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Abstract. This paper continues the research on the computational aspects of Halpern and Pearl’s
causes and explanations in the structural-model approach.To this end, we first explore how an
instance of deciding weak cause can be reduced to an equivalent instance in which irrelevant vari-
ables in the (potential) weak cause and the causal model are removed, which extends previous work
by Hopkins. We then present a new characterization of weak cause for a certain class of causal
models in which the causal graph over the endogenous variables has the form of a directed chain
of causal subgraphs, calleddecomposable causal graph. Furthermore, we also identify two impor-
tant subclasses in which the causal graph over the endogenous variables forms a directed tree and
more generally a directed chain of layers, calledcausal treeandlayered causal graph, respectively.
By combining the removal of irrelevant variables with this new characterization of weak cause, we
then obtain techniques for deciding and computing causes and explanations in the structural-model
approach, which can be done in polynomial time under suitable restrictions. This way, we obtain
several tractability results for causes and explanations in the structural-model approach. To our
knowledge, these are the first explicit ones. They are especially useful for dealing with structure-
based causes and explanations in first-order reasoning about actions, which produces large causal
models that are naturally layered through the time line, andthus have the structure of layered causal
graphs. Another important feature of the tractable cases for causal trees and layered causal graphs is
that they can be recognized efficiently, namely in linear time. Finally, by extending the new charac-
terization of weak cause, we obtain similar techniques for computing the degrees of responsibility
and blame, and hence also novel tractability results for structure-based responsibility and blame.
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1 Introduction

Dealing with causality is an important issue which emerges in many applications of AI. The existing ap-
proaches to causality in AI can be roughly divided into those that have been developed as modal nonmono-
tonic logics (especially in logic programming) and those that evolved from the area of Bayesian networks. A
representative of the former is Geffner’s modal nonmonotonic logic for handling causal knowledge [12, 13],
which is inspired by default reasoning from conditional knowledge bases. Other modal-logic based for-
malisms play an important role in dealing with causal knowledge about actions and change; see especially
the work by Turner [36] and the references therein for an overview.A representative of the latter is Pearl’s
approach to modeling causality by structural equations [1, 10, 30, 31], which is central to a number of
recent research efforts. In particular, the evaluation of deterministic and probabilistic counterfactuals has
been explored, which is at the core of problems in fault diagnosis, planning, decision making, and deter-
mination of liability [1]. It has been shown that the structural-model approach allows a precise modeling
of many important causal relationships, which can especially be used in natural language processing [10].
An axiomatization of reasoning about causal formulas in the structural-model approach has been given by
Halpern [14].

Causality also plays an important role in the generation of explanations, whichare of crucial importance
in areas like planning, diagnosis, natural language processing, and probabilistic inference. Different notions
of explanations have been studied quite extensively, see especially [19,11, 34] for philosophical work, and
[29, 35, 20] for work in AI related to Bayesian networks. A critical examination of such approaches from
the viewpoint of explanations in probabilistic systems is given in [2].

In [15], Halpern and Pearl formalized causality using a model-based definition, which allows for a
precise modeling of many important causal relationships. Based on a notion of weak causality, they offer
appealing definitions of actual causality [16] and causal explanations [18]. As they show, their notions
of actual cause and causal explanation, which is very different fromthe concept of causal explanation in
[26, 27, 12], models well many problematic examples in the literature.

The following example from [3] illustrates the structural-model approach. Roughly, structural causal
models consist of a set of random variables, which may have a causal influence on each other. The variables
are divided into exogenous variables, which are influenced by factorsoutside the model, and endogenous
variables, which are influenced by exogenous and endogenous variables. This latter influence is described
by structural equations for the endogenous variables. For more details on structural causal models, we refer
to Section 2 and especially to [1, 10, 30, 31, 14].

Example 1.1 (rock throwing) Suppose that Suzy and Billy pick up rocks and throw them at a bottle. Suzy’s
rock gets there first, shattering the bottle. Since both throws are fully accurate, Billy’s rock would have
shattered the bottle, if Suzy had not thrown. We may model such a scenario inthe structural-model approach
as follows. We assume two binary background variablesUS andUB, which determine the motivation and the
state of mind of Suzy and Billy, whereUS (resp.,UB) is 1 iff Suzy (resp., Billy) intends to throw a rock. We
then have five binary variablesST , BT , SH , BH , andBS , which describe the observable situation, where
ST (resp.,BT ) is 1 iff Suzy (resp., Billy) throws a rock,SH (resp.,BH ) is 1 iff Suzy’s (resp., Billy’s)
rock hits the bottle, andBS is 1 iff the bottle shatters. The causal dependencies between these variables
are expressed by functions, which say that (i) the value ofST (resp.,BT ) is given by the value ofUS

(resp.,UB), (ii) SH is 1 iff ST is 1, (iii) BH is 1 iff BT is 1 andSH is 0, and (iv)BS is 1 iff SH or BH

is 1. These dependencies can be graphically represented as in Fig. 1.
Some actual causes and explanations in the structural-model approach are then informally given as
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US ST SH

UB BT BH

BS

Figure 1: Causal Graph

follows. If both Suzy and Billy intend to throw a rock, then (i) Suzy’s throwing a rock is anactual causeof
the bottle shattering, while (ii) Billy’s throwing a rock is not. Furthermore, (iii) if either Suzy or Billy intends
to throw a rock, then Suzy’s throwing a rock is anexplanationof the bottle shattering. Here, (i)–(iii) are
roughly determined as follows. As for (i), if both Suzy and Billy intend to throwa rock, then Suzy actually
throws a rock, and the bottle actually shatters. Moreover, under thestructural contingencythat Billy does
not throw a rock, (a) if Suzy does not throw a rock, then the bottle does not shatter, and (b) if Suzy throws
a rock, then the bottle shatters, even if any of the other variables would taketheir actual values. As for (ii),
there is no structural contingency under which (a) if Billy does not throw arock, then the bottle does not
shatter, and (b) if Billy throws a rock, then the bottle shatters, even if any ofthe other variables would take
their actual values. Finally, as for (iii), if either Suzy or Billy intends to throw arock, then the bottle actually
shatters, Suzy’s throwing a rock is a cause of the bottle shattering whenever she actually throws a rock, and
there are some possible contexts in which Suzy throws a rock and some in which she does not. Intuitively,
there should be a possible context in which the explanation is false, so that itis not already known, and a
possible context in which the explanation is true, so that it is not vacuous.2

There are a number of recent papers that are based on Halpern and Pearl’s definitions of actual causality
[16] and causal explanations [18]. In particular, Chockler and Halpern [3] define the notions of responsibility
and blame as a refinement of actual causality. Chockler, Halpern, and Kupferman [4] then make use of
the notion of responsibility for verifying a system against a formal specification. Along another line of
application, Hopkins and Pearl [23] and Finzi and Lukasiewicz [9] generalize structure-based causes and
explanations to a first-order framework and make them available in situation-calculus-based reasoning about
actions (see Section 8.3). Furthermore, Hopkins and Pearl [24] explore the usage of structure-based causality
[16] for commonsense causal reasoning. Finally, inspired by Halpern and Pearl’s notions of actual causality
[16] and causal explanations [18], Park [28] presents a novel approach allowing for different causal criteria
that are influenced by psychological factors not representable in a structural causal model.

The semantic aspects of causes and explanations in the structural-model approach have been thoroughly
studied in [15, 16, 17, 18]. Their computational complexity has been analyzed in [6, 7], where it has been
shown that associated decision problems are intractable in general. For example, deciding actual causes
(as defined in [16]) is complete for the classΣP

2 (=NPNP) of the Polynomial Hierarchy, while deciding
whether an explanation over certain variables exists is complete forΣP

3 (=NPΣP
2 ). Thus, these problems

are “harder” than the classical propositional satisfiability problem (whichis NP-complete), but “easier” than
PSPACE-complete problems. Chockler and Halpern [3] and Chockler, Halpern, and Kupferman [4] have
shown that computing the degrees of responsibility and blame is complete for polynomial time computation
with restricted use of aΣP

2 oracle (see Section 3.4). As for algorithms, Hopkins [21] explored search-based
strategies for computing actual causes in both the general and restricted settings.

However, to our knowledge, no tractable cases for causes and explanations in the structural-model ap-
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proach were explicitly known so far. In this paper, we aim at filling this gap and provide non-trivial tractabil-
ity results for the main computational problems on causes and explanations. These tractability results are
especially useful for dealing with structure-based causes and explanations in first-order reasoning about ac-
tions as recently introduced in [9], where one has to handle binary causal models with a quite large number
of variables (see Section 8.3). We make contributions to several issues, which are briefly summarized as
follows:

• The first issue concerns focusing of the computation to the relevant partof the causal model. Extend-
ing work by Hopkins [21], we explore how an instance of deciding weak cause can be reduced to an
equivalent instance in which the (potential) weak cause and the causal model may contain fewer vari-
ables. That is, irrelevant variables in weak causes and causal models are identified and removed. We
provide two such reductions in this paper, which have different properties, but can be both carried out
in polynomial time. These reductions can lead to great simplifications in (potential)weak causes and
causal models, and thus speed up considerably computations about causes and explanations. Notice
that weak causes are fundamental to the notion of actual cause, to various forms of explanations, as
well as to the notions of responsibility and blame.

• The second issue to which we contribute are characterizations of weak causes in the structural-model
approach. We present a novel such characterization for a class of causal models in which the causal
graph over the endogenous variables has the form of a directed chain of causal subgraphs, which we
call adecomposable causal graph. We also identify two natural subclasses of decomposable causal
graphs, where the causal graph over the endogenous variables forms a directed tree and, more gener-
ally, a directed chain of layers, which we call acausal treeand alayered causal graph, respectively,
and provide simplified versions of the characterizations of weak causes.

• By combining the removal of irrelevant variables (in weak causes and causal models) with this new
characterization of weak cause in the above causal models, we obtain algorithms for deciding and
computing weak causes, actual causes, explanations, partial explanations, andα-partial explanations,
as well as for computing the explanatory power of partial explanations, which all run in polynomial
time under suitable conditions. This way, we obtain several tractability results for the structural-model
approach. To our knowledge, these are the first ones that are explicitlyderived for structure-based
causes and explanations.

• Furthermore, by slightly extending the new characterization of weak causein the above causal mod-
els, we also obtain algorithms for computing the degrees of responsibility and blame in the structural-
model approach, which similarly run in polynomial time under suitable conditions.We thus also
obtain new tractability results for the structure-based notions of responsibility and blame. Note that
Chockler, Halpern, and Kupferman [4] have recently shown that computing the degree of responsi-
bility in read-once Boolean formulas (which are Boolean formulas in which each variable occurs at
most once) is possible in linear time.

• Finally, we show that all the above techniques and results carry over to a refinement of the notion
of weak cause and to a generalization of causal models to extended causal models, which have been
both recently introduced by Halpern and Pearl in [17]. Furthermore, wedescribe an application of the
results of this paper for dealing with structure-based causes and explanations in first-order reasoning
about actions. Here, one has to handle binary causal models with a quite large number of variables,
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but with a natural layering through the time line. Thus, such causal models often have the structure of
layered causal graphs.

An attractive feature of the tractable cases identified for causal trees and layered causal graphs is that the
respective problem instances can be recognized efficiently, namely in linear time. For general decomposable
causal graphs, however, this is not the case, since this problem is NP-complete in general. Nonetheless, effort
spent for the recognition may be more than compensated by the speed up in solving the reasoning problems
on weak causes and explanations.

Our results on the computational and semantic properties of weak causes and explanations help, as we
believe, to enlarge the understanding of and insight into the structural-model approach by Halpern and Pearl
and its properties. Furthermore, they provide the basis for developing efficient algorithms and pave the
way for implementations. For example, complexity results on answer set programming [5] have guided the
development of efficient solvers such asDLV [25]. The results of this paper are in particular of interest and
significant, since a structural decomposition seems natural and applies to a number of examples from the
literature.

The rest of this paper is organized as follows. Section 2 contains some preliminaries on structural causal
models as well as on causes, explanations, responsibility, and blame in structural causal models. In Section 3,
we describe the decision and optimization problems for which we present tractability results in this paper,
and we summarize previous complexity results for these problems. In Section 4, we explore the removal
of irrelevant variables when deciding weak cause. Section 5 presents tractability results for causal trees.
Section 6 then generalizes to decomposable causal graphs, while Section 7concentrates on layered causal
graphs. In Section 8, we generalize the above techniques and results to the refined notion of weak cause
and extended causal models, and describe their application in first-orderreasoning about actions. Section 9
summarizes our results and gives a conclusion.

To increase readability, all proofs have been moved to Appendices A–E.

2 Preliminaries

In this section, we give some technical preliminaries. We recall Pearl’s structural causal models and Halpern
and Pearl’s notions of weak and actual cause [15, 16] and their notionsof explanation, partial explanation,
and explanatory power [15, 18].

2.1 Causal Models

We start with recalling structural causal models; for further background and motivation, see especially
[1, 10, 30, 31, 14]. Roughly, the main idea behind structural causal models is that the world is modeled
by random variables, which may have a causal influence on each other.The variables are divided into
exogenous variables, which are influenced by factors outside the model,and endogenous variables, which
are influenced by exogenous and endogenous variables. This latter influence is described by structural
equations for the endogenous variables.

More formally, we assume a finite set ofrandom variables. Capital lettersU, V,W, etc. denote variables
and sets of variables. Each variableXi may take onvaluesfrom a finitedomainD(Xi). A value for a
set of variablesX = {X1, . . . , Xn} is a mappingx : X→D(X1)∪ · · · ∪D(Xn) such thatx(Xi)∈D(Xi)
for all i ∈ {1, . . . , n}; for X = ∅, the unique value is the empty mapping∅. Thedomainof X, denoted
D(X), is the set of all values forX. We say thatX is domain-boundediff |D(Xi)|≤k for everyXi∈X,
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wherek is some global constant. Lower case lettersx, y, z, etc. denote values for the variables or the sets of
variablesX,Y, Z, etc., respectively. AssignmentsX =x of values to variables are often abbreviated by the
valuex. We often identify singletons{Xi} with Xi, and their valuesx with x(Xi).

ForY ⊆X andx∈D(X), we denote byx|Y the restriction ofx toY . For disjoint sets of variablesX,Y
and valuesx∈D(X), y ∈D(Y ), we denote byxy the union ofx andy. For (not necessarily disjoint) sets
of variablesX,Y and valuesx∈D(X), y ∈D(Y ), we denote by[x〈y] the union ofx|(X\Y ) andy.

A causal modelM = (U, V, F ) consists of two disjoint finite setsU andV of exogenousandendogenous
variables, respectively, and a setF = {FX |X ∈V } of functions that assign a value ofX to each value of
the parentsPAX ⊆ U ∪ V \{X} of X. Every valueu∈D(U) is also called acontext. We call a causal
modelM = (U, V, F ) domain-boundediff every X ∈V is domain-bounded. In particular,M is binary iff
|D(X)|=2 for all X ∈V . The parent relationship between the variables ofM =(U, V, F ) is expressed by
the causal graphfor M , denotedG(M), which is the directed graph(N,E) that hasU ∪V as the set of
nodesN , and a directed edge fromX to Y in E iff X is a parent ofY , for all variablesX,Y ∈U ∪V . We
useGV (M) to denote the subgraph ofG(M) induced byV .

We focus here on the principal class ofrecursivecausal modelsM =(U, V, F ); as argued in [15], we
do not lose much generality by concentrating on recursive causal models. A causal modelM = (U, V, F ) is
recursive, if its causal graph is a directed acyclic graph. Equivalently, there existsa total ordering≺ onV
such thatY ∈PAX impliesY ≺X, for allX,Y ∈V . In recursive causal models, every assignmentU =u to
the exogenous variables determines a unique valuey for every set of endogenous variablesY ⊆V , denoted
byYM (u) (or simply byY (u), if M is understood). In the following,M is reserved for denoting a recursive
causal model.

Example 2.1 (rock throwing cont’d)The causal modelM =(U, V, F ) for Example 1.1 is given byU={US ,
UB}, V = {ST , BT , SH , BH , BS}, andF = {FST , FBT , FSH , FBH , FBS}, whereFST = US , FBT =
UB, FSH =ST , FBH = 1 iff BT =1 andSH = 0, andFBS = 1 iff SH = 1 or BH = 1. Fig. 1 shows the
causal graph forM , that is, the parent relationships between the exogenous and endogenous variables inM .
Since this graph is acyclic,M is recursive.2

In a causal model, we may set endogenous variablesX to a valuex by an “external action”. More
formally, for any causal modelM =(U, V, F ), set of endogenous variablesX ⊆V , and valuex∈D(X),
the causal modelMX=x is given by(U, V \X,FX=x), whereFX=x = {F ′

Y |Y ∈V \X} and eachF ′
Y is

obtained fromFY by settingX to x, is asubmodelof M . We useMx andFx to abbreviateMX=x and
FX=x, respectively, ifX is understood from the context. Similarly, for a set of endogenous variablesY ⊆V
andu∈D(U), we writeYx(u) to abbreviateYMx

(u). We assume thatX(u)=x for all u∈D(U) in the
submodel ofM whereX is set tox.

As for computation, we assume for causal modelsM =(U, V, F ) no particular form of representation
of the functionsFX : D(PAX) → D(X), X ∈V , in F (by formulas, circuits, etc.), but that everyFX is
evaluable in polynomial time. Furthermore, we assume that the causal graphG(M) for M is part of the
input representation ofM . Notice thatG(M) is computable fromM with any common representation of
the functionsFX (by formulas, circuits, etc.) in time linear in the size of the representation ofM anyway.
For any causal modelM , we denote by‖M‖ the size of its representation.

The following proposition is then immediate.

Proposition 2.1 For all X,Y ⊆V andx∈D(X), the valuesY (u) andYx(u), givenu ∈ D(U), are com-
putable in polynomial time.



6 INFSYS RR 1843-02-03

2.2 Weak and Actual Causes

We now recall weak and actual causes from [15, 16]. We first defineevents and the truth of events in a
causal modelM =(U, V, F ) under a contextu∈D(U).

A primitive eventis an expression of the formY = y, whereY is an endogenous variable andy is a
value forY . The set ofeventsis the closure of the set of primitive events under the Boolean operations¬
and∧ (that is, every primitive event is an event, and ifφ andψ are events, then also¬φ andφ∧ψ). For any
eventφ, we denote byV (φ) the set of all variables inφ.

The truth of an eventφ in a causal modelM = (U, V, F ) under a contextu∈D(U), denoted(M,u) |=
φ, is inductively defined as follows:

• (M,u) |= Y = y iff YM (u) = y;

• (M,u) |= ¬φ iff (M,u) |= φ does not hold;

• (M,u) |= φ ∧ ψ iff (M,u) |= φ and(M,u) |= ψ.

Further operators∨ and→ are defined as usual, that is,φ ∨ ψ andφ → ψ stand for¬(¬φ ∧ ¬ψ) and
¬φ ∨ ψ, respectively. We writeφM (u) (resp.,φ(u) if M is understood) to abbreviate(M,u) |=φ. For
X ⊆ V andx ∈ D(X), we useφMx

(u) (resp.,φx(u)) as an abbreviation of(Mx, u) |= φ. ForX =
{X1, . . . , Xk} ⊆ V with k ≥ 1 andxi ∈ D(Xi), 1 ≤ i ≤ k, we useX = x1 · · ·xk to abbreviate the event
X1 =x1 ∧ . . . ∧Xk =xk. For any eventφ, we denote by‖φ‖ its size, which is the number of symbols in it.

The following result follows immediately from Proposition 2.1.

Proposition 2.2 LetX ⊆V andx∈D(X). Givenu ∈ D(U) and an eventφ, deciding whetherφ(u) holds
(resp.,φx(u) holds for givenx) is feasible in polynomial time.

We are now ready to recall the notions of weak and actual cause [15, 16]. LetM = (U, V, F ) be a causal
model. LetX ⊆V andx∈D(X), and letφ be an event. Then,X =x is aweak causeof φ underu∈D(U)
iff the following conditions hold:

AC1. X(u) = x andφ(u).

AC2. SomeW ⊆V \X and somex∈D(X) andw∈D(W ) exist such that:

(a) ¬φxw(u), and

(b) φxwẑ(u) for all Ẑ ⊆V \ (X ∪W ) andẑ= Ẑ(u).

Loosely speaking,AC1 says that bothX =x andφ hold underu, while AC2 expresses thatX =x is a non-
trivial reason forφ. Here, the dependence ofφ fromX =x is tested under specialstructural contingencies,
where someW ⊆V \X is kept at some valuew∈D(W ). AC2(a) says thatφ can be false for other values
of X underw, while AC2(b) essentially ensures thatX alone is sufficient for the change fromφ to ¬φ.
Observe thatX =x can be a weak cause only ifX is nonempty.

Furthermore,X =x is anactual causeof φ underu iff additionally the following minimality condition
is satisfied:

AC3. X is minimal. That is, no proper subset ofX satisfies both AC1 and AC2.

The following characterization of actual causes through weak causes isknown.
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Theorem 2.3 (see [6])LetM = (U, V, F ), X ⊆ V , x ∈ D(X), andu ∈ D(U). Letφ be an event. Then,
X =x is an actual cause ofφ underu iff X is a singleton andX =x is a weak cause ofφ underu.

We give an example to illustrate the above notions of weak and actual cause.

Example 2.2 (rock throwing cont’d)Consider the contextu1,1=(1, 1) in which both Suzy and Billy intend
to throw a rock. Then, bothST=1 andST=1∧BT=1 are weak causes ofBS = 1, while BT = 1 is not.
For instance, let us show thatST =1 is a weak cause ofBS = 1 underu1,1. As for AC1, bothST andBS

are1 underu1,1. As for AC2, under the contingency thatBT is set to0, we have that (a) ifST is set to
0, thenBS has the value0, and (b) ifST is set to1, thenBS is 1. In fact, by Theorem 2.3,ST = 1 is an
actual cause ofBS = 1 underu1,1, while ST = 1∧BT =1 is not. Furthermore,ST =1 (resp.,BT =1) is
the only weak (and by Theorem 2.3 also actual) cause ofBS = 1 underu1,0 =(1, 0) (resp.,u0,1 = (0, 1)) in
which only Suzy (resp., Billy) intends to throw a rock.2

2.3 Explanations

We next recall the concept of an explanation from [15, 18]. Intuitively, an explanation of an observed
eventφ is a minimal conjunction of primitive events that causesφ even when there is uncertainty about the
actual situation at hand. The agent’s epistemic state is given by a set of possible contextsu∈D(U), which
describes all the possible scenarios for the actual situation.

Formally, letM = (U, V, F ) be a causal model. LetX ⊆V andx∈D(X), let φ be an event, and let
C ⊆D(U) be a set of contexts. Then,X =x is anexplanationof φ relative toC iff the following conditions
hold:

EX1. φ(u) holds, for every contextu∈C.

EX2. X =x is a weak cause ofφ under everyu∈C such thatX(u) = x.

EX3. X is minimal. That is, for everyX ′⊂X, some contextu∈C exists such thatX ′(u) = x|X ′ and
X ′ =x|X ′ is not a weak cause ofφ underu.

EX4. X(u)=x andX(u′) 6=x for someu, u′ ∈C.

Note that inEX3, any counterexampleX ′ ⊂ X to minimality must be a nonempty set of variables. The
following example illustrates the above notion of explanation.

Example 2.3 (rock throwing cont’d)Consider the set of contextsC= {u1,1, u1,0, u0,1}. Then,ST = 1 is
an explanation ofBS = 1 relative toC, sinceEX1 BS (u1,1)= BS (u1,0)=BS (u0,1)= 1, EX2 ST = 1 is a
weak cause ofBS = 1 under bothu1,1 andu1,0, EX3 ST is obviously minimal, andEX4 ST (u1,1)= 1 and
ST (u0,1) 6= 1. Furthermore,ST = 1 ∧ BT = 1 is not an explanation ofBS = 1 relative toC, since here the
minimality conditionEX3 is violated.2

2.4 Partial Explanations and Explanatory Power

We next recall the notions ofα-partial / partial explanations and of explanatory power of partial explanations
[15, 18]. Roughly, the main idea behind partial explanations is to generalizethe notion of explanation of
Section 2.3 to a setting where additionally a probability distribution over the set ofpossible contexts is given.
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LetM =(U, V, F ) be a causal model. LetX ⊆V andx∈D(X). Let φ be an event, and letC ⊆D(U)

be such thatφ(u) for all u∈C. We useCφ
X=x to denote the largest subsetC′ of C such thatX =x is an

explanation ofφ relative toC′. Note that this setCφ
X=x is unique. The following proposition from [7] shows

thatCφ
X=x is defined, if a subsetC′ of C exists such thatX =x is an explanation ofφ relative toC′; it also

characterizesCφ
X=x.

Proposition 2.4 LetM =(U, V, F ) be a causal model. LetX ⊆V andx∈D(X). Letφ be an event, and
let C ⊆D(U) be such thatφ(u) for all u ∈ C. If X =x is an explanation ofφ relative to someC′⊆C, then
Cφ

X=x is the set of allu∈C such that either (i)X(u) 6= x, or (ii) X(u)=x andX =x is a weak cause ofφ
underu.

Let P be a probability function onC (that is,P is a mapping fromC to the interval[0, 1] such that∑
u∈C P(u) = 1), and define

P(Cφ
X=x |X =x) =

∑
u ∈ C

φ
X=x

,

X(u) = x

P(u) /
∑

u ∈ C,
X(u) = x

P(u) .

Then,X =x is called anα-partial explanationof φ relative to(C,P) iff Cφ
X=x is defined andP(Cφ

X=x |X =
x)≥α. We sayX =x is apartial explanationof φ relative to(C,P) iff X =x is anα-partial explanation
of φ relative to(C,P) for someα> 0; furthermore,P(Cφ

X=x |X =x) is called itsexplanatory power(or
goodness).

Example 2.4 (rock throwing cont’d)Consider the set of contextsC= {u1,1, u1,0, u0,1}, and letP (u1,1) =
0.2 andP (u1,0)=P (u0,1)= 0.4. Then,CBS = 1

ST = 1 = C, and thusST = 1 is a 1-partial explanation ofBS = 1
relative to(C,P). That is,ST = 1 is a partial explanation ofBS = 1 relative to(C,P) with explanatory
power1. 2

As for computation, we assume that the above probability functionsP on C are computable in polyno-
mial time.

2.5 Responsibility and Blame

We finally recall the notions of responsibility and blame from [3]. Intuitively,the notion of responsibility is
a refinement of the notion of actual cause, which also measures the minimal number of changes that must be
made under a structural contingency to create a counterfactual dependence ofφ fromX =x. Whereas the
notion of blame then also takes into consideration the belief of an agent aboutthe possible causal models
and contexts (before setting the weak cause).

In the sequel, letM =(U, V, F ) be a causal model, letX ⊆V , x∈D(X), andu ∈ D(U), and letφ
be an event. Let us call the pair(M,u) a situation. Then, thedegree of responsibilityof X =x for φ in
situation(M,u), denoteddr((M,u), X=x, φ), is 0 if X =x is not an actual cause ofφ underu in M , and
it is 1 / (k+1) if X =x is an actual cause ofφ underu in M , and

(i) someW ⊆V \X, x∈D(X), andw∈D(W ) exist such thatAC2(a) and (b) hold and thatk variables in
W have different values inw andW (u), and

(ii) no W ′⊆V \X, x′ ∈D(X), andw′ ∈D(W ′) exist such thatAC2(a) and (b) hold and thatk′<k vari-
ables inW ′ have different values inw′ andW ′(u).
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Informally, dr((M,u), X=x, φ)= 1 / (k+1), wherek is the minimal number of changes that have to be
made underu in M to makeφ counterfactually depend onX =x. In particular, ifX =x is not an actual
cause ofφ underu in M , thenk=∞, and thusdr((M,u), X=x, φ)= 0. Otherwise,dr((M,u), X=x, φ)
is at most1.

Example 2.5 (rock throwing cont’d)Consider again the contextu1,1 = (1, 1) in which both Suzy and Billy
intend to throw a rock. As argued in Example 2.2, Suzy’s throwing a rock (ST = 1) is an actual cause of the
bottle shattering (BS = 1), witnessed by the contingency that Billy does not throw (and hence doesnot hit).
Here,AC2 holds also under the contingency that Billy throws a rock, but the rock does not hit the bottle
(BT andBH are set to1 and0, respectively). SinceBT andBH are1 and0, respectively, underu1,1, the
degree of responsibility of Suzy’s throwing a rock (ST = 1) for the bottle shattering (BS = 1) in (M,u1,1)
is given by1. 2

An epistemic stateE = (K, P ) consists of a set of situationsK and a probability distributionP overK.
Thedegree of blameof settingX to x for φ relative to an epistemic state(K, P ), denoteddb(K, P,X←x,
φ), is defined as

∑
(M,u)∈K dr((MX=x, u), X=x, φ) · P ((M,u)) .

Informally, (K, P ) are the situations that an agent considers possible beforeX is set tox along with their
probabilities believed by the agent. Then,db(K, P,X←x, φ) is the expected degree of responsibility of
X =x for φ in (MX=x, u).

Example 2.6 (rock throwing cont’d)Suppose that we are computing the degree of blame of Suzy’s throwing
a rock for the bottle shattering. Assume that Suzy considers possible a modified version of the causal model
given in Example 2.1, denotedM ′, where Billy may also throw extra hard, which is expressed by the
additional value2 of UB andBT . If Billy throws extra hard, then Billy’s rock hits the bottle independently
of what Suzy does, which is expressed by additionally assuming thatBH is 1 if BT is 2. Assume then that
Suzy considers possible the contextsu1,0, u1,1, andu1,2, where Suzy throws a rock, and Billy either does
not throw a rock, throws a rock in a normal way, or throws a rock extra hard. Finally, assume that each of
the three contexts has the probability1/3. It is then not difficult to verify that the degree of responsibility of
Suzy’s throwing a rock for the bottle shattering is1/2 in (M ′, u1,2) and1 in both(M ′, u1,0) and(M ′, u1,1).
Thus, the degree of blame of Suzy’s throwing a rock for the bottle shattering is5/6. 2

3 Problem Statements

We concentrate on the following important computational problems for causes, explanations, responsibility,
and blame in the structural-model approach, which comprise both decision problems and problems with
concrete output.

3.1 Causes

WEAK /ACTUAL CAUSE: GivenM=(U, V, F ), X ⊆V , x∈D(X), u∈D(U), and an eventφ, decide if
X =x is a weak (resp., an actual) cause ofφ underu.

WEAK /ACTUAL CAUSE COMPUTATION: GivenM = (U, V, F ), X ⊆ V , u ∈ D(U), and an eventφ,
compute the set of allX ′ =x′ such that (i)X ′⊆X andx′ ∈ D(X ′), and (ii)X ′ =x′ is a weak (resp.,
an actual) cause ofφ underu.
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3.2 Notions of Explanations

EXPLANATION : GivenM = (U, V, F ), X ⊆V , x∈D(X), an eventφ, and a set of contextsC ⊆D(U),
decide whetherX =x is an explanation ofφ relative toC.

EXPLANATION COMPUTATION: GivenM = (U, V, F ),X ⊆V , an eventφ, and a set of contextsC ⊆D(U),
compute the set of allX ′ =x′ such that (i)X ′⊆X andx′ ∈D(X ′), and (ii)X ′ =x′ is an explanation
of φ relative toC.

α-PARTIAL EXPLANATION : GivenM = (U, V, F ), X ⊆V , x∈D(X), an eventφ, a set of contextsC ⊆
D(U) such thatφ(u) for all u∈C, a probability functionP on C, andα≥0, decide ifX =x is an
α-partial explanation ofφ relative to(C, P ).

α-PARTIAL EXPLANATION COMPUTATION: GivenM = (U, V, F ), X ⊆ V , an eventφ, a set of contexts
C ⊆D(U) with φ(u) for all u∈C, a probability functionP on C, andα≥ 0, compute the set of all
X ′ =x′ such that (i)X ′⊆X andx′ ∈ D(X ′), and (ii)X ′ =x′ is anα-partial explanation ofφ relative
to (C, P ).

PARTIAL EXPLANATION : GivenM =(U, V, F ),X ⊆V , x∈D(X), an eventφ, a set of contextsC ⊆D(U)
such thatφ(u) for all u∈C, and a probability functionP onC, decide whetherX =x is a partial ex-
planation ofφ relative to(C, P ).

PARTIAL EXPLANATION COMPUTATION: Given M =(U, V, F ), X ⊆V , an eventφ, a set of contexts
C ⊆D(U) such thatφ(u) for all u∈C, and a probability functionP on C, compute the set of all
X ′ =x′ such that (i)X ′⊆X andx′ ∈D(X ′), and (ii)X ′ =x′ is a partial explanation ofφ relative to
(C, P ).

EXPLANATORY POWER: Given M = (U, V, F ), X ⊆V , x∈D(X), an eventφ, a set of contextsC ⊆
D(U), and a probability functionP on C, where (i)φ(u) for all u∈C, and (i)X =x is a partial
explanation ofφ relative to(C, P ), compute the explanatory power ofX =x for φ relative to(C, P ).

3.3 Responsibility and Blame

RESPONSIBILITY: GivenM = (U, V, F ), X ⊆ V , x ∈ D(X), u ∈ D(U), and an eventφ, compute the
degree of responsibility ofX =x for φ in (M,u).

BLAME : Given an epistemic stateE , a set of endogenous variablesX, x∈D(X), and an eventφ, compute
the degree of blame of settingX to x for φ relative toE .

3.4 Previous Results

Several complexity results for the above problems have been established.In particular, as shown in [6],
the decision problems WEAK CAUSE and ACTUAL CAUSE are bothΣP

2 -complete in the general case, and
NP-complete in the case of binary variables. Furthermore, as shown in [7], the decision problems EXPLA-
NATION and PARTIAL /α-PARTIAL EXPLANATION and the optimization problem EXPLANATORY POWER

are complete forDP
2 , P

ΣP
2

‖ , andFP
ΣP

2

‖ , respectively, in the general case, and complete forDP, PNP
‖ and

FPNP
‖ , respectively, in the binary case. HereDP

2 (resp.,DP) is the “logical conjunction” ofΣP
2 andΠP

2

(resp.,NP andco-NP), andPC
‖ (resp.,FPC

‖ ) is the class of decision problems solvable (resp., functions
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computable) in polynomial time with access to one round of parallel queries to anoracle inC. Finally,
Chockler and Halpern [3] and Chockler, Halpern, and Kupferman [4]have shown that the optimization

problems RESPONSIBILITY and BLAME are complete for the classesFPΣP
2 [log n] andFP

ΣP
2

‖ , respectively,

in the general case, and complete forFPNP[log n] andFPNP
‖ , respectively, in the binary case. The class

FPC[log n] contains the functions computable in polynomial time withO(logn) many calls to an oracle in
C, wheren is the size of the problem input.

To our knowledge, there exist no complexity results for the optimization problems WEAK /ACTUAL

CAUSE COMPUTATION, EXPLANATION COMPUTATION, andα-PARTIAL /PARTIAL EXPLANATION COM-
PUTATION so far. But there are complexity results on decision variants of two of the latter problems, which
are called EXPLANATION EXISTENCEandα-PARTIAL EXPLANATION EXISTENCE, respectively. They are
the decision problems of deciding whether an explanation and anα-partial explanation, respectively, over
certain variables exists, which are complete forΣP

3 (resp.,ΣP
2 ) in the general (resp., binary) case; see [7].

To our knowledge, there are no explicit tractability results for the above problems related to causes and
explanations so far. As for responsibility and blame, Chockler, Halpern,and Kupferman [4] have shown that
computing the degree of responsibility in read-once Boolean formulas can be done in linear time.

4 Irrelevant Variables

In this section, we describe how an instance of deciding weak cause can be reduced with polynomial over-
head to an equivalent instance in which the (potential) weak cause and the causal model may contain fewer
variables. That is, such reductions identify and remove irrelevant variables in weak causes and also in
causal models. This can be regarded as an important preliminary step in the computation of weak and actual
causes, which seems to be indispensable in efficient implementations.

We first describe a reduction from [7] and a generalization thereof in which irrelevant variables in weak
causesX =x of an eventφ are characterized and removed. We then generalize these two reductionsto
two new reductions that identify and remove irrelevant variables in weak causesX =x of φ and also in
causal modelsM , producing thereducedand thestrongly reduced causal modelof M w.r.t.X =x and an
eventφ. Both new reductions also generalize a reduction due to Hopkins [21] forevents of the formX =x
andφ = Y = y, whereX andY are singletons. The reduced causal model ofM w.r.t.X =x andφ is in
general larger than its strong reduct w.r.t.X =x andφ. But the former allows for deciding whetherX ′ =x′

is a weak cause ofφ, for the large class of allX ′⊆X, while the latter generally allows only for deciding
whetherX =x is a weak cause ofφ.

In the rest of this section, to illustrate the removal of variables in (potential) weak causes and causal
models, we use what is shown in Fig. 2: (i) the causal graphGV (M) of a causal modelM =(U, V, F ),
(ii) the set of variablesX ⊆V of a (potential) weak causeX =x, and (iii) the set of variablesV (φ) in an
eventφ.

4.1 Reducing Weak Causes

The following result (essentially proved in [7]) shows that deciding whetherX =x is a weak cause ofφ
underu is reducible to deciding whetherX ′ =x|X ′ is a weak cause ofφ underu, whereX ′ is the set of
all Xi ∈X that are either inφ or ancestors of variables inφ. That is, in deciding whetherX =x is a weak
cause ofφ underu, we can safely ignore all variables inX =x not connected to any variable inφ.
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X

V (φ)

Figure 2: Causal GraphGV (M) along withX andV (φ)

Theorem 4.1 (essentially [7])Let M = (U, V, F ) be a causal model. LetX ⊆V and x∈D(X), let φ
be an event, and letu∈D(U). Let X ′ be the set of all variables inX from which a (directed) path
exists inG(M) to a variable inφ, and letx′ =x|X ′. Then,X =x is a weak cause ofφ under u iff
(i) (X\X ′)(u)=x|(X\X ′) and (ii)X ′ =x′ is a weak cause ofφ underu.

Example 4.1 Fig. 3 showsX ′ for a causal modelM = (U, V, F ) and an eventφ such that the causal graph
GV (M) and the setsX andV (φ) are as in Fig. 2.2

X ′

V (φ)

Figure 3: Causal GraphGV (M) along withX ′ andV (φ)

The next theorem formulates the more general result that deciding whether X =x is a weak cause ofφ
underu is reducible to deciding whetherX ′ =x|X ′ is a weak cause ofφ underu, whereX ′ is the set of
all variables inX that occur inφ or that are ancestors of variables inφ not “blocked” by other variables in
X. That is, in deciding whetherX =x is a weak cause ofφ underu, we can even ignore every variable
in X =x not connected via variables inV \X to any variable inφ.

Theorem 4.2 LetM = (U, V, F ) be a causal model. LetX ⊆V andx∈D(X), let φ be an event, and let
u∈D(U). LetX ′ be the set of all variablesXi ∈X from which there exists a path inG(M) to a variable
in φ that contains noXj ∈X\{Xi}, and letx′ =x|X ′. Then,X =x is a weak cause ofφ underu iff
(i) (X\X ′)(u) = x|(X\X ′) and (ii)X ′ =x′ is a weak cause ofφ underu.

Example 4.2 Fig. 4 showsX ′ for a causal modelM = (U, V, F ) and an eventφ such that the causal graph
GV (M) and the setsX andV (φ) are as in Fig. 2.2
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X ′

V (φ)

Figure 4: Causal GraphGV (M) along withX ′ andV (φ)

The next result shows that computing the set of all variables in a weak cause that are not irrelevant
according to Theorems 4.1 and 4.2 can be done in linear time.

Proposition 4.3 Given a causal modelM = (U, V, F ),X ⊆V , and an eventφ,
(a) computing the setX ′ of all variablesXi ∈X from which a path exists to a variable inφ can be done

in timeO(‖M‖+‖φ‖).

(b) computing the setX ′ of all variablesXi ∈X from which a path exists to a variable inφ that contains
noXj∈X\{Xi} can be done in timeO(‖M‖+‖φ‖).

4.2 Reducing Weak Causes and Causal Models

We now generalize the reduction described in Theorem 4.1 to a reduction which not only removes irrel-
evant variables from causes, but also removes irrelevant variables incausal models. In the sequel, let
M = (U, V, F ) be a causal model. LetX ⊆V , x∈D(X), andu∈D(U), and letφ be an event. We first
define irrelevant variables w.r.t.X =x andφ, and then the reduced causal model w.r.t.X =x andφ, which
does not contain these irrelevant variables anymore.

The set ofrelevantendogenous variables ofM = (U, V, F ) relative toX =x andφ, denotedRφ
X=x(M),

is the set of allA∈V such that eitherR1 or R2 holds:

R1. A is on a directed path inG(M) from a variable inX\{A} to a variable inφ.

R2. A does not satisfyR1, and eitherA occurs inφ, orA is a parent inG(M) of a variable that satisfiesR1.

Informally, Rφ
X=x(M) is the set of all variables inφ, all variablesA that connect a different variable

in X to one inφ, and all the parents of the latter variables. A variableA∈V is irrelevant w.r.t. X =x
andφ iff it is not relevant w.r.t.X =x andφ. Note that it doesnot necessarily hold thatX ⊆Rφ

X=x(M).

The reduced causal modelof M = (U, V, F ) w.r.t. X =x and φ, denotedMφ
X=x, is the causal model

M ′ =(U, V ′, F ′) that is defined by the set of endogenous variablesV ′ = Rφ
X=x(M) and the following

set of functionsF ′ = {F ′
A |A∈V

′}:

F ′ = {F ′
A =FA |A∈V

′ satisfiesR1} ∪ {F ′
A =F ⋆

A |A∈V
′ satisfiesR2} ,

whereF ⋆
A assignsAM (uA) to A for every valueuA ∈D(UA) of the setUA of all ancestorsB ∈U of A

in G(M). We often useRφ
X(M), RY

X(M), Mφ
X , andMY

X to abbreviateRφ
X=x(M), RY =y

X=x(M), Mφ
X=x,

andMY =y
X=x, respectively.
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Example 4.3 Fig. 5 shows the causal graphGV (Mφ
X) along with the set of variablesX ′ =X ∩Rφ

X(M) for
a causal modelM = (U, V, F ) and an eventφ such that the causal graphGV (M) and the setsX andV (φ)
are as in Fig. 2.2

X ′

V (φ)

Figure 5: Causal GraphGV (Mφ
X) along withX ′ =X ∩Rφ

X(M) andV (φ)

The following result shows that a variable inX =x is irrelevant w.r.t.X =x andφ iff it is not connected
to a variable inφ. Hence, we are heading towards a generalization of the reduction in Theorem 4.1.

Proposition 4.4 LetM =(U, V, F ) be a causal model. LetX ⊆V , x∈D(X), and letφ be an event. Then,
X ∩Rφ

X(M) is the set of all variablesB ∈X from which there exists a directed path inG(M) to a variable
in φ.

The next result shows that deciding whetherX =x is a weak cause ofφ underu in M can be reduced
to deciding whetherX ′ =x′ is a weak cause ofφ underu in Mφ

X , whereX ′ =X ∩Rφ
X(M) andx′ =x|X ′.

It generalizes Theorem 4.1. Note that this result and also Theorems 4.7 and 4.10 below do not carry over to
responsibility.

Theorem 4.5 LetM =(U, V, F ) be a causal model. LetX ⊆V , x∈D(X), andu∈D(U), and letφ be
an event. LetX ′ =X ∩Rφ

X(M) andx′ =x|X ′. Then,X =x is a weak cause ofφ underu in M iff (i)

(X\X ′)(u) = x|(X\X ′) in M , and (ii)X ′ =x′ is a weak cause ofφ underu in Mφ
X .

Our next result shows that the reduction of a causal model is monotonic inX. Roughly, ifX ′⊆X, then
the reduced causal model ofM w.r.t. X ′ =x′ andφ is essentially contained in the reduced causal model
of M w.r.t.X =x andφ.

Proposition 4.6 LetM=(U, V, F ) be a causal model. LetX ′⊆X⊆V , x′∈D(X ′), x∈D(X), and letφ be
an event. Then,Mφ

X′ coincides with(Mφ
X)φ

X′ .

We are now ready to formulate the main result of this section. The following theorem shows that
deciding whetherX ′ =x′, whereX ′⊆X, is a weak cause ofφ underu in M can be reduced to deciding
whether its restriction toRφ

X(M) is a weak cause ofφ underu inMφ
X . It is a generalization of Theorems 4.1

and 4.5, which follows from Theorem 4.5 and Proposition 4.6.

Theorem 4.7 LetM = (U, V, F ) be a causal model. LetX ′⊆X ⊆V , x′ ∈D(X ′), x∈D(X), andu ∈
D(U), and letφ be an event. LetX ′′ =X ′ ∩Rφ

X(M) andx′′ = x′|X ′′. Then,X ′ =x′ is a weak cause
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of φ underu in M iff (i) (X ′\X ′′)(u) = x′|(X ′\X ′′) in M , and (ii)X ′′ =x′′ is a weak cause ofφ underu
in Mφ

X .

The following result shows that the reduced causal model and the restriction of its causal graph to the
set of endogenous variables can be computed in quadratic and linear time, respectively. Here, for any setS,
we denote by|S| its cardinality.

Proposition 4.8 Given a causal modelM =(U, V, F ), X ⊆V , x∈D(X), and an eventφ, the directed
graphGV (Mφ

X) (resp., the causal modelMφ
X ) can be computed in timeO(‖M‖ + ‖φ‖) (resp., in time

O(|V |‖M‖+ ‖φ‖)).

4.3 Strongly Reducing Weak Causes and Causal Models

In the sequel, letM =(U, V, F ) be a causal model. LetX ⊆V , x∈D(X), andu∈D(U), and letφ be
an event. The reduced causal model w.r.t.X =x andφ, which generalizes the idea behind Theorem 4.1,
still contains some superfluous variables for deciding whetherX =x is a weak causes ofφ underu in M .
We now define the strongly reduced causal model w.r.t.X =x andφ, which generalizes the idea behind
Theorem 4.2, where these superfluous variables are removed. We first define strongly relevant variables
w.r.t.X =x andφ, and then the strongly reduced causal model w.r.t.X =x andφ, which contains only such
variables.

The set ofstrongly relevantendogenous variables ofM = (U, V, F ) relative toX =x andφ, denoted
R̂φ

X=x(M), is the set of allA∈V such that eitherS1or S2holds:

S1. A is on a directed pathP in G(M) from a variableB ∈X\{A} to a variable inφ, whereP does not
contain any variable fromX\{B}.

S2. A does not satisfyS1, and eitherA occurs inφ, orA is a parent inG(M) of a variable that satisfiesS1.

Note that all variables satisfyingS1 are fromV \X. Informally, R̂φ
X=x(M) is the set of all variables

in φ, all variablesA that connect a variable inX to one inφ via variables fromV \X, and all the par-
ents of the latter variables. Observe thatR̂φ

X=x(M)⊆Rφ
X=x(M). Thestrongly reduced causal modelof

M = (U, V, F ) w.r.t.X =x andφ, denoted̂Mφ
X=x, is the causal modelM ′ = (U, V ′, F ′), where the endoge-

nous variablesV ′ = R̂φ
X=x(M) and the functionsF ′ = {F ′

A |A∈V
′} are defined by:

F ′ = {F ′
A =FA |A∈V

′ satisfiesS1} ∪ {F ′
A =F ⋆

A |A∈V
′ satisfiesS2} ,

whereF ⋆
A assignsAM (uA) to A for every valueuA ∈D(UA) of the setUA of all ancestorsB ∈U of A

in G(M). We often useR̂φ
X(M), R̂Y

X(M), M̂φ
X , andM̂Y

X to abbreviateR̂φ
X=x(M), R̂Y =y

X=x(M), M̂φ
X=x,

andM̂Y =y
X=x, respectively.

Example 4.4 Fig. 6 shows the causal graphGV (M̂φ
X) along with the set of variablesX ′ =X ∩ R̂φ

X(M) for
a causal modelM = (U, V, F ) and an eventφ such that the causal graphGV (M) and the setsX andV (φ)
are as in Fig. 2.2

The following result shows that a variable inX =x is strongly relevant w.r.t.X =x andφ iff it is con-
nected inG(M) via variables inV \X to a variable inφ. Thus, we are currently elaborating a generalization
of Theorem 4.2.
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X ′

V (φ)

Figure 6: Causal GraphGV (M̂φ
X) along withX ′ =X ∩ R̂φ

X(M) andV (φ)

Proposition 4.9 LetM =(U, V, F ) be a causal model. LetX ⊆V , x∈D(X), and letφ be an event. Then,
X ∩ R̂φ

X(M) is the set of allXi ∈X from which there exists a directed path inG(M) to a variable inφ that
contains noXj ∈X \ {Xi}.

It is easy to verify that the monotonicity result of Proposition 4.6 and thus alsoTheorem 4.7 do not
carry over to strongly reduced causal models. Informally, ifX ′⊆X, thenM̂φ

X′ may contain variables that
connect someXi ∈X

′ to a variable inφ via variables inV \X ′, but that do not connectXi ∈X
′⊆X to a

variable inφ via variables inV \X ⊆V \X ′, since some variable fromX\X ′ is needed, and are thus not
contained inM̂φ

X . For example, if the causal graphGV (M) and the setsX andV (φ) are as in Fig. 2, and
X ′ consists of the variable inX that is shown upper left in Fig. 2, then this variable even does not occur
among the variables of the strongly reduced causal modelM̂φ

X=x, since it is pruned away (cf. also Figure 6),

and hence(M̂φ
X)φ

X′ cannot be formed.
However, the weaker result in Theorem 4.5 also holds for strongly reduced causal models. That is,

deciding whetherX =x is a weak cause ofφ underu inM can be reduced to deciding whether its restriction
to the strongly relevant variables is a weak cause ofφ underu in M̂φ

X . This result generalizes Theorem 4.2.

Theorem 4.10 LetM =(U, V, F ) be a causal model. LetX ⊆V , x∈D(X), andu∈D(U), and letφ be
an event. LetX ′ =X ∩ R̂φ

X(M) andx′ =x|X ′. Then,X =x is a weak cause ofφ underu in M iff (i)

(X\X ′)(u)=x|(X\X ′) in M , and (ii)X ′ =x′ is a weak cause ofφ underu in M̂φ
X .

The following result shows that also the strongly reduced causal model and the restriction of its causal
graph to the set of all endogenous variables can be computed in polynomialand linear time, respectively.

Proposition 4.11 Given a causal modelM = (U, V, F ), X ⊆V , x∈D(X), and an eventφ, the directed
graphGV (M̂φ

X) (resp., the causal model̂Mφ
X ) is computable in timeO(‖M‖+ ‖φ‖) (resp.,O(|V |‖M‖+

‖φ‖)).

The next result shows that for weak causes of the formX =x, whereX is a singleton, the reduced
causal model coincides with the strongly reduced one. Observe that anysuch weak cause is an actual cause
(by Theorem 2.3). Hence, for deciding actual causes, both reductions coincide. Nonetheless, we need weak
causes in particular since they are a basic building block of explanations, not actual causes.

Theorem 4.12 LetM = (U, V, F ) be a causal model. LetX ⊆V andx∈D(X), and letφ be an event.
If X is a singleton, thenMφ

X = M̂φ
X .
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5 Causal Trees

In this section, we describe our first class of tractable cases of causesand explanations. We show that
deciding whether an atomX =x is a weak cause of a primitive eventY = y under a contextu in a domain-
bounded causal modelM = (U, V, F ) is tractable, if the reduced causal modelGV (MY

X ) is a bounded
directed tree with rootY , which informally consists of a directed path fromX to Y , along with a number
of parents for each variable in the path afterX bounded by a global constant (see Fig. 7). Under the same
conditions, deciding whetherX =x is an actual cause, deciding whetherX =x is an explanation relative to
a set of contextsC, and deciding whetherX =x is a partial explanation or anα-partial explanation as well
as computing its explanatory power relative to(C, P ) are all tractable.

. . .P k−1X = P k P 1 P 0 = Y

W k W 1W 2

Figure 7: Path fromX to Y in a Causal Tree

More precisely, we say that a directed graphG= (V,E), given two nodesX,Y ∈V , is adirected tree
with rootY , if it consists of a unique directed pathX =̂P k→P k−1 → · · · →P 0 =̂Y fromX to Y , and
setsW i of (unconnected) parentsA 6=P i for all P i−1 such thati∈{1, . . . , k}. Moreover,G is bounded,
if |Wi| ≤ l for eachi∈{1, . . . , k}, i.e., Pi−1 has fan-in of variables fromV at mostl + 1, wherel is
some global constant. IfG=GV (M) for some causal modelM =(U, V, F ) andX,Y ∈ V , thenM is a
(bounded) causal treewith respect toX andY .

Example 5.1 An example of a causal tree is the following binary causal modelM = (U, V, F ) presented in
[16] in a discussion of the double prevention problem, whereU = {UBPT , USPS} with D(A)= {0, 1} for
all A∈U , V = {BPT ,LE,LSS, SPS,SST ,TD} with D(A)= {0, 1} for all A∈V . In a World War III
scenario, Suzy is piloting a bomber on a mission to blow up an enemy target, and Billy is piloting a fighter as
her lone escort. Along comes an enemy plane, piloted by Lucifer. Sharp-eyed Billy spots Lucifer, zooms in,
pulls the trigger, and Lucifer’s plane goes down in flames. Suzy’s mission isundisturbed, and the bombing
takes place as planned. The question is whether Billy deserves some creditfor the success of the mission.
Here,BPT means that Billy pulls the trigger,LE that Lucifer eludes Billy,LSS that Lucifer shoots Suzy,
SPS that Suzy plans to shoot the target,SST that Suzy shoots the target, andTD that the target is destroyed.

LE LSS SST TDBPT

SPS

UBPT

USPS

Figure 8: Causal GraphG(M)
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The setF = {FA |A∈V } consists of the functionsFBPT = UBPT , FSPS = USPS , FLE = 1 − BPT ,
FLSS = LE, FSST = 1 iff LSS= 0 andSPS=1, andFTD = SST . The causal graphG(M) is shown
in Fig. 8. LetX =BPT andY =TD. Then,GV (M) is a directed tree with rootY , where the directed
path fromX to Y is P 4 =BPT , P 3 = LE, P 2 =LSS, P 1 =SST , P 0 =TD, W 1 =W 3 =W 4 = ∅
andW 2 =SPS. 2

As an important property, causal trees can be recognized very efficiently, namely in linear time. The
same holds for causal models whose reduced variant with respect toX andY is a causal tree.

Proposition 5.1 Given a causal modelM = (U, V, F ) and variablesX,Y ∈V , deciding whetherM resp.
MX

Y is a (unbounded or bounded) causal tree with respect toX andY is feasible inO(‖M‖) time.

5.1 Characterizing Weak Causes

We first consider weak causes. In the sequel, letM =(U, V, F ) be a causal model, letX,Y ∈V such
thatM is a causal tree with respect toX andY , and letx∈D(X) andy ∈D(Y ). We give a new char-
acterization ofX =x being a weak cause ofY = y under contextu∈D(U), which can be checked in
polynomial time under some conditions. We need some preparation by the following definitions. We define
R0 = {D(Y ) \ {y}}, and for everyi∈{1, . . . , k}, we definêpi =P i(u) andRi by:

Ri = {p⊆D(P i) | ∃w∈D(W i)∃p′∈Ri−1 :

∀p∈D(P i) : p∈p iff P i−1
pw (u)∈p

′ ;

P i−1
p̂iw

(u)∈D(P i−1) \p
′ } .

Intuitively,Ri contains all sets of possible values ofP i in AC2(a), for different values ofW i. Here,P 0 =̂Y
must be set to a value different fromy, and the possible values of each otherP i depend on the possible values
of P i−1. At the same time, the complements of sets inRi are all sets of possible values ofP i in AC2(b).
In summary,AC2(a) and (b) hold iff some nonemptyp∈Rk exists that does not containx. This result is
formally expressed by the following theorem, which can be proved by induction oni∈{0, . . . , k}.

Theorem 5.2 LetM = (U, V, F ) be a causal model. LetX,Y ∈V , x∈D(X), y ∈ D(Y ), andu∈D(U).
Suppose thatM is a causal tree w.r.t.X andY , and letRk be defined as above. Then,X =x is a weak
cause ofY = y underu in M iff (α) X(u)=x andY (u)=y in M , and(β) somep∈Rk exists withp 6= ∅
andx 6∈p.

Example 5.2 Consider again the causal tree with respect toX =BPT andY =TD from Example 5.1.
Suppose we want to decide whetherBPT = 1 is a weak cause ofTD= 1 under a contextu1,1 ∈D(U), where
u1,1(UBPT )= 1 andu1,1(USPS)= 1. Here, we obtain the relationsR0 = {{0}}, R1 = {{0}}, R2 = {{1}},
R3 = {{1}}, andR4 = {{0}}. Observe then that(α) BPT (u1,1) andTD(u1,1) are both1, and(β) {0}∈R4

and1 6∈ {0}. By Theorem 5.2, it thus follows thatBPT = 1 is a weak cause ofTD=1 underu1,1. 2

5.2 Deciding Weak and Actual Causes

The following theorem shows that deciding whether an atomX =x is a weak cause of a primitive event
Y = y in domain-boundedM is tractable, whenM is a bounded causal tree with respect toX andY . This
result follows from Theorem 5.2 and the recursive definition ofRi, which assures thatRk can be computed
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in polynomial time under the above boundedness assumptions. By Theorem 2.3, the same tractability result
holds for actual causes, since the notion of actual cause coincides with the notion of weak cause whereX is
a singleton.

Theorem 5.3 Given a domain-bounded causal modelM = (U, V, F ), variablesX,Y ∈V such thatM is
a bounded causal tree with respect toX andY , and valuesx∈D(X), y∈D(Y ), andu∈D(U), deciding
whetherX =x is a weak (resp., an actual) cause ofY = y underu in M can be done in polynomial time.

The next theorem shows that the same tractability result holds when instead of M just the reduced
modelMX

Y is required to be a bounded causal tree. The result follows from Theorem 4.5, Proposition 4.8,
and Theorem 5.3.

Theorem 5.4 Given a domain-bounded causal modelM =(U, V, F ), variablesX,Y ∈V such thatMY
X is

a bounded causal tree with respect toX andY , valuesx∈D(X), y∈D(Y ), andu∈D(U), deciding whether
X =x is a weak (resp., an actual) cause ofY = y underu in M can be done in polynomial time.

5.3 Deciding Explanations and Partial Explanations

The following theorem shows that deciding whetherX =x is an explanation ofY = y relative toC in M
is tractable under the conditions of the previous subsection. This result follows from Theorem 5.4 and
Proposition 2.2.

Theorem 5.5 Given a domain-bounded causal modelM = (U, V, F ), variablesX,Y ∈V such thatMY
X

is a bounded causal tree with respect toX andY , valuesx∈D(X) andy ∈D(Y ), and a set of contexts
C ⊆D(U), deciding whetherX =x is an explanation ofY = y relative toC inM can be done in polynomial
time.

Similarly, deciding whetherX =x is a partial or anα-partial explanation ofY = y relative to(C, P )
inM , as well as computing its explanatory power is tractable under the conditions of the previous subsection.
This follows from Theorem 5.4 and Propositions 2.2 and 2.4.

Theorem 5.6 LetM = (U, V, F ) be a domain-bounded causal model, letX,Y ∈V be such thatMY
X is a

bounded causal tree with respect toX andY , and letx ∈ D(X) andy ∈D(Y ). LetC ⊆D(U) such that
Y (u)= y for all u∈C, and letP be a probability function onC. Then,

(a) deciding whetherX =x is a partial explanation ofY = y relative to (C, P ) in M can be done in
polynomial time.

(b) deciding whetherX =x is an α-partial explanation ofY = y relative to (C, P ) in M , for some
givenα≥ 0 can be done in polynomial time.

(c) given thatX =x is a partial explanation ofY = y relative to(C, P ) in M , the explanatory power
ofX =x is computable in polynomial time.
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6 Decomposable Causal Graphs

In this section, we generalize the characterization of weak cause given inSection 5 to more general events
and to more general causal graphs. We characterize relationships of the form “X =x is a weak cause of
φ underu in M ”, where (i) X =x andφ are as in the original definition of weak cause, and thus not
restricted to assignments to single variables anymore, and where (ii)GV (M) is decomposable into a chain
of subgraphs (cf. Fig. 9, which is explained in more detail below), and thus not restricted to causal trees
anymore. We then use this result to obtain more general tractability results forcauses and explanations, and
also new tractability results for responsibility and blame.

. . .

T 1 T 0

S0S1

φ

T k T 2

S2Sk

X

Figure 9: Decomposable Causal Graph

6.1 Characterizing Weak Causes

We first give a new characterization of weak cause. In the sequel, letM=(U, V, F ) be a causal model, let
X ⊆V , letx∈D(X) andu∈D(U), and letφ be an event.

Towards a characterization of “X =x is a weak cause ofφ underu in M ”, we define the notion of a
decomposition of a causal graph as follows. Adecompositionof GV (M) relative toX =x (or simplyX)
andφ is a tuple((T 0, S0), . . ., (T k, Sk)), k≥ 0, of pairs(T i, Si) such that the conditionsD1–D6 hold:

D1. (T 0, . . . , T k) is an ordered partition ofV .

D2. T 0⊇S0, . . . , T k⊇Sk.

D3. EveryA∈V occurring inφ belongs toT 0, andSk⊇X.

D4. For everyi∈{0, . . . , k−1}, no two variablesA∈ T 0 ∪ · · · ∪ T i−1 ∪ T i \Si andB ∈T i+1 ∪ · · · ∪ T k

are connected by an arrow inGV (M).

D5. For everyi∈{1, . . . , k}, every child of a variable fromSi in GV (M) belongs to(T i \Si)∪Si−1.
Every child of a variable fromS0 belongs to(T 0 \S0).

D6. For everyi∈{0, . . . , k− 1}, every parent of a variable inSi in GV (M) belongs toT i+1. There are no
parents of any variableA∈Sk.

Intuitively, GV (M) is decomposable into a chain of edge-disjoint subgraphsG0, . . . , Gk over some sets
of variablesT 0, S0 ∪T 1, S1 ∪T 2, . . . , Sk−1 ∪T k, where(T 0, . . . , T k) is an ordered partition ofV , such
that the setsTi are connected to each other exactly through some setsSi⊆T i, i∈{0, . . . , k−1}, where
(i) every arrow that is incident to someA∈Si, i∈{1, . . . , k−1}, is either outgoing fromA and belongs
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to Gi, or ingoing intoA and belongs toGi+1, and (ii) every variable inφ (resp.,X) belongs toT 0

(resp., someSk⊆T k); see Fig. 9 for an illustration.

As easily seen, causal trees as in Section 5 are causal models with decomposable causal graphs. For
the directed pathX =̂P k→P k−1→ · · · →P 0 =̂Y fromX to Y , and the setsW i, i∈{1, . . . , k}, we may
defineD= ((T 0, S0), . . . , (T k, Sk)) by Si = {P i}, T 0 = {P 0}, andT i =W i ∪ {P i}, for i∈{1, . . . , k};
then,D is a decomposition ofGV (M) relative toX =x andY = y.

Thewidthof a decompositionD= ((T 0, S0), . . . , (T k, Sk)) of GV (M) relative toX andφ is the max-
imum of all |T i| such thati∈{0, . . . , k}. We say thatD is width-boundediff the width ofD is at mostl for
some global constantl.

Example 6.1 Fig. 10 shows a decompositionD= ((T 0, S0), (T 1, S1), (T 2, S2)) of a causal graphGV (M)
relative to a set of variablesX ⊆V and an eventφ. The width of this decompositionD is given by6. 2

V (φ)
X

S2

T 2 T 1 T 0

S0S1

Figure 10: Decomposition((T 0, S0), (T 1, S1), (T 2, S2)) of GV (M) relative toX andφ

We use such a decomposition((T 0, S0), . . . , (T k, Sk)) of GV (M) to extend the relationsRi for causal
trees from Section 5.1 to decomposable causal graphs. The new relationsRi now contain triples(p, q, F ),
wherep (resp.,q) specifies a set of possible values of “floating variables”F ⊆Si in AC2(a) (resp.,AC2(b)).
We defineR0 as follows:

R0 = {(p, q, F ) |F ⊆ S0, p, q⊆D(F ),

∃W ⊆T 0, F =S0 \W,

∃w∈D(W )∀p, q ∈D(F ) :

p∈p iff ¬φpw(u),

q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆T 0 \ (Sk ∪W )} .
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For everyi∈{1, . . . , k}, we then defineRi as follows:

Ri = {(p, q, F ) |F ⊆ Si, p, q⊆D(F ),

∃W ⊆T i, F =Si \W,

∃w∈D(W )∃(p′, q′, F ′)∈Ri−1 ∀p, q ∈D(F ) :

p∈p iff F ′
pw(u)∈p

′,

q ∈ q iff F ′
[q〈Ẑ(u)]w(u)∈ q

′ for all Ẑ ⊆T i \ (Sk ∪W )} .

Intuitively, rather than propagating a setp of possible values of a single variableP i ∈V in AC2(a) from
Y =P 0 back toX =P k along a pathX =̂P k→P k−1 → · · · →P 0 =̂Y as in Section 5.1, we now propa-
gate triples(p, q, F ) consisting of some “floating variables”F ⊆Si⊆V , a setp of possible values ofF in
AC2(a), and a setq of possible values ofF in AC2(b), fromφ back toX ⊆V along the chain of subgraphs
G0, . . . , Gk over the sets of variablesT 0, S0 ∪T 1, S1 ∪T 2, . . . , Sk−1 ∪T k. Here,R0 contains all triples
(p, q, F ) such thatF ⊆ S0, p, q⊆D(F ), p∈p iff ¬φpw(u), andq ∈ q iff φ[q〈Ẑ(u)]w(u), for all possible

Ẑ and some appropriatew. Moreover, the triples inRi depend on the triples inRi−1. In summary, it then
follows thatAC2(a) and (b) hold iff some(p, q, X)∈Rk exists such thatp 6= ∅ andx∈ q.

Note that for a decomposition corresponding to a causal tree as discussed above, for each(p, q, F ) in
R0, it holds thatW = ∅ andF = {P 0}; henceq =D(F )\p is the complement ofp. Furthermore, for each
(p, q, F ) in Ri, wherei > 0, we haveW =W i andF = {P i} andq =D(P i)\p is the complement ofp.
That is, the setsRi defined for causal trees correspond to simplified versions of the setsRi for a decomposed
graph, where the redundant componentsF andq are removed from each triple.

This new characterization of weak cause, which is based on the above concept of a decomposition
of GV (M) and the relationsRi, is expressed by the following theorem, which can be proved by induction
on i∈{0, . . . , k}.

Theorem 6.1 LetM = (U, V, F ) be a causal model. LetX ⊆V , letx∈D(X) andu∈D(U), and letφ be
an event. Let((T 0, S0), . . . , (T k, Sk)) be a decomposition ofGV (M) relative toX andφ, and letRk be
defined as above. Then,X =x is a weak cause ofφ underu inM iff (α)X(u)=x andφ(u) inM , and(β)
some(p, q, X)∈Rk exists such thatp 6= ∅ andx∈ q.

This result provides a basis for deciding and computing weak and actual causes, and may in particular be
fruitfully applied to reduced causal models from which irrelevant variables have been pruned. Often, reduced
models have a simple decomposition: EverŷMφ

X =(U, V ′, F ′) has the trivial decomposition((V ′, X)), and

everyMφ
X = (U, V ′, F ′) such that noA∈X is on a path from a different variable inX to a variable inφ

also has the trivial decomposition((V ′, X)).

6.2 Deciding and Computing Weak and Actual Causes

Using the characterization of weak cause given in Section 6.1, we now provide new tractability results
for deciding and computing weak and actual causes. The following theorem shows that deciding whether
X =x is a weak (resp., an actual) cause ofφ underu in a domain-boundedM is tractable whenGV (M)
has a width-bounded decomposition provided in the input. As for its proof, by Theorem 6.1, deciding
whetherX =x is a weak cause ofφ underu in M can be done by recursively computing theRi’s and then
deciding whether(α) and(β) of Theorem 6.1 hold. All this can be done in polynomial time under the above
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boundedness assumptions. By Theorem 2.3, actual causes are weak causesX =x such thatX is a singleton.
Thus, since deciding whetherX is a singleton can be done in constant time, the above tractability result also
holds for actual causes.

Theorem 6.2 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , x∈D(X), u∈D(U), an
eventφ, and a width-bounded decompositionD ofGV (M) relative toX andφ, deciding whetherX =x is
a weak (resp., an actual) cause ofφ underu in M is possible in polynomial time.

The next theorem shows that deciding weak (resp., actual) causes in domain-bounded causal models
is also tractable, whenGV (Mφ

X) has a width-bounded decomposition provided in the input. This result
essentially combines Theorems 4.7 and 6.2.

Theorem 6.3 Given a domain-bounded causal modelM = (U, V, F ),X ′⊆X ⊆V , x′ ∈D(X ′), u∈D(U),
an eventφ, and a width-bounded decompositionD of the graphGV (Mφ

X) relative toX ′ ∩Rφ
X(M) andφ,

deciding whetherX ′ =x′ is a weak (resp., an actual) cause ofφ underu in M is possible in polynomial
time.

A similar result also holds for strongly reduced causal models. It is expressed by the following theorem,
which basically combines Theorems 4.10 and 6.2.

Theorem 6.4 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , x∈D(X), u∈D(U),
an eventφ, and a width-bounded decompositionD of the graphGV (M̂φ

X) relative toX ∩ R̂φ
X(M) andφ,

deciding whetherX =x is a weak (resp., an actual) cause ofφ underu inM is possible in polynomial time.

We finally focus on computing weak and actual causes. The following result shows that, given some
X ⊆V , computing all weak (resp., actual) causesX ′ =x′, whereX ′⊆X andx′∈D(X ′), of φ underu in
domain-boundedM is tractable, when either (a)GV (Mφ

X) has a width-bounded decomposition provided in

the input, or (b) everyGV (M̂φ
X′) with X ′⊆X has a width-bounded decomposition provided in the input.

This result essentially follows from Theorems 6.3 and 6.4. Observe that in Theorems 6.5 to 6.9, each of
(a) and (b) implies that|X| is bounded by a constant, and thus also the number of all subsetsX ′⊆X is
bounded by a constant. Theorems 6.5 to 6.9 also hold, when the decompositions are relative toX ∩Rφ

X(M)

andX ′ ∩ R̂φ
X′(M) rather thanX andX ′, respectively.

Theorem 6.5 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , u∈D(U), an eventφ, and
either (a) a width-bounded decompositionD of the graphGV (Mφ

X) relative toX andφ, or (b) for every

X ′⊆X, a width-bounded decompositionDX′ of GV (M̂φ
X′) relative toX ′ andφ, computing the set of all

X ′ =x′, whereX ′⊆X andx′ ∈D(X ′), such thatX ′ =x′ is a weak (resp., an actual) cause ofφ underu
in M is possible in polynomial time.

6.3 Deciding and Computing Explanations and Partial Explanations

We now turn to deciding and computing explanations and partial explanations.The following theorem shows
that deciding whetherX =x is an explanation ofφ relative toC ⊆D(U) in M can be done in polynomial
time, if we assume the same restrictions as in Theorem 6.5. This result follows from Theorems 6.3 and 6.4.
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Theorem 6.6 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , x∈D(X), C ⊆D(U), an
eventφ, and either (a) a width-bounded decompositionD ofGV (Mφ

X) relative toX andφ, or (b) for each

X ′⊆X, a width-bounded decompositionDX′ ofGV (M̂φ
X′) relative toX ′ andφ, deciding whetherX =x

is an explanation ofφ relative toC in M can be done in polynomial time.

A similar tractability result holds for deciding whetherX =x is a partial or anα-partial explanation of
φ relative to some(C, P ) in M , and for computing the explanatory power of a partial explanation.

Theorem 6.7 Given a domain-bounded causal modelM =(U, V, F ), X ⊆ V , x∈D(X), C ⊆D(U), an
eventφ, whereφ(u) for all u∈C, a probability functionP onC, and either (a) a width-bounded decompo-
sitionD of GV (Mφ

X) relative toX andφ, or (b) for everyX ′⊆X, a width-bounded decompositionDX′

ofGV (M̂φ
X′) relative toX ′ andφ,

(1) deciding whetherX =x is a partial explanation ofφ relative to(C, P ) in M can be done in polyno-
mial time.

(2) deciding whetherX =x is anα-partial explanation ofφ relative to(C, P ) inM , for some givenα≥ 0,
can be done in polynomial time.

(3) given thatX =x is a partial explanation ofφ relative to(C, P ) in M , computing the explanatory
power ofX =x can be done in polynomial time.

Such tractability results also hold for computing explanations and partial explanations. In particular,
the next theorem shows that computing all explanations involving variables from a given set of endogenous
variables is tractable under the same assumptions as in Theorem 6.5.

Theorem 6.8 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , C ⊆D(U), an eventφ, and
either (a) a width-bounded decompositionD of GV (Mφ

X) relative toX andφ, or (b) for everyX ′⊆X,

a width-bounded decompositionDX′ of GV (M̂φ
X′) relative toX ′ andφ, computing the set of allX ′ =x′,

whereX ′ ⊆ X andx′ ∈D(X ′), such thatX ′ =x′ is an explanation ofφ relative toC in M can be done in
polynomial time.

Similarly, also computing all partial andα-partial explanations involving variables from a given set of
endogenous variables is tractable under the same restrictions as in Theorem 6.5.

Theorem 6.9 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , C ⊆D(U), an eventφ,
whereφ(u) for all u∈C, a probability functionP onC, and either (a) a width-bounded decompositionD of
GV (Mφ

X) relative toX andφ, or (b) for everyX ′⊆X, a width-bounded decompositionDX′ ofGV (M̂φ
X′)

relative toX ′ andφ,

(1) computing the set of allX ′ =x′, whereX ′⊆X andx′ ∈D(X ′), such thatX ′ =x′ is a partial expla-
nation ofφ relative to(C, P ) in M can be done in polynomial time.

(2) computing the set of allX ′ =x′ whereX ′⊆X andx′ ∈D(X ′), such thatX ′ =x′ is anα-partial
explanation ofφ relative to(C, P ) in M , for some givenα≥ 0, can be done in polynomial time.
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6.4 Computing Degrees of Responsibility and Blame

We now show that the tractability results for deciding and computing causes and explanations of Sections 6.2
and 6.3 can also be extended to computing degrees of responsibility and blame. To this end, we slightly
generalize the relationsRi, i∈{0, . . . , k}, of Section 6.1.

We use the following notation. For sets of variablesX and valuesx, x′ ∈D(X), thedifference between
x andx′, denoteddiff(x, x′), is the number of all variablesA∈X such thatx(A) 6=x′(A).

We defineR0 as follows:

R0 = {(p, q, F, l) |F ⊆ S0, p, q⊆D(F ), l∈{0, . . . , |T 0|},

∃W ⊆T 0, F =S0 \W,

∃w∈D(W )∀p, q ∈D(F ) :

l = diff(w,W (u)), p∈p iff ¬φpw(u),

q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆T 0 \ (Sk ∪W )} .

For everyi∈{1, . . . , k}, we then defineRi as follows:

Ri = {(p, q, F, l) |F ⊆ Si, p, q⊆D(F ), l∈{0, . . . ,
∑i

j=0 |T
j |},

∃W ⊆T i, F =Si \W,

∃w∈D(W )∃(p′, q′, F ′, l′)∈Ri−1 ∀p, q ∈D(F ) :

l = diff(w,W (u)) + l′, p∈p iff F ′
pw(u)∈p

′,

q ∈ q iff F ′
[q〈Ẑ(u)]w(u)∈ q

′ for all Ẑ ⊆T i \ (Sk ∪W )} .

Intuitively, rather than triples(p, q, F ), the new relationsRi contain tuples(p, q, F, l), wherep (resp.,q) is
a set of possible values ofF ⊆Si in AC2(a) (resp., (b)) as in Section 6.1, andl is the sum of all differences
betweenw∈D(W ) andW (u) in T j for all j ∈{0, . . . , i}. Thus,AC2 holds with someW ⊆V \X and
w∈D(W ) such thatdiff(w,W (u))= l iff some (p, q, X, l)∈Rk exists such thatp 6= ∅ andx∈ q. This
result is expressed by the following theorem.

Theorem 6.10 LetM = (U, V, F ) be a causal model. LetX ⊆V , let x∈D(X) andu∈D(U), and letφ
be an event. Let((T 0, S0), . . . , (T k, Sk)) be a decomposition ofGV (M) relative toX andφ, and letRk

be defined as above. Then,AC2 holds with someW ⊆V \X andw∈D(W ) such thatdiff(w,W (u))= l
iff some(p, q, X, l)∈Rk exists such thatp 6= ∅ andx∈ q.

The next theorem shows that the degree of responsibility ofX =x for φ in a situation(M,u) with
domain-boundedM can be computed in polynomial time given thatGV (M) has a width-bounded decom-
position provided in the input. It follows from Theorem 6.10 and the fact that recursively computing theRi’s
and deciding whether there exists some(p, q, X, l)∈Rk with p 6= ∅ andx∈ q can be done in polynomial
time under the above boundedness assumptions.

Theorem 6.11 Given a domain-bounded causal modelM = (U, V, F ), X ⊆V , x∈D(X), u∈D(U), an
eventφ, and a width-bounded decompositionD of GV (M) relative toX andφ, computing the degree of
responsibility ofX =x for φ in (M,u) is possible in polynomial time.
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Similarly, computing the degree of blame relative to an epistemic state(K, P ) is tractable, when every
causal model inK satisfies the same boundedness assumptions as in Theorem 6.11. This is expressed by the
following theorem.

Theorem 6.12 Given an epistemic state(K, P ), where for every(M,u)∈K, M is domain-bounded, a set
of endogenous variablesX, a valuex∈D(X), an eventφ, and for every(M,u)= ((U, V, F ), u)∈K a
width-bounded decomposition ofGV (M) relative toX andφ, computing the degree of blame of settingX
to x for φ relative to(K, P ) is possible in polynomial time.

6.5 Computing Decompositions

The tractability results of Sections 6.2 to 6.4 are all based on the assumption thatsome decomposition of
GV (M) is provided in the input. It thus remains to decide whether such decompositionsexist at all, and
if so, then to compute one, especially one of minimal width. The problem of deciding whether there exists
some decomposition of width below a given integerl > 0 is formally expressed as follows.

LAYERWIDTH WITH CONSTRAINTS: GivenGV (M) forM = (U, V, F ),X ⊆V , an eventφ, and an integer
l > 0, decide whether there exists a decomposition((T 0, S0), . . . , (T k, Sk)) of GV (M) relative toX
andφ of width at mostl.

As shown by Hopkins [22], LAYERWIDTH WITH CONSTRAINTS is NP-complete. Hopkins [22] also
presents an algorithm for computing a layer decomposition of lowest width, where alayer decomposition
satisfies every condition amongD1 to D6 except forD3. It is an any-time depth-first branch-and-bound
algorithm, which searches through a binary search tree that representsthe set of all possible layer decompo-
sitions. This algorithm can also be used to compute the set of all decompositionsof GV (M) relative toX
andφ of lowest width.

The intractability of computing a decomposition of lowest width, which is a consequence of the NP-
completeness of LAYERWIDTH WITH CONSTRAINTS, is not such a negative result as it might appear at
first glance. It means that decompositions are an expressive concept,for which sophisticated algorithms
like Hopkin’s are needed to obtain good performance. However, the effort for decomposition pays off by
subsequent polynomial-time solvability of a number of reasoning tasks giventhat the ramifying conditions
are met, such that overall, the effort is polynomial time modulo calls to an NP-oracle. This complexity
is lower than the complexity of weak and actual causes, as well as the complexity of explanations in the
general case, which are located at the second and the third level of the Polynomial Hierarchy, respectively
[6, 7] (see also Section 3.4). On the other hand, the lower complexity means that suitable decompositions
will not always exist. However, the worst-case complexity results in [6, 7]use quite artificial constructions,
and the causal models involved will hardly occur in practice. In fact, many of the examples in the literature
seem to have decomposable causal graphs; it remains to be seen whetherthis holds for a growing stock of
applications.

7 Layered Causal Graphs

In general, as described in Section 6.5, causal graphsGV (M) with width-bounded decompositions cannot
be efficiently recognized, and such decompositions also cannot be efficiently computed. But, from Section 5,
we already know width-bounded causal trees as a large class of causal graphs, which have width-bounded
decompositions that can be computed in linear time. In this section, we discuss aneven larger class of
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causal graphs, calledlayered causal graphs, which also have natural nontrivial decompositions that can be
computed in linear time. Intuitively, in layered causal graphsGV (M), the set of endogenous variablesV
can be partitioned intolayersS0, . . . , Sk such that every arrow inGV (M) goes from a variable in some
layerSi to a variable inSi−1 (see Fig. 11).

. . .Sk

X φ

S0

S1Sk−1

Figure 11: Path fromX to φ in a Layered Causal Graph

We now first define layered causal graphs. We then prove that they are a special case of decomposable
causal graphs, and that recognizing them and computing their layers canbe done in linear time. In the
sequel, letM = (U, V, F ) be a causal model, letX ⊆V , letx∈D(X) andu∈D(U), and letφ be an event.

More formally, alayeringof GV (M) relative toX andφ is an ordered partition(S0, . . . , Sk) of V that
satisfies the following conditionsL1 andL2:

L1. For every arrowA→B in GV (M), there exists somei∈{1, . . . , k} such thatA∈Si andB ∈Si−1.

L2. EveryA∈V occurring inφ belongs toS0, andSk⊇X.

We say thatGV (M) is layeredrelative toX andφ iff it has a layering(S0, . . . , Sk) relative toX andφ.
Thewidth of such a layering(S0, . . . , Sk) is the maximum of all|Si| such thati∈{0, . . . , k}. A layered
causal graphGV (M) relative toX andφ is width-boundedfor an integerl≥ 0 iff there exists a layering
(S0, . . . , Sk) of GV (M) relative toX andφ of a width of at mostl.

Example 7.1 Fig. 12 provides a layeringL = (S0, S1, S2) of the causal graphGV (M̂φ
X) in Fig. 6 relative

toX ′ =X ∩ R̂φ
X(M) andφ, whereM = (U, V, F ) is a causal model andφ is an event such that the causal

graphGV (M) and the setsX andV (φ) are as in Fig. 2. The width of this layeringL is given by3. 2

The following result shows that layered causal graphsGV (M) relative toX andφ have a natural non-
trivial decomposition relative toX andφ.

Proposition 7.1 LetM = (U, V, F ) be a causal model, letX ⊆V , and letφ be an event. Let(S0, . . . , Sk)
be a layering ofGV (M) relative toX andφ. Then,((S0, S0), . . . , (Sk, Sk)) is a decomposition ofGV (M)
relative toX andφ.

We next give a condition under which a layered causal graphGV (M) has a unique layering. Two
variablesA,B ∈V are connectedin GV (M) iff they are connected via a path in the undirected graph
(V, {{A,B} |A→B in GV (M)}). A causal graphGV (M) is connectedrelative toX andφ iff (i) X 6= ∅,
(ii) there exists a variable inX that is connected to a variable inφ, and (iii) every variable inV \ (X∪V (φ))
is connected to a variable inX ∪V (φ). Notice that ifX =x is a weak cause ofφ underu∈D(U), then (i)
and (ii) hold. Furthermore, in (iii), each variableA∈V \ (X ∪V (φ)) which is not connected to a variable
in X ∪V (φ) is irrelevant to “X =x is a weak cause ofφ underu”.
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V (φ)

S2 S1 S0

X ′

Figure 12: Layering(S0, S1, S2) of GV (M̂φ
X) relative toX ′ =X ∩ R̂φ

X(M) andφ

The next result shows that when layered causal graphsGV (M) relative toX andφ areconnectedrelative
toX andφ, then the layering is unique. For this result, observe that every eventφ contains some variables
A∈V , which are all placed in the layerS0. By conditions (i) and (ii), alsoX contains some variables,
which are all placed in some layerSk. By condition (iii), any other variable belongs to at most one layerSi,
and thus to exactly one layerSi, sinceGV (M) is layered.

Proposition 7.2 Let M = (U, V, F ) be a causal model, letX ⊆V , and letφ be an event. IfGV (M) is
layered and connected relative toX andφ, thenGV (M) has a unique layering relative toX andφ.

We now provide an algorithm for deciding if a connected causal graphGV (M) relative toX andφ
is layered and, if so, for computing its unique layering: Algorithm LAYERING (see Fig. 13) computes the
unique layeringL= (S0, . . . , Sk) of a connected causal graphGV (M) relative toX andφ, if it exists. The
layeringL is represented by the mappingλ : V → {0, . . . , k}, defined byλ(A)= j for all A∈Sj and all
j ∈{0, . . . , k}. The following proposition states the correctness of LAYERING.

Proposition 7.3 LetM=(U, V, F ) be a causal model, letX ⊆V , and letφ be an event, whereGV (M) is
connected relative toX andφ. Then,LAYERING returns the unique layering ofGV (M) relative toX and
φ, if it exists, and Nil, otherwise.

The next result shows that recognizing layered and width-bounded causal graphsGV (M) and computing
their unique layerings can be done in linear time. Note that deciding whetherGV (M) is connected w.r.t.X
andφ is also possible in linear time.

Proposition 7.4 Given a causal modelM=(U, V, F ),X ⊆V , and an eventφ, whereGV (M) is connected
w.r.t.X andφ, deciding whetherGV (M) is layered w.r.t.X andφ as well as width-bounded for some integer
l≥ 0, and computing the unique layering ofGV (M) w.r.t.X andφ can be done inO(‖GV (M)‖ + ‖φ‖)
time.

By Proposition 7.1, all results of Sections 6.1–6.4 on causes, explanations, responsibility, and blame in
decomposable causal graphs also apply to layered causal graphs as aspecial case. In particular, the relations
Ri of Section 6.1 can be simplified to the following ones for layered causal graphs. The relationR0 is
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Algorithm LAYERING

Input : causal modelM = (U, V, F ),X ⊆V , and an eventφ,
whereGV (M)= (V,E) is connected relative toX andφ.

Output : unique layeringL= (S0, . . . , Sk) of GV (M) relative toX andφ,
if it exists;Nil, otherwise.

Notation:L is represented by the mappingλ : V → {0, . . . , k}, which is
defined byλ(A)= j for all A∈Sj and allj ∈{0, . . . , k}.

1. for eachA∈V \V (φ) do λ(A) := ⊥ (i.e.,undefined);
2. for eachA∈V ∩V (φ) do λ(A) := 0;
3. if X ∩V (φ) 6= ∅ then for eachA∈X do λ(A) := 0;
4. while E 6= ∅ do begin
5. select someA→B in E such thatλ(A) 6=⊥ or λ(B) 6=⊥;
6. if B ∈X ∨ λ(A)= 0 then return Nil;
7. if λ(A) 6=⊥ ∧ λ(B)=⊥ then λ(B) := λ(A)−1
8. else ifλ(A)=⊥ ∧ λ(B) 6=⊥ then beginλ(A) := λ(B)+1;
9. if A∈X then for eachA′ ∈X\{A} do λ(A′) := λ(A)

10. end
11. else/* λ(A), λ(b) 6=⊥ */ if λ(A) 6= λ(B) + 1 then return Nil;
12. E := E \ {A→B}
13. end;
14. if X ⊆{A∈V |λ(A)= k}, wherek= max {λ(A) |A∈V } then return λ
15. else returnNil.

Figure 13: Algorithm LAYERING

given by:

R0 = {(p, q, F ) |F ⊆ S0, p, q⊆D(F ),

∃w∈D(S0\F )∀p, q ∈D(F ) :

p∈p iff ¬φpw(u),

q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆F\Sk} ,

For eachi∈{1, . . . , k}, the relationRi is given by:

Ri = {(p, q, F ) |F ⊆Si, p, q⊆D(F ),

∃w∈D(Si\F )∃(p′, q′, F ′)∈Ri−1 ∀p, q ∈D(F ) :

p∈p iff F ′
pw(u)∈p

′,

q ∈ q iff F ′
[q〈Ẑ(u)]w(u)∈q

′ for all Ẑ⊆F\Sk} .

The following theorem is immediate by Theorem 6.1 and Proposition 7.1.

Theorem 7.5 Let M =(U, V, F ) be a causal model. LetX ⊆V , let x∈D(X) and u∈D(U), and let
φ be an event. Let(S0, . . . , Sk) be a layering ofGV (M) relative toX and φ, and letRk be defined
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as above. Then,X =x is a weak cause ofφ under u in M iff (α) X(u)=x and φ(u) in M , and
(β) some(p, q, X)∈Rk exists such thatp 6= ∅ andx∈ q.

The next theorem shows that deciding whetherX =x is a weak respectively actual cause ofφ under
u in domain-boundedM is tractable, whenGV (M) is layered and width-bounded. This is immediate by
Theorem 6.2 and Proposition 7.1.

Theorem 7.6 Given a domain-bounded causal modelM = (U, V, F ), X ⊆ V , x∈D(X), u∈D(U), and
an eventφ, whereGV (M) is layered (relative toX andφ) and width-bounded for a constantl≥ 0, deciding
whetherX =x is a weak (resp., an actual) cause ofφ underu in M is possible in polynomial time.

Similarly, by Proposition 7.1, all the tractability results of Theorems 6.3–6.9 and Theorems 6.11 and
6.12 also hold for width-bounded layered causal graphs.

8 Refinements and Model Application

In this section, we show that with some slight technical adaptations, all the above techniques and results
carry over to a recent refinement of the notion of weak cause and to an extension of causal models due to
Halpern and Pearl [17]. This shows that the results are robust at theircore. Furthermore, we describe an
application of our results for dealing with structure-based causes and explanations in first-order reasoning
about actions.

8.1 Refined Weak Causes

We first consider the refined notion of weak cause that has been recently introduced by Halpern and Pearl in
[17]. LetM = (U, V, F ) be a causal model. LetX ⊆V andx∈D(X), and letφ be an event. Then,X =x
is a(refined) weak causeof φ underu∈D(U) in M iff AC1 and the following conditionAC2′ hold:

AC2′. SomeW ⊆V \X and somex∈D(X) andw∈D(W ) exist such that:

(a) ¬φxw(u), and

(b) φxw′ẑ(u) for all W ′⊆W , Ẑ ⊆V \ (X ∪W ), w′ =w|W ′, andẑ= Ẑ(u).

Nearly all the results of this paper carry over to this refined notion of weakcause. The following theorem
shows that this applies directly to Theorems 4.1 and 4.2.

Theorem 8.1 Theorems 4.1 and 4.2 hold also for the refined notion of weak cause.

For the results of Sections 4.2 and 4.3 to carry over to the refined notion of weak cause, we slightly
adapt the definitions there as follows. The set ofrelevant(resp.,strongly relevant) endogenous variables
of M = (U, V, F ) w.r.t.X =x andφ, denotedRφ

X=x(M) (resp.,R̂φ
X=x(M)), is redefined as the set of all

A∈V such that eitherR1 (resp.,S1), or R2 (resp.,S2), or the following conditionR3 (resp.,S3) holds:

R3. A satisfies neitherR1 norR2, andA is an ancestor inG(M) of a variableB ∈V that satisfiesR2.

S3. A satisfies neitherS1norS2, andA is an ancestor inG(M) of a variableB ∈V \X that satisfiesS2.
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Notice that nodes behind parents of nodes that are on directed paths from a variable inX to a variable
in φ cannot be simply pruned, since by the refined conditionAC2′ subtle interactions between the vari-
ables inW ∪ Ẑ are possible. Thereduced(resp.,strongly reduced) causal modelof M =(U, V, F ),
whereF = {FA |A∈V }, w.r.t.X =x andφ, denotedMφ

X=x (resp.,M̂φ
X=x), is redefined as the causal

modelM ′ = (U, V ′, F ′), whereV ′ =Rφ
X=x(M) (resp.,V ′ = R̂φ

X=x(M)) andF ′ = {F ′
A | A∈V

′} with
F ′

A =FA for all A∈V ′ (resp.,F ′
A =F ⋆

A (defined as in Section 4.3) for allA ∈ V ′ ∩X andF ′
A =FA for

all A ∈ V ′ \X).
It is then not difficult to verify that all the results of Sections 4.2 and 4.3, except for Theorem 4.12, also

hold for the refined notion of weak cause, using the above reduced andstrongly reduced causal models. In
particular, the following theorem shows that Theorems 4.7 and 4.10 carry over to the refined notion of weak
cause.

Theorem 8.2 LetM = (U, V, F ) be a causal model. LetX ′⊆X ⊆V (resp.,X ′ = X ⊆V ), x′ ∈D(X ′),
x∈D(X), andu∈D(U), and letφ be an event. LetX ′′ = X ′ ∩Rφ

X(M) (resp.,X ′′ =X ′ ∩ R̂φ
X(M)) and

x′′ =x′|X ′′. Then,X ′ =x′ is a (refined) weak cause ofφ underu in M iff (i) (X ′\X ′′)(u)=x′|(X ′\X ′′)

in M , and (ii)X ′′ =x′′ is a (refined) weak cause ofφ underu in Mφ
X (resp.,M̂φ

X ).

For the results of Sections 6.1 to 6.3 to carry over to the refined notion of weak cause, we slightly adapt
the relationsRi, i∈{0, . . . , k}, in Section 6.1 by replacing “φ[q〈Ẑ(u)]w(u)” and “F ′

[q〈Ẑ(u)]w(u)∈ q
′” by

“φ[q〈Ẑ(u)]w′(u) for allW ′⊆W andw′ =w|W ′” and “F ′
[q〈Ẑ(u)]w′(u)∈ q

′ for allW ′⊆W andw′ =w|W ′”,
respectively.

Using these newRi’s, all the results of Sections 6.1 to 6.3 (and thus all the results of Sections 5 and
7) hold also for the refined notion of weak cause. In particular, the following theorem is an extension of
Theorem 6.1 to the refined notion of weak cause. Note that the results of Section 6.4 can be similarly
extended.

Theorem 8.3 LetM = (U, V, F ) be a causal model. LetX ⊆V , let x∈D(X) andu∈D(U), and letφ
be an event. Let((T 0, S0), . . . , (T k, Sk)) be a decomposition ofGV (M) relative toX andφ, and letRk

be defined as above. Then,X =x is a (refined) weak cause ofφ underu in M iff (α) X(u)=x andφ(u)
in M , and(β) some(p, q, X)∈Rk exists such thatp 6= ∅ andx∈ q.

8.2 Refined Weak Causes in Extended Causal Models

We next consider the recent generalization of causal models to extendedcausal models [17]. Anextended
causal modelM = (U, V, F,E) consists of a standard causal model(U, V, F ) as in Section 2.1 and a set
E⊆D(V ) of allowable settingsfor V . For anyY ⊆V , a valuey ∈D(Y ) is anallowable settingfor Y iff
y= v|Y for somev ∈E. Informally, y can be extended to an allowable setting forV . In the sequel, we
assumeE is represented in such a way that deciding whether a giveny ∈D(Y ), Y ⊆V , is an allowable
setting forY is possible in polynomial time.

The notion of(refined) weak causein extended causal modelsM = (U, V, F,E) is then defined by
slightly modifying the conditionsAC2′(a) and AC2′(b) in the definition of (refined) weak causality to
restrict to allowable settings.

To extend the results in Section 4.1 to the refined notion of weak cause in extended causal models, we
introduce a natural closure property as follows. We sayM = (U, V, F,E) is closed(resp.,closed relative to
X ⊆V ) iff y ∪ (V \Y )y(u) is an allowable setting forV for all allowable settingsy for Y , all Y ⊆V (resp.,
all Y ⊆V with X ⊆Y ), and allu∈D(U). Informally, if y is an allowable setting forY , then extendingy
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by the values of all other endogenous variables inMy under anyu∈D(U) is an allowable setting forV .
Notice thatM is closed relative to allX ⊆V , if M is closed. The following result says that Theorems 4.1
and 4.2 carry over to the refined notion of weak cause in closed extendedcausal models.

Theorem 8.4 Theorems 4.1 and 4.2 hold also for the refined notion of weak cause in extended causal models
M = (U, V, F,E) that are closed relative toX ′.

For the results of Sections 4.2 and 4.3, we generalize the notions of a reduction and a strong reduction
to extended causal models as follows. Thereduced(resp.,strongly reduced) extended causal modelof
M = (U, V, F,E) w.r.t. X =x andφ, denotedMφ

X=x (resp.,M̂φ
X=x), is defined as the extended causal

modelM ′ = (U, V ′, F ′, E′), where(U, V ′, F ′) is the reduced (resp., strongly reduced) causal model of
(U, V, F ) w.r.t.X =x andφ, andE′ = {v|V ′ | v ∈E}. Notice here that, sinceE′ is the restriction ofE toV ′,
any procedure for deciding allowability relative toE is immediately a procedure for deciding allowability
relative toE′. The following result says that reductions and strong reductions keep the closure property.

Theorem 8.5 LetM = (U, V, F,E) be an extended causal model. LetX ⊆V andx∈D(X), letX ′ =X ∩

R̂φ
X(M), and letφ be an event. Then: (a) IfM is closed, then alsoMφ

X is closed. (b) IfM is closed relative

toX ′, then alsoM̂φ
X is closed relative toX ′.

Using these notations, all the results of Sections 4.2 and 4.3, except for Theorem 4.12, hold also for
the refined notion of weak cause in closed extended causal models. In particular, the following theorem
generalizes Theorems 4.7 and 4.10.

Theorem 8.6 LetM = (U, V, F,E) be an extended causal model. LetX ′ ⊆ X ⊆V (resp.,X ′ =X ⊆V ),
let x′ ∈D(X ′), x∈D(X), andu∈D(U), and letφ be an event. LetX ′′ =X ′∩Rφ

X(M) (resp.,X ′′ =X ′∩

R̂φ
X(M)) andx′′ =x′|X ′′. Suppose thatM is closed relative toX ′′. Then,X ′=x′ is a (refined) weak cause

of φ underu in M iff (i) (X ′\X ′′)(u)=x′|(X ′\X ′′) in M , and (ii)X ′′ =x′′ is a (refined) weak cause ofφ
underu in Mφ

X (resp.,M̂φ
X ).

For the results of Sections 6.1 to 6.3, we generalize the notion of a decomposition ofGV (M) in Section
6.1 and the relationsRi, i∈{0, . . . , k}, in Section 8.1 to extended causal models as follows. Adecompo-
sition of GV (M) relative toX =x (or simplyX) andφ is a tuple((T 0, S0), . . ., (T k, Sk)), k≥ 0, of pairs
(T i, Si) such thatD1–D6 in Section 6.1 and the following conditionD7 hold:

D7. Everyyi with i∈{0, . . . , k} is an allowable setting ofY i⊆T i

iff y0 ∪ · · · ∪ yk is an allowable setting ofY 0 ∪ · · · ∪ Y k⊆V .

We then finally adapt the relationsRi, i∈{0, . . . , k}, in Section 8.1 by replacing “¬φpw(u)” and “F ′
pw(u)∈

p
′ ” with “ ¬φpw(u) andpw|(X ∪ W ) is allowable” and “F ′

pw(u)∈p
′ andpw|(X ∪W ) is allowable”,

respectively.
Using the above notations, all the results of Sections 6.1 to 6.3 (and thus all theresults of Sections 5

and 7) hold also for the refined notion of weak cause in closed extended causal models. In particular, the
following theorem is a generalization of Theorem 6.1 to the refined notion of weak cause in closed extended
causal models. Note that the results of Section 6.4 can be similarly generalized.

Theorem 8.7 LetM = (U, V, F,E) be an extended causal model. LetX ⊆V , letx∈D(X) andu∈D(U),
and letφ be an event. Let((T 0, S0), . . . , (T k, Sk)) be a decomposition ofGV (M) relative toX andφ, and
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letRk be defined as above. Suppose thatM is closed relative toX. Then,X =x is a (refined) weak cause
of φ underu in M iff (α) X(u)=x andφ(u) in M , and (β) some(p, q, X)∈Rk exists such thatp 6= ∅
andx∈ q.

8.3 Causes and Explanations in First-Order Reasoning about Actions

The work [9] presents a combination of the structural-model approach withfirst-order reasoning about ac-
tions in Poole’s independent choice logic (ICL) [32, 33]. It shows howthe ICL can be extended by structure-
based causes and explanations, and thus how structure-based concepts can be made available in first-order
reasoning about actions. From another perspective, it also shows how first-order modeling capabilities and
explicit actions can be added to the structural-model approach.

From a technical point of view, this combination is based on a mapping of first-order theories in the ICL
to binary causal models via some grounding step. The generated causal models have a subset of the Herbrand
base as a set of endogenous variables, and thus they generally have aquite large number of variables. But
they also have a natural layering through the time line, and thus they often have the structure of layered
causal graphs as described in Section 7.

Roughly, ICL-theories are defined as follows. Achoice spaceC is a set of pairwise disjoint and
nonempty subsets of the Herbrand base, called thealternativesof C. The elements of the alternatives ofC
are called theatomic choicesof C. A total choiceof C is a set of atomic choicesB such that|B ∩A|=1 for
all alternativesA of C. An independent choice logic theory(or ICL-theory) T = (C,L) consists of a choice
spaceC and an acyclic logic programL such that no atomic choice inC coincides with the head of any
clause in the grounding ofL. Semantically, every total choice ofC along with the acyclic logic programL
produces a first-order model [9]. Hence,T = (C,L) encodes the set of all such models. Every total choice
and thus every first-order model is often also associated with a probability value.

It is not difficult to see that there is a natural relationship between binary structure-based causal mod-
elsM = (U, V, F ) and ICL-theoriesT = (C,L): (i) The exogenous variables inU along with their domains
correspond to the alternatives ofC along with their atomic choices, (ii) the endogenous variables inV
along with their binary domains correspond to the ground atoms ofT that do not act as atomic choices,
along with their binary truth values, (iii) the functions inF correspond to collections of clauses with the
same head in the grounding ofL, and (iv) a probability function on the contexts inD(U) corresponds to
a probability function on the atomic choices ofC. This natural relationship nicely supports the definition
of structure-based causes and explanations in the ICL. The following example illustrates ICL-theories and
structure-based causes in ICL-theories.

Example 8.1 (mobile robot)Consider a mobile robot, which can navigate in an environment and pick
up objects. We assume the constantsr1 (robot), o1 ando2 (two objects),p1 andp2 (two positions), and
0, 1, . . . , h (time points within ahorizonh≥ 0). The domain is described by the fluentscarrying(O, T ) and
at(X,Pos, T ), whereO∈{o1, o2}, T ∈{0, 1, . . . , h},X ∈{r1, o1, o2}, andPos ∈{p1, p2}, which encode
that the robotr1 is carrying the objectO at timeT (where we assume that at any timeT the robot can
hold at most one object), and that the robot or objectX is at the positionPos at timeT , respectively. The
robot is endowed with the actionsmoveTo(Pos), pickUp(O), andputDown(O), wherePos ∈{p1, p2}
andO∈{o1, o2}, which represent the actions “move to the positionP ,” “pick up the objectO,” and “put
down the objectO,” respectively. The actionpickUp(O) is stochastic: It is not reliable, and thus can fail.
Furthermore, we have the predicatesdo(A, T ), which represents the execution of an actionA at timeT , and
fa(A, T ) (resp.,su(A, T )), which represents the failure (resp., success) of an actionA executed at timeT .
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An ICL-theory (C,L) is then given as follows. The choice spaceC encodes that picking up an object
oi ∈{o1, o2} at timet∈{0, 1, . . . , h} may fail (fa(pickUp(oi), t)) or succeed (su(pickUp(oi), t)):

C = {{fa(pickUp(oi), t), su(pickUp(oi), t)} | i∈{1, 2}, t∈{0, 1, . . . , h}} .

The acyclic logic programL consists of the clauses below, which encode the following knowledge:

• The robot is carrying the objectO at timeT+1, if either (i) the robot and the objectO were both at
Pos at timeT , and the robot was not carrying any object and successfully picking up the objectO at
timeT , or (ii) the robot was carrying the objectO and not putting it down at timeT .

(1) carrying(O, T+1)⇐ (¬carrying(o1, T ) ∧ ¬carrying(o2, T ) ∧ at(r1,Pos,

T ) ∧ at(O,Pos, T ) ∧ do(pickUp(O), T ) ∧ su(pickUp(O), T ))

∨(carrying(O, T ) ∧ ¬do(putDown(O), T )).

• The robot is atPos at timeT+1, if either (i) it moved toPos at timeT , or (ii) it was atPos and did
not move away at timeT .

(2) at(r1,Pos, T+1)⇐ do(moveTo(Pos), T )∨

(at(r1,Pos, T ) ∧ ¬do(moveTo(Pos ′), T ) ∧ Pos 6=Pos ′).

• The objectO is atPos at timeT+1, if either (i) the object was atPos and not carried by the robot at
timeT , or (ii) the robot was carrying the objectO and moved toPos at timeT , or (iii) the object was
atPos and carried by the robot, who did not move away at timeT .

(3) at(O,Pos, T+1)⇐ (¬carrying(O, T ) ∧ at(O,Pos, T ))∨

(carrying(O, T ) ∧ do(moveTo(Pos), T )) ∨ (carrying(O, T )∧

at(O,Pos, T ) ∧ ¬do(moveTo(Pos ′), T ) ∧ Pos 6=Pos ′).

• The objecto1 is at the positionp2 at time0.

(4) at(o1, p2, 0)⇐⊤.

• The robot is at the positionp2 at time0.

(5) at(r1, p2, 0)⇐⊤.

Consider the horizonh= 3 and suppose that picking up an object succeeds at every timet∈{0, 1, 2, 3},
which is encoded by the total choice

B= {su(pickUp(oi), t) | i∈{1, 2}, t∈{0, 1, 2, 3}} .

Suppose that the robot executes a pick up ofo1 at time0, a move top1 at time1, and a pick up ofo2 at
time2, which is represented by the additional facts

E= {do(pickUp(o1), 0), do(moveTo(p1), 1), do(pickUp(o2), 2)} .
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The structural-model approach now allows to give a semantics to causal statements in the ICL such as e.g.
“the objecto1 being at positionp2 at time0 is an actual cause of the robot not carrying the objecto2 at time
3 under the aboveB in T ∪E”. Intuitively, the robot and the objecto1 are both at positionp2 at time0.
Hence, picking upo1 succeeds at time0, the robot moves witho1 to positionp1 at time1, there its picking
upo2 fails at time2, and this is why the robot is not carryingo2 at time3. However, ifo1 was not in position
p2 at time0, ando2 was always at positionp1, then the robot would hold no object at time2, and its picking
upo2 at time2 would succeed, and thus the robot would then be carryingo2 at time3.

Notice that the grounding step produces a causal model that has, even inthis simple example, more
than 90 variables (for a horizonh≥ 0, we have24 · (h + 1) variables), which largely increases if we have
more than only two positions and two objects different from the robot. Furthermore, the causal graph of this
model is naturally layered through the time line, such that the results of Section 7can be fruitfully applied
to it. 2

9 Conclusion

Defining causality between events is an issue which beyond the philosophical literature has also been con-
sidered in AI for a long time. Because of its key role for hypothesis and explanation forming, it is an
important problem for which a number of different approaches have been proposed. In the approach by
Halpern and Pearl [15, 16], causality is modeled using structural equations, distinguishing between weak
and actual causes of events which are modeled by Boolean combinations ofatomic value statements. Based
on weak causes, a notion of causal explanation and probabilistic variantsthereof have been defined in [18],
while a refinement of actual causality in terms of responsibility and blame has been recently given in [3].
As has been argued and demonstrated, the structural-model approach by Halpern and Pearl deals well with
difficulties of other approaches, including recent ones in the literature (see [16, 18]).

In order to bring the theoretical approach by Halpern and Pearl to practice, an understanding of the com-
putational properties and (efficient) algorithms are required. In this direction, the computational complexity
of major decision and computation problems for the approach has been studied in [3, 6, 7], and algorithms
for computing causes proposed in [21]. Since arbitrary Boolean functions are used to model structural equa-
tions, determining causes and explanations is unsurprisingly intractable in general. Hence, the important
issue of tractable cases arose, as well as how unnecessary complexity incomputations can be avoided.

Investigating these issues, we have first explored, extending work by Hopkins [21], how to focus the
computation of (potential) weak causes and causal models, by efficient removal of irrelevant variables. We
have then presented a new characterization of weak cause for a certainclass of causal models in which the
causal graph over the endogenous variables is benignly decomposable. Two natural and important subclasses
of it are causal trees and layered causal graphs, which can be be efficiently recognized, namely in linear time.
By combining the removal of irrelevant variables with this new characterization of weak cause, we have then
obtained techniques for deciding and computing causes and explanations inthe structural-model approach,
which show that these problems are tractable under suitable conditions. To our knowledge, these are the
first explicit tractability results for causes and explanations in the structural-model approach. Moreover,
by slightly extending the new characterization of weak cause, we have obtained similar techniques for
computing the degrees of responsibility and blame, and thus also new tractabilityresults for structure-
based responsibility and blame. Finally, we have shown that all the above techniques and results carry
over to recent refinements of the notion of weak cause and causal modelsdue to Halpern and Pearl [17], and
we have also described an application of our results and techniques for dealing with structure-based causes
and explanations in first-order reasoning about actions in Poole’s ICL.
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We have thus identified tractable special cases for decision and optimization problems of relatively high
complexity, which is to some extend remarkable. These tractability results are a nice computational property
of causes, explanations, responsibility, and blame in the structural-model approach.

An interesting topic of further studies is to explore whether there are other important classes of causal
graphs different from causal trees and layered causal graphs in which the tractable cases can be recognized
efficiently (that is, in which width-bounded decompositions can be recognized and computed efficiently).
Another direction is analyzing how the techniques and results of this paper can be further developed for
reasoning about actions [9] and commonsense causal reasoning [24]. Finally, implementation and further
optimization remains for future work.

A Appendix: Proofs for Section 4

Proof of Theorem 4.1. LetX0 ∈X be such that inG(M), there is no directed path fromX0 to any variable
in φ. LetX ′′ =X \ {X0} and x′′ =x|X ′′. Then, as shown in [7],X =x is a weak cause ofφ underu iff
(i) X0(u) = x(X0) and (ii)X ′′ =x′′ is a weak cause ofφ underu. By iteratively applying this result to
everyX0 ∈ X\X

′, we thus obtain thatX =x is a weak cause ofφ underu iff (i) (X\X ′)(u) = x|(X\X ′)
and (ii)X ′ =x′ is a weak cause ofφ underu. 2

Proof of Theorem 4.2. LetX0 ∈X be such that inG(M), each directed path fromX0 to a variable inφ
contains someXi ∈X

′′ =X\{X0}, and letx′′ =x|X ′′. As in the proof of Theorem 4.1, it is sufficient to
show thatX =x is a weak cause ofφ underu iff (i) X0(u)=x(X0) and (ii)X ′′ =x′′ is a weak cause ofφ
underu.

(⇒) Assume thatX =x is a weak cause ofφ underu. That is,AC1X(u)=x andφ(u), andAC2 some
W ⊆V \X, x∈D(X), andw∈D(W ) exist such that (a)¬φxw(u) and (b)φxwẑ(u) for all Ẑ ⊆V \ (X ∪
W ) andẑ= Ẑ(u). In particular, (i)X0(u)=x(X0), and alsoAC1 X ′′(u)=x′′ andφ(u). Furthermore, as
every directed path inG(M) from X0 to a variable inφ contains someXi ∈X

′′, it follows that AC2(a)
¬φx′′w′(u) and (b)φx′′w′ẑ(u) hold for all Ẑ ⊆ V \ (X ′′ ∪W ′) and ẑ= Ẑ(u), whereW ′ =W∪{X0},
x′′ =x|X ′′, w′ =wx0 ∈D(W ′), andx0 =x(X0). Hence, (ii)X ′′ =x′′ is a weak cause ofφ underu.

(⇐) Assume that (i)X0(u)=x(X0) and (ii) X ′′ =x′′ is a weak cause ofφ underu. That is,AC1
X ′′(u)=x′′ andφ(u) hold, andAC2 there exist someW ⊆V \X ′′, x′′ ∈D(X ′′), w∈D(W ) such that (a)
¬φx′′w(u), and (b)φx′′wẑ(u) for all Ẑ ⊆ V \(X ′′ ∪W ) andẑ= Ẑ(u). By (i), it holds thatAC1 X(u)=x
andφ(u). Furthermore, since every directed path inG(M) from X0 to a variable inφ contains some
Xi ∈X

′′, it follows thatAC2(a)¬φx′′x0w′(u) and (b)φx′′x0w′ẑ(u) for all Ẑ ⊆V \ (X ∪W ′) andẑ= Ẑ(u),
whereW ′ =W \ {X0}, w′ =w|W ′ ∈D(W ′), andx0 =x(X0). It thus follows thatX =x is a weak cause
of φ underu. 2

Proof of Proposition 4.3. (a) We first compute the setAφ of all variables inφ and their ancestors in
GV (M), and then the setX ′ =Aφ ∩X. Using standard methods and data structures, the first step can be
done in timeO(‖φ‖ + |E|) whereGV (M)= (V,E), and the second step in timeO(|V |). In summary,X ′

is computable in timeO(‖GV (M)‖+ ‖φ‖), and hence in timeO(‖M‖+ ‖φ‖).
(b) We first compute the directed graphG′ obtained fromGV (M)= (V,E) by removing every arrow

Xk→Xl with Xl ∈X. We then compute the setA′
φ of all ancestors inG′ of variables inφ. We finally

computeX ′ =A′
φ ∩X. Using standard methods and data structures, the first step can be done intime

O(|V |+ |E|), the second step in timeO(|V |+ |E|+ ‖φ‖), and the third step in timeO(|V |). In summary,
X ′ is computable in timeO(|V |+ |E|+ ‖φ‖), hence in timeO(‖M‖+ ‖φ‖). 2
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Proof of Proposition 4.4. Consider anyB ∈X ∩Rφ
X(M). That is,B ∈X andB ∈Rφ

X(M). If B is

included intoRφ
X(M) by R1, then there exists a directed path inG(M) fromB to a variable inφ. If B is

included intoRφ
X(M) by R2, then eitherB occurs inφ orB is a parent of a variable that satisfiesR1. Thus,

there also exists a directed path inG(M) fromB to a variable inφ.
Conversely, suppose thatB ∈X and that there exists a directed path inG(M) fromB to a variable inφ.

If B occurs inφ, thenB ∈Rφ
X(M) by eitherR1 or R2. Otherwise, there exists a childA of B in G(M)

such thatA is on a directed path inG(M) fromB ∈X\{A} to a variable inφ. Hence,A∈Rφ
X(M) by R1.

It thus follows thatB ∈Rφ
X(M) by eitherR1 or R2. 2

Proof of Theorem 4.5. Let Mφ
X = (U, V ′, F ′). Let X ′ =X ∩V ′ andx′ =x|X ′. We have to show that

X =x is a weak cause ofφ underu in M iff (i) (X\X ′)(u) = x|(X\X ′) in M , and (ii)X ′ =x′ is a weak
cause ofφ underu in Mφ

X . LetV ′
1 (resp.,V ′

2) denote the set of allA∈V ′ that satisfyR1 (resp.,R2).
Roughly, the main idea behind the proof is to move all the variables inV ′

2 \X
′ intoW in AC2. Then,

setting the variables inX ′ andW in AC2 makes the truth ofφ underu independent from the values of
the variables inV \V ′. Thus, the variables inV \V ′ can be simply ignored inM and added toMφ

X ,
respectively.

Fact A.V ′
M (u)=V ′

M
φ
X

(u) andφM (u)=φ
M

φ
X

(u).

(⇒) Assume thatX =x is a weak cause ofφ underu in M . That is, AC1 X(u)=x and φ(u)
in M , andAC2 someW ⊆V \X, x∈D(X), w∈D(W ) exist such that (a)¬φxw(u) and (b)φxwẑ(u)
in M for all Ẑ ⊆V \ (X ∪W ) and ẑ= Ẑ(u). This already shows that (i)(X\X ′)(u)=x|(X\X ′) in
M . We next show that also (ii) holds. From Fact A, it follows thatAC1 X ′(u)=x′ andφ(u) in Mφ

X .
Since for any valuêx′ of X ′ it holds that(V ′

2\X
′)x̂′w =(V ′

2\X
′)w in M , it follows in particular that

(V ′
2\X

′)x′w(u)= (V ′
2\X

′)w(u)= (V ′
2\X

′)x′w(u) inM , wherex′ =x|X ′. It then follows that (a)¬φx′w′(u)
and (b)φx′w′ẑ(u) in M for all Ẑ ⊆ V \(X ′ ∪W ′) and ẑ= Ẑ(u), whereW ′ = (W ∩V ′) ∪ (V ′

2\X
′), and

w′ =W ′
w(u) in M . Hence,AC2(a)¬φx′w′(u) in Mφ

X and (b)φx′w′ẑ(u) in Mφ
X for all Ẑ ⊆V ′ \ (X ′ ∪W ′)

andẑ= Ẑ(u). In summary, (ii)X ′ =x′ is a weak cause ofφ underu in Mφ
X .

(⇐) Assume that (i)(X\X ′)(u)=x|(X\X ′) inM and (ii)X ′ =x′ is a weak cause ofφ underu inMφ
X .

Thus,AC1X ′(u)=x′ andφ(u) inMφ
X , andAC2 someW ⊆V ′\X ′, x′ ∈D(X),w∈D(W ) exist such that

(a)¬φx′w(u) and (b)φx′wẑ(u) in Mφ
X for all Ẑ ⊆V ′ \ (X ′ ∪W ) andẑ= Ẑ(u). By Fact A, we haveAC1

X(u)=x andφ(u) in M . Since inMφ
X , the variables inV ′

2\X
′ do not depend on any variable inX ′, it

holds that(V ′
2\X

′)x′w(u) = (V ′
2\X

′)w(u)= (V ′
2\X

′)x′w(u) in Mφ
X . It then follows that (a)¬φx′w′(u) and

(b) φx′w′ẑ(u) in Mφ
X for all Ẑ ⊆ V ′ \ (X ′ ∪W ′) and ẑ = Ẑ(u), whereW ′ = W ∪ (V ′

2\X
′), andw′ is

such thatw′|W =w andw′|(V ′
2\(X

′ ∪W ))= ((V ′
2\(X

′ ∪W ))w(u) in Mφ
X . Since no variable fromV \V ′

can influence any variable inφ if all variables inX andW ′ have a value assigned inM , it follows that
AC2(a)¬φxw′(u) in M and (b)φxw′ẑ(u) in M for all Ẑ⊆V \(X ∪W ′) andẑ= Ẑ(u), wherex|X ′ =x′ and
x|(X\X ′)= (X\X ′)(u). In summary,X =x is a weak cause ofφ underu in M . 2

Proof of Proposition 4.6. Let Mφ
X=(U, V ′, F ′), Mφ

X′=(U, V ′′, F ′′), and(Mφ
X)φ

X′ = (U, V ′′′, F ′′′). We

first show thatV ′′ =V ′′′ and then thatF ′′ =F ′′′, which proves thatMφ
X′ coincides with(Mφ

X)φ
X′ . We note

the following easy fact.

Fact B.R1 andRφ
X(M) are monotonic inX, i.e., ifA satisfiesR1 for X, then also for each superset ofX,

andX ⊆ X ′ impliesRφ
X(M) ⊆ Rφ

X′(M).
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LetV ′′
1 (resp.,V ′′′

1 ) denote the set of all variables included intoV ′′ (resp.,V ′′′) by R1. We now first show
thatV ′′

1 = V ′′′
1 . Consider anyA∈V ′′′

1 . Then,A is on a directed path inG(Mφ
X) from a variable inX ′ \ {A}

to a variable inφ. SinceG(Mφ
X) is a subgraph ofG(M), it follows thatA is also on a directed path in

G(M) from a variable inX ′ \ {A} to a variable inφ, and thusA∈V ′′
1 . Conversely, suppose thatA∈V ′′

1 .
Then,A is on a directed path inG(M) from a variable inX ′ \ {A} to a variable inφ. SinceX ′⊆X, this
path also exists inG(Mφ

X), and thusA∈V ′′′
1 . This shows thatV ′′

1 =V ′′′
1 . Observe then thatV (φ)⊆V ′′ and

V (φ)⊆V ′′′. Consider finally any parentA∈V of a variableB ∈V ′′
1 inG(M). By Fact B,A∈V ′ and since

V ′′
1 =V ′′′

1 , A is also parent ofB ∈V ′′′
1 in G(Mφ

X). Conversely, ifA∈V is parent ofB ∈V ′′′
1 in G(Mφ

X),
thenA∈V is also a parent ofB ∈V ′′

1 in G(M). In summary, this shows thatV ′′ =V ′′′.
We finally show thatF ′′ =F ′′′. As shown above,V ′′

1 =V ′′′
1 andV ′′ =V ′′′. By Fact B, for eachA∈V ′′

1

we haveF ′′
A =FA andF ′′′

A =F ′
A =FA. For eachA∈V ′′\V ′′

1 , we haveF ′′
A =F ⋆

A andF ′′′
A = (F ′

A)⋆ =F ⋆
A.

Hence,F ′′ =F ′′′. 2

Proof of Theorem 4.7. Let X⋆ be the set of all variables inX that are not connected by a directed
path inG(M) to a variable inφ. By Proposition 4.4,X ′′ =X ′\X⋆. By Theorem 4.5,X ′ =x′ is a
weak cause ofφ underu in M iff (i) (X ′\X ′′)(u)=x′|(X ′\X ′′) in M , and (ii)X ′′ =x′′ is a weak cause
of φ underu in Mφ

X′ . Moreover, again by Theorem 4.5 (invoked forX there equal toX ′′, which means

X ′ =X ′′ ∩Rφ
X′′(M

φ
X)=X ′′), X ′′ =x′′ is a weak cause ofφ underu in Mφ

X iff X ′′ =x′′ is a weak cause

of φ underu in (Mφ
X)φ

X′′=(Mφ
X)φ

X′ . By Proposition 4.6,Mφ
X′ = (Mφ

X)φ
X′ , which proves the result.2

Proof of Proposition 4.8. We first show that the directed graphGV (Mφ
X) is computable in linear time.

Its set of nodesV ′ =Rφ
X(M) is the set of all variablesA∈V that satisfyR1 or R2. The set of all vari-

ablesA∈V that satisfyR1 is given byDX ∩Aφ, whereDX denotes the set of all proper descendents of
variables inX, andAφ denotes the set of all variables inφ and of all ancestors of variables inφ. Thus,
the part ofV ′ satisfyingR1 can be computed in timeO(‖G(M)‖+ ‖φ‖), sinceDX is computable in time
O(‖G(M)‖)=O(|U | + |V | + |E|) whereG(M) = (U ∪ V,E), andAφ andDX ∩Aφ are computable
in time O(‖G(M)‖ + ‖φ‖) using standard methods and data structures. The set of all variablesA∈V
that satisfyR2 is given by(Vφ ∪PA(DX ∩Aφ)) \ (DX ∩Aφ). As already noted,DX ∩Aφ can be com-
puted in timeO(‖G(M)‖ + ‖φ‖). Furthermore,Vφ andPA(DX ∩Aφ) givenDX ∩Aφ can be computed
in time O(‖φ‖) andO(‖G(M)‖), respectively. Since all set operations are feasible in linear time using
standard methods and data structures, it thus follows that the part ofV ′ satisfyingR2 can be computed
in time O(‖G(M)‖ + ‖φ‖). In summary,V ′ is computable in timeO(‖G(M)‖ + ‖φ‖), hence in time
O(‖M‖+ ‖φ‖). This already shows thatGV (Mφ

X) can be computed in time linear in the size ofM andφ,
since it is the restriction ofG(M) to V ′.

We next show thatMφ
X =(U, V ′, F ′) can be computed in polynomial time. As argued above,V ′ and its

partition into variables that satisfyR1 and those that satisfyR2 is computable in timeO(‖G(M)‖ + ‖φ‖).
We next show that a representation of every functionF ⋆

A, whereA satisfiesR2, is computable in time
O(‖M‖). EveryF ⋆

A(UA) is given as follows. The set of argumentsUA is the set of all ancestorsB ∈U of
A in G(M). The functionF ⋆

A itself can be represented by the restrictionMA of M =(U, V, F ) to V and all
ancestorsB ∈U of A in G(M). Then,F ⋆

A(uA) for uA ∈D(UA) is given byA(uA) in MA. Observe that by
Proposition 2.1, everyF ⋆

A(uA) is computable in polynomial time. Clearly,UA andMA can be computed in
linear time. Thus, the set of all functionsF ⋆

A, whereA satisfiesR2, can be computed inO(|V |‖M‖) time.
In summary,Mφ

X = (U, V ′, F ′) can be computed inO(|V |‖M‖+ ‖φ‖) time. 2

Proof of Proposition 4.9. Consider anyB ∈X ∩ R̂φ
X(M). That is,B ∈X andB ∈ R̂φ

X(M). Then,B
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is not included intoR̂φ
X(M) by S1, as otherwiseB 6∈X. Thus,B is included intoR̂φ

X(M) by S2. Hence,
eitherB occurs inφ, or B is a parent of a variable that satisfiesS1. Thus, there exists a directed path in
G(M) fromB to a variable inφ that contains noXj ∈X\{B}.

Conversely, suppose thatB ∈X and that there exists a directed path inG(M) fromB to a variable inφ
that contains noXj ∈X\{B}. If B occurs inφ, thenB ∈ R̂φ

X(M) by S2(note thatB does not satisfyS1).
Otherwise, there exists a childA ofB inG(M) such thatA is on a directed pathP inG(M) from a variable
in X\{A} (=X) to a variable inφ, whereP does not contain any variable fromX\{B}. It follows that
A∈ R̂φ

X(M) by S1, and thusB ∈ R̂φ
X(M) by S2. 2

Proof of Theorem 4.10. The proof is similar to the one of Theorem 4.5, using noŵMφ
X instead ofMφ

X

andS1(resp.,S2) instead ofR1 (resp.,R2). 2

Proof of Proposition 4.11. The proof is similar to the proof of Proposition 4.8. The main difference is
that we now defineDX as the set of all proper descendents inG′ of variables inX, andAφ as the set of
all variables inφ and of all ancestors inG′ of variables inφ, where the directed graphG′ is obtained from
GV (M) by removing every arrowXk→Xl with Xl ∈X. The result then follows from the observation that
the newDX andAφ can also be both computed in timeO(‖M‖ + ‖φ‖), sinceG′ is computable in time
O(‖GV (M)‖), andDX andAφ are both computable in timeO(‖G′‖+ ‖φ‖) andO(‖G′‖)=O(‖M‖). 2

Proof of Theorem 4.12. If X is a singleton, thenR1 (resp.,R2) in the definition ofRφ
X(M) coincides

with S1(resp.,S2) in the definition ofR̂φ
X(M), sinceX\{B}= ∅. This shows thatRφ

X(M)= R̂φ
X(M) and

Mφ
X = M̂φ

X . 2

B Appendix: Proofs for Section 5

Proof of Proposition 5.1. Using standard methods and data structures, deciding whether there exists
exactly one directed path inGV (M)= (V,E) from every variableA∈V \ {Y } toY can be done inO(|V |+
|E|) time. Moreover, deciding whether everyA∈V \{X} has a bounded number of parents can also be done
in O(|V |+ |E|) time. In summary, deciding whetherM is a causal tree with respect toX andY is feasible
in O(|V | + |E|)=O(‖M‖) time. By Proposition 4.8, the directed graphGV (MY

X ) can be computed in
O(‖M‖) time fromM andX,Y . Thus, deciding ifMY

X is a (bounded) causal tree can also be done in time
O(‖M‖). 2

Proof of Theorem 5.2. Clearly,(α) coincides withAC1. Assume that(α) holds. We now show that(β) is
equivalent toAC2:

AC2. Some set of variablesW ⊆V \X and some valuesx∈D(X) andw∈D(W ) exist such that:

(a) Yxw(u) 6= y,

(b) Y
xwẐ(u)(u)= y for all Ẑ ⊆V \ (X ∪W ).

Clearly, we can assume thatP i 6∈W for all i∈{0, . . . , k − 1}, since otherwiseYxw(u)=Yxw(u). This
shows thatW ⊆W 1 ∪ · · · ∪W k. Observe then that we can enlarge everyw∈D(W ) to somew′ ∈D(W ′),
whereW ′ =W 1 ∪ · · · ∪W k, by definingw′|W =w andw′|(W ′\W )= (W ′\W )(u). Hence, we can as-
sume thatẐ ⊆ {P 0, . . . , P k−1} and thus also, by the path structure of the causal tree, thatẐ = {P i} with
i∈{1, . . . , k − 1}. Hence, it is sufficient to prove that(β) is equivalent to the following conditionAC2′:
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AC2′. Some valuesx∈D(X) andw∈D(W 1 ∪ · · · ∪W k) exist such that:

(a) Yx w(u) 6= y,

(b) Yp̂jw(u)= y for all j ∈{1, . . . , k}.

We now show that(⋆) for everyi∈{1, . . . , k}, it holds thatp∈Ri iff there exists somew∈D(W 1 ∪ · · · ∪
W i) such that:

(i) p∈p iff Ypw(u) 6= y, for all p∈D(P i),

(ii) Yp̂jw(u)= y for all j ∈{1, . . . , i}.

This then shows that(β) is equivalent toAC2′: (⇒) Assume somep∈Rk exists such thatp 6= ∅ andx 6∈p.
Then, somew∈D(W 1∪· · ·∪W k) andp∈p exist such thatYpw(u) 6= y andYp̂jw(u)= y for all j ∈{1, . . . ,
k}. That is,AC2′ holds. (⇐) Conversely, suppose thatAC2′(a) and (b) hold for somex∈D(X) and
w∈D(W 1 ∪ · · · ∪W k). Letp= {p ∈ D(P k) | Ypw(u) 6= y}. Then,p∈Rk, p 6= ∅, andx 6∈p. That is,(β)
holds.

We prove(⋆) by induction oni∈{1, . . . , k}:

Basis:SinceR0 = {D(Y )\{y}}, it holds thatp∈R1 iff somew∈D(W 1) exists such that:

(i) p∈p iff Ypw(u)∈D(Y )\{y} iff Ypw(u) 6= y, for all p∈D(P 1),

(ii) P 0
p̂w(u)∈{y}, i.e.,Yp̂1w(u)= y.

Induction: Observe thatp∈Ri iff somew∈D(W i) andp
′∈Ri−1 exist such that:

(i′) p∈p iff P i−1
pw (u)∈p

′, for all p∈D(P i),

(ii ′) P i−1
p̂iw

(u)∈D(P i−1)\p′.

By the induction hypothesis,p′ ∈ Ri−1 iff somew′ ∈ D(W 1 ∪ · · · ∪W i−1) exists such that:

(i′′) p′ ∈p
′ iff Yp′w′(u) 6= y, for all p′ ∈D(P i−1),

(ii ′′) Yp̂jw′(u)= y for all j ∈{1, . . . , i− 1}.

Thus,p∈Ri iff somew∈D(W i) andw′ ∈D(W 1 ∪ · · · ∪W i−1) exist such that:

(i) p∈p iff P i−1
pw (u)∈p

′ iff Ypww′(u) 6= y, for all p∈D(P i), by (i′) and (i′′),

(ii) P i−1
p̂iw

(u)= p′ andYp′w′(u)= y, by (ii′) and (i′′), as well as
Yp̂jww′(u)= y for all j ∈{1, . . . , i− 1} by (ii′′).

That is,p∈Ri iff somew∈D(W 1 ∪ · · · ∪W i) exists such that:

(i) p∈p iff Ypw(u) 6= y, for all p∈D(P i),

(ii) Yp̂jw(u)= y for all j ∈{1, . . . , i} (note thatYp′w(u)=Yp̂iww). 2
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Proof of Theorem 5.3. By Theorem 5.2,X =x is a weak cause ofY = y underu in M iff (α) X(u)=x
andY (u)= y in M , and(β) somep∈Rk exists such thatp 6= ∅ andx 6∈p. It is thus sufficient to show
that deciding whether(α) and (β) hold can be done in polynomial time. By Proposition 2.1, deciding
whether(α) holds can be done in polynomial time. Next, we observe thatP 0, . . . , P k andW 1, . . . ,W k

can be computed in timeO(‖M‖). By Proposition 2.1, everŷpi with i∈{1, . . . , k} can be computed in
polynomial time. We then iteratively compute everyRi with i∈{0, . . . , k}. Clearly,R0 can be computed in
constant time, sinceV is domain-bounded. Observe then that the cardinality of eachD(W i) is bounded by
a constant, sinceV is domain-bounded andGV (M) is bounded. Furthermore, the size of eachRi−1 and the
cardinality of eachD(P i) are both bounded by a constant, sinceV is domain-bounded. By Proposition 2.1,
the valuesP i−1

p̂iw
(u) andP i−1

pw (u) can be computed in polynomial time. Hence, everyRi can be computed by

a constant number of polynomial computations, and thus in polynomial time. Hence,Rk can be computed
in polynomial time. GivenRk, deciding whether(β) holds can be done in constant time. In summary,
computingRk and deciding whether(β) holds, and thus deciding whether(α) and(β) hold, can be done in
polynomial time.

By Theorem 2.3,X =x is an actual cause ofY = y underu in M iff X is a singleton andX =x is a
weak cause ofY = y underu in M . Thus, deciding whetherX =x is an actual cause ofY = y underu in
M can also be done in polynomial time.2

Proof of Theorem 5.4. By Theorem 4.5,X =x is a weak cause ofY = y underu in M iff X =x is
a weak cause ofY = y underu in MY

X . By Proposition 4.8,MY
X is computable in polynomial time. By

Theorem 5.3, givenMY
X , deciding whetherX =x is a weak cause ofY = y underu in MY

X can be done in
polynomial time. In summary, deciding whetherX =x is a weak cause ofY = y underu in MY

X and thus
in M is possible in polynomial time.2

Proof of Theorem 5.5. Recall thatX =x is an explanation ofY = y relative toC iff EX1 Y (u)= y for
everyu∈C, EX2X =x is a weak cause ofY = y under everyu∈C such thatX(u)=x, EX3X is minimal,
andEX4 X(u)=x andX(u′) 6=x for someu, u′ ∈C. By Proposition 2.1, checking whetherEX1 andEX4
hold can be done in polynomial time. Clearly,EX3 always holds, sinceX is a singleton. By Theorem 5.4,
deciding whetherX =x is a weak cause ofY = y under someu∈C in M such thatX(u)=x can be done
in polynomial time. Thus, by Proposition 2.1, deciding whetherEX2 holds can be done in polynomial time.
In summary, deciding whetherEX1–EX4 hold can be done in polynomial time.2

Proof of Theorem 5.6. We first compute the setC⋆ of all u∈C such that either (i)X(u) 6=x in M , or (ii)
X(u)=x andX =x is a weak cause ofY = y underu in M . By Proposition 2.1 and Theorem 5.4, this can
be done in polynomial time. IfX =x is a partial explanation ofY = y relative to(C, P ) in M , thenCY =y

X=x

is defined, andCY =y
X=x = C⋆ by Proposition 2.4. GivenCY =y

X=x, the explanatory powerP(CY =y
X=x |X =x) is

computable in polynomial time by Proposition 2.1, if we assume as usual thatP is computable in polynomial
time. In summary, this shows (c).

To check partial (resp.,α-partial) explanations in (a) (resp., (b)), we computeC⋆ as above. We then
check whetherCY =y

X=x is defined. That is, by Proposition 2.4, we check thatX =x is an explanation of
Y = y relative toC⋆ in M , which is possible in polynomial time by Theorem 5.5. Then,CY =y

X=x = C⋆ by
Proposition 2.4. We finally computeP(CY =y

X=x |X =x) as above and check that it is positive (resp., at least
α), which can clearly be done in polynomial time. In summary, this proves (a) (resp., (b)).2
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C Appendix: Proofs for Section 6

Proof of Theorem 6.1. Obviously,(α) coincides withAC1. We now prove that(β) is equivalent toAC2:

AC2. SomeW ⊆V \X and somex∈D(X) andw∈D(W ) exist such that:

(a) ¬φxw(u),

(b) φ
xwẐ(u)(u) for all Ẑ ⊆V \ (X ∪W ).

By D6, the variables inSk have no parents inGV (M). Hence, every variable inSk only depends on
the variables inU , and thus we can move anyA∈Sk \ (W ∪X) into W by settingw(A)=A(u). We
can thus assume thatX =Sk \W holds. Since (i)W ⊆V andX =Sk \W impliesW ⊆V \X, and (ii)
X =Sk \W impliesSk ∪W =X ∪W , it is thus sufficient to show that(β) is equivalent toAC2⋆:

AC2⋆. SomeW ⊆V , x∈D(X), andw∈D(W ) exist such thatX =Sk \W and

(a) ¬φxw(u),

(b) φ
xwẐ(u)(u) for all Ẑ ⊆V \ (Sk ∪W ).

We now prove that(⋆) for all i∈{0, . . . , k}, it holds that(p, q, F )∈Ri iff someW ⊆T 0 ∪ · · · ∪T i and
w∈D(W ) exist such thatF =Si \W and

(i) for everyp, q ∈D(F ):

(i.1) p∈p iff ¬φpw(u),

(i.2) q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆ (T 0 ∪ · · · ∪T i) \ (Sk ∪W ).

In particular, this then implies that(p, q, F )∈Rk iff someW ⊆T 0 ∪ · · · ∪T k =V andw∈D(W ) exist
such thatF =Sk \W and

(i) for everyp, q ∈D(F ):

(i.1) p∈p iff ¬φpw(u),

(i.2) q ∈ q iff φ[q〈Ẑ(u)]w(u)

for all Ẑ ⊆ (T 0 ∪ · · · ∪T k) \ (Sk ∪W )=V \ (Sk ∪W ).

This then shows thatAC2⋆ is equivalent to(β) some(p, q, X)∈Rk exists such thatp 6= ∅ andx∈ q:
(⇐) Suppose first that(β) holds. Hence, someW ⊆V and somew ∈ D(W ) exist such thatX =Sk \W
and (a)¬φpw(u) for somep∈p 6= ∅, and (b)φ[q〈Ẑ(u)]w(u) for q=x∈ q and allẐ ⊆V \ (Sk ∪W ). That is,
AC2⋆ holds.(⇒) Conversely, suppose now thatAC2⋆ holds. Let(p, q, X) be defined by (i), usingW ⊆V
andw∈D(W ) from AC2⋆ asW ⊆V andw∈D(W ), respectively. Then,(p, q, X)∈Rk, p 6= ∅, andx∈ q.
That is,(β) holds.

We give a proof of(⋆) by induction oni∈{0, . . . , k}:

Basis:Recall that(p, q, F ) ∈ R0 iff someW ⊆ T 0 andw ∈ D(W ) exist such thatF =S0 \W and

(i) for everyp, q ∈D(F ):

(i.1) p∈p iff ¬φpw(u),
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(i.2) q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆T 0 \ (Sk ∪W ).

Induction: Recall that(p, q, F )∈Ri iff someW ⊆T i, w∈D(W ), and(p′, q′, F ′) ∈ Ri−1 exist such that
F =Si \W and

(i′) for everyp, q ∈D(F ):

(i.1′) p∈p iff F ′
pw(u)∈p

′,

(i.2′) q ∈ q iff F ′
[q〈Ẑ(u)]w(u)∈ q

′ for all Ẑ ⊆T i \ (Sk ∪W ).

The induction hypothesis says that(p′, q′, F ′)∈Ri−1 iff someW
′
⊆ T 0∪ · · · ∪T i−1 andw′ ∈D(W

′
) exist

such thatF ′ =Si−1 \W
′
and

(i′′) for everyp′, q′ ∈D(F ′):

(i.1′′) p′ ∈p
′ iff ¬φp′w′(u),

(i.2′′) q′ ∈ q
′ iff φ[q′〈Ẑ′(u)]w′(u) for all Ẑ ′⊆ (T 0 ∪ · · · ∪T i−1) \ (Sk ∪W

′
).

It thus follows that(p, q, F )∈Ri iff someW
′
⊆T 0 ∪ · · · ∪T i−1, W ⊆T i, w′ ∈ D(W

′
), andw∈D(W )

exist such thatF =Si \W and

(i′′′) for F ′ =Si−1 \W
′
and everyp, q ∈D(F ):

(i.1′′′) p∈p iff ¬φp′w′(u), wherep′ =F ′
pw(u), by (i.1′) and (i.1′′),

(i.2′′′) q ∈ q iff φ[q′〈Ẑ′(u)]w′(u), whereq′ =F ′
[q〈Ẑ(u)]w(u), for all Ẑ ′⊆ (T 0 ∪ · · · ∪T i−1) \ (Sk ∪W

′
)

and allẐ ⊆T i \ (Sk ∪W ), by (i.2′) and (i.2′′).

By D4–D6 in the definition of a decomposition, setting some of theT i-variables asW - or Ẑ-variables in
(i.1′′′) and (i.2′′′) does not influence the values of the variables inSi \ (W ∪ Ẑ). Thus,F ′

pw(u)=F ′
pww′(u),

and so¬φp′w′(u) = ¬φpww′(u). Furthermore,A[q〈Ẑ(u)]w(u)=A[q〈Ẑ(u)]wẐ′(u)w′(u) for allA ∈ F ′ \ Ẑ ′, and
thusφ[q′〈Ẑ′(u)]w′(u), whereq′ =F ′

[q〈Ẑ(u)]w(u), is equivalent toφ[q〈Ẑ(u)]wẐ′(u)w′(u) = φ[q〈Ẑ(u)Ẑ′(u)]ww′(u).

Hence, it follows that(p, q, F ) ∈ Ri iff someW
′
⊆ T 0∪· · ·∪T i−1,W ⊆T i,w′ ∈D(W

′
), andw∈D(W )

exist such thatF =Si \W and

(i) for everyp, q ∈D(F ):

(i.1) p∈p iff ¬φpww′(u),

(i.2) q ∈ q iff φ[q〈Ẑ(u)]ww′(u) for all Ẑ ⊆ (T 0 ∪ · · · ∪T i) \ (Sk ∪W ∪W
′
).

That is, it holds that(p, q, F )∈Ri iff someW ⊆T 0 ∪ · · · ∪ T i andw∈D(W ) exist such thatF =Si \W
and

(i) for everyp, q ∈D(F ):

(i.1) p∈p iff ¬φpw(u),

(i.2) q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆ (T 0 ∪ · · · ∪T i) \ (Sk ∪W ). 2
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Proof of Theorem 6.2. By Theorem 2.3,X =x is an actual cause ofφ underu in M iff (i) X =x is
a weak cause ofφ underu in M and (ii)X is a singleton. Since deciding whetherX is a singleton can
clearly be done in constant time, it is sufficient to prove the statement of the theorem for the notion of weak
cause. LetD= ((T 0, S0), . . . , (T k, Sk)). By Theorem 6.1,X =x is a weak cause ofφ underu in M iff
(α) X(u)=x andφ(u) in M , and(β) some(p, q, X)∈Rk exists such thatp 6= ∅ andx∈ q, whereRk

is computed using the decompositionD of GV (M) relative toX andφ. By Proposition 2.2, deciding
whether(α) holds can be done in polynomial time. SinceV is domain-bounded andD is width-bounded,
it follows thatR0 can be computed in polynomial time, and that eachRi, i∈{1, . . . , k}, can be computed in
polynomial time fromRi−1. Hence,Rk can be computed in polynomial time. SinceV is domain-bounded
andD is width-bounded, it then follows that, givenRk, checking(β) can be done in constant time. In
summary, deciding whether(β) holds can also be done in polynomial time.2

Proof of Theorem 6.3. By Theorem 2.3, it is sufficient to prove the statement of the theorem for thenotion
of weak cause. LetX ′′=X ′∩Rφ

X(M) andx′′=x′|X ′′. By Theorem 4.7,X ′ =x′ is a weak cause ofφ under

u in M iff (i) (X ′\X ′′)(u) = x′|(X ′\X ′′) in M , and (ii)X ′′ =x′′ is a weak cause ofφ underu in Mφ
X . By

Proposition 4.8,Rφ
X(M) can be computed in linear time, and thusX ′\X ′′ =X ′\Rφ

X(M) can be computed
in linear time. By Proposition 2.1, givenX ′\X ′′, checking (i) can be done in polynomial time. In summary,
deciding whether (i) holds can be done in polynomial time. By Proposition 4.8,Mφ

X can be computed in

polynomial time. By Theorem 6.2, givenMφ
X , checking (ii) can be done in polynomial time. In summary,

deciding whether (ii) holds can be done in polynomial time.2

Proof of Theorem 6.4. By Theorem 2.3, it is sufficient to prove the statement of the theorem for thenotion
of weak cause. LetX ′=X∩R̂φ

X(M) andx′=x|X ′. By Theorem 4.10,X =x is a weak cause ofφ under

u in M iff (i) (X\X ′)(u) = x|(X\X ′) in M , and (ii)X ′ =x′ is a weak cause ofφ underu in M̂φ
X . By

Proposition 4.11,̂Rφ
X(M) can be computed in linear time, and thusX\X ′ =X\R̂φ

X(M) can be computed
in linear time. By Proposition 2.1, givenX\X ′, checking (i) can be done in polynomial time. In summary,
deciding whether (i) holds can be done in polynomial time. By Proposition 4.11,M̂φ

X can be computed in

polynomial time. By Theorem 6.2, given̂Mφ
X , checking (ii) can be done in polynomial time. In summary,

deciding whether (ii) holds can be done in polynomial time.2

Proof of Theorem 6.5. By Theorem 2.3, it is sufficient to prove the statement of the theorem for weak
causes. SinceD (resp.,DX ) for (a) (resp., (b)) is width-bounded, it follows that|X| is bounded by a constant.
Moreover, ifX ′ =x′ is a weak cause ofφ underu inM , thenX ′(u)=x′ inM . Thus, it is sufficient to show
that for everyX ′⊆X andx′ ∈D(X), wherex′ =X ′(u) in M , deciding whetherX ′ =x′ is a weak cause
of φ underu in M can be done in polynomial time. Observe then for (a) thatD is also a decomposition of
GV (Mφ

X) relative toX ′ ∩ Rφ
X(M) andφ. By Theorem 6.3 (resp., 6.4) for (a) (resp., (b)), it then follows

that deciding whetherX ′ =x′ is a weak cause ofφ underu in M can be done in polynomial time.
In case (a), by exploiting the monotonicity ofRφ

X(M) w.r.t.X, we can proceed as follows, avoiding mul-

tiple computations of the setRk. First, check thatφ(u) holds and computeRk forD andX ′′ =X ∩Rφ
X(M).

Then, for each subsetX ′⊆X ′′ such that some triple(p, q, X ′) exists inRk such thatp 6= ∅ andx′ /∈ q, where
x′ =X ′(u) in M , we have thatX ′ =x′ is a weak cause ofφ underu in M . Extending each suchX ′ by
an arbitrary subsetZ of variables fromX\X ′′, we obtain thatX ′Z =x′z, wherez=Z(u) in M , is also a
weak cause ofφ underu. In this way, all weak causesX ′ =x′ for φ underu in M whereX ′⊆X can be
computed.
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For computing all actual causes in case (a), by Theorem 2.3, one can similarly check thatφ(u) holds,
computeRk for D andX ′′ =X ∩Rφ

X(M), and then outputX ′ =x′ for each tuple(p, q, X ′) in Rk such
thatX ′⊆X is a singleton andx′ =X ′(u) in M . No extension ofX ′ by variablesZ fromX\X ′′ needs to
be considered.2

Proof of Theorem 6.6. Recall thatX =x is an explanation ofφ relative toC iff EX1 φ(u) for everyu∈C,
EX2 X =x is a weak cause ofφ under everyu∈C such thatX(u)=x, EX3 X is minimal, that is, for
everyX ′⊂X, someu∈C exists such that (1)X ′(u) = x|X ′ and (2)X ′ =x|X ′ is not a weak cause ofφ
underu, andEX4 X(u)=x andX(u′) 6=x for someu, u′ ∈C. By Proposition 2.2, checking whetherEX1
andEX4 hold can be done in polynomial time. By Theorem 6.3 (resp., 6.4) for (a) (resp., (b)), deciding
whetherX =x is a weak cause ofφ under someu∈C such thatX(u)=x can be done in polynomial time.
Thus, by Proposition 2.1, deciding whetherEX2 holds can be done in polynomial time. We finally show that
checkingEX3 is possible in polynomial time. For (a), notice thatD is also a decomposition ofGV (Mφ

X)

relative toX ′ ∩Rφ
X(M) andφ, for eachX ′⊂X. SinceD (resp.,DX ) for (a) (resp., (b)) is width-bounded,

it follows that |X| is bounded by a constant. By Proposition 2.1 and Theorem 6.3 (resp., 6.4)for (a) (resp.,
(b)), deciding whether (1)X ′(u)=x|X ′ and (2)X ′ =x|X ′ is not a weak cause ofφ under someu∈C
can be done in polynomial time, for everyX ′⊂X. Hence, deciding whetherEX3 holds can be done in
polynomial time. In summary, deciding whetherEX1–EX4 hold can be done in polynomial time.2

Proof of Theorem 6.7. We first compute the setC⋆ of all u∈C such that either (i)X(u) 6=x in M , or (ii)
X(u)=x andX =x is a weak cause ofφ underu in M . By Proposition 2.1 and Theorem 6.3 (resp., 6.4)
for (a) (resp., (b)), this can be done in polynomial time. IfX =x is a partial explanation ofφ relative to
(C, P ) in M , thenCφ

X=x is defined, andCφ
X=x = C⋆ by Proposition 2.4. GivenCφ

X=x, the explanatory power

P(Cφ
X=x |X =x) is computable in polynomial time by Proposition 2.1, ifP is computable in polynomial

time, as usual. In summary, this shows (3).
To check partial (resp.,α-partial) explanations in (1) (resp., (2)), we computeC⋆ as above. We then

check thatCφ
X=x is defined. That is, by Proposition 2.4, we check thatX =x is an explanation ofφ relative

to C⋆ in M , which is possible in polynomial time by Theorem 6.6. Then,Cφ
X=x = C⋆ by Proposition 2.4.

We finally computeP(Cφ
X=x |X =x) as above and check that it is positive (resp., at leastα), which can be

done in polynomial time. In summary, this proves (1) (resp., (2)).2

Proof of Theorem 6.8. Observe that the set of allX ′ =x′ such thatX ′⊆X andx′ ∈D(X ′) is bounded by
a constant, sinceV is domain-bounded, andD (resp.,DX ) for (a) (resp., (b)) is width-bounded, and thus|X|
is bounded by a constant. Hence, it is sufficient to show that for everyX ′⊆X andx′ ∈D(X ′), deciding
whetherX ′ =x′ is an explanation ofφ relative toC in M is possible in polynomial time. This can be done
in a similar way as the proof of Theorem 6.6.2

Proof of Theorem 6.9. As argued in the proof of Theorem 6.8, the set of allX ′ =x′ such thatX ′⊆X and
x′ ∈D(X ′) is bounded by a constant. Hence, it is sufficient to show that for everyX ′⊆X andx′ ∈D(X ′),
deciding whetherX ′ =x′ is a partial (resp., anα-partial) explanation ofφ relative to(C, P ) inM is possible
in polynomial time. This can be done in the same way as the proof of Theorem 6.7(1) (resp., (2)), using
only Theorem 6.8 instead of Theorem 6.6.2

Proof of Theorem 6.10. We generalize the proof of Theorem 6.1. We show that some(p, q, X, l)∈Rk

exists withp 6= ∅ andx∈ q iff AC2l holds:
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AC2l. SomeW ⊆V \X and somex∈D(X) andw∈D(W ) exist such that:

(a) ¬φxw(u),

(b) φ
xwẐ(u)(u) for all Ẑ ⊆V \ (X ∪W ),

(c) diff(w,W (u))= l.

As in the proof of Theorem 6.1, by moving anyA∈Sk \ (W ∪X) intoW by settingw(A)=A(u) (which
does not influencediff(w,W (u))), it is sufficient to show that some(p, q, X, l)∈Rk exists withp 6= ∅ and
x∈ q iff AC2l′ holds:

AC2l′. SomeW ⊆V , x∈D(X), andw∈D(W ) exist such thatX =Sk \W and

(a) ¬φxw(u),

(b) φ
xwẐ(u)(u) for all Ẑ ⊆V \ (Sk ∪W ),

(c) diff(w,W (u))= l.

This can be done in a similar way as showing that(β) is equivalent toAC2′ in the proof of Theorem 6.1,
where we use the following result(⋆⋆) instead of(⋆), which can be proved by induction oni∈{0, . . . , k}
(in a similar way as(⋆)): (⋆⋆) For alli∈{0, . . . , k}, it holds that(p, q, F, l)∈Ri iff someW ⊆T 0∪· · ·∪T i

andw∈D(W ) exist such thatF =Si \W , diff(w,W (u))= l, and

(i) for everyp, q ∈D(F ):

(i.1) p∈p iff ¬φpw(u),

(i.2) q ∈ q iff φ[q〈Ẑ(u)]w(u) for all Ẑ ⊆ (T 0 ∪ · · · ∪T i) \ (Sk ∪W ). 2

Proof of Theorem 6.11. We first decide if(⋆) X =x is an actual cause ofφ underu in M , which can
be done in polynomial time by Theorem 6.2. If(⋆) does not hold, thendr((M,u), X=x, φ)= 0. Other-
wise,dr((M,u), X=x, φ)= 1/(l⋆+1), wherel⋆ is the minimall for which someW ⊆V \X, x∈D(X),
andw∈D(W ) exist such thatAC2(a) and (b) hold anddiff(w,W (u))= l. By Theorem 6.10,l⋆ is the
minimal l for which some(p, q, X, l)∈Rk exists such thatp 6= ∅ andx∈ q. SinceV is domain-bounded
andD is width-bounded,R0 can be computed in polynomial time, and eachRi, i∈{1, . . . , k}, can be
computed in polynomial time fromRi−1. Thus,Rk can be computed in polynomial time. SinceV is
domain-bounded andD is width-bounded,l⋆ can be computed in polynomial time fromRk. In summary,l⋆

and thusdr((M,u), X=x, φ)= 1/(l⋆+1) can be computed in polynomial time.2

Proof of Theorem 6.12. By Theorem 6.11, everydr((M,u), X=x, φ), (M,u)∈K, can be computed in
polynomial time. Assuming thatP can be computed in polynomial time, alsodb(K, P,X←x, φ) can be
computed in polynomial time.2

D Appendix: Proofs for Section 7

Proof of Proposition 7.1. Let (S0, . . . , Sk) be an arbitrary layering ofGV (M) w.r.t.X andφ. We now
show that((T 0, S0), . . . , (T k, Sk)), whereT 0 =S0, . . . , T k =Sk, is a decomposition ofGV (M) w.r.t.X



INFSYS RR 1843-02-03 47

andφ, that is, thatD1–D6 hold. Trivially, D1 andD2 hold. Moreover,L2 implies D3, andL1 implies
D4–D6. 2

Proof of Proposition 7.2. Assume thatL= (S0, . . . , Sk) is an arbitrary layering ofGV (M) relative toX
andφ. By L2, everyA∈V (φ)∩V belongs toS0, and at least one such variable exists. ByL2 and since
GV (M) is connected relative toX andφ, every variableA∈X belongs toSk, and at least on such variable
exists, wherek is given via a pathP from a variableB ∈ V (φ) to a variable inX (in the undirected graph
for GV (M)) as the number of arrows inGV (M) that go against the direction ofP minus the number of
arrows inGV (M) that go in the same direction asP . Indeed, if we move fromB toA (against the direction
of P ), any step backwards towardSi must be compensated later with a step forward. ByL1 and since
GV (M) is connected relative toX andφ, for everyi∈{0, . . . , k}, the setSi is the set of allA∈V that
are reachable from someB ∈X ∪V (φ) on a pathP (in the undirected graph forGV (M)) such thati is the
number of arrows inGV (M) that go against the direction ofP minus the number of arrows inGV (M) that
go in the same direction asP plusj with B ∈Sj . That is, the layeringL is unique.2

Proof of Proposition 7.3. In Step (1), we initializeλ(A) to undefined for allA ∈ V \V (φ). In Step
(2), every variable occurring inφ is put intoS0, in order to satisfy one part ofL2. In Steps (3)–(13), since
GV (M) is connected, all the other variables are put into someSj such thatL1 is satisfied. Step (3) takes care
of the special case in which variables fromφ belong toX, where then only a trivial layered decomposition
is possible. Steps (6) and (11) catch cases in which no layering mapping asdesired exists, and thenNil is
returned. Notice that the for-loop in Step (9) is executed at most once. Finally, we check in Steps (14) and
(15) thatX ⊆Sk, wherek is the maximal indexj of someSj , and thus whether the other part ofL2 is also
satisfied. If so, then we return the computed layeringλ; otherwise, we returnNil. 2

Proof of Proposition 7.4. By Proposition 7.2, if a layering ofGV (M) relative toX andφ exists, then it is
unique. By Proposition 7.3, Algorithm LAYERING returns the unique layeringL of GV (M) relative toX
andφ, if it exists, andNil, otherwise. Observe then that Steps (1)-(3) of LAYERING takeO(|V | + |V (φ)|)
time, Steps (4)-(13) takeO(|E| + |X|) time, and Step (14) is feasible inO(|V |) time (using an auxiliary
variable for the maximum ofλ, even in constant time). Hence, LAYERING can be implemented to run in
O(|V |+ |V (φ)|+ |E|) time, i.e., inO(‖GV (M)‖+ |V (φ)|) time. Given thatGV (M) is layered, deciding
whetherL is width-bounded by some integerl≥ 0 can be done in time inO(|V |). 2

E Appendix: Proofs for Section 8

Proof of Theorem 8.1. We generalize the proof of Theorem 4.1 (resp., 4.2) to the refined notion of
weak cause. LetX0 ∈X be such that (α) there is no directed path inG(M) from X0 to a variable in
φ (resp., (β) each directed path inG(M) from X0 to a variable inφ contains someXi ∈X\{X0}). Let
X ′′ =X\{X0} andx′′ =x|X ′′. It is now sufficient to show thatX =x is a (refined) weak cause ofφ
underu iff (i) X0(u)=x(X0) and (ii)X ′′ =x′′ is a (refined) weak cause ofφ underu.

(⇒) SupposeX =x is a (refined) weak cause ofφ underu. That is,AC1X(u)=x andφ(u), andAC2′

someW ⊆V \X, x∈D(X), andw∈D(W ) exist such that (a)¬φxw(u) and (b)φxw′ẑ(u) for allW ′⊆W ,
Ẑ ⊆V \ (X ∪W ), w′ =w|W ′, andẑ= Ẑ(u). In particular, (i)X0(u)=x(X0), and alsoAC1 X ′′(u)=x′′

andφ(u). By (α) (resp., (β)), it then follows thatAC2′(a)¬φx′′w(u) and (b)φx′′w′ẑ(u) hold for allW ′⊆W ,
Ẑ ⊆V \ (X ′′ ∪W ), w′ =w|W ′, and ẑ= Ẑ(u), wherex′′ =x|X ′′. This shows that (ii)X ′′ =x′′ is a (re-
fined) weak cause ofφ underu.
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(⇐) Suppose (i)X0(u)=x(X0) and (ii) X ′′ =x′′ is a (refined) weak cause ofφ underu. That is,
AC1 X ′′(u)=x′′ andφ(u), andAC2′ someW ⊆V \X ′′, x′′ ∈ D(X ′′), andw∈D(W ) exist such that
(a)¬φx′′w(u), and (b)φx′′w′ẑ(u) for all W ′⊆W , Ẑ ⊆V \ (X ′′ ∪W ), w′ =w|W ′, andẑ= Ẑ(u). By (i),
we thus obtainAC1 X(u)=x andφ(u). By (α) (resp., (β)), it follows that AC2′(a) ¬φx′′x0w′(u) and
(b) φx′′x0w′′ẑ(u) for all W ′′⊆W ′, Ẑ ⊆V \(X∪W ′), w′′ =w′|W ′′, and ẑ= Ẑ(u), whereW ′ =W\{X0},
w′ =w|W ′, x0 =(X0)x′′w(u), andx0 =x(X0). This shows thatX =x is a (refined) weak cause ofφ
underu. 2

Proof of Theorem 8.2. LetM ′ =Mφ
X (resp.,M ′ = M̂φ

X ). We prove the statement of the theorem for the

caseX ′ =X andM ′ =Mφ
X . The proof forX ′ =X andM ′ = M̂φ

X can be done in a similar way, usinĝMφ
X

instead ofMφ
X . The proof forX ′⊂X andM ′ =Mφ

X is similar to the proof of Theorem 4.7.

LetX ′ =X andM ′ =Mφ
X = (U, V ′, F ′). We extend the proof of Theorem 4.5 to the refined notion of

weak cause. LetX ′′ =X ′ ∩V ′ andx′′ =x′|X ′′. We have to show thatX ′ =x′ is a (refined) weak cause of
φ underu in M iff (i) (X ′\X ′′)(u) = x′|(X ′\X ′′) in M , and (ii)X ′′ =x′′ is a (refined) weak cause ofφ
underu in Mφ

X .

Fact A.V ′
M (u)=V ′

M
φ
X

(u) andφM (u)=φ
M

φ
X

(u).

(⇒) SupposeX ′ =x′ is a (refined) weak cause ofφ underu inM . That is,AC1X ′(u)=x′ andφ(u) in
M , andAC2′ someW ⊆V \X ′, x′ ∈D(X ′),w∈D(W ) exist such that (a)¬φx′w(u) inM and (b)φx′w′ẑ(u)
in M for all W ′⊆W , Ẑ ⊆V \ (X ′ ∪W ), w′ =w|W ′, and ẑ= Ẑ(u) in M . This shows that (i)(X ′\
X ′′)(u) = x′|(X ′\X ′′) in M . We next show that also (ii) holds. By Fact A,AC1 X ′′(u)=x′′ andφ(u)

in Mφ
X . Notice then that (a)¬φx′′w(u) in M and (b)φx′′w′ẑ′(u) in M , wherex′′ =x′|X ′′, W =W ∩V ′,

w=w|W , W
′
=W ′ ∩V ′, w′ =w′|W

′
=w|W

′
, Ẑ ′ = Ẑ ∩V ′, andẑ′ = ẑ|Ẑ ′. Since each among¬φx′′w(u),

φx′′w′ẑ′(u), andẐ ′(u) has the same values inM andMφ
X , this shows thatAC2′ (a)¬φx′′w(u) inMφ

X and (b)

φx′′w′ẑ′(u) in Mφ
X for all Ẑ ′⊆V ′ \ (X ′′ ∪W ), W

′
⊆W , w′ =w|W

′
, andẑ′ = Ẑ ′(u) in Mφ

X . In summary,

(ii) X ′′ =x′′ is a (refined) weak cause ofφ underu in Mφ
X .

(⇐) Suppose (i)(X ′\X ′′)(u)=x′|(X ′\X ′′) in M and (ii) X ′′ =x′′ is a (refined) weak cause ofφ
underu in Mφ

X . Thus,AC1 X ′′(u)=x′′ andφ(u) in Mφ
X , andAC2′ someW ⊆V ′\X ′′, x′′ ∈D(X ′′),

w∈D(W ) exist such that (a)¬φx′′w(u) in Mφ
X and (b)φx′′w′ẑ(u) in Mφ

X for all W ′⊆W , Ẑ ⊆V ′ \ (X ′′ ∪

W ), w′ =w|W ′, and ẑ= Ẑ(u) in Mφ
X . By Fact A,AC1 X ′(u)=x′ andφ(u) in M . Since each among

¬φx′′w(u), φx′′w′ẑ(u), and Ẑ(u) has the same values inM andMφ
X , this shows that (a)¬φx′′w(u) in

M and (b)φx′′w′ẑ(u) in M for all W ′⊆W , Ẑ ⊆V ′ \ (X ′′ ∪W ), w′ =w|W ′, and ẑ= Ẑ(u) in M . It
then follows thatAC2′ (a) ¬φx′w(u) in M and (b)φx′w′ẑ(u) in M for all W ′⊆W , Ẑ ⊆V \(X ′ ∪W ),
w′ =w|W ′, andẑ= Ẑ(u) inM , wherex′|X ′′ =x′′ andx′|(X ′\X ′′)= (X ′\X ′′)x′′w(u) inM . In summary,
this shows thatX ′ =x′ is a (refined) weak cause ofφ underu in M . 2

Proof of Theorem 8.3. The proof is nearly identical to the proof of Theorem 6.1, except thatAC2 is now
replaced byAC2′ (for the refined notion of weak cause), the relationsRi are replaced by the relationsRi for
the refined notion of weak cause, and(⋆) is replaced by the following statement(⋆′): for all i∈{0, . . . , k},
it holds that(p, q, F )∈Ri iff someW ⊆T 0 ∪ · · · ∪T i andw∈D(W ) exist such thatF =Si \W and
(i) for everyp, q ∈D(F ): (i.1) p∈p iff ¬φpw(u), and (i.2)q ∈ q iff φ[q〈Ẑ(u)]w′(u) for all Ẑ ⊆ (T 0 ∪ · · · ∪

T i) \ (Sk ∪W ),W
′
⊆W , andw′ = w|W

′
. 2

Proof of Theorem 8.4. The proof is nearly identical to the proof of Theorem 8.1, except thatAC2′ is now
replaced byAC2′′ (for the refined notion of weak cause in extended causal models). In the “⇒”-part, we
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use thatx′′w is allowable ifxw is allowable, while in the “⇐”-part, we use thatx′′x0w
′ is allowable ifx′′w

is allowable, which follows from the assumption thatM is closed relative toX ′′. 2

Proof of Theorem 8.5. (a) LetV ′ =Rφ
X(M) andM ′ =Mφ

X . AssumeM is closed. LetY ⊆V ′, let y
be an allowable setting forY in M ′, and letu∈D(U). Then,y is an allowable setting forY in M , and
(V ′\Y )y(u) has the same value inM andM ′. SinceM is closed,y ∪ (V \Y )y(u) is an allowable setting
for Y in M , and thusy ∪ (V ′\Y )y(u) is an allowable setting forY in M ′. Hence,M ′ is closed.

(b) Let V ′ = R̂φ
X(M) andM ′ = M̂φ

X . SupposeM is closed relative toX ′. Let Y ⊆V ′ with X ′⊆Y ,
let y be an allowable setting forY in M ′, and letu∈D(U). Then,y is an allowable setting forY in
M , and(V ′\Y )y(u) has the same value inM andM ′. SinceM is closed relative toX ′, it follows that
y ∪ (V \Y )y(u) is an allowable setting forY in M , and thusy ∪ (V ′\Y )y(u) is an allowable setting forY
in M ′. This shows thatM ′ is closed relative toX ′. 2

Proof of Theorem 8.6. The proof is nearly identical to the proof of Theorem 8.2, except thatAC2′ is
now replaced byAC2′′ (for the refined notion of weak cause in extended causal models). In the“⇒”-part,
we use thatx′′w is allowable inMφ

X if x′w is allowable inM , while in the “⇐”-part, we use thatx′w is

allowable inM if x′′w is allowable inMφ
X , which follows fromM being closed relative toX ′′.

Proof of Theorem 8.7. The proof is nearly identical to the proof of Theorem 8.3, except thatAC2′ is
now replaced byAC2′′ (for the refined notion of weak cause in extended causal models), the relationsRi

for the refined notion of weak cause are replaced by the relationsRi for the refined notion of weak cause
in extended causal models, and(⋆′) is replaced by the following statement(⋆′′): for all i∈{0, . . . , k}, it
holds that(p, q, F )∈Ri iff someW ⊆T 0 ∪ · · · ∪T i andw∈D(W ) exist such thatF =Si \W and (i) for
everyp, q ∈D(F ): (i.1) p∈p iff ¬φpw(u) andpw|(X ∪W ) is allowable, and (i.2)q ∈ q iff φ[q〈Ẑ(u)]w′(u)

for all Ẑ ⊆ (T 0 ∪ · · · ∪T i) \ (Sk ∪W ), W
′
⊆W , andw′ = w|W

′
. Observe that in the step fromAC2′′

to (AC2′′)⋆, we then use the assumption thatM is closed relative toX. Moreover, in the induction step,
we use the propertyD7 of decompositions in extended causal models.2
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