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1 Introduction

This paper discusses how to compare action descriptions, whose meaning can be represented by transition
diagrams—a directed graph whose nodes correspond to states and edges correspond to transitions caused
by action occurrences and non-occurrences, with respect to some given conditions. Comparison of action
descriptions is important for applications, when an agent has to prefer one description more than the others.
One such application is the action description update problem [2]: when an agent tries to update an action
description with respect to some given information, she usually ends up with several possibilities and has to
choose one of these action descriptions. Another application is related to representing an action domain in
an elaboration tolerant way [10, 1]: among several action descriptions representing the same action domain,
which one is the most elaboration tolerant one, with respect to some given conditions describing possible
elaborations?

The preference of an agent over action descriptions may be based on asyntactic measure, such as the
number of formulas: the less the number of formulas contained in an action description, the more preferred
it is. A syntactic measure can be defined also in terms of set containment with respect to a given action
descriptionD: an action description is more preferred if it is a maximal set among others thatis contained
in D. For instance, according to the syntactic measure used in [2] for updatingan action descriptionD with
some new knowledgeQ, an action descriptionD′ is more preferred ifD′ is a maximal set among others
containingD and contained inD ∪ Q is maximum.

In this paper, we describe the preference of an agent over action descriptions, with respect to some
semantic measure. The idea is to describe a semantic measure by assigning weights (i.e., real numbers)
to action descriptions, with respect to their transition diagrams and some givenconditions; then, once the
weights of action descriptions are computed, to compare two descriptions by comparing their weights.

We consider action descriptions, in a fragment of the action languageC [7], which consists of “causal
laws.” For instance, the causal law

caused PowerON after PushPBTV ∧ ¬PowerON , (1)

expresses that the actionPushPBTV causes the value of the fluentPowerON to change fromf to t; such
causal laws describe direct effects of actions. The causal law

caused TvON if PowerON , (2)

expresses that if the fluentPowerON is caused to be true, then the fluentTvON is caused to be true as well;
such causal laws describe state constraints. The meaning of an action description D can be represented by
a transition diagram, like in Figure 1. In this transition diagram, the nodes of the graph (shown by boxes)
denote the states of the world: (s) one where both the power and the TV is on, and (s′) the other where
both the power and the TV is off. The edges denote action occurrences.For instance, the edge froms to s′

labeled by the action of pushing the power button on the TV describes that executing this action ats leads
to s′. The edges labeled by the empty set are due to the law of inertia.

Suppose that we are given another action descriptionD′ describing the domain above; and that the
transition diagram ofD′ is almost the same as that ofD, except that there is no outgoing edge from the
state{PowerON ,TvON } with the label{PushPBRC}. Which action description should be preferred? To
answer this question, we assign weights to these two action descriptions, based on their transition diagrams,
and given conditions (observations, assertions, etc.).

We describe conditions in an action query language, like in [5], by “queries.” For instance,

ALWAYS
∨

A∈2A
executable A, (3)
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{PushPBT V }
PowerON

TvON ¬TvON

¬PowerON

{} {}{PushPBRC} {PushPBRC}

{PushPBT V }
{PushPBT V , PushPBRC}

{PushPBT V , PushPBRC}

Figure 1: A transition diagram.

where2A denotes the set of all actions, expresses that, at every state, there is some action executable. The
query

SOMETIMES evolves PowerON ; {PushPBRC};PowerON (4)

expresses that, at some state when the power is on, pushing the power button on the remote control does
not turn the power off. Then we can define the weight of an action description as the number of queries it
entails. For instance, according to the transition diagram ofD, (3) and (4) are entailed, so the weight ofD
is 2; according to the transition diagram ofD′, only (3) is entailed, so the weight ofD′ is 1. Therefore,D is
preferred overD′.

The main question we study is the following:Given a setD of action descriptions and a setC of
queries, which action description inD is a most preferred one with respect toC? We provide an answer to
this question with respect to mainly four semantically-oriented approaches, by assigning weights to action
descriptions inD, based on preferences of the agent over possible states of the world and preferences over
conditions, as well as the probabilities of possible transitions. Then we applythese approaches to the
problem of updating an action description, and observe two benefits. First, if a problem has many solutions
with the syntactic approach of [2], a semantic approach can be used to pickone. Second, if a problem does
not have any solution with any of the approaches due to too strong conditions, a semantic approach can be
used to identify which conditions to relax to find a solution.

2 Transition Diagrams and Action Descriptions

We start with a(propositional) action signaturethat consists of a setF of fluent names, and a setA of
action names. Anactionis a truth-valued function onA, denoted by the set of action names that are mapped
to t. A (propositional) transition diagramof an action signatureL = 〈F,A〉 consists of a setS of states,
a functionV : F × S → {f, t}, and a subsetR ⊆ S × 2A × S of transitions. We say thatV (P, s) is
the valueof P in s. The statess′ such that〈s, A, s′〉 ∈ R are the possibleresults of the executionof the
actionA in the states. We say thatA is executablein s, if at least one such states′ exists. A transition
diagram can be thought of as a labeled directed graph. Every states is represented by a vertex labeled with
the functionP 7→ V (P, s) from fluent names to truth values. Every triple〈s, A, s′〉 ∈ R is represented by
an edge leading froms to s′ and labeledA. An example of a transition diagram is shown in Figure 1.

3 Action Descriptions

We consider a subset of the action description languageC [7] that consists of two kinds of expressions
(calledcausal laws): static lawsof the form

caused L if G, (5)
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whereL is a fluent literal andG is a fluent formula anddynamic lawsof the form

caused L if G after U , (6)

whereL andG are as above, andU is a formula; the partif G can be dropped ifG is True. An action
descriptionis a set of causal laws. For instance, the action description consisting of the causal laws (1), (2),
and

caused ¬PowerON after PushPBTV ∧ PowerON

caused ¬TvON if ¬PowerON

inertial PowerON ,¬PowerON ,TvON ,¬TvON .
(7)

encodes how a TV system operates;inertial L1, . . . , Lk stands forcaused Li if Li after Li (1 ≤ i ≤ k).
The meaning of an action description can be represented by a transition diagram. LetD be an action

description with a signatureL = 〈F,A〉. The transition diagram〈S, V, R〉 describedby D is defined as
follows: S is the set of all interpretationss of F such that, for every static law (5) inD, s satisfiesG ⊃ L;
V (P, s) = s(P ); andR is the set of all triples〈s, A, s′〉 such thats′ is the only interpretation ofF which
satisfies the headsL of all static laws (5) inD for whichs′ satisfiesG, and dynamic laws (6) inD for which
s′ satisfiesG ands ∪ A satisfiesU . For instance, the transition diagram described by{(1), (2)} ∪ (7) is
presented in Figure 1. Note that there is a unique transition diagram described by an action description. We
say that an action description isconsistentif its transition diagram is with nonempty state set.

4 Action Queries

To talk about observations of the world, or assertions about the effectsof the execution of actions, we use
an action query language consisting of queries described as follows. Westart withbasic queries: (a) static
queriesof the form

holds F , (8)

whereF is a fluent formula; (b)dynamic queriesof the form

necessarily Q after A1; . . . ; An, (9)

whereQ is a basic query and eachAi is an action; and (c) every propositional combination of basic queries.
An existential queryis an expression of the form

SOMETIMES Q, (10)

whereQ is a basic query; auniversal queryis of the form

ALWAYS Q, (11)

whereQ is a basic query. Aqueryis a propositional combination of existential queries and universal queries.
As for the semantics, letT = 〈S, V, R〉 be a transition diagram, with a setS of states, a value function

V mapping, at each states, every fluentP to a truth value, and a setR of transitions. Ahistory of T of
lengthn is a sequence

s0, A1, s1, . . . , sn−1, An, sn (12)

where each〈si, Ai+1, si+i〉 (0 ≤ i < n) is in R. We say that a states ∈ S satisfiesa basic queryq of
form (8) (resp. (9)) relative toT (denotedT, s |= q), if the interpretationP 7→ V (P, s) satisfiesF (resp.
if, for every historys = s0, A1, s1, . . . , sn−1, An, sn of T of lengthn, basic queryQ is satisfied at state
sn). For other forms of basic queryq, satisfactionis defined by the truth tables of propositional logic. If
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T is described by an action descriptionD, then the satisfaction relation betweens andq can be denoted by
D, s |= q as well. Note that, for every states and for every fluent formulaF , D, s |= holds F iff D, s |=
¬holds ¬F . For every states, every fluent formulaF , and every action sequenceA1, . . . , An (n ≥ 1), if
D, s |= necessarily (holds F ) after A1; . . . ; An thenD, s |= ¬necessarily (¬holds F ) after A1; . . . ; An.

We say thatD entailsa queryq (denotedD |= q) if one of the following holds:

• q is an existential query (10) and for some states ∈ S, it holds thatD, s |= Q;

• q is a universal query (11) and for every states ∈ S, it holds thatD, s |= Q;

• q is of the form¬Q andD 6|= Q;

• q is of the formQ ∧ Q′, andD |= Q andD |= Q′; or

• q is of the formQ ∨ Q′, andD |= Q or D |= Q′.

For every basic queryQ, D |= SOMETIMES Q iff D |= ¬ALWAYS ¬Q.
For a setC of queries, we say thatD entailsC (denotedD|=C) if D entailsevery query inC. For

instance, consider the action description consisting of (1), (2), and (7)encoding how a TV system operates;

inertial L1, . . . , Lk

stands for
caused Li if Li after Li (1 ≤ i ≤ k).

This action description does not entail any set of queries containing

ALWAYS necessarily (holds ¬TvON ) after {PushPBRC}

because this query is not satisfied at the state{TvON ,PowerON }; but, it entails the queries:

ALWAYS holds PowerON ≡ TvON ,

ALWAYS holds PowerON ∧ TvON ⊃
¬necessarily (holds TvON ) after {PushPBTV }.

(13)

In the rest of the paper, an expression of the form

possibly Q after A1; . . . ; An,

whereQ is a basic query and eachAi is an action, stands for the dynamic query

¬necessarily ¬Q after A1; . . . ; An;

an expression of the form
evolves F0; A1; F1; . . . ; Fn−1; An; Fn, (14)

where eachFi is a fluent formula, and eachAi is an action, stands for the query

holds F0 ∧ possibly (holds F1 ∧ possibly (holds F2 ∧ ...) after A2) after A1;

and an expression of the form
executable A1; . . . ; An,

where eachAi is an action, stands for the dynamic query

possibly True after A1; . . . ; An.

We sometimes dropholds from static queries appearing in dynamic queries.



INFSYS RR 1843-06-06 5

5 Sample Queries

Queries allow us to express various pieces of knowledge about the domain. For instance, we can express the
existence of states where a formulaF holds:SOMETIMES holds F. Similarly, we can express the existence
of a transition from some state where a formulaF holds to another state where a formulaF ′ holds, by the
execution of an actionA:

SOMETIMES holds F ∧ possibly F ′ after A.

In general, the existence of a history (12) such that, for eachsi of the history, the interpretationP 7→
V (P, si) satisfies some formulaFi can be expressed by the query:

SOMETIMES evolves F0; A1; F1; . . . ; Fn−1; An; Fn. (15)

For instance, query
SOMETIMES evolves PowerON ; {PushPBTV };

¬PowerON ; {PushPBTV };PowerON .
(16)

describes the presence of the following history in Figure 1:

{PowerON ,TvON }, {PushPBTV }, {¬PowerON ,
¬TvON }, {PushPBTV }, {PowerON ,TvON }.

(17)

Also we can express that there is no transition from any state where a formula F holds:

SOMETIMES holds F ∧
∧

A∈2A
necessarily False after A.

Like in [2], executability of an action sequenceA1, . . . , An (n ≥ 1) at every state can be described by
ALWAYS executable A1; . . . ; An; mandatory effects of a sequenceA1, . . . , An (n ≥ 1) of actions in a given
context byALWAYS holds G ⊃ necessarily F after A1; . . . ; An; and possible effects of a sequence of actions
in a context byALWAYS holds G ⊃ possibly F after A1; . . . ; An. In the last two queries,F describes the
effects andG the context.

6 Weight Assignments for Action Descriptions

To compare action descriptions with respect to their semantics, we can assignweights to them, based on
their transition diagrams and a given set of conditions. We present below several weight assignments, each
with a different motivation expresses some appeal of the action description.

6.1 Weighted states

We can specify our preference over states of a transition diagram〈S, V, R〉 by assigning a weight to each
state inS, by a functiong. Such a function assigning real numbers to states of the world can be considered
as autility function, as in decision theory. If one state of the world is preferred to another state of the world
then it has higher utility for the agent; here “utility” is understood as “the qualityof being useful” as in [13].
Alternatively, the functiong can be viewed as areward function: being at a states will give a reward ofg(s)
to the agent.

Given a utility function for a setS of states, we can identify the highly preferred states relative to a given
numberl: a state with the weight greater thanl is highly preferred. Then, one way to define the weight of
an action descriptionD relative tog andl is as follows:
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weights(D) = |{s : s ∈ S, g(s) > l}|.

With respect to this definition, the more the number of states that are highly preferred by the agent, the more
preferred the action description is.

For instance, consider the transition diagram in Figure 1 described byD. Take, for eachs ∈ S,

g(s) =

{

2 if PowerON ∈ s
1 otherwise.

(18)

Takel = 1. Thenweights(D) = 1.

6.2 Weighted queries

We can assign weights to queries to specify preferences over conditionsthey express. Based on such
weighted queries, we can define the weight of an action descriptionD as follows.

Let C be a set of queries, along with a weight functionf mapping each condition inC to a real number.
Then one way to define the weight ofD (relative toC andf ) is by

weightq(D) =
∑

c∈C,D|=c
f(c).

Intuitively, the weight of an action description defined relative to the weightsof queries shows how much
the setC of given preferable queries are satisfied.With this definition, the more the highly preferred queries
are satisfied, the more preferred the action description is.

For instance, suppose thatC consists of (16) and

ALWAYS executable {PushPBRC }, (19)

with weights 1 and 2 respectively. For the descriptionD with the transition diagram in Figure 1, we have
weightq(D)= 3.

6.3 Weighted histories

In a transition diagramT = 〈S, V, R〉, we will say that a history (12) of lengthn is desiredwith respect to
a given query (15), if, for eachi, the interpretationP 7→ V (P, si) satisfiesFi.

Let D be an action description, andT = 〈S, V, R〉 be the transition diagram described byD. Let C be
a set of queries, along with a weight functionf mapping each condition inC to a number. LetHC be the
set of pairs(w, c) such thatw is a desired history inT with respect to the queryc of form (15) inC. Let
us denote byst(w) the starting states0 of a historyw of form (12). We define a functionh mapping each
desired historyw appearing inHC to a real number, in terms of the utilityu(w) of statest(w) with respect
to w:

h(w) = u(w) ×
∑

(w,c)∈HC

f(c).

The functionu mapping a historyw of form (12) to a real number can be defined in terms of a sequence of
functionsui. Given a utility function (or a reward function)g mapping each state inS to a real number, and
a transition modelm mapping each transition〈s, A, s′〉 in R to a probability (i.e., the probability of reaching
s′ from s after execution ofA):

un(w) = g(sn)
ui(w) = g(si) + m(〈si, Ai+1, si+1〉) × ui+1(w) (0 ≤ i < n)
u(w) = u0(w).
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These equations are essentially obtained from the equations used for value determination in the policy-
iteration algorithm described in [13, Chapter 17]: take{s0, . . . , sn} as the set of states,〈si, Ai+1, si+1〉 as
the possible transitions, the mappingsi 7→ Ai+1 as the fixed policy,U asu, Ui asui, R asg, andM asm.
Then we can define the weight ofD in terms of the weights of desired historiesw1, . . . , wz appearing in
HC as follows:

weighth(D) =
∑z

i=1
h(wi).

The more the utilities of desired histories (or trajectories) satisfied by the action description, the more
preferred the action description is.

For instance, suppose thatC consists of query (16), with weight 3. Consider the transition diagram
T = 〈S, V, R〉 in Figure 1. Let us denote history (17) byw, and query (16) byc. ThenHC contains(w, c).
Takeg(s) as in (18). Takel = 1. Suppose that, for each transition〈s, A, s′〉 in R,

m(〈s, A, s′〉) =











0.5 if s = {PowerON ,TvON }
∧ |A| = 1

1 otherwise.
(20)

Thenu(w) is computed as 3.5. andh(w) = u(w)×
∑

(w,c)∈HC
f(c) = 3.5×3 = 10.5. Henceweighth(D) =

10.5.

6.4 Weighted queries relative to weighted states

The three approaches above can be united by also considering to what extent each universal query inC
is entailed by the action description. The idea is while computing the weight of a description relative to
weighted queries, to take into account the states at which these queries aresatisfied.

Let D be an action description. LetT = 〈S, V, R〉 be the transition diagram described byD, along with
a weight functiong mapping each state inT to a real number. LetC be a set of queries such that every query
q in C is an existential query, a universal query, or a disjunction of both.

First, for each states in S, we compute its new weightg′(s), taking into account utilities of the desired
histories starting withs. LetHC be the set of pairs(w, c) such thatw is a desired history inT with respect to
the queryc of form (15) inC. Let W be the set of histories that appear inHC . Let u be a function mapping
a historyw to a real number, describing the utility of states with respect tow. Then the new weight function
g′ is defined as follows:

g′(s) =

{

g(s) if 6 ∃w(w ∈ W ∧ st(w) = s)
∑

w∈W,st(w)=s u(w) otherwise.

Next, for each queryc in C, we compute its new weightf ′(c). Let f be a function mapping each
condition inC to a real number. We will denote bySD(B) the set of statess such thatD, s |= B. Then we
definef ′ as follows:

f ′(q) =



















α if q = q′ ∨ q′′

β if q = ALWAYS B
γ if q = SOMETIMES B ∧ |SD(B)| > 0
0 if q = SOMETIMES B ∧ |SD(B)| = 0,

whereα = f ′(q′) + f ′(q′′); β = f(q) ×
∑

s∈SD(B) g′(s); γ = f(q) × [(
∑

s∈SD(B) g′(s))/|SD(B)|].
Intuitively, f ′ describes to what extent each preferable queryq is satisfied.

Then the weight ofD (relative toC andf ′) is the sum:
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weightqs(D) =
∑

q∈C
f ′(q).

Intuitively, it describes how much and to what extent the given preferable queries are satisfied.
For instance, suppose thatC consists of three queries:

ALWAYS executable {PushPBTV }, (21)

SOMETIMES ¬executable {PushPBRC ,PushPBTV }, (22)

and query (16), denoted byc1, c2 and c3 respectively. Consider an action descriptionD, with the tran-
sition diagram in Figure 1. Let us denote history (17) byw; then HC = {(w, c3)}. Take the utility
function g as (18), and the transition modelm as (20). Takef(c1) = 1, f(c2) = 2, f(c3) = 3. Then
g′({PowerON ,TvON }) = 3.5, g′({¬PowerON ,¬TvON }) = 1, andf ′(c1) = 4, f ′(c2) = 4, f ′(c2) =
10.5. Therefore,weightqs(D) = 18.5.

7 Application: Updating an Action Description

Suppose that an action descriptionD consists of two parts:Du (unmodifiable causal laws) andDm (mod-
ifiable causal laws); and a setC of conditions is partitioned into two:Cm (must) andCp (preferable). We
define anAction Description Update (ADU)problem by an action descriptionD = (Du, Dm), a setQ of
causal laws, a setC = (Cm, Cp) of queries, all with the same signature, and a weight functionweight

mapping an action description to a number. The weight function can be defined relative to a set of queries,
a utility function, or a transition model, as seen in the previous section. We say that a consistent action
descriptionD′ is asolutionto the ADU problem(D, Q, C,weight) if

(i) Q ∪ Du ⊆ D′ ⊆ D ∪ Q,

(ii) D′ |= Cm,

(iii) there is no other consistent action descriptionD′′ such thatQ ∪ Du ⊆ D′′ ⊆ D ∪ Q, D′′ |= Cm,
andweight(D′′) > weight(D′).

The definition of an ADU problem in [2] is different from the one above mainly in two ways. First,
Cp = ∅. Second, instead of (iii) above, the following syntactic condition is considered: there is no consistent
action descriptionD′′ such thatD′ ⊂ D′′ ⊆ D ∪ Q, andD′′ |= C.

The semantic approach above has mainly two benefits, compared to the syntactic approach of [2]. First,
there may be more than one solution to some ADU problems with the syntactic approach. In such cases, a
semantic approach may be applied to pick one of those solutions. Example 1 illustrates this benefit. Second,
for an ADU problem, if no consistent action descriptionD′ satisfying (i) satisfies the must queries (Cm),
there is no solution to this problem with either syntactic or semantic approach. Insuch a case, we can
use the semantic approach with weighted queries, to relax some must queries inCm (e.g., move them to
Cp). The idea is first to solve the ADU problem((Du, Dm), Q, (∅, C ′

m),weight), whereC ′
m is obtained

from Cm by complementing each query, and where the weights of queries inC ′
m are equal to some very

small negative integer; and then to identify the queries ofC ′
m satisfied in a solution and add themCp, with

weights multiplied by -1. This process of relaxing some conditions ofCm to find a solution is illustrated in
Example 2.
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{PushPBT V , PushPBRC}PowerON

TvON

{}

¬TvON

¬PowerON

{PushPBRC}
{}

{PushPBT V }

{PushPBT V , PushPBRC}

{PushPBT V }

Figure 2: Transition diagram ofD(2) = Du ∪ Q ∪ {(2)}.

{PushPBT V , PushPBRC}

¬TvON

PowerON

{}

¬PowerON

¬TvON

PowerON

TvON

{}

{PushPBT V , PushPBRC}
{PushPBT V }

{}
{PushPBRC}

{PushPBRC}

{PushPBRC}

{PushPBT V }

{PushPBT V }

Figure 3: Transition diagram ofD(3) = Du ∪ Q ∪ {(1)}.

Example 1 Consider, for instance, the action descriptionD = (Dm, Du), whereDm = {(1), (2)} andDu

is (7), that describes a TV system with a remote control. Suppose that, later the following information,Q,
is obtained:

caused TvON after PushPBRC ∧ PowerON ∧ ¬TvON

caused ¬TvON after PushPBRC ∧ TvON .

Suppose that we are given the setC = (Cm, Cp) of queries whereCm consists of the queries (3) and

SOMETIMES evolves ¬TvON ; {PushPBTV };¬TvON , (23)

andCp consists of the queries (16), (22), (21), (19), (4), denoted byc1, . . . , c5 respectively. WhenQ is
added toD, the meaning ofD ∪ Q can be represented by a transition diagram almost the same as in that
of D (Figure 1), except that there is no outgoing edge from the state{PowerON ,TvON } with the label
{PushPBRC}; thus only (3), (23), and (16) inC are entailed byD ∪ Q. The question is how to updateD
by Q so that the must conditions,Cm, are satisfied, and the preferable conditions,Cp, are satisfied as much
as possible.

The consistent action descriptions for which (i) holds are

D(1) = D ∪ Q,

D(2) = Du ∪ Q ∪ {(2)},

D(3) = Du ∪ Q ∪ {(1)},

D(4) = Du ∪ Q.

With the syntactic approach of [2], we have to choose betweenD(2) andD(3), since they have more causal
laws. Consider the semantic approach based on weighted histories (i.e.,weight = weighth), with (18) as
the utility functiong, (20) as the transition modelm, and

f(c1) = 3, f(c2) = 1, f(c3) = 4, f(c4) = 3, f(c5) = 2.

Let us consider the states
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s0 = {PowerON ,TvON },
s1 = {PowerON ,¬TvON },
s2 = {¬PowerON ,¬TvON };

and the histories

w0 = s0, {PushPBRC}, s1,
w1 = s1, {PushPBRC}, s0,
w2 = s0, {PushPBTV }, s2, {PushPBTV }, s1,
w3 = s1, {PushPBTV }, s2, {PushPBTV }, s1

whose utilities,u(wi) = u0(wi), can be computed as follows:

w i ui(w)

w0 1 g(s1) = 2
w0 0 g(s0) + m(〈s0, {PushPBRC}, s1〉) × u1(w0) = 3

w1 1 g(s0) = 2
w1 0 g(s1) + m(〈s1, {PushPBRC}, s0〉) × u1(w1) = 4

w2 2 g(s1) = 2
w2 1 g(s2) + m(〈s2, {PushPBTV }, s1〉) × u2(w2) = 3
w2 0 g(s0) + m(〈s0, {PushPBTV }, s2〉) × u1(w2) = 3.5

w3 2 g(s1) = 2
w3 1 g(s2) + m(〈s2, {PushPBTV }, s1〉) × u2(w3) = 3
w3 0 g(s1) + m(〈s1, {PushPBTV }, s2〉) × u1(w3) = 5

That is,
u(w0) = 3, u(w1) = 4, u(w2) = 3.5, u(w3) = 5.

ForD(2) (Figure 2), sinceHCp
= ∅,

weighth(D(2)) = 0.

ForD(3) (Figure 3), sinceHCp
contains(w0, c5), (w1, c5), (w2, c3), and(w3, c3),

weighth(D(3)) =
u(w0) × f(c5) + u(w1) × f(c5) + u(w2) × f(c3) + u(w3) × f(c3) =
3 × 2 + 4 × 2 + 3.5 × 4 + 5 × 4 = 48.

ThusD(3) is the solution.

Example 2 TakeD, Q, Cp, andD(1)–D(4) as in Example 1, andCm as the set consisting of the queries

SOMETIMES ¬
∨

A∈2A
executable A, (24)

ALWAYS ¬evolves ¬TvON ; {PushPBTV };¬TvON , (25)

denoted byc′1 andc′2 respectively. None of the descriptionsD(1) – D(4) entailsCm. Therefore, there is
no solution to the ADU problem above with either the syntactic approach of [2]or any of the semantic
approaches above. To identify which queries inCm we shall move toCp, first we obtainC ′

m from Cm by
negating each query inCm, and assigning a very small negative integer, say -100, as their weights.SoC ′

m
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consists of the queries (3) and (23), denoted byc′′1 andc′′2, with weights -100. With the semantic approach
based on weighted queries (i.e.,weight = weightq),

weightq(D
(1)) = f(c′′1) = −100,

weightq(D
(2)) = weightq(D

(3)) = f(c′′1) + f(c′′2) = −200,

weightq(D
(4)) = f(c′′1) + f(c′′2) = −200,

the descriptionD(1) is the solution to the ADU problem((Du, Dm), Q, (∅, C ′
m),weightq). This suggests

relaxing the must query (24) (i.e., adding the query (24) toCp with the weight 100) and solving the new ADU
problem,((Du, Dm), Q, {(25)}, Cp ∪ {(24)},weightq), for which the descriptionDu ∪Q is the solution.

7.1 Other semantic approaches to action description updates

Given a consistent action descriptionE, condition (iii) of an ADU problem(D, Q, C,weight) can be re-
placed by

(iii) ′ there is no other consistent action descriptionD′′ such thatQ∪Du ⊆ D′′ ⊆ D ∪Q, D′′ |= Cm,
and|weight(D′′) − weight(E)| < |weight(D′) − weight(E)|

to express that, among the consistent action descriptionsD′ for which (i) and (ii) hold, an action description
that is “closest” to (or most “similar” to)E is picked. Here, for instance,E may beD ∪ Q, to incorporate
as much of the new information as possible, althoughD ∪ Q may not entailC. What is meant by closeness
or similarity is based on the particular definition of the weight function. For instance, based on the weights
of the states only, withg(s) = 1 if s is a state ofE, and 0 otherwise, the closeness of an action description
to E is defined in terms of the common world states.

8 Computational Aspects

We confine here to discuss the complexity, in order to shed light on the cost of computing the weight
measures. We assume that the basic functionsg(s), f(q), andm(〈s, A, s′〉) are computable in polynomial
time. For a background on complexity, we refer to the literature (see e.g. [12]). 1

Apparently, none of the different weights above is polynomially computable from an input action de-
scriptionD and a setC of queries in general. Indeed, deciding whetherS has any states is NP-complete,
thus intractable. Furthermore, evaluating arbitrary queriesq on D (D |= q) is a PSPACE-complete prob-
lem. Indeed,q can be evaluated by a simple recursive procedure in polynomial space. On the other hand,
evaluating Quantified Boolean Formulas, which is PSPACE-complete, can be reduced to decidingD |= q.

8.1 Computation given D and C

As it turns out, all four weights are computable in polynomial space. This is because each weight is a
sum of (in some cases exponentially many) terms, each of which can be easilycomputed in polynomial
space, using exhaustive enumeration. In some cases, the computation is also PSPACE-hard, but in others
supposedly easier:

1See alsohttp://qwiki.caltech.edu/wiki/Complexity Zoo
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Table 1: Complexity of computing weights (completeness)

Input / Weight weights weightq weighth weightqs

D, C #P FPSPACE GapP∗ FPSPACE

D, C, S polynomial

Dpol
∗∗, C in FPNP

‖

∗ #P for non-negativeg(s),f(q); ∗∗ |S| is polynomially bounded

Theorem 1 Suppose that we are given an action descriptionD, a setC of queries, a functiong mapping
every state a number, a functionf mapping every query inC to a number, and a functionm mapping
every transition to a probability. Suppose that these functions are computable in polynomial time. Then the
following hold:

(i) Computingweights(D) relative tog is, #P-complete;

(ii) Computingweightq(D) relative toC andf is FPSPACE-complete;

(iii) Computingweighth(D) relative toC, f , g andm is (modulo some normalization) #P-complete, if the
range off andg are nonnegative numbers, and GapP-complete for arbitraryf andg;

(iv) Computingweightqs(D) relative toC, f , g andm is FPSPACE-complete.

These results are also shown in the first row of Table 1. Here #P [12] is the class of the problems where the
output is an integer that can be obtained as the number of the runs of an NP Turing machine which accepts
the input; problems polynomially solvable with an #P oracle are believed not to bePSPACE-hard. GapP
[4, 8] is the closure of #P under subtraction (equivalently, it contains thefunctions which are expressible as
number of accepting computation minus the number of rejecting computations of anNP Turing machine).

Informally, corresponding proof ideas for Theorem 1 can be sketched as follows:
ad (i). Computingweights(D) amounts to counting the number of statess such thatg(s) > l. This

problem is thus easily seen to be in #P. Moreover, it is also #P-complete, since the canonical #P-complete
problem #SAT of counting the models of a propositional formula is readily reduced to it.

ad (ii). As for weightq(D), we must evaluate each queryq∈C on D and then take a sum. As testing
D|=q is PSPACE-complete, computingweightq(D) is in FPSPACE, i.e., the class of functions computable
in polynomial space. Moreover, the problem can also be shown to be hardfor this class.

ad (iii). Computingweighth(D) modulo some normalization (which casts the problem to one with
integer values), can like computingweights(D) be seen to be in #P, if the functionsg(s) andf(q) are
non-negative. Indeed, each relevant historyw can be nondeterministically generated in polynomial time,
andu(w) andh(w) are easily computed fromw; to account forh(w), simply that many accepting com-
putation branches are nondeterministically generated. On the other hand, #SAT is reducible to computing
weighth(D).

We sketch here a simple reduction, which is as follows. Suppose thatE is a SAT instance on proposi-
tional atomsx1, . . . , xn, which without loss of generality is not satisfied if all atoms are assigned false. We
let x1, . . . , xn be the fluents anda the single action symbol in an action descriptionD, which consists of all
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statements

caused xi if xi after ⊤,

caused ¬xi if ¬xi after ⊤,

where⊤ stands for a tautology, and letC consist of the single query

c = evolves
n
∧

i=1

¬xi; ∅;⊤.

Informally, the transition diagram ofD for the empty action∅ the complete graph whose nodes are all
truth assignments tox1, . . . , xn, andc captures the transitions from the assignment in which all atoms are
false to some arbitrary assignment via the empty action∅. Now we define thatg(s) = 2n if s satisfiesE,
andg(s) = 0 if s does not satisfyE, for eachs. Furthermore, we define that transitions have uniform
probability, i.e.,m(〈s, A, s′〉) = 1/2n for each transition〈s, A, s′〉 in the transition diagram described by
D. Let f(c) = 1.

It is easy to see thatHC contains all pairs(w, c) wherew = s0, ∅, s1 such thats0 is the state in which
all xi are false ands1 is an arbitrary state. Furthermore,h(w) = 1 if s1 satisfiesE andh(w) = 0 otherwise.
Therefore,weighth(D) is the number of satisfying assignments ofE. SinceD, C, m, f , andg are obviously
constructible in polynomial time, and since moreoverm, f , andg are computable in polynomial time, we
obtain #P-hardness of computingweighth(D).

In case of arbitrary (possibly negative)g(s) andf(q), weighth(D) is computable as the difference of
two #P functions. Therefore, computingweighth(D) is in the class GapP. Indeed, we have that

weighth(D) =
∑

(w,c)∈H+

C

u(w)×f(c) −
∑

(w,c)inH−
C

−u(w)×f(c),

whereH+
C contains all pairs(w, c) from HC such thatu(w)×f(c) is positive andH−

c contains all pairs
(w, c) from HC such thatu(w)×f(c) is non-negative. Both

∑

(w,c)∈H+

C

u(w)×f(c)

and
∑

(w,c)∈H−
C

−u(w)×f(c)

can be computed in #P. On the other hand, computing the differencef1 − f2 of two #P functionsf1 andf2

can be polynomially reduced to computingweighth(D) for some action descriptionD in polynomial time.
More precisely, with a slight adaption of the above construction, we can reduce computing the difference
of the number of satisfying assignments#(E1) and#(E2) of two SAT instancesE1 andE2 on atoms
x1, . . . , xn, respectively, (which is GapP-hard) to computingweighth(D). For this, we assume without loss
of generality that bothE1 andE2 are not satisfied if all atomsxi are false, and redefineg(s) to

g(s) =











2n if s satisfiesE1 ∧ ¬E2,
−2n if s satisfies¬E1 ∧ E2,
0 otherwise.
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This has the effect that any historyw = s0, A, s1 where(w, c) ∈ C, will contribute zero toweighth(D) if
E1 andE2 have the same value for the assignments1, and contributeh(w)×f(c) = 1 (resp.,h(w)×f(c) =
−1) if E1 is satisfied but notE2 (resp.E2 is satisfied but notE1). In total,weighth(D) amounts then to
#(E1) − #(E2). As consequence, computingweighth(D) for generalf andg is (modulo some normal-
ization) complete for GapP.

ad (iv). Computingweightqs(D) is more involved than computingweighth(D). Here, we must take
modified state rewardsg′(s) into account and normalize with|SD(B)| for certain queries. However, both
values are computable in polynomial space, and thus alsof ′(q) for each queryq. Consequently, computing
weightqs(D) is in FPSPACE; like computingweightq(D), it is also FPSPACE-complete.

In comparison,weights(D) andweighth(D) are of the same computational degree of difficulty, while
weightq(D) andweightqs(D) are harder under common complexity hypotheses. For queries where nesting
of formulas is bounded by a constant, the complexity drops below FPSPACE.

8.2 Computation given D, C, and states S of D

Informally, a source of complexity is thatD may specify an exponentially large transition diagramT . If T
is given, then each of the four weights can be calculated in polynomial time. Infact, not the whole transition
diagram is needed, but only arelevant part, denotedTC(D), which comprises all states and all transitions
that involve actions appearing inC.

Now if the state setS is known (e.g., after computation withCCALC [6]) or computable in polynomial
time, thenTC(D) is constructible in polynomial time. Indeed, for each statess, s′ ∈ S and each actionA
occurring in some query, we can test in polynomial time whether〈s, A, s′〉 is a legal transition with respect
to D; the total number of such triples is polynomial in|S|. Then the following result (the second row of
Table 1) holds.

Theorem 2 Suppose that we are given an action descriptionD, the setS of states described byD, a set
C of queries, a functiong mapping every state inS to a number, a functionf mapping every query in
C to a number, and a functionm mapping every transition to a probability. Suppose that these functions
are computable in polynomial time. Then each weight function,weights(D) (relative tog), weightq(D)
(relative toC andf ), weighth(D) (relative toC, f , g andm), andweightqs(D) (relative toC, f , g and
m), can be computed in polynomial time.

Obviously, computingweights(D) onTC(D) is polynomial. Similarly, computingweightq(D) is poly-
nomial since for each queryq, testingD |= q is polynomial onTC(D): label each states ∈ S bottom up
with the subformulasq′ of q that are true ats, and evaluate every dynamic query of form (9) by considering
all reachable nodes at distancen.

For computingweighth(D), we can also exploit a labeling technique to avoid considering exponentially
many paths inTC(D) explicitly. First, for a queryq of form (15), we label all statess with pi, i ∈ {0, . . . , n},
such thats = si for some historyw = s0, A1, s1, . . . , An, sn satisfyingq, in polynomial time. Here is a two
pass procedure for labeling the states:

1) First label, for each states, all statess′ at distancei = 0, 1, . . . , n with rs
i that respect the prefix of

somew desired with respect toq such thats = s0 ands′ = si.

2) Then, going backwards from states labeled withrn
s , turn eachrs

i (i = n, n − 1, . . . , 0) into pi.
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Now for i = n, n − 1, . . . , 0, we can for each states labeled withpi compute the sum of the utilities
u(w′) of all suffixesw′ = si, Ai+1, si+1, . . . , An, sn of some historyw satisfyingc such thatsi = s, easily.
In particular,u∗

0(s) is the sum of all utilitiesu(w) of histories that start ats and satisfyq. Exploiting this,
weighth(D) is then readily computed by rearranging the sum of its definition: For each relevant queryc
of form (15), sum up the theu∗

0(·) values at all states and multiply the result withf(c). This gives one
summand of a sum to build over all relevant queries (i.e., queries of form (15)).

Example 3 Consider, for instance, the action descriptionD(3) (Figure 3) in Example 1; takes0 ands1 as
specified in Example 1. For query (4), in the first pass of the labeling process, states0 is labeled withrs0

0 ,
rs1

1 ; and states1 is labeled withrs1

0 , rs0

1 ; in the second pass, both statess0 ands1 are labeled withp0 and
p1. Given the utility function and transition model as in Example 1 (i.e., as (18) and as (20), respectively),
and assuming a weight off(c) = 3 for the query, summing up we obtain:

u∗
1(s0) = g(s0) = 2,

u∗
1(s1) = g(s1) = 2,

u∗
0(s0) = g(s0) + m(〈s0, {PushPBRC}, s1〉) × u∗

1(s1) = 3,

u∗
0(s1) = g(s1) + m(〈s1, {PushPBRC}, s0〉) × u∗

1(s0) = 4.

And in total
f(c) × (u∗

0(s0) + u∗
0(s1)) = 21,

as the summand for the query,c, considered (and as the value forweighth(D(3)) asc is the only query
considered in this example).

Using the same techniques as forweighth(D), we can computeg′(s) for each states in polynomial
time onTC(D) and also|SD(B)|. Therefore, alsoweightqs(D) is computable in polynomial time in this
case.

Finally, if the state spaceS is not large, i.e.,|S| is polynomially bounded,S can be computed with the
help of an NP-oracle in polynomial time; in fact, this is possible with parallel NP oracles queries, and thus
computingS is in the respective class FPNP

‖ . The following theorem summarizes these results (the third row
of Table 1):

Theorem 3 Suppose that we are given an action descriptionD, the setS of states described byD, a set
C of queries, a functiong mapping every state inS to a number, a functionf mapping every query inC
to a number, and a functionm mapping every transition to a probability. Suppose that|S| is polynomially
bounded, and the functionsf , g, m are computable in polynomial time. Then computing each weight
function,weights(D) (relative tog), weightq(D) (relative toC andf ), weighth(D) (relative toC, f , g and
m), andweightqs(D) (relative toC, f , g andm), is in FPNP

‖ .

On the other hand, tractability of any of the weight functions in the case where |S| is polynomially
bounded is unlikely, since solving SAT under the assertion that the given formulaF has at most one model
(which is still considered to be intractable) is reducible to computingweightp(D) for eachp ∈ {s, q, h, qs}.

9 Conclusion

We have presented four ways of assigning weights to action descriptions,based on the preferences over
states, preferences over conditions, and probabilities of transitions, sothat one can compare the action
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descriptions by means of their weights. We have illustrated the usefulness ofsuch a semantically-oriented
approach of comparing action descriptions, on the problem of updating anaction description, in comparison
with the syntactic approach of [2]. For some problems, these two approaches are complementary to each
other: if the syntactic approach leads to many solutions, the semantic approach can be applied to pick one.
For some problems that can not be solved with any approach, due to too strong conditions, a semantic
approach can be used to identify which conditions to relax.

A Appendix: Examples

A.1 Yale Shooting Domain

Consider the following three formalizations of the Yale shooting domain [9]:

D1 :
caused Loaded after Load

caused ¬Loaded after Shoot

caused ¬Alive after Shoot ∧ Loaded

caused False after Shoot ∧ Load

inertial Loaded ,¬Loaded ,Alive,¬Alive

D2 :
caused Loaded after Load

caused ¬Loaded after Shoot

caused ¬Alive after Shoot

caused False after Shoot ∧ ¬Loaded

caused False after Load ∧ Loaded

inertial Loaded ,¬Loaded ,Alive,¬Alive

D3 :
caused Load if Loaded after Loaded

caused ¬Loaded after Shoot

caused ¬Alive after Shoot

caused False after Shoot ∧ ¬Loaded

caused False after Load ∧ Loaded

inertial Loaded ,¬Loaded ,Alive,¬Alive

and the following setC of queries:

c1 : SOMETIMES evolves Load ;True;Shoot ;True;Load ;Loaded

c2 : ALWAYS holds Loaded ⊃ necessarily False after Load

wheref(c1) = 5 andf(c2) = −10. The first query expresses a desired property: after loading the gun,
shooting, and loading again, the gun is loaded. The second query aboveexpresses an undesired property:
the gun can not be loaded when it is already loaded.

Takeweight = weightqs. Consider the following utility functiong for every states:
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g(s) =

{

3 if Alive ∈ s
1 otherwise.

Suppose that for each transition〈s, A, s′〉 in R,

m(〈s, A, s′〉) =

{

0.5 if Alive ∈ s andShoot 6∈ A
0.3 otherwise.

Let us denote bys0, . . . , s3 the following states:

s0 = {Alive,Loaded},
s1 = {Alive,¬Loaded},
s2 = {¬Alive,Loaded},
s3 = {¬Alive,¬Loaded};

andw0, . . . , w3 the following histories:

w0 = s0,Load , s0,Shoot , s3,Load , s2

w1 = s1,Load , s0,Shoot , s3,Load , s2

w2 = s2,Load , s2,Shoot , s3,Load , s2

w3 = s3,Load , s2,Shoot , s3,Load , s2

w4 = s1,Load , s0,Shoot , s3,Load , s3

for which the utilities are computed as follows:

w i ui(w)

w0 3 g(s2) = 1
2 g(s3) + m(〈s3, {Load}, s2〉) × u3(w0) = 1 + 0.3 = 1.3
1 g(s0) + m(〈s0, {Shoot}, s3〉) × u2(w0) = 3 + 0.3 × 1.3 = 6.9
0 g(s0) + m(〈s0, {Load}, s0〉) × u1(w0) = 3 + 0.5 × 6.9 = 6.45

w1 3 g(s2) = 1
2 g(s3) + m(〈s3, {Load}, s2〉) × u3(w0) = 1 + 0.3 = 1.3
1 g(s0) + m(〈s0, {Shoot}, s3〉) × u2(w0) = 3 + 0.3 × 1.3 = 6.9
0 g(s1) + m(〈s0, {Load}, s0〉) × u1(w0) = 3 + 0.5 × 6.9 = 6.45

w2 3 g(s2) = 1
2 g(s3) + m(〈s3, {Load}, s2〉) × u3(w0) = 1 + 0.3 = 1.3
1 g(s2) + m(〈s2, {Shoot}, s3〉) × u2(w0) = 1 + 0.3 × 1.3 = 4.9
0 g(s2) + m(〈s2, {Load}, s2〉) × u1(w0) = 1 + 0.3 × 4.9 = 2.47

w3 3 g(s2) = 1
2 g(s3) + m(〈s3, {Load}, s2〉) × u3(w0) = 1 + 0.3 = 1.3
1 g(s2) + m(〈s2, {Shoot}, s3〉) × u2(w0) = 1 + 0.3 × 1.3 = 4.9
0 g(s3) + m(〈s3, {Load}, s2〉) × u1(w0) = 1 + 0.3 × 4.9 = 2.47

w4 3 g(s3) = 1
2 g(s3) + m(〈s3, {Load}, s3〉) × u3(w0) = 1 + 0.3 = 1.3
1 g(s0) + m(〈s0, {Shoot}, s3〉) × u2(w0) = 3 + 0.3 × 1.3 = 6.9
0 g(s1) + m(〈s1, {Load}, s0〉) × u1(w0) = 3 + 0.5 × 6.9 = 6.45

That is,
u(w0) = u(w1) = u(w4) = 6.45, u(w2) = u(w3) = 2.47.
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For D1, HC = {(w0, c1), (w1, c1), (w2, c1), (w3, c1)}. Then, the new utility functiong′ can be com-
puted as follows:

g′(s0) = 6.45 g′(s1) = 6.45 g′(s2) = 2.47 g′(s3) = 2.47;

and the new weightsf ′ of queries are computed as follows:

f ′(c1) = f(c1) × (g′(s0) + g′(s1) + g′(s2) + g′(s3))/4 = 5 × 17.84/4 = 5 × 4.46 = 22.3
f ′(c2) = f(c2) × 0 = 0.

Thenweightqs(D1) = 22.3 .
ForD2, HC = {(w1, c1), (w3, c1)}. Then, the new utility functiong′ can be computed as follows:

g′(s0) = 3 g′(s1) = 6.45 g′(s2) = 1 g′(s3) = 2.47;

and the new weightsf ′ of queries are computed as follows:

f ′(c1) = f(c1) × (g′(s1) + g′(s3))/2 = 5 × 4.46 = 22.3
f ′(c2) = f(c2) × (g′(s0) + g′(s2)) = −10 × 4 = −40.

Thenweightqs(D2) = −17.7 .
For D3, HC = {(w1, c1), (w3, c1), (w4, c1)}. Then, the new utility functiong′ can be computed as

follows:
g′(s0) = 3 g′(s1) = 6.45 + 2.47 = 8.92 g′(s2) = 1 g′(s3) = 2.47;

and the new weightsf ′ of queries are computed as follows:

f ′(c1) = f(c1) × (g′(s1) + g′(s3))/2 = 5 × (8.92 + 2.74)/2 = 5 × 5.83 = 29.15
f ′(c2) = f(c2) × (g′(s0) + g′(s2)) = −10 × 4 = −40.

Thenweightqs(D3) = −10.85 .
Therefore,D1 is more preferable thanD2 andD3. Indeed, although these descriptions satisfy the desired

property (c1) to some extent, onlyD1 does not satisfy the undesired property.

A.2 Gripper Domain

Consider the following variation of the gripper domain [11]. There are three balls, each located in one of
the three rooms. There is a robot with two grippers. It can carry a ball in each. The available actions are
picking up, dropping, and painting balls, and moving between rooms. Suppose that the paint is available
only in Room3. Consider the descriptionsD1, D2, D3 of this domain shown in Figures 4, 5, 6 respectively.
In these descriptions, the schematic variables vary over constants:

variables constants
o {Robot ,Ball1 ,Ball2 ,Ball3}
b, b1 {Ball1 ,Ball2 ,Ball3}
g, g1 {Gripper1 ,Gripper2}
r, r1, r2 {Room1 ,Room2 ,Room3}
c, c1 {Red ,White,Blue}.



INFSYS RR 1843-06-06 19

caused At(Robot , r) after Walk(r)
caused False after Walk(r) ∧ At(Robot , r)

caused IsHolding(b, g) after PickUp(b, g)
caused False after PickUp(b, g) ∧

∨

b1
IsHolding(b1, g)

caused False after PickUp(b, g) ∧ ¬(
∨

r(At(Robot , r) ∧ At(b, r)))

caused ¬IsHolding(b, g) after Drop(b, g)
caused False after Drop(b, g) ∧ ¬IsHolding(b1, g)

caused Color(b, c) after PaintBall(b, c)
caused False after PaintBall(b, c) ∧ ¬(At(Robot ,Room3 ) ∧ At(b,Room3 ))

caused OnFloor(b) if OnFloor(b)
caused ¬OnFloor(b) if

∨

g IsHolding(b, g)

caused ¬At(o, r1) if At(o, r) (r 6= r1)
caused ¬At(b, r) if At(Robot , r) ∧

∨

g IsHolding(b, g)

caused ¬Color(b, c1) if Color(b, c) (c 6= c1)

caused False if ¬
∨

r At(o, r)
caused False if ¬

∨

c At(b, c)

inertial At(o, r),Color(b, c), IsHolding(b, g),¬IsHolding(b, g)

caused False after a ∧ a1 (a < a1)

Figure 4: A description for the grippers domain.

Consider a setC of queries consisting of the following queries:

p1 : ALWAYS
∧

r(holds At(Robot , r) ⊃ necessarily ¬At(Robot , r) after Walk(r))
p2 : SOMETIMES

∧

b,g(holds ¬IsHolding(b, g) ∧ possibly True after Drop(b))

p3 : ALWAYS
holds

∧

b(At(b,Room1 ) ∧ Color(b,White) ∧ OnFloor(b)) ∧ At(Robot ,Room3 ) ⊃
necessarily

∧

b(At(b,Room2 ) ∧ At(Robot ,Room3 ) ∧
∨

b Color(b,Red)∧
∨

b Color(b,White) ∧
∨

b Color(b,Blue)
after Walk(Room1 );PickUp(Ball1 ,Gripper1 );PickUp(Ball3 ,Gripper2 );

Walk(Room2 );Drop(Ball1 ,Gripper1 );Walk(Room1 );PickUp(Ball2 ,Gripper1 );
Walk(Room3 );PaintBall(Ball2 ,Blue);PaintBall(Ball3 ,Red);Walk(Room2 );
Drop(Ball2 ,Gripper1 );Drop(Ball3 ,Gripper2 );Walk(Room3 ),

wheref(p1) = 2, f(p2) = −3, andf(p3) = 1. The first query expresses that after the robot walks to some
location, it is not at its current location anymore. The second one expresses that the action of dropping a ball
is possible even when the robot is not holding that ball. The third one expresses the presence of a trajectory.
The first and the third conditions are desired whereas the second is not.
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caused At(Robot , r) after Walk(r)

caused IsHolding(b, g) after PickUp(b, g) ∧ ¬
∨

b1
IsHolding(b1, g)

caused ¬IsHolding(b, g) after Drop(b, g) ∧ IsHolding(b1, g)
caused OnFloor(b) after Drop(b, g)

caused Color(b, c) after PaintBall(b, c) ∧ At(Robot ,Room3 ) ∧ At(b,Room3 )

caused OnFloor(b) if OnFloor(b)

caused ¬At(o, r1) if At(o, r) (r 6= r1)

caused ¬Color(b, c1) if Color(b, c) (c 6= c1)

caused False if ¬
∨

r At(o, r)
caused False if ¬

∨

c At(b, c)

inertial At(o, r),Color(b, c), IsHolding(b, g),¬IsHolding(b, g)

caused False after a ∧ a1 (a < a1)

Figure 5: Another description for the grippers domain.

caused At(Robot , r) after Walk(r) ∧ ¬At(Robot , r)

caused IsHolding(b, g) after PickUp(b, g) ∧ ¬
∨

b1
IsHolding(b1, g)

caused False after PickUp(b, g) ∧ ¬(
∨

r(At(Robot , r) ∧ At(b, r)))

caused ¬IsHolding(b, g) after Drop(b, g)
caused False after Drop(b, g) ∧ ¬IsHolding(b1, g)

caused Color(b, c) after PaintBall(b, c)
caused False after PaintBall(b, c) ∧ ¬(At(Robot ,Room3 ) ∧ At(b,Room3 ))

caused OnFloor(b) if OnFloor(b)
caused ¬OnFloor(b) if

∨

g IsHolding(b, g)

caused ¬At(o, r1) if At(o, r) (r 6= r1)
caused ¬At(b, r) if At(Robot , r) ∧

∨

g IsHolding(b, g)

caused ¬Color(b, c1) if Color(b, c) (c 6= c1)

caused False if ¬
∨

r At(o, r)
caused False if ¬

∨

c At(b, c)

inertial At(o, r),Color(b, c), IsHolding(b, g),¬IsHolding(b, g)

caused False after a ∧ a1 (a < a1)

Figure 6: Yet another description for the grippers domain.
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With the semantic approach based on weighted queries (i.e.,weight = weightq), the weights of the
action descriptions are computed as follows:

weightq(D1) = f(p1) + f(p3) = 2 + 1 = 3

weightq(D2) = f(p2) = −3

weightq(D3) = f(p3) = 1.

Therefore,D1 is the most preferable description. Indeed, it is the only description that entails both desired
queries and does not entail the undesired one.

A.3 Application: Elaboration Tolerance

Suppose that we are given a setD of action descriptions; and a setC of conditions, each describing a
possible elaboration. We say about two action descriptionsD andD′ in D that D is more elaboration
tolerant thanD′ with respect toC, if weight(D) > weight(D′), whereweight is defined relative toC
among other things (e.g.,weight can beweightq, weighth, or weightqs). The question we are interested in
is which action description inD is the most elaboration tolerant with respect toC.

Weight functions defined relative to possible elaborations, which might alsotake into account the sig-
nificance of those elaborations, are reasonable measures of difficulty of modifying the action descriptions
to entail possible elaborations: if an action description entails higher number ofelaborations, then it is
more tolerant to elaborations; on the other hand, if an action description does not entail a lower number of
elaborations, then it is easier to modify it by adding or modifying its causal laws(e.g., like in [3]).

Here is a variation of the example in [1].

Example 4 Consider the following two action descriptionsD andD′ describing how weather changes when
it rains.

D :
caused Cold after Rain

caused Wet after Rain

caused ⊥ after Rain ∧ ¬Cloudy

caused ¬Sunny after Sunset

caused ¬Sunny if Cloudy

D′ :
caused Wet after Rain

caused ⊥ after Rain ∧ ¬Cloudy

caused ¬Sunny after Sunset

caused ¬Sunny if Cloudy

caused Cold if Cold ∧ (¬Sunny ∨ Wet).

Consider also the following possible elaborations on how weather changesrelative to seasons and regions:

e1 : ALWAYS holds Winter ⊃ necessarily Cold after Sunset

e2 : SOMETIMES evolves Tropical ; {Rain};¬Cold

e3 : ALWAYS holds ¬Winter ⊃ possibly Cold after Rain.

Suppose thatweight = weightq, andf(e1) = f(e3) = 3, f(e2) = 2 (because, e.g., if someone does not
travel much, then elaborations relative to seasons are more important for her). ThenD′ is more elaboration
tolerant thanD becauseweightq(D) = 3 whereasweightq(D

′) = 8.
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Amir compares, in [1], two axiomatic theoriesΣ andΣ′ with respect to a target axiomatic theoryΣtarget,
in terms of a syntactic transformation (e.g., the number of additions and deletions of sentences). This idea
might be captured with respect to a semantic measure, by means of comparing how similar/diverse the action
descriptions are as discussed in Section 7.1. On the other hand, we usuallydo not know the target theory
(resp., the most elaboration tolerant action description), but may have an idea of possible elaborations based
on our observations in different circumstances (as in the example above). In such cases, it is reasonable to
decide which action description inD is the most elaboration tolerant one, by comparing action descriptions
semantically with respect to some weight function that takes into accountC.
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