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Abstract. We present an approach where probabilistic logic is combined with default reasoning
from conditional knowledge bases in Kraus et al.’s System P , Pearl’s System Z, and Lehmann’s lex-
icographic entailment. The resulting probabilistic generalizations of default reasoning from condi-
tional knowledge bases allow for handling in a uniform framework strict logical knowledge, default
logical knowledge, as well as purely probabilistic knowledge. Interestingly, probabilistic entailment
in System P coincides with probabilistic entailment under g-coherence from imprecise probability
assessments. We then analyze the semantic and nonmonotonic properties of the new formalisms. It
turns out that they all are proper generalizations of their classical counterparts and have similar prop-
erties as them. In particular, they all satisfy the rationality postulates of System P and some Direct
Inference property. Moreover, probabilistic entailment in System Z and probabilistic lexicographic
entailment both satisfy the property of Rational Monotonicity and some Irrelevance property, while
probabilistic entailment in System P does not. We also analyze the relationships between the new
formalisms. Here, probabilistic entailment in System P is weaker than probabilistic entailment in
System Z, which in turn is weaker than probabilistic lexicographic entailment. Moreover, they all
are weaker than entailment in probabilistic logic where default sentences are interpreted as strict sen-
tences. Under natural conditions, probabilistic entailment in System Z and lexicographic entailment
even coincide with such entailment in probabilistic logic, while probabilistic entailment in System P
does not. Finally, we also present algorithms for reasoning under probabilistic entailment in System
Z and probabilistic lexicographic entailment, and we give a precise picture of its complexity.
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1 Introduction

During the recent decades, reasoning about probabilities has started to play an important role in AI. In par-
ticular, reasoning about interval restrictions for conditional probabilities, also called conditional constraints
[48], has been a subject of extensive research efforts. Roughly, a conditional constraint is of the form
(ψ|φ)[l, u], where ψ and φ are events, and [l, u] is a subinterval of the unit interval [0, 1]. It encodes that the
conditional probability of ψ given φ lies in [l, u].

An important approach for handling conditional constraints is probabilistic logic, which has its origin in
philosophy and logic, and whose roots can be traced back to already Boole in 1854 [12]. There is a wide
spectrum of formal languages that have been explored in probabilistic logic, ranging from constraints for
unconditional and conditional events to rich languages that specify linear inequalities over events (see espe-
cially the work by Nilsson [53, 54], Fagin et al. [19], Dubois and Prade et al. [13, 17, 2, 16], Frisch and Had-
dawy [21], and the author [47, 48, 50]; see also the survey on sentential probability logic by Hailperin [35]).
The main decision and optimization problems in probabilistic logic are deciding satisfiability, deciding log-
ical consequence, and computing tight logically entailed intervals.

Example 1.1 (Eagles) A simple collection of conditional constraints KB may encode the strict logical
knowledge “all eagles are birds” and “all birds have feathers” as well as the purely probabilistic knowledge
“birds fly with a probability of at least 0.95” (cf. Example 2.1). This collection of conditional constraints KB

is satisfiable, and some logical consequences in probabilistic logic from KB are “all birds have feathers”,
“birds fly with a probability of at least 0.95”, “all eagles have feathers”, and “eagles fly with a probability
between 0 and 1”; in fact, these are the tightest intervals that follow from KB (cf. Example 2.2). That is, we
especially cannot conclude anything from KB about the ability to fly of eagles. 2

A closely related research area is default reasoning from conditional knowledge bases, which consist of
a collection of strict statements in classical logic and a collection of defeasible rules, also called defaults.
The former must always hold, while the latter are rules of the kind ψ←φ, which read as “generally, if φ
then ψ.” Such rules may have exceptions, which can be handled in different ways.

The literature contains several different proposals for default reasoning from conditional knowledge
bases and extensive work on its desired properties. The core of these properties are the rationality postulates
of System P by Kraus, Lehmann, and Magidor [39], which constitute a sound and complete axiom sys-
tem for several classical model-theoretic entailment relations under uncertainty measures on worlds. They
characterize classical model-theoretic entailment under preferential structures [62, 39], infinitesimal proba-
bilities [1, 56], possibility measures [14], and world rankings [63, 33]. As shown by Friedman and Halpern
[20], many of these uncertainty measures on worlds are expressible as plausibility measures. The postulates
of System P also characterize an entailment relation based on conditional objects [15]. A survey of the
above relationships is given in [6, 22].

Mainly to solve problems with irrelevant information, the notion of rational closure as a more adventur-
ous notion of entailment was introduced by Lehmann [44, 46]. It is equivalent to entailment in System Z
by Pearl [57], to the least specific possibility entailment by Benferhat et al. [5], and to a conditional (modal)
logic-based entailment by Lamarre [43]. Finally, mainly to solve problems with property inheritance from
classes to exceptional subclasses, the maximum entropy approach to default entailment was proposed by
Goldszmidt et al. [31]; lexicographic entailment was introduced by Lehmann [45] and Benferhat et al. [4];
conditional entailment was proposed by Geffner [24, 26]; and an infinitesimal belief function approach
was suggested by Benferhat et al. [7]. The following example due to Goldszmidt and Pearl [34] illustrates
default reasoning from conditional knowledge bases.
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Example 1.2 (Penguins) A conditional knowledge base KB may encode the strict logical knowledge “all
penguins are birds” and the default logical knowledge “generally, birds fly”, “generally, penguins do not
fly”, and “generally, birds have wings”. Some desirable conclusions from KB [34] are “generally, birds
fly” and “generally, birds have wings” (which both belong to KB ), “generally, penguins have wings” (since
the set of all penguins is a subclass of the set of all birds, and thus penguins should inherit all properties of
birds), “generally, penguins do not fly” (since properties of more specific classes should override inherited
properties of less specific classes), and “generally, red birds fly” (since “red” is not mentioned at all in KB

and thus should be considered irrelevant to the ability to fly of birds). 2

There are several works in the literature on probabilistic foundations for default reasoning from con-
ditional knowledge bases [1, 56, 31, 11], on combinations of Reiter’s default logic [61] with statistical
inference [42, 65], and on a rich first-order formalism for deriving degrees of belief from statistical knowl-
edge including default statements [3]. However, there has been no work so far that extends probabilistic
logic by the capability of handling defaults as in conditional knowledge bases.

In this paper, we try to fill this gap. We present extensions of probabilistic logic by defaults as in
conditional knowledge bases under Kraus et al.’s System P [39], Pearl’s System Z [57], and Lehmann’s
lexicographic entailment [45]. The new formalisms allow for expressing in a uniform framework strict
logical knowledge and purely probabilistic knowledge from probabilistic logic, as well as default logical
knowledge from default reasoning from conditional knowledge bases.

Example 1.3 (Ostriches) Consider the strict logical knowledge “all ostriches are birds”, the default logical
knowledge “generally, birds have legs” and “generally, birds fly”, and the purely probabilistic knowledge
“ostriches fly with a probability of at most 0.05”. Obviously, some desired conclusions are “generally, birds
have legs”, “generally, birds fly”, and “ostriches fly with a probability of at most 0.05”, since these sentences
are explicitly stated above. Two other desired conclusions are “generally, ostriches have legs” (since the
property of having legs of birds should be inherited down to the subclass of all ostriches) and “generally,
red birds fly” (since the property of being red is not mentioned above, and thus it should be irrelevant to
the ability to fly). But neither probabilistic logic nor default reasoning from conditional knowledge bases
can produce all these desired conclusions, since the former cannot handle default logical knowledge, while
the latter cannot deal with purely probabilistic knowledge. However, in the new formalisms of this paper,
we can deal with all the above sentences. In particular, the probabilistic generalization of lexicographic
entailment also produces all the above desired conclusions. 2

A companion paper [51] presents similar probabilistic generalizations of default reasoning from condi-
tional knowledge bases. These formalisms, however, are quite different from the ones in this paper, since
they allow for handling default purely probabilistic knowledge rather than (strict) purely probabilistic knowl-
edge in addition to strict logical knowledge and default logical knowledge. For example, they allow for ex-
pressing sentences of the form “generally, birds fly with a probability of at least 0.95” rather than “birds fly
with a probability of at least 0.95”. Intuitively, the former means that being able to fly with a probability of
at least 0.95 should apply to all birds and all subclasses of birds, as long as this is consistent, while the latter
says that being able to fly with a probability of at least 0.95 should only apply to all birds. This is why the
formalisms in [51], in contrast to the ones here, are generally much stronger than entailment in probabilistic
logic (cf. Section 8.1). Thus, they can be considered as strong nonmonotonic probabilistic logics, while
the formalisms here are weak nonmonotonic probabilistic logics. Interestingly, probabilistic reasoning in
the probabilistic generalization of Kraus et al.’s System P in the present paper coincides with probabilistic
reasoning under g-coherence from imprecise probability assessments in statistics (cf. Section 8.2).
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The main contributions of this paper can be summarized as follows:

• We present combinations of probabilistic reasoning in probabilistic logic with default reasoning from
conditional knowledge bases under Kraus et al.’s System P [39], Pearl’s System Z [57], and Leh-
mann’s lexicographic approach [45]. The resulting probabilistic formalisms, also called weak non-
monotonic probabilistic logics, allow for handling in a uniform framework strict logical knowledge
and purely probabilistic knowledge from probabilistic logic, as well as default logical knowledge from
conditional knowledge bases.

• We explore the nonmonotonic properties of the three weak nonmonotonic probabilistic logics. In par-
ticular, they all three satisfy the rationality postulates of System P and have some Direct Inference
property. Furthermore, probabilistic entailment in System Z and probabilistic lexicographic entail-
ment both satisfy the property of Rational Monotonicity and have some Irrelevance property, while
probabilistic entailment in System P is lacking these two properties.

• We analyze the relationships between the three weak nonmonotonic probabilistic logics. It turns out
that probabilistic entailment in System P is weaker than probabilistic entailment in System Z, which
in turn is weaker than probabilistic lexicographic entailment. Furthermore, we show that all three
formalisms are weaker than entailment in probabilistic logic from knowledge bases in which all the
default sentences are simply interpreted as strict sentences.

• We show that probabilistic entailment in System Z and probabilistic lexicographic entailment coin-
cide with entailment in probabilistic logic, whenever it is consistent to interpret all relevant default
sentences as strict sentences, while probabilistic entailment in System P does not have this prop-
erty. Furthermore, probabilistic entailment in Systems P and Z as well as probabilistic lexicographic
entailment are proper generalizations of their classical counterparts.

• Finally, we present algorithms for computing tight intervals under probabilistic entailment in Sys-
tem Z and probabilistic lexicographic entailment, which are based on reductions to the standard tasks
of deciding model existence and computing tight intervals under entailment in probabilistic logic.
Furthermore, we draw a precise picture of the complexity of deciding logical consequence and of
computing tight intervals under probabilistic entailment in System Z and probabilistic lexicographic
entailment in general as well as restricted cases.

The rest of this paper is organized as follows. Section 2 recalls the main concepts from probabilistic
logic, while Section 3 recalls entailment in Systems P and Z as well as lexicographic entailment from
default reasoning from conditional knowledge bases. In Section 4, we introduce the novel probabilistic
generalizations of entailment in System P , entailment in System Z, and lexicographic entailment. Sec-
tion 5 explores the nonmonotonic properties of these new probabilistic formalisms, their relationships, and
the relationships to their classical counterparts. In Sections 6 and 7, we provide algorithms for probabilis-
tic reasoning under the new probabilistic formalisms, and we also analyze its computational complexity,
respectively. Section 8 provides a comparison to related work. In Section 9, we finally summarize the
main results and give an outlook on future research. In order to not distract from the flow of reading, some
technical details and proofs have been moved to Appendices A–E.

2 Probabilistic Logic

In this section, we recall the main concepts from probabilistic logic (see especially the work by Nilsson
[53, 54], Fagin et al. [19], Dubois and Prade et al. [13, 17, 2, 16], Frisch and Haddawy [21], and the author
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[47, 48, 50]). We define a propositional language of logical constraints and of Boolean combinations of
conditional constraints, which are interpreted in probability distributions over a set of worlds. We also
define probabilistic knowledge bases and the model-theoretic notions of satisfiability and logical entailment
for probabilistic knowledge bases.

2.1 Syntax

We first formally define the syntax of logical constraints and Boolean combinations of conditional con-
straints as well as probabilistic knowledge bases.

We assume a set of basic events Φ = {p1, . . . , pl} with l≥ 1. We use ⊥ and > to denote false and true,
respectively. We define events by induction as follows. Every element of Φ∪{⊥,>} is an event. If φ
and ψ are events, then also ¬φ and (φ ∧ ψ). A conditional event is of the form ψ|φ with events ψ and φ.
A conditional constraint is of the form (ψ|φ)[l, u] with a conditional event ψ|φ and real numbers l, u∈ [0, 1].
We define probabilistic formulas by induction as follows. Every conditional constraint is a probabilistic
formula. If F and G are probabilistic formulas, then also ¬F and (F ∧G). We use (F ∨G) and (F ⇐G)
to abbreviate ¬(¬F ∧¬G) and ¬(¬F ∧G), respectively, where F and G are either two events or two
probabilistic formulas, and we adopt the usual conventions to eliminate parentheses. A logical constraint
is an event of the form ψ⇐φ. A probabilistic knowledge base KB =(L,P ) consists of a finite set of
logical constraints L and a finite set of conditional constraints P such that (i) l≤u for all (ε)[l, u]∈P , and
(ii) ε1 6= ε2 for any two distinct (ε1)[l1, u1], (ε2)[l2, u2]∈P .

Example 2.1 (Eagles cont’d) The strict logical knowledge “all eagles are birds” and “all birds have feath-
ers”, and the purely probabilistic knowledge “birds fly with a probability of at least 0.95” can be expressed
by the probabilistic knowledge base KB = ({bird⇐ eagle, feathers⇐ bird}, {(fly | bird)[0.95, 1]}). 2

2.2 Semantics

We next define the semantics of logical constraints and probabilistic formulas. To this end, we first define
the semantics of events in worlds, which are truth assignments to the basic events. We then define the
semantics of logical constraints and probabilistic formulas in probability distributions over such worlds.
We also define the model-theoretic notions of satisfiability and logical entailment for this language and for
probabilistic knowledge bases. We finally recall the relationship to model-theoretic logical entailment in
ordinary propositional logic.

A world I associates with every basic event in Φ a binary truth value (that is, I is a mapping from Φ to
{true, false}), which is inductively extended to all events as usual (that is, by I(⊥) = false, I(>) = true,
I(¬φ) = true iff I(φ) = false, and I(φ∧ ψ) = true iff I(φ) = I(ψ) = true). We use IΦ to denote the set
of all worlds for Φ. A world I satisfies an event φ, or I is a model of φ, denoted I |=φ, iff I(φ) = true. We
say I satisfies a set of events L, or I is a model of L, denoted I |=L, iff I is a model of all φ∈L. An event φ
(resp., a set of events L) is satisfiable iff a model of φ (resp., L) exists. An event ψ is a logical consequence
of φ (resp., L), denoted φ |=ψ (resp., L |=ψ), iff each model of φ (resp., L) is also a model of ψ. We use
φ 6|=ψ (resp., L 6|=ψ) to denote that φ |=ψ (resp., L |=ψ) does not hold.

A probabilistic interpretation Pr is a probability function on IΦ (that is, a mapping Pr : IΦ → [0, 1]
such that all Pr(I) with I ∈IΦ sum up to 1). The probability of an event φ in the probabilistic interpretation
Pr , denoted Pr(φ), is the sum of all Pr(I) such that I ∈IΦ and I |=φ. For events φ and ψ with Pr(φ)> 0,
we write Pr(ψ|φ) to abbreviate Pr(ψ ∧ φ) /Pr(φ), and we define the conditioning of Pr on φ, denoted
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Prφ, by Prφ(I) =Pr(I) /Pr(φ) for all I ∈IΦ with I |=φ, and by Prφ(I) = 0 for all other I ∈IΦ. The
truth of logical constraints and probabilistic formulas F in Pr , denoted Pr |=F , is defined as follows:

• Pr |= ψ⇐φ iff Pr(ψ ∧φ) = Pr(φ);

• Pr |= (ψ|φ)[l, u] iff Pr(φ) = 0 or Pr(ψ|φ)∈ [l, u];

• Pr |= ¬F iff not Pr |= F ;

• Pr |= (F ∧G) iff Pr |= F and Pr |= G.

Observe here that the probabilistic interpretation Pr satisfies the logical constraint ψ⇐φ iff it satisfies the
conditional constraint (ψ|φ)[1, 1]. A probabilistic interpretation Pr satisfies a logical constraint or proba-
bilistic formula F , or Pr is a model of F , iff Pr |=F . We say that Pr satisfies a set of logical constraints
and probabilistic formulas F , or Pr is a model of F , denoted Pr |=F , iff Pr is a model of all F ∈F . We
say F is satisfiable iff a model of F exists. A logical constraint or probabilistic formula F is a logical
consequence of F , denoted F ||=F , iff every model of F is also a model of F . A probabilistic knowledge
base KB = (L,P ) is satisfiable iff L∪P is satisfiable. The notion of logical entailment for probabilis-
tic knowledge bases KB = (L,P ) is defined as follows. A logical or conditional constraint F is a logical
consequence of KB , denoted KB ||=F , iff L∪P ||=F . A conditional constraint (ψ|φ)[l, u] is a tight log-
ical consequence of KB , denoted KB ||=tight (ψ|φ)[l, u], iff l (resp., u) is the infimum (resp., supremum)
of Pr(ψ|φ) subject to all models Pr of L∪P with Pr(φ)> 0. Note that here we define [l, u] as the empty
interval, denoted [1, 0], when L∪P ||=⊥⇐φ.

The following example illustrates the above notions of satisfiability, logical consequence, and tight
logical consequence. Note that deciding satisfiability and logical consequence can be reduced to deciding
the solvability of a system of linear constraints, while computing the interval of a tight logical consequence
is reducible to solving two linear optimization problems; cf. especially [19, 50, 38].

Example 2.2 (Eagles cont’d) Consider the probabilistic knowledge base KB = (L,P ) from Example 2.1.
Then, it is easy to verify that the probabilistic interpretations Pr 1, Pr2, and Pr3 shown in Table 1 are models
of KB . Hence, KB is satisfiable. Furthermore, some logical consequences of KB are given as follows:

KB ||=(feathers | bird)[1, 1], KB ||=(fly | bird)[0.95, 1] ,

KB ||=(feathers | eagle)[1, 1], KB ||=(fly | eagle)[0, 1] .

Informally, “all birds have feathers”, “birds fly with a probability of at least 0.95”, “all eagles have feathers”,
and “eagles fly with a probability between 0 and 1”. In fact, these are the tightest intervals that are logically
entailed by KB , since Pr 1(feathers | bird) = 1, Pr 1(fly | bird) = 1, Pr 1(feathers | eagle) = 1, and Pr 1(fly |
eagle) = 1, Pr2(fly | bird) = 0.95, and Pr 3(fly | eagle) = 0. Finally, observe that the strict logical property
of having feathers is inherited from birds down to its subclass eagles, whereas the probabilistic property of
being able to fly with a probability of at least 0.95 is not inherited from birds down to eagles. 2

Intuitively, the above notion of logical entailment of (ψ|φ)[l, u] from a probabilistic knowledge base
KB =(L,P ) is based on the idea of performing a conditioning of every probability distribution Pr that
satisfies L∪P on the premise φ. This result is more formally expressed by the following theorem.

Theorem 2.3 Let KB = (L,P ) be a probabilistic knowledge base, and (ψ|φ)[l, u] be a conditional con-
straint. Then, (a) KB ||=(ψ|φ)[l, u] iff Prφ(ψ)∈ [l, u] for all models Pr of L∪P with Pr(φ)>0; and
(b) KB ||=tight (ψ|φ)[l, u] iff l= inf Prφ(ψ) (resp., u=supPrφ(ψ)) subject to all models Pr of L∪P
with Pr(φ)> 0.
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Table 1: Some probabilistic interpretations Pr 1, Pr2, and Pr3.

eagle bird feathers fly Pr 1 Pr2 Pr3

I1 true true true true 1 0.95 0
I2 true true true false 0 0.05 0.05
I3 true true false true 0 0 0
I4 true true false false 0 0 0
I5 true false true true 0 0 0
I6 true false true false 0 0 0
I7 true false false true 0 0 0
I8 true false false false 0 0 0
I9 false true true true 0 0 0.95
I10 false true true false 0 0 0
I11 false true false true 0 0 0
I12 false true false false 0 0 0
I13 false false true true 0 0 0
I14 false false true false 0 0 0
I15 false false false true 0 0 0
I16 false false false false 0 0 0

The following result shows that in probabilistic logic, a logical constraint ψ⇐φ has the same meaning
as the conditional constraint (ψ|φ)[1, 1].

Theorem 2.4 Let KB =(L,P ) be a probabilistic knowledge base, and (ψ|φ)[1, 1] be a conditional con-
straint. Then, (a) KB ||=(ψ|φ)[1, 1] iff KB ||=ψ⇐φ; and (b) (L,P ∪{(ψ|φ)[1, 1]}) has the same set of
models as (L∪{ψ⇐φ}, P ).

The next result says that model-theoretic logical entailment in probabilistic logic generalizes model-
theoretic logical entailment in ordinary propositional logic.

Theorem 2.5 Let KB = (L,P ) be a probabilistic knowledge base with P = ∅, and let ψ⇐φ be a logical
constraint. Then, KB ||=ψ⇐φ iff L |=ψ⇐φ.

3 Default Reasoning from Conditional Knowledge Bases

In this section, we recall the following formalisms for default reasoning from conditional knowledge bases:
Kraus et al.’s entailment in System P [39] (which is equivalent to several other formalisms; cf. Section 1),
Pearl’s entailment in System Z [57, 34] (which is equivalent to Lehmann’s rational closure [44, 46], to
the least specific possibility entailment by Benferhat et al. [5], and to a conditional (modal) logic-based
entailment by Lamarre [43]), and Lehmann’s lexicographic entailment [45] (a special case of Benferhat et
al.’s lexicographic entailment [4]).

These formalisms for default reasoning from conditional knowledge bases all have in common that
they can be defined in terms of world rankings (which are certain mappings from the set of all worlds



INFSYS RR 1843-02-02 7

to {0, 1, . . .} ∪ {∞}), where entailment in System P can be expressed by a set of world rankings, while
entailment in System Z and lexicographic entailment each have an associated unique world ranking.

3.1 Overview

A number of different entailment semantics for conditional knowledge bases have been proposed in the
literature. One of them is entailment in System P . Two more sophisticated ones are Pearl’s entailment in
System Z and Lehmann’s lexicographic entailment, which both show a nicer semantic behavior than entail-
ment in System P . The following example illustrates this aspect. Here, we use p-entailment, z-entailment,
and lex-entailment to denote entailment in System P , entailment in System Z, and lexicographic entailment,
respectively.

Example 3.1 (Penguins cont’d) Consider again the collection of strict and default logical sentences KB

given in Example 1.2. Some default conclusions of KB under z- and lex-entailment compared to p-entail-
ment are shown in Table 2. Differently from p-entailment, both z- and lex-entailment ignore irrelevant
information. Furthermore, lex-entailment shows a correct property inheritance from birds to penguins, while
p-entailment does not show any property inheritance at all, and z-entailment does not inherit the property
of having wings from the class of all birds to the exceptional subclass of all penguins (and thus shows the
problem of inheritance blocking). Finally, the default ¬fly← penguin is entailed by KB under all three
notions of default entailment. 2

Table 2: Some defaults entailed by KB under different semantics.

fly←red∧ bird wings←penguin ¬fly←penguin
p-entailment − − +
z-entailment + − +

lex-entailment + + +

3.2 Preliminaries

We now formally define conditional knowledge bases as well as world and default rankings along with their
admissibility with conditional knowledge bases.

Informally, a conditional knowledge base consists of a set of strict statements in classical logic and a
set of defeasible rules (or defaults) of the form “ψ←φ”, which informally read as “generally, if φ then ψ”.
Such rules may have exceptions, which can be handled in different ways. A conditional rule (or default) is
an expression of the form ψ←φ, where φ and ψ are events. A conditional knowledge base KB =(L,D)
consists of a finite set of logical constraintsL and a finite set of defaultsD. The following example illustrates
conditional knowledge bases.

Example 3.2 (Penguins cont’d) The strict logical knowledge “all penguins are birds” and the default logical
knowledge “generally, birds fly”, “generally, penguins do not fly”, and “generally, birds have wings” is
encoded by the conditional knowledge base

KB = ({bird⇐ penguin}, {fly←bird,¬fly←penguin,wings←bird}). 2
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A world I satisfies a default ψ←φ, or I is a model of ψ←φ, denoted I |= ψ←φ, iff I |= ψ⇐φ. We
say I verifies ψ←φ iff I |= φ ∧ ψ. We say I falsifies ψ←φ iff I |= φ ∧ ¬ψ (that is, I 6|= ψ←φ). We
say I satisfies a set of events and defaults K, or I is a model of K, denoted I |= K, iff I satisfies every
member of K. We say K is satisfiable iff a model of K exists. An event φ (resp., a default d) is a logical
consequence of K, denoted K |=φ (resp., K |= d), iff every model of K is also a model of φ (resp., d). An
event φ (resp., a default d) is a logical consequence of a conditional knowledge base KB = (L,D), denoted
KB |=φ (resp., KB |= d), iff L∪D |=φ (resp., L∪D |= d). A set of defaults D tolerates a default d under
a set of logical constraints L iff D ∪L has a model that verifies d. A set of defaults D is under L in conflict
with a default ψ←φ iff all models of D ∪ L ∪ {φ} satisfy ¬ψ.

A world ranking κ is a mapping κ : IΦ → {0, 1, . . .}∪{∞} such that κ(I) = 0 for at least one world I . It
is extended to all events φ as follows. If φ is satisfiable, then κ(φ) = min {κ(I) | I ∈IΦ, I |=φ}; otherwise,
κ(φ) =∞. A world ranking κ is admissible with a conditional knowledge base KB =(L,D) iff κ(¬φ) =∞
for all φ∈L, and κ(φ)<∞ and κ(φ∧ψ)<κ(φ∧¬ψ) for all defaults ψ←φ∈D.

Example 3.3 (Penguins cont’d) Table 3 shows the world rankings κ1, κ2, and κ3. It is easy to verify
that κ1 and κ2 are admissible with KB . Note that κ1 and κ2 are the unique world rankings associated
with KB in System Z and under lexicographic entailment, respectively (see Sections 3.4 and 3.5). But
κ3 is not admissible with KB , since L contains the logical constraint bird⇐ penguin, but κ3(penguin ∧
¬bird) = min(κ3(I5), κ3(I6), κ3(I7), κ3(I8)) = 4 6=∞. Moreover, D contains the default wings← bird,
but κ3(bird ∧ wings) = 0 = κ3(bird ∧ ¬wings). 2

Table 3: Some world rankings κ1, κ2, and κ3.

penguin bird wings fly κ1 κ2 κ3

I1 true true true true 2 3 2
I2 true true true false 1 1 1
I3 true true false true 2 4 0
I4 true true false false 1 2 2
I5 true false true true ∞ ∞ ∞
I6 true false true false ∞ ∞ 4
I7 true false false true ∞ ∞ ∞
I8 true false false false ∞ ∞ ∞
I9 false true true true 0 0 0
I10 false true true false 1 1 1
I11 false true false true 1 1 1
I12 false true false false 1 2 2
I13 false false true true 0 0 0
I14 false false true false 0 0 0
I15 false false false true 0 0 0
I16 false false false false 0 0 0

A default ranking σ on a conditional knowledge base KB = (L,D) maps each d∈D to a nonnegative
integer. It is admissible with KB iff each D′⊆D that is under L in conflict with some d∈D contains a
default d′ such that σ(d′)<σ(d).
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Example 3.4 (Penguins cont’d) A default ranking σ on KB from Example 3.2 is given by σ(fly←bird) =
σ(wings←bird) = 0 and σ(¬fly←penguin) = 1. It is not difficult to verify that σ is admissible with KB .
Note that σ is in fact the default ranking associated with KB in System Z (see Section 3.4). 2

3.3 Consistency and Entailment in System P

We now describe the notions of consistency and entailment in Kraus et al.’s System P [39], which we call
p-consistency and p-entailment, respectively. We define them in terms of world rankings (see especially
[25, 24] for the equivalence between entailment in System P and entailment under world rankings), and we
then recall some important equivalent characterizations of them.

A conditional knowledge base KB is p-consistent iff there exists a world ranking κ on KB that is
admissible with KB . It is p-inconsistent iff no such κ exists. A p-consistent conditional knowledge base KB

p-entails a default ψ←φ iff either κ(φ) =∞ or κ(φ ∧ ψ)<κ(φ ∧ ¬ψ) for all world rankings κ admissible
with KB .

The following result due to Geffner [24] shows that the notion of p-consistency is equivalent to the
existence of admissible default rankings.

Theorem 3.5 (Geffner [24]) A conditional knowledge base KB is p-consistent iff there exists a default
ranking on KB that is admissible with KB .

The next characterization of p-consistency is due to Goldszmidt and Pearl [32].

Theorem 3.6 (Goldszmidt and Pearl [32]) A conditional knowledge base (L,D) is p-consistent iff an or-
dered partition (D0, . . . , Dk) of D exists such that either (a) or (b) holds:

(a) every Di, 0≤i≤k, is the set of all d∈
⋃k

j=iDj tolerated under L by
⋃k

j=iDj , or

(b) for every i, 0≤i≤k, each d∈Di is tolerated under L by
⋃k

j=iDj .

The following characterization of the notion of p-entailment describes a reduction of p-entailment to
p-consistency. This result is essentially due to Adams [1], who formulated it for L= ∅ and the notions of
ε-consistency and ε-entailment (which are equivalent to p-consistency and p-entailment, respectively).

Theorem 3.7 (Adams [1]) A p-consistent conditional knowledge base KB = (L,D) p-entails a default
ψ ← φ iff (L,D ∪ {¬ψ←φ}) is p-inconsistent.

3.4 Entailment in System Z

We next recall Pearl’s entailment in SystemZ [57, 34], denoted z-entailment. In the sequel, let KB =(L,D)
be a p-consistent conditional knowledge base.

Entailment in System Z is linked to an ordered partition of D, a default ranking z on KB , and a world
ranking κz . The z-partition of KB is the unique ordered partition (D0, . . . , Dk) of D such that each Di is
the set of all d ∈

⋃k
j=iDj tolerated under L by

⋃k
j=iDj . We next define z and κz . For every j ∈{0, . . . ,

k}, each d∈Dj is assigned the value j under z. The world ranking κz on all worlds I is defined by:

κz(I) =















∞ if I 6|= L

0 if I |= L ∪D

1 + max
d∈D : I 6|=d

z(d) otherwise.
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A preference relation on worlds I and I ′ is then defined as follows. We say that I is z-preferable to I ′

iff κz(I)<κz(I ′). A model I of a set of events F is a z-minimal model of F iff no model of F is z-
preferable to I .

We now use the above preference relation on worlds to define the notion of z-entailment as follows. A
default ψ←φ is a z-consequence of KB = (L,D), denoted KB |∼ zψ←φ, iff ψ is true in all z-minimal
models of L ∪ {φ}.

3.5 Lexicographic Entailment

We finally recall Lehmann’s lexicographic entailment [45], denoted lex-entailment. In the sequel, let KB =
(L,D) be a p-consistent conditional knowledge base.

We use the z-partition (D0, . . . , Dk) of KB to define a lexicographic preference relation on worlds as
follows. A world I is lexicographically preferable (or lex-preferable) to a world I ′ iff some i∈{0, . . . , k}
exists such that |{d∈Di | I |= d}|> |{d∈Di | I

′ |= d}| and |{d∈Dj | I |= d}| = |{d∈Dj | I
′ |= d}| for all

i< j≤ k. A model I of a set of events F is a lexicographically minimal (or lex-minimal) model of F iff no
model of F is lex-preferable to I .

The lexicographic preference relation (which can also be expressed in terms of a unique world ranking) is
then used as follows to define the notion of lex-entailment. A default ψ←φ is a lexicographic consequence
(or lex-consequence) of KB , denoted KB |∼ lexψ←φ, iff ψ is true in all lex-minimal models of L ∪ {φ}.

4 Weak Nonmonotonic Probabilistic Logics

In this section, we present the new probabilistic formalisms, called weak nonmonotonic probabilistic logics,
which allow for dealing with strict logical knowledge, default logical knowledge, and purely probabilistic
knowledge in a uniform framework. To this end, we define a new semantics of probabilistic knowledge
bases, where probabilistic logic is combined with Kraus et al.’s entailment in System P , Pearl’s entailment
in System Z, and Lehmann’s lexicographic entailment.

4.1 Overview

Informally, the new semantics of probabilistic knowledge bases KB = (L,P ) is defined as follows. In
probabilistic logic, conditional constraints of form (ψ|φ)[1, 1] and (ψ|φ)[0, 0] in P have the same mean-
ing as logical constraints ψ⇐φ and ¬ψ⇐φ in L, respectively. Hence, such conditional constraints are
actually superfluous in KB , and we can use them to represent the defaults ψ←φ and ¬ψ←φ, respec-
tively. That is, we now interpret KB as a probabilistic conditional knowledge base KB ? = (L,D, P −
{(ε)[c, c]∈P | c∈{0, 1}}), whereD is the set of all ψ←φ and¬ψ←φ such that (ψ|φ)[1, 1] and (ψ|φ)[0, 0]
are in P , respectively.

Example 4.1 (Ostriches cont’d) The probabilistic knowledge base KB = (L,P ) in Table 4 encodes the
strict logical knowledge “all ostriches are birds”, the default logical knowledge “generally, birds have legs”
and “generally, birds fly”, and the purely probabilistic knowledge “ostriches fly with a probability of at most
0.05”. 2

Hence, it now remains to define an adequate semantics of probabilistic knowledge bases KB = (L,P ),
where (ψ|φ)[1, 1] and (ψ|φ)[0, 0] in P represent the defaults ψ←φ and ¬ψ←φ, respectively. Observe
that we generally cannot simply interpret KB in probabilistic logic, since then (ψ|φ)[1, 1] and (ψ|φ)[0, 0]
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Table 4: Probabilistic knowledge base KB .

KB = (L,P ) Type of knowledge
L= {bird⇐ ostrich} strict logical knowledge
P = {(legs | bird)[1, 1], (fly | bird)[1, 1], default logical knowledge

(fly | ostrich)[0, 0.05]} purely probabilistic knowledge

Table 5: Tight conclusions from KB under logical and s-entailment, where s∈{lex, z,p}.

(ψ|φ) ||=tight ‖∼ lex
tight ‖∼ z

tight ‖∼ p
tight

(legs | bird) [1, 1] [1, 1] [1, 1] [1, 1]
(fly | bird) [1, 1] [1, 1] [1, 1] [1, 1]

(legs | ostrich) [1, 0] [1, 1] [0, 1] [0, 1]
(fly | ostrich) [1, 0] [0, 0.05] [0, 0.05] [0, 0.05]

(fly | red∧ bird) [1, 1] [1, 1] [1, 1] [0, 1]

in P have the meaning of the strict sentences ψ⇐φ and ¬ψ⇐φ in L, and not of the defaults ψ←φ and
¬ψ←φ, respectively. The following example illustrates this aspect.

Example 4.2 (Ostriches cont’d) The probabilistic knowledge base KB =(L,P ) in Table 4 has the proba-
bilistic interpretation Pr 1 in Table 6 as a model. This shows that KB is satisfiable. Some logical conse-
quences of KB are given as follows:

KB ||=(legs | bird)[1, 1], KB ||=(fly | bird)[1, 1] .

Since Pr1(legs | bird) =Pr1(fly | bird) = 1, these conditional constraints are in fact tight logical conse-
quences of KB . They are also the desired conclusions from KB (cf. Example 1.3). Some other tight
logical consequences of KB are as follows:

KB ||=tight (legs | ostrich)[1, 0], KB ||=tight (fly | ostrich)[1, 0] .

Here, the empty interval “[1, 0]” is due to the fact that in probabilistic logic the ability to fly of birds is
interpreted as strict logical knowledge, and inherited from birds to the subclass of ostriches. There, it is
incompatible with the purely probabilistic knowledge that ostriches are able to fly with a probability of at
most 0.05. Thus, our knowledge about ostriches is locally inconsistent in the sense that there exists no
model Pr of L∪P with Pr(ostrich)> 0. This is why we obtain (legs | ostrich)[1, 0] and (fly | ostrich)[1, 0]
rather than the desired tight conclusions (legs | ostrich)[1, 1] and (fly | ostrich)[0, 0.05] (cf. Example 1.3),
respectively. Finally, another tight logical consequence of KB is given by KB ||=tight (fly | red ∧ bird)[1, 1],
which is also a desired tight conclusion from KB (cf. Example 1.3). Observe that for this last conclusion,
probabilistic interpretations Pr are defined over the set of all truth assignments I to the basic events ostrich,
bird, legs, fly, and red. 2

In the following, we define the new semantics of KB = (L,P ), where (ψ|φ)[1, 1] and (ψ|φ)[0, 0] in P
represent the defaults ψ←φ and ¬ψ←φ, respectively, by combining probabilistic logic with Kraus et al.’s
entailment in System P , Pearl’s entailment in System Z, and Lehmann’s lexicographic entailment.
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Table 6: Some probabilistic interpretations Pr 1, . . . ,Pr8.

ostrich bird legs fly Pr 1 Pr2 Pr3 Pr4 Pr5 Pr6 Pr7 Pr8

I1 true true true true 0 0 0 1 0 0.5 0 0
I2 true true true false 0 1 0 0 0 0.5 0 0.5
I3 true true false true 0 0 0.05 0 1 0 0.5 0
I4 true true false false 0 0 0.95 0 0 0 0.5 0
I5 true false true true 0 0 0 0 0 0 0 0
I6 true false true false 0 0 0 0 0 0 0 0.5
I7 true false false true 0 0 0 0 0 0 0 0
I8 true false false false 0 0 0 0 0 0 0 0
I9 false true true true 1 0 0 0 0 0 0 0
I10 false true true false 0 0 0 0 0 0 0 0
I11 false true false true 0 0 0 0 0 0 0 0
I12 false true false false 0 0 0 0 0 0 0 0
I13 false false true true 0 0 0 0 0 0 0 0
I14 false false true false 0 0 0 0 0 0 0 0
I15 false false false true 0 0 0 0 0 0 0 0
I16 false false false false 0 0 0 0 0 0 0 0

Table 7: Values of Pr 1, . . . ,Pr8 under some probability rankings κ1, κ2, and κ3.

(legs | bird)[1, 1] (fly | bird)[1, 1] (fly | ostrich)[0, 0.05] κ1 κ2 κ3

Pr1 true true true 0 0 0
Pr2 true false true 1 1 1
Pr3 false false true 1 2 1
Pr4 true true false 2 3 0
Pr5 false true false 2 4 2
Pr6 true false false 2 4 2
Pr7 false false false 2 5 2
Pr8 true false true ∞ ∞ 1

4.2 Preliminaries

We now define some probabilistic generalizations of concepts from default reasoning from Section 3.2.
In particular, we define probability and conditional constraint rankings as well as their admissibility with
probabilistic knowledge bases.

A probabilistic interpretation Pr verifies a conditional constraint (ψ|φ)[l, u] iff Pr(φ)> 0 and Pr |=
(ψ|φ)[l, u]. We say that Pr falsifies (ψ|φ)[l, u] iff Pr(φ)> 0 and Pr 6|=(ψ|φ)[l, u]. A set of conditional
constraints P tolerates a conditional constraint C under a set of logical constraints L iff L ∪ P has a model
that verifies C. We say P is under L in conflict with C iff no model of L ∪ P verifies C.

In the sequel, we use α> 0 to abbreviate the probabilistic formula ¬(α|>)[0, 0]. Informally, a proba-
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bilistic interpretation Pr satisfies α> 0 iff Pr(α)> 0. A probability ranking κ is a function that associates
with every probabilistic interpretation Pr on IΦ a value from {0, 1, . . .} ∪ {∞} such that κ(Pr) = 0 for
at least one Pr . It is extended to all logical constraints and probabilistic formulas F as follows. If F is
satisfiable, then κ(F ) = min {κ(Pr) |Pr |=F}; otherwise, κ(F ) =∞. A probability ranking κ is admissi-
ble with a probabilistic knowledge base KB = (L,P ) iff κ(¬(ψ|φ)[1, 1]) =∞ for all ψ⇐φ∈L, as well as
κ(φ> 0)<∞ and κ(φ> 0 ∧ (ψ|φ)[l, u])<κ(φ> 0∧¬(ψ|φ)[l, u]) for all (ψ|φ)[l, u]∈P . Informally, the
latter says that for every (ψ|φ)[l, u]∈P , it holds that (i) Pr(φ)> 0 and κ(Pr)<∞ for some probabilistic
interpretation Pr , and (ii) the minimal κ(Pr) of all Pr verifying (ψ|φ)[l, u] is less than the minimal κ(Pr)
of all Pr falsifying (ψ|φ)[l, u].

Example 4.3 (Ostriches cont’d) Table 6 shows some probabilistic interpretations Pr 1, . . . ,Pr8, and Ta-
ble 7 gives their values under some probability rankings κ1, κ2, and κ3. Observe that κ3 is not admissible
with KB = (L,P ) in Table 4, since bird⇐ ostrich is in L, but κ3(¬(bird | ostrich)[1, 1]) ≤ κ3(Pr8) = 1 <
∞. Moreover, (fly | ostrich)[0, 0.05] is in P , but κ3(ostrich> 0∧¬(fly | ostrich)[0, 0.05]) ≤ κ3(Pr4) = 0 ≤
κ3(ostrich> 0∧ (fly | ostrich)[0, 0.05]). Note that on Pr 1, . . . ,Pr8, the rankings κ1 and κ2 coincide with
the unique rankings associated with KB in probabilistic z- and lex-entailment (cf. Sections 4.4 and 4.5),
respectively. 2

A conditional constraint ranking σ on a probabilistic knowledge base KB = (L,P ) maps each C ∈P
to a nonnegative integer. If P 6= ∅, then σ is admissible with KB iff every P ′⊆P that is under L in conflict
with some C ∈P contains some C ′ with σ(C ′)<σ(C); if P = ∅, then σ is admissible with KB iff L is
satisfiable.

Example 4.4 (Ostriches cont’d) A conditional constraint ranking σ for the probabilistic knowledge base
KB in Table 4 is given by σ((legs | bird)[1, 1]) =σ((fly | bird)[1, 1]) = 0 and σ((fly | ostrich)[0, 0.05]) = 1.
It is not difficult to see that σ is admissible with KB . In fact, σ is the unique conditional constraint ranking
that is associated with KB in probabilistic z-entailment (cf. Sections 4.4). 2

4.3 Probabilistic Consistency and Entailment in System P

We now define a semantics of probabilistic knowledge bases, where probabilistic logic is combined with
System P [39]. More precisely, we generalize the notions of consistency and entailment in System P that
are based on world rankings to probabilistic knowledge bases. We call these generalizations probabilistic
p-consistency and probabilistic p-entailment (or simply p-consistency and p-entailment), respectively. In-
terestingly, these probabilistic notions of consistency and entailment coincide with the probabilistic notions
of g-coherence and g-coherent entailment for imprecise probability assessments (cf. Section 8.2). In the
following, we first define the probabilistic generalizations of consistency and entailment in System P , and
we then give some equivalent characterizations of them.

In the sequel, let KB = (L,P ) be a probabilistic knowledge base. We say KB is p-consistent iff there
exists a probability ranking κ that is admissible with KB . We then define the notion of p-entailment for
p-consistent KB in terms of admissible probability rankings as follows. A conditional constraint (ψ|φ)[l, u]
is a p-consequence of KB , denoted KB ‖∼ p (ψ|φ)[l, u], iff κ(φ> 0) =∞ or κ(φ> 0∧(ψ|φ)[l, u])<κ(φ >
0∧¬(ψ|φ)[l, u]) for every probability ranking κ admissible with KB . We say (ψ|φ)[l, u] is a tight p-conse-
quence of KB , denoted KB ‖∼ p

tight (ψ|φ)[l, u], iff l= sup l′ (resp., u= inf u′) subject to KB ‖∼ p(ψ|φ)[l′, u′].
The following result is a probabilistic generalization of Theorem 3.5. It says that the notion of p-

consistency of a probabilistic knowledge base is equivalent to the existence of an admissible conditional
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constraint ranking.

Theorem 4.5 A probabilistic knowledge base KB = (L,P ) is p-consistent iff there exists a conditional
constraint ranking on KB that is admissible with KB .

Based on this result, we also obtain a probabilistic generalization of Theorem 3.6, which says that the
p-consistency of a probabilistic knowledge base KB = (L,P ) is equivalent to the existence of an ordered
partition of P with certain properties.

Theorem 4.6 A probabilistic knowledge base KB =(L,P ) is p-consistent iff there exists an ordered parti-
tion (P0, . . . , Pk) of P such that either (a) or (b) holds:

(a) Every Pi, 0≤i≤k, is the set of all F∈
⋃k

j=i Pj tolerated under L by
⋃k

j=i Pj .

(b) For every i, 0≤i≤k, each F∈Pi is tolerated under L by
⋃k

j=i Pj .

Example 4.7 (Ostriches cont’d) The probabilistic knowledge base KB = (L,P ) in Table 4 is p-consistent,
since condition (a) (and also (b)) of Theorem 4.6 hold for the following ordered partition (P0, P1) of P :

(P0, P1) = ({(legs | bird)[1, 1], (fly | bird)[1, 1]}, {(fly | ostrich)[0, 0.05]}) .

To see that (P0, P1) satisfies (b), observe that Pr 1 in Table 6 satisfies L∪P and verifies (legs | bird)[1, 1]
and (fly | bird)[1, 1], while Pr 2 satisfies L∪P1 and verifies (fly | ostrich)[0, 0.05]. To see that also (a) holds,
observe that no Pr satisfies L∪P and also verifies (fly | ostrich)[0, 0.05] (cf. Example 4.2). 2

The following two theorems are a probabilistic generalization of Theorem 3.7. They say that the notion
of p-entailment for probabilistic knowledge bases can be expressed in terms of the notion of p-consistency.
The first theorem is on the notion of p-consequence, while the second one is on tight p-consequence.

Theorem 4.8 Let KB = (L,P ) be a p-consistent probabilistic knowledge base, and let (β|α)[l, u] be a
conditional constraint. Then, KB ‖∼ p(β|α)[l, u] iff (L,P ∪ {(β|α)[p, p]}) is not p-consistent for all
p∈ [0, l)∪ (u, 1].

Theorem 4.9 Let KB = (L,P ) be a p-consistent probabilistic knowledge base, and let (β|α)[l, u] be a
conditional constraint. Then, KB ‖∼ p

tight (β|α)[l, u] iff

(i) (L,P ∪{(β|α)[p, p]}) is not p-consistent for all p∈ [0, l)∪ (u, 1], and

(ii) (L,P ∪{(β|α)[p, p]}) is p-consistent for all p∈ [l, u].

The following example illustrates the probabilistic notion of p-entailment. In particular, it shows that
p-entailment does not realize an inheritance of default logical knowledge along subclass relationships. See
Section 6 for algorithms for deciding p-consistency and computing tight p-consequences.

Example 4.10 (Ostriches cont’d) Consider again KB given in Table 4. Some tight p-consequences of
KB are shown in Table 5. More precisely, (legs | bird)[1, 1], (fly | bird)[1, 1], and (fly | ostrich)[0, 0.05]
are tight p-consequences of KB , as desired. Furthermore, (legs | ostrich)[0, 1] and (legs | red∧ bird)[0, 1]
are also tight p-consequences of KB . However, they differ from the desired ones (legs | ostrich)[1, 1]
and (legs | red∧ bird)[1, 1], respectively. Here, we observe that p-entailment does not inherit default logical
knowledge along subclass relationships. 2
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4.4 Probabilistic Entailment in System Z

We next extend Pearl’s System Z [57, 34] to p-consistent probabilistic knowledge bases KB = (L,P ).
The new notion of entailment in System Z, called probabilistic z-entailment (or simply z-entailment), is
associated with an ordered partition of P , a conditional constraint ranking z on KB , and a probability
ranking κz .

The z-partition of KB is the unique ordered partition (P0, . . . , Pk) of P such that each Pi, 0≤i≤k, is
the set of all C ∈

⋃k
j=i Pj tolerated under L by

⋃k
j=i Pj .

Example 4.11 (Ostriches cont’d) The z-partition of KB in Table 4 is given by the ordered partition (P0, P1)
described in Example 4.7. 2

The conditional constraint ranking z and the probability ranking κz are defined as follows. For every
j ∈{0, . . . , k}, each C ∈Pj is assigned the value j under z. The probability ranking κz on all probabilistic
interpretations Pr is then defined by:

κz(Pr) =















∞ if Pr 6|= L;
0 if Pr |= L ∪ P ;
1 + max

C∈P : Pr 6|=C
z(C) otherwise.

The following lemma shows that z is a conditional constraint ranking on KB that is admissible with KB ,
and κz is a probability ranking that is admissible with KB .

Lemma 4.12 Let KB = (L,P ) be a p-consistent probabilistic knowledge base. Then, (a) z and (b) κz are
both admissible with KB .

We define a preference relation on probabilistic interpretations as follows. For probabilistic interpreta-
tions Pr and Pr ′, we say Pr is z-preferable to Pr ′ iff κz(Pr) < κz(Pr ′). A model Pr of a set of logical
constraints and probabilistic formulas F is a z-minimal model of F iff no model of F is z-preferable to Pr .

We are now ready to define the notion of z-entailment. A conditional constraint (ψ|φ)[l, u] is a z-con-
sequence of KB , denoted KB ‖∼ z(ψ|φ)[l, u], iff every z-minimal model ofL∪{φ> 0} satisfies (ψ|φ)[l, u].
We say (ψ|φ)[l, u] is a tight z-consequence of KB , denoted KB ‖∼ z

tight (ψ|φ)[l, u], iff l (resp., u) is the
infimum (resp., supremum) of Pr(ψ|φ) subject to all z-minimal models Pr of L∪{φ> 0}.

The following example illustrates the probabilistic notion of z-entailment. In particular, it shows that z-
entailment differs from p-entailment in the sense that z-entailment realizes an inheritance of default logical
properties from classes to non-exceptional subclasses. But z-entailment does not inherit default logical
properties from classes to subclasses that are exceptional relative to some other property (and thus, like its
classical counterpart, has the problem of inheritance blocking). Algorithms for computing tight intervals
under z-entailment are given in Section 6.

Example 4.13 (Ostriches cont’d) Some tight conclusions under z-entailment from the probabilistic knowl-
edge base KB in Table 4 are shown in Table 5. More precisely, we obtain the desired tight conclusions
(legs | bird)[1, 1], (fly | bird)[1, 1], (fly | ostrich)[0, 0.05], and (legs | red∧ bird)[1, 1]. However, we also ob-
tain the tight conclusion (legs | ostrich)[0, 1] instead of the desired one (legs | ostrich)[1, 1]. Here, the inter-
val “[0, 1]” is due to the fact that the default logical property of having legs is not inherited from birds to its
exceptional subclass ostriches. 2
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The following theorem characterizes the notion of z-consequence in terms of the probability ranking κz

(and thus relates z-entailment to p-entailment).

Theorem 4.14 Let KB =(L,P ) be a p-consistent probabilistic knowledge base, and let (ψ|φ)[l, u] be a
conditional constraint. Then, KB ‖∼ z(ψ|φ)[l, u] iff κz(φ > 0) =∞ or κz(φ> 0∧(ψ|φ)[l, u])<κz(φ> 0∧
¬(ψ|φ)[l, u]).

4.5 Probabilistic Lexicographic Entailment

We finally define a generalization of Lehmann’s lexicographic entailment [45] to p-consistent probabilis-
tic knowledge bases KB = (L,P ), which we call probabilistic lexicographic entailment (or simply lex-
entailment). Note that, even though we do not use probability rankings here, the new notion of lex-
entailment can be easily expressed through a unique single probability ranking.

We use the z-partition (P0, . . . , Pk) of KB to define a lexicographic preference relation on probabilistic
interpretations as follows. For probabilistic interpretations Pr and Pr ′, we say Pr is lexicographically
preferable (or lex-preferable) to Pr ′ iff some i∈{0, . . . , k} exists such that |{C∈Pi |Pr |=C}|> |{C∈Pi |
Pr ′ |=C}| and |{C∈Pj |Pr |=C}|= |{C∈Pj |Pr ′ |=C}| for all i<j≤k. A model Pr of a set of logical
constraints and probabilistic formulas F is a lexicographically minimal (or lex-minimal) model of F iff no
model of F is lex-preferable to Pr .

We are now ready to define the notion of lex-entailment as follows. A conditional constraint (ψ|φ)[l, u]
is a lex-consequence of KB , denoted KB ‖∼ lex (ψ|φ)[l, u], iff each lex-minimal model of L∪{φ> 0}
satisfies (ψ|φ)[l,u]. We say (ψ|φ)[l, u] is a tight lex-consequence of KB , denoted KB ‖∼ lex

tight (ψ|φ)[l, u],
iff l= inf Pr(ψ|φ) (resp., u= supPr(ψ|φ)) subject to all lex-minimal models Pr of L∪{φ> 0}.

In the following example, lex-entailment realizes a correct inheritance of default logical properties,
without showing the problem of inheritance blocking. See Section 6 for algorithms for computing tight
intervals under lex-entailment.

Example 4.15 (Ostriches cont’d) Consider again the probabilistic knowledge base KB given in Table 4.
Some tight lex-consequences are shown in Table 5. Observe that we obtain all the desired tight conclusions
(legs | bird)[1, 1], (fly | bird)[1, 1], (legs | ostrich)[1, 1], (fly | ostrich)[0, 0.05], and (legs | red∧ bird)[1, 1]. 2

5 Semantic Properties

In this section, we explore the semantic properties of the new notions of p-, z-, and lex-entailment, and
give a comparison to logical entailment in probabilistic logic. We first describe their nonmonotonicity and
nonmonotonic properties. We then explore the relationships between the formalisms and to their classical
counterparts.

5.1 Nonmonotonicity

The notion of logical entailment in probabilistic logic has the following property of inheritance of logical
knowledge (L-INH) along subclass relationships:

L-INH. If KB ‖∼ (ψ|φ)[c, c] and φ⇐φ? is valid, then KB ‖∼ (ψ|φ?)[c, c],
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for all events ψ, φ, and φ?, all probabilistic knowledge bases KB , and all c∈{0, 1}. The notions of p-, z-,
and lex-entailment are nonmonotonic in the sense that they all do not satisfy L-INH. Here, p-entailment
completely fails L-INH, while z- and lex-entailment realize some weaker form of L-INH.

Notice that logical, p-, z-, and lex-entailment all do not have the property of inheritance of purely
probabilistic knowledge (P-INH) along subclass relationships:

P-INH. If KB ‖∼ (ψ|φ)[l, u] and φ⇐φ? is valid, then KB ‖∼ (ψ|φ?)[l, u],

for all events ψ, φ, and φ?, all probabilistic knowledge bases KB , and all [l, u] ⊆ [0, 1] different from
[0, 0], [1, 1], and [1, 0]. See [51] for entailment semantics that satisfy P-INH and restricted forms of P-INH.
For example, under such entailment semantics, we can draw the conclusion (fly | eagle)[0.95, 1] from the
probabilistic knowledge base KB =({bird⇐ eagle}, {(fly | bird)[0.95, 1]}).

5.2 Nonmonotonic Properties

We now explore the nonmonotonic behavior (especially related to the above property L-INH) of the proba-
bilistic formalisms of this paper. We consider the KLM postulates [39], the property Rational Monotonicity
(RM) [39], and the properties Irrelevance (Irr) and Direct Inference (DI) (adapted from [7] and [3], respec-
tively). An overview of the results on nonmonotonic properties is given in Table 8.

Table 8: Nonmonotonic properties of probabilistic formalisms.

Property ||= ‖∼ lex ‖∼ z ‖∼ p

KLM postulates Yes Yes Yes Yes
Rational Monotonicity Yes Yes Yes No
Irrelevance Yes Yes Yes No
Direct Inference Yes Yes Yes Yes

The rationality postulates of System P , namely, Right Weakening (RW), Reflexivity (Ref), Left Logical
Equivalence (LLE), Cut, Cautious Monotonicity (CM), and Or proposed by Kraus, Lehmann, and Magidor
[39], also called KLM postulates, are commonly regarded as being particularly desirable for any reasonable
notion of nonmonotonic entailment. The following result shows that the notions of logical, p-, z-, and
lex-entailment all satisfy (probabilistic versions of) these postulates.

Theorem 5.1 ||=, ‖∼ p, ‖∼ z , and ‖∼ lex satisfy the following properties for all probabilistic knowledge
bases KB = (L,P ), all events ε, ε′, φ, and ψ, and all real numbers l, l′, u, u′ ∈ [0, 1]:

RW. If (φ|>)[l, u]⇒ (ψ|>)[l′, u′] is logically valid and KB ‖∼ (φ|ε)[l, u], then KB ‖∼ (ψ|ε)[l′, u′].

Ref. KB ‖∼ (ε|ε)[1, 1].

LLE. If ε⇔ ε′ is logically valid, then KB ‖∼ (φ|ε)[l, u] iff KB ‖∼ (φ|ε′)[l, u].

Cut. If KB ‖∼ (ε|ε′)[1, 1] and KB ‖∼ (φ|ε∧ ε′)[l, u], then KB ‖∼ (φ|ε′)[l, u].

CM. If KB ‖∼ (ε|ε′)[1, 1] and KB ‖∼ (φ|ε′)[l, u], then KB ‖∼ (φ|ε∧ ε′)[l, u].

Or. If KB ‖∼ (φ|ε)[1, 1] and KB ‖∼ (φ|ε′)[1, 1], then KB ‖∼ (φ|ε∨ ε′)[1, 1].
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Another desirable property is Rational Monotonicity (RM) [39], which describes a restricted form of
monotony, and allows to ignore certain kinds of irrelevant knowledge. The next theorem shows that logical,
z-, and lex-entailment all satisfy RM. Note that here KB 6‖∼C denotes that KB ‖∼C does not hold.

Theorem 5.2 ||=, ‖∼ z , and ‖∼ lex satisfy the following property for all probabilistic knowledge bases
KB = (L,P ) and all events ε, ε′, and ψ:

RM. If KB ‖∼ (ψ|ε)[1, 1] and KB 6‖∼ (¬ε′|ε)[1, 1], then KB ‖∼ (ψ|ε∧ ε′)[1, 1].

The notion of p-entailment, however, generally does not satisfy the property RM, as the following ex-
ample shows.

Example 5.3 Consider the following probabilistic knowledge base KB = (L,P ):
(L,P ) = ({bird⇐ eagle}, {(fly | bird)[1, 1]}) .

Here, (fly | bird)[1, 1] is a logical (resp., p-, z-, and lex-) consequence of KB , and (¬eagle | bird)[1, 1] is
not a logical (resp., p-, z-, and lex-) consequence of KB . Observe now that (fly | bird∧ eagle)[1, 1] is
a logical (resp., z- and lex-) consequence of KB , but (fly | bird∧ eagle)[1, 1] is not a p-consequence of
KB . Note that (fly | bird∧ eagle)[1, 1] is a tight logical (resp., z- and lex-) consequence of KB , while
(fly | bird∧ eagle)[0, 1] is a tight p-consequence of KB . 2

We next consider the property Irrelevance (Irr) adapted from [7]. Informally, Irr says that ε′ is irrelevant
to a conclusion “P ‖∼ (ψ|ε)[1, 1]” when they are defined over disjoint sets of basic events. The following
result shows that logical, z-, and lex-entailment all satisfy the property Irr.

Theorem 5.4 ||=, ‖∼ z , and ‖∼ lex satisfy the following property for all probabilistic knowledge bases
KB = (L,P ) and all events ε, ε′, and ψ:

Irr. If KB ‖∼ (ψ|ε)[1, 1], and no basic event of KB and (ψ|ε)[1, 1] occurs in ε′, then KB ‖∼ (ψ|ε∧ε′)[1, 1].

The notion of p-entailment, however, does not satisfy Irr. This is already clear from the tight p-
consequence (legs | red∧ bird)[0, 1] of KB in Table 4 (cf. Example 4.10). It is also shown by the following
(less complex) example.

Example 5.5 Consider the following probabilistic knowledge base KB = (L,P ):
(L,P ) = (∅, {(fly | bird)[1, 1]}) .

Here, (fly | bird)[1, 1] is a logical (resp., p-, z-, and lex-) consequence of KB . Observe now that (fly | red ∧
bird)[1, 1] is a logical (resp., z- and lex-) consequence of KB , but (fly | red ∧ bird)[1, 1] is not a p-
consequence of KB . Note that (fly | red ∧ bird)[1, 1] is a tight logical (resp., z- and lex-) consequence
of KB , while (fly | red ∧ bird)[0, 1] is a tight p-consequence of KB . 2

Finally, the properties Direct Inference (DI) and Inclusion (Inc) adapted from [3], express that KB

should entail all its own conditional constraints. The following result shows that logical, p-, z-, and lex-
entailment all satisfy DI and Inc. Obviously, DI implies Inc; conversely, Inc and LLE imply DI.

Theorem 5.6 ||=, ‖∼ p, ‖∼ z , and ‖∼ lex satisfy the following properties for all probabilistic knowledge bases
KB = (L,P ), all events ε, φ, and ψ, and all l, u∈ [0, 1]:

DI. If (ψ|φ)[l, u]∈P and ε⇔φ is logically valid, then KB ‖∼ (ψ|ε)[l, u].

Inc. If (ψ|φ)[l, u]∈P , then KB ‖∼ (ψ|φ)[l, u].
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“R1 is special case of R2”

“R1 is subset of R2”

Figure 1: Relationships between probabilistic and classical formalisms.

5.3 Relationships between Probabilistic Formalisms

In this section, we investigate the relationships between the different probabilistic formalisms. The following
theorem shows that logical entailment is stronger than lex-entailment, and that the latter is stronger than
z-entailment, which in turn is stronger than p-entailment. That is, the logical implications illustrated by the
upper horizontal line of arrows in Fig. 1 hold between the probabilistic formalisms. Note that similar logical
implications hold between their classical counterparts (which are illustrated by the lower horizontal line of
arrows in Fig. 1).

Theorem 5.7 Let KB = (L,P ) be a p-consistent probabilistic knowledge base, and let C = (ψ|φ)[l, u] be
a conditional constraint. Then,

(a) KB ‖∼ pC implies KB ‖∼ zC.

(b) KB ‖∼ zC implies KB ‖∼ lexC.

(c) KB ‖∼ lexC implies KB ||=C.

In general, none of the converse implications holds, as Table 5 immediately shows. However, if L∪P
has a model where the conditioning event φ has a positive probability, then logical, z-, and lex-entailment
of (ψ|φ)[l, u] from KB all coincide. Roughly, in this special case, it is consistent to transform all defaults
β←α in P that are relevant to a conclusion of (ψ|φ)[l, u] from KB into strict logical constraints β⇐α in
L. This important result is expressed by the following theorem.

Theorem 5.8 Let KB = (L,P ) be a p-consistent probabilistic knowledge base, and let C =(ψ|φ)[l, u] be
a conditional constraint such that L∪P has a model Pr with Pr(φ)> 0. Then, KB ||=C iff KB ‖∼ lexC
iff KB ‖∼ zC.

The following example shows that p-entailment, however, generally does not coincide with logical
entailment when L∪P has a model Pr with Pr(φ)> 0.

Example 5.9 Consider the probabilistic knowledge base KB=(L,P )=({bird⇐ eagle}, {(fly | bird)[1, 1]}).
Here, L∪P has a model Pr with Pr(eagle)> 0, and (fly | eagle)[1, 1] is a logical (resp., z- and lex-) conse-
quence of KB , but (fly | eagle)[1, 1] is not a p-consequence of KB . Note that (fly | eagle)[1, 1] is a tight
logical (resp., z- and lex-) consequence of KB , while (fly|eagle)[0,1] is a tight p-consequence of KB . 2
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5.4 Relationships to Classical Formalisms

Finally, we explore the relationships between p-, z-, and lex-entailment and their classical counterparts.
The following result shows that p-, z-, and lex-entailment for p-consistent probabilistic knowledge bases
generalize their classical counterparts for p-consistent conditional knowledge bases. Here, the operator γ
on conditional constraints, sets of conditional constraints, and conditional knowledge bases replaces each
conditional constraint (ψ|φ)[1, 1] by the default ψ←φ. By Theorems 2.4 and 2.5, logical entailment in
probabilistic logic similarly generalizes its classical counterpart. All this is illustrated by the vertical arrows
in Fig. 1.

Theorem 5.10 Let KB = (L, {(ψi|φi)[1, 1] | i∈{1, . . . , n}}) be a p-consistent probabilistic knowledge base,
and let (β|α)[1, 1] be a conditional constraint. Then,

(a) KB ‖∼ p(β|α)[1, 1] iff γ(KB) |∼ pβ←α.

(b) KB ‖∼ z(β|α)[1, 1] iff γ(KB) |∼ zβ←α.

(c) KB ‖∼ lex (β|α)[1, 1] iff γ(KB) |∼ lexβ←α.

6 Algorithms

In this section, we provide algorithms for the main reasoning problems in weak nonmonotonic probabilistic
logics.

6.1 Overview

The main decision and optimization problems of probabilistic reasoning in weak nonmonotonic probabilistic
logics are summarized as follows:

p-CONSISTENCY: Given a probabilistic knowledge base KB , decide whether KB is p-consistent.

S-CONSEQUENCE: Given a p-consistent probabilistic knowledge base KB and a conditional constraint
(β|α)[l, u], decide whether KB ‖∼ s(β|α)[l, u] holds, for some fixed semantics s∈{p, z, lex}.

TIGHT S-CONSEQUENCE: Given a p-consistent probabilistic knowledge base KB and a conditional event
β|α, compute l, u∈ [0, 1] such that KB ‖∼ s(β|α)[l, u], for some fixed semantics s∈{p, z, lex}.

The basic idea behind the algorithms below for solving the above decision and optimization problems is
to perform a reduction to the following standard decision and optimization problems in model-theoretic
probabilistic logic:

POSITIVE PROBABILITY: Given a probabilistic knowledge base KB = (L,P ) and an event α, decide if
L∪P has a model Pr such that Pr(α)> 0.

LOGICAL CONSEQUENCE: Given a probabilistic knowledge base KB and a conditional constraint (β|α)
[l, u], decide whether KB ||=(β|α)[l, u] holds.

TIGHT LOGICAL CONSEQUENCE: Given a probabilistic knowledge base KB and a conditional event β|α,
compute l, u∈ [0, 1] such that KB ||=tight (β|α)[l, u].
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Algorithm p-consistency (essentially Biazzo et al. [9])

Input: probabilistic knowledge base KB =(L,P ).
Output: z-partition of KB , if KB is p-consistent; nil otherwise.

1. if P = ∅ then if L is satisfiable then return () else return nil;
2. R := P ;
3. i := −1;
4. repeat
5. i := i+ 1;
6. D[i] := {(ψ|φ)[l, u]∈R | L∪R∪{φ> 0} is satisfiable};
7. R := R−D[i]
8. until R= ∅ or D[i] = ∅;
9. if R= ∅ then return (D[0], . . . , D[i]) else return nil.

Figure 2: Algorithm p-consistency

Algorithm tight-p-consequence (essentially Biazzo et al. [9])

Input: p-consistent probabilistic knowledge base KB=(L,P ), conditional event β|α.
Output: interval [l, u]⊆ [0, 1] such that KB ‖∼ p

tight (β|α)[l, u].

1. R := P ;
2. repeat
3. ∆ := {(ψ|φ)[l, u]∈R | L∪R∪{⊥⇐α}∪ {φ> 0} is satisfiable};
4. R := R−∆
5. until ∆= ∅;
6. compute l, u∈ [0, 1] such that L∪R ||=tight (β|α)[l, u];
7. return [l, u].

Figure 3: Algorithm tight-p-consequence

The problems POSITIVE PROBABILITY and LOGICAL CONSEQUENCE can be reduced to the problem
of deciding whether a system of linear constraints is solvable, while TIGHT LOGICAL CONSEQUENCE is
reducible to computing the optimal solutions of two linear optimization problems; cf. especially [19, 50, 38].

Since the notions of p-consistency and p-entailment coincide with the notions of g-coherence and g-
coherent entailment (cf. Section 8.2), existing algorithms for deciding g-coherence and computing tight in-
tervals under g-coherent entailment can be used for solving p-CONSISTENCY and TIGHT p-CONSEQUENCE,
respectively. Such algorithms are shown in Figs. 2 and 3, respectively. Here, the one in Fig. 2 also computes
the z-partition of KB , if KB is p-consistent; it is similar to the algorithm for deciding ε-consistency in de-
fault reasoning by Goldszmidt and Pearl [32]. The algorithm in Fig. 3 is based on the result that the notion
of p-entailment from KB coincides with logical entailment from a unique subbase of KB . The decision
problem p-CONSEQUENCE can be solved in a similar way.

In the next subsection, we provide algorithms for solving the optimization problems TIGHT z- and
TIGHT lex-CONSEQUENCE. The decision problems z- and lex-CONSEQUENCE can be solved similarly.
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6.2 Tight z- and lex-Consequence

We now give algorithms for solving TIGHT z- and TIGHT lex-CONSEQUENCE. In the sequel, let KB =
(L,P ) be a p-consistent probabilistic knowledge base, and let (P0, . . . , Pk) be its z-partition. We first give
some preparatory definitions.

For G,H ⊆P , we say G is z-preferable to H iff some i∈{0, . . . , k} exists such that Pi⊆G, Pi 6⊆H ,
and Pj ⊆G and Pj ⊆H for all i< j≤ k. We say G is lex-preferable to H iff some i∈{0, . . . , k} exists
such that |G ∩ Pi| > |H ∩ Pi| and |G ∩ Pj | = |H ∩ Pj | for all i< j≤ k. For D⊆ 2P and s∈{z, lex}, we
say G is s-minimal in D iff G∈D and no H ∈D is s-preferable to G.

The following theorem shows how TIGHT s-CONSEQUENCE, where s∈{z, lex}, can be reduced to
POSITIVE PROBABILITY and TIGHT LOGICAL CONSEQUENCE. The key idea behind this reduction is that
there exists a set Ds

α(KB)⊆ 2P such that KB ‖∼ s(β|α)[l, u] iff L ∪H ||=(β|α)[l, u] for all H ∈Ds
α(KB).

Theorem 6.1 Let KB = (L,P ) be a p-consistent probabilistic knowledge base, and let β|α be a conditional
event. Let s∈{z, lex}. Let Ds

α(KB) be the set of all s-minimal elements in {H ⊆P |L∪H ∪{α> 0} is
satisfiable}. Then, l (resp., u) such that KB ‖∼ s

tight (β|α)[l, u] is given as follows:

(a) If L∪{α> 0} is unsatisfiable, then l= 1 (resp., u=0).

(b) Otherwise, l= min c (resp., u= max d) subject to L ∪H ||=tight (β|α)[c, d] and H ∈Ds
α(KB).

For s= z (resp., s= lex), Algorithm tight-s-consequence (see Fig. 4 (resp., 5)) computes tight intervals
under s-entailment. Step 2 checks whether L∪{α> 0} is unsatisfiable. If this is the case, then [1, 0] is
returned by Theorem 6.1 (a). Otherwise, we compute Ds

α(KB) along the z-partition of KB in steps 3–7
(resp., 3–15), and the requested tight interval using Theorem 6.1 (b) in step 8 (resp., 16–20).

7 Computational Complexity

In this section, we draw a precise picture of the computational complexity of the decision and optimization
problems described in Section 6.1.

7.1 Complexity Classes

We assume some basic knowledge about the complexity classes P, NP, and co-NP. We now briefly describe
some other complexity classes that occur in our results; see especially [23, 37, 55] for further background.

The class PNP contains all decision problems that can be solved in deterministic polynomial time with
an oracle for NP. The class PNP

‖ contains the decision problems in PNP where all oracle calls must be first
prepared and then issued in parallel. The relationship between these complexity classes is described by the
following inclusion hierarchy (note that all inclusions are currently believed to be strict):

P ⊆ NP, co-NP ⊆ PNP
‖ ⊆ PNP .

To classify problems that compute an output value, rather than a Yes / No-answer, function classes have
been introduced. In particular, FP and FPNP are the functional analogs of P and PNP, respectively.
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Algorithm tight-z-consequence

Input: p-consistent probabilistic knowledge base KB=(L,P ), conditional event β|α.
Output: interval [l, u]⊆ [0, 1] such that KB ‖∼ z

tight (β|α)[l, u].
Notation: (P0, . . . , Pk) denotes the z-partition of KB .

1. R := L;
2. if R∪{α> 0} is unsatisfiable then return [1, 0];
3. j := k;
4. while j≥ 0 and R∪Pj ∪{α> 0} is satisfiable do begin
5. R := R∪Pj ;
6. j := j − 1
7. end;
8. compute l, u∈ [0, 1] such that R ||=tight (β|α)[l, u];
9. return [l, u].

Figure 4: Algorithm tight-z-consequence

Algorithm tight-lex-consequence

Input: p-consistent probabilistic knowledge base KB=(L,P ), conditional event β|α.
Output: interval [l, u]⊆ [0, 1] such that KB ‖∼ lex

tight (β|α)[l, u].
Notation: (P0, . . . , Pk) denotes the z-partition of KB .

1. R := L;
2. if R∪{α> 0} is unsatisfiable then return [1, 0];
3. H := {∅};
4. for j := k downto 0 do begin
5. n := 0 ;
6. H′ := ∅;
7. for each G ⊆ Dj and H ∈ H do
8. if R∪G∪H ∪{α> 0} is satisfiable then
9. if n = |G| thenH′ := H′ ∪{G∪H}

10. else if n < |G| then begin
11. H′ := {G∪H};
12. n := |G|
13. end;
14. H := H′;
15. end;
16. (l, u) := (1, 0);
17. for each H ∈H do begin
18. compute c, d∈ [0, 1] such that R∪H ||=tight (β|α)[c, d];
19. (l, u) := (min(l, c),max(u, d))
20. end;
21. return [l, u].

Figure 5: Algorithm tight-lex-consequence
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7.2 Overview of Complexity Results

In the complexity analysis, we consider the decision and optimization problems s-CONSEQUENCE and
TIGHT s-CONSEQUENCE, where s∈{z, lex}. We assume that KB as well as (β|α)[l, u] contain only
rational numbers.

The complexity results are compactly summarized in Tables 9–10. In detail, the problems z-CONSE-
QUENCE and lex-CONSEQUENCE are complete for the classes PNP

‖ and PNP, respectively, whereas the

problems TIGHT z-CONSEQUENCE and TIGHT lex-CONSEQUENCE are both complete for the class FPNP.
The hardness results often hold even in the restricted literal-Horn case, where KB and β|α are both

literal-Horn. Here, a conditional event ψ|φ (resp., logical constraint ψ⇐φ) is literal-Horn iff ψ is a basic
event (resp., ψ is either a basic event or the negation of a basic event) and φ is either > or a conjunction of
basic events. A conditional constraint (ψ|φ)[l, u] is literal-Horn iff the conditional event ψ|φ is literal-Horn.
A probabilistic knowledge base KB = (L,P ) is literal-Horn iff every member of L∪P is literal-Horn.

Note that the problems p-CONSISTENCY, p-CONSEQUENCE and TIGHT p-CONSEQUENCE are com-
plete for NP, co-NP, and FPNP, respectively, in the general case and also in restricted cases. This is im-
mediate by similar complexity results for g-coherence and g-coherent entailment [9] and the equivalence of
these notions to p-consistency and p-entailment, respectively; cf. Section 8.2. Similarly, also the problems
POSITIVE PROBABILITY, LOGICAL CONSEQUENCE, and TIGHT LOGICAL CONSEQUENCE in probabilis-
tic logic are complete for NP, co-NP, and FPNP, respectively, in the general case and also in restricted cases;
cf. especially [50].

Table 9: Complexity of z- and lex-CONSEQUENCE.

Problem Complexity
z-CONSEQUENCE PNP

‖ -complete
lex-CONSEQUENCE PNP-complete

Table 10: Complexity of TIGHT z- and lex-CONSEQUENCE.

Problem Complexity
TIGHT z-CONSEQUENCE FPNP-complete
TIGHT lex-CONSEQUENCE FPNP-complete

7.3 Detailed Complexity Results

The following two theorems show that the problems z- and lex-CONSEQUENCE are complete for the
classes PNP

‖ and PNP, respectively. Here, hardness for PNP
‖ and PNP follows from Theorem 5.10 and

PNP
‖ - and PNP-hardness of deciding z- and lex-entailment, respectively, in classical default reasoning [18].

Theorem 7.1 Given a p-consistent KB , and a conditional constraint (β|α)[l, u], deciding whether KB

‖∼ z (β|α)[l, u] is PNP
‖ -complete.
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Theorem 7.2 Given a p-consistent KB , and a conditional constraint (β|α)[l, u], deciding whether KB

‖∼ lex (β|α)[l, u] is PNP-complete. Hardness holds even if KB and β|α are literal-Horn.

The next two theorems show that TIGHT s-CONSEQUENCE, where s∈{z, lex}, is FPNP-complete.
Hardness holds by a polynomial reduction from the FPNP-complete traveling salesman cost problem [55].

Theorem 7.3 Given a p-consistent KB , and a conditional event β|α, computing l, u∈ [0, 1] such that
KB ‖∼ z

tight (β|α)[l,u] is FPNP-complete. Hardness holds even if KB and β|α are literal-Horn, and L= ∅.

Theorem 7.4 Given a p-consistent KB , and a conditional event β|α, computing l, u∈ [0, 1] such that
KB ‖∼ lex

tight (β|α)[l,u] is FPNP-complete. Hardness holds even if KB and β|α are literal-Horn, and L= ∅.

8 Related Work

In this section, we give a comparison to the related works on probabilistic default reasoning [51] and on
probabilistic reasoning under g-coherence [8, 27, 28, 29].

8.1 Strong Nonmonotonic Probabilistic Logics

A companion paper [51] presents similar probabilistic generalizations of Pearl’s entailment in System Z,
Lehmann’s lexicographic entailment, and Geffner’s conditional entailment [24, 26]. These formalisms,
however, are quite different from the ones in this paper, since they allow for handling default purely proba-
bilistic knowledge rather than (strict) purely probabilistic knowledge in addition to strict logical knowledge
and default logical knowledge. For example, they allow for expressing sentences of the form “generally,
birds fly with a probability of at least 0.95” (rather than “birds fly with a probability of at least 0.95”).
Roughly, such a sentence means that being able to fly with a probability of at least 0.95 should apply to
all birds and all subclasses of birds, as long as this does not create any inconsistencies. For this reason,
the probabilistic formalisms in [51] are generally much stronger than the model-theoretic notion of logical
entailment in probabilistic logic. This is why they can be considered as strong nonmonotonic probabilistic
logics, while the formalisms of the present paper are weak nonmonotonic probabilistic logics. The former
are especially useful where logical entailment in probabilistic logic is too weak, for example, in probabilistic
logic programming [50, 49] and probabilistic ontology reasoning in the Semantic Web [30]. Other applica-
tions are deriving degrees of belief from statistical knowledge and degrees of belief, handling inconsistencies
in probabilistic knowledge bases, and probabilistic belief revision.

In particular, in reasoning from statistical knowledge and degrees of belief, the probabilistic general-
ization of Lehmann’s lexicographic entailment in [51], which we call here strong lex-entailment, shows
a similar behavior as reference-class reasoning [60, 40, 41, 59] in a number of uncontroversial examples.
Furthermore, it also avoids many drawbacks of reference-class reasoning [51]. In particular, it can handle
complex scenarios and even purely probabilistic subjective knowledge as input. Moreover, conclusions are
drawn in a global way from all the available knowledge as a whole. The following example illustrates the
use of strong lex-entailment for reasoning from statistical knowledge and degrees of belief.

Example 8.1 Suppose that we have the statistical knowledge “all penguins are birds”, “between 90% and
95% of all birds fly”, “at most 5% of all penguins fly”, and “at least 95% of all yellow objects are easy to
see”. Furthermore, suppose that our belief is “Sam is a yellow penguin”. What do we then conclude about
Sam’s property of being easy to see? Under reference-class reasoning, which is a machinery for dealing
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with such statistical knowledge and degrees of belief, we conclude “Sam is easy to see with a probability of
at least 0.95”. This is also exactly what we obtain using the notion of strong lex-entailment from [51]:

The above statistical knowledge can be represented by the probabilistic knowledge base KB = (L,P ) =
({bird⇐ penguin}, {(fly |bird)[0.9, 0.95], (fly |penguin)[0, 0.05], (easy to see|yellow)[0.95, 1]}), where
conditional constraints (ψ|φ)[l, u] in P now informally read as “generally, the probability of ψ given φ is
in [l, u]”. This KB is strongly p-consistent [51], and under strong lex-entailment from KB , we obtain the
tight conclusion (easy to see | yellow∧penguin)[0.95, 1], as desired.

Note that KB is also satisfiable and p-consistent. However, under every semantics among logical
and (weak) p-, z-, and lex-entailment from KB , we obtain the tight conclusion (easy to see | yellow ∧
penguin)[0, 1], rather than the desired one. 2

8.2 Probabilistic Reasoning under G-Coherence

Another related formalism is probabilistic reasoning under g-coherence. It is an approach to reasoning with
imprecise probability assessments, which has been extensively explored especially in the field of statistics,
and which is based on the coherence principle of de Finetti and suitable generalizations of it (see, for
example, the work by Biazzo and Gilio [8], Gilio [27, 28], and Gilio and Scozzafava [29]), or on similar
principles that have been adopted for lower and upper probabilities (Pelessoni and Vicig [58], Vicig [64],
and Walley [66]).

Interestingly, the notions of p-consistency and p-entailment for probabilistic knowledge bases coincide
with the notions of g-coherence and g-coherent entailment for imprecise probability assessments, respec-
tively. We now recall the main concepts from probabilistic reasoning under g-coherence, and then formulate
these equivalence results. We start by defining (precise) probability assessments and their coherence. We
then define imprecise probability assessments and the notions of g-coherence and g-coherent entailment
for them. We next define the notions of g-coherence and g-coherent entailment for probabilistic knowl-
edge bases.

A probability assessment (L,A) on a set of conditional events E consists of a set of logical constraints L,
and a mapping A that assigns to each ε∈E a real number in [0, 1]. Informally, L describes logical relation-
ships, while A represents probabilistic knowledge. For {ψ1|φ1, . . . , ψn|φn}⊆E with n≥ 1 and n real
numbers s1, . . . , sn, let the mapping G : IΦ → R be defined as follows. For every I ∈ IΦ:

G(I) =
n
∑

i=1
si · I(φi) · (I(ψi)−A(ψi|φi)) .

In the framework of betting criterion, G can be interpreted as the random gain corresponding to a combi-
nation of n bets of amounts s1 ·A(ψ1|φ1), . . . , sn ·A(ψn|φn) on ψ1|φ1, . . . , ψn|φn with stakes s1, . . . , sn.
In detail, to bet on ψi|φi, one pays an amount of si ·A(ψi|φi), and one gets back the amount of si, 0, and
si ·A(ψi|φi), when ψi ∧φi, ¬ψi ∧φi, and ¬φi, respectively, turns out to be true. The following notion
of coherence now assures that it is impossible (for both the gambler and the bookmaker) to have sure (or
uniform) loss. A probability assessment (L,A) on a set of conditional events E is coherent iff for every
{ψ1|φ1, . . . , ψn|φn}⊆E with n≥ 1 and for all real numbers s1, . . . , sn, the following holds:

max
I ∈IΦ, I |= L∪{φ1∨···∨φn}

n
∑

i=1

si · I(φi) · (I(ψi)−A(ψi|φi)) ≥ 0 .

An imprecise probability assessment (L,A) on a set of conditional events E consists of a set of logical
constraints L and a mapping A that assigns to each ε∈E an interval [l, u]⊆ [0, 1], l≤u. We say (L,A)
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is g-coherent iff a coherent precise probability assessment (L,A?) on E exists with A?(ε)∈A(ε) for all
ε∈E . The imprecise probability assessment [l, u] on a conditional event γ, denoted {(γ, [l, u])}, is called
a g-coherent consequence of (L,A) iff A?(γ)∈ [l, u] for every g-coherent precise probability assessment
A? on E ∪ {γ} such that A?(ε)∈A(ε) for all ε∈E . It is a tight g-coherent consequence of (L,A) iff l
(resp., u) is the infimum (resp., supremum) of A?(γ) subject to all g-coherent precise probability assess-
ments A? on E ∪ {γ} such that A?(ε)∈A(ε) for all ε∈E . Observe that for ε=β|α such that L |=¬α,
every {(ε, [l, u])} with l, u∈ [0, 1] is a g-coherent consequence of (L,A), and {(ε, [1, 0])} is the unique
tight g-coherent consequence of (L,A).

We now recall the concepts of g-coherence and g-coherent entailment for probabilistic knowledge bases
from [10, 11]. Every imprecise probability assessment IP = (L,A), where L is finite, and A is defined on a
finite set of conditional events E , can be represented by the following probabilistic knowledge base:

KB IP = (L, {(ψ|φ)[l, u] | ψ|φ∈E , A(ψ|φ) = [l, u]}) .

Conversely, each probabilistic knowledge base KB = (L,P ) can be expressed by the following imprecise
probability assessment IPKB =(L,AKB ) on EKB :

AKB = {(ψ|φ, [l, u]) | (ψ|φ)[l, u]∈KB} ,

EKB = {ψ|φ | ∃ l, u∈ [0, 1] : (ψ|φ)[l, u]∈KB} .

A probabilistic knowledge base KB is g-coherent iff IPKB is g-coherent. For g-coherent probabilistic
knowledge bases KB and conditional constraints (ψ|φ)[l, u], we say (ψ|φ)[l, u] is a g-coherent conse-
quence of KB , denoted KB ‖∼ g(ψ|φ)[l, u], iff {(ψ|φ, [l, u])} is a g-coherent consequence of IPKB . We
say (ψ|φ)[l, u] is a tight g-coherent consequence of KB , denoted KB ‖∼ g

tight (ψ|φ)[l, u], iff {(ψ|φ, [l, u])}
is a tight g-coherent consequence of IPKB .

The following two theorems show that g-coherence and g-coherent entailment coincide with p-consis-
tency and p-entailment, respectively. They follow from Theorems 4.5 and 4.8 as well as similar characteri-
zations of g-coherence and g-coherent entailment through conditional constraint rankings in [10, 11].

Theorem 8.2 Let KB = (L,P ) be a probabilistic knowledge base. Then, KB is g-coherent iff KB is p-
consistent.

Theorem 8.3 Let KB =(L,P ) be p-consistent, and let (β|α)[l, u] be a conditional constraint. Then,
KB ‖∼ g(β|α)[l, u] iff KB ‖∼ p(β|α)[l, u].

9 Summary and Outlook

We have presented approaches to weak nonmonotonic probabilistic logics, which are combinations of prob-
abilistic logic with default reasoning in Kraus et al.’s System P , Pearl’s System Z, and Lehmann’s lexi-
cographic entailment. The new formalisms allow for handling in a uniform framework strict and default
logical knowledge as well as purely probabilistic knowledge. Interestingly, probabilistic entailment in Sys-
tem P coincides with probabilistic entailment under g-coherence from imprecise probability assessments.
We have then analyzed the semantic and nonmonotonic properties of the new formalisms. We have shown
that they all are proper generalizations of their classical counterparts, and they have similar properties as
them. In particular, they all satisfy the rationality postulates of System P and a Direct Inference property.
Moreover, probabilistic entailment in System Z and probabilistic lexicographic entailment both satisfy the
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property of Rational Monotonicity and an Irrelevance property, while probabilistic entailment in System P
does not. We have also analyzed the relationships between the new formalisms. Here, probabilistic en-
tailment in System P is weaker than probabilistic entailment in System Z, which in turn is weaker than
probabilistic lexicographic entailment. Moreover, they all are weaker than entailment in probabilistic logic
where default sentences are interpreted as strict sentences. Whenever this does not create any inconsisten-
cies, both probabilistic entailment in System Z and probabilistic lexicographic entailment even coincide
with such entailment in probabilistic logic, while probabilistic entailment in System P does not. Finally, we
have also presented algorithms for reasoning under probabilistic entailment in System Z and probabilistic
lexicographic entailment, and we have given a precise picture of its complexity.

In the same spirit as a companion paper [51], this paper has shed light on exciting novel formalisms for
probabilistic reasoning with conditional constraints beyond probabilistic logic. An interesting topic of future
research is to develop and explore further nonmonotonic formalisms for probabilistic reasoning with con-
ditional constraints. Besides extending classical formalisms for default reasoning from conditional knowl-
edge bases, which may additionally contain a strength assignment to the defaults, one may also think about
combining the new formalisms here and in [51] with some probability selection technique (for example,
maximum entropy or center of mass).

A Appendix: Proofs for Section 2

Proof of Theorem 2.3. Recall that KB ||=(ψ|φ)[l, u] iff every model Pr of L∪P is also a model of
(ψ|φ)[l, u]. The latter is equivalent to Pr(ψ|φ)∈ [l, u] for every model Pr of L∪P with Pr(φ)> 0, which
in turn is equivalent to Prφ(ψ) ∈ [l, u] for every model Pr of L∪P with Pr(φ)> 0. This argument also
shows that KB ||=tight (ψ|φ)[l, u] iff l (resp., u) is the infimum (resp., supremum) of Pr φ(ψ) subject to all
models Pr of L∪P with Pr(φ)> 0. 2

Proof of Theorem 2.4. The two statements of the theorem follow immediately from the observation that
probabilistic interpretations Pr satisfy a logical constraint ψ⇐φ iff they satisfy the conditional constraint
(ψ|φ)[1, 1]. 2

Proof of Theorem 2.4. Recall that KB ||=ψ⇐φ iff every model Pr ofL∪P = L is also a model of ψ⇐φ.
Consider now any model I ∈IΦ of L. Let the probabilistic interpretation Pr be defined by Pr(I) = 1 and
Pr(J) = 0 for all other J ∈IΦ. Then, Pr is a model of L, and thus also satisfies ψ⇐φ. That is, I is a
model of ψ⇐φ. Conversely, consider any model Pr of L. Hence, every I ∈IΦ with Pr(I)> 0 is a model
of L, and thus also of ψ⇐φ. That is, Pr is a model of ψ⇐φ. 2

B Appendix: Proofs for Section 4

Proof of Theorem 4.5. We first suppose that P = ∅. Recall that the empty mapping σ on such P is admis-
sible with KB iff L is satisfiable. The latter is equivalent to the existence of a probability ranking κ that is
admissible with KB , since every probability ranking κ satisfies κ(Pr) = 0<∞ for at least one probabilistic
interpretation Pr . In the following, we assume that P 6= ∅.

(⇐) Assume that there exists a conditional constraint ranking on KB that is admissible with KB . Hence,
there exists the z-partition of KB , and thus also the conditional constraint ranking z on KB . Hence, there
exists the probability ranking κz . We now show that κz is admissible with KB . Since there exists the z-
partition of KB , there also exists a model Pr of L∪P . Thus, κz(Pr) = 0. We now show that κz(¬F ) =∞
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for all F ∈L. Recall that κz(Pr) =∞ for all Pr such that Pr 6|= F (that is, Pr |=¬F ) for some F ∈L.
Thus, κz(¬F ) =∞ for all F ∈L. We next show that κz(φ> 0)<∞ and κz(φ> 0∧C) < κz(φ> 0∧¬C)
for allC = (ψ|φ)[l, u]∈P . Since {C ′ ∈P | z(C ′)≥ z(C)} toleratesC underL, it holds that κz(φ> 0)<∞
and κz(φ> 0∧C)≤ z(C). Since Pr 6|=C for all models Pr of φ> 0∧¬C, it holds that z(C)<κz(φ> 0∧
¬C). In summary, κz(φ> 0)<∞ and κz(φ> 0∧C)<κz(φ> 0∧¬C) for everyC = (ψ|φ)[l, u]∈P . This
shows that κz is admissible with KB .

(⇒) Let κ be a probability ranking that is admissible with KB . We define the conditional constraint
ranking σ on KB by σ(C) =κ(φ> 0∧C) for all C =(ψ|φ)[l, u] ∈ P . We now show that σ is admis-
sible with KB . Suppose that P ′⊆P is in conflict with C = (ψ|φ)[l, u]∈P under L. Towards a contra-
diction, assume that σ(C ′) ≥ σ(C) for all C ′ ∈P ′. Let Pr be a model of L such that σ(C) =κ(Pr)
and Pr |= φ> 0∧C. Assume now that Pr 6|= C ′ for some C ′ =(β|α)[r, s]∈L′. Then, κ(α > 0)<∞
and κ(α> 0∧¬C ′)≤σ(C)≤σ(C ′) = κ(α> 0∧C ′). But this contradicts κ being admissible with KB .
Hence, Pr is a model of P ′. But this contradicts P ′ being in conflict with C under L. Thus, σ(C ′)<σ(C)
for some C ′ ∈P ′. Hence, σ is admissible with KB . 2

Proof of Theorem 4.6. The statement follows from Theorem 4.5 and the fact that the existence of a con-
ditional constraint ranking on KB that is admissible with KB is equivalent to the existence of an ordered
partition (P0, . . . , Pk) of P such that either (a) or (b) holds. 2

Proof of Theorem 4.8. (⇒) Suppose that (L,P ∪{(ψ|φ)[p, p]}) is p-consistent for some p∈ [0, l)∪ (u, 1].
By Theorem 4.5, there exists a probability ranking that is admissible with KB such that κ(φ> 0)<∞ and
κ(φ> 0∧ (ψ|φ)[p, p])<κ(φ> 0 ∧ ¬(ψ|φ)[p, p]). Since κ(φ> 0 ∧ ¬(ψ|φ)[l, u]) ≤ κ(φ> 0∧ (ψ|φ)[p, p])
and κ(φ> 0∧¬(ψ|φ)[p, p]) ≤ κ(φ> 0∧(ψ|φ)[l, u]), it follows κ(φ> 0)<∞ and κ(φ> 0∧¬(ψ|φ)[l, u]) ≤
κ(φ> 0 ∧ (ψ|φ)[l, u]). That is, KB ‖∼ p(ψ|φ)[l, u] does not hold.

(⇐) Suppose that KB ‖∼ p(ψ|φ)[l, u] does not hold. That is, κ(φ> 0)<∞ and κ(φ> 0∧ (ψ|φ)[l, u]) ≥
κ(φ> 0∧¬(ψ|φ)[l, u]) for some probability ranking κ admissible with KB . Let Pr be a model of L
such that Pr |= φ> 0∧¬(ψ|φ)[l, u] and κ(Pr) =κ(φ> 0∧¬(ψ|φ)[l, u]). We define p∈ [0, l)∪ (u, 1] by
p=Pr(ψ|φ). It then follows that κ(φ> 0∧¬(ψ|φ)[l, u]) = κ(φ> 0∧ (ψ|φ)[p, p]). Moreover, it holds
that κ(φ> 0∧ (ψ|φ)[q, q])≥κ(φ > 0 ∧ (ψ|φ)[p, p]) for all q ∈ [0, l)∪ (u, 1]. In summary, it thus fol-
lows that (?) κ(φ> 0) < ∞ and κ(φ> 0 ∧ ¬(ψ|φ)[p, p]) ≥ κ(φ> 0∧ (ψ|φ)[p, p]). We now show that
(L,P ∪ {(ψ|φ)[p, p]}) is p-consistent. We define the conditional constraint ranking σ on KB by (i)
σ(C) = κ(α> 0∧C) for all C = (β|α)[r, s]∈P such that κ(α> 0 ∧ C) < κ(φ > 0 ∧ (ψ|φ)[p, p]),
(ii) σ((ψ|φ)[p, p]) = κ(φ> 0 ∧ (ψ|φ)[p, p]), and (iii) σ(C) =κ(α > 0∧C) + 1 for all C = (β|α)[r, s]∈P
with κ(α> 0∧C) ≥ κ(φ> 0∧(ψ|φ)[p, p]). We now show that σ is admissible with (L,P ∪{(ψ|φ)[p, p]}).
It is sufficient to show that every C ∈P is tolerated by PC = {C ′ ∈P ∪ {(ψ|φ)[p, p]} |σ(C ′)≥σ(C)} un-
der L. By the proof of Theorem 4.5, it follows that σ restricted to P is admissible with KB . Thus, it is suffi-
cient to show that every C =(β|α)[r, s]∈P is tolerated by PC = {C ′ ∈P ∪ {(ψ|φ)[p, p]} |σ(C ′)≥σ(C)}
under L, where either (a) κ(α> 0∧C)<κ(φ> 0 ∧ (ψ|φ)[p, p]), or (b) C = (ψ|φ)[p, p]. Towards a contra-
diction, assume first that some C = (β|α)[r, s]∈P with (a) is not tolerated by PC under L. Let Pr be a
model of L such that Pr |= α> 0∧C and κ(Pr) = κ(α> 0∧C). Let C ′ = (β′|α′)[r′, s′]∈PC such that
Pr 6|= C ′ and (a.i) κ(α′> 0∧C ′)<κ(φ> 0 ∧ (ψ|φ)[p, p]), or (a.ii) C ′ =(ψ|φ)[p, p], or (a.iii) κ(α′> 0 ∧
C ′)≥κ(φ> 0 ∧ (ψ|φ)[p, p]). It then holds κ(α′> 0)<∞ and κ(α′> 0∧¬C ′)≤κ(Pr) =σ(C). Fur-
thermore, it holds (a.i) σ(C) ≤ σ(C ′) =κ(α′> 0∧C ′), or (a.ii) σ(C)<σ(C ′) =κ(α′> 0∧C ′), or (a.iii)
σ(C) + 1<σ(C ′) = κ(α′> 0∧C ′) + 1. But in (a.ii) this contradicts (?) and in (a.i) and (a.iii) this
contradicts κ being admissible with KB . Hence, Pr is a model of PC . But this contradicts C not be-
ing tolerated by PC under L. Assume next that (b) C = (ψ|φ)[p, p] is not tolerated by PC under L. Let
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Pr be a model of L such that Pr |= φ> 0∧C and κ(Pr) =κ(φ> 0∧C). Let C ′ = (β|α)[r, s]∈PC

such that Pr 6|= C ′. Observe that κ(α> 0∧C ′) ≥ κ(φ> 0∧ (ψ|φ)[p, p]). Thus, κ(α> 0)<∞ and
κ(α> 0∧¬C ′) ≤ κ(Pr) =σ(C)<σ(C ′) = κ(α> 0∧C ′) + 1. But this contradicts κ being admissi-
ble with KB . Hence, Pr is a model of PC . But this contradicts C not being tolerated by PC under L.
In summary, σ is admissible with (L,P ∪{(ψ|φ)[p, p]}). That is, (L,P ∪{(ψ|φ)[p, p]}) is p-consistent,
where p∈ [0, l)∪ (u, 1]. 2

Proof of Theorem 4.9. Immediate by Theorem 4.8 and the definition of tight p-consequence. 2

Proof of Lemma 4.12. (a) Towards a contradiction, assume that z is not admissible with KB . That is,
some P ′⊆P is under L in conflict with some C ∈P , and P ′ contains no C ′ with z(C ′)< z(C). Thus,
P ′⊆PC = {C ′ ∈P | z(C ′)≥ z(C)}. Since PC tolerates C under L, also P ′ tolerates C under L. But this
contradicts P ′ being under L in conflict with C. Thus, z is admissible with KB .

(b) As KB is p-consistent, by Theorem 4.6, there exists a model Pr of L ∪ P . Thus, κz(Pr) = 0. We
now show that κz(¬F ) =∞ for all F ∈L. Recall that κz(Pr) =∞ for all Pr such that Pr 6|= F (that
is, Pr |=¬F ) for some F ∈L. Thus, κz(¬F ) =∞ for all F ∈L. We next show that κz(φ> 0)<∞ and
κz(φ> 0∧C) < κz(φ> 0 ∧ ¬C) for all C = (ψ|φ)[l, u]∈P . As {C ′ ∈P | z(C ′)≥ z(C)} tolerates C
under L, it holds that κz(φ> 0)<∞ and κz(φ> 0∧C)≤ z(C). As Pr 6|=C for all models Pr of φ> 0 ∧
¬C, it holds that z(C)<κz(φ> 0∧¬C). In summary, κz(φ> 0)<∞ and κz(φ> 0∧C)<κz(φ> 0∧¬C)
for every C = (ψ|φ)[l, u]∈P . 2

Proof of Theorem 4.14. Let C = (ψ|φ)[l, u]. Suppose first that L has a model Pr with Pr(φ)> 0. Then,
κz(φ> 0)<∞, and κz(φ> 0∧C)<κz(φ> 0 ∧ ¬C) iff all z-minimal models Pr of L with Pr(φ)> 0
satisfy C. Suppose next that Pr(φ) = 0 for all models Pr of L. Then, it holds κz(φ> 0) =∞, and all
z-minimal models Pr of L with Pr(φ)> 0 satisfy C. 2

C Appendix: Proofs for Section 5

In the proof of Theorem 5.1, we use the following notation. For probabilistic knowledge bases KB = (L,P )
and events α such that L 6|=¬α, we denote by Pα(KB) the set of all subsets Pn = {(ψi|φi)[li, ui] | i ∈
{1, . . . , n}} of P such that every model Pr of L∪Pn with Pr(φ1 ∨ · · · ∨ φn ∨ α)> 0 satisfies Pr(α)> 0.
For KB = (L,P ) and α such that L |=¬α, we define Pα(KB) = {∅}. For events α and p-consistent proba-
bilistic knowledge bases KB = (L,P ), we denote by KBα the probabilistic knowledge base (L,P ?), where
P ? is the greatest element in Pα(KB). Then, the following result says that probabilistic p-entailment of
(β|α)[l, u] from KB can be reduced to logical entailment of (β|α)[l, u] from KBα. It follows immediately
from a similar result for g-coherent entailment in [11] and the equivalence of probabilistic p-entailment and
g-coherent entailment, by Theorem 8.3.

Theorem C.1 Let KB = (L,P ) be a p-consistent probabilistic knowledge base, let (β|α)[l, u] be a condi-
tional constraint, and let KBα be defined as above. Then,

(a) KB ‖∼ p(β|α)[l, u] iff KBα ||=(β|α)[l, u] .

(b) KB ‖∼ p
tight (β|α)[l, u] iff KBα ||=tight (β|α)[l, u] .
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Proof of Theorem 5.1. RW. Assume first KB ||=(φ|ε)[l, u]. That is, Pr |=(φ|ε)[l, u] for all models Pr of
L∪P with Pr(ε)> 0. As (φ|>)[l, u]⇒ (ψ|>)[l′, u′] is logically valid, it thus follows Pr |= (ψ|ε)[l′, u′]
for all models Pr of L∪P with Pr(ε)> 0. That is, KB ||=(ψ|ε)[l′, u′]. Assume next KB ‖∼ s(φ|ε)[l, u],
where s ∈ {z, lex}. That is, Pr |=(φ|ε)[l, u] for all s-minimal models Pr of L with Pr(ε)> 0. As
(φ|>)[l, u] ⇒ (ψ|>)[l′, u′] is logically valid, it thus follows Pr |= (ψ|ε)[l′, u′] for all s-minimal models
Pr of L with Pr(ε)> 0. That is, KB ‖∼ s(ψ|ε)[l′, u′]. Assume finally KB ‖∼ p(φ|ε)[l, u]. That is, by
Theorem C.1, KB ε ||=(φ|ε)[l, u]. Thus, KB ε ||=(ψ|ε)[l′, u′]. That is, KB ‖∼ p(ψ|ε)[l′, u′].

Ref. Every probabilistic interpretation Pr satisfies (ε|ε)[1, 1]. This shows that KB ||=(ε|ε)[1, 1] and
KB ‖∼ s(ε|ε)[1, 1] for all s∈{p, z, lex}.

LLE. Assume KB ||=(φ|ε)[l, u]. That is, Pr |=(φ|ε)[l, u] for all models Pr of L∪P with Pr(ε)>0. As
ε⇔ ε′ is logically valid, it follows Pr |= (φ|ε′)[l, u] for all models Pr of L∪P with Pr(ε′)> 0. That is,
KB ||=(φ|ε′)[l, u]. Assume next KB ‖∼ s (φ|ε)[l, u], where s∈{z, lex}. That is, Pr |=(φ|ε)[l, u] for all
s-minimal models Pr of L with Pr(ε)> 0. As ε⇔ ε′ is logically valid, it follows Pr |= (φ|ε′)[l, u] for all
s-minimal models Pr of L with Pr(ε′)> 0. That is, KB ‖∼ s(φ|ε′)[l, u]. Assume finally KB ‖∼ p(φ|ε)[l, u].
That is, by Theorem C.1, KB ε ||=(φ|ε)[l, u]. As ε⇔ ε′ is logically valid, it follows KB ε′ ||=(φ|ε′)[l, u].
That is, KB ‖∼ p(φ|ε′)[l, u].

Cut. Suppose that KB ||= (ε|ε′)[1, 1] and KB ||= (φ|ε∧ ε′)[l, u]. That is, Pr |= (ε|ε′)[1, 1] and Pr |=
(φ|ε∧ ε′)[l, u] for all models Pr of L∪P with Pr(ε′)> 0 and Pr(ε∧ ε′)> 0, respectively. It thus follows
Pr |= (φ|ε′)[l, u] for all models Pr of L∪P with Pr(ε′)> 0. That is, KB ||=(φ|ε′)[l, u]. Suppose next
that KB ‖∼ s(ε|ε′)[1, 1] and KB ‖∼ s(φ|ε∧ ε′)[l, u], where s∈{z, lex}. That is, Pr |= (ε|ε′)[1, 1] and
Pr |=(φ|ε∧ ε′)[l, u] for all s-minimal models Pr of L with Pr(ε′)> 0 and Pr(ε∧ ε′)> 0, respectively. It
thus follows Pr |=(φ|ε′)[l, u] for all s-minimal models Pr of Lwith Pr(ε′)>0. That is, KB ‖∼ s(φ|ε′)[l, u].
Assume that KB ‖∼ p (ε|ε′)[1, 1] and KB ‖∼ p(φ|ε∧ ε′)[l, u]. That is, by Theorem C.1, KB ε′ ||=(ε|ε′)[1, 1]
and KBε∧ε′ ||=(φ|ε∧ ε′)[l, u]. By Theorem C.1, it is then easy to see that KB ε′ = KBε∧ε′ . It thus fol-
lows KBε′ ||=(φ|ε′)[l, u]. That is, KB ‖∼ p(φ|ε′)[l, u].

CM. Suppose KB ||= (ε|ε′)[1, 1] and KB ||= (φ|ε′)[l, u]. That is, Pr |=(ε|ε′)[1, 1] and Pr |=(φ|ε′)[l, u] for
all models Pr of L∪P with Pr(ε′)> 0. It follows Pr |= (φ|ε ∧ ε′)[l, u] for all models Pr of L∪P with
Pr(ε∧ε′)> 0. That is, KB ||=(φ|ε∧ε′)[l, u]. Suppose next that KB ‖∼ s(ε|ε′)[1, 1] and KB ‖∼ s(φ|ε′)[l, u],
where s ∈ {z, lex}. That is, Pr |=(ε|ε′)[1, 1] and Pr |= (φ|ε′)[l, u] for all s-minimal models Pr of L
with Pr(ε′)> 0. It follows Pr |= (φ|ε ∧ ε′)[l, u] for all s-minimal models Pr of L with Pr(ε ∧ ε′)> 0.
That is, KB ‖∼ s(φ|ε∧ ε′)[l, u]. Suppose finally that KB ‖∼ p(ε|ε′)[1, 1] and KB ‖∼ p(φ|ε′)[l, u]. That is, by
Theorem C.1, KB ε′ ||=(ε|ε′)[1, 1] and KB ε′ ||=(φ|ε′)[l, u]. Thus, KB ε′ ||=(φ|ε∧ε′)[l, u]. By Theorem C.1,
it is easy to see that KB ε′ =KBε∧ε′ . Thus, KB ε∧ε′ ||=(φ|ε∧ ε′)[l, u]. That is, KB ‖∼ p(φ|ε ∧ ε′)[l, u].

Or. Suppose KB ||= (φ|ε)[1, 1] and KB ||= (φ|ε′)[1, 1]. That is, Pr |= (φ|ε)[1, 1] and Pr |= (φ|ε′)[1, 1]
for all models Pr of L∪P with Pr(ε)> 0 and Pr(ε′)> 0, respectively. It follows that Pr |= (φ|ε ∨
ε′)[1, 1] for all models Pr of L∪P with Pr(ε ∨ ε′)> 0. That is, KB ||=(φ|ε ∨ ε′)[1, 1]. Suppose next
that KB ‖∼ s(φ|ε)[1, 1] and KB ‖∼ s(φ|ε′)[1, 1], where s ∈ {z, lex}. That is, Pr |= (φ|ε)[1, 1] and Pr |=
(φ|ε′)[1, 1] for all s-minimal models Pr of L with Pr(ε)> 0 and Pr(ε′)> 0, respectively. It then follows
Pr |= (φ|ε∨ε′)[1, 1] for all s-minimal models Pr of L with Pr(ε∨ε′)> 0. That is, KB ‖∼ s(φ|ε∨ε′)[1, 1].
Suppose finally KB ‖∼ p(φ|ε)[1, 1] and KB ‖∼ p(φ|ε′)[1, 1]. That is, by Theorem C.1, KB ε = (L,Pε) ||=
(φ|ε)[1, 1] and KB ε′ = (L,Pε′) ||=(φ|ε′)[1, 1]. By Theorem C.1, it is then easy to see that Pε∨ε′ ⊇ Pε and
Pε∨ε′ ⊇Pε′ . It thus follows KB ε∨ε′ ||=(φ|ε)[1, 1] and KB ε∨ε′ ||=(φ|ε′)[1, 1], where KB ε∨ε′ =(L,Pε∨ε′).
It thus holds KB ε∨ε′ ||= (φ|ε ∨ ε′)[1, 1]. That is, KB ‖∼ p (φ|ε ∨ ε′)[1, 1]. 2
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Proof of Theorem 5.2. Assume first that KB ||=(ψ|ε)[1, 1] and KB 6||=¬(ε′|ε)[1, 1]. In particular, Pr |=
(ψ|ε)[1, 1] for all models Pr of L∪P with Pr(ε)> 0. It thus follows Pr |=(ψ|ε∧ ε′)[1, 1] for all mod-
els Pr of L∪P with Pr(ε∧ ε′)> 0. That is, KB ||=(ψ|ε∧ ε′)[1, 1]. Assume next KB ‖∼ s(ψ|ε)[1,1] and
KB 6‖∼ s(¬ε′|ε)[1,1], where s∈{z, lex}. That is, Pr |= (ψ|ε)[1, 1] for all s-minimal models Pr of L
with Pr(ε)> 0, and Pr |=¬(ε′|ε)[0, 0] for some s-minimal models Pr of L with Pr(ε)> 0. It then follows
Pr |=(ψ|ε∧ε′)[1, 1] for all s-minimal models Pr of Lwith Pr(ε∧ε′)> 0. That is, KB ‖∼ s(ψ|ε∧ε′)[1, 1]. 2

Proof of Theorem 5.4. Assume that (?) no atom of KB and (ψ|ε)[1, 1] occurs in ε′. Suppose first
KB ||=(ψ|ε)[1, 1]. That is, Pr |= (ψ|ε)[1, 1] for all models Pr of L∪P with Pr(ε)> 0. Hence, Pr |=
(ψ|ε∧ ε′)[1, 1] for all models Pr of L∪P with Pr(ε∧ ε′)> 0. That is, KB ||=(ψ|ε∧ ε′)[1, 1]. Assume
next KB ‖∼ s(ψ|ε)[1,1], where s∈{z, lex}. That is, Pr |=(ψ|ε)[1, 1] for all s-minimal models Pr of
L with Pr(ε)> 0. By (?), it follows that Pr |= (ψ|ε∧ ε′)[1, 1] for all s-minimal models Pr of L with
Pr(ε∧ ε′)> 0. That is, KB ‖∼ s(ψ|ε∧ ε′)[1, 1]. 2

Proof of Theorem 5.6. Assume (ψ|φ)[l, u]∈P and ε⇔φ is logically valid. Clearly, KB ||= (ψ|ε)[l, u].
Since KB is p-consistent, the conditional constraint ranking z exists, and (ψ|φ)[l, u] is tolerated by {C ∈P |
z(C)≥ z((ψ|φ)[l, u])} underL. Hence, every s-minimal model Pr ofLwith Pr(ε)> 0 satisfies (ψ|ε)[l, u],
where s∈{z, lex}. Hence, KB ‖∼ s(ψ|ε)[l, u]. Since (L,P ∪{(ψ|ε)[p, p]}) is not p-consistent for all
p∈ [0, l) ∪ (u, 1], it also follows KB ‖∼ p(ψ|ε)[l, u]. 2

Proof of Theorem 5.7. (a) Suppose KB ‖∼ pC. By Theorem 4.8, κ(φ> 0) =∞ or κ(φ> 0∧C)<κ(φ >
0∧¬C) for every probability ranking κ admissible with KB . By Lemma 4.12, κz is admissible with KB .
Hence, κz(φ> 0) =∞ or κz(φ> 0 ∧ C) < κz(φ> 0 ∧ ¬C). By Theorem 4.14, it thus holds KB ‖∼ zC.

(b) Suppose KB ‖∼ zC. That is, every z-minimal model Pr of L with Pr(φ)> 0 satisfies C. As every
lex-minimal model Pr of L with Pr(φ)> 0 is also a z-minimal model of L with Pr(φ)> 0, it follows that
every lex-minimal model Pr of L with Pr(φ)> 0 satisfies C. That is, KB ‖∼ lexC.

(c) Suppose KB ‖∼ lexC. That is, every lex-minimal model Pr of L with Pr(φ)> 0 satisfies C. Assume
first that Pr(φ) = 0 for every model Pr of L∪P . Then, KB ||= C trivially holds. Assume next that L∪P
has a model Pr with Pr(φ)> 0. Thus, a probabilistic interpretation Pr is a lex-minimal model of L
with Pr(φ)> 0 iff it is a model of L∪P with Pr(φ)> 0. Hence, every model of L∪P with Pr(φ)> 0
satisfies C. That is, KB ||=C. 2

Proof of Theorem 5.8. Immediate, as the existence of some model Pr of L∪P with Pr(φ)> 0 implies
that a probabilistic interpretation Pr is a model of L∪P with Pr(φ)> 0 iff it is a lex-minimal model of L
with Pr(φ)> 0 iff it is a z-minimal model of L with Pr(φ)> 0. 2

Proof of Theorem 5.10. (a) A conditional constraint ranking σ on KB is admissible with KB iff the default
ranking σ ◦ γ−1 on γ(KB) is admissible with γ(KB).

(b), (c) Observe that (P0, . . . , Pk) is the z-partition of KB iff (γ(P0), . . . , γ(Pk)) is the classical z-partition
of γ(KB). Moreover, each s-minimal model Pr of L with Pr(α)> 0 satisfies (β|α)[1, 1] iff each classical
s-minimal model I of L∪{α} satisfies β, where s∈{z, lex}. 2
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D Appendix: Proofs for Section 6

Proof of Theorem 6.1. (a) If L ∪ {α>0} is unsatisfiable, then KB ‖∼ s
tight (β|α)[1,0].

(b) Assume L∪{α> 0} is satisfiable. It is sufficient to show that Pr is an s-minimal model of L∪{α> 0}
iff Pr is a model of L∪H ∪{α> 0} for some H ∈Ds

α(KB):
(⇒) Let Pr be an s-minimal model of L∪{α> 0}. Let H ′ = {C ∈P |Pr |=C}. Clearly, Pr |=

L∪H ′ ∪{α> 0}. We now show that H ′ ∈Ds
α(KB). Suppose not. That is, some H ′′⊆P exists such that

L∪H ′′ ∪{α> 0} is satisfiable and that H ′′ is s-preferable to H ′. Thus, a model Pr ′ of L∪H ′′ ∪{α> 0}
exists. As H ′′ is s-preferable to H ′, the model Pr ′ of L∪{α> 0} is s-preferable to Pr . But this contradicts
Pr being an s-minimal model of L ∪ {α> 0}. Thus, H ′ ∈Ds

α(KB).
(⇐) Let Pr be a model of L∪H ′ ∪{α> 0} for some H ′ ∈Ds

α(KB). Clearly, Pr is a model of L ∪
{α> 0}. We now show that Pr is an s-minimal model of L ∪ {α> 0}. Suppose not. That is, there exists a
model Pr ′ of L ∪ {α> 0} that is s-preferable to Pr . Thus, {C ∈P |Pr ′ |= C}⊆P is s-preferable to H ′.
But this contradicts H ′ being a member of Ds

α(KB). Hence, Pr is an s-minimal model of L ∪ {α> 0}. 2

E Appendix: Proofs for Section 7

The proofs of Theorems 7.1–7.4 are similar to the proofs of related complexity results in [51]. We first
give some preparatory definitions as follows. In the sequel, let KB = (L,P ) be a p-consistent probabilistic
knowledge base, and let (β|α)[l, u] be a conditional constraint. Let n denote the cardinality of P . For the
following definitions, let L ∪ {α> 0} be satisfiable. An ordered partition (P0, . . . , Pk) of P is admissible
with KB iff for each i∈{0, . . . , k} and each (ψ|φ)[r, s]∈Pi, the set L ∪ {φ> 0} ∪

⋃

{Pj | j≥ i} is satisfi-
able. The weight of an ordered partition (P0, . . . , Pk) of P is defined as

∑k
i=0 i · |Pi|. Let wmin denote the

least weight w of all ordered partitions of P that are admissible with KB . As in classical default reasoning,
the z-partition of KB is the unique ordered partition (P ?

0 , . . . , P
?
k ) of P that is admissible with KB and that

has the weight wmin. Let jmin denote the least j ∈{0, . . . , k+1} such that L ∪
⋃

{P ?
i | i≥ j} ∪ {α> 0} is

satisfiable. Let nmin =(|P ′ ∩P ?
0 |, . . . , |P

′ ∩P ?
k |) for some P ′ ∈Dlex

α (KB).

Proof of Theorem 7.1. Let KB = (L,P ). We first prove membership in PNP
‖ . By Theorem 6.1, it holds

that KB ‖∼ z(β|α)[l, u] iff either (i) or (ii) holds:

(i) L ∪ {α> 0} is unsatisfiable.

(ii) L ∪ {α> 0} is satisfiable, and L ∪
⋃

{P ?
i | i≥ jmin} ||=(β|α)[l, u].

Deciding whetherL∪{α> 0} is satisfiable can be done with one NP-oracle call. IfL∪{α> 0} is satisfiable,
then we compute the least weight wmin ∈{0, . . . , n(n−1)/2} and the value jmin ∈{0, . . . , n + 1}, which
can both be done in deterministic polynomial time with O(logn) calls to an NP-oracle. Finally, we decide
whether L∪

⋃

{P ?
i | i ≥ jmin} ||=(ψ|φ)[l, u], which can be done with one NP-oracle call. Since four rounds

of parallel NP oracle queries can be replaced by a single round of NP queries, this means that the problem
is in PNP

‖ .
Hardness for PNP

‖ is proved by a polynomial reduction from the following PNP
‖ -complete problem [18].

Given a p-consistent conditional knowledge base KB ′ = (L′, D′) and a default δ← γ, decide whether
KB ′ |∼ zδ← γ.

We define KB = (L′, {(ψ|φ)[1, 1] |ψ←φ∈D′}) and β|α= δ|γ. By Theorem 5.10, KB ′ |∼ zδ← γ iff
KB ‖∼ z(β|α)[1, 1]. 2
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Proof of Theorem 7.2. Let KB = (L,P ). We first prove PNP-membership. By Theorem 6.1, it holds that
KB ‖∼ lex (β|α)[l, u] iff either (i) or (ii) holds:

(i) L ∪ {α> 0} is unsatisfiable.

(ii) L ∪ {α> 0} is satisfiable, and L∪P ′ |= (β|α)[l, u] for all P ′ ∈Dlex
α (KB).

Deciding whether L ∪ {α> 0} is satisfiable can be done with one NP-oracle call. If L ∪ {α> 0} is satis-
fiable, then we compute the least weight wmin ∈ {0, . . . , n(n−1)/2}, which can be done in deterministic
polynomial time with O(logn) calls to an NP-oracle. Moreover, we compute the vector nmin∈{0, . . . , n}

k.
This can be done with k rounds of binary search, where each round runs in deterministic polynomial time
withO(log n) calls to an NP-oracle. Finally, we decide whether L∪P ′ |= (β|α)[l, u] for all P ′ ∈Dlex

α (KB),
which can be done with one call to an NP-oracle. In summary, the problem is in PNP.

Hardness for PNP is proved by a polynomial reduction from the following PNP-complete problem [18].
Given a p-consistent conditional knowledge base KB ′ = (L′, D′), where L′ is a finite set of literal-Horn
logical constraints and D′ is a finite set of literal-Horn defaults (which are of the form ψ←φ, where ψ is
either a basic event or the negation of a basic event, and φ is either > or a conjunction of basic events), and
δ← γ is a literal-Horn default, decide whether KB ′ |∼ lex δ← γ.

We now construct KB = (L,P ) and C = (β|α)[l, u] as in the statement of the theorem such that KB ′

|∼ lex δ← γ iff KB ‖∼ lexC. We define KB and C as follows:

L = L′ ,

P = {(p|φ)[1, 1] | p←φ∈D′, p∈Φ} ∪ {(p|φ)[0, 0] | ¬p←φ∈D′, p∈Φ} ,

C =

{

(p|γ)[1, 1] if δ = p and p∈Φ

(p|γ)[0, 0] if δ = ¬p and p∈Φ .

Notice that KB and C are literal-Horn. By a slight generalization of Theorem 5.10, KB ′ |∼ lex δ← γ iff
KB ‖∼ lexC. 2

Proof of Theorems 7.3 and 7.4. Let KB =(L,P ). We first prove membership in FPNP. Let s ∈ {z, lex}.
The interval [l, u]⊆ [0, 1] such that KB ‖∼ s(β|α)[l, u] can be computed by a slightly modified version of
Algorithm tigh-entailment-opt in [50], which can be done in FPNP. Rather than checking the existence
some model Pr of L∪P with Pr(α)> 0, we check the existence of some P ′ ∈Ds

α(KB) and some model
Pr of L∪P ′ with Pr(α)> 0. Once the z-partition of KB , the value jmin, and the vector nmin are computed
(which can be done in FPNP by the proofs of Theorems 7.1 and 7.2) guessing and verifying P ′ ∈Ds

α(KB)
is in NP, and thus does not increase the complexity. Hence, the new algorithm can be done in FPNP.

Hardness for FPNP is shown by a polynomial reduction from the FPNP-complete traveling salesman
cost problem [55]. Given a set of n≥ 1 cities V = {1, 2, . . . , n} and a nonnegative integer distance
di,j = dj,i between any two cities i and j, we have to compute the smallest length d of a tour through
all the cities, that is, the minimum of

∑n
i=1 dπ(i),π(σ(i)) subject to all permutations π, where σ(n) = 1, and

σ(i) = i+ 1 for all i < n. Without loss of generality, we can assume n≥ 3.
Let s be the sum of all di,j with i, j ∈V and i< j. We now construct KB =(L,P ) and β|α as stated in

the theorem such that the smallest length d of a tour is s · l, where l is given by KB ‖∼ z
tight (β|α)[l, 1] (and

also KB ‖∼ lex
tight (β|α)[l, 1]).

Let E= {{i, j}⊆V | i 6= j} and w{i,j} = di,j/s for all {i, j}∈E. The set of basic events Φ is defined
as Φ1 ∪ Φ2, where Φ1={pi,j | i, j∈V } and Φ2={p}∪ {pe | e∈E}. We then define a set of literal-Horn



INFSYS RR 1843-02-02 35

conditional constraints P1 =P1,1 ∪P1,2 ∪P1,3 that describes the set of all permutations of the members
in V as follows:

P1,1 = {(pi,j | pi,k)[0, 0] | i, j, k∈V, j < k} ,

P1,2 = {(pi,j | pk,j)[0, 0] | i, j, k∈V, i < k} ,

P1,3 = {(pi,j | >)[1/n, 1/n] | i, j ∈V } .

Roughly speaking, each world I with Pr 1(I)> 0 for some model Pr 1 of P1 corresponds to a permuta-
tion of the members in V , and vice versa. We next define a set of literal-Horn conditional constraints
P2 =P2,1 ∪P2,2 ∪P2,3 that associates each such permutation with its tour length, and the predicate sym-
bol p with the sum of all such tour lengths as follows:

P2,1 = {(pe1
| pe2

)[0, 0] | e1, e2 ∈E, e1 6= e2} ,

P2,2 = {(p{i,j} | pu,i ∧ pσ(u),j)[w{i,j}, w{i,j}] | u ∈ V, {i, j} ∈ E} ,

P2,3 = {(p | pe)[1, 1] | e∈E} .

We finally define KB = (L,P ) = (∅, P1 ∪P2). Observe that KB and p|> are literal-Horn and that L is
empty. As proved in [9], KB is p-consistent. This shows in particular that L∪P has a model Pr with
Pr(>)> 0. Hence, by Theorem 5.8, KB ||=tight (p|>)[l, 1] iff KB ‖∼ z

tight (p|>)[l, 1] (iff KB ‖∼ lex
tight

(p|>)[l, 1]). As shown in [50], KB ||=tight (p|>)[l, 1] iff s · l is the smallest length of a tour through all the
cities. In summary, KB ‖∼ z

tight (p|>)[l, 1] (iff KB ‖∼ lex
tight (p|>)[l, 1]) iff s · l is the smallest length of a tour

through all the cities. 2
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