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1 Intr oduction

Theautomatiageneratiorof explanationglaysanimportantrolein mary Al areadik e planning,diagnosis,
naturallanguageprocessingand probabilisticinference. Notions of explanationshave beenstudiedquite
extensvely in theliterature,seeespecially{28, 21, 44] for philosophicalwork, and[38, 47, 29] for work in

Al thatis relatedto Bayesiametworks. A critical examinationof suchapproache$rom the viewpoint of

explanationgn probabilisticsystemss givenin [6].

In arecentpapel25, 27], HalpernandPearlintroducedanelegantdefinitionof causakxplanationin the
structural-modehpproachyhich is basedntheir notionsof weakandactualcaus€g25, 26]. They shaved
thatthis notion of causalexplanationmodelswell mary problematicexamplesin the literature. The main
ideais thatan explanationis a factthatis not known for certainbut, if foundto betrue, would constitute
a causeof the factto be explained,regardlessof the agents initial uncertainty An importantnoteis that
HalpernandPearls notion of causalexplanationis very differentfrom the conceptsof causalexplanation
which have beenconsideredn otherworksin Al, e.g.in [35, 36, 22).

Informally, the basicideabehindthe structural-modebpproachs thattheworld is modeledby random
variables,which may causallyinfluenceeachother The variablesaredivided into backgroundvariables,
which areinfluencedby factorsoutsidethe model,andobserablevariableswhich areinfluencedoy back-
groundandobserablevariables.This latterinfluenceis describedy functionsfor theobserablevariables.
The following is a simpleexampledueto Halpernand Pearl[25, 26, 27], which illustratesthe structural-
modelapproach.

Example 1.1 (Arsonisty Supposéwo arsonistsit matchesn differentpartsof adry forest,andbothcause
treesto startburning. Assumenow eithermatchby itself suficesto burn down the whole forest. We may
modelsucha scenarian the structural-modeframenork asfollows. We assuméwo binary background
variables/; andUs, which determineghe motivationandthe stateof mind of thetwo arsonistswhereU; is
1iff arsonist intendsto startafire. We thenhave threebinaryvariablesA,, A,, and B, which describehe
obsenrablesituation,whereA; is 1 iff arsonist dropsthematch,andB is 1 iff thewholeforestburnsdown.
The causadependencieletweerthesevariablesareexpressedy functions,which saythatthevalueof A;
is givenby thevalueof U;, andthat B is 1 iff either A; or A, is 1. Thesedependenciesanbe graphically
representedsin Fig. 1.

U1—>A1\

B
Up o Ay —

Figurel: CausalGraph

Causesandexplanationsfor events,suchas B =1 (the whole forestburnsdown), aredefinedby con-
sideringthe valuesof variablesin the abore modelandcertainhypotheticalvariants(seeSections2.2, 3.1,
and4.1). For example,arsonistl startingafire is a (weakandan actual)causeof the whole forestburning
down underevery possiblecontext in which arsonistl intendsto startafire. Moreover, arsonistl startinga
fire is an explanationof the whole forestburning down relative to the setof all possiblecontets in which
eitherarsonistntendsto startafire. O
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For moreexamplesandextensve backgroundn structuralcausaimodelswe referespeciallyto [2, 20,
39,40, 24.

While thesemantiaspect®f explanationsn the structural-modeapproacthave beenthoroughlystud-
iedin [25, 27], astudyof their computationapropertiess missingsofar. In theirpapersHalpernandPearl
were not concernedwith algorithmsfor computingexplanations,andthusthe issueof how explanations
canbe (asefficiently aspossible)}computedemainsto be consideredAn importantsteptowardsresolving
this issueis an analysisof the computationatompleity of explanations.However, no compleity results
for explanationsapartfrom trivial intractability resultswhich areinheritedfrom Booleanfunctions,were
known, anda characterizatioof the compl«ity of explanationsvasopen.

In this paper we aim atfilling this gapby giving a preciseaccountof the compleity of explanations
in structuralcausalmodels. It continuesandextendsthe work in [14, 15 on the compleity of actualand
weak causeswhich are a steppingstonefor defining explanations. As for computationin the structural-
modelapproachHopkins[30] recentlyexploredsearch-basestratgiesfor computingactualcausegi.e.,
minimal weakcauses)n boththegeneralandrestrictedsettings.However, hedid not pay muchattentionto
compl«ity issuesanddid not provide a detailedanalysisof theintrinsic compleity of actualcausesnor
did headdresshe computatiorof explanationson top of weakcauses.

Themaincontrikutionsof this papercanbe summarizeasfollows (areview of thementioneccomple-
ity classess givenin Section2.3):

e We determinethe compleity of (full) explanationsin the structural-modebpproach25, 27]. We
considerthe problemsof recognizingexplanationsandof decidingwhetheran explanationover cer
tain variablesexists. As it turnsout, theseproblemsarecompletefor DY andx¥’, respectiely, in the
unrestricteccaseandcompletefor DY andX¥, respectiely, in thebinarycase Thus,recognitionand
existenceof explanationgeside Jooselyspeakingatthe secondandthethird level of thewell-knovn
PolynomialHierarchy

e We thendeterminethe compleity of partial explanationsin the structural-mode&pproach25, 27],
which relax full explanationsin a probabilistic setting. We considerthe problemsof recognizing
a-partial/ partial explanations,of decidingwhetheran a-partial explanationover certainvariables
exists,andof computingthe explanatorypower of partialexplanations.Theseproblemsurnoutto be

Y P »g ialy i ; NP P
completefor P|| , 3, andFPH , respectiely, in theunrestricteccase andcompletefor PH DX
andFPﬁIP, respectiely, in thebinarycase.

e Furthermorewe analyzethe complity of explanationsandpartial explanationsn a settingwhere
contet setsare succinctlyrepresented.In the standardsetting, the contets u., us, - . . , u, Which
oughtto be respectedor forming an explanationare simply enumeratedn the probleminput. In
another(natural)representationthe contets are given by a membershigfunction x(«), which on
input of a context u tellswhetheru oughtto berespectear not. This form of representatiois more
succinctthansimplecontet enumerationn generalandmayleadto exponentialsavzingsin storage
for the context setof interest. However, this is tradedfor a significantincreasen the complity
of explanations.More precisely we shav that recognizingexplanationsand partial explanationsis
completefor IT7" in the unrestrictectase andcompletefor ITE in thebinary case.

e Finally, we analyzethe complity of explanationsin the generalizatiorof contexts to situations,
whicharepairs(M, u) of acausaimodel M andacontext u [25, 27]; here,alsouncertaintyaboutthe
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causaimodel,andnotonly aboutthe context which appliesto theactualscenariccanbemodeled We

considerthe problemsof recognizingexplanationsanddecidingexplanationexistence.We find that
for the recognitionproblem,moving from contets to situationsresultsin a compl«ity increaseas
we shaw, this problemis IT{’-completebothin the unrestrictecandthe binary case For the existence
problem,no compleity increasehappensn generalj.e., the problemremainss:’-complete but for

thebinarycasejn which the problembecomes:£’-complete.

¢ In our analysisof explanationdor situationswe encounteandresole problemson structuralcausal
modelswhich areinterestingin their own right. Namely we considerthe problemsof subsumption
andequivalencebetweercausamodelsM; andM; modulothelanguageof causaformulas[25, 27].
Thatis, given M1 and Ms, is it truethateachcausaformula ¢ which holdson M; alsoholdson My
(denotedM; < Ms), respectiely that M; and M, modelthe samesetof causalformulas(denoted
M, = M,), andthusareindistinguishablen the languageof causalformulas. As we shav, both
decidingM; < M, anddecidingM; = M, is Hé’-complete,in the unrestrictedand, noticeably
alsoin the binary case Both membershipn 1 andhardnesgor T arenotimmediate andrequire
suitableauxiliary resultswhich helpto distinguishcausalmodels.

Ourresultsin thepresenpaperdrav aprecisepictureof thecompleity of explanationsn thestructural-
modelapproachandarevaluableandimportantin severalrespects:

e Firstandforemostthey provide a handlein understandinghe computationahatureof explanations
and the intrinsic difficulties which are at the heartof their computation. They must be reflected
somehw in the worst-casébehaior of “optimal” algorithmssolving the problem. In this way, our
resultscontritute in paving the way for efficient algorithmsandfor implementation®f explanations
in the structural-modeapproach.

e Secondtheinsightinto source®f compleity whichmalke the problemsntractableprovidesastarting
point for identifying casef lower complity, andin particularof tractablecases While we do not
pursethisissuehere resultson this canbefoundin [17, 18].

e Third, theresultsareusefulin comparingHalpernandPearls notionof causakxplanationwith other
notionsof explanations(e.g., abductve explanations[34], [46, 12] and maximuma posterioriex-
planationsaliasmostprobableexplanationsn Bayesiametworks[38, 33]), andallow to assesshe
existenceof efficient mappingsetweerdifferentframavorksfor generatingexplanations.

The rest of this paperis organizedas follows. Section2 provides somepreliminarieson structure-
basedcausaimodels,the notion of weakcauseandthe compleity classeshatwe encountein this paper
In Section3, we analyzethe compleity of full explanationsin the structural-modebpproach.Section4
concentrate®n the compleity of partial explanations. In Section5, we then analyzethe compleity of
explanationsin the caseof succinctlyrepresentedontet sets. Section6 dealswith the compleity of
explanationsandof relatedproblemsn the generakaseof situations.In Section7, we discusselatedwork
on otherframeworks of explanations,and compareour resultsto complity resultsfor them. Section8
givesadiscussiorof theresults,in particularof implicationsfor algorithms,andprovidessomeconcluding
remarksjncludinganoutlookonfutureresearchssues.

While severalof theresultsareintuitive, their proofs(in particular thehardnesgarts)arenontrivial and
technicallyquiteinvolved. Thus,in ordernotto distractfrom theflow of reading sometechnicaldetailsare
movedto AppendicesA-D.
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2 Preliminaries

In this section we give sometechnicalpreliminaries.We first recall structure-basedausaimodelsandthe
notion of weakcauseby HalpernandPearl[25, 26]. We thendescribehe complity classeshatappeain
ourresults.

2.1 CausalModels

We startwith recallingstructure-basedausalmodels;for arich backgroundseeespecially{2, 20, 39, 40,
24). Roughlyspeakingthe mainideabehindstructure-basedausalmodelsis thatthe world is modeled
by randomvariables,which may have a causalinfluenceon eachother The variablesare divided into
exogenousvariableswhich areinfluencedby factorsoutsidethe model,andendogenousariables which
are influencedby exogenousand endogenouwariables. This latter influenceis describedby structural
equationdor theendogenousariables.

More formally, we assumaefinite setof randomvariables CapitallettersU, V, W, etc.denotevariables
and setsof variables. Eachvariable X; may take on valuesfrom a nonemptyfinite domainD(X;). A
valuefor a setof variablesX = {Xi,...,X,} isamappingz: X — D(X;) U --- U D(X,) suchthat
z(X;)eD(X;); for X =0, theuniquevalueis the emptymapping(). Thedomainof X, denotedD(X), is
thesetof all valuesfor X. Lowercasdettersz, y, z, etc.denotevaluesfor thesetsof variablesX, Y, Z, etc.,
respectiely. Assignmentf valuesto variablesX =z areoften abbreviated by thevaluez. ForY C X
andz € D(X), denoteby z|Y the restrictionof z to Y. For disjoint setsof variablesX,Y andvalues
z € D(X),y€ D(Y), denoteby zy the unionof z andy. As usual,we often identify singletons{ X, }
with X; andtheir valuesz with z(X;). We oftenidentify the values0 and1 with the classicalruth values
false andtrue, respectiely.

We arenow readyto definecausaimodels.A causalmodelM is atriple (U, V, F'), whereU is afinite
setof exogenousvariablesV is afinite setof end@enousvariableswith U NV =0, andF = {Fx | X e V'}
is asetof functionsFx : D(PAx) — D(X) thatassigna valueof X to eachvalueof theparentsPAx C
UuV\{X} of X. Everyvalueue D(U) is alsocalleda contt. The parentrelationshipbetween
the variablesof M = (U, V, F) is expressedy the causalgraphfor M, which is the directedgraphthat
hasU UV asthe setof nodes,anda directededgefrom X to Y iff X is a parentof Y, for all variables
X,Y eUUV. A causamodelM = (U, V, F) is binaryiff |[D(X)|=2forall X € V.

We focushereon the principal classof recussive causalmodelsM = (U, V, F'); asarguedin [25], we
do notlose muchgeneralityby concentratingon recursve causalmodels. A causaimodel M = (U, V, F)
is recussive if its causalgraphis a directedacyclic graph. Equivalently thereexists a total ordering< on
V suchthatY € PAx impliesY < X, for all X,Y € V. In recursve causalmodels,every assignmento
the exogenousvariablesU = u determines uniquevaluey for every setof endogenousariablesY CV,
denotedY;, (u) (or simply Y (u)). In thefollowing, M is reseredfor denotingarecursve causamodel.

Example 2.1 (Arsonistscontinued In our introductoryexample,the causamodel M = (U, V, F) is given
by U={U,Us}, V={A1,As,B},andF ={Fy,, Fa,, Fg}, whereF4, =U;, Fa, =Us, andFp =1 iff
Ay =1or A, =1. Thecausalraphfor M is shavn in Fig. 1. As this graphis agyclic, M isrecursve. O

In a causalmodel, we may setendogenousariablesX to a value z by an “external action”. More
formally, for ary causaimodel M = (U, V, F), setof endogenousariablesX CV, andvaluez€ D(X), the
causamodelM x—,=(U,V, Fx—,), where

Fx_, = {Fy|Y€V\X}U{FXi:.’E(XZ‘)|XZ‘EX},
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is asubmodebf M. We use M, and F,, to abbreviate Mx_, and Fx_,, respectiely, if X is understood
from thecontet. Similarly, for asetof endogenousariablesy” C V', wewrite Y (u) to abbreviate Yy, (u).

As for computationwe assumehatin causamodelsM = (U, V, F'), whereF = {Fx | X € V'}, every
functionFx : D(PAx) — D(X) with X € V iscomputablén polynomialtime. Thefollowing proposition
is thenimmediate.

Proposition2.2 For all X,Y CV andz € D(X), thevaluesY (u) andY;(u), givenu € D(U), are com-
putablein polynomialtime

2.2 WeakCauses

We now recall the notion of weak causefrom [25, 26]. We first defineeventsandthe truth of eventsin a
causaimodel M = (U, V, F') underacontet u € D(U).

A primitive eventis an expressionof the form Y =y, whereY is an endogenousariablé andy is a
valuefor Y. The setof eventsis the closureof the setof primitive eventsunderthe Booleanoperations-
andA (thatis, every primitive eventis anevent,andif ¢ andy areeventsthenalso—¢ and¢ A ).

Thetruth of anevent¢ in acausaimodelM = (U, V, F') underacontet u € D(U), denoted M, u) |=
¢, is inductively definedasfollows:

o (M,u) EY =yiff Yy(u) =y;
o (M,u) = —¢iff (M,u) = ¢ doesnothold;

o (M,u) =¢Ayiff (M,u) = ¢and(M,u) = .

Furtheroperatorsy and— aredefinedasusual,i.e., ¢ V ¢ and¢ — 1 standfor —(—¢ A =) and—¢ V 1,
respectiely. We write ¢(u) to abbreviate (M, u) = ¢. For X CV andz € D(X), we use¢,(u) asanab-
breviation of (M, u) = ¢. For X ={X1,..., X} CV with £ > 1 andz; € D(X;), weuseX =z -- -z,
toabbreiate X1 =z A ... A Xi = xp.

Thefollowing resultfollows immediatelyfrom Proposition2.2.

Proposition2.3 Let X CV andz € D(X). Givenu € D(U) andan event¢, decidingwhether¢g(u) and
¢z (u) (givenz) hold canbedonein polynomialtime

We arenow readyto recall the notion of weakcause[25, 26]. Let M = (U, V, F) be a causalmodel.
Let X CV andz € D(X), andlet ¢ beanevent. Then,X =z is aweakcauseof ¢ underu iff thefollowing
conditionshold:

AC1. X (u) =z and¢(u).
AC2. SomeWW CV \ X andsomez € D(X) andw € D(W) exist suchthat:

(a) ﬁqsfw(u)’ and
() Gpwsz(u) forall ZCV\ (X UW) andz = Z(u).

INotethat[16] alsoadmittedexogenousariablesin primitive events,while [25, 26] doesnot. This doesnotaffectthecomple-
ity of explanationdn the basicsetting,but hassomeconsequencdsr the generalizatiorio situations asdiscussedn Section6.
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Thefollowing exampleillustratesthe notion of weakcause.

Example 2.4 (Arsonistscontinuedl Consideithecontext u1,1=(1, 1) in which botharsonistsntendto start
afire. Then,4; =1, A, =1, andA; =1 A Ay, =1 areweakcause®f B = 1. For instance)et usshaw that
A =1 isaweakcauseof B=1: (AC1)both A; andB is 1 underu, (AC2(a))if both A; and A5 aresetto
0, then B hasthevalue0, and(AC2(b))if A; is setto 1 andAs to 0, thenB is 1. Moreover, A; =1 (resp.,
Ay =1) istheonly weakcauseof B =1 underthe context u; o = (1,0) (resp.,uop,1 = (0, 1)) in which only
arsonistl (resp.,2) intendsto startafire. O

Thefollowing propositioncharacterizesrelevantvariablesin weakcauses.

Proposition2.5 Let M = (U, V, F') bea causalmodel.Let X CV andz € D(X), let ¢ bean event,and
letu e D(U). Let Xy € X sud thatin the causalnetworkfor M, it holdsthat X is not a predecessoof
anyvariablein ¢, and Xy(u)=z(Xp). Let X' = X \ {Xp} andz’ =z|X’'. Then, X =z is a weakcause
of ¢ underu iff X' = 2’ is a weakcauseof ¢ underu.

Proof. (=) Assumethat X =z is a weakcauseof ¢ underu. Thatis, (AC1) X (u) =z and¢(u) hold,
and(AC2)someW CV \ X, 7€ D(X), we D(W) exist suchthat(a) ~¢zw(u) and(b) ¢,z(u) for all
ZCV\(XUW)and2=Z(u). In particular X' (u) =z’ and $(u) hold. Moreover, as X is no prede-
cessorof ary variablein ¢, it follows that (a) =z, (1) and (b) ¢gres(u) hold for all Z C V\(XUW)
andz = Z(u), wherez’' = Z| X', w' = wzq, andzy = x(X;). This shavs that X’ =z’ is a weakcauseof ¢
underu.

(<) Assumethat X' =z’ is a weak causeof ¢ underu. Thatis, (AC1) X'(u)=2z" and ¢(u) hold,
and(AC2)someW CV \ X', 7’ € D(X'), w € D(W) exist suchthat (a) ¢z, (u), and(b) ¢,z (u) for
all ZCV\(X'UW) andz = Z(u). As Xo(u)=xz(Xp), it holds X (u) =z and ¢(u). Furthermoreas
X is no predecessoof ary variablein ¢, it follows that (a) —¢z ;. (v) and(b) ¢4,z (w) hold for all
ZCV\(XUW) andz=Z(u), wherew' =w|(W \ {Xo}), andzo=z(X,). Hence,X =z is a weak
causeof ¢ underu. O

Wefinally recallaresultfrom [14, 15, which shavs thatdecidingweakcauses completefor X2 (resp.,
NP) in thegeneral(resp.,binary) case.Note thatthis resultholdsalsowhenthe domainD(X) = {1, ...,
nx } of eachvariableX € U UV isimplicitly specifiedoy nx > 1.

Theorem 2.6 (se€[14, 15]) GivenacausalmodelM=(U,V, F), XCV,zeD(X),u € D(U), andanevent
#, decidingwhetherX = z is a weakcauseof ¢ underu is completdor $” (resp.NP) in thegeneal (resp.,
binary) case

2.3 Complexity Classes

We assumehat the readerhas someelementarybackgroundin compleity theory andis familiar with
the conceptsf polynomial-timesohability, NP, polynomial-timetransformationamongproblems,and
hardnessesp.completenessf a problemfor a compleity class,ascanbefounde.g.in [31, 32, 37]. We
now briefly recallthe compleity classeghatwe encountein this paper

We recall thatthe PolynomialHierarchy(PH) containsthe classesAY =P, ¥ = NP, IT¥’ = co-NP,
AP, =P¥ %P  =NP, andllf =coxf, forall k > 1.

Fromtheseclassesfurther compleity classesave beenderived. TheclassD, = {L x L' | Le &F,
L' eI}, k> 1, is the “conjunction” of £} andIl;; in particular DY is the familiar classD”. Theclass
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P
Pﬁ’“ , k > 1, containsthe decisionproblemswhich canbe solvedin polynomialtime with parallelcallsto a

EkP oracle,andis partof the RefinedPH [50]. Accordingto the currentbeliefin compleity theory Fig. 2
shaws a strict hierarchyof inclusions.

NP G S & N o
P DP—~ Pﬁ‘P»Ag’\ /Dg’» P2 »Alg\ Pk »AP\
co-NP~* ny mn? P

Figure2: ContainmenbetweenCompleity Classes

For classifying problemsthat computean outputvalue (e.g., the setof atomsthat are entailedby a
classicaformulag), functionclassesimilartotheclassesabo/eha/ebeerintroducec{cf [45, 31]) Among

theseare FP, FPYF = FP|| and FPH ¥ which arethe functional analogsof P, PNP P, and Pt
respectiely. Forfurtherbackgrouncbnthesecomple<|ty classeswe referto [31, 32, 37 45, gO]

In this paper unlessstatedotherwise,completenessor a decisionclassis with respectto standard
polynomial-timetransformations.Completenes$or a function classis understoodn termsof a natural
generalizatiorof polynomialtime transformationsThe problem P, reducedo Py, if thereare polynomial
time functionsf andg suchthatfor eachinstancel; of P;, theoutputfor I; is givenby g(I, P (f(11)))?;
see[45, 31] for formal details.In caseof P andFP, completenesis understoodn termsof reductionghat
canbecomputedn logarithmicspace.

3 Explanations

In this section,we analyzethe compleity of (full) explanationsin the structural-modebpproachdueto

HalpernandPearl[25, 27]. We considerthe problemsof recognizingexplanationsandof decidingwhether
anexplanationover certainvariablesexists. We considerthe generalaswell astherestrictionto the binary
case.

3.1 Definitions

We now recall the conceptof (full) explanationfrom [25, 27]. Intuitively, an explanationof an obsened
event¢ is a minimal conjunctionof primitive eventsthatcauses) evenwhenthereis uncertaintyaboutthe
actualsituationat hand. The agents epistemicstateis given by a setof possiblecontets u € D(U), which
describesll the possiblescenariogor the actualsituation.

Moreformally, let M = (U, V, F') beacausaimodel,let X CV andz € D(X), let ¢ beanevent,andlet
C C D(U) beasetof contets. Then,X =z is anexplanationof ¢ relatve to C, if thefollowing conditions
hold:

EX1. ¢(u) holdsfor every context u € C.

EX2. X =z isaweakcauseof ¢ undereveryu € C suchthat X (u) = z.

2Notethatthefirst agumentof g allows to accesshe original probleminstancel; .
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EX3. X is minimal. Thatis, for every X'C X, someu € C existssuchthat X' (u) = z| X" and X' = z| X’
is notaweakcauseof ¢ underu.

EX4. X (u)=z for someu €C, andX (u') # z for someu’ € C.

Thefollowing exampleillustratesthe aborve notionof explanation.

Example 3.1 (Arsonistscontinuedl Considerthe setof contexts C = {u1.1, u1,0, uo,1 }. Then,bothA4; =1
and A, =1 areexplanationsof B =1 relatie to C, since(EX1) B(u1,1) = B(u1,0) = B(uo,1) =1, (EX2)
A1 =1 (resp.,Ap = 1) isaweakcauseof B =1 underu; ; andu; o (resp.ui,1 andug 1), (EX3) A; andA,
areobviously minimal, and (EX4) A;(u1,1) =1 and A1 (ug,1) #1 (resp.,Az(u1,1) =1 and Az (u10) #1).
FurthermoreA; = 1 A As =1 is notanexplanationof B =1 relatve to C, ashere theminimality condition
EX3isviolated.O

3.2 Results

In our complity analysiswe focusonthefollowing problemswhich aremajortasksin explanation-based
causakeasoning:

Explanation: GivenM = (U,V,F), X CV,z € D(X), anevent¢, andasetof conttsC C D(U ), decide
whetherX = z is anexplanationof ¢ relatve to C.

Explanation Existence: GivenM = (U, V, F), X CV, anevent¢, andasetof contextsC C D(U), decide
whethersomeX'’ C X andz’ € D(X') exist suchthat X’ =z’ is anexplanationof ¢ relative to C.

Thefirst problem,Explanation;is therecognitionof anexplanation. It emegesdirectly from the defi-
nition of explanationin Section3.1 andcapturests intrinsic compl«ity. The secondproblem,Explanation
Existencejs associateavith theimportanttaskof finding anexplanationfor anevent . Similarasin other
frameaworksfor explanationge.qg.[34, 46]), thesetX focusesattentionto a subsebf thevariablesjn terms
of which the explanationmustbe formed. Finding explanationsis certainly the centraltask of a causal-
reasoningsystembuilt for applicationsin practice,andthusthis problemdeseres specialattention. We
analyzethe compleity of theseproblemsfor the generalaswell asthe binary case where M is restricted
to binary causamodels(i.e., eachendogenousariablemaytake only two values).

Our compleity resultson thesetwo problemsfor the generalandthe binary caseare summarizedn
Table1. In detail, the problemExplanationis completefor the classDY (resp.,DF) in the general(resp.,
binary) casewhile the problemExplanationExistenceis completefor ©%" (resp.,%%) in thegeneralresp.,
binary) case.It thusturnsout thatfinding explanationds at the third level of PH. Hence,explanationsare
harderto computehanweakcauseswhichlie atthesecondevel of PH[14]. Ontheotherhand recognizing
explanationss only mildly harderthanrecognizingveakcauseswhichis X5’ -complete.

We now shov how the complity resultsin Table 1l canbe formally derived. In ordernot to distract
from the flow of reading,we presentthe main partsandkey ideasbehindconstructionsand move some
technicaldetailsto AppendixA.

Thefollowing resultshaws thatdecidingexplanationds Df -completein thegenerakase . Theproblem
isin DQP, asconditionEX2 amountgo a conjunctionof alinearnumberof problemsin ££’, andEX3 to the
negationof sucha problem;EX1 andEX4 areeasilychecled. Thus,by usualtechniquesthe explanation
checkcanbereducedo a conjunctionof problemsn I’ andIT¥’. Hardnessgor DY is shavn by areduction
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Tablel: Compleity of Explanations

Problem generakase| binarycase

Explanation DP-complete DF-complete

ExplanationExistence %’ -complete £ -complete

from the DY -completeproblemof deciding,given a pair (®;, ®,) of QBFs,whether®; is valid and®, is
notvalid.

Theorem 3.2 Explanationis D -complete

Proof. As for membershipn DY, recallthat X = x is anexplanationof ¢ relative to C iff EX1-EX4hold.

Decidingin EX1 whether¢(u) for every uw € C andin EX4 whetherX (u) =z and X (u') # z for some
u,u’ €C is polynomial. In EX2, the set(’ of all u € C suchthat X (u) = z is polynomially computable.
By Theorem2.6 andas¥¥ is closedunderpolynomially mary conjunctionsdecidingwhetherX =z is a

weakcauseof ¢ undereveryu € C' isin ©'. In EX3, guessingsomeX’ ¢ X andcheckingthat X' = z| X'

is aweakcauseof ¢ underevery u € C suchthat X’ (u) = z| X' isin ©%'. Thus,decidingEX3isin II’. In

summarydecidingwhetherX = z is anexplanationof ¢ relatve to C isin DY.

Hardnesgor DY is shavn by areductionfrom deciding,givenapair (®;, ®;) of QBFs®; = 34,V B; ;
with ¢ € {1, 2}, whereeach~y; is a propositionalformula on the variables4; = {A4;1,..., Aim,;} and
B;={Bi1,...,Bin;}, whether®, is valid and ®, is not valid. We constructM = (U,V,F), X CV,
z € D(X),CCD(U), and¢ asrequiredsuchthat X =z is anexplanationof ¢ relatve to C iff ®; is valid
and®, is notvalid.

Roughlyspeakingthe mainideabehindthis constructioris asfollows. We constructM; = (U, V1, F)
and M, = (U, Va, F») andtwo events¢; and ¢, suchthat(i) V3 NV2 ={G}, and(ii) for everyu e D(U),
it holdsthat G =0 is a weak causeof ¢; underu in M; iff ®; is valid (seeFig. 3, left side). The causal
model M is theunionof M; and M,, enlagedby additionalendogenousariables(seeFig. 3, right side).
Wethenconstrucip andu;, us € D(U) suchthat¢ is underu; anduy equivalentto ¢, andgs, respectiely.
Finally, the constructioris suchthatG =0 A G’ =0 is anexplanationof ¢ relatve to C = {uy,us} in M, iff
(8) G =0 is aweakcauseof ¢; underu; in My, and(b) G =0 is not aweakcauseof ¢o underus in M,
where(a) (resp.,(b)) is encodedn EX2 (resp.,EX3). Thatis, G = 0 A G’ =0 is anexplanationof ¢ relative
toC in M, iff ®, is valid and®, is notvalid.

More formally, for every i € {1,2}, the causalmodel M; = (U,V;, F;) is definedby U={E} and
Vi=A,; UB; U{G, C;}, whereD(S) ={0,1,2} forall S € B;,andD(S)={0,1} forall S € U; UV; \ B;.
Moreover, we define

$i=ANS#2V(Ci=0)V(G=1ACi=1A\/S#2),

SEBi SEBi

wherey! is obtainedrom+; by replacingeachS € 4; U B; by“S =1". Thefunctionsin F; = {F% | S € V;}
aredefinedasfollows:

e Fi=0forall Se4; U{G,C;},
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E / G
G
|Ai,1 e 'Ai,mi Bz’,l t 'Bi,m E
(I>1 (I>2
!

o

H

Figure3: SchematicConstructiorfor Evaluatingtwo QBFs®; and®,

e Fi=G+ C;forall S€ B;.

As showvn in [14, 15], for everyi € {1,2} andu € D(U), it holdsthatG =0 is a weakcauseof ¢; underu
in M; iff ®; is valid.

ThecausamodelM = (U, V, F) isnow definedby V =V, UVL,U{G', H} andF = F{UF,U{F = E,
Fg=1iff (E=0A¢1)V(E=1A¢2) istrue}. Let ¢ bedefinedasH =1, andletu;, up € D(U) bedefined
by u1(E) =0 anduy(E) = 1. Obsere that¢ is primitive.

Foreveryi e {1,2} andu € D(U), it holdsthatG = 0 is aweakcauseof ¢; underu in M iff ®; is valid.
Hence for everyi € {1, 2},

(i) G=0isaweakcauseof ¢ underu; in M iff ®; is valid.
By Proposition2.5,thefollowing statement$old:

(i) G=0isaweakcauseof ¢ underu; in M iff
G =0 A G'=0is aweakcauseof ¢ underu; in M.

(iii) G'=0is notaweakcauseof ¢ underu; in M.

Using theseresults,we nowv shav that G =0 A G' =0 is an explanationof ¢ relative to C = {uy,us}
iff ®; isvalid and®, is notvalid.

(=) AssumehatG = 0AG' = 0 is anexplanationof ¢ relatveto C. In particular by EX2, G = 0AG' =0
is aweakcauseof ¢ underu,. Moreover, by EX3, G =0 is eithernotaweakcauseof ¢ underu;, or nota
weakcauseof ¢ underus. By (i), G =0 is aweakcauseof ¢ underu;. Thus,G = 0 is notaweakcauseof
¢ underuy. By (i), @, is valid, and®, is notvalid.

(<) Assumethat @, is valid and @, is not valid. We first shav that EX1 holds. As C;(u) =0 for all
i€{1,2} andu€C, we get¢;(u) for all s € {1,2} andu € C. Thus,$(u) for all u € C. To seethat EX4
holds,obsere that G(u;) = G'(u1) =0, while G(u2) =0 and G’ (uz) =1. We next shav that EX2 holds.
By (i), G =0 is aweakcauseof ¢ underu;. By (ii), it follows thatG =0 A G' =0 is a weakcauseof ¢
underu;. We now shav thatEX3 holds.By (i), G =0 is notaweakcauseof ¢ underus. By (iii)), G’ =0 is
notaweakcauseof ¢ underu;. O
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Thefollowing theoremshavs thatdecidingwhetheran explanationover certainvariablesexistsis 2 -
complete Here the©£" upperboundis straightforvard by the 2" upperboundof recognizingexplanations,
andastandardyuessandcheckargument.The £ -hardnes®f ExplanationExistencestemsfrom asubtlety
in the definition of explanation. From satishction of EX1, EX2 andEX4 for X = x we cannot conclude
thatsomeX’ =z’ containedn X = z existswhich will satisfyEX1-EX4;if we minimize X =z soasto
satisfyEX3, theresulting X’ = z’ mayviolate EX4. It is this interplayof the conditionswhich makesthis
problemdifficult, andthe proofsof the hardnessesultsnontrivial.

Theorem 3.3 ExplanationExistences %1’ -complete

Proof (sketch). As for membershign XI’, obsere that the problemcan be reducedto guessingsome
X'C X andz’ € D(X'), andverifying that X’ =z’ is an explanationof ¢ relative to C. By Theorem3.2,
this canbe donein polynomialtime with two callsto a =% -oracle.Thus,the problemis in £1".

Hardnesgor £’ is shavn by a reductionfrom decidingwhethera given QBF ® = 3BVYC3Dy is
valid, wherey is apropositionaformulaonthevariablesB U C U D. We constructM = (U, V, F), X CV,
C C D(U), and¢ suchthat® is valid iff someX’ C X andz’ € D(X') existsuchthatX’ =z’ is anexplana-
tion of ¢ relative to C. Roughly themainideais to encodehequantor‘3B” in guessinggomeX'’ C X, and
“YC 3D " in checkingthe complemenbf aweakcausein EX3. Notethatthe constructionis technically
involved. O

In thebinarycasethe compleity of all consideregbroblemsdropsby onelevel in PH; this parallelsthe
drop of the complexity of weakcausedrom ©£' to NP in the binary case[14]. The membershigpartscan
bederivedanalogoussin thegenerakase andthehardnespartsby slightadaptationsf the constructions
in the proofs,wherecertainsubcomponentfor weak causeestingare modularlyreplaced.The following
two resultsshav thatrecognizingexplanationg(resp.,decidingthe existenceof explanations)s complete
for DY (resp.,xY) in thebinarycase.

Theorem 3.4 Explanationis D* -completdn thebinary case

Proof. As for membershipn D, recallthat X = z is anexplanationof ¢ relative to C iff EX1-EX4 hold.
By the proof of Theorem3.2, checkingEX1 andEX4 is polynomial. Moreover, in EX2, the setC’ of all
u € C suchthat X (u) = z is polynomially computableBy Theorem2.6, decidingwhetherX = z is aweak
causeof ¢ undereveryu € C' isin NP in thebinarycase.In EX3, guessingsomeX’ C X andcheckingthat
X'=z|X"is aweakcauseof ¢ underevery u € C with X’'(u) =z| X"’ is in NP in the binary case.Thus,
thecomplementaryproblemof decidingEX3 is in co-NP in thebinarycase.In summarydecidingwhether
X =z is anexplanationof ¢ relatve to C is in DF in thebinarycase.

Hardnesgor DF is shavn by areductionfrom thefollowing DF -completeproblem.Giventwo proposi-
tionalformulasin 3BDNF oy = a1 1V- -+ V ay g, @andag =ag1V--- V ag g, onthevariablesd; = {41 ,.. .,
A andAy={As1,..., A2y, }, respeciiely, wherek, ko, n1,n9 > 1, decidewhethera; is notatau-
tology andas is atautology Withoutlossof generality A; N A, =0, andky, ko > 2.

We constructM = (U, V, F), X CV, z€ D(X), C CD(U), and¢ suchthat X =z is an explanation
of ¢ relativeto C iff a; is notatautologyandas is atautology The constructioris similar to theonein the
proof of Theorem3.2. Roughly we replacethe partfor ’-hardnes®f decidingweakcausen thegeneral
caseby anew partfor NP-hardnessf decidingweakcausen the binarycase.

Moreformally, for everyi € {1, 2}, we definethecausamodelM; = (U, V;, F;) asfollows. Theexoge-
nousandendogenousariablesaregivenby U = {E} andV; = A; U{G, D; 1, ..., D; 1}, respeciely,
whereD(S) ={0,1} for all S € U U V;. ThefunctionsF; = {F} | S € V;} aredefinedby:
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o Fi=1forall SeA; U{G},
° Fli)“ ZGVOAZ'J,

o Fj,,=Dij1Vay;forallje{2, .. k—1}

Let ¢; = D; 1 V ;. As shawnin [14, 15], for everyi € {1,2} andu € D(U), it holdsthatG =1 is a
weakcauseof ¢; underu in M; iff o; is notatautology

ThecausamodelM = (U, V, F) isnow definedby V =V, UV, U{G', H} andF = F{UF,U{Fs = E,
Fyg=1iff (E=0A¢1)V(E=1A¢9) istrue}. Let ¢ bedefinedasH =1, andletuy, us € D(U) bedefined
by ui (E) =1 anduy(E) =0. Obsenre that¢ is primitive.

By asimilar line of agumentatiorasin the proof of Theorem3.2, it follows thatG=1 A G' =1 isan
explanationof ¢ relative to C = {uy,us} iff @y is notatautologyandas is atautology O

Theorem 3.5 ExplanationExistences £’ -completen thebinary case

Proof (sketch). As for membershign ¥, by Theorem3.4, guessingsomeX’'C X andz'cD(X'), and
verifying that X’ =z’ is an explanationof ¢ relative to C canbe donein polynomialtime with two NP-
oraclecallsin the binary case This shavs that ExplanationExistences in 1" in thebinary case.
Hardnesgfor 1" is shavn by a reductionfrom the following %£’-completeproblem. Given a QBF
® =3B VC v, wherey is apropositionaformulaonthevariablesB={ By, ..., B;} andC={C4,...,Cpn},
decidewhether® is valid. We constructM = (U,V, F), X CV,CC D(U), and¢ suchthat ® is valid iff
someX’ C X andz’' € D(X') exist suchthat X’ = z’ is anexplanationof ¢ relative to C. Theconstruction
is similar to the onein the proof of Theorem3.3. Roughly we replacethe partfor ¥ -hardnes®f deciding
weakcausdn the generakaseby anew partfor NP-hardnes®f decidingweakcausean thebinarycase.

4 Partial Explanationsand Explanatory Power

In this section,we analyzethe compl«ity of partial explanationsin the structural-modebpproactdueto
HalpernandPearl[25, 27]. We considerthe problemsof recognizinga-partial/ partial explanationsand
of decidingwhetheran a-partial explanationover certainvariablesexists. Furthermorewe considerthe
problemof computingthe explanatorypower of a partialexplanation.All compleity resultsarederivedfor
thegeneralswell asthebinarycase.

4.1 Definitions

We now recallthenotionsof a-partial/ partialexplanationsandof explanatorypower of partialexplanations
[25, 27]. Roughly the mainideabehindpartial explanationss to generalizethe notion of explanationof
Section3.1to asettingwhereadditionallya probabilitydistribution overthesetof possiblecontets is given.

Let M = (U,V, F) beacausalmodel. Let X CV andz € D(X), let ¢ beanevent,letC C D(U) be
suchthat ¢(u) for all w € C. We usethe @(pressiorcﬁzw to denotethe uniquelargestsubsetC’ of C such
that X =z is anexplanationof ¢ relative to C’. Thefollowing propositionshavs thatif suchasetC’ exists,
thenC$_, is defined;it alsogivesa usefulcharacterizationf C% .
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Proposition4.1 Let M = (U, V, F) bea causalmodel.Let X CV andz € D(X), andlet ¢ be an event.
LetC C D(U) besud that¢(u) for all u € C. If X =z is an explanationof ¢ relativeto someC’ C C, then
C}*}:gg is thesetof all u € C sud thateither (i) X (u) # =, or (i) X (u) =z and X =z is a weakcauseof ¢
underu.

Proof. Clearly C% _, doesnotcontainary u € C suchthat X (u) = z andthat X =z is notaweakcauseof
¢ underu, asotherwiseEX2 would be violated. Hence,C¢ _, is asubsebf the setof all u € C suchthat
either(i) or (ii). Assumenow thatsomeu’ € C with X (u') # = doesnotbelongto C}’}:z. Then, X =z isan
explanationof ¢ relatveto C’ = C}’}:z U {«'}. But this contradicts? _, beingthelargestsuchC’. Assume
next thatsomew’ € C suchthat X (u') = z andthat X = z is aweakcauseof ¢ underu’ doesnot belongto
C%_,. Then, X =z is anexplanationof ¢ relative to C' = C%__ U{u'}. But this contradictsagainC%_
beingthelargestsuchC’. Hence,C}’}Zx is thesetof all u € C suchthateither(i) or (ii). O

Let P beaprobabilityfunctiononC, anddefine

P(C%_,|X=2) = Y Pu) / ¥ Pu).

w€Cq_, X*{f‘?
w)==x

X(u) ==z
Then, X =z is calledan a-partial explanationof ¢ relatve to (C, P) iff C}*}:w iS definedandP(C}*}:z |
X =z) > a. Wesay X =z is apartial explanationof ¢ relatveto (C, P) iff X = z is ana-partialexplana-
tion for somea > 0; furthermore,P(C;’}:x | X =) is calledits explanatorypower(or goodness

Example 4.2 (Arsonistscontinuedl Considerthe setof contexts C = {11, 41,0, uo,1}, andlet P be the
uniformdistribution overC. Then,bothA; =1 andA, =1 arel-partialexplanationsof B = 1. Thatis, both
A;=1andAs =1 arepartialexplanationsof B = 1 with explanatorypower 1. O

As for computationwe assumehat the above probability functions P are computablein polynomial
time.

4.2 Results

In our analysis,we considerthe following important problemsrelatedto partial explanationsand their
explanatorypower:

a-Partial Explanation: GivenM =(U,V,F), X CV,z € D(X), anevent¢, asetof contetsC C D(U)
suchthat ¢(u) for all u € C, a probability function P onC, anda > 0, decidewhetherX =z is an
a-partialexplanationof ¢ relatveto (C, P).

a-Partial Explanation Existence: Given M = (U, V, F'), X CV, anevent ¢, asetof contets C C D(U)
suchthat¢(u) for all u € C, a probability function P onC, anda > 0, decidewhethersomeX' C X
andz’ € D(X') exist suchthat X' =z’ is an a-partialexplanationof ¢ relatve to (C, P).

Partial Explanation: Given M =(U,V,F), X CV, z € D(X), anevent ¢, a setof contets C C D(U)
suchthat¢(u) for all u € C, aprobabilityfunction P onC, decidewhetherX = z is apartialexplana-
tion of ¢ relatveto (C, P).
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Explanatory Power: GivenM = (U,V,F), X CV,z € D(X), anevent$, C C D(U), anda probability
function P onC, where(i) ¢(u) for all u € C, and(i) X =z is a partial explanationof ¢ relative to
(C, P), computethe explanatorypower of X = z.

The problemsa-Partial/ Partial Explanationand a-Partial ExplanationExistencecanbe viewed asre-
laxationsof Explanationand ExplanationExistence respectiely, in a probabilisticcontext. Explanatory
Paweris the problemof computingthe “goodness’of a partialexplanationX = z, givenby the coverageof
the casesvhere X = z is truein the contexts C. This informationcanbe usedto rank partial explanations
andsingleout “best” ones.

Our compleity resultsontheseproblemdor thegenerabndthebinarycasearesummarizedn Table2.

P
In detail, recognizinga-partial/ partial explanationds completefor Pﬁz (resp.,Pﬁ‘P) in thegeneralresp.,
binary) case,while decidingthe existenceof a-partial explanationsis completefor £ (resp.,25). Fur

thermore computingthe explanatorypower of a partialexplanationis completefor FPﬁg (resp.,FPlfP) in
the general(resp.,binary) case.Hence,finding a-partial explanationshasthe samecompleity asfinding
full explanationswhile recognizinga-partial/ partial explanationsis mildly harderthan recognizingfull
explanations.

Table2: Complity of Partial ExplanationandExplanatoryPover

Problem generakase binarycase

23

a-Partial Explanation P, -complete PﬁIP-compIete

a-Partial ExplanationExistence %¥'-complete | ©¥-complete

-
Partial Explanation P% -complete Pﬂlp-complete

P
ExplanatoryPower FPﬁ2 -complete FP}"'-complete

P
Thefollowing resultshavs thatrecognizinge-partial explanationds PﬁQ-compIete.Roughly to recog-
nize an a-partial/ partial explanation,we needto know the setof contects C}*}:z. By exploiting the basic
characterizatiomesultin Proposition4.1, it canbe computedefficiently with parallelcallsto a =%’ oracle.
Oncec;’}:m is known, we needto checkwhetherX = z is anexplanationrelative to it, therestis easy Thus,
thecompleity of theseproblemdies herein the computatiorof C}z’(:w.

P
Theorem 4.3 «-Partial Explanationis P% -complete

Proof (sketch). We first prove membershign Pﬁg. Recallthat X =z is an a-partial explanationof ¢
relatve to (C, P) iff (a) X =z is anexplanationof ¢ relative to C?}:x, and(b) P(C?}:x | X =z)>a. By
Proposition4.1, C% _, isthesetof all u € C suchthateither (i) X (u) #z, or (i) X(u) =z andX =z is
a weak causeof ¢ underu. As deciding(i) is polynomial, and deciding(ii) is in £, by Theorem2.6,

computingC?}:x is in FP?D. OnceC}*}Zx is given, deciding(a) is possiblewith two X1’ -oraclecalls, by
Theorem3.2, anddeciding(b) is polynomial. It is now well-known thattwo roundsof parallel 1 -oracle
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Figure4: SchematicConstructiorfor Evaluatingk QBFs®4, ..., ®;

gueriesin a polynomial-timecomputationcan be replacedby a single one[3]. Hence,the problemis in
Py

Hardnessfor PF is shavn by a reductionfrom deciding, given £k QBFs &, = 3A4;VB;~; with
ie{1,...,k}, whereeach~; is a propositionalformula on the variables4; = {4;1,..., 4.} and
B;={B;1,-..,Biny,}, whetherthe numberof valid formulasamong®,..., ®, is even. Without loss
of generality A; U By, ..., Ay U By, arepairwisedisjoint, @, is valid, andfor eachje{2, ..., k}, thevalid-
ity of ®; impliesthevalidity of ®;_; [50]. We constructM = (U,V,F), X CV,z € D(X), ¢, CCD(U),
P, anda suchthat X = z is ana-partialexplanationof ¢ relative to (C, P) iff thenumberof valid formulas
among®+, ..., ®; is even. Roughly the mainideabehindthis constructioris asfollows. For each®;, we
constructan instanceof weak cause thatis, M; = (U;, Vi, F;), X; C Vi, z; € D(X;), u; € D(U;) andan
eventg;, suchthat X; = x; is aweakcauseof ¢; underu; in M; iff ®; is valid. Then, M is theunionof all
M;, enlagedby additionalvariables(seeFig. 4), andwe defineX = X, U .- U X, andz =z ... z. By
settingP’ to theuniform distribution overC anda =1/ |C|, we obtainthatX = z is ana-partialexplanation
of ¢ relatve to (C, P) iff X =z is anexplanationof ¢ relatie to c? _,- Thelatteris madeto hold iff the
numberof valid formulasamongthe ®;’s is even. In detail, EX3 is violatediff ¢ is even, ®; is notvalid, and
®,_1 isvalid. O

Thefollowing theoremshaws thatdecidingthe existenceof a-partial explanationss completefor %%

Here,the %%’ upperboundfollows from thePﬁg upperboundof recognizinga-partial explanationsby a

standardguessand checkargument. The $’-hardnesss inheritedfrom the ©£-hardnesof Explanation
Existence.

Theorem 4.4 o-Partial ExplanationExistences X1’ -complete

Proof. We first prove membershign X. By Theorem4.3, decidingwhetherX’=z' is an a-partial ex-
planationof ¢ relative to (C, P) is in Pf; Hence,guessingsomeX’' C X andz’ € D(X'), anddeciding
whetherX’ = z' is ana-partialexplanationof ¢ relativeto (C, P) isin 3%

Hardnesgor %¥ is shavn by a reductionfrom ExplanationExistence(see Theorem3.3). Givenan

instanceof it, let P betheuniformdistributiononC, andleta = 1. Then, X’ =z’ is ana-partialexplanation
of ¢ relatveto (C, P) iff X’ =z’ is anexplanationof ¢ relatve to C. O
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The next theoremshaws that decidingpartial explanationsis Pzg_
proved similarly asin the proof of Theorem4.3. The hardnesspartp

in Theorem4.3.

complete. The membershigpartis
ollows easilyfrom the hardnessesult

P
Theorem 4.5 Partial Explanationis Pﬁz -complete

P
Proof. As for membershign P? , recall that X =z is a partial explanationof ¢ relatve to (C, P) iff
(a) X =z is anexplanationof ¢ relative to C‘)’;:w, and(b) C‘;}:w containssomeu suchthat X (u) =z and
P(u) > 0. By the proof of Theorem4.3, computingC%__ is in FPF. OnceC%_ is given, checking(a)

isin DY by Theorem3.2,andchecking(b) is polynomial. As two roundsof parallel %% -oraclequeriesin
a polynomial-timecomputationcan be replacedby a single one[3], decidingwhetherX =z is a partial

P
explanationof ¢ relative to (C, P) isin Pﬁz :
P
We next shav P‘TQ -hardnesslf P istheuniformdistribution overC, thenX = z is apartialexplanation

of ¢ relatveto (C, P) iff X =z isa ﬁ-partial explanationof ¢ relative to (C, P). By the proof of Theo-

P
rem4.3,decidingthelatteris completefor P% . Thus,decidingwhetherX = z is a partialexplanationof ¢
relatveto (C, P) is PF’-hard,andhardnesﬂnoldsa/en if P is theuniformdistribution overC. O
The following resultshavs that computingthe explanatorypower of a partial explanationis FPEg’-
complete Here,themembershigartis proved similarly asin the proof of Theoremd.3. Thehardnespart
is shawvn by areductionfrom computingall valid QBFsamongk givenQBFs® = 3AVB~y.

P
Theorem 4.6 ExplanatoryPoweris FPﬁ2 -complete

P
Proof (sketch). We first prove membershipn FPﬁ2 . Let X =z bea partial explanationof ¢ relative to
(C, P). To computeits explanatorypower, we computeﬁrstc"’ :z andthenP(C?}:I | X =z). By theproof

of Theoremd.3,theformerisin FPF,, while thelatteris polynomial.In summarytheproblemisin FPﬁg.

Hardnesdor FPF is shavn by a reductionfrom computing,given k QBFs ®; = 3A4;VB;vy; with
i€{1,...,k}, whereeachy; is a propositionaformulaonthevariablesA; = {A4; 1, ..., Ai m, } andB; =
{Bi1,...,Bin,}, thevector(vy,...,v) € {0,1}* suchthatv; = 1 iff ®; is valid, for all i € {1,...,k}.
Withoutlossof generality A; U By, ..., A U By, arepairwisedisjoint,and®; is valid. Roughlyspeaking,
themainideais to constructa probleminstancesuchthat(vy, . . . , v ) is the bit-vectorrepresentatioof the
explanatorypower of X = z. For each®;, we constructM; = (U;, Vi, F;), X; CV;, z;€D(X;), u;,€ D(U;),
andanevent¢; suchthat X; = z; is aweakcauseof ¢; underu; in M; iff ®; is valid. Thesemodelsarethen
combinedin M suchthatu; € C%__ iff ®; is valid. Defining P(u;) = 2! for alli € {1,...,k} completes
thereduction.O

5 SuccinctRepresentation

Ourcompleity resultsin Sections3 and4 (assummarizedn Tablesl and2) assumehatthe setof contets
C is enumeratedh the input. However, C may containexponentiallymary contexts. Hence,a descriptve
representatiomanbe muchmorecompactanddesirablein practice.In the succinctrepresentatiorsetting,
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we thusassumehat( is given by a tractablemembershigunction ¢ (u). Thatis, oninputof u € D(U),
function x¢(u) reportsin polynomialtime whetheru € C holds. This includes,e.g.,descriptionsof C in
termsof propositionaformulasg over U suchthatthe modelsof 8 describeghecontetsin C.

Table3 shawvs our compleity resultsfor someof the problemsin Sections3 and4 in the settingwhere
contts aresuccinctlyrepresentedVore preciselyrecognizingexplanationsandpartialexplanationsn the
caseof succinctcontext setsis completefor 112 (resp. I1Y) in thegenera(resp. binary) case.

Table3: Complity of ExplanationsandPartial ExplanationsSuccinctRepresentation

Problem generakase| binarycase

Explanation 17 -complete I1Y-complete

Partial Explanatior) I1{’ -complete I1’ -complete

Thus, it turnsout that succinctrepresentatioincreaseshe compleity of Explanationand Partial Ex-
planationdrastically Intuitively, in this casecheckinga propertyfor all contetsin C becomesnuchhardey
sincethereseemsho betterway thanguessinghe“right” context witnessingor disproving the property The
compl«ity increaseby two levelsin PH stemsfrom thefactthatconditionEX3 involvestwo nestecchecks
of propertiesfor all contexts in C. This dominateshe compleity of EX1, EX2, andEX4 andleadsto T’
compleity.

For a-Partial Explanation,we have similar effects. Worse,we needto calculatesumsof probabilities
over succinctlyrepresentedontet sets.This leadsus outsidePH: It requiresto solve problemswhich are
atleastasharddecidingwhethera givenpropositionalCNF 8 has > k£ models wherek is in theinput. This
problemis, asgenerallybelieved, not in PH. We refrain from a detailedanalysisof computinga-partial
explanationshere. A compleity increasefor ExplanationExistenceundersuccinctcontet setsto 32f is
plausible thoughwe have notanalyzedt; notethatalreadythe I} -hardnesgroof for Explanationis rather
involved.

The following resultshavs that decidingexplanationis TTIF -completefor succinctcontext sets. Here,
membershign I1¥ follows from thefactthatcheckingEX1, EX2, EX3,andEX4 s in co-NP, I1{, TI{, and
NP, respectiely, for succinctcontext sets.Hardnessor I1Z is shavn by areductionfrom decidingwhether
agivenQBF & =VA3BVC3D+ is valid, whichis essentialllencodedn conditionEX3.

Theorem 5.1 Explanationis IT{ -completefor succinctcontext sets.

Proof (sketch). Recallthat X = x is anexplanationof ¢ relative to C iff EX1-EX4 hold. Undersuccinct
contet sets,in EX1, deciding¢(u) for all w € C is in co-NP. In EX4, decidingwhetherX (u) =z and
X (u") # z hold for someu, v’ € C isin NP. By Theorem2.6, decidingwhetherX = z is a weakcauseof
¢ undereveryu € C with X (u) =z in EX2isin II'. Thus,decidingwhethersomeX’ C X existssuchthat
X'=2z|X'is aweakcauseof ¢ underevery u € C with X’(u) = z| X" isin ©I'. Thatis, decidingEX3 isin
12’ In summarydecidingwhetherEX1-EX4holdis in TI{ undersuccinctcontext sets.

Hardnesdor TI¥ is shavn by a reductionfrom decidingwhethera given QBF & =VYA3IBYC3Dy is
valid, where~ is a propositionalformula on the variablesAU BUC U D. We constructM = (U, V, F),
X CV,zeD(X), ¢, andC C D(U) suchthat X =z is an explanationof ¢ relatve to C iff ® is valid.
Roughly the mainideais to encode® in EX3, wherethe quantor‘VA” is representedby consideringall
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X' C X, thequantor‘3dB” is expressedy finding someu € D(U), andVC 3D + is expressedy checking
the complemenbf aweakcause

Thenext resultshavs thatundersuccinctcontext sets alsodecidingpartialexplanationis I} -complete.
Here,membershign I1}’ canbeprovedsimilarly asin theproofof Theorenb.1,usingadditionallyProposi-
tion 4.1. Hardnessor I} easilyfollows from anextensionof thehardnesgartin theproof of Theorenb.1,
wherewe additionallyassumehe uniform distribution P onthe setof contexts.

Theorem 5.2 Partial Explanationis IT¥ -completefor succinctcontext sets.

Proof. As for membershign I1Z, recallthat X = z is a partial explanationof ¢ relative to (C, P) iff (a)
X =z is an explanationof ¢ relative to C}”(:w, and (b) C?}:w containssomew suchthat X (u) =z and
P(u) > 0. By Proposition4.1,C% _, isthesetof all u € C suchthateither (i) X (u) # x, or (i) X(u) ==
and X =z is aweakcauseof ¢ underu. To checkthat(a) holds,we checkthatEX1-EX4 hold. Clearly,
EX1 andEX2 alwayshold. Thecomplemenbf EX3 saysthatsomeX’ C X existssuchthatfor everyu € C
it holdsthat X'(u) = z| X' andu € C}p(:z impliesthat X’ = z| X' is a weakcauseof ¢ underu. Thatis,
someX’ C X existssuchthatfor everyu € C, it holdseither(a) X' (u) # z| X', or (b) X (u) =z andX =z
is not a weak causeof ¢ underu, or (c) X' =z|X' is a weak causeof ¢ underu. As decidingwhether
X =z (resp., X' =z|X') is aweakcauseof ¢ underu is in =¥, decidingwhetherEX3 doesnot hold is
in £ Thatis, decidingwhetherEX3 holdsis in TIY. EX4 saysthatsomeu,u’ € C%__ exist suchthat
X (u) # z and X (u') = z. Equivalently someu, v’ € C exist suchthatX (u) # z, andX (v') =z andX =z
is aweakcauseof ¢ underu’. Thus,decidingwhetherEX4 holdsis in 3. In summarychecking(a) is in
17, Finally, (b) saysthatsomeu € C existssuchthat X (u) =z, P(u) >0, and X = z is aweakcauseof ¢
underu. Thus,checking(b) isin ££'. In summarydecidingwhether(a) and(b) holdis in ITY.

Hardnesgor TI{" is shavn by a reductionfrom the TTY -completeproblemof decidingwhethera QBF
& =VA3IBVYC 3D ~yisvalid, wherevy is apropositionaformulaon thevariablesA U BUC U D.

Let M =(U,V,F), XCV,zeD(X), ¢, andC C D(U) be definedasin the proof of Theorem5.1,
andlet P be the uniform distribution over C. By the proof of Theorem5.1, (x) X =z is an explanation
of ¢ relative to C iff @ is valid. Furthermoreg is primitive, ¢(u) for all w € C, andfor every u € C, either
(i) X (u) # z, or (i) X(u) =z andX =z is aweakcauseof ¢ underu.

By Propositiond.1, X = z is a partialexplanationof ¢ relatve to (C, P) iff (a) X =z is anexplanation
of ¢ relative to C, and(b) C containssomeu suchthat X (u) =z and P(u) > 0. Here,(a) implies (b). By
(%), it follows that X = z is a partialexplanationof ¢ relatveto (C, P) iff ® is valid. O

6 Generalization: Situations

In this section,we analyzethe complity of recognizingexplanationsand of decidingthe existenceof
explanationsn the generakaseof situationg25, 27]. In the courseof this, we alsoanalyzethe compleity
of checkingsubsumptiorandequialencebetweercausaimodels.

6.1 Definitions

We now recallthe conceptof explanationfor the caseof situationg[25, 27]. Intuitively, anagentmay also
be uncertainaboutthe causalmodel,andnot only aboutthe contect thatappliesto the actualsituationat
hand. Thus,in the generalcaseof situations the agents epistemicstateconsistsof a setof pairs (M, u),
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calledsituations where M is acausaimodelandu is acontet. Beforedefiningexplanationgor situations,
we first definecausaformulasandtheir truth andvalidity.

A basic causalformulais an expressionof the form [Y; < y1, ..., Yy < yx] ¢, where¢ is an event,
Yi,..., Y, arepairwisedistinctendogenousariables,y; € D(Y;) for all i€ {1,...,k}, andk >0. The
setof causalformulasis the closureof the setof basiccausaformulasunderthe Booleanoperations- and
A. ForY ={Y1,...,Y;} andy=y; ...yx, Weuse[Y < y] ¢ to abbreiate [Y; < y1,..., Yy < yx] ¢. As
usualweuse¢ V1 andT to abbreiate —(—¢ A —1) andg V —¢, respectiely. Thetruth of acausaformula
pin M= (U,V,F) underu e D(U), denoted M, u) = 1, is inductiely definedby:

o (M,u) | [Y <y ¢ iff ¢y(u)in M,
o (M,u) = —¢ iff (M,u) = ¢ doesnothold,

o (M,u) = ¢ A iff (M,u) = ¢and(M,u) = .

Wesayy isvalidin M = (U, V, F), denotedM =4, if (M, u) =1 for allue D(U). By Th(M) we denote
the setof all causaformulaswhich arevalid in M.

The following result, whoseeasyproof is omitted, shavs that decidingvalidity is co-NP-complete.
Roughly this resultis immediateby the fact that checking M =1 amountsto checking(M, u) |= 1 for
eachof thein generalkexponentiallymary contextsin D(U).

Proposition 6.1 Givena causalmodelM = (U, V, F') anda causalformulat, decidingwhetherM =
is co-NP-complete

We are now readyto definesituations,and explanationsrelative to situationsasfollows. A situation
S =(M,u) consistsof a causalmodel M = (U,V, F') anda contet w € D(U). Informally, ratherthan
having explanationsof the form X =z relatve to a setof contets C, where X is a setof endogenous
variablesand z € D(X), we now generalizeto explanationsof the form (¢, X =z) relatve to a setof
situationsS, where) is a causaformulathatrestrictsthe causaimodelsto be consideredrom S.

Beforewe give a formal definition, we introducesomeusefulnotation. Let for ary setof situationsS
andcausalformulasy and+’ denotey =g ¢’ that M |= + implies M |= ¢/, for all (M, u) € S, andlet
P =g 7' denotey =5 ' Ay’ =g 9, i.e.,equivalenceof 4 andy’ onthe causamodelsoccurringin S.

Letthenty beacausaformula,let X beasetof endogenousariablesandlet z € D(X). Furthermore,
let  beanevent,andlet S bea setof situations.Then, (1, X = z) is anexplanationof ¢ relativeto S, if
thefollowing conditionshold:

ES1. (M,u) = ¢ for everysituation(M,u) € S.

ES2. X =z is a weak causeof ¢ underu in M, for every (M,u) € S suchthat (M,u) = X =z and
M E4.

ES3. (¢, X =z) is minimal. Thatis, thereis no (¢, X' =z') #s (v, X =) satisfyingES2 suchthat
() ¥ Es ' and(ii) X' C X andz’ = z|X".

ES4. (M,u) = X =z for some(M,u) € S, and(M',u') E —(X ==x) for some(M',v') € S.
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In ES3, (¢, X' =2") %5 (¢, X =x) meanghateithery #s 4/, i.e., v’ andiy arenot equivalenton the
causalmodelsin S, or that X’ = z' and X = z aredifferent.

Obsene thatthe notion of explanationfor setsof contets is a specialcaseof the notion of explanation
for setsof situationsas X = z is anexplanationof ¢ relatve to C in M iff (T, X = z) is anexplanationof
¢ relatveto {(M,u) |ueC}.

Thefollowing exampleillustratesexplanationgrelative to situations.

Example 6.2 (Arsonistscontinuedl ConsidethecausamodelM = (U, V, F') of therunningexamplegiven
in Example2.1. Letthecausaimodel M’ = (U, V, F') beidenticalto M exceptthatthefunction F; € F” is
now definedby F; =1 iff A; =1 andAy; =1. Then,both(T, A; =1) and(T, A, =1) areexplanationsof
B =1 relatveto thesetof situationsS = { (M, u1 1), (M,uo,1), (M, u10),(M',u1,1)},as(ES1)S=B=1
for all SeS, (ES2) A1 =1 (resp., A2 =1) is a weak causeof B =1 relative to every S € {(M,u1,1),
(M, u10), (M, u11)} (resp.,S € {(M,u11), (M,up1), (M',u1,1)}), (ES3)A; =1 (resp., Az = 1) is triv-
ially minimal,and(ES4) A1 (u1,1) =1 and A; (u,1) # 1 (resp.,A2(u1,1) =1 and Az(u10) #1) in M. O

We next definethe conceptsof subsumptiorand equivalencebetweencausalmodels. We saythata
causamodelM = (U, V, F') subsumea collectionof causalmodelsiM;, Mo, ..., M,,, whereM; = (U;, V;,
F;) with V' =V;,i€{1,...,n}, denotedMy, M», ..., M,, < M, iff for all causalformulas¢ on the vari-
ablesin V, it holdsthat M; = ¢, for all i € {1,...,n}, implies M = ¢, thatis, .., Th(M;) CTh(M).
Two causamodelsM; = (U, Vi, F1) and My = (Us, Va, Fy), whereV; = Vs, areequivalentdenoted; =
Mo, iff My < My andM, < M;. Thatis, M; and M, areequialentiff Th(M;) =Th(M,). In otherwords,
M, and M, areindiscerniblein thelanguageof causaformulas.

Thefollowing resultprovidesa characterizatiomwf the failure of subsumptiorof a collectionof causal
modelsby somecausalmodel. This characterizatiors particularlyusefulfor assessinghe computational
compl«ity of decidingthis relationshipaswell asof decidingequialenceof causaimodels.

Theorem6.3 Let M = (U, V, F) and M; = (U;, V, F;), 1 < i < n, becausalmodels.Then,My, M, ...,
M, £ M iff thefollowing propertyholds:

(¥) Thee existssomeu € D(U) sud that for everyie{1,...,n} andfor everyu;cD(U;), thete exists
somecausalformula[Y <+ y] X=z, wher Y is a (possiblyempty)setof end@enousvariablesand
X isasinglevariable sudthat (i) (M, u)  [Y < y] X =z and(ii) (M;,u;) = [Y +y] X =z.

Proof. (=) SupposeM;, My, ..., M, £ M, thatis, T'= (\;_; Th(M;) € Th(M). Letp € T\ Th(M)
be an arbitrary formula. As ¢ ¢ Th(M), thereexists somecontet u € D(U) suchthat (M, u) i~ ¢,
while (M;,u;) = ¢ forall i€ {1,...,n} andu; € D(U;). As easilyseen,for all recursve causalmodels
M'=(U",V', F") andu’ € D(U'), thefollowing holds(cf. also[24]):

o (M) | Yy = iff (M',u') |= —[Y < y] )
o (M) [V =yl (1 Adpo) iff (M', ) |2 [V <=y 9hs A[Y < y] o

Therefore ¢ is equivalentto a Booleancombinatiorof causaformulasof theform [Y! < /] X' = 2/, where
Y is a (possiblyempty)setof endogenousariablesand X' is a singlevariable. Moreover, asthe domain
of every variableis finite, we canequialently rewrite ¢ into adisjunctive normalform

\/ ( /\ Yk < Yjik] Xjik Zivj,k),

jeJ kEKj
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whereeachX; ; isasinglevariable.Since(M;, u;) |= ¢, it followsthat(M;, u;) = [Yjx < yik] Xjk =12k
for somej = jo andall k € K,; on the other hand, since (M, u) [~ ¢, somekyc K, exists such that
(M, u) [on,ko A yjo,ko] Xjo ko= jo ko~ AS (M, u;) = [on,ko — yjo,ko] Xijo,ko = Tjo ko this provesprop-
erty ().

(<) Supposehat(x) holds.Let ¢ bethedisjunctionof all formulas]Y < y] X =z foralli € {1,...,n}
andu; asin (). Then,(M;,u;) = ¢ foralli € {1,...,n} andu; € D(U;), while (M, u) = ¢ by construc-
tion. Thisshavsthat(;_, Th(M;) € Th(M), thatis, M1, My, ..., M, £ M. O

We remarkthata similar resultwould hold for causalmodelswith arbitrary (finite and/orinfinite vari-
able domains),if alsocausalformulas[Y + y] X # z, where X =z is a primitive event, are allowed in
Theoremg.3.

6.2 Results

Our compleity resultsfor the caseof situationsare summarizedn Table4. We considerthe problem
of recognizingexplanations,which turns out to be completefor II{’ in the generaland the binary case.
Furthermore we considerthe problem of decidingthe existenceof explanations,which is shavn to be
completefor B’ in thegeneralndthebinary case We alsoconsidetthe problemsof decidingsubsumption
and equivalencebetweencausalmodels,which are shavn to be completefor 1" in the generaland the
binarycase.

Table4: Compleity of ExplanationsSituations

Problem generakase| binarycase

Explanation 17 -completg I -complete

ExplanationExistence %’ -completg %£'-complete

Noticethatby a standardyuessandcheckargument,ITY membershipf Explanationfor situationsim-
pliesa ¥ upperboundfor decidingthe existenceof anexplanationfor situationsjn a sensibleformulation
of the problem(seebelow). Moreover, asexplanationsfor contets are a specialcaseof explanationsfor
situationsthe ©£” lower boundof ExplanationExistencen the caseof contets immediatelyimpliesa %%
lower boundof ExplanationExistencen the caseof situations.

As we shaw, this lower boundis in fact complementedvith a " upperbound, which meansthat
decidingthe existenceof explanationdor situationsis not harderthanfor contets. On the otherhand,the
problemis already>.Z-hardfor binary models. This is explainedby subsumptiorcheckswhich implicitly
occurin forming anexplanationfor situationswhosecompleity dominategshe compleity of explanations
in thebinarycase.

We exploit thecharacterizationf subsumptiornn Theoremb.3to derive thefollowing compleity result
on checkingsubsumptiorbetweercausaimodels.

Theorem 6.4 GivencausalmodelsM = (U, V, F) and M; = (U;,V, F;), 1 <i < k, decidingwhetherM;,
M, ..., M < M isTI§-complete Hardnessholdsevenif k =1, thatis, for pairs of causalmodels.
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Proof. We first prove membershipn ITY. By Theorem6.3,to shav that My, ..., My £ M, we canguess
someu € D(U) andthencheckthatfor everyie{1, ..., k} andu; € D(U;), thereexistssomecausaformula

[Y «+ y] X ==z, whereY is a(possiblyempty)setof endogenousariablesand X is a singlevariable,such

that (i) (M, u) =Y < y] X =z and(ii) (M;,u;) =Y < y] X =z. This canbedonein nondeterministic
polynomialtime, usinga ©4’-oracle. Thus,the problemis in T1%".

Hardnessor 11" for k = 1 is shavn by areductionfrom decidingwhetheragivenQBF ® = VB 3C VD v
isvalid, wherey =~ (B, C, D) is apropositionaformulaonthevariablesB = { By, ..., B;}, C ={Ci,. ..,
Cm},andD ={D1,...,D,}.

We now constructtwo causalmodelsM = (U, V, F) and M; = (U;,V, Fy) suchthat My < M iff @ is
valid. The setsof exogenousandendogenousariablesaredefinedoy U =U; =BUC andV=DUW U
{Z}, respectrely, whereW ={W1,...,W;} andD(X)={0,1} for all X e U UV. ThefunctionsF =
{Fx|X eV}andF, = {F} | X € V} aredefinedby Fy = F; =0forall X e V\ {Z}, Fz = \/'_,(B; #
W;), andFL = \'_,(B; #W;) V —y (seeFig. 5).

Figure5: CausaModels(a) M = (U, V, F) and(b) M, = (U1, V, Fy)

We now prove that® is valid iff M; < Ms. It canbeshavn that® is notvalid iff (x) someu € D(U) ex-
istssuchthatfor everyu; € D(U;), thereexistsacausaformula[Y < y] X =z, whereY CV andX €V,
suchthat (i) (M,u) =Y «—y|] X =z and (i) (M1,u1) E[Y < y] X =z (seeAppendixD). By Theo-
reme6.3,this provesthat ® is valid iff M; < M,. O

By an extensionto the proof of Theorem6.4, we obtain the following complity resulton testing
equivalencebetweercausamodels.

Theorem 6.5 Giventwo causalmodelsM; = (U, V, F1) and M, = (Us, V, F»), decidingwhetherM; =
M, is I -complete

Proof. We first shaw membershipn 1'[3P. Recallthat M, = M, iff M, < My and My < M. By The-
orem 6.4, decidingwhether M; < M, (resp., My < M;) holdsis in TI. Thus, asTI¥ is closedunder
conjunction the problemis in T1% .
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ForthellZ -hardnespart,we give areductionfrom decidingM; < M,. Roughlyspeakingwe construct
acausamodel M suchthatTh(M) = Th(M;) N Th(Mz). Then, M, < M, iff M = M;, which proves
theresult.

We constructthe causalmodel M = (U, V, F) asfollows. Assume,without loss of generality that
M, and M, aresuchthatthe union G(M;) U G(M2) = (V U U; U U, E; U E3) of their causalgraphs
G(M,) = (VUUy, Ey) andG(Msy) = (V U Uy, E) is adirectedagyclic graph;notethat M andM; in the
proof of Theorem6.4 have this property

The setof exogenousvariablesis givenby U =U; UU,; U{Uy}, whereUj is a freshexogenousvari-
ablewith domainD(Up) = {1,2}. ThefunctionsF ={Fx | X € V'} are constructedrom the functions
F,={F;|XeV}andF,={F%| X €V} asfollows. For eachX €V, let the parentsPAx of X in
M Dbe the union PA%, and PA% of the parentsof X in M; and M, respectrely, plus Uy, and define
Fx(z) = F% (x| PAY) if z|Uy =1, and Fx (z) = F% (z|PA%) if z|U =2. Thatis, if the Uy-componenbf
zisi€ {1,2}, thenthevalueof Fy is thevalueof thefunction F% for X in the modelM; on z projected
to the parentsof X.

Noticethat M is arecursve causaimodel,becauséts causagraphG(M) = (UUV, E1 U E; U{Uy —
X | X € V})isadirectedagyclic graph. Clearly, for every causafformulaon V, it holdsthat M = ¢ iff
M = ¢ and My |= ¢. Thus,Th(M)=Th(M;) NTh(M,), asdesired.As M canbe built in polynomial
time from M; and M, theresultfollows. O

We finally addresghe issueof recognizingexplanationsrelative to a setof situationsS. In that, we
make useof thefollowing lemma,whichis helpfulin checkingthe minimality conditionES3.

Lemma6.6 Let M and M'={M;,..., M, } be setsof causalmodelssuc that M’ C M. Then,there
existsa causalformula¢ definingM’ in M, thatis, M' = {M € M| M = ¢}, iff My, ..., M, £ M holds
foreveryM e M\ M.

Proof. (=) Let ¢ define M’, andassumeowardsa contradictionthat thereexists someM € M \ M’
suchthatM; ..., M, < M. Since¢ € (;_; Th(M;), it follows that¢ € Th(M), which contradictshat ¢
definesMm’.

(<) SupposehatM; ..., M, £ M holdsfor everymodelM € M \ M’. Hencethereexistsaformula
éum € iy Th(M;) suchthat¢as ¢ Th(M). Consequentlytheformulag = Amer P definesM’,
thatis, for every M € M, it holdsthat M € M' iff M =¢. O

We arenow readyto analyzethe compleity of recognizingexplanationsn the caseof situations.The
following theoremshaws thatthis problemis I1f -complete.Here, I1 -hardnesss inheritedfrom the I1% -
hardnesf subsumptiorchecking. Notice that for binary causalmodels,the compleity of recognizing
explanationss the same assubsumptiorcheckingis T15’-hardalreadyfor binary causaimodels.

Theorem 6.7 Givena causalformula, a setof end@enousvariablesX, avaluez € D(X), an event¢,
anda setof situationsS, decidingwhether(s, X = z) is an explanationof ¢ relativeto S is IT£ -complete

Proof. We first prove membershign I1{. Recallthat (4, X =z) is an explanationof ¢ relative to S iff
ES1-ES4old. Let M denotethe setof all causaimodelsM suchthat (M, u) € S for somecontet w.
By Proposition2.3,in ES1,decidingwhether(M, u) = ¢ for all (M, u) € S is polynomial,andin ES4,
decidingwhether(M,u) = X =z and(M', ') E —(X = z) for some(M,u), (M',u') € S is polynomial.
In ES2,we decidewhetherfor every (M, u) € S, it holds(a) (M, u) E —(X =z), or (b) (M, u') E —¢
for somecontet ' in M, or (c) X =z is aweakcauseof ¢ underu in M. By Proposition2.3, (a) is
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polynomialand(b) is in NP. By Theorem2.6,(c) is in ©£. In summarydecidingwhetherES2holdsis in
g

In ES3,we applyLemma6.6: To disprave ES3,we mayguesssomeX’ C X andsomeM’ ={My, ...,
M, } C M suchthat the following holds: (i) {M e M | M=} C M, (i) My,..., M, £ M for all
MeM\M, (i) X'#X or {M € M | M Ev}# M, and(iv) for all (M,u) € S, either(a) (M, u) =
—(X'=z|X"),or (b) M ¢ M, or (c) X' =z| X' is aweakcauseof ¢ underu in M. Tasks(i), (iii), and
(iv) areclearlysohablein polynomialtime with a £ oracle.As for (i), by Theorem6.4,checkingwhether
M, ..., M, £ M holdsfor eachM € M\ M' canbe donein nondeterministigpolynomialtime with a
¥ -oracle. ThisimpliesthatdecidingwhetherES3holdsisin II%. In summarydecidingwhetherES1-ES4
holdis in IT%.

Hardnesdor I1¥" is shavn by a reductionfrom the problemof decidingsubsumptiorbetweencausal
modelswhichis H{,,’—completeby Theoren6.4: Giventwo causaimodelsM; = (U1, V, F1) and Ms = (Us,
V, F,), decidewhetherM; < M,. By the proofof Theorem6.4,we canassumehatlU; =Us =U.

We now constructa causalformula, a setof endogenousariablesX, avaluez € D(X), aneventg,
anda setof situationsS, suchthat (4, X = z) is anexplanationof ¢ relatve to S iff M; < Mj.

Thesetof situationds definedby S = {S; = (M;, u;) | 3 <i <6}, wherethecausamodelsM;=(U;, V;,
F;) andthe contets u; are given asfollows. For i€{3,...,6}, the setsof exogenousand endogenous
variablesaredefinedby U; =U U {Uy} andV; =V U {X,, Y, T'}, respectiely, whereD(X)={0, 1} for all
Xe{Uy, Xo,Y,T}. Forie{3,...,6}, thefunctionsF; = {F | X € V;} aredefinedasfollows:

o F3={F} =0, F} = (Uy=0)A(Xo =1), F} = 1}UFy;
o Fy={Fx,=0, F} = (Uy=0) A (Xo =1), F} = 1} U Fy;
o F5={F%,=0, Fy = Xy, F} =0}U{F}=0|X eV}

o Fo={F$ =1, F§ =0, F§ =0}U{F$=0|XeV}.

Thecontts us, . . . , ug arearbitrarysuchthatus (Uy) = 0 anduy (Up) = 1.

Obsenre now that Xy =0 is aweakcauseof Y =0 underug in Ms, while X, =0 is notaweakcause
of Y =0 underuy in My (but Xo(us) =0 in M,). Moreover, noticethat X, =0 is aweakcauseof Y =0
underus in M5, while Xy =0 is notaweakcauseof Y =0 underug in Mg (asX(ug) # 0 in Mg).

Intuitively, if we wantto form an explanation (v, X, =0) for Y =0, the situation (Mg, ug) senes,
togethemwith the situation(Ms, us ), asawitnessto the propertyES4.By minimality of anexplanationwe
musthave My selectedby v, sinceXy =0 is in My aweakcausefor Y =0 in context us. Furthermore,
M5 maybe selectedthis, however, is only possibleif it doesnotrequireto selectalso M, by subsumption,
as(My,u4) spoilsthe conditionES2. Thatis, M3 may not be selectedjustif M3 < M, holds,whichis
equialentto My < Ms. Thus,if we have a causalformulas which selectgpreciselyMs and Mg, thenthe
candidatgvy, Xy =0) is anexplanationjustif M; < M, holds.

We now shaw that (7' =0, Xy = 0) is anexplanationof Y =0 relative to S iff M; < M, holds.Indeed,
it is easily checled that by constructionES1,ES2,andES4hold. If M7 £ Ms, thenES3is violated, as
(T'=0V ¢, Xy =0) satisfieEeS2,where¢ € Th(M,) \ Th(My) is arbitraryand{M e M| M =T =0V
¢} ={Ms, M5, Mg} D {Ms, Mg} ={M e M| M |=T =0}, whereM = {M; |3 <i<6}. Corversely if
ES3is violated,then(¢’, X' =1') %5 (T' =0, X, = 0) meanghat X’ = z’ coincideswith X, =0 andthus
Ms = 4" and My = 4" musthold (as X, = 0 is notaweakcauseof Y =0 underu, in My, but Xo(us) =0
in My). Thus,M; £ M> holds.
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As theabove reductionis polynomial, this shavs TT¥ -hardnesst

Let usnow turnto theissueof decidingthe existenceof explanationsin the generalcaseof situations.
This problemhasto becarefullydefined sinceotherwisesimple(andperhapsinintendedgxplanationsnay
befound.

It is notdifficult to seethatif anevent¢ satisfiesES1for a setof situationsS, andif X, is variableand
xo avaluefor X, suchthatES4holdsfor Xy = ¢, thatthensomeexplanationof form (v, Xy = xg) for ¢
w.r.t. S exists. This impliesthatgiven a setof variablesX to build explanationsusingthemfor ¢ w.r.t. S,
decidingwhethersomeexplanationexistsis possiblein polynomialtime.

A moresensiblgormulationof ExplanationExistencefor the caseof situationss thefollowing.

Explanation Existence(for situations): Given a finite setof situationsS, a setof endogenousariables
X, acausaformulas, andanevent ¢, decidewhethera causafformulay’ with ¢ =g 9', X' C X,
andz’ € D(X') exist suchthat (', X’ = z') is anexplanationof ¢ relatveto S.

Here, the causalformula is a positive selectionconditionfor causalmodelsin ES2, suchthateach
causalmodel M satisfyingyy mustberespectedndtheevent X = z mustbeaweakcauseof ¢ underu for
every situation(M, u) € S suchthat(M,u) = X =z andM =1. A wealeningof 1, thatis, a cautiousen-
largemenbof the setof respectedausalmodelsis admissiblewhichamountdo addingalternatve selection
conditions. Beforewe analyzethe compleity of ExplanationExistencefor situations,we introducesome
terminology

We call a pair (¢, X =) a pseudo-gplanation of an event ¢ relatve to a set of situationss, if
(1, X = x) satisfiecconditionsES1,ES2,ES4,andthefollowing wealenedform of ES3:

ES3. Thereisno (v, X' =2') 5 (¢, X = z) satisfyingES2suchthat X’ C X andz’ =z|X".
Thefollowing resultis usefulfor determiningthe compleity of ExplanationExistence.

Lemma 6.8 Givena causalformula ), an event¢, a setof endaenousvariables X, and a finite setof
situationsS, there existsan explanation (v, X’ = z') of ¢ relativeto S sud thaty s ¢, X' C X, and
z' € D(X') iff there existsa pseudo-gplanatian (¢, X’ = z') of ¢ relativeto S sudthaty g ', X' C X,
andz’ € D(X').

Proof. (=) Obviously, ary explanationis a pseudo-gplanation.

(<) Let (¢, X' = 2') beapseudo-gplanationof ¢ relative to S suchthaty =g v'. We shaw thatthere
exists someexplanation(y”, X' = z') of ¢ relatve to S suchthaty’ |=s 9". Lety* beawealestformula
y" suchthaty’ =5 " andES2holdsfor (4", X' =z'). We claimthat(4*, X’ =z') is anexplanationof
¢ relatveto S. Sincey =g ¢, thiswill prove theresult.

Towardsa contradiction,suppose(y”, X" =z"), wherey* =g 1", is suchthatit satisfiesES2and
either (i) X" c X' andz” =2'|X", or (i) ¥* #s ¢". In case(i), eachcausalmodel M selectecby
7' is alsoselectedby ¢*, andthusby ¢"; furthermore, X" = z" is a weak causeof ¢ in M underu for
each(M,u) € S suchthat M = 4" and(M,u) = X" =2". This contradictsthat (¢/, X' =2') is a
pseudo-gplanationof ¢ relatve to S. Thus, X" = X' musthold, andcase(ii) mustapply However, this
meanghat* is notawealestformulay” suchthaty’ =g " and(y”, X' = 1') satisfiesES2,whichis a
contradiction.This provesthat(¢*, X' = z') is anexplanationof ¢ relatveto S. O
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Theorem 6.9 ProblemExplanationExistencefor situationsis %2’ -complete

Proof. We first prove membershipn $£. By Lemmas6.6 and6.8, it is sufiicient to guesssomeX’ C X,
z' € D(X"),andM' ={My,...,M,} C M suchthat(i) {M eM | M =y} CM, (i) My,...,M, £
M for all M e M\ M’, andES1,ES2where“M € M replaces' M = 4", ES3, andES4hold. Task
(i) canbe donein polynomialtime with an NP-oracle,while task (i) canbe done,by Theorem6.4, in
nondeterministipolynomialtime with aTlZ -oracle.CheckingESlandES4is possiblein polynomialtime,
while ES2 can be checled, by Proposition6.1 and Theorem3.3, in polynomialtime with a ©¥" oracle.
Finally, checkingES3 is in IT’, sincedecidingthe existenceof a countergampleto minimality is in 2.
In summary the whole procedurerunsin nondeterministigoolynomialtime usinga ITf oracle. Hence,
ExplanationExistenceis in £1.

For the caseof unrestrictedmodels,~{ -hardnesss inheritedfrom the £’ -completenessf Explana-
tion Existencefor contet explanationswhich occursasa specialcaseof ExplanationExistencefor situa-
tions. We shav ¥ -hardnessor the binary caseby a reductionfrom decidingnon-subsumptioibetween
causalmodels,which is $1’-completeby Theorem6.4: Given two causalmodelsM; = (Uy, V, Fy) and
My = (U, V, Fy), decidewhetherM; £ M,. Withoutlossof generalitywe assumehatU; =Us =U.

The reductionis similar in spirit to the onein the proof of Theorem6.7, yet different. We construct
a causalformula 1, a setof endogenouwariablesX, an event ¢, and a setof situationsS, suchthat
someexplanation(y’, X' = z') of ¢ relatve to S existssuchthaty =g ¢', X' C X, andz’ € D(X') iff
M, £ M,.

Thesetof situationss definedoy S = {S; = (M;, u;) | 3 <7 <6}, wherethecausamodelsM;=(U;, V;,
F;) andthe contets u; are given asfollows. For i€{3,...,6}, the setsof exogenousand endogenous
variablesare definedby U; =U U {Up} andV; =V U { Xy, X1,Y, T}, respectiely, where D(X)={0, 1}
for all Xe€{Uy, Xo, X1,Y,T}. Fori€{3,...,6}, thefunctionsF; = { Fi, | X € V;} aredefinedasfollows:

o l3={F} =0, F} =0, F{ = (Uy=0) A (Xo =1), F} = 1}UFy;
o Fy={F%,=0, F5, =0, F{ = (Uy=0) A (Xo = 1), F} =1}UF;
o Fs={F% =0, F; =0, Fy = X1, Fp = 0}U{F3 =0| X eV}

o FG:{F§O:1, F)("(I:O, FE=(T=1)A(Xo=1VX;=1), F=0}U{F.=0|X eV}

Thecontts us, . .., ug arearbitrarysuchthatus (Up) =0 andus (Up) = 1.

Obsene now thatthe situationsS; have thefollowing weakcause®f Y = 0 involving only variablesin
X ={Xo,X1}: S3hasXy=0andX,=0A X; =0, S4 hasnoweakcause,S; hasX; =0 andX,=0 A
X1=0, andSg hasX; =0.

Definenow ¢y = T=0,¢ = Y =0, andX = {X,, X1 }. Notethaty selectehemodelsiM; and M.

Intuitively, S5 andSs createasinglecandidateevent, Xy =0 A X; =0, for anexplanation(y’, X' = z')
of ¢ asdesired.This candidatds goodif S5 but not S, canberespectedn the explanation,i.e., 1’ selects
M3 but not My, whichis equivalentto M; £ Ms.

Formally, in ary explanation(+’, X' =z') for Y =0 relatve to S suchthaty =g ', thesetX’ must
be differentfrom Xj; otherwise, X’ =z’ is not a weakcauseunderus in M5 andunderug in Mg, which
meanghatES2is violated. Thus, X’ mustinclude X;. Ontheotherhand, X # {X;} andz'|X; =0 must
hold, sinceotherwiseES4is violated. Since Xy =1 A X; =0 is notweakcauseof Y =0 in Mg underug,
we have that X’ = 2’ mustbe of form Xy =0 A X; =0.
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We claim that some (¢)/, Xy =0 A X; =0) with ¢ g 4’ is an explanationof ¢ relative to S iff
M, ﬁ M, holds.

Supposehat(y’, Xo = 0A X1 =0) is anexplanationof ¢ relatveto S. We musthave ¢’ #£s 1: indeed,
(9, Xo =0 A X7 =0) is nota pseudo-gplanationof ¢, sinceES3 fails, whichis witnessedy (1, X; =0)
satisfyingES2. Thereforeg)’ mustselecteither M3 or M. SinceX allows noweakcauseof Y =0 in My
underuy, 1" mustnotselectM,. Thisimplies M3 £ My, whichin turnimpliesthatM; £ M.

Corversely supposehat M; £ M,. Then, M3 £ My, andthe set{ M3, M5, My} is definableby a
formulay’ suchthaty =5 4'. Consideny’, Xy =0 A X; =0). Clearly ES1holdsfor ¢ = Y =0 andES4
holdsfor Xy =0 A X7 =0. Also ES2holds,sinceXy =0 A X; =0 is aweakcauseof Y =0 in M3 under
ug andin My underus. Furthermoreneitherfor (¢, X, =0) nor for (¢', X; =0) is ES2satisfied since
Xo=0isnotaweakcauseof Y =0 in M5 underus andX; =0 is notaweakcauseof Y =0 in M3 under
ug. Thus, (¢, Xo =0 A X1 =0) is a pseudo-gplanation of ¢ relatve to S. From Lemma6.8, it follows
thatsomeexplanation(4”, Xy =0 A X1 =0) of Y =0 relatve to S exists(in fact,7"” =g 1’ musthold).

As theabove reductionis polynomial,this shavs X’ -hardnessO

We remarkthatthe existenceof specificexplanationsnayhave highercompleity. For example,decid-
ing the existenceof anexplanation(y’, X’ = z') wherey’ = 4, is both £’ -hardandII{ -hard;thelatteris
implicit in the proof of Theorem6.7.

6.3 CausalFormulas with ExogenousVariables

We now give someremarkson the impactof the languageof eventsthatis consideredn definingexpla-
nationsandsituations. In this paper like in [25, 26], primitive eventsinvolve only endogenousariables.
The settingstatedin [16] is slightly moreliberal andalsoadmitsexogenousvariablesto occurin primitive
events. While suchenhancedxpressienessdoesnot increasethe complity resultsfor explanationsin
Sections3-5, it allows to simplify someof thetechnicalhardnesgroofs. Onthe otherhand,the higherex-
pressienesof causaformulaswhich may alsoinvolve exogenousvariablesvia primitive eventsimpliesa
refinemenbf the subsumptiormndindiscernibilityrelation,whichis alsoeasietto test: Thecharacterization
of My,..., M, £ M in Theorem6.3,whereM = (U,V, F) andM; = (U,V, F;) foralli € {1,...,n}, can
bereplacedy thefollowing simplercondition:

(x+) Thereexistssomeu € D(U) suchthatfor everyi € {1,...,n}, thereexistsacausaformula[Y « y]
X =z, whereY is a (possiblyempty) setof endogenousariablesand X is a singlevariable,such
that(i) (M, u) = [Y « y] X=z, and(ii) (M;,u) E[Y +y] X ==.

Thecheckof this conditionis easilyseerto beNP-complete.Thereforethesubsumptioniestif; < My
(resp.,equivalencetest My = M,) is co-NP-completeratherthanTl4’-complete andthustwo levels lower
in the polynomialhierarchy Consequenthpit doesnotdominatethe compleity of theconditionsES1-ES4;
the samealgorithmfor checkingan explanation,performedin this setting, yields thena DY (resp.,DF)
upperboundin the general(resp.,binary) case.A matchinglower boundis inheritedfrom the compleity
of Explanationin the basicsetting,asit is a specialcaseof situationsandthusthe problemis completefor
DY (resp.,.DY). Similarly, for the problemExplanationExistencewe obtaincompletenesfor £ and=¥
in thegeneralandthebinary caserespectiely.
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7 RelatedWork

In this sectionwe give acomparisorof ourwork to relatedwork on compleity of explanationsn theareas
of abductiorandof Bayesiametworks.

7.1 Abductive Explanations

Abductionhasbeenrecognizedasanimportantprinciple of common-senseeasoningandplaysanimpor
tantrolein mary Al problemsincludingdiagnosisplanning,or naturallanguageprocessingo mentionbut
afew. Oneof the usesof abductionis to obtainexplanationsfor obserations,which loosely speakings
accomplishedby a kind of reversedmodusponens.Thereis quite somework on algorithmsandcompleity
of finding abductve explanationge.g.[4, 8,9, 11, 43, 46]).

Roughly in alogic-basedsetting,abductie explanationsare definedasfollows (cf. [34, 46]). Given
somebackgroundknowledgeT’, whichis atheory i.e., a setof sentences somelogic, anda setof obser
vationsQO, which aretypically facts,a setof sentence& from asetof hypothesedT is anexplanationof O
from T, iff

1. T U F is satisfiablej.e., not contradictoryand

2. TUE E 0O, ie., theobserationsarelogically entailedfrom the backgrouncknowledgeand the
explanationundera notionof logical entailment=.

Usually furtherconditionsareimposedon F in orderto singleout mostplausibleexplanations A standard
suchconditionis theapplicationof Occamé razot i.e., minimality in termsof setinclusion.

While causaland abductve explanations,in a standardogical settingsuchas above, are apparently
differentconceptsthey have similar compleity. In particular decidingthe existenceof anabductve expla-
nationin the propositionakontet (i.e., T', O, and H arein classicapropositionalogic) is >4’ -complete as
shavn in [11]. This matchesourrespectie resulton causalexplanationgor binary causalmodels.In fact,
computingcausalexplanationscanbe polynomially transformednto computingabductve explanationsin
this caseandvice versa.

In the caseof causaimodelswith non-binarydomains explanationsareonelevel higherupin the Poly-
nomial Hierarchy anddecidingthe existenceof a causalexplanationis £’ -complete.This matchesinter
estingly the compleity of abductve explanationsfrom disjunctive logic programsunderthe stableresp.
answersetsemanticsin this setting,thebackgroundheoryT is a propositionadisjunctive logic programs,
H andFE aresetof atoms,andf= is standardcautiousinferencej.e., truthin all stablemodelsresp.answer
setsof aprogram.As wasshavn in [12], decidingtheexistenceof anabductve explanationis %4’ -complete
in this scenario. Thus, decidingthe existenceof causaland of abductve LP explanationsis polynomi-
ally intertranslatablewhich extendseasilyto computingsomecausalresp.abductve LP explanation,and
computationaknginescould be mutually exploited.

Theissueof efficient transformation®f causalinto abductve explanationsaswell asinto relatedrea-
soningtasksof nonmonotonidormalisms,is an interestingsubjectfor further work, which may alsobe
exploited for obtainingrapid prototypeimplementations.E.g., by mappingbinary causalexplanationsto
abductve explanations(extended)variantsof the Truth MaintenanceSystem(cf. [43]) couldbeutilized for
this purpose pr the diagnosticfrontendof the DLV system[10]. Anotherpossibility would be anencoding
of causakxplanationdn AnswerSetProgrammingandusingthe DLV engineto computesolutions.For the
caseof generakcausalexplanationsreductiongo QBF solverssuchas|5, 41, 19] couldbeused.
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7.2 BayesianNetworks

After Coopers well-known intractabilityresult[7] for probabilisticinferencein Bayesiametworks,a num-
berof paperdn this areahave investigateccomplity issuedor reasoningandin particularfor explanation
finding.

A dominatingnotion of explanationin the probabilisticAl literatureis the maximuma posteriori ex-
planation (MAP, aliasmostprobableexplanation[38, 33]), which is an assignmento all variablesgiven
a partial assignmento the variablesin a Bayesiannetwork, suchthatits probability is maximum. Some
compl«ity resultsfor MAPs have beenderived, which however are only weakly relatedto our resultsfor
causalexplanations.In particular computinga MAP in a Bayesiametwork is NP-hard[48], andthe same
appliesto computinga MAP approximatior[1]; onthe otherhand,thisis feasiblein polynomialtime with
anNP oracle.

This resulton computinga MAP is quite differentfrom our resultson a-partial explanations for two
reasons:firstly, MAPs are computedfrom the setof all contets, which is not part of the input. In this
setting,a-partialexplanationsdhave highercompleity. SecondlyMAPs aresinglecontextswhichmaximize
probability for a given evidence while a-partial explanationssingle out subset®f contexts which sensibly
respectelevantinformation[27].

Fromthe computationakide, it is moresuitableto comparedecidingP(X = z) > 0 in a Bayesiamet-
work with our problemPartial Explanationundersuccinctcontet sets,whereC containsall possiblecon-
texts and P emegesfrom independenéxogenousrariables However, theformerproblemis NP-complete
[7], while thelatteris, by our results ITY’-completeandthusmuchharder We maythusexpecta similar re-
lationshipbetweercomputingthe explanatorypower andthe probability P(X = z) in a Bayesiametwork,
which canbe donein polynomialtime with the helpof a#P oracle[42].

8 Conclusion

In this paperwe have consideredxplanationsn HalpernandPearls structural-modehpproacho causality
from a computationaperspectie, and we have obtaineda numberof compleity resultswhich precisely
characterizéheintrinsic difficulty of majorcomputationataskson explanations.

Ourresultsgive a clearpictureof the compleity of explanationsn the caseof generalkstructuralmod-
els, aswell asunderthe restrictionto the casewhereall variablesare binary As we have shovn, causal
explanationsresideat the third level of the PolynomialHierarchy(PH) in the basicsetting,andthusare,
computationallyspeaking,harderto computethan, for example, abductve explanationsin the standard
logic-basedsetting, which are at the secondevel of PH. Intuitively, causalexplanationsharborthreein-
termingledsourcesnf complity, which malke the conceptdifficult: (1) the,in general exponentialsetof
candidatesX = z for anexplanationformedfrom variablesX in agivensetX’ of variables;(2) condition
AC2(b), which informally is a kind of validity testensuringthat X aloneis suficient to bring aboutthe
changeof the event ¢ to —¢, andthusimpactson ¢; and(3) minimality of explanationswhich impliesan
exponentiaketof candidate conditionEX3/ ES3for spoilingacandidatexplanation.Thecompleity of
causalexplanationdurtherincreasesasdemonstratefbor the recognitionproblem,undera naturalconcise
form of modelrepresentatioby two levelsin PH. In particular the recognitionproblemswasprovedto be
17’ -complete andthusis, comparedo validity checkingin classicalpropositionallogic, a rathercomplex
problem.

Someof our hardnessesultsremainvalid underfurther restrictions,suchasa boundednessondition
on the causalmodel[14, 15]. In particular all hardnessesultsfrom Tables1-3in Sections3-5 hold for



30 INFSY S RR 1843-01-08

primitive events¢. Thus,complex eventsarenot a sourceof compleity. However, to avoid a proliferation
of results,we did not furtherconsidersuchrestrictionshere.

For “efficient” algorithmsto generateexplanationsor “best” a-partial explanationswe canconclude
the following. Both mustsolve an inherent=£ -hard problem; thus, simple backtrackingis infeasible,as
well aspolynomialreductiongo a SAT solver or a computationalogic systemwhich canhandleproblems
with compleity up to =¥, suchasDLV [13]. However, an explanationmay be computedusing nested
backtrackingor flat backtrackingcalling a subroutinefor 21" tasks(e.g.,callsto DLV). A furtherpossible
perspectie are translationsto QBF-solers, which proved valuablein other applications[41]. We can
computean a-partial explanationsimilarly. Computinga bestone amountsto an optimizationproblem,
which canbe solved by binary searchover the range[0,1] of «, andthusin polynomialtime with a ¥£’-
oracle.A substantiallyfasteralgorithmseemasunlikely to exist.

Oncethebasicresultsaboutthe compleity of aframewvork areknown, andintractability of sometasks
hasbeenevidenceda naturalnext stepof researchs to identify caseof lower compleity, andin particular
to find islandsof tractability For that, meaningfulrestrictionsmustbe found which eliminatethe various
sourcesof complity, whichis not straightforvard.

While the compl«ity resultsfor explanationsestablishedn this papermay look discouraging.and
leave us with little hopefor tractablecasesit turnedout that thereare meaningfulrestrictionsof causal
modelsfor which explanationshave polynomialcompleity. In acompaniorpaper{17, 18] to [14, 15] and
the presentpaper we describenontrivial syntacticrestrictionson causalmodelsunderwhich the notions
of weak causesand explanationsare tractable. In particular we have identified a hierarchyof tractable
classesstartingwith simple causaltrees,i.e., the causalgraphsaretrees,over layeredcausalgraphs,i.e.,
the causalgraphscanbe layeredso asto permit a stepby steppropagatiorof effects, to a generalclass
of decomposableausalgraphs. On suchcausalmodels,small weak causesunderexplanationscan be
computecefficiently underfurtherassumptionsvhich areneededo gaintractability However, thetechnical
definitionsandthe characterizationarefar too involved to bediscussedhere;we refertheinterestedeader
to[17, 18] for details.

Hence,thereare somepositive resultson the computationof causalexplanationsfor certaininstances
already It remainshowever, to find otherclasse®f instanceshathave lower compleity, andin particular
thatguarantedractability;delineatinghetractabilityfrontieris achallengingaskfor futurework. Lik ewise,
thedevelopmenbf suitablealgorithms continuingandextendingthework of Hopkins[30], is indispensable
for makingthe structural-mode&pproactamenabldo efficientimplementatiorandusein practice.

A Appendix: Proofsfor Section3

Proof of Theorem 3.3 (continued). Hardnesgor £’ is shavn by a reductionfrom decidingwhethera
givenQBF® =3BVYC 3D v isvalid, wherey is apropositionaformulaonthevariablesB = { By, ..., B;},
C={Cy,...,Cp},andD={Dy,..., D,}. WeconstructM = (U,V, F), X CV,CC D(U), and¢ asin
the statemenof thetheoremsuchthat® is valid iff someX’ C X andz’ € D(X') exist suchthat X’ =2’ is
anexplanationof ¢ relatveto C.

We defineU ={I,0,, Uy, ..., U, Uy'}, where D(I) = {0,...,l + 1} and D(S) = {0,1} for all
SeU\{I}. LetC={ug,up’,..., w,w' u1}, whereu; (resp.,u;’) is the uniqueu € D(U) suchthat
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ei(u) (resp.g;’(u)) holds,ande; (resp.g;’) for everyi € {0,...,1+ 1} (resp.i € {0,...,1}) is definedby:

l
g = I:iAUOZOAUOIZIA /\(UiZO/\UiI:O),
=1

7

!
g = IZi/\U():O/\Uo’:O/\ /\(UiZO/\UZ‘IZO).
i=1
We define M = (U, V, F) asfollows. Let V=B U B UCUD U {Xy,Xy,E,E',Y}, where B’ =
{B{,...,B/}, D(S)={0,1,2} forall S € D, andD(S) = {0,1} forall S € V'\ D. Let

o = (A AANSEDV(E=0)V (Xo=1AE=1AV S£2),
seD SeD
¢I1 = (60V60’—)(X():0/\/l\Bi#BZ”)V(\l/(Bi::l/\BZ":l))VE’ZO),
=1 =1

l
(,2512 = A(&iVEi’—)BZ’ZOVBiIZO),
=1
l l
¢35 = (a1 (aAN AN Bi#B/)V(V(Bi=1AB'=1))VE=0),
=1

= i=1

where' is obtainedfrom « by replacingeachS € BUC U D by “S =1". We arenow readyto definethe
functionsF = {Fs | S € V} asfollows:

e Fp,=UjandFg,=Uforallie{1,...,1},
e Fx, =UjandFx, =Uy',

e Fs=0forall Se CU{E,E'"},

o Fs=Xy+ Eforall Se D,

o Fy =1iff ¢ V¢4V ¢ istrue.

Let X = BUB'U{Xy, Xy'}. Let ¢ beY =1. Noticethat¢ is primitive.

For every truth assignment to the variablesin B, denoteby [B/7(B)] the substitution[B; /7(B),
..., B;/7(B;)], andwe definea” =« [B/7(B)]. Let zo=0, andlet u € D(U) with Xo(u) =z. Then,
Xy ==z is aweakcauseof o” underu iff 3CVD —y [B/7(B)] is valid [14, 15]. Thatis, X, =z is nota
weakcauseof o” underu iff VC 3D v [B/7(B)] is valid. Thus,Proposition2.5impliesthefollowing:

(x) Forevery X’ C BUB'U{Xy, X,'} with X, € X', it holdsthat X’ = X’ (u) is notaweakcauseof o’
underu iff VC 3D v [B/7(B)] is valid.

We now shav that® is valid iff someX’ C X andz’ € D(X') exist suchthat X’ = z’ is anexplanation
of ¢ relativeto C.

(<) AssumethatsomeX’ C X andz’ € D(X') exist suchthat X’ =z’ is anexplanationof ¢ relative
toC. Then,

e /(S)=0forall Se X'N(BUB'U{Xy}),
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asotherwiseX'(u) # z' for all v € C, andthusEX4 is violated. For every i € {0,...,1}, it holdseither
X'(u;)=1" or X'(u;') =2'. Thus,X' N {B;,B;'} #0 for alli € {1,...,l}, asotherwiseX’' =z’ is nota
weakcauseof ¢ underary u € {u;, u;'}, andthusEX2 is violated. It follows that

e Xp€ X' and

. |XI N {BZ,B.LIH =1

forallie{1,...,l}, asotherwiseX’ =z’ is notaweakcauseof ¢ underary u € {ug, uo’}, andthusEX2
is violated.It holds

[} X()’ € X’,
asotherwiseX’(u) =z’ for all u € C, andthusEX4 is violated. We have
o 7'(Xy')=0,

asotherwisepy Proposition2.5, X" = ' is aweakcauseof ¢ undereveryu € C, whereX” = X'\ {X,'}
andz” = z'|X", andthus EX3 is violated. Obsere now that X =z is not a weak causeof ¢ un-
deru=w41, whereX” = X'\ {Xy'} andz” = 2’| X", asotherwiseEX3 is violated. Let the truth
assignment- to the variablesin B be definedby 7(S) = 0 iff Se€ X’ for all S€ B. We nowv shav
that X” = z" is not a weak causeof a” underu. Towardsa contradiction,assumethe contrary Thus,
thereexists someW C V' \ X", 7" € D(X"), andw € D(W) suchthat —aZ,  (u) andal,,,;(u) for all
ZCV\(X"UW) andz = Z(u). Here,we canassumehatz”(X,) =1, '(S) =0 for all S € X"\{X,},
{E'}U((BUB")\X") C W,andw(S) =1forall Se {E'}U((BUB')\ X"). Hencejt holds—az,, (u)
andagry; (u) forall ZCV \ (X" UW) andz = Z(u). Thus,~¢gry, (1) @andgymys(u) forall Z C v\ (XU
W) andz = Z(u). As X" (u) = 2" andé(u), it followsthat X" = z" is aweakcausef ¢ underu, whichis a
contradictionHence X" = 2" is notaweakcauseof o™ underu. By (x), it followsthatvC 3D «y [B/7(B)]
is valid. Thatis, ® is valid.

(=) Assumethat ® is valid. Thatis, thereexists a truth assignment to the variablesin B suchthat
VC 3Dy [B/7(B)] is valid. Define X'={Xy, X,'}U{Se€eB | 7(B)=0} U{S'eB’ | 7(B)=1} and
Z'(S)=0 for all Se€ X'. We nowv shav that X’ =z’ is an explanationof ¢ relative to C. EX1 holds, as
¢(u) for all ueC. EX2 holds,as X' =z’ is weak causeof ¢ underevery ;" with € {0,...,l}. EX4
holds,as X'(ug) # =’ and X'(u,") =2'. We next shav that EX3 holds. Towardsa contradiction,assume
the contrary That s, thereexists some X” C X’ suchthat X” =z" is a weak causeof ¢ underevery
u € C with X" (u) = 2", wherez” =z'| X". It holds X" N {B;, B/} #0 for all i € {1, ..., 1}, asotherwise
X" =1"is notaweakcauseof ¢ underary u € {u;,u;'}. It follows that Xy € X", asotherwiseX” = z"
is not a weakcauseof ¢ underary u € {ug, up'}. It thusfollows X" = X"\ {X,'}. Hence, X" =z" isa
weakcauseof ¢ underu =wu; 1. Thatis, someW CV \ X", 7" € D(X"), andw € D(W) exist suchthat
gy (1) AN Pz (u) for all ZCV\ (X" UW) andz = Z(u). AS —dgny,(u), it follows that B € W
andw(E") =1. As ¢y (u), forevery S € (BU B')\ X", it holdseitherS(u) =1o0r S € W andw(S) = 1.
AS ¢z, (u), it thusfollows thatz”(S) =0 for all S € X"\ {Xo}. Hence,~ag,,(u) andagryz(u) for
all ZCV\(X"UW) and2=Z(u). Thatis, =aZ, (u) andal,,(u) for all ZCV\ (X" UW) and
2=Z(u). As X"(u)=2z" anda” (u), this shavs that X" = 2" is a weakcauseof " underu. By (), it
follows thatvC 3D~ [B/7(B)] is notvalid, which is a contradiction.This shavs that EX3 holds.O

Proof of Theorem 3.5 (continued). We defineU={I, Uy, Uy, ..., U, Uy'}, whereD(I) = {0,...,1+ 1}
andD(S) = {0,1} for all Se U\ {I}. Let C={ug,up,-.., u;,w', u41}, whereu; (resp.,u;’) is the
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uniqueu € D(U) suchthate;(u) (resp.e;’(u)) holds,ande; (resp..e;’) for everyi € {0,...,1 + 1} (resp.,
i1€{0,...,1}) is definedasfollows:

l
g = IZi/\U():O/\UoI:l/\ /\(UiIO/\UZ‘IZO),
1—1

7

l
&' = I=iANUy=0AU=0AN \(U;=0AU;/=0).
=1

7

We defineM = (U, V, F) asfollows. The endogenousariablesaregivenby V= B U B’ U C U { Xy,
Xo',E',\ Y}, whereB' = {By/,..., B/} andD(S) ={0,1} forall S€ V. Let

a = Xo=0V~,

o~

l
¢Il = (60V80’—)(X0:0/\/\Bi#BZ',)V(V(BiZI/\Bz"Zl))VE’ZO),
=1 i=1
l
(,2512 = A(eiVEi'%Bi:()VBi':O),
=1

l l
¢ = (41— (aA é\lBﬁéBi’)v(V(Bizl/\Bi’:l))vE’zo),

2 =1

where+’ is obtainedfrom ~ by replacingeachS € BUC by “S=1". We arenow readyto definethe
functionsF' = {Fs | S € V'} asfollows:

e Fp,=UjandFg, =Uforallie{1,...,1},
[ ] FXO = U() andFXOI = U0,1
e Fg=0forallSe CU{E'},

o Fy =1Iiff ¢} V ¢,V ¢} istrue.

Let X = BUB'U{Xy, Xy'}. Let ¢ beY =1. Noticethat¢ is primitive. For every truth assignment
T to thevariablesn B, we denoteby [B/7(B)] thesubstitution By /7(B1), ..., B;/7(B;)], andwe define
o"=a[B/7(B)]. Letzy=0, andletu € D(U) with Xy(u) =z¢. Then, Xy =z, is a weakcauseof o”
underu iff 3C —y [B/7(B)] is valid. Thatis, X, = z, is notaweakcauseof o” underu iff VC v [B/7(B)]
is valid. Thus,Proposition2.5impliesthefollowing fact:

(¥) Forevery X' C BUB'U{Xy, Xo'} with X, € X, it holdsthat X’ = X" (u) is notaweakcauseof a”
underu iff VC v [B/7(B)] is valid.

Using(x), by asimilarline of agumentatiorasin the proof of Theorem3.3, it follows that® is valid iff
someX’ C X andz’ € D(X') exist suchthat X’ =z’ is anexplanationof ¢ relatveto C. O

B Appendix: Proofsfor Section4

Proof of Theorem 4.3 (continued). We constructM = (U,V,F), X CV,z € D(X), ¢, CCD(U), P,
anda asin the statemenbf thetheorem suchthat X =z is ana-partial explanationof ¢ relatveto (C, P)
iff the numberof valid formulasamong®, ..., ®; is even.
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Forie {1,...,k}, definethe causaimodelsM; = (U;, V;, F;) asfollows. The exogenousandendoge-
nousvariablesaredefinedby U; = { E;} andV; = A; U B; U{C;, G, }, respectiely. DefineD(S) ={0,1,2}
forall S € B;,andD(S) = {0,1} forall S € U; UV; \ B;. Wedefine

$i=(UANS#2V(C;=0)V(Gi=1ACi=1A\/S#2),

SEBi SEBi

wherey! is obtainedrom; by replacingeachS € A; U B; by “S =1". Thefunctionsin F; = {F% | S € V;}
aredefinedasfollows:

° F(Z;l =F;
o Fi=0forall Se{C;}U 4,

e Fi=G,; + C;forall S€B;.

Foreachi € {1,...,k}, letX; ={G;}, anddefinez; € D(X;) andu; € D(U;) by z;(G;) =0 andu; (£;)=0.
Then,foreveryi € {1,...,k}, X; =z; isaweakcauseof ¢; underu; in M; iff ®; is valid (theconstruction
is similar asin the proof of Theorem3.2, the only differenceis that we have FZ = F; here,insteadof
F(g =0). Obsenre alsothat¢;(u) holdsfor all u € D(Uj;).

Define the causalmodel M = (U, V, F) by U=U; U --- U Uy U {E}, where D(E) = {0,...,k},
V=Wu---UuV,U{H},andF = F, U---U F, U{Fg}, where

Fe=1ift ( N\ o)A N\ e—=d)n( N\ & —T) istrue,

1€{1,....,k} 1€{l,...k}, 1e{1,...,k},
7 even 7 odd
ande; ande) aredefinedasfollows for everyi € {1, ..., k}:
e = (BE=)A( A (E;j=0),
je{1,....k}

g = (E=0)ANE=DA( A (£=0)
Je{l,. b\ {3}

For every i € {1,...,k}, let u; (resp.,u}) be the uniqueuw € D(U) suchthate;(u) (resp.,e(u)). Let
Y ={H}, andletp beY =1. LetC={u1,...,ug,ul,...,u.}, P(u)=1/2kforallueC,anda=1/2k.
DefineX = {Gy,...,Gy}andz =z1---z, (= 0---0).

Obsere that ¢ is primitive, P is the uniform distribution over C, and ¢(u) for all uw € C. By Proposi-
tion 2.5, thefollowing holdsfor alli € {1, ..., k}, all X' C X, andz’ = z| X":

(i) If X; C X', thenX’'=2z'is aweakcauseof ¢ undery; iff ®; is valid.
(i) If iisevenandX;_; C X', thenX' =2’ is aweakcauseof ¢ underu; iff ®;_; is valid.
(i) If 4 is odd,thenX’ =z’ is notaweakcauseof ¢ underu;,.

(iv) If X; € X', thenX'=2z'"is notaweakcauseof ¢ underu;.
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By Propositiom.l,c;’}:w isthesetof all u € C suchthateither(a) X (u) # z, or (b) X (u) =z andX =z
isaweakcauseof ¢ underu. By (i), it thusfollowsC?}:z ={ul,...,u }U{u; | 1€{1,...,k}, ®;isvalid}.

We now shav that X =z is an a-partial explanationof ¢ relative to (C, P) iff the numberof valid
formulasamong®;, ..., ®; is even.

(=) Assumethat X =z is an a-partial explanationof ¢ relatve to (C, P). In particular X =z is
an explanationof ¢ relative to Cﬁzw. Towardsa contradiction,assumehat the numberof valid formulas
among®,,...,®, isodd. Letj € {1,...,k} bethesmallestindex suchthat®; is not valid. Notice that
j is even. We define X’ = X \ X; anda’ = z|X’. Thesetof all u € C%_, suchthat X’(u) = z' is given
by C" = {uj} U {u1,...,uj_1} (@s®; implies®;_,, for every j € {2,...,k}). By () and(ii), X' =2'is
aweakcauseof ¢ underevery u € C'. Thatis, X' =z’ is a weakcauseof ¢ underevery u € C}*}Zm with
X'(u) =2, whichviolatesEX3, andthuscontradictsX = z beinganexplanationof ¢ relative to C}’}:z.

(<) Assumethatthe numberof valid formulasamong®;, . .. , @, is even. We now shav that X =z is
an a-partial explanationof ¢ relatve to (C, P). By Propositiond.1, it is sufficientto shav that(a) X =z
is an explanationof ¢ relative to C}’}:z, and(b) P(C;"}:m | X =1z) > a. Wefirst prove (a) by shaving that
EX1-EX4 hold. Clearly EX1 and EX2 hold. Obsere thatu;’ GC?}:;C. As @, is valid, we also have
uy € C}’}:x. HenceasX (u)) # z and X (u1) = z, alsoEX4 holds. We next shav that EX3 holds. Towards
acontradictionassumehatsomeX’ C X existssuchthat X’ =z’ is aweakcauseof ¢ underall u € C%_,
with X'(u) =2', wherez’ = z|X'. Let X; € X \ X' suchthatj € {1,...,k} is minimal. As eC}’}:w
andX'(uj) =2, it follows that X’ =z’ is a weakcauseof ¢ underu;. By (ii), j is even. By (ii), ®;_1 is
valid. By (iv), u; doesnotbelongto c? _,- Thatis, ®; is notvalid. But this contradicteshe numberof valid
formulasamong®., ..., ®; beingeven. Thus,alsoEX3 holds. Clearly (b) follows from EX4 and P being
theuniformdistribution overC. O

Proof of Theorem 4.6 (continued). We constructM = (U,V,F), X CV,z € D(X), ¢,CC D(U), and
P asrequired suchthat (v, ..., vg) is thebit-vectorrepresentationf the explanatorypower of X = z.

Foreveryi € {1,...,k}, defineM; = (U;, V;, F;) andX; C V; asin theproofof Theorem4.3. We define
M=(UV,F)byU=U, U---UU, U{E}, whereD(E) = {0,...,k}, V=V, U---UV, U{H}, and
F=F1U"'UFkU{FH},Where

Fy=11if ( N\ ea—-¢)A( )\ & —T) istrue,

1€{1,....,k} i€{l,....k}
ande; ande), aredefinedasfollows for everyi € {1,...,k}:
e = (E=)A( A (E;j=0),
je{l,ek}

& = (B=0)AE=DA( A (B=0).
Fe{l ok \ {3}

For every i € {1,...,k}, let u; (resp.,u}) be the uniqueu € D(U) suchthat ;(u) (resp.,e;(u)). Let
Y ={H}, andlet ¢ beY =1. We defineC = {u1,...,ug,ul,..., u}}, P(uj)=0foralli € {1,...,k},
andP(u;)=2"'forallie {1,...,k}. WedefineX = {G1,...,Gy} andz = x1 - - - 7.

Obserethat¢ is primitive. Moreover, ¢(u) for all uw € C, andfor all i € {1,...,k}:

() X ==z isaweakcauseof ¢ underu; iff ®; is valid.
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(i) If X' C X andz’ = z|X', thenX’ =z’ is notaweakcauseof ¢ underu;.

By Propositiont.1,C% _, isthesetof all u € C suchthateither(a) X (u) # x, or (b) X (u) =z andX =z
isaweakcauseof ¢ underu. By (i), it thusfollowsC}’}:m ={ul,...,u }U{u; |i€{1,... k}, ®;isvalid}.
By (ii), X =z is anexplanationof ¢ relative to Cf(:w. Thus, X =z is a partial explanationof ¢ relatve
to (C, P). Its explanatorypower is thesumof all P(u;) = 28t withi € {1,..., k} suchthat®; is valid. O

TheoremB.1 a-Partial Explanationis Pﬁ‘P-compIetejn thebinary case

Proof. Asfor membershiprecallthat X = z is ana-partialexplanationof ¢ relativeto (C, P) iff (a) X =z
is an explanationof ¢ relatve to C%__, and(b) P(C%_, | X =) > «. By Proposition4.1,C%__ is the
setof all u € C suchthateither (i) X (u) # z, or (i) X(u) =2z and X =z is aweakcauseof ¢ underu.
Deciding(i) is polynomial,and,by Theoren.6,deciding(ii) is in NP in thebinarycase.Thus,computing
C}’}:z is in FPYY in the binary case. OnceC?}:I is given, deciding(a) is possiblewith two NP-oracle
calls, by Theorem3.4, anddeciding(b) is polynomial. As two roundsof parallelNP-oraclequeriesin a
polynomial-timecomputatiorcanbereplacedy a singleone[3], theproblemis in Pﬂ”’.

Hardnesdor PﬁIP is shavn by a reductionfrom the following Pllfp—completeproblem[SO]. Givenk
propositionaformulasy;, i € {1, ..., k}, whereeachy; is definedonthevariablesA; = {A4;1,..., Aim,; },
decidewhetherthe numberof tautologiesamongyi, - . . , v is even. Without lossof generality  is even,
the A;’sarepairwisedisjoint, v is notatautology andfor everyj € {1, ...,k —1}, if y; isatautology then
alsov;1 [50]. We constructM = (U,V,F), X CV,z€ D(X), ¢, CCD(U), P, anda asrequired,such
that X =z is ana-partialexplanationof ¢ relative to (C, P) iff thenumberof tautologiesamongys, . .., vk
is even. Theconstructions similar to the onein the proof of Theorend.3. Roughly we replacehe partfor
»¥-hardnes®f decidinggeneralweakcauseby anew partfor NP-hardnessf decidingbinaryweakcause.

For i e€{1,...,k}, definethe causalmodels M; = (U;, V;, F;) asfollows. The exogenousand en-
dogenousvariablesaredefinedby U; = { E;} andV; = A; U {G;}, respectiely, where D(S) ={0,1} for
all S € U; UV;. We definethefunctionsin F; = {Fgl | S €V;} asfollows:

. F(Z;l = E;,

o Fi=0forall S€A;.

We thendefine¢; = G; =0V ;’, wherey;' is obtainedfrom ~y; by replacingeachS € 4; by “S =1".
Foreachie{1,...,k}, let X; = {G;}, anddefinez; € D(X;) andu;€ D (U;) by z;(G;) =0 andu;(E;) =0.
Then,for everyie{1,...,k}, X; =z; isaweakcauseof ¢; underu; in M; iff -; is notatautology

We definethe causalmodel M = (U, V, F') asfollows. The exogenousand endogenousariablesare
givenbyU=U;U---UU, U{E}andV =V, U--- UV, U{H}, respectiely, whereD(E) ={0,...,k}
andD(H)={0,1}. Thefunctionsaregivenby F = Fy U - -- U F, U {Fg }, where

Fe=1it ( N\ a-o)A( N\ e=d)n( N\ & —T) istrue,

1€{1,....,k} 1€{1,....k}, 1e{1,...,k},
1 even 4 odd
ande; ande!, aredefinedasfollows for everyi € {1,...,k}:
e = (BE=i)A( A (E;j=0),
je{l,...k}

& = (E=OAE=DA( A (B=0)
Je{1,...k}\{i}
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For every i € {1,...,k}, let u; (resp.,u}) be the uniqueu € D(U) suchthat e;(u) (resp.,e;(u)). Let
Y ={H}, andletp beY =1. LetC ={u1,...,u,u},...,u;}, P(u)=1/2kforallucC,anda=1/2k.
DefineX ={G1,...,Gr} andz = z1 ... x. Obserethatg is primitive, that¢(u) for all u € C, andthat P
is the uniform distribution over C. By Proposition4.1, C?}:a: is the setof all u € C suchthat either (a)
X (u) #z, or (b) X(u) =z and X =z is aweakcauseof ¢ underu. By Proposition2.5, it thusfollows
C}’}:w ={ul,...,u,} U{u; | i€ {1,...,k}, 7; isnotatautology}.

By aline of amgumentatiorsimilar to the onein the proof of Theorem4.3, it follows that X =z is an
a-partial explanationof ¢ relative to (C, P) iff the numberof non-tautologieamongyi, . ..,y is even,
thatis, ask is even,iff thenumberof tautologiesamongy;, . ..,y iseven.O

TheoremB.2 a-Partial ExplanationExistencés £ -completen thebinary case

Proof. As for membershign X, by TheoremB.1, decidingwhetherX’ =z’ is an a-partial explanation
of ¢ relatve to (C,P) isin Pﬁ“’ in the binary case. Thus, guessingsome X’ C X andz’ € D(X'), and
decidingwhetherX’ = z' is an a-partial explanationof ¢ relative to (C, P) isin £ in thebinarycase.
Hardnesdor £ is shavn by a reductionfrom ExplanationExistencein the binary case(see Theo-
rem3.5). Givenaninstanceof it, let P bethe uniformdistribution onC, andlet o =1. Then, X' =z’ isan
a-partialexplanationof ¢ relativeto (C, P) iff X’ =z’ is anexplanationof ¢ relatveto C. O

Theorem B.3 Partial Explanationis Pﬁ”’-completein thebinary case

Proof. As for membershign Pﬁ‘P, recall that X = z is a partial explanationof ¢ relatie to (C, P) iff

(a) X =z is an explanationof ¢ relative to C}*}:z, and (b) c? _, containssomew suchthat X (u) ==z

and P (u) > 0. By the proof of TheoremB.1, computingC%__ is in FPﬁIP in the binary case.OnceC% _,

is given,checking(a) is in D in the binary case by Theorem3.4, andchecking(b) is polynomial. As two
roundsof paralleINP-oraclequeriesn a polynomial-timecomputatiorcanbereplacedy asingleone[3],
Partial Explanationis in PﬁTP in thebinarycase.

We next shav Pﬁ‘P—hardnesslf P istheuniformdistribution overC, then X = z is apartialexplanation

of ¢ relatveto (C, P) iff X =z isa ﬁ-partial explanationof ¢ relative to (C, P). By the proof of Theo-

remB.1, decidingthelatteris completefor PllfP. Thus,decidingwhetherX = z is a partialexplanationof ¢
relatveto (C, P) is Pﬁ”’-hard,and hardnes$oldsevenif P istheuniform distribution overC. O

Theorem B.4 ExplanatoryPoweris FP‘]TP-compIetein thebinary case

Proof. We computeC%__ and P(C%_, | X = ). By the proof of TheoremB.1, the formeris in FP™ in

the binary casewhile the latteris polynomial. Thus,ExplanatoryPoweris in FPﬁIP in thebinary case.

Hardnessor FPﬁIP is shavn by a reductionfrom the following FPﬁIP-compIeteprobIem. Given k
propositionaformulasy;, i € {1, ..., k}, whereeachy; is definedonthevariablesd; = {4;1,..., Aim; },
computethe vector (vy, ... ,v;) € {0, 1}* suchthatv; =1 iff ~; is not a tautology for all i € {1,...,k}.
Withoutlossof generalitythe A;'s arepairwisedisjoint,and+; is notatautology

WeconstructM = (U, V, F), X CV,z € D(X), ¢,C C D(U), andP asrequired suchthat(vy, . .., vg)
is the bit-vectorrepresentationf the explanatorypower of X =z. Foreveryi e {1,...,k}, let M; = (U;,
Vi, F;) and X; C V; bedefinedasin the proof of TheoremB.1. The restof the constructionis similar as
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in the proof of Theorem4.6. We definethe causalmodel M = (U, V, F) asfollows. The exogenousand
endogenousariablesaregivenby U =U; U--- U U, U {E} andV =V, U --- UV}, U {H}, respectiely,
whereD(E) = {0,...,k} andD(H) = {0,1}. Thefunctionsaregivenby F = F; U --- U F}, U {Fg},
where

Fg=11ift ( N\ ea—=¢)n( J\ e —T) istrue,

i€{l,....k} ie{l,....k}
ande; ande!, aredefinedasfollows for everyi € {1, ..., k}:
e = (E=)A( N (Ej=0),
jE{L,...k}

e = (E=0)AE=DA( A (E=0).
Fe{1,k}\ {4}
For every i € {1,...,k}, let u; (resp.,u}) be the uniquew € D(U) suchthate;(u) (resp.,e;(u)). Let
Y ={H}, andlet ¢ beY =1. WedefineC = {u1,...,u,u},..., u,}, P(uj)=0forallie{1,...,k},
andP(u;)=2"'foralli € {1,...,k}. WedefineX = {G1,...,Gx} andz =1 - - - 7.
Obsere that¢ is primitive. Moreover, ¢(u) for alluw € C, andforall i € {1,...,k}:

(i) X =z isaweakcauseof ¢ underu; iff 4; is notatautology

(i) If X' C X andz’ = z|X', thenX’ =z’ is notaweakcauseof ¢ underu;.

By Propositiom.l,cﬁzz isthesetof all u € C suchthateither(a) X (u) # z, or (b) X (u) =z andX =z
is aweakcauseof ¢ underu. By (i), it thusfollows C}*}:z ={ul,...,u }U{u;|i€{1,...,k}, v; isnota
tautology}. By (ii), X =z is anexplanationof ¢ relative to c _,- Hence X =z is apartialexplanationof
¢ relative to (C, P). The explanatorypower of X =z is thesumof all P(u;) = 2=t with i € {1,...,k}
suchthat+y; is notatautology O

C Appendix: Proofsfor Section5

Proof of Theorem 5.1 (continued). Hardnessfor I} is shavn by a reductionfrom the I} -complete
problemof decidingwhetheragivenQBF ® = VA 3B YC 3D - is valid, wherey is apropositionaformula
onthevariablesA={Ai,..., Ay}, B={B1,...,B;}, C={C4,...,Cp},andD={Dy,...,D,}. We
constructM = (U,V, F), X CV,z€ D(X),C CD(U), and¢ asin the statemenbf thetheoremsuchthat
X =z is anexplanationof ¢ relative to C iff @ is valid.

We definethe exogenousariablesby U = BU {Uy, Uy, Uy, . .., Uy, Ux'}, whereD(S) = {0, 1} for all
S € U. We definethesetof contextsby C ={u € D(U) | (g9 V €1 V €2)(u)}, where:

k
g0 = Up=0A A\ (Ui=0AU;=0),
1=1
k
&1 = Up=0A \ (((U,:l/\Ui’:O)V(Ui:O/\Ui’:l))/\ A (Uj=0/\Uj':0)),
i=1 Fe{1,k}—{i}

k
gg = Up=1V V(Ui=1/\UiI=1).
Y

2
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We define M = (U, V, F) asfollows. We defineV=AU A’ UC U D U {Xy,E,E', Y}, where A" =
{A,..., A'}, D(S)={0,1,2} forall S€ D,andD(S)={0,1} forall S€ V'\ D. Let

a = ('ANS#V(E=0)V(Xo=1AE=1A\ S#£2),
SeD SeD
qS' = (50—>X0:O)/\(52—>T)/\(51—)(04/\/k\Ai7éAi')\/(\k/(Ai:1/\AiI:1))\/E’:O)’
i=1 =1

wherey' is obtainedfrom v by replacingeachS €e AUBUC U D by “S =1". We arenow readyto define
thefunctionsF' = {Fs | S € V'} asfollows:

o Fy,=U;andF,=Uforallie{1,...,k},
e Fx,=Uy,andFs=0forall SeCU{E,E'},
e Fs=Xy+ Eforall SeD,

o Fy =1iff ¢ istrue.

Let X =AU A'U{X,}, andletz € D(X) begivenby z(S)=0for all S € X. Let ¢ beY =1. Notice
that¢ is primitive. We now shav that® is valid iff X =z is anexplanationof ¢ relatve to C.

Wefirst shav thatEX1, EX2, andEX4 alwayshold. As ¢(u) for all u € C, EX1 alwaysholds.For every
u € C with X (u) = z, it holdsey(u). Hence, X = z is aweakcauseof ¢ underevery u € C with X (u) =z.
Thatis, alsoEX2 alwaysholds.As someu, v’ € C existsuchthatX (u) = z and X (u') # z, alSoOEX4 always
holds. It thusremainsto shav that @ is valid iff EX3 holds. Recallthat EX3 saysthatfor every X' C X,
someu € C existssuchthat(i) X' (u) =z| X’ and(ii) X = z| X' is notaweakcauseof ¢ underu. If X, ¢ X'
or X' n{A;, A;/'} =0 for somei € {1,...,k}, then(i) and(ii) hold for someu € C with &5 (u). If Xy € X',
X'Nn{A;, A’y #0forallie{1,...,k}, and4;, A;' € X' for somei € {1, ..., k}, then(i) and(ii) hold for
someu € C with &1 (u).

It thus remainsto shav that @ is valid iff for every X’ C X suchthat(a) Xy € X’ and(b) | X' N
{4;, A’} =1forallie{1,...,k}, someu € C existssuchthat(i) X’(u) = z| X' and(ii) X' =z|X" is not
aweakcauseof ¢ underu.

Forall truthassignments andr to thevariablesn A andB, respectrely, denoteby [A/o(A), B/7(B)]
the substitution[A; /o (A1), ..., Ax/o(Ag), B1/7(B1),- .., B;/7(B;)], andwe definea”” =« [A/o(A),
B/7(B)]. Letzy=0, andletu € D(U) suchthat Xy(u) =xz¢. Then, X, =z, is a weakcauseof a”"
underu iff 3CVD -~y [A/o(A), B/7(B)] is valid [14, 15]. Thatis, X, =z, is not a weakcauseof a”"
underu iff VC 3D~y [A/o(A), B/7(B)] is valid. Thus,Proposition2.5impliesthefollowing fact:

(¥) Forevery X' C AU A’ U{X,} with X, € X', it holdsthat X’ = X'(u) is notaweakcauseof a”"
underu iff VC 3D vy[A/o(A), B/7(B)] is valid.

(=) Assumethat® is valid. Let X’ C X suchthat(a)and(b) holds.Definethetruthassignment to the
variablesn A by o(A4;)=0iff A; € X' forallie {1,...,k}. As ® is valid, thereexistsatruth assignment
T to the variablesin B suchthatvVC' 3Dy [A/o(A), B/7(B)] is valid. Let z' =z|X’, andlet uw € D(U)
bearbitrarysuchthat X' (u) =2, e1(u), andu(B;) =7(B;) for all i € {1,...,1}. By (x), X' =2 isnota
weak causeof " underu. We now shav that X’ =z’ is alsonot a weak causeof ¢ underu. Towards
a contradiction,assumethe contrary Thus,someW CV \ X', 7’ € D(X'), andw € D(W) exist such
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that =z, (1) and gy, (u) for all ZCV\ (X' UW) andz = Z(u). AS =y, (u), it follows that F € W
andw(F)=1. AS ¢, (u), for every S € (AU A’) \ X', it holdseitherS(u)=1or S € W andw(S) = 1.
AS =z, (u), it thusfollows thatz'(S) =0 for all S € X'\ {X}. Hence,~ay,, (u) andag,,;(u) for all
ZCV\(X'UW)andz = Z(u). Thatis, ~aZ (u) andaZ; .(u) forall Z C V' \ (X' UW) andz = Z(u).
As X'(u) = 2’ anda”" (u), thisshavs that X’ = z’ is aweakcauseof a%” underu. Equivalently by (x),
VC 3D~ [A/o(A), B/7(B)] is notvalid, which is a contradiction. This shavs that X’ = 2’ is not a weak
causeof ¢ underu.

(<) Assumethat @ is not valid. Thatis, thereis a truth assignment to the variablesin A suchthat
for every truth assignment to the variablesin B, it holdsthatVC 3D v [A/o(A), B/7(B)] is not valid.
Let X' ={X,}U{S€A|o(S)=0}U{S' € A" |o(S)=1}, andletz’ = z|X'. Letu €C beary contet
suchthat X'(u) = /. We now shav that X’ =z’ is aweakcauseof ¢ underu. If g9(u), thenX' =z’ is
trivially aweakcauseof ¢ underu. Assumenow 1 (u). Let 7 bethetruth assignmento thevariablesn B
with u(B;) = 7(B;) foralli € {1,...,l}. AsVC3ID~[A/o(A), B/7(B)] isnotvalid, by (x), X' =z’ isa
weakcauseof a”” underu. Thus,someW C V\X',z' € D(X'), andw € D(W) exist suchthat—a.,” (u)
andaZ;7 . (u) forall ZCV \ (X' UW) andz = Z(u). Here,we canassumehatz’ (X,) = 1, 7'(S) = 0 for
all Se X'\ {Xo}, {F}u((AuAH)\X') C W,andw(S)=1forall Se {F}U((AUA’)\ X'). Hence,
01y (1) @Nd argrys(u) for all ZCV \ (X'UW) and 2= Z(u). Thus, ¢y, (1) and ¢, (u) for all
Z CV\(X'UW) andz=Z(u). As X'(u) =2 and¢(u), it follows that X’ =2’ is a weak causeof ¢
underu. O

Theorem C.1 Explanationis TT{’-completefor succinctcontet setsand binary causalmodels.

Proof. Asfor membershign IT¥, recallthatX = z is anexplanationof ¢ relatveto C iff EX1-EX4hold. As
arguedin theproofof Theoremb.1,decidingwhetherEX1 andEX4 holdis in co-NP andNP, respectiely,
for succinctcontt sets. By Theorem?2.6, decidingwhether X =z is a weak causeof ¢ undersome
u€ D(U) isin NP in thebinary case.Thus,in EX2, decidingwhetherX =z is a weakcauseof ¢ under
every u € C with X (u) =z is in TI¥ for succinctcontet setsandbinary causalmodels. Hence,deciding
whethersomeX'’ C X existssuchX’=z|X' is aweakcauseof ¢ underevery u € C with X'(u) = z|X' is
in 2% for succinctcontet setsandbinary causaimodels. Thus, decidingwhetherEX3 holdsis in TI{". In
summarydecidingwhetherEX1-EX4holdis in II{ for succinctcontet setsandbinary causaimodels.

Hardnesdor I1{" is shavn by a reductionfrom the I14’-completeproblemof decidingwhethera given
QBF & = VA3IBVYC v is valid, where is a propositionalformula on the variablesA ={ A4, ..., Ax},
B={By,...,B;},andC={Cy,..., Cp}. WeconstructM = (U,V,F), XCV,zeD(X),CCD(U),
and ¢ asrequiredsuchthat X =z is an explanationof ¢ relative to C iff @ is valid. The constructionis
similar to the onein the proof of Theorem5.1. Roughly we replacethe partfor $7’-hardnesof deciding
generalweakcauseby anew partfor NP-hardnessf decidingbinaryweakcause.

We definetheexogenousvariablesby U = BU {Uy, Uy, Uy’, ..., U, Uy'}, whereD(S) = {0, 1} for all
S € U. We definethesetof contextsby C ={u € D(U) | (g9 V €1 V €2)(u)}, where:

k
g0 = Up=0A A\ (Ui=0AU;=0),
1=1
k
e = Up=0A \ (((Uizl/\Ui’:O)V(Ui:0/\UZ~’:1))/\ A (Uj=0/\Uj':0)),
i=1 je{1,k}—{i}

k
g9 = Up=1V V(Ui=1/\Ui’=1).
Y

2
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We definethecausamodel M = (U, V, F') asfollows. Theexogenouwariablesaregivenby V=AU A’ U
CU{Xy,E' Y}, whered' = {A,,..., A’} andD(S)={0,1} forall Se V. Let

a = X():OV’}”,

¢ = (0= Xo=0)A(e2=>T)A (e1 = (aA /k\ Ai#Ai')V(\I.C/(AFl/\Ai'Zl))VE’ZO),
=1

i= =1

where~' is obtainedfrom « by replacingeachS e AUBUC by “S =1". We arenow readyto definethe
functionsF' = {Fg | S € V'} asfollows:

o Fy,=U;andF,=Uforallie{1,...,k},
e Fx,=Uy,andFs=0forall SeCU{E'},

o Fy =1Iiff ¢/ istrue.

LetX = AU A'U{Xy}, andletz € D(X) begivenby z(S)=0forall S€ X. Let ¢ beY =1. Notice
that ¢ is primitive. For all truth assignments andr to the variablesin A and B, respectrely, we denote
by [A/o(A), B/7(B)] thesubstitutionA4,/o(A1), ..., Ar/o(Ax), B1/7(B1), ..., B;/7(B;)], andwe de-
finea”" =«a[A/o(A), B/T(B)]. Let 2o =0, andlet u € D(U) suchthat X(u) =z¢. Then, Xy ==z is
aweakcauseof a?” underu iff 3C =y [A/0o(A), B/7(B)] is valid. Thatis, X, =z is notaweakcause
of a”™ underu iff VC v [A/o(A), B/7(B)] is valid. Thus,Proposition2.5impliesthefollowing fact:

(x) Forevery X’ C AU A’ U{X,} with X, € X', it holdsthat X’ = X’ (u) is notaweakcauseof a®"
underu iff VC'y [A/o(A), B/7(B)] is valid.

Using(x), by aline of amgumentatiorsimilar to the onein the proof of Theoremb.1,it follows that® is
valid iff X =z is anexplanationof ¢ relatveto C. O

Theorem C.2 Partial Explanationis TTI¥ -completefor succinctcontext setsand binary causalmodels.

Proof. As for membershipn TI, recall that X =z is a partial explanationof ¢ relative to (C, P) iff
() X =z is an explanationof ¢ relative to C}*}:w, and (b) X (u) =z and P(u) > 0 for someu € C}*}Zw.
By Propositiom.l,cﬁzm is the setof all u € C suchthateither(i) X (u) # «, or (i) X(u) =z andX =z is
aweakcauseof ¢ underu. To checkthat(a) holds,we checkthatEX1-EX4 hold. Clearly EX1 andEX2
alwayshold. The complemenbf EX3 saysthatsomeX'’ C X existssuchthatfor every v € C, it holdsthat
X'(u)=z|X" andu € C}’}:z impliesthat X’ = z| X' is a weakcauseof ¢ underu. Thatis, someX'C X
existssuchthatfor everyu € C, it holdseither(a) X'(u) # z| X', or (b) X (u) =z and X = z is notaweak
causeof ¢ underu, or (¢) X' = z| X' is aweakcauseof ¢ underu. By Theoren.6,decidingweakcauses
in NP in the binary case.Thus,decidingwhetherEX3 doesnothold is in ©£” for succinctcontext setsand
binary causaimodels.Hence decidingwhetherEX3 holdsis in I1f’. EX4 saysthatsomeu, v’ € c? _, EXist
suchthat X (u) # z and X (u') = z. Equivalently someu, v’ € C exist suchthat X (u) # z, and X (v/) =z
and X = z is aweakcauseof ¢ underu’. Thus,decidingwhetherEX4 holdsis in NP in the binary case.
In summarydecidingwhether(a) holdsis in TI{" for succinctcontet setsandbinarycausaimodels.Finally,
(b) saysthat somewu € C exists suchthat X (u) =z, P(u) >0, and X =z is a weak causeof ¢ underu.
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Thus,checking(b) is in NP in thebinary case In summarydecidingwhether(a) and(b) holdsis in TIZ for
succinctcontet setsandbinary causaimodels.

Hardnessfor I is shavn a reductionfrom the 14’ -completeproblemof decidingwhethera given
QBF & = VA3IBYC~ is valid, wherer is a propositionalformula on the variablesA = { A4, ..., Ax},
B={By,...,B},andC={C4,...,Cp}. WedefineM =(U,V,F), X CV,z € D(X), ¢,andCCD(U)
asin the proof of TheoremC.1, andlet P be the uniform distribution over C. Obsere that ¢ is primitive
andthat¢(u) holdsfor all u € C. Foreveryu € C, either(i) X (u) # z, or (i) X (u) =z andX =z isaweak
causeof ¢ underu. By Propositiord.1, X = z is a partial explanationof ¢ relatve to (C, P) iff (@) X =z
is an explanationof ¢ relatve to C, and (b) C containssomewu suchthat X (u) =z and P(u) > 0. Here,
(a) implies (b). By the proof of TheoremC.1, X =z is anexplanationof ¢ relative to C iff ® is valid. In
summary X = z is apartialexplanationof ¢ relatveto (C, P) iff @ isvalid. O

D Appendix: Proofsfor Section6

Proof of Theorem 6.4 (continued). It remainsto prove that® is not valid iff (x) someu € D(U) exists
suchthatfor everyu; € D(U,), thereexistsacausaformula[Y + y] X =z, whereY CV andX €V, such
that(i) (M, u) £ [Y < y] X =z and(ii) (M1, u1) E[Y +y]| X ==z.

(=) Supposehat® is notvalid. Letthenr beary truthassignmento B suchthat3CVD~(B/7(B),C,
D) is not valid, thatis, VC3D—vy(B/7(B),C, D) is valid. Letu be ary contet from D(U) suchthat
u(B;)=7(B;) for all i€ {1,...,l}. Considernow ary contet u; € D(U;). We then distinguishtwo
casesasfollows. (a) If ui(B;)# 7(B;) for someie{1,... 1}, then(Mi,u;) E W<+ 7(B)|Z=1,
while (M,u) = [W <« 7(B)|Z = 1, whereW <« 1(B) abbreiatesW; < 7(Bi),...,W; < 7(B).
(b) If uy(B;) = 7(B;) foralli € {1,...,1}, thensometruthassignment” to D existssuchthaty(B/7(B),
C/7'(C),D/r"(D)) is false,wherer’ is the truth assignmento C definedby 7/(C;) =1 (C;) for all
ie{l,...,m}. Hence,(M1,u1) E [W « 7(B),D «+ 7"(D)] Z=1, while (M,u) [~ [W < 71(B),D <+
7"(D)] Z =1. In summaryif ® is notvalid, then(x) holds.

(<) Supposethat () holds. Thatis, somewu € D(U) exists suchthat for every u, € D(Uy), there
exists a causalformula [Y < y] X =z, whereY CV and X € V, suchthat (i) (M,u) E[Y +y| X =z
and (i) (M1,u1) E[Y < y] X =z. In particular someu € D(U) exists suchthat for every u; € D(Uy)
with u| B = u;|B, thereexists a causafformula[Y «+ y] X =z asabove with (i) and(ii). Trivially, (i) and
(i) implies X Y for all suchu; € D(U;). Moreover, as Fx =F% =0 for all X e V'\ {Z}, it follows
that X = Z musthold for all suchu; € D(U;). It thenfollows that (M, u) = [Y « y] W; = u(B;) for all
ie{l,...,1}, sinceotherwise(M,u) =[Y+y] Z=1and(My,u1) =[Y < y] Z =1, for all u; € D(U1)
with u|B =wu;|B. This alsoshaws thatwe have (M, u) [~ [Y <—y] Z =1 andthat (M;,u;) =[Y +y]
Z =1, and, morewer, thatz=1 musthold, for all u; € D(U;) with u|B=wu4|B. It thenfollows that
for every truth assignment’ to C definedby 7'(C;) =1 (C;) for all i € {1,...,m}, thereexists a truth
assignment” to D whichis definedby (M1, u,) = [Y + y] D; =7"(D;) for all s € {1, ...,n}, suchthat
v(B/7(B),C/7'(C), D/7"(D)) is false,wherethetruth assignment to B is definedby 7(B;) = u1(B;)
forallie {1,...,l}. Thisshovsthat3BYC3D—v is valid. Thatis, ® =VB3CVDy is notvalid. O
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