straightforward deterministic recursive procedure in
logarithmic workspace, even under nondeterminism, since the recursion depth is bounded by a constant and
each recursion level requires only logarithmic work space. Hence,k-MAINTAINABILITY is decidable in
logarithmic space. A finer grained analysis that it is within the classΠlog

k+1 of the logarithmic time hierarchy,
which is a much better upper bound and makes completeness for logspace (under suitable reductions) fairly
unlikely.

36 INFSYS RR 1843-04-04

We assume that the inputI of k-MAINTAINABILITY for fixedk, is a relational structureMI with universe
U(MI) = S ∪A, and relations overU(MI) for the predicatesin Phi(s, a, s′), in poss(s, a), in exo(s, a),
in S (s) and in E (s) from above, and relations for the additional predicatesag act(a), in S(s), and
in A(a) representing membershipa ∈ Aagent, s ∈ S anda ∈ A for eachs, a ∈ U(M), respectively.
The structureMI is encoded in a standard way by a bit-string [27].

Theorem 16 Problemk-MAINTAINABILITY for systems without exogenous actions is inΠlog
2k+1 (=co-

Σlog
2k+1), if k ≥ 0 is constant.

Proof. Any first-order formulaψ1 ∨ Qxψ2 resp.ψ1 ∧ Qxψ2 such thatψ1 has no free variables and
Q∈{∃,∀}, is logically equivalent toQx(ψ1 ∨ ψ2) resp.Qx(ψ1 ∧ ψ2). Exploiting this,rk(s) in (1) can
be written, using the vocabulary from above, as a first-order formulaφk(x) in prenex form

∃x1∀x2∃x3 · · ·Qkxkψ(x1, . . . , xk, x)

whereψ(x1, . . . , xk, x) is quantifier-free, such that for any elements∈U(MI) of an input structureM, the
sentencein S(s)∧φk(s) is true onM iff rk(s) holds. Hence, by Lemma 14,k-maintainability ofS w.r.t.E
in A is definable by aΠk+1 prenex sentence∀x0∃x1 · · ·Qkxkψ

′(x0, x1, . . . , xk), whereψ′(x0, x1, . . . , xk)
is quantifier-free, on the above vocabulary. Whether a fixed such sentence is false on a given structureMI

can be decided by an alternating Turing machine, starting in an existential state, in logarithmic time usingk
alternations [7, 27]. Hence, the problem is in co-Σlog

k+1 = Πlog
2k+1. 2

We remark that the hardness results in this section can be further strengthened to the case where only 2 agent
actions are available, but leave a proof of this to the interested reader.

7.3 State variables

The following is an easy lemma, which in combination with the results in the previous subsection implies
most upper bounds in Table 2.

Lemma 17 For any instance ofk-MAINTAINABILITY resp.,ω-MAINTAINABILITY in which states are rep-
resented by variables, the corresponding instance in ordinary (enumerative) form can be generated in poly-
nomial workspace.

Using this lemma, we then prove the following result.

Theorem 18 Under state representation by variables,k-MAINTAINABILITY is EXP-complete. TheEXP-
hardness holds under the restriction thatk= f(A,S,E) is any function ofA,S, andE such thatf(A,S,E) ≥
1 (in particular, for fixedk ≥ 1), even if in addition all actions are deterministic and there is only one ex-
ogenous action.

Proof. Membership inEXP follows easily from Lemma 17 and Theorem 11. TheEXP-hardness is shown
by a reduction from deciding inferenceπ |= p(t) of a ground atomp(c) from a function-free Horn logic
programπ with variables (i.e., a datalog program), which consists of rules of the form

p0(t0)← p1(t1), . . . , pn(tn), n ≥ 0, (3)

where eachpi is the name of a predicate of arityai ≥ 0 andti = ti,1, . . . , ti,n is a list of constants and
variablesti,j ; p0(t0) is the head andp1(t1), . . . , pn(tn) the body of the rule.

INFSYS RR 1843-04-04 37

It holds thatπ |= p(c) iff there is a sequence rulesri of the formpi0(ti0) ← pi1(ti1), . . . , pin(tin) and
substitutionsθi for ri, i.e., a mappings from the variables inri to the set of constantsCπ in π, such that
{pi1(ti1θi), . . . , pin(tinθi)} ⊆ {p10

(t10
θ1), . . . , pi−10

(ti−10
θi−1)}, for all i ∈ {1, . . . ,m} (thus in particu-

lar,1n = 0) andpm0
(tm0

θm) = p(c), called aproof ofp(c) fromπ. Informally,p(c) is derived by successive
application of the rule instancesr1θ1, . . . , rmθm, like in a propositional logic program.
Deciding whetherπ |= p(t) is well-known to beEXP-complete, cf. [13]. The construction is similar in
spirit to the one in proof of Theorem 11 but more involved.
To proveEXP-hardness ofk-MAINTAINABILITY under the given restriction, we first focus on problem
1-MAINTAINABILITY , and we describe how to reduceπ |= p(c) in logarithmic workspace to deciding
1-maintainability of a set of statesS w.r.t. a set of statesE in an agent systemA.

Without loss of generality, we make the following assumptions onπ andp(c):

• The set of constants occurring inπ, Cπ, is {0, 1};

• each ruler in π has either zero or two atoms in the body;

• all rules inr are safe, i.e., each variableX occurring in the head of a ruler also occurs in the body;

• π uses only one predicate,p;

• c = (0, 0, . . . , 0).

Any problemπ |= p(c) can be transformed to an equivalent one of this form in logarithmic workspace.
Similar as in the propositional case, the idea is to represent a reversed proof rm, θm, . . . , r1θ1 of p(c) from
π through agent actions, and model backward rule applications through agent actions; note thatm ranges
from 1 to2ap , whereap is the arity ofp (thusm requiresap bits). The problem here which makes this more
complex is the fact that we must, for each ruleri, also takeθi into account. Ifri has a nonempty body, the
candidates forθi are systematically generated by alternating agent and exogenous actions.For each possible
suchθi, the derivation of the body atomsp(ti2θi) andp(ti2θi) is then explored.
More precisely, for each ground atomp(c), andm ∈ {0, . . . , 2pa}, we have a state(c,m, prove) outsideE
which intuitively says thatp(c) is derivable withinm (0 ≤ m ≤ 2pa) steps. For each ruler in π, there is
an agent actionar, which is possible on(c,m, prove) if m > 0 andp(c) unifies with the headp(t) of r,
and it results in the state(c,m, r, apply), which is inE. Forr of form p(t) ← p(t1), p(t2), two phases are
now established: (1) the selection of a substitutionθ for the variablesX in r, and (2) the generation of states
(c1,m−1, prove) and(c1,m−1, prove), wherec1 = θ1 andc2 = θ2, for the recursive test.
As for 1) an exogenous actione pushes the agent from(c,m, r, apply) to a state(c,m, (0, 0, ..., 0), r, sel θ).
Here(0, 0, . . . , 0) is the substitutionθ : X1 = 0, . . . , Xk = 0 to all variables inr. By executing an agent
actionincθ on this state, this vector is incremented to(0, 0, ..., 0, 1), resulting in a state(c,m, (0, 0, ...0, 1), r,
incθ) in E, from whiche pushes the agent to a state(c,m, (0, 0, ..., 1), r, sel θ), whereXn = 1 in θ. Here
againincθ is possible, leading to a state(c,m, (0, 0, ..., 1, 0), r, incθ) in E from whiche pushes the agent to
the state(m−1, t, (0, 0, ...1, 0), r, sel θ). Here again aninc action is possible for the agent etc.
In each state(c,m, θ, r, sel θ) such thatp(tθ) = c, the agent might alternatively take the actionchoose,
which brings her to the state(c,m, θ, r, chosenθ) in E, which closes phase 1. The exogenous actione
pushes the agent from this state to the state(m, t1θ, t2θ, do split) out of E. From this state,e pushes
the agent further to the state(t1θ,m−1, prove), and the agent must take at(m, t1θ, t2θ, do split) the ac-
tion split, which brings her to the state(t2θ,m−1, goto prove) in E, from whiche pushes the agent to
(t2θ,m−1, prove). Figure 4 gives a summary of the steps in graphical form.

38 INFSYS RR 1843-04-04

(c, m, r, apply)

(c, m, (0, ..., 1), r, incθ)

(c, m, (0, ..., 2), r, incθ)

ar ee
incθincθ

(c, m, prove)

(c, m, (0, ..., 0), r, selθ)

(c, m, (0, ..., 1), r, selθ)
. . .

. . .
(t2θ, m−1, do prove)

E(c, m, θ, r, chosenθ)

ee

(m, t1θ, t2θ, do split) (t2θ, m−1, prove)

(t1θ, m−1, prove)(c, m, θ, r, selθ)

incθ. . .
choose esplit

Figure 4: Schematic transition diagram for backward application of ruler : p(t) ← p(t1), p(t2) with
substitutionθ to provep(c).

In this way, the derivation ofp(0, 0, . . . , 0) from π is encoded to deciding 1-maintainability ofS = {(2d,
(0, 0, ..., 0), prove)} with respect to the set of statesE described above. Note that to provep(c) from π
via rule r, only one instance ofrθ must be chosen; the1-maintaining control has to single out thisθ, by
proper placement of the actionchosenθ. The proof of correctness is along the lines of the respective one in
Theorem 11.
Given the regular structure of the states and the easy checks and manipulations that need to be done for
determining applicability of actions and determining the successor state, respectively, it is not difficult to
see that a representation of the above1-MAINTAINABILITY instance using state variables can be compiled
from π andp(0, 0, . . . , 0) in logarithmic work space (in particular, that the polynomial-time procedures for
deciding the membership predicatesin Phi(s, a, s′), in poss(s, a), in exo(s, a) in S (s), andin E (s) can
be provided in polynomial time). Note that this instance employs only deterministic actions, and there is a
single exogenous action. This establishesEXP-hardness for 1-MAINTAINABILITY .
Furthermore, forA andE as constructed, each agent action results in a state inE. Thus,k-maintainability
of S w.r.t. E in A, for anyk= f(A,S,E) such thatf(A,S,E)≥ 1, is equivalent to1-maintainability of
S w.r.t. E in A. Hence, the reduction showsEXP-hardness ofk−MAINTAINABILITY under the stated
restriction. 2

Corollary 19 Under state representation by variables,ω-MAINTAINABILITY is EXP-complete. TheEXP-
hardness holds even if all actions are deterministic and there is only one exogenous action.

Using Theorem 18 instead of Theorem 11, we can prove the following result similarly as Theorem 13:

Theorem 20 Under state representation by variables and in absence of exogenous actions, the problems
k-MAINTAINABILITY andω-MAINTAINABILITY areEXP-complete.

For the case without exogenous actions and with only deterministic actions, wehave lower complexity:

Theorem 21 Under state representation by variables,k-MAINTAINABILITY andω-MAINTAINABILITY for
systems with only deterministic actions and no exogenous actions arePSPACE-complete.

Proof. By well-known standard methods, a computation composed of aPSPACE computationA piped
into anNL computationB (which is NPSPACE in the size of the input forA) can be redesigned as an
NPSPACE computation. SinceNPSPACE = PSPACE, membership of the problems inPSPACE thus
follows from Lemma 17 and Theorem 15.

INFSYS RR 1843-04-04 39

ThePSPACE-hardness can be shown e.g. by a straightforward reduction from propositional STRIPS plan-
ning [9]. Rather than to introduce STRIPS here, we give for completeness sake a simple reduction from
SUCCINCT REACHABILITY [44], which is the version of REACHABILITY whereG = (V,E) is such that
the nodesv are given by the binary vectorsv = (v1, . . . , vn), n ≥ 1, on{0, 1} and the problem input con-
sists of a Boolean circuitCG with 2n inputsv1, . . . , vn, w1, . . . , wn which outputs true iffv → w ∈ E, and
s = (0, 0, . . . , 0) andt = (1, 1, . . . , 1). We construct from this an instance ofk-MAINTAINABILITY resp.ω-
MAINTAINABILITY as follows:S = V ×V , described by2n binary variablesf1, . . . , f2n; A = {inc, arc}
= Aagent; Φ(v×w, inc) = v×w′ such thatw′ = w + 1 modulo2n, andΦ(v×w, arc) = w×(0, 0, . . . , 0)
if v → w in G andΦ(v×w, arc) = v×w otherwise;poss(s) = A, for each states. Then, the state
s = (1, 1, . . . ,)× (0, 0, . . . ,) is |S|-maintainable with respect toE = {(1, 1, . . . , 1)× (1, 1, . . . , 1)} in
A iff (1, 1, . . . , 1) is reachable from(0, 0, . . . , 0) in G. A state variable representation ofA can be easily
generated from the circuitCG in logarithmic workspace. This impliesPSPACE-hardness of the problems.2

If the maintenance window is bounded by a constant, the problem is easier.

Theorem 22 Under state representation by variables,k-MAINTAINABILITY for systems without exogenous
actions and constantk ≥ 0 is co-NP-complete.

Proof. For a givens ∈ S, falsity of rk(s) can be proved by exhibiting (assumings /∈ E), for eacha ∈
Aagent ∩ poss(s) a witnessw(s, a) ∈ S such thatw(s, a) ∈ Φ(s, a) andrk−1(w(s, a)) is false, which in
recursion can be proved similarly. For constantk, this leads toO(|Aagent|

k) many guessesw(s, a), which
is polynomial in the size of the input. By Lemma 14, it thus follows that deciding the complement of
k-MAINTAINABILITY is in NP. This proves membership in co-NP.
The co-NP-hardness, for everyk ≥ 0, is a simple consequence that under representation by state vari-
ables, deciding whetherS ⊆ E is co-NP-complete (this can be shown, e.g., by a simple reduction from
propositional unsatisfiability). 2

8 Discussion and Conclusion

In this paper, we gave a formal characterization of maintenance goals anddistinguished it from the notions
of stabilizability and temporal goals of the form23f (over all valid trajectories). We present several
motivating examples that illustrate the need for our notion of maintainability. The basic idea being that
for certain kinds of maintenance it is important that the maintaining agent be given a window of non-
interference from the environment so that it can do the maintenance. To formalize this we need to distinguish
between the agent’s actions and the environment’s actions. In our formalization we define the notion ofk-
maintainability, wherek refers to the maximum window of opportunity necessary for the maintenance.
We then gave polynomial time algorithms to computek-maintainable controls, which are linear-time for
smallk, and we analyzed the complexity of determiningk-maintainability under various assumptions. One
interesting aspect of our polynomial time algorithm is the approach that led to its finding: use of SAT
encoding, and complexity results regarding the special Horn sub-class of propositional logic.

8.1 Other related work

Besides the related works we already mentioned such as stabilizability and temporal logic, the notion of
maintenance has appeared in AI in many other papers. For example, in [42], Ortiz discusses maintenance
actions. His notion of maintenance is stronger than both the notion of stabilizabilityand our notion as he

40 INFSYS RR 1843-04-04

requires the formula that is maintained to be true throughout. The notion of maintenance is also related
to the notion of ‘execution monitoring’ which is studied in the context of robot programs in [14]. In ‘ex-
ecution monitoring’ the world is monitored and if a discrepancy is found between the prediction made by
the agent and the real world, then new plans are made to recover from thediscrepancy. A deliberative ar-
chitecture for maintenance can be extrapolated from the notions in [2], where an agent executes a cycle of
observe; assimilate; (re)plan from current situation; execute part of the plan.
In other related work, Jensen et al. [28, 29] consider the somewhat dual problem of developing policies
that achieve a given goal while there are interferences from the environment. In their model, environment
actions and actions of multiple agents are combined to a joint action, by which the system is transferred
from the current state to one out of a set of possible successor states.With such nondeterministic transitions,
Jensen et al. aim at modeling both an adversial environment and infrequent errors which make an otherwise
deterministic action non-deterministic. In [28], they consider constructing policies coping with arbitrarily
many interferences of the environment (but without action failure) by an extension of OBDD-based universal
planning, and in [29] they consider generating policies which tolerate up to agiven numbern of errors
modeled as “secondary action effects” (caused by improper action execution or environment interference),
by reducing it to a so called strong planning problem, which is solved using OBDD based methods. For
arbitrarily many environment interferences as in [28], the problem is basically very similar to our problem
of unbounded maintainability, but interference in goal states has different significance and goal achievement
is not guaranteed because of possible loops. A formal connection between k-maintainable controls and
n-fault tolerant policies, if any, remains open. Intuitively,n-fault tolerant plans are easier to construct,
since the number of errors that have occurred can be recorded in planconstruction and when the limitn is
reached, the problem boils down to an ordinary planning problem. Fork-maintaining controls, however,
each environment interference (even at a goal state) causes a restart which pushes the agent to a new initial
state.
In a series of papers [54, 19, 18], Wooldridge and Dunne have formalized the problem of constructing
agent control functions and analyzed its complexity in a rich framework, for various kinds of tasks such
as “achievement” tasks (where the agent has to bring about a certain goal condition), “maintenance” tasks
(where the agent has to avoid that some goal condition is ever satisfied during execution), and combinations
thereof [18]. In their framework, action effects and the selection of the agent action by the control may
depend on the history of the execution, and most importantly, exogenous actions resp. an adversary are not
taken into account. Under restriction to history-independent state transitions and reactive agents, finding
controls for achievement tasks in their framework corresponds to findingmaintaining controls with an un-
bounded window of opportunity in our framework. Theorems 15 and 21 correspond to respective results in
the Wooldridge-Dunne framework [18].
In AI planning, the seminal STRIPS approach [23] has been one of the most influential approaches. We
briefly recall that in STRIPS, states are modeled as sets of propositional atoms and actions as operators
which, given that a precondition in terms of a conjunction of literals is true on the current state, transform
it to a successor state by removing atoms from a delete list and adding atoms from an add list. A plan for
achieving a goal, described by a conjunction of atomsγ, from an initial stateS0 is a sequence of operators
op1, . . . , pn which takes the agent fromS0 to a state whereγ holds. STRIPS planning has been generalized
in several directions, such as conditional effects, nondeterministic actions, or planning under incomplete
information and partial observability using conditional and conformant plans, respectively, and a number of
papers has considered the computation and complexity of planning in such settings, e.g., [9, 3, 11, 22, 49].
However, like in the framework of Wooldridge and Dunne, in none of theseworks agent actions and ex-
ogenous actions are viewed separately, and thus they are best compared to our framework in absence of

INFSYS RR 1843-04-04 41

exogenous functions. Furthermore, plans per se are conceived asaction strategies(cf. [49]) in which, in
principle, different actions might be taken by the agent if during plan execution the same state is entered
again; however, such looping is a priori excluded if the goal must be achieved under all contingencies.
Cimatti et al. [11] consider constructing universal plans akin to our policies, with different semantics for
goal achievement, based on OBDD methods and algorithms. In particular, in absence of exogenous actions
our maintaining controls correspond to what they call strong solutions for aplanning problem. Jensen et al.
[28, 29] have generalized this by adversial actions (see above).
As for complexity, Theorem 21, corresponds to the classical result of Bylander [9] that deciding plan ex-
istence in propositional STRIPS isPSPACE-complete, while Theorem 20 corresponds to Littman’s result
that conditional planning for STRIPS with nondeterministic actions isEXPTIME -complete [34, 49]. In
conditional planning, via conditions on the current state branching to subplans is possible, such that an ap-
propriate plan is followed depending on the state evolution. Branching might be modeled by actions and the
conditional planning problem, with loops disregarded, as the problem of constructing a maintaining control.
Outside of AI, our notion ofk-maintenance is very closely related to the notion of self-stabilization in [15]
which is used in characterizing fault-tolerant systems. There the concernis about proving correctness of
(hand developed) self-stabilization protocols and achieving self-stabilization for various distributed algo-
rithms such as mutual exclusion. Our algorithm here can be thought of as analgorithm that automatically
generates a self-stabilization protocol. Although, this is a new dimension to the existing work on self-
stabilization, further research is needed to compare assumptions made in ourformulation and the ones in
the self-stabilization literature, and overcome them. In particular, often in the self-stabilization literature
the global states are composed of local states of various distributed elementsand a particular element does
not have the access to the complete global state. In those cases one can not directly use the kind of global
policies generated by the algorithm in this paper.

8.2 Future work and open issues

There are several directions for further research extending the work of this paper. One direction concerns
variations of the maintenance problem, for instance by taking action duration into account. In such scenario,
the maintenance goal may be formulated as requirement that the agent reaches some desired state always
within a given time frame, if she is not disturbed by the environment. Preliminary investigations suggest
that the results in this paper can be extended to handle this setting.
The intractability results for the problems under state variable representations challenges methods and tech-
niques for handling the problem in practice. Suitable heuristics may therefore be researched that allow to
solve the problems in many cases in polynomial time, and, in a refined complexity analysis, meaningful
tractable cases should be singled out. Furthermore, the issue of computing optimal k-maintenance con-
trols efficiently, in the sense thatk is as small as possible (which is trivially polynomially solvable in the
enumerative setting), is an interesting issue for variable state representation.
Another issue concerns investigating computational transformations between maintenance and planning. By
the complexity results in [34] and this paper, transformations betweenk-MAINTAINABILITY and conditional
planning are feasible in polynomial time. It would be interesting to study different transformations, and to
assess possible benefits of these transformations for solvingk-MAINTAINABILITY and planning by cross-
utilizing different algorithms and implementations (e.g. [11] for planning in non-deterministic domains).
In particular a transformation similar to the one in the proof of Theorem 13, withan additional parameter
that keeps count the number of agent’s actions since the last exogenousaction, can4 be used to compile out

4This transformation increases the number of states byk times. It is unknown if there exist a transformation that can eliminate

42 INFSYS RR 1843-04-04

exogenous actions and transform findingk-maintainable policies to finding strong cyclic plans [11]; on the
other hand, encodings similar to the one in Section 5.2 for obtaining strong cyclic plans through linear-time
Horn logic programming might be interesting.

Acknowledgment We would like to acknowledge W. Cushing for his feedback on an earlier draft and
S. Gupta and M. Gouda for their clarifications on self-stabilization. Furthermore, we acknowledge com-
ments by J. Rintanen on the ICAPS’04 paper and are grateful for his pointers to related work.
The major part of the algorithms was done when Chitta Baral was visiting TU Wienin May 2003. Mar-
cus Bj̈areland carried out the major part of his work while he was with the Department of Computer and
Information Science of Linkoping University.

References

[1] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of Mathematics and Artificial
Intelligence, 22:5–27, 1998.

[2] C. Baral, M. Gelfond, and A. Provetti. Representing actions: Laws, observations, and hypothesis.Journal of
Logic Programming, 31:201–243, 1997.

[3] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning and approximate planning in the
presence of incompleteness.Artificial Intelligence, 122(1-2):241–267, 2000.

[4] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning with temporal goals. In B. Nebel,
editor,Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01), pages 509–
514. Morgan Kaufmann, 2001.

[5] C. Baral and T. Son. Relating theories of actions and reactive control. Electronic Transactions on Artificial
Intelligence, 2(3-4):211–271, 1998.

[6] C. Baral and J. Zhao. Goal specification in presence of non-deterministic actions. In R. L. de Ḿantaras and
L. Saitta, editors,Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), Valencia,
Spain, August 22-27, 2004, pages 273–277. IOS Press, 2004.

[7] D. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J. Comput. Syst. Sci., 41:274–306,
1990.

[8] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation,
2(1):14–23, 1986.

[9] T. Bylander. The computational complexity of propositional strips planning.Artificial Intelligence, 69:165–204,
1994.

[10] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. InProceedings VLDB-90, pages
566–577, 1990.

[11] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning via symbolic model
checking.Artificial Intelligence, 147(1-2):35–84, 2003.

[12] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent systems using temporal
logic specifications.ACM Transactions on Programming Languages, 8(2):244–263, 1986.

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming.
ACM Computing Surveys, 33(3):374–425, 2001.

exogenous actions without increasing the number of states, and yet is able to model the notion ofk-maintainability.

INFSYS RR 1843-04-04 43

[14] G. De Giacomo, R. Reiter, and M. Soutchanski. Executionmonitoring of high-level robot programs. InProc.
Conference on Principles of Knowledge Representation and Reasoning (KR-98), pages 453–465, 1998.

[15] E. Dijkstra. A theory of the learnable.Commun. ACM, 17(11):643–644, 1974.

[16] W. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of propositional Horn theories.
Journal of Logic Programming, 3:267–284, 1984.

[17] M. Drummond. Situation control rules. InProceedings First International Conference on Principlesof Knowl-
edge Representation and Reasoning (KR-89), pages 103–113, 1989.

[18] P. Dunne, M. Laurence, and M. Wooldridge. Complexity results for agent design problems.Annals of Mathe-
matics, Computing & Teleinformatics, 1(1):19–36, 2003.

[19] P. Dunne and M. Wooldridge. , atal 2000, boston, ma, usa,july 7-9, 2000, proceedings. In C. Castelfranchi
and Y. Lesṕerance, editors,Proceedings 7th International Workshop on Intelligent Agents VII. Agent Theories
Architectures and Languages (ATAL), volume 1986 ofLecture Notes in Computer Science, pages 1–14. Springer,
2001.

[20] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving using the DLV system. In J. Minker,
editor,Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic Publishers, 2000.

[21] E. Emerson. Temporal and modal logics. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science,
volume B, chapter 16. Elsevier Science Publishers B.V. (North-Holland), 1990.

[22] K. Erol, V. Subrahmanian, and D. Nau. Complexity, decidability and undecidability results for domain-
independent planning.Artificial Intelligence, 76:75–88, 1995.

[23] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to problem solving.
Artificial Intelligence, 2(3-4):189–208, 1971.

[24] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.New Generation
Computing, 9:365–385, 1991.

[25] M. Gelfond and V. Lifschitz. Representing action in extended logic programs. InProceedings of the Joint Inter-
national Conference and Symposium on Logic Programming (JICSLP’92), pages 559–573. MIT Press, 1992.

[26] M. L. Ginsberg. Universal planning: An (almost) universally bad idea.AI Magazine, 10(4):40–44, 1989.

[27] N. Immerman.Descriptive Complexity. Springer, 1999.

[28] R. M. Jensen, M. M. Veloso, and M. H. Bowling. Obdd-basedoptimistic and strong cyclic adversarial planning.
In Proceedings 6th European Conference on Planning (ECP-01), 2001.

[29] R. M. Jensen, M. M. Veloso, and R. E. Bryant. Fault tolerant planning: Toward probabilistic uncertainty models
in symbolic non-deterministic planning. In S. Zilberstein, J. Koehler, and S. Koenig, editors,Proceedings 14th
International Conference on Automated Planning and Scheduling (ICAPS 2004), Whistler, British Columbia,
Canada, June 3-7, 2004, pages 335–344, 2004.

[30] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for reactive agents.Artificial Intelligence,
95(1):67–113, 1997.

[31] L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In P. Maes, editor,Designing
Autonomous Agents: Theory and Practice from Biology to Engineering and Back, pages 35–48. The MIT Press:
Cambridge, MA, USA, 1990.

[32] C. Kuratowski.Topology I. Academic Press, New York, 1966.

[33] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv system for knowledge
representation and reasoning.ACM Transactions on Computational Logic, 2004. To appear. Available via
http://www.arxiv.org/ps/cs.AI/0211004.

44 INFSYS RR 1843-04-04

[34] M. L. Littman. Probabilistic propositional planning:Representations and complexity. InProceedings AAAI/IAAI
1997, pages 748–754, 1997.

[35] P. Maes, editor.Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back.
The MIT Press: Cambridge, MA, USA, 1990.

[36] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems, Specification. Springer-
Verlag, 1992.

[37] M. Minoux. LTUR: a simplified linear time unit resolution for Horn formulae and computer implementation.
Information Processing Letters, 29:1–12, 1988.

[38] M. Nakamura and C. Baral. Invariance, maintenance and other declarative objectives of triggers – a formal
characterization of active databases. In J. Lloyd, V. Dahl,U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi,
L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors,Proceedings First International Conference on Computational
Logic - CL 2000, number 1861 in LNAI, pages 1210–1224. Springer Verlag, July 2000.

[39] M. Nakamura, C. Baral, and M. Bjæreland. Maintainability: a weaker stabilizability like notion for high level
control. InProceedings National Conference on AI (AAAI ’00), July 30-August 3, 2000, Austin, Texas, pages
62–67. AAAI Press, 2000.

[40] I. Niemel̈a, P. Simons, and T. Syrjänen. Smodels: A system for answer set programming. In C. Baral
and M. Truszczýnski, editors,Proceedings of the 8th International Workshop on Non-Monotonic Reasoning
(NMR’2000), Breckenridge, Colorado, USA, April 2000.

[41] R. Niyogi and S. Sarkar. Logical specification of goals.In Proceedings 3rd International Conference on Infor-
mation Technology, pages 77–82. Tata McGraw-Hill, July 2000.

[42] C. Ortiz. A commonsense language for reasoning about causation and rational action.Artificial Intelligence,
111(2):73–130, 1999.

[43] O. Ozveren, A. Willsky, and P. Antsaklis. Stability andstabilizability of discrete event dynamic systems.J. ACM,
38(3):7300–752, 1991.

[44] C. H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

[45] K. Passino and K. Burgess.Stability Analysis of Discrete Event Systems. John Wiley and Sons, 1998.

[46] P. Ramadge and W. Wonham. Modular feedback logic for discrete event systems.SIAM Journal of Control and
Optimization, 25(5):1202–1217, 1987.

[47] P. Ramadge and W. Wonham. Supervisory control of a classof discrete event process.SIAM Journal of Control
and Optimization, 25(1):206–230, 1987.

[48] R. Reiter.Knowledge in Action: Logical Foundation for Describing andImplementing Dynamical Systems. MIT
Press, 2001.

[49] J. Rintanen. Complexity of planning with partial observability. In S. Zilberstein, J. Koehler, and S. Koenig, edi-
tors,Proceedings 14th International Conference on Automated Planning and Scheduling (ICAPS 2004), Whistler,
British Columbia, Canada, June 3-7, 2004, pages 345–354, 2004.

[50] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.Artificial
Intelligence, 138:181–234, June 2002.

[51] E. Sontag. Stability and stabilization: Discontinuities and the effect of disturbances. In F. Clarke and R. Stern,
editors,Proceedings NATO Advanced Study Institute, pages 551–598. Kluwer, July 1998.

[52] D. Weld and O. Etzioni. The first law of robotics (a call toarms). InProceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94), pages 1042–1047. AAAI Press, 1994.

[53] J. Widom and S. Ceri, editors.Active Database Systems: Triggers and Rules For Advanced Database Processing.
Morgan Kaufmann, 1996.

[54] M. Wooldridge. The computational complexity of agent design problems. InProceedings of the Fourth Interna-
tional Conference on Multi-Agent Systems (ICMAS 2000). IEEE Press, 2000.

