
Testing Strong Equivalence of Datalog Programs

- Implementation and Examples

Ausarbeitung im Zuge der LVA
10.0 PR Wahlfachpraktikum

Patrick Traxler
Matrikelnummer 0027287

Betreuer:
Dr. Wolfgang Faber

o. Univ.-Prof. Dr. Thomas Eiter

Abteilung für Wissensbasierte Systeme (E184-3),

TU Wien

9. September 2004

Abstract

In this work strong equivalence of disjunctive first order datalog programs un-
der the stable model semantic is considered. The problem is reduced to the
unsatisfiability problem of Bernays-Schönfinkel formulas. An implementation is
described in detail.

Contents

1 Introduction 2

2 Preliminaries 2

3 Reduction 3

4 Implementation 5

5 Examples 9

6 Conclusion 11

1

1 Introduction

Two disjunctive datalog programs Π1 and Π2 are strongly equivalent iff for ev-
ery set of rules R the programs Π1 ∪ R and Π2 ∪ R are equivalent, i.e. iff they
have the same stable models [2]. The programs may have variables, and the
universe is countable. Strong equivalence is used to optimize programs. For a
given program Π and a rule r in Π it is tested if Π− {r} is strongly equivalent
to Π. If so, Π − {r} might be used instead of Π. Testing strong equivalence is
complete for coNEXPTIME [5].

In [4] it was shown how to reduce the problem of testing strong equivalence
to the unsatisfiability problem of Bernays-Schönfinkel formulas. This reduction
is refined in section 3. In section 4 an implementation is described. Two DLV
programs Π1 and Π2 are translated into two Darwin clausal forms ϕ1 and ϕ2

such that Π1 and Π2 are strongly equivalent iff ϕ1 and ϕ2 are unsatisfiable.
DLV1 is an answer set solver and Darwin2 is an automated theorem prover. In
[1] it was pointed out that the model evolution calculus terminates for Bernays-
Schönfinkel formulas. Darwin implements this calculus.

In section 5 some examples are studied.

2 Preliminaries

Disjunctive Datalog Programs Let li denote a literal, i.e. a first order
atom or its negation. A disjunctive datalog program (program for short) is a set
of rules where each rule has the form

l1, ..., lk ← lk+1, ..., lm, notlm+1, ..., notln

For a rule r

• the head H(r) is l1, ..., lk,

• the body B(r) is lk+1, ..., lm,notlm+1, ..., notln,

• the positive body B+(r) is lk+1, ..., lm, and

• the negative body B−(r) is lm+1, ..., ln.

A constraint is a rule with an empty head, and a disjunctive fact is a rule
with an empty body. A program may contain constraints or disjunctive facts.
If the head consists of exactly one literal, and the body is not empty then the
rule is called normal, and if the negative body is empty then the rule is called
positive. A program is called normal (resp., positive) if every rule is normal
(resp., positive).

Note, that a program has no function symbols with positive arity. Constant
symbols are allowed.

1www.dlvsystem.com
2www.mpi-sb.mpg.de/∼baumgart/DARWIN/

2

A Herbrand interpretation consists of ground literals. A ground literal is a
possibly negated relational symbol with constant symbols from the Herbrand
base as arguments. The Herbrand base is a finite subset of the countable uni-
verse which contains all constants of the considered program. A Herbrand in-
terpretation I is consistent iff there are no two literals in I where one of them
is the negation of the other. Let Gr(Π) be the grounding of Π. A consistent set
of literals M is closed under Π iff for all r ∈ Gr(Π):

if B+(r) ⊆ M , B−(r) ∩M = {} then H(r) ∩M 6= {}.
A stable model of a positive program Π is a minimal consistent total Herbrand
interpretation which is closed under Π. For a Herbrand interpretation I of Π

ΠI := {H(r) ← B+(r) : B−(r) ∩ I = {}}

is called the Gelfond-Lifschitz reduct. A stable model of Π is a stable model of
ΠI . Let SM(Π) denote the stable models of Π.

Two programs Π1 and Π2 are equivalent iff they have the same stable mod-
els. They are strongly equivalent iff for every set R of rules Π1 ∪R and Π2 ∪R
are equivalent.

In the following only ¬-free programs are considered. A program with ¬ can
be translated into one without ¬; see [3].

Bernays-Schönfinkel Fragment of First Order Logic For a quantifier
free formula ϕ without function and constant symbols a Bernays-Schönfinkel
formula is of the form

∃x1...xk∀y1...ylϕ(x1, ..., xk, y1, ..., yl)

For such a formula ψ the satisfiability problem is complete for NEXPTIME.
The clausal form of ψ is obtained from ψ by replacing the variables x1, ..., xk

in ϕ with new constant symbols, transforming the resulting formula ϕ′ into a
conjunctive normal form ϕ′′, and putting all clauses of ϕ′′ in a set Σ(x̄) where
x̄ are the free variables of ϕ′′. The clausal form Σ(x̄) is satisfiable iff ψ is
satisfiable. In general, a clausal form Σ(x̄) is said to be satisfiable iff ∀x̄Σ(x̄) is
satisfiable. The notion

l1, ..., lk ` lk+1, ..., ln

stands for the clause

l1 ∨ ... ∨ lk ∨ ¬lk+1 ∨ ... ∨ ¬ln.

3 Reduction

Testing strong equivalence is coNEXPTIME complete [5]. Here, a reduction
of non strong equivalence to the Bernays-Schönfinkel satisfiability problem in
clausal form is described. This resembles the reduction in [4].

3

For every relational symbol ri, 1 ≤ i ≤ k, of the programs Π1, Π2 let r′i be
a new relational symbol of the same arity. Then

Σ(x̄1, ..., x̄k) := {r′1(x̄1) ` r1(x̄1), ..., r′k(x̄k) ` rk(x̄k)}.

For each rule

h1(u1); ...; hl(ul) ← p1(v1), ..., pm(vm), notpm+1(vm+1), ..., notpn(vn)

in Π, let ΓΠ(ū, v̄) contain

h1(u1), ..., hl(ul) ` p1(v1), ..., pm(vm),¬p′m+1(vm+1), ...,¬p′n(vn)

and

h′1(u1), ..., h′l(ul) ` p′1(v1), ..., p′m(vm),¬p′m+1(vm+1), ...,¬p′n(vn).

Let U be the set of unique names axioms, i.e. U asserts that no two constants
are equal. Therefore a new relational symbol Ui for every constant symbol ci is
introduced:

U1(c1) ∧ ¬U2(c1) ∧ ... ∧ ¬Uk(ck)
¬U1(c1) ∧ U2(c1) ∧ ... ∧ ¬Uk(ck)
...
¬U1(cl) ∧ ¬U2(c1) ∧ ... ∧ Uk(ck)

For a formula ϕ let ϕx
y be the formula with y replaced by x. Analogous for a set

of formulas. Let c̄ be c1, ..., ck. In [4] it was shown that Π and Π′ are strongly
equivalent iff

∀ū∀ȳ∃x̄∃z̄(¬U ū
c̄ ∨ ¬Σ(z̄) ∨ ¬ΓΠ(x̄)ū

c̄ ∨ ΓΠ′(ȳ)ū
c̄)

and
∀ū∀ȳ∃x̄∃z̄(¬U ū

c̄ ∨ ¬Σ(z̄) ∨ ¬ΓΠ′(x̄)ū
c̄ ∨ ΓΠ(ȳ)ū

c̄)

are valid. Therefore, Π and Π′ are not strongly equivalent iff

∃ū∃ȳ∀x̄∀z̄(U ū
c̄ ∧ Σ(z̄) ∧ ΓΠ(x̄)ū

c̄ ∧ ¬ΓΠ′(ȳ)ū
c̄)

or
∃ū∃ȳ∀x̄∀z̄(U ū

c̄ ∧ Σ(z̄) ∧ ΓΠ′(x̄)ū
c̄ ∧ ¬ΓΠ(ȳ)ū

c̄)

is satisfiable.

The sets U , Σ, ΓΠ(x̄), ΓΠ′(ȳ) are in clausal form, but ¬ΓΠ(x̄), ¬ΓΠ′(ȳ) are
not. They are in quantifier free disjunctive normal form. It is sufficient to use
satisfiability equivalent formulas to gain clausal form. Denote these formulas by
Γ∗Π(x̄), Γ∗Π′(ȳ). It follows that Π and Π′ are not strongly equivalent iff

∃ū∃ȳ∀x̄∀z̄(U ū
c̄ ∧ Σ(z̄) ∧ ΓΠ(x̄)ū

c̄ ∧ Γ∗Π′(ȳ)ū
c̄)

or
∃ū∃ȳ∀x̄∀z̄(U ū

c̄ ∧ Σ(z̄) ∧ ΓΠ′(x̄)ū
c̄ ∧ Γ∗Π(ȳ)ū

c̄)

4

is satisfiable. By Skolemization, this is the case iff

U ∪ Σ(z̄) ∪ ΓΠ(x̄) ∪ Γ∗Π′

or
U ∪ Σ(z̄) ∪ ΓΠ′(x̄) ∪ Γ∗Π

is satisfiable. In the following denote U ∪ Σ(z̄) ∪ ΓΠ(x̄) ∪ Γ∗Π′ by ∆(Π, Π′).

Now, it is shown by an example how to get Γ∗ from a quantifier free dis-
junctive normal form Γ. Let Γ be A ∨ (B ∧C) and s be a new unary relational
symbol. Then, Γ∗ is (A ∨ s(c)) ∧ (B ∨ ¬s(c)) ∧ (C ∨ ¬s(c)) where c does not
occur in Γ. Therefore, ∀x̄(Γ(x̄)) is satisfiable iff ∀x̄(Γ∗(x̄)) is satisfiable. The
algorithm for computing Γ∗ from Γ in general follows.

Input: a quantifier free DNF Γ.
Output: a quantifier free CNF Γ∗, s.t. Γ∗ is satisfiable iff Γ is satisfiable.

1. Γ∗ := {}, and let s be a new unary relational symbol.
2. For every t ∈ Γ:

Let t be l1 ∧ ... ∧ lk, and c be a new constant symbol.
Add l1 ∨ ¬s(c), ..., lk ∨ ¬s(c) to Γ∗.
Set ϕ to ϕ ∨ s(c).
Delete t from Γ.

3. Add ϕ to Γ∗.

Correctness. After construction, Γ∗ is in quantifier free CNF. Assume that
Γ∗ is satisfiable. Since ϕ ∈ Γ∗, it holds that s(c) is true for some c. It follows
that the l1, ..., lk which were added in the step when c was used are true, i.e.
l1 ∧ ...∧ lk is true, and therefore Γ is satisfiable. On the other hand, let M be a
model of Γ. There exists a true term in Γ for which a constant symbol c in the
construction of Γ∗ was used. Let M∗ be the structure obtained from M such
that s(c) holds in M∗. Since the used constants do not occur in Γ it holds that
M∗ is a model of Γ∗.

Note, that no function symbols of positive arity were introduced.

4 Implementation

The syntax of DLV and Darwin is described first. The implementation of the
reduction is described next.

DLV and Darwin syntax The supported DLV syntax in EBNF:
rule ::= head ’.’ | head ’:-’ body ’.’ | ’:-’ body ’.’
head ::= literal {’v’ literal}
body ::= literal {’,’ literal}
literal ::= atom | ’not’ atom
atom ::= symb [’(’ term {’,’ term}’)’]
term ::= variable | symb

5

variable ::= (’A’-’Z’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’}
symb ::= (’a’-’z’ | ’0’-’9’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’}

Let LDLV be the language given by this syntax description.

A rule can be a disjunctive fact, a (disjunctive) rule or a constraint. The
non-terminal enl stands for explicitly negated literal.

The used Darwin syntax in EBNF:
clause ::= head [’:-’ body].
head ::= literal {’;’ literal}
body ::= literal {’,’ literal}
literal ::= [(’-’ | ’∼’)] atom | ’true’ | ’false’
atom ::= symb | symb ’(’ term {’,’ term} ’)’ | ’(’ term ’=’ term ’)’
term ::= variable | symb [’(’ term {’,’ term} ’)’]
variable ::= (’A’-’Z’ | ’ ’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’ | ’ ’}
symb ::= (’a’-’z’ | ’0’-’9’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’ | ’ ’}

Let LDarwin be the language given by this syntax description.

Remarks.

• Equality is not supported. There is no = symbol in LDLV.

• Strong (or explicit) negation is not supported.

• Comments are not supported. There is no % symbol.

• Anonymous variables are not supported. There is no in LDLV.

• The set of atoms in LDLV is a proper subset of the set of atoms in LDarwin.

Output size The sets Π, Π′, U , Σ, ... are represented with the languages
LDLV and LDarwin. Their size | · | is the number of symbols.

The size of ΓΠ is linear in |Π|. The size of Γ∗Π is linear in the size of ΓΠ.
Let nc be the number of constant symbols, and nr be the number of relational
symbols in Π and Π′. The size of Σ is linear in nr and the size of U is quadratic
in nc.

Proposition 1. |∆(Π, Π′)| ≤ e · (|Π|+ |Π′|+ nr + n2
c) for some e.

Classes The implementation is written in C++. There are two classes:

class SymbolTable: This class is used for storing constant and relational sym-
bols. There are two symbol tables, namely st CS and st RS. They are initialized
when parsing the input with yyparse().

6

void add(const string& s, int arity = 0): Adds the symbol identified by
s which might have a arity.

bool exists(const string& s): Returns true if the symbol identified by s
exists, false otherwise.

int getArity(const string& s): Returns the arity if s exists, -1 otherwise.

string newSymbol(const string& prefix, int arity = 0): Returns a sym-
bol which does not occur in the symbol table. Note, that this function uses the
fact that ’ ’ does not occur in the used DLV syntax. Example:

1. call: newSymbol("c") returns "c 1"
2. call: newSymbol("c") returns "c 2"
3. call: newSymbol("sk") returns "sk 3"
4. call: newSymbol("c") returns "c 4"

string iterate(int): Iteration through the elements in the symbol table. Us-
age:

SymbolTable st;
...
string s;
for (s = st.iterate(0); s != ""; s = st.iterate(1)) {

...
}

The first element is retrieved with iterate(0) and the subsequent elements
with iterate(1). If there is no more element then "" is returned.

class Rule: This class represents a rule.

bool nextRule(string& s): The next rule is extracted from s where s is a
DLV program. Note, that this function does not check s to be a correct DLV
program. The return value is true if there exists a next rule, false otherwise.

void skolemize(): Applys Skolemization to the rule, i.e. all variables are re-
placed by new constants with respect to st CS. For example, the Skolem form
of "r(X,Y):-s(X),t(Y)" is "r(sk 1,sk 2):-s(sk 1),t(sk 2)".

string nextLiteral(): Returns the next literal, ":-", or "". For the rule
"r(X,Y):-s(X),t(Y)" this function works as follows:

1. call: "r(X,Y)"
2. call: ":-"
3. call: "s(X)"
4. call: "t(Y)"
5. call: ""

7

Initialization The two symbol tables st CS and st RS have to be initialized.
This is done with the function yyparse() which reads a DLV program, checks
for the correct syntax, and adds all constant and relational symbols to st CS and
st RS. The function yyparse() is automatically generated by flex3, a parser
generator.

Generating the Output To generate ∆(Π, Π′) = U ∪Σ(z)∪ΓΠ(x)∪Γ∗Π′ the
functions genSigma, genU, genGamma(string prog), genGammaStar(string prog)
are used. For example,

cout << genSigma() << genU() << genGamma(prog1) <<
genGammaStar(prog2) << endl;

Before, yyparse() should have been applied to prog1 and prog2 since yyparse()
generates the symbol tables st CS and st RS. These symbol tables are used in
genSigma() and genU(). If st CS or st RS changes so does the output of
genSigma() and genU(). The functions genGamma() and genGammaStar() use
the class Rule to iterate through the DLV program and transform it.

The main function The function int main(int argc, char** argv) awaits
two command line arguments, the names of the two DLV programs. The two
programs are parsed with yyparse(), and read in. Next, two output files are
generated, out.1.tme and out.2.tme. These files are provided to Darwin. If in
both cases Darwin finds a refutation the DLV programs are strongly equivalent.

3www.gnu.org

8

5 Examples

Example 1 Let Π be
a(k1). a(k2).
h(X):- a(X).
t(X):- h(X).
a(X):- t(X).
a(X):- h(X).

The program Π states that a ⊆ h ⊆ t ⊆ a, i.e. a = h = t. Therefore, the
last rule is useless. Let Π′ be

a(k1). a(k2).
h(X):- a(X).
t(X):- h(X).
a(X):- t(X).

In the following the single parts of the resulting formula ∆(Π,Π′) are given
in Darwin syntax.

Σ:
a (X1):-a(X1).
t (X1):-t(X1).
h (X1):-h(X1).

Γ(Π):
a(k1). a(k2). a (k1). a (k2).
h(X):- a(X). h (X):- a (X).
t(X):- h(X). t (X):- h (X).
a(X):- t(X). a (X):- t (X).
a(X):- h(X). a (X):- h (X).

Γ∗(Π′):
-a(k1):- s (1). -a (k1):- s (6).
-a(k2):- s (2). -a (k2):- s (7).
-h(sk 1):- s (3). -h (sk 4):- s (8).
a(sk 1):- s (3). a (sk 4):- s (8).
-t(sk 2):- s (4). -t (sk 5):- s (9).
h(sk 2):- s (4). h (sk 5):- s (9).
-a(sk 3):- s (5). -a (sk 6):- s (0).
t(sk 3):- s (5). t (sk 6):- s (0).

s (1), s (2), s (3),
s (4), s (5), s (6),
s (7), s (8), s (9),
s (0).

U :
u1(k1). -u1(k2).

9

-u2(k1). u2(k2).

Using Darwin a refutation is found. This also holds for ∆(Π′,Π). Hence, Π′

and Π are strongly equivalent.

Example 2 Let Π be
b(X):- a(X).
c(X):- b(X).

and Π′ be
c(X):- a(X).
b(X):- c(X).

These programs are equivalent, but not strongly equivalent since SM(Π ∪
{b(1).}) 6= SM(Π′ ∪ {b(1).}). Darwin indeed says that ∆(Π, Π′) is satisfiable.

Example 3 Let Π be
a(X):-not b(X).
a(X):-c(X).
c(X):-a(X).
c(X):-not b(X).

and Π′ be
a(X):-not b(X).
a(X):-c(X).
c(X):-a(X).

These programs are strongly equivalent.

Example 4 Let Π be
t(X,Y):-a(X,Y).
t(X,Z):-t(X,Y),t(Y,Z).

and Π′ be
t(X,Y):-a(X,Y).
t(X,Z):-a(X,Y),t(Y,Z).

Both programs compute the transitive closure. They are not strongly equiv-
alent since SM(Π∪{t(1, 2)., t(2, 3).}) 6= SM(Π′∪{t(1, 2)., t(2, 3).}). Darwin says
that ∆(Π, Π′) is unsatisfiable and ∆(Π′,Π) is satisfiable.

Example 5 Let Π be
t2(X,Y):- t1(X,Y).
t2(X,Y):- t1(X,Z), t2(Z,Y).
t2(X,Y):- r(X,Z), t2(Z,Y).
t1(X,Y):- r(X,Y).
t1(X,Y):- r(X,Z), t1(Z,Y).

and Π′ be
t2(X,Y):- t1(X,Y).
t2(X,Y):- t1(X,Z), t2(Z,Y).
t1(X,Y):- r(X,Y).

10

t1(X,Y):- r(X,Z), t1(Z,Y).

These programs are strongly equivalent.

6 Conclusion

Testing strong equivalence is achieved by a reduction to the Bernays-Schönfinkel
unsatisfiability problem. In the implementation two DLV programs are trans-
formed into two Darwin programs. The size of the resulting Darwin programs
is nearly linear in the size of the DLV programs. Hence, the overall performance
of testing strong equivalence depends heavily on the automated theorem prover.

References

[1] P. Baumgartner, C. Tinelli: The Model Evolution Calculus, Fachberichte
Informatik 1-2003, Universität Koblenz-Landau, Institut für Informatik,
Rheinau 1, D-56075 Koblenz (2003).

[2] M. Gelfond, V. Lifschitz: Classical negation in logic programs and disjunctive
databases, New Generation Computing (1991).

[3] V. Lifschitz et al.: Strongly equivalent logic programs, ACM Transactions on
Computational Logic (2001).

[4] F. Lin: Reducing Strong Equivalence of Logic Programs to Entailment in
Classical Propositional Logic, in D. Fensel, F. Giunchiglia, D. McGuiness,
and M.-A. Williams, editors, Proceedings Eight International Conference on
Principles of Knowledge Representation and Reasoning (KR-02), April 22-25,
Toulouse, France, Morgan Kaufmann (2002).

[5] T. Eiter et al.: Methods and Techniques for Query Optimization, Infomix
Consortium, Technical Report D5.3 (2004).

11

