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Abstract. This paper continues the research on the computationattspeHalpern and Pearl’s
causes and explanations in the structural-model approd@chthis end, we first explore how an
instance of deciding weak cause can be reduced to an equiviagance in which irrelevant vari-
ables in the (potential) weak cause and the causal modeta@ved, which extends previous work
by Hopkins. We then present a new characterization of weakecéor a certain class of causal
models in which the causal graph over the endogenous vesidials the form of a directed chain
of causal subgraphs, calleécomposable causal grapkRurthermore, we also identify two impor-
tant subclasses in which the causal graph over the endogeaoiables forms a directed tree and
more generally a directed chain of layers, calbedsal treeandlayered causal graptrespectively.
By combining the removal of irrelevant variables with thisancharacterization of weak cause, we
then obtain techniques for deciding and computing causgegplanations in the structural-model
approach, which can be done in polynomial time under swgtedsdtrictions. This way, we obtain
several tractability results for causes and explanationthe structural-model approach. To our
knowledge, these are the first explicit ones. They are ealbheciseful for dealing with structure-
based causes and explanations in first-order reasoning abtons, which produces large causal
models that are naturally layered through the time line,thod have the structure of layered causal
graphs. Another important feature of the tractable cagesgfgsal trees and layered causal graphs is
that they can be recognized efficiently, namely in lineagtifinally, by extending the new charac-
terization of weak cause, we obtain similar techniques éonputing the degrees of responsibility
and blame, and hence also novel tractability results foctire-based responsibility and blame.
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1 Introduction

Dealing with causality is an important issue which emerges in many applications ®ha existing ap-
proaches to causality in Al can be roughly divided into those that have dmeloped as modal nonmono-
tonic logics (especially in logic programming) and those that evolved fronrdeed Bayesian networks. A
representative of the former is Geffner's modal nonmonotonic logicdadling causal knowledge [12, 13],
which is inspired by default reasoning from conditional knowledge fas&ther modal-logic based for-
malisms play an important role in dealing with causal knowledge about actiehshamge; see especially
the work by Turner [36] and the references therein for an overvievepresentative of the latter is Pearl’s
approach to modeling causality by structural equations [1, 10, 30, 3ithws central to a number of
recent research efforts. In particular, the evaluation of deterministigpasbabilistic counterfactuals has
been explored, which is at the core of problems in fault diagnosis, plgndatision making, and deter-
mination of liability [1]. It has been shown that the structural-model apgr@dlows a precise modeling
of many important causal relationships, which can especially be used irahlatinguage processing [10].
An axiomatization of reasoning about causal formulas in the structuraldrapgeoach has been given by
Halpern [14].

Causality also plays an important role in the generation of explanations, at@af crucial importance
in areas like planning, diagnosis, natural language processing, abalilistic inference. Different notions
of explanations have been studied quite extensively, see especiallyl[1®4] for philosophical work, and
[29, 35, 20] for work in Al related to Bayesian networks. A critical exaation of such approaches from
the viewpoint of explanations in probabilistic systems is given in [2].

In [15], Halpern and Pearl formalized causality using a model-basedititwii which allows for a
precise modeling of many important causal relationships. Based on a nbtieea& causality, they offer
appealing definitions of actual causality [16] and causal explanatid@js [As they show, their notions
of actual cause and causal explanation, which is very different frmrconcept of causal explanation in
[26, 27, 12], models well many problematic examples in the literature.

The following example from [3] illustrates the structural-model approacbugRly, structural causal
models consist of a set of random variables, which may have a causahiofl on each other. The variables
are divided into exogenous variables, which are influenced by factdssde the model, and endogenous
variables, which are influenced by exogenous and endogenoublearid his latter influence is described
by structural equations for the endogenous variables. For more detatsustural causal models, we refer
to Section 2 and especially to [1, 10, 30, 31, 14].

Example 1.1 (rock throwing) Suppose that Suzy and Billy pick up rocks and throw them at a bottle. Suzy’
rock gets there first, shattering the bottle. Since both throws are fully aecuilly’s rock would have
shattered the bottle, if Suzy had not thrown. We may model such a scendréstructural-model approach
as follows. We assume two binary background variableandU s, which determine the motivation and the
state of mind of Suzy and Billy, whetés (resp.,Up) is 1 iff Suzy (resp., Billy) intends to throw a rock. We
then have five binary variablesl’, BT, SH, BH, and BS, which describe the observable situation, where
ST (resp.,BT) is 1 iff Suzy (resp., Billy) throws a rockSH (resp.,BH) is 1 iff Suzy’s (resp., Billy’s)
rock hits the bottle, an®S is 1 iff the bottle shatters. The causal dependencies between these variables
are expressed by functions, which say that (i) the valuéBf(resp.,BT) is given by the value ot/g
(resp.,Up), (ii) SH is 1iff ST is1, (iii) BH is1iff BT is1 andSH is0, and (iv) BS is 1 iff SH or BH
is 1. These dependencies can be graphically represented as in Fig. 1.

Some actual causes and explanations in the structural-model appreatitearinformally given as
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Ug —»ST—»SH\
BS
Up —»BT—»BH/

Figure 1: Causal Graph

follows. If both Suzy and Billy intend to throw a rock, then (i) Suzy’s throgvenrock is aractual causef
the bottle shattering, while (ii) Billy’s throwing a rock is not. Furthermore, (iii)ither Suzy or Billy intends
to throw a rock, then Suzy’s throwing a rock is explanationof the bottle shattering. Here, (i)—(iii) are
roughly determined as follows. As for (i), if both Suzy and Billy intend to theovock, then Suzy actually
throws a rock, and the bottle actually shatters. Moreover, undestthetural contingencyhat Billy does
not throw a rock, (a) if Suzy does not throw a rock, then the bottle doeshatter, and (b) if Suzy throws
a rock, then the bottle shatters, even if any of the other variables wouldheikectual values. As for (ii),
there is no structural contingency under which (a) if Billy does not throwck, then the bottle does not
shatter, and (b) if Billy throws a rock, then the bottle shatters, even if atlyeobther variables would take
their actual values. Finally, as for (iii), if either Suzy or Billy intends to thromek, then the bottle actually
shatters, Suzy’s throwing a rock is a cause of the bottle shattering wérestes actually throws a rock, and
there are some possible contexts in which Suzy throws a rock and some imshigicdoes not. Intuitively,
there should be a possible context in which the explanation is false, so ihaiit already known, and a
possible context in which the explanation is true, so that it is not vacuous.

There are a number of recent papers that are based on Halpereatid &efinitions of actual causality
[16] and causal explanations [18]. In particular, Chockler and Hal{3} define the notions of responsibility
and blame as a refinement of actual causality. Chockler, Halpern, apiéiduan [4] then make use of
the notion of responsibility for verifying a system against a formal spetifin. Along another line of
application, Hopkins and Pearl [23] and Finzi and Lukasiewicz [9legalize structure-based causes and
explanations to a first-order framework and make them available in situalonkes-based reasoning about
actions (see Section 8.3). Furthermore, Hopkins and Pearl [24] extpeusage of structure-based causality
[16] for commonsense causal reasoning. Finally, inspired by Halpet®aarl’s notions of actual causality
[16] and causal explanations [18], Park [28] presents a novebapp allowing for different causal criteria
that are influenced by psychological factors not representable incwtal causal model.

The semantic aspects of causes and explanations in the structural-muaa@ciphave been thoroughly
studied in [15, 16, 17, 18]. Their computational complexity has been ashlyz[6, 7], where it has been
shown that associated decision problems are intractable in general. d&uoplex deciding actual causes
(as defined in [16]) is complete for the clag$ (=NPNP) of the Polynomial Hierarchy, while deciding
whether an explanation over certain variables exists is completE:,ffdr:NPEg). Thus, these problems
are “harder” than the classical propositional satisfiability problem (wisitdP-complete), but “easier” than
PSPACE-complete problems. Chockler and Halpern [3] and Chockldpekta and Kupferman [4] have
shown that computing the degrees of responsibility and blame is completdyoppaal time computation
with restricted use of &Y oracle (see Section 3.4). As for algorithms, Hopkins [21] explorectheaased
strategies for computing actual causes in both the general and restatiads

However, to our knowledge, no tractable cases for causes and atplanin the structural-model ap-
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proach were explicitly known so far. In this paper, we aim at filling this gab@rovide non-trivial tractabil-
ity results for the main computational problems on causes and explanatioaese fractability results are
especially useful for dealing with structure-based causes and ekipla first-order reasoning about ac-
tions as recently introduced in [9], where one has to handle binarylaaoskels with a quite large number
of variables (see Section 8.3). We make contributions to several isshas) are briefly summarized as
follows:

e The firstissue concerns focusing of the computation to the relevamftae causal model. Extend-
ing work by Hopkins [21], we explore how an instance of deciding wealse can be reduced to an
equivalent instance in which the (potential) weak cause and the causal mag contain fewer vari-
ables. That is, irrelevant variables in weak causes and causal mogl@detified and removed. We
provide two such reductions in this paper, which have different ptiggebut can be both carried out
in polynomial time. These reductions can lead to great simplifications in (potengak causes and
causal models, and thus speed up considerably computations abceg eadsexplanations. Notice
that weak causes are fundamental to the notion of actual cause, tosvenims of explanations, as
well as to the notions of responsibility and blame.

e The second issue to which we contribute are characterizations of wes&scm the structural-model
approach. We present a novel such characterization for a classigflomodels in which the causal
graph over the endogenous variables has the form of a directed dte@ingal subgraphs, which we
call adecomposable causal graphVe also identify two natural subclasses of decomposable causal
graphs, where the causal graph over the endogenous variabiesdatirected tree and, more gener-
ally, a directed chain of layers, which we caltausal treeand alayered causal graptrespectively,
and provide simplified versions of the characterizations of weak causes.

e By combining the removal of irrelevant variables (in weak causes arshtapdels) with this new
characterization of weak cause in the above causal models, we obtaiithagofor deciding and
computing weak causes, actual causes, explanations, partial exptanation-partial explanations,
as well as for computing the explanatory power of partial explanationighveil run in polynomial
time under suitable conditions. This way, we obtain several tractability resulisd structural-model
approach. To our knowledge, these are the first ones that are exptieiilyed for structure-based
causes and explanations.

e Furthermore, by slightly extending the new characterization of weak ¢auke above causal mod-
els, we also obtain algorithms for computing the degrees of responsibilitylame in the structural-
model approach, which similarly run in polynomial time under suitable conditiée.thus also
obtain new tractability results for the structure-based notions of resplitysimd blame. Note that
Chockler, Halpern, and Kupferman [4] have recently shown that ctingpthe degree of responsi-
bility in read-once Boolean formulas (which are Boolean formulas in which eariable occurs at
most once) is possible in linear time.

e Finally, we show that all the above techniques and results carry overdfinement of the notion
of weak cause and to a generalization of causal models to extended roauakeds, which have been
both recently introduced by Halpern and Pearl in [17]. Furthermoreleseribe an application of the
results of this paper for dealing with structure-based causes and atiptanin first-order reasoning
about actions. Here, one has to handle binary causal models with a ggéenlamber of variables,
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but with a natural layering through the time line. Thus, such causal modelsiudive the structure of
layered causal graphs.

An attractive feature of the tractable cases identified for causal treldayared causal graphs is that the
respective problem instances can be recognized efficiently, namelyam timee. For general decomposable
causal graphs, however, this is not the case, since this problem iefiplate in general. Nonetheless, effort
spent for the recognition may be more than compensated by the speed lyng #te reasoning problems
on weak causes and explanations.

Our results on the computational and semantic properties of weak cawseg@anations help, as we
believe, to enlarge the understanding of and insight into the structuraltayoo®ach by Halpern and Pearl
and its properties. Furthermore, they provide the basis for developiicieef algorithms and pave the
way for implementations. For example, complexity results on answer setgonaging [5] have guided the
development of efficient solvers suchms/ [25]. The results of this paper are in particular of interest and
significant, since a structural decomposition seems natural and appliesutoleenof examples from the
literature.

The rest of this paper is organized as follows. Section 2 contains solmaipegies on structural causal
models as well as on causes, explanations, responsibility, and blame tnigtfnausal models. In Section 3,
we describe the decision and optimization problems for which we presetaliiigg results in this paper,
and we summarize previous complexity results for these problems. In Sectiom éxplore the removal
of irrelevant variables when deciding weak cause. Section 5 presantalility results for causal trees.
Section 6 then generalizes to decomposable causal graphs, while Sectinoentrates on layered causal
graphs. In Section 8, we generalize the above techniques and resulkésreditied notion of weak cause
and extended causal models, and describe their application in firstreed®ming about actions. Section 9
summarizes our results and gives a conclusion.

To increase readability, all proofs have been moved to Appendices A-E.

2 Preliminaries

In this section, we give some technical preliminaries. We recall Pearlststal causal models and Halpern
and Pearl’s notions of weak and actual cause [15, 16] and their natfaglanation, partial explanation,
and explanatory power [15, 18].

2.1 Causal Models

We start with recalling structural causal models; for further backgtoamd motivation, see especially
[1, 10, 30, 31, 14]. Roughly, the main idea behind structural causaklmasl that the world is modeled
by random variables, which may have a causal influence on each ofhervariables are divided into
exogenous variables, which are influenced by factors outside the namdleéndogenous variables, which
are influenced by exogenous and endogenous variables. This lattemicdl is described by structural
equations for the endogenous variables.

More formally, we assume a finite setraindom variablesCapital letterd/, V, W, etc. denote variables
and sets of variables. Each variabfe may take orvaluesfrom a finitedomain D(X;). A valuefor a
set of variablesX = { X1, ..., X} isamapping:: X — D(X;)U --- UD(X,,) such that(X;) € D(X;)
foralli € {1,...,n}; for X =0, the unique value is the empty mappifig The domainof X, denoted
D(X), is the set of all values foK. We say thatX is domain-boundedff |D(X;)|<k for every X;eX,
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wherek is some global constant. Lower case letterg, z, etc. denote values for the variables or the sets of
variablesX, Y, Z, etc., respectively. Assignment§= x of values to variables are often abbreviated by the
valuez. We often identify singleton§X;} with X;, and their values with z(X;).

ForY C X andz € D(X), we denote by:|Y the restriction of: to Y. For disjoint sets of variable¥, Y’
and values: € D(X), y € D(Y'), we denote byry the union ofz andy. For (not necessarily disjoint) sets
of variablesX, Y and values: € D(X), y € D(Y'), we denote byz(y] the union ofz|(X\Y) andy.

A causal modelM = (U, V, F) consists of two disjoint finite set$ andV" of exogenouandendogenous
variables, respectively, and a 9ét= { F'x | X € V'} of functions that assign a value &f to each value of
theparentsPAxy C U U V\{X} of X. Every valueuc D(U) is also called a&ontext We call a causal
model M = (U, V, F') domain-boundedf every X € V' is domain-bounded. In particula¥/ is binary iff
|D(X)|=2forall X € V. The parent relationship between the variabled/of (U, V, F) is expressed by
the causal graphfor A, denotedG (M), which is the directed grapfiV, E) that hasl UV as the set of
nodesN, and a directed edge frold to Y in F iff X is a parent oY, for all variablesX, Y e UUV. We
useGy (M) to denote the subgraph 6f(M ) induced byV'.

We focus here on the principal classretursivecausal modeld/ = (U, V, F'); as argued in [15], we
do not lose much generality by concentrating on recursive causal médetsisal modeM = (U, V, F') is
recursive if its causal graph is a directed acyclic graph. Equivalently, there exigital ordering< on V'
such tha” € PAx impliesY < X, forall X, Y € V. In recursive causal models, every assignniéatw to
the exogenous variables determines a unique vafoe every set of endogenous variablés_ V', denoted
by Yas(u) (or simply byY (w), if M is understood). In the following\/ is reserved for denoting a recursive
causal model.

Example 2.1 (rock throwing cont’d)The causal modél/ = (U, V, F') for Example 1.1 is given b{/={Usg,
UB}, V= {ST, BT, SH, BH, BS}, andF = {FST: FBT, FSH1 FBH; FBS}: WherngT = Us, FBT =
Up, Fsg=ST, Fgg=1iff BI'=1andSH =0, andFps=1iff SH=1 or BH =1. Fig. 1 shows the
causal graph foi/, that is, the parent relationships between the exogenous and endsgamniables in/.
Since this graph is acyclid/ is recursived

In a causal model, we may set endogenous varialilde a valuex by an “external action”. More
formally, for any causal modell = (U, V, F'), set of endogenous variabléSC V, and valuer € D(X),
the causal modeM x—, is given by(U, V\X, Fx—,), whereFx_, ={Fy, |Y € V\ X} and eachFy, is
obtained fromFy by settingX to z, is asubmodebf M. We useM, and F,. to abbreviateM x_, and
Fx_,, respectively, itX is understood from the context. Similarly, for a set of endogenous VesizhC V/
andu e D(U), we write Y, (u) to abbreviateYy, (u). We assume thakX (u) =« for all u€ D(U) in the
submodel ofM whereX is set toz.

As for computation, we assume for causal moddls= (U, V, F') no particular form of representation
of the functionsFx : D(PAx) — D(X), X €V, in F (by formulas, circuits, etc.), but that evef is
evaluable in polynomial time. Furthermore, we assume that the causal @(@gh for M is part of the
input representation af/. Notice thatG(M) is computable from\/ with any common representation of
the functionsF'x (by formulas, circuits, etc.) in time linear in the size of the representatiavl @inyway.
For any causal modél/, we denote by M || the size of its representation.

The following proposition is then immediate.

Proposition 2.1 For all X, Y CV andz € D(X), the value’(u) andY;(u), givenu € D(U), are com-
putable in polynomial time.
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2.2 Weak and Actual Causes

We now recall weak and actual causes from [15, 16]. We first defiemts and the truth of events in a
causal modeM = (U, V, F') under a context € D(U).

A primitive eventis an expression of the forifi =y, whereY is an endogenous variable apds a
value forY. The set ofeventds the closure of the set of primitive events under the Boolean operations
andA (that is, every primitive event is an event, angiénd«) are events, then alsep and¢ A ). For any
eventg, we denote by (¢) the set of all variables igp.

Thetruth of an event in a causal model = (U, V, F') under a context. € D(U ), denoted M, u) =
¢, is inductively defined as follows:

o (M,u) Y =yiff Yis(u) = y;
o (M,u) E —¢iff (M,u) = ¢ does not hold;
o (M,u)E=opNYiff (M,u) = ¢and(M,u) = .

Further operators’ and — are defined as usual, that is,v ) and¢ — 1 stand for—(—¢ A —1) and

—¢ V 1, respectively. We writes,s(u) (resp.,¢(u) if M is understood) to abbreviaté/, u) = ¢. For

X C Vandzx € D(X), we usep,, (u) (resp.,¢.(u)) as an abbreviation ofM,,u) = ¢. ForX =

{X1,...., X} CVwithk >1andz; € D(X;),1 <i <k, weuseX = x; ---x; to abbreviate the event

X1=xz1 A... N X =z Forany evenp, we denote by|¢| its size, which is the number of symbols in it.
The following result follows immediately from Proposition 2.1.

Proposition 2.2 Let X C V andz € D(X). Givenu € D(U) and an evend, deciding whethep(u) holds
(resp.,¢.(u) holds for givenr) is feasible in polynomial time.

We are now ready to recall the notions of weak and actual cause [[L3,&t6\/ = (U, V, F') be a causal
model. LetX C V andx € D(X), and letp be an event. ThenX =z is aweak causef ¢ underu € D(U)
iff the following conditions hold:

AC1l. X (u) =z ando(u).
AC2. SomelV C V' \ X and somer € D(X) andw € D(W) exist such that:

(@) —¢zw(u), and

() Guwz(u) forall ZCV\ (X UW) andz = Z(u).
Loosely speakingAC1 says that boti = 2 and¢ hold under:, while AC2 expresses that = x is a non-
trivial reason forg. Here, the dependence offrom X =z is tested under specistructural contingencies
where somél C V' \ X is kept at some value € D(W). AC2(a) says that can be false for other values
of X underw, while AC2(b) essentially ensures that alone is sufficient for the change fromto —¢.
Observe thalX = x can be a weak cause onlyXf is nonempty.

Furthermore X = z is anactual causef ¢ underu iff additionally the following minimality condition
is satisfied:

AC3. X is minimal. That is, no proper subset &fsatisfies both AC1 and AC2.

The following characterization of actual causes through weak caukeeus.
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Theorem 2.3 (see [6])Let M = (U,V,F), X CV,z € D(X), andu € D(U). Let¢ be an event. Then,
X =z is an actual cause af underu iff X is a singleton andX = x is a weak cause af underu.

We give an example to illustrate the above notions of weak and actual cause.

Example 2.2 (rock throwing cont'd)Consider the context; ;=(1, 1) in which both Suzy and Billy intend
to throw a rock. Then, bot§7=1 andST=1 A BT=1 are weak causes &S =1, while BT =1 is not.
For instance, let us show th8f' =1 is a weak cause aBS =1 underu; ;. As for AC1, both ST and BS
arel underu; ;. As for AC2, under the contingency thdt7 is set to0, we have that (a) i57T is set to
0, thenBS has the valu®, and (b) if ST is set tol, thenBS is 1. In fact, by Theorem 2.3§T =1 is an
actual cause oBS =1 underu, 1, while ST =1 A BT =1 is not. Furthermore$T =1 (resp.,BT =1) is
the only weak (and by Theorem 2.3 also actual) caude%# 1 underu; o = (1, 0) (resp.,up,1 = (0,1)) in
which only Suzy (resp., Billy) intends to throw a rodk.

2.3 Explanations

We next recall the concept of an explanation from [15, 18]. Intuitivaly explanation of an observed
evento is a minimal conjunction of primitive events that causesven when there is uncertainty about the
actual situation at hand. The agent’s epistemic state is given by a setsilflpasontexts. € D(U), which
describes all the possible scenarios for the actual situation.

Formally, letM = (U, V, F') be a causal model. LeX CV andz € D(X), let ¢ be an event, and let
C C D(U) be a set of contexts. Thei, = z is anexplanationof ¢ relative toC iff the following conditions
hold:

EX1. ¢(u) holds, for every context € C.
EX2. X =z is a weak cause af under every: € C such thatX (u) = z.

EX3. X is minimal. That is, for everyX'C X, some context € C exists such thak’(u) = z|X’ and
X'==z|X"is not a weak cause @f underu.

EX4. X (u)=xandX (v') # x for someu, v’ €C.

Note that inEX3, any counterexampl&’ C X to minimality must be a nonempty set of variables. The
following example illustrates the above notion of explanation.

Example 2.3 (rock throwing cont'd)Consider the set of contexs= {u1 1, u1,0, uo1}. Then,ST =1 s
an explanation oBS =1 relative toC, sinceEX1 BS(u; 1) = BS(u10)=BS(up1)=1,EX2 ST=1isa
weak cause oBS = 1 under bothu; ; andu, o, EX3 ST is obviously minimal, an&EX4 ST (u; ;) =1 and
ST(up,1)# 1. FurthermoreST =1 A BT =1 is not an explanation aBS = 1 relative toC, since here the
minimality conditionEX3 is violated.O

2.4 Partial Explanations and Explanatory Power

We next recall the notions ef-partial / partial explanations and of explanatory power of partial exqgilans
[15, 18]. Roughly, the main idea behind partial explanations is to genethkzeotion of explanation of
Section 2.3 to a setting where additionally a probability distribution over the geissible contexts is given.
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Let M = (U,V, F) be a causal model. Let CV andx € D(X). Let¢ be an event, and |€tC D(U)
be such that(u) for all e C. We useC% _, to denote the largest subs&tof C such thatX =z is an
explanation ofp relative toC’. Note that this se‘f?}:x is unique. The following proposition from [7] shows
thatC%_, is defined, if a subse¥’ of C exists such thak =z is an explanation of relative toC’; it also
characterize€_ .

Proposition 2.4 Let M = (U, V, F') be a causal model. LeX CV andz € D(X). Let¢ be an event, and
letC C D(U) be such that(u) for all u € C. If X =z is an explanation of relative to some&’ C C, then
c;‘;:x is the set of allu € C such that either ()X (u) # «, or (i) X (u) =2 and X =z is a weak cause af
underu.

Let P be a probability function o (that is, P is a mapping fronC to the interval[0, 1] such that
> uec P(u) = 1), and define

P(C4_y| X=2) = ¥ P) / ¥ P).
e NOES

Then, X = z is called am-partial explanatiorof ¢ relative to(C, P) iff C___is defined andP(Cy__ | X =
x) > a. We sayX =z is apartial explanationof ¢ relative to(C, P) iff X =z is ana-partial explanation
of ¢ relative to(C, P) for somea > 0; furthermore,P(C}*}:x | X =z) is called itsexplanatory powe(or
goodnesp

Example 2.4 (rock throwing cont’d)Consider the set of contexts= {u; 1, u1 0, uo 1}, and letP(u; ;) =
0.2 and P(uy0) = P(ug,1) =0.4. Then,CE2 =1 = C, and thusST =1 is a 1-partial explanation aBS = 1
relative to(C, P). Thatis,ST =1 is a partial explanation oBS =1 relative to(C, P) with explanatory
powerl. O

As for computation, we assume that the above probability functidoos C are computable in polyno-
mial time.

2.5 Responsibility and Blame

We finally recall the notions of responsibility and blame from [3]. Intuitivéifie notion of responsibility is
a refinement of the notion of actual cause, which also measures the minimlaénaf changes that must be
made under a structural contingency to create a counterfactual dependf) from X =x. Whereas the
notion of blame then also takes into consideration the belief of an agent digopbssible causal models
and contexts (before setting the weak cause).

In the sequel, lef/ = (U, V, F') be a causal model, leX CV, x € D(X), andu € D(U), and letg
be an event. Let us call the pdid/, u) a situation Then, thedegree of responsibilitpf X = for ¢ in
situation(M, u), denotedir((M,u), X=x, ¢), is0 if X =z is not an actual cause gfunderu in M, and
itis1/(k+1)if X =z is an actual cause @funderu in M, and

(i) someW CV\X,7e D(X), andw € D(W) exist such thaAC2(a) and (b) hold and that variables in
W have different values i andW (u), and

(i) no W' CV\X, 7 € D(X), andw’ € D(W’) exist such thaAC2(a) and (b) hold and that' < k vari-
ables inlV’ have different values in” andW’(u).
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Informally, dr((M,u), X=z,¢) =1/ (k+1), wherek is the minimal number of changes that have to be
made undew in M to make¢ counterfactually depend of = x. In particular, if X =« is not an actual
cause ofp underu in M, thenk = oo, and thusir((M, u), X=z, ¢) = 0. Otherwisedr((M,u), X=z, ¢)

is at mostl.

Example 2.5 (rock throwing cont'd) Consider again the contexi ; = (1, 1) in which both Suzy and Billy
intend to throw a rock. As argued in Example 2.2, Suzy’s throwing a r8@k=€ 1) is an actual cause of the
bottle shattering S = 1), witnessed by the contingency that Billy does not throw (and hencerduidst).
Here,AC2 holds also under the contingency that Billy throws a rock, but the rock doghit the bottle
(BT and BH are set tal and0, respectively). Sincé8T and BH arel and0, respectively, undet; ;, the
degree of responsibility of Suzy’s throwing a rocKI( = 1) for the bottle shatteringS =1) in (M, u; 1)

is given byl. O

An epistemic stat€ = (K, P) consists of a set of situatioris and a probability distributio® over K.
Thedegree of blamef setting X to « for ¢ relative to an epistemic stat&’, P), denotedlb(KC, P, X « z,
¢), is defined as

> mwex A(Mx =z, u), X=2,¢) - P((M,u)).

Informally, (IC, P) are the situations that an agent considers possible b&faseset tox along with their
probabilities believed by the agent. Theh (K, P, X < z, ¢) is the expected degree of responsibility of
X=zxforoin (Mx—z;,u).

Example 2.6 (rock throwing cont'd)Suppose that we are computing the degree of blame of Suzy’s throwing
a rock for the bottle shattering. Assume that Suzy considers possible aedogifsion of the causal model
given in Example 2.1, denotetl/’, where Billy may also throw extra hard, which is expressed by the
additional value2 of Uz and BT'. If Billy throws extra hard, then Billy’s rock hits the bottle independently
of what Suzy does, which is expressed by additionally assuming3Hais 1 if BT is 2. Assume then that
Suzy considers possible the contexis), u1,1, andu; 2, where Suzy throws a rock, and Billy either does
not throw a rock, throws a rock in a normal way, or throws a rock exdra.hFinally, assume that each of
the three contexts has the probabilits. It is then not difficult to verify that the degree of responsibility of
Suzy'’s throwing a rock for the bottle shatteringli& in (M’, u; 2) andl in both (M’, u; o) and(M', uy 7).
Thus, the degree of blame of Suzy’s throwing a rock for the bottle shajterfiy6. O

3 Problem Statements

We concentrate on the following important computational problems for caeiggisinations, responsibility,
and blame in the structural-model approach, which comprise both decisibleprs and problems with
concrete output.

3.1 Causes

WEAK/ACTUAL CAUSE: Given M=(U,V, F), X CV, ze€ D(X), ue D(U), and an evenp, decide if
X =z isaweak (resp., an actual) causepainderu.

WEAK/ACTUAL CAUSE COMPUTATION: Given M = (U,V,F), X C V,u € D(U), and an evenp,
compute the set of alk’ = 2/ such that (i)X’ C X andz’ € D(X"), and (ii) X’ =2’ is a weak (resp.,
an actual) cause of underu.
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3.2 Notions of Explanations

EXPLANATION: Given M =(U,V,F), X CV, z€ D(X), an eventp, and a set of contextS§ C D(U),
decide whetheX = x is an explanation of relative toC.

EXPLANATION COMPUTATION: GivenM = (U, V, F'), X CV, an event, and a set of contextsC D(U),
compute the set of alX’ = 2’ such that ()X’ C X andz’ € D(X"), and (ii) X’ = 2/ is an explanation
of ¢ relative toC.

a-PARTIAL EXPLANATION: Given M = (U,V, F), X CV, z€ D(X), an evenip, a set of context§ C
D(U) such thatp(u) for all uw € C, a probability functionP on C, anda>0, decide if X =z is an
a-partial explanation of relative to(C, P).

a-PARTIAL EXPLANATION COMPUTATION: GivenM = (U,V, F), X C V, an even, a set of contexts
CC D(U) with ¢(u) for all w € C, a probability functionP on C, anda > 0, compute the set of all
X’=2a'suchthat ()X’ C X and2’ € D(X"), and (ii) X’ = 2’ is ana-partial explanation of relative
to (C, P).

PARTIAL EXPLANATION: GivenM = (U,V, F), X CV,z € D(X), an evenp, a set of context§ C D(U)
such that(u) for all u € C, and a probability functior® onC, decide whetheX =z is a partial ex-
planation of¢ relative to(C, P).

PARTIAL EXPLANATION COMPUTATION: Given M = (U,V, F), X CV, an eventp, a set of contexts
C C D(U) such thatp(u) for all ueC, and a probability function? on C, compute the set of all
X' =42 such that (i)X' C X anda’ € D(X"), and (ii) X’ =2’ is a partial explanation af relative to
€, P).

EXPLANATORY POWER: Given M = (U,V, F), X CV, x€ D(X), an eventp, a set of context€ C
D(U), and a probability functior? on C, where (i)¢(u) for all ueC, and (i) X =« is a partial
explanation ofp relative to(C, P), compute the explanatory power &f= z for ¢ relative to(C, P).

3.3 Responsibility and Blame

RESPONSIBILITY. GivenM = (U,V,F), X CV,z € D(X),u € D(U), and an evenp, compute the
degree of responsibility ok =z for ¢ in (M, u).

BLAME: Given an epistemic stat® a set of endogenous variabl&s xc D(X), and an evenp, compute
the degree of blame of setting to = for ¢ relative tof.

3.4 Previous Results

Several complexity results for the above problems have been establishedrticular, as shown in [6],
the decision problems ¥Ak CAUSE and ACTUAL CAUSE are bothx:} -complete in the general case, and
NP-complete in the case of binary variables. Furthermore, as shown in §7diettision problems ¥ LA-
NATION and RARTIAL/a-PARTIAL EXPLANATION and the optimization problemX®LANATORY POWER

P P
are complete foD}, P%, andFPﬁQ, respectively, in the general case, and completeDfoy P|" and

FPﬂIP, respectively, in the binary case. Hdbg (resp.,DF) is the “logical conjunction” of$y and 1Y
(resp.,NP andco-NP), ande (resp.,FPﬁj) is the class of decision problems solvable (resp., functions
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computable) in polynomial time with access to one round of parallel queries toaafe inC. Finally,
Chockler and Halpern [3] and Chockler, Halpern, and Kupfermarhfdfe shown that the optimization

P
problems RESPONSIBILITY and BLAME are complete for the classg®>z log 7] andFPiQ, respectively,
in the general case, and complete fpNllog” and FPh\IP, respectively, in the binary case. The class

FPCleen] contains the functions computable in polynomial time Witflog n) many calls to an oracle in
C, wheren is the size of the problem input.

To our knowledge, there exist no complexity results for the optimization pmobM/EAK/ACTUAL
CAUSE COMPUTATION, EXPLANATION COMPUTATION, anda-PARTIAL/PARTIAL EXPLANATION COM-
PUTATION so far. But there are complexity results on decision variants of two of the fatielems, which
are called EPLANATION EXISTENCEanda-PARTIAL EXPLANATION EXISTENCE, respectively. They are
the decision problems of deciding whether an explanation angpartial explanation, respectively, over
certain variables exists, which are completeXgr (resp.,>Y) in the general (resp., binary) case; see [7].

To our knowledge, there are no explicit tractability results for the aboebklems related to causes and
explanations so far. As for responsibility and blame, Chockler, HalewchKupferman [4] have shown that
computing the degree of responsibility in read-once Boolean formulasecdarie in linear time.

4 Irrelevant Variables

In this section, we describe how an instance of deciding weak causesgadiced with polynomial over-
head to an equivalent instance in which the (potential) weak cause analba cnodel may contain fewer
variables. That is, such reductions identify and remove irrelevantblasdn weak causes and also in
causal models. This can be regarded as an important preliminary step ontpetation of weak and actual
causes, which seems to be indispensable in efficient implementations.

We first describe a reduction from [7] and a generalization thereof inhwitrelevant variables in weak
causesX =z of an eventp are characterized and removed. We then generalize these two reduotions
two new reductions that identify and remove irrelevant variables in weakesX = 2 of ¢ and also in
causal modeld/, producing theeducedand thestrongly reduced causal model M w.r.t. X =z and an
eventy. Both new reductions also generalize a reduction due to Hopkins [2&}/orts of the formX =z
and¢ = Y =y, whereX andY are singletons. The reduced causal modelofv.r.t. X =2 and¢ is in
general larger than its strong reduct w.kt=x and¢. But the former allows for deciding wheth&r' =z’
is a weak cause af, for the large class of alk’ C X, while the latter generally allows only for deciding
whetherX =z is a weak cause af.

In the rest of this section, to illustrate the removal of variables in (potentisgdkwauses and causal
models, we use what is shown in Fig. 2: (i) the causal gr@pti)M) of a causal modeM = (U, V, F),

(ii) the set of variables¥ C V' of a (potential) weak caus& =z, and (jii) the set of variable® (¢) in an
eventeo.

4.1 Reducing Weak Causes

The following result (essentially proved in [7]) shows that deciding wlefi = = is a weak cause af
underu is reducible to deciding whethe¥’ = z| X’ is a weak cause af underu, where X’ is the set of
all X; € X that are either i or ancestors of variables it That is, in deciding whetheX =z is a weak
cause ofp underu, we can safely ignore all variables i = = not connected to any variable ¢n
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Figure 2: Causal Grapfiy (M) along withX andV (¢)

Theorem 4.1 (essentially [7])Let M = (U, V, F') be a causal model. LeX CV andz € D(X), let ¢
be an event, and let € D(U). Let X’ be the set of all variables iX from which a (directed) path
exists inG(M) to a variable in¢, and letz’ =z|X’. Then,X =z is a weak cause op underw iff
() (X\X")(u) =2|(X\X') and (ii)) X' = 2’ is a weak cause af underu.

Example 4.1 Fig. 3 showsX’ for a causal modeld = (U, V, F') and an evend such that the causal graph
Gy (M) and the setX andV (¢) are as in Fig. 20

Figure 3: Causal Grapfiy (M) along with X’ andV (¢)

The next theorem formulates the more general result that deciding wh€ther is a weak cause af
underu is reducible to deciding whethet’ = x| X’ is a weak cause af underu, whereX' is the set of
all variables inX that occur ing or that are ancestors of variablesgimot “blocked” by other variables in
X. That is, in deciding whethek =z is a weak cause af underu, we can even ignore every variable
in X =z not connected via variables In\ X to any variable inp.

Theorem 4.2 Let M = (U, V, F') be a causal model. LeX CV andz € D(X), let ¢ be an event, and let
ue D(U). Let X’ be the set of all variableX; € X from which there exists a path (M) to a variable
in ¢ that contains naX; € X\{X;}, and letz’ =z|X’. Then, X =z is a weak cause af underu iff
(i) (X\X")(u) = z|(X\X') and (ii) X’ =z’ is a weak cause af underu.

Example 4.2 Fig. 4 showsX’ for a causal model = (U, V, F') and an evend such that the causal graph
Gy (M) and the setX andV' (¢) are as in Fig. 20
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Figure 4: Causal Grapfiy (M) along with X’ andV (¢)

The next result shows that computing the set of all variables in a wealedhat are not irrelevant
according to Theorems 4.1 and 4.2 can be done in linear time.

Proposition 4.3 Given a causal model/ = (U, V, F'), X CV, and an evend,

(a) computing the seX’ of all variablesX; € X from which a path exists to a variable incan be done
intime O([| M| +]|¢]])-

(b) computing the seX”’ of all variablesX; € X from which a path exists to a variable inthat contains
no X;€ X \{X;} can be done in tim® (|| M||+||¢|).

4.2 Reducing Weak Causes and Causal Models

We now generalize the reduction described in Theorem 4.1 to a reductich wbt only removes irrel-
evant variables from causes, but also removes irrelevant variablesusal models. In the sequel, let
M= (U,V,F) be a causal model. LeY CV, ze€ D(X), andue D(U), and lety be an event. We first
define irrelevant variables w.rX = x and¢, and then the reduced causal model wX.t= z and¢, which
does not contain these irrelevant variables anymore.

The set ofelevantendogenous variables 8f = (U, V, F') relative toX =z ande, denotede(:gE(M),
is the set of allA € V' such that eitheR1 or R2 holds:

R1. Ais on adirected path i6¥(1) from a variable inX'\ { A} to a variable inp.
R2. A does not satisfiR1, and eitherA occurs ing, or A is a parent irG(M ) of a variable that satisfid®1.

Informally, R%_, (M) is the set of all variables im, all variablesA that connect a different variable
in X to one ing, and all the parents of the latter variables. A variallle V' is irrelevantw.rt. X =«
andg¢ iff it is not relevant w.r.t. X =z and¢. Note that it doesiot necessarily hold thak’ C Rf(:x(M).
The reduced causal modeif M = (U,V, F) w.rt. X =z and ¢, denotede;:z, is the causal model

M'=(U,V', F’) that is defined by the set of endogenous varialblés= Rgﬁ(:z(M) and the following
set of functionsF’ = {F'4 | A V'}:

F' = {F'y=Fa|AcV'satisfieR1} U{F'y=F} | Ac V' satisfieR2} ,

where F; assignsAys(ua) to A for every valueuy € D(Uy) of the setU,4 of all ancestorsB € U of A
in G(M). We often useR% (M), R% (M), M%, and MY to abbreviateR%__(M), Ryx=Y.(M), M$__,
and M), —Y, respectively.
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Example 4.3 Fig. 5 shows the causal graﬁh/(M;;) along with the set of variable¥’ = X N R?{(M) for
a causal model = (U, V, F') and an evend such that the causal gragh, (/) and the sets{ andV (¢)
are as in Fig. 20

| \
—— !
//’ o \ I'
\ )
\ \ \ o
~ - _ \ ~_ _7
N '/ -
\ |
XL

Figure 5: Causal Graptiy (M%) along with X’ = X N R% (M) andV/ (¢)

The following result shows that a variableXh= z is irrelevant w.r.t.X = x and¢ iff it is not connected
to a variable inp. Hence, we are heading towards a generalization of the reduction imérhebl.

Proposition 4.4 Let M = (U, V, F') be a causal model. Lef CV, z € D(X), and lety be an event. Then,
XN R?((M) is the set of all variable® € X from which there exists a directed pathGi{ /) to a variable
in ¢.

The next result shows that deciding whetliee x is a weak cause af underu in M can be reduced
to deciding whethe’ = 2’ is a weak cause af underu in M%, whereX’ = X N R% (M) anda’ = z| X

It generalizes Theorem 4.1. Note that this result and also Theoremsdi4/dhbelow do not carry over to
responsibility.

Theorem 4.5 Let M = (U, V, F) be a causal model. LeXY CV, z€ D(X), andue D(U), and lety be
an event. LetX’:XﬂRﬁ’((M) andz’ =x|X’. Then,X =z is a weak cause af underw in M iff (i)
(X\X")(u) = z|(X\X') in M, and (ii) X’ = 2’ is a weak cause af underu in M;?.

Our next result shows that the reduction of a causal model is monotoic Roughly, if X’ C X, then
the reduced causal model 8f w.r.t. X’ =z’ and¢ is essentially contained in the reduced causal model
of M w.rt. X =2 and¢.

Proposition 4.6 Let M= (U, V, F') be a causal model. LeY*'CXCV, 2’e D(X’), x € D(X), and letp be
an event. Then)/%, coincides with M%)%.

We are now ready to formulate the main result of this section. The followingd¢heshows that
deciding whetheX’ =2/, whereX’ C X, is a weak cause af underu in M can be reduced to deciding
whether its restriction t(R?((M) is a weak cause ef underu in Mg’é. Itis a generalization of Theorems 4.1
and 4.5, which follows from Theorem 4.5 and Proposition 4.6.

Theorem 4.7 Let M = (U, V, F) be a causal model. LeX'"C X CV, 2’ € D(X'), z€ D(X), andu €
D(U), and let¢ be an event. LeK”:X’me((M) andz” = 2/|X". Then,X'=2'is a weak cause
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of ¢ underw in M iff (i) (X'\X")(u) = 2/'|[(X"\X") in M, and (ii) X" = 2" is a weak cause af underu
in M.
The following result shows that the reduced causal model and the tiestraf its causal graph to the

set of endogenous variables can be computed in quadratic and lineargspectively. Here, for any sét
we denote byS| its cardinality.

Proposition 4.8 Given a causal model! = (U, V, F), X CV, x € D(X), and an event, the directed
graph GV(M;‘;) (resp., the causal modé\I{;’;) can be computed in tim@(||M|| + [|¢||]) (resp., in time
O(VIIIMIl + lll))-

4.3 Strongly Reducing Weak Causes and Causal Models

In the sequel, lef/ = (U, V, F') be a causal model. LeX CV, x € D(X), andue D(U), and let¢y be
an event. The reduced causal model wXt=x and ¢, which generalizes the idea behind Theorem 4.1,
still contains some superfluous variables for deciding whekherz is a weak causes af underu in M.
We now define the strongly reduced causal model wAr.t= = and ¢, which generalizes the idea behind
Theorem 4.2, where these superfluous variables are removed. Waefiree strongly relevant variables
w.r.t. X =z and¢, and then the strongly reduced causal model wkr4 = and¢, which contains only such
variables.

The set ofstrongly relevanendogenous variables af = (U, V, F') relative to.X =z and ¢, denoted
R%_ (M), is the set of alld € V such that eithe§1or S2holds:

S1. Ais on a directed patt® in G(M) from a variableB € X\{ A} to a variable iny, whereP does not
contain any variable fronX \{ B}.

S2. A does not satisf$1, and eitherd occurs ing, or A is a parent inG(M) of a variable that satisfieS1

Note that all variables satisfyin§1 are fromV\ X. Informally, ﬁﬁ(:x(M) is the set of all variables
in ¢, all variablesA that connect a variable iX to one in¢ via variables from’\ X, and all the par-
ents of the latter variables. Observe t@:x(M) - Rf(:x(M). The strongly reduced causal modef
M= (U,V,F)w.rt. X =z and¢, denoted]f\/fg’zzx, is the causal modél/’ = (U, V', F'), where the endoge-
nous variable§”’ = R%__(M) and the functiong” = { /4 | A € V'} are defined by:

F' = {F'y=Fs|AcV'satisfiesS1} U {F'y = F} | Ac V' satisfiesS2} ,

where F; assignsAys(ua) to A for every valueuy € D(Uy4) of the setU,4 of all ancestorsB € U of A
in G(M). We often useR% (M), RY (M), M%, and MY to abbreviatek%,__ (M), RY=" (M), M%__,
and M), —Y, respectively.

Example 4.4 Fig. 6 shows the causal graph, (M%) along with the set of variableX’ = X N R% (M) for
a causal modelM = (U, V, F') and an evend such that the causal gragh, (M) and the setX andV (¢)
are as in Fig. 20

The following result shows that a variable ¥h= z is strongly relevant w.r.tX =« and¢ iff it is con-
nected inG(M) via variables in/\ X to a variable inp. Thus, we are currently elaborating a generalization
of Theorem 4.2.
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\ N /’X/

Figure 6: Causal Grap@v(ﬂg’z) along with X’ =X N E_?((M) andV(¢)

Proposition 4.9 Let M = (U, V, F') be a causal model. Lef CV, z € D(X), and let¢ be an event. Then,
XN R?((M) is the set of allX; € X from which there exists a directed pathGf{ /) to a variable in¢ that
contains naX; € X \ {X;}.

It is easy to verify that the monotonicity result of Proposition 4.6 and thus Biemrem 4.7 do not
carry over to strongly reduced causal models. InformallyifC X, then]\?}’z, may contain variables that
connect someX; € X' to a variable inp via variables inV\ X', but that do not connect; € X’ C X to a
variable in¢ via variables inV\ X C V\ X', since some variable frolY\ X’ is needed, and are thus not
contained inﬁ‘z> For example, if the causal gragh, (/) and the sets( andV'(¢) are as in Fig. 2, and
X' consists of the variable iX that is shown upper left in Fig. 2, then this variable even does not occur
among the variables of the strongly reduced causal mmfel since itis pruned away (cf. also Figure 6),
and heanMf;)X, cannot be formed.

However, the weaker result in Theorem 4.5 also holds for stronglycezticausal models. That is,
deciding whetheX = x is a weak cause af underu in M can be reduced to deciding whether its restriction
to the strongly relevant variables is a weak causg ohderu in J\/Igz. This result generalizes Theorem 4.2.

Theorem 4.10 Let M = (U, V, F') be a causal model. LeX CV, z € D(X), andu e D(U), and let¢ be
an event. LetX’:XﬂRf((M) and 2z’ =x|X’. Then,X =z is a weak cause aof underw in M iff (i)
(X\X")(u) =z|(X\X') in M, and (ii)) X’ =2’ is a weak cause af underu in M}?.

The following result shows that also the strongly reduced causal madédha restriction of its causal
graph to the set of all endogenous variables can be computed in polyraordiihear time, respectively.

Proposition 4.11 Given a causal model/ = (U,V, F), X CV, z € D(X), and an evenp, the directed
graph GV(Mg?) (resp., the causal modélfgz) is computable in timé( ) (resp., O(|V|| M| +
[1@11))-

The next result shows that for weak causes of the féfms 2, where X is a singleton, the reduced
causal model coincides with the strongly reduced one. Observe thatiahyweak cause is an actual cause
(by Theorem 2.3). Hence, for deciding actual causes, both redsat@ncide. Nonetheless, we need weak
causes in particular since they are a basic building block of explanationactual causes.

Theorem 4.12 Let M = (U, V, F') be a causal model. LeX CV andz € D(X), and let¢ be an event.
If X is a singleton, thelM;? = Mf;.
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5 Causal Trees

In this section, we describe our first class of tractable cases of cansesxplanations. We show that
deciding whether an atoi =« is a weak cause of a primitive everit=y under a context in a domain-
bounded causal modéll = (U, V, F) is tractable, if the reduced causal mod#) (M) is a bounded
directed tree with root”, which informally consists of a directed path frakhto Y, along with a number

of parents for each variable in the path afféibounded by a global constant (see Fig. 7). Under the same
conditions, deciding whetheY = z is an actual cause, deciding whetbee= x is an explanation relative to

a set of context€, and deciding whethek =z is a partial explanation or am-partial explanation as well

as computing its explanatory power relative(@o P) are all tractable.

| Wk\ | W2\W1\

X=pt—ptt ... —pl — pi_Y

Figure 7: Path fromX to Y in a Causal Tree

More precisely, we say that a directed gragh- (V, E'), given two nodesX, Y€ V, is adirected tree
with root Y, if it consists of a unique directed path = Pk pk-l ... L PY2Y from X to Y, and
setsW* of (unconnected) parent$+# P for all P*~! such thati € {1, ..., k}. Moreover,G is bounded
if |W;| < [ foreachie{l,...,k}, i.e., P,_; has fan-in of variables fron¥" at most/ + 1, wherel is
some global constant. ¥ = Gy (M) for some causal modéll = (U,V, F) andX,Y € V, thenM is a
(bounded) causal trewith respect taX andY'.

Example 5.1 An example of a causal tree is the following binary causal madet (U, V, F') presented in
[16] in a discussion of the double prevention problem, wHére {Ugpr, Usps} with D(A) ={0,1} for
al AcU, V={BPT,LE, LSS, SPS,SST, TD} with D(A)={0,1} for all Ac V. In a World War Ill
scenario, Suzy is piloting a bomber on a mission to blow up an enemy targetilgrid giloting a fighter as
her lone escort. Along comes an enemy plane, piloted by Lucifer. Slyaig&illy spots Lucifer, zooms in,
pulls the trigger, and Lucifer’s plane goes down in flames. Suzy’s missiondisturbed, and the bombing
takes place as planned. The question is whether Billy deserves somefardié success of the mission.
Here, BPT means that Billy pulls the triggel,F that Lucifer eludes Billy,L.SS that Lucifer shoots Suzy,
SPS that Suzy plans to shoot the targg$, 7" that Suzy shoots the target, afiéd) that the target is destroyed.

Usps———» SPS ~_

Uppr——BPT—» LE——» LSS ——»S55T— TD

Figure 8: Causal Grapfi(M)
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The setF' = {F4 | A€ V'} consists of the function8spr = Uppr, Fsps = Usps, Frg = 1 — BPT,
Frss = LE, Fssy = 1iff LSS=0andSPS=1, andFrp = SST. The causal grapli(M) is shown
in Fig. 8. LetX = BPT andY = TD. Then,Gy (M) is a directed tree with rodt’, where the directed
path fromX to Y is P* = BPT, P> = LE, P?=1LSS, P' =5ST, P°=TD, W' =W3=W%*=
andW? = SPS. O

As an important property, causal trees can be recognized very efficieamely in linear time. The
same holds for causal models whose reduced variant with resp&catalY” is a causal tree.

Proposition 5.1 Given a causal model/ = (U, V, F’) and variablesX,Y €V, deciding whethed/ resp.
M;¥ is a (unbounded or bounded) causal tree with respect tand Y is feasible inO(||M||) time.

5.1 Characterizing Weak Causes

We first consider weak causes. In the sequelMet (U, V, F') be a causal model, IeX,Y € V such
that M is a causal tree with respect #6 andY’, and letz € D(X) andy € D(Y'). We give a new char-
acterization ofX =z being a weak cause df =y under context. € D(U), which can be checked in
polynomial time under some conditions. We need some preparation by the fgjldefimitions. We define
R={D(Y)\{y}}, and for everyi € {1, ..., k}, we defings’ = P*(u) and R’ by:

R ={pCD(P")|Jwe DW")Ip’c R *:
Vpe D(P'): pep iff Pl l(u)ep’;
P (w) e D(P\p'}.

Intuitively, R’ contains all sets of possible valuesrifin AC2(a), for different values ofV?. Here,P° =Y
must be set to a value different framand the possible values of each otFéidepend on the possible values
of Pi~1. At the same time, the complements of setsinare all sets of possible values Bf in AC2(b).

In summary,AC2(a) and (b) hold iff some nonempgyc R* exists that does not contain This result is
formally expressed by the following theorem, which can be proved by tr@iuoni € {0, ..., k}.

Theorem 5.2 Let M = (U, V, F) be a causal model. LeX,Y eV, ze€ D(X),y € D(Y), andu € D(U).
Suppose thad/ is a causal tree w.rtX andY, and letR* be defined as above. Thel,=z is a weak
cause ofY =y underu in M iff (o) X (u)=2 andY (u)=y in M, and(;3) somep € R* exists withp # ()
andz ¢ p.

Example 5.2 Consider again the causal tree with respeckte- BPT andY = TD from Example 5.1.
Suppose we want to decide whetli#7T" = 1 is a weak cause dfD = 1 under a context ; € D(U ), where
u11(Ugpr) =1 andu 1 (Usps) = 1. Here, we obtain the relation8’ = {{0}}, R' = {{0}}, R? = {{1}},
R3={{1}}, andR* = {{0}}. Observe then thdty) BPT (u; 1) andTD(us 1) are bothl, and(3) {0} € R*
andl ¢ {0}. By Theorem 5.2, it thus follows th&PT =1 is a weak cause of'D =1 underu; ;. O

5.2 Deciding Weak and Actual Causes

The following theorem shows that deciding whether an atom = is a weak cause of a primitive event
Y =y in domain-bounded/ is tractable, whem/ is a bounded causal tree with respeci@ndY . This
result follows from Theorem 5.2 and the recursive definitioafwhich assures that* can be computed
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in polynomial time under the above boundedness assumptions. By The@gtine?2same tractability result
holds for actual causes, since the notion of actual cause coincides witltilon of weak cause wherg is
a singleton.

Theorem 5.3 Given a domain-bounded causal modél= (U, V, F'), variablesX,Y €V such thatM is
a bounded causal tree with respectXoandY’, and valueste D(X), yeD(Y'), anducD(U), deciding
whetherX =z is a weak (resp., an actual) causeof=y underu in M can be done in polynomial time.

The next theorem shows that the same tractability result holds when indteedjost the reduced
model MY is required to be a bounded causal tree. The result follows from €hedr5, Proposition 4.8,
and Theorem 5.3.

Theorem 5.4 Given a domain-bounded causal modél= (U, V, F'), variablesX,Y € V' such thatM}? is
a bounded causal tree with respectXoandY’, valueste D(X), ye D(Y'), andue D(U ), deciding whether
X =z isaweak (resp., an actual) causeot=y underw in M can be done in polynomial time.

5.3 Deciding Explanations and Partial Explanations

The following theorem shows that deciding whetliée= = is an explanation o¥ =y relative toC in M
is tractable under the conditions of the previous subsection. This redlolv§ofrom Theorem 5.4 and
Proposition 2.2.

Theorem 5.5 Given a domain-bounded causal modél= (U, V, F'), variablesX,Y € V' such thatM}g
is a bounded causal tree with respectXoandY’, valuesz € D(X) andy € D(Y'), and a set of contexts
C C D(U), deciding whetheX = z is an explanation of = y relative toC in M can be done in polynomial
time.

Similarly, deciding whetheX =z is a partial or am-partial explanation o™ =y relative to(C, P)
in M, as well as computing its explanatory power is tractable under the condifidresfrevious subsection.
This follows from Theorem 5.4 and Propositions 2.2 and 2.4.

Theorem 5.6 Let M = (U, V, F') be a domain-bounded causal model, }tY € V' be such thaiM}? is a
bounded causal tree with respect¥oandY’, and letz € D(X) andy € D(Y). LetC C D(U) such that
Y (u) =y forall uweC, and letP be a probability function o€. Then,

(a) deciding whetherX =z is a partial explanation oft” =y relative to (C, P) in M can be done in
polynomial time.

(b) deciding whethertX =z is an «a-partial explanation ofY =y relative to (C, P) in M, for some
givena > 0 can be done in polynomial time.

(c) given thatX =z is a partial explanation ofy” =y relative to(C, P) in M, the explanatory power
of X =z is computable in polynomial time.
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6 Decomposable Causal Graphs

In this section, we generalize the characterization of weak cause giss#rction 5 to more general events
and to more general causal graphs. We characterize relationships foirth “X = x is a weak cause of

¢ underu in M”, where (i) X =x and ¢ are as in the original definition of weak cause, and thus not
restricted to assignments to single variables anymore, and wheta/({i)/) is decomposable into a chain
of subgraphs (cf. Fig. 9, which is explained in more detail below), and tlui restricted to causal trees
anymore. We then use this result to obtain more general tractability resutiasifses and explanations, and
also new tractability results for responsibility and blame.

T2 "'~“\‘T1 L TO
& \ \s / Loy
st 52T g GO T

Figure 9: Decomposable Causal Graph

6.1 Characterizing Weak Causes

We first give a new characterization of weak cause. In the sequél{4etU, V, F') be a causal model, let
X CV,letxe D(X)andue D(U), and letp be an event.

Towards a characterization o=z is a weak cause af underwu in M”, we define the notion of a
decomposition of a causal graph as followsdécompositiorof Gy (M) relative toX = x (or simply X)
andg is a tuple((7°, 5°), ..., (T*, S*)), k >0, of pairs(T*, S*) such that the conditiori31-D6 hold:

D1. (79,...,7T*%)is an ordered partition df .
D2. 79D 80 ... Tk D Sk,
D3. Every A € V occurring ing belongs tdl'™®, andS* O X.

D4. Foreveryic {0,...,k—1}, notwo variablestc T U - .- U Tt U T\ StandBe T+ U .- U T*
are connected by an arrow @y (M).

D5. For everyic {1,...,k}, every child of a variable fron$® in Gy (M) belongs to(T%\ S*) U S~
Every child of a variable fron$° belongs to(7° \ S°).

D6. For everyi € {0,...,k — 1}, every parent of a variable i’ in G (M) belongs tal"*!. There are no
parents of any variabld € S*.

Intuitively, Gy (M) is decomposable into a chain of edge-disjoint subgraphs. .., G* over some sets
of variables7?, S°uT!, STUT?, ..., Sk~ UT*, where(T?, ..., T*) is an ordered partition o, such
that the setd; are connected to each other exactly through some%etsT, i € {0,...,k—1}, where
(i) every arrow that is incident to soméc S¢, i € {1,...,k—1}, is either outgoing from4 and belongs
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to G, or ingoing into A and belongs taz**!, and (ii) every variable inp (resp., X) belongs to7”
(resp., some* C T*); see Fig. 9 for an illustration.

As easily seen, causal trees as in Section 5 are causal models with deabiepcausal graphs. For
the directed patlX = P* — P*! — ... - P02~y from X toY, and the set¥/’%, i € {1,...,k}, we may
defineD = ((T°,8Y),...,(T*, S*)) by S'={P'}, TO={P°}, andT* = W' U {P'}, foric {1,...,k};
then,D is a decomposition offy (M) relative toX =z andY =y.

Thewidth of a decompositio = ((7°, SY), ..., (T*, S*)) of Gy (M) relative toX and¢ is the max-

imum of all|T¢| such that € {0, ..., k}. We say thaD is width-boundedff the width of D is at most for
some global constant

Example 6.1 Fig. 10 shows a decompositidh= ((7°, S%), (T, S1), (T?, S?)) of a causal grapt¥y (M)
relative to a set of variable¥ C V' and an evenp. The width of this decompositioR is given by6. O

Figure 10: Decompositio(7", S%), (T, S1), (T2, 5?)) of Gy (M) relative toX and¢

We use such a decompositiofi ©, S°), ..., (T*, S*)) of Gy (M) to extend the relation®’ for causal
trees from Section 5.1 to decomposable causal graphs. The new relatiooss contain triplegp, q, F),
wherep (resp. q) specifies a set of possible values of “floating variableés” S? in AC2(a) (resp.AC2(b)).
We defineR? as follows:

R’ ={(p,q,F)|F € 5° p,qC D(F),
W CTO F=S8°\W,
Jwe D(W)Vp,qe D(F):
pep iff =dpu(u),
geq iff ¢ 50,(w) forall ZCTO\ (SFUW)}.
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For everyi € {1,...,k}, we then defingk’ as follows:

R'={(p,q,F)|F C S, p,qC D(F),
AW C T, F=S\W,
Jwe D(W)3(p',q',F') € R~ Vp,q€ D(F):
pep iff F/pu(u)ep’,
geq iff F' 0, (w) €q’ forall ZC T\ (SFUW)} .

Intuitively, rather than propagating a getof possible values of a single variabl® € V' in AC2(a) from
Y = P? back toX = P* along a pathX = P¥ — P*~1 — ... - PO=Y asin Section 5.1, we now propa-
gate triplegp, q, F') consisting of some “floating variableg” C S? C V, a setp of possible values of" in
AC2(a), and a sef of possible values of' in AC2(b), from ¢ back toX C V" along the chain of subgraphs
GY,...,G* over the sets of variableg?, SO U Tt STUT?, ..., S¥~1UTk. Here, R® contains all triples
(p,q, F) such thatF" C S°, p,qC D(F), pep iff ~¢p(u), andq € q iff ¢[q<2(u)]w(“)’ for all possible

Z and some appropriate. Moreover, the triples iR’ depend on the triples iR*~!. In summary, it then
follows thatAC2(a) and (b) hold iff somép, q, X) € R* exists such thap # () andz € q.

Note that for a decomposition corresponding to a causal tree as didalssee, for eaclip, q, F') in
RY, it holds thatlV = () and F' = { P'}; henceq = D(F)\p is the complement gb. Furthermore, for each
(p,q, F) in R, wherei > 0, we havelV = W' and F = { P’} andq = D(P*)\p is the complement gp.
That is, the set®’ defined for causal trees correspond to simplified versions of théééts a decomposed
graph, where the redundant componefitandq are removed from each triple.

This new characterization of weak cause, which is based on the abageptoof a decompaosition
of Gy/(M) and the relationg?’, is expressed by the following theorem, which can be proved by induction
onie{0,...,k}.

Theorem 6.1 Let M = (U, V, F') be a causal model. Let CV, letz € D(X) andu € D(U), and lety be
an event. Lef(7°,5°%),...,(T*, S*)) be a decomposition af'y- (M) relative to X and ¢, and letR* be
defined as above. Thel, =z is a weak cause af underu in M iff (o) X (u) =z and¢(u) in M, and(f3)
some(p, q, X) € RF exists such thab # () andz € q.

This result provides a basis for deciding and computing weak and aetwseés, and may in particular be
fruitfully applied to reduced causal models from which irrelevant vargbéese been pruned. Often, reduced
models have a simple decomposition: Ev&?ﬁi = (U, V', F’) has the trivial decompositiof{V’, X)), and
everyMgg = (U, V', F’) such that na4 € X is on a path from a different variable iX to a variable inp
also has the trivial decompositigiV’, X)).

6.2 Deciding and Computing Weak and Actual Causes

Using the characterization of weak cause given in Section 6.1, we novidproew tractability results
for deciding and computing weak and actual causes. The following timesihews that deciding whether
X ==z is a weak (resp., an actual) causepafinderu in a domain-bounded/ is tractable whery (M)

has a width-bounded decomposition provided in the input. As for its prgoffHeorem 6.1, deciding
whetherX =z is a weak cause af underu in M can be done by recursively computing tR€s and then
deciding whethef«) and(3) of Theorem 6.1 hold. All this can be done in polynomial time under the above
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boundedness assumptions. By Theorem 2.3, actual causes areansafC= x such thatX is a singleton.
Thus, since deciding whethgf is a singleton can be done in constant time, the above tractability result also
holds for actual causes.

Theorem 6.2 Given a domain-bounded causal modél= (U,V, F), X C V,z€ D(X),ue D(U), an
eventp, and a width-bounded decomposititnof Gy (M) relative to X and ¢, deciding whetheX = x is
a weak (resp., an actual) cause@®finderv in M is possible in polynomial time.

The next theorem shows that deciding weak (resp., actual) causemardbounded causal models
is also tractable, WheGV(M?g) has a width-bounded decomposition provided in the input. This result
essentially combines Theorems 4.7 and 6.2.

Theorem 6.3 Given a domain-bounded causal modél= (U, V, F), X' C X CV,2' € D(X'),ue D(U),
an eventp, and a width-bounded decompositiBhof the graphGy (M%) relative to X’ N RS (M) and ¢,
deciding whetherX’ = 2’ is a weak (resp., an actual) cause®funderw in M is possible in polynomial
time.

A similar result also holds for strongly reduced causal models. It is egpteby the following theorem,
which basically combines Theorems 4.10 and 6.2.

Theorem 6.4 Given a domain-bounded causal modeél = (U,V,F), X C V, ze€ D(X), ue D(U),
an eventp, and a width-bounded decompositiBhof the graphGy (M%) relative to X N R% (M) and ¢,
deciding whetheX =z is a weak (resp., an actual) causegfinderw in M is possible in polynomial time.

We finally focus on computing weak and actual causes. The followindtraglsows that, given some
X CV, computing all weak (resp., actual) causés=z', where X’CX anda’e D(X’), of ¢ underu in
domain-bounded/ is tractable, when either (a;V(M;‘;) has a width-bounded decomposition provided in
the input, or (b) every}*v(]\/i}z,) with X’ C X has a width-bounded decomposition provided in the input.
This result essentially follows from Theorems 6.3 and 6.4. Observe thdténréms 6.5 to 6.9, each of
(a) and (b) implies thattX| is bounded by a constant, and thus also the number of all SUBS€isX is
bounded by a constant. Theorems 6.5 to 6.9 also hold, when the decomsositorlative toX N R?((M)
andX’'N Ef(,(M ) rather thanX and X’, respectively.

Theorem 6.5 Given a domain-bounded causal modél= (U,V, F'), X C V,ue D(U), an event, and
either (a) a width-bounded decompositiénof the grathv(M¢) relative to X and ¢, or (b) for every
X' C X, a width-bounded decompositidny of GV(M?;,) relative to X’ and ¢, computing the set of all
X'=2', whereX’ C X andz’ € D(X’), such thatX’ =2’ is a weak (resp., an actual) cause@iinderu
in M is possible in polynomial time.

6.3 Deciding and Computing Explanations and Partial Explanaions

We now turn to deciding and computing explanations and partial explanalibagollowing theorem shows
that deciding whetheKX = z is an explanation of relative toC C D(U) in M can be done in polynomial
time, if we assume the same restrictions as in Theorem 6.5. This result follomsieorems 6.3 and 6.4.
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Theorem 6.6 Given a domain-bounded causal modél= (U,V,F), X CV,zeD(X),CCD(U), a
eventyp, and either (a) a width-bounded decompositidrof GV(M¢) relative to X and ¢, or (b) for each
X’ C X, awidth-bounded decompositidny of GV(M?) relative to X’ and ¢, deciding whetheX = x
is an explanation of relative toC in M can be done in polynomial time.

A similar tractability result holds for deciding wheth&r = x is a partial or am-partial explanation of
¢ relative to soméC, P) in M, and for computing the explanatory power of a partial explanation.

Theorem 6.7 Given a domain-bounded causal modél= (U, V, F'), X C V,ze€ D(X),CCD(U), an
eventyp, whereg(u) for all u € C, a probability functionP onC, and either (a) a width-bounded decompo-
sition D of GV(M¢) relative to X and ¢, or (b) for everyX’ C X, a width-bounded decompositidy

of Gy (M2,) relative to X’ and ¢,

(1) deciding whetheX =z is a partial explanation ob relative to(C, P) in M can be done in polyno-
mial time.

(2) deciding whetheX = x is ana-partial explanation ofs relative to(C, P) in M, for some givem > 0,
can be done in polynomial time.

(3) given thatX =z is a partial explanation of) relative to (C, P) in M, computing the explanatory
power ofX = 2 can be done in polynomial time.

Such tractability results also hold for computing explanations and partialreqdas. In particular,
the next theorem shows that computing all explanations involving variafgesd given set of endogenous
variables is tractable under the same assumptions as in Theorem 6.5.

Theorem 6.8 Given a domain-bounded causal modél= (U, V, F'), X C V,CC D(U), an event, and
either (a) a width-bounded decompositithof GV(Mgg) relative to X and ¢, or (b) for everyX’ C X,
a width-bounded decompositidny of GV(]\/J\;?,) relative to X’ and ¢, computing the set of alk’ =2/,
whereX’ C X andz’ € D(X'), such thatX’ =2’ is an explanation of relative toC in M can be done in
polynomial time.

Similarly, also computing all partial ang-partial explanations involving variables from a given set of
endogenous variables is tractable under the same restrictions as inmi&6bre

Theorem 6.9 Given a domain-bounded causal model= (U, V, F'), X C V, CCD(U), an eventp,
whereg(u) for all u € C, a probability functionP onC, and either (a) a width-bounded decompositidrof
GV(M;;) relative to X and ¢, or (b) for everyX’ C X, a width-bounded decompositi@y of Gv(ﬂ;ﬁ,)
relative to X’ and ¢,

(1) computing the set of all’ =2/, whereX’ C X andz’ € D(X’), such thatX’ =z’ is a partial expla-
nation of¢ relative to(C, P) in M can be done in polynomial time.

(2) computing the set of alk’ =2’ where X’ C X and a2’ € D(X'), such thatX’ =z’ is an a-partial
explanation ofp relative to(C, P) in M, for some giver > 0, can be done in polynomial time.
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6.4 Computing Degrees of Responsibility and Blame

We now show that the tractability results for deciding and computing caudesxatanations of Sections 6.2
and 6.3 can also be extended to computing degrees of responsibility and blarttd@s end, we slightly
generalize the relationg’, i € {0, ..., k}, of Section 6.1.

We use the following notation. For sets of variablésind values:, 2’ € D(X), thedifference between
x andz’, denotedliff (x, '), is the number of all variabled € X such that:(A) #2'(A).

We defineR’ as follows:

R ={(p,q,F,1)|F C 8% p,qC D(F),1€{0,...,|T°[},
IV CT? F=S\W,
Jwe D(W)Vp,q€ D(F):
[ =diff(w, W(u)), pep iff —dpy(u),
g€q iff ¢ 50(w) forall ZCTo\ (SFUW)}.

For everyi € {1,...,k}, we then defingr’ as follows:

R ={(p,q,F,1)|F €S p,qCD(F), 1€{0,..., >\, |T7|},
IJWCT!, F=8\W,
Jwe D(W)3(p’,q',F',I') e R V¥p,q€ D(F):
I =diff(w,W(u)) +1, pep iff F/p,(u)ep’,
geq iff ' 0, (u)€q’ forall ZC T\ (SFUW)}.

Intuitively, rather than triplegp, q, F'), the new relationgt’ contain tuplegp, q, F, 1), wherep (resp. q) is
a set of possible values & C S* in AC2(a) (resp., (b)) as in Section 6.1, ahig the sum of all differences
betweenw € D(W) andW (u) in T7 for all j € {0,...,i}. Thus,AC2 holds with somé¥ C V' \ X and
w € D(W) such thatdiff (w, W (u)) =1 iff some (p, q, X,1) € R* exists such thap # () andz € g. This
result is expressed by the following theorem.

Theorem 6.10 Let M = (U, V, F') be a causal model. LeY CV, letz € D(X) andu € D(U), and let¢
be an event. Let(7°,S%),...,(T*, S*)) be a decomposition afy (M) relative to X and ¢, and let R*
be defined as above. ThekC2 holds with somélV C V' \ X andw € D(W) such thatdiff (w, W (u)) =1
iff some(p, g, X, 1) € R* exists such thap # () andz € q.

The next theorem shows that the degree of responsibility( ef = for ¢ in a situation(M, u) with
domain-bounded/ can be computed in polynomial time given tid&t (1/) has a width-bounded decom-
position provided in the input. It follows from Theorem 6.10 and the fadtrénzursively computing th&?'s
and deciding whether there exists sofpeq, X, 1) € R* with p+# () andz € g can be done in polynomial
time under the above boundedness assumptions.

Theorem 6.11 Given a domain-bounded causal modél= (U,V,F), X CV,ze€ D(X),ue D(U), an
eventy, and a width-bounded decompositidhof Gy (M) relative to X and ¢, computing the degree of
responsibility ofX = x for ¢ in (M, ) is possible in polynomial time.
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Similarly, computing the degree of blame relative to an epistemic §tat&) is tractable, when every
causal model iriC satisfies the same boundedness assumptions as in Theorem 6.11. Thiessexpy the
following theorem.

Theorem 6.12 Given an epistemic statéC, P), where for every M, u) € K, M is domain-bounded, a set
of endogenous variableX, a valuex € D(X), an eventp, and for every(M,u) = ((U,V, F),u) €K a
width-bounded decomposition 6, (M) relative to X and ¢, computing the degree of blame of settikig
to = for ¢ relative to(/C, P) is possible in polynomial time.

6.5 Computing Decompositions

The tractability results of Sections 6.2 to 6.4 are all based on the assumpti@othatdecomposition of
Gy (M) is provided in the input. It thus remains to decide whether such decompostti@gisat all, and
if so, then to compute one, especially one of minimal width. The problem of igcichether there exists
some decomposition of width below a given integer0 is formally expressed as follows.

LAYERWIDTH WITH CONSTRAINTS. GivenGy (M) for M = (U, V, F), X CV, an event, and an integer
1 >0, decide whether there exists a decompositi@ai?, S°), ..., (7%, S*)) of Gy (M) relative toX
and¢ of width at most.

As shown by Hopkins [22], RYERWIDTH WITH CONSTRAINTSis NP-complete. Hopkins [22] also
presents an algorithm for computing a layer decomposition of lowest widtbrenddayer decomposition
satisfies every condition amorl to D6 except forD3. It is an any-time depth-first branch-and-bound
algorithm, which searches through a binary search tree that reprédseset of all possible layer decompo-
sitions. This algorithm can also be used to compute the set of all decompositiGhg M) relative toX
and¢ of lowest width.

The intractability of computing a decomposition of lowest width, which is a cansece of the NP-
completeness of AvERWIDTH WITH CONSTRAINTS is not such a negative result as it might appear at
first glance. It means that decompositions are an expressive cofmepthich sophisticated algorithms
like Hopkin’s are needed to obtain good performance. However, toet éfir decomposition pays off by
subsequent polynomial-time solvability of a number of reasoning tasks thatithe ramifying conditions
are met, such that overall, the effort is polynomial time modulo calls to an N&eord his complexity
is lower than the complexity of weak and actual causes, as well as the catypiegxplanations in the
general case, which are located at the second and the third level oblgveomial Hierarchy, respectively
[6, 7] (see also Section 3.4). On the other hand, the lower complexity meatnsuiteble decompositions
will not always exist. However, the worst-case complexity results in [61S€] quite artificial constructions,
and the causal models involved will hardly occur in practice. In fact, métlyeoexamples in the literature
seem to have decomposable causal graphs; it remains to be seen wisthelds for a growing stock of
applications.

7 Layered Causal Graphs

In general, as described in Section 6.5, causal gréghS\/) with width-bounded decompositions cannot
be efficiently recognized, and such decompositions also cannot bemfffccomputed. But, from Section 5,
we already know width-bounded causal trees as a large class of gaagghs, which have width-bounded
decompositions that can be computed in linear time. In this section, we disces®m@iarger class of
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causal graphs, callddyered causal graphsvhich also have natural nontrivial decompositions that can be
computed in linear time. Intuitively, in layered causal graphs(}M ), the set of endogenous variablés
can be partitioned inttayers S°, ..., S* such that every arrow ity (M) goes from a variable in some
layer S’ to a variable inS'~! (see Fig. 11).

,"‘Sk’—» —> \SO \
, /Sk 1 - 1

Figure 11: Path fronX to ¢ in a Layered Causal Graph

We now first define layered causal graphs. We then prove that tkey srecial case of decomposable
causal graphs, and that recognizing them and computing their layetsecdane in linear time. In the
sequel, letV/ = (U, V, F') be a causal model, Ieéf CV, letx € D(X) andu € D(U), and letp be an event.

More formally, alayeringof Gy (M) relative toX and¢ is an ordered partitionS?, . .., S*) of V that
satisfies the following conditiorisl andL2:

L1. For every arrowA — B in Gy (M), there exists somec {1, ..., k} such thatd € S* andB € S*~ 1.
L2. Every A € V occurring ing belongs taS?, andS* O X

We say thatG'y (M) is layeredrelative to X andg¢ iff it has a layering(S?, ..., S*) relative to X and¢.
The width of such a layering S, ..., S*) is the maximum of allS?| such that € {0,...,k}. A layered
causal graptGy (M) relative to X and¢ is width-boundedor an integer > 0 iff there exists a layering
(S89,...,S%) of Gy (M) relative toX and¢ of a width of at most.

Example 7.1 Fig. 12 provides a layering = (S°, S*, 5?) of the causal graph?v(]\/igg) in Fig. 6 relative
to X'=XnN ﬁ_d;((M) and¢, whereM = (U, V, F) is a causal model anglis an event such that the causal
graphGy (M) and the setX andV'(¢) are as in Fig. 2. The width of this layeringis given by3. O

The following result shows that layered causal graghg /) relative toX and¢ have a natural non-
trivial decomposition relative t&X andd.

Proposition 7.1 Let M = (U, V, F) be a causal model, leX C V, and let¢ be an event. LetS°, ..., S¥)
be a layering o5y (M) relative toX and¢. Then,((S°, S%),..., (S*, %)) is a decomposition afy (M)
relative to.X and¢.

We next give a condition under which a layered causal g@ptiA/) has a unique layering. Two
variablesA, B € V' are connectedn Gy (M) iff they are connected via a path in the undirected graph
(V.{{A,B}| A— Bin Gy(M)}). A causal grapltzy (M) is connectedelative toX and¢ iff (i) X #0,

(i) there exists a variable iX that is connected to a variablednand (iii) every variable iV \ (X UV (¢))

is connected to a variable i§ U V' (¢). Notice that if X =z is a weak cause af underu € D(U), then (i)
and (ii) hold. Furthermore, in (iii), each variahlec V' \ (X UV (¢)) which is not connected to a variable
in X UV (9¢) isirrelevant to X = x is a weak cause af underu”.



28 INFSYS RR 1843-02-03

Figure 12: Layering S°, S', 52) of Gy (M%) relative toX’ = X N R% (M) and¢

The next result shows that when layered causal gr&ghs\/ ) relative toX and¢ areconnectedelative
to X and¢, then the layering is unique. For this result, observe that every eéveotains some variables
A€V, which are all placed in the layef;. By conditions (i) and (ii), alsoX contains some variables,
which are all placed in some lay8F. By condition (iii), any other variable belongs to at most one l&§/er
and thus to exactly one lay&f, sinceGy (M) is layered.

Proposition 7.2 Let M = (U, V, F) be a causal model, leX CV, and lety be an event. 17y (M) is
layered and connected relative 2 and ¢, thenG (M) has a unique layering relative t& and¢.

We now provide an algorithm for deciding if a connected causal g@ph\/) relative toX and ¢
is layered and, if so, for computing its unique layering: AlgorithmvERING (see Fig. 13) computes the

unique layeringC = (SY, ..., S¥) of a connected causal graph, (M) relative toX andg, if it exists. The
layering £ is represented by the mapping V' — {0,...,k}, defined byA\(A) = for all A< S/ and all
j€{0,...,k}. The following proposition states the correctness af ERING.

Proposition 7.3 Let M= (U, V, F') be a causal model, IeX C V, and let¢ be an event, wheré'y, (M) is
connected relative t& and¢. Then,LAYERING returns the unique layering a@fy (M) relative to X and
¢, if it exists, and Nil, otherwise.

The next result shows that recognizing layered and width-boundesdibgraphg-y (M ) and computing
their unique layerings can be done in linear time. Note that deciding whéthek/) is connected w.r.tX
and¢ is also possible in linear time.

Proposition 7.4 Given a causal modeV/=(U, V, F'), X CV, and an evend, whereGy (M) is connected
w.r.t. X and¢, deciding whethefry (M) is layered w.r.t.X and¢ as well as width-bounded for some integer
[ >0, and computing the unique layering 6%, (M) w.r.t. X and ¢ can be done irO(||Gy (M)| + ||¢]|)
time.

By Proposition 7.1, all results of Sections 6.1-6.4 on causes, explanagspsnsibility, and blame in
decomposable causal graphs also apply to layered causal grapépexse case. In particular, the relations
R’ of Section 6.1 can be simplified to the following ones for layered causahgrafhe relation?’ is
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Algorithm LAYERING

Input: causal modeM = (U, V, F), X CV, and an evenp,
whereGy (M) = (V, E) is connected relative t& ande.
Output: unique layeringC = (S, ..., S¥) of Gy (M) relative toX andé,
if it exists; Nil, otherwise.
Notation: £ is represented by the mapping V' — {0, ..., k}, which is
defined byA\(A) =j forall A€ S’ and allj € {0, ..., k}.

foreach Ac V\V(¢) do A(A) := L (i.e.,undefined
foreachAc VNV (¢)doA(A4) :=0;
if XNV (¢)+#0thenforeachAe X doA(A) :=0;
while E # () do begin
select somel — B in E such that\(A) # L or A\(B) # L;
if Be X Vv A(A)=0 then return Nil;
if A\(A)# L AXNB)=_Lthen\(B) :=\(A)—1
else ifA\(A) = L A X(B) # L then begin A\(4) := \(B)+1;
9. if Ae X thenforeachA’ e X\{A} do\(A") := \(4)
10. end
11.  else/* A\(A),\(b) # L * if A\(A) # A(B) + 1 then return Nil;
12. E:=E\{A— B}
13. end
14. if X C{AeV |A(A) =k}, wherek = max {\(A) | A€V} then return A
15. else returnNil.

NGO A~WNE

Figure 13: Algorithm IAYERING

given by:
R ={(p,q,F)|F C S° p,qC D(F),
Jw € D(S°\F) Vp,q€ D(F):
pep iff —¢gpy(u),
g€ q iff ¢ 500(w) forall ZC F\S*},

Foreachi € {1,...,k}, the relationR’ is given by:
R'={(p,q,F)|FC5', p,qC D(F),
Jw e D(SN\F)3(p’,q', F') € R"='Vp,q€ D(F):
pep iff F'py(u)ep,

geq iff F'i 5 0.(w)eq forall ZCF\Sk.

The following theorem is immediate by Theorem 6.1 and Proposition 7.1.

Theorem 7.5 Let M = (U, V, F) be a causal model. LeX CV, letz€ D(X) andue D(U), and let
¢ be an event. LetS?,...,S*) be a layering ofGy (M) relative to X and ¢, and let R* be defined
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as above. ThenX =z is a weak cause of underw in M iff (o) X(u)=2 and ¢(u) in M, and
() some(p, g, X) € R exists such thagb () andz € q.

The next theorem shows that deciding whetlee x is a weak respectively actual causegotinder
u in domain-bounded/ is tractable, whert:y (M) is layered and width-bounded. This is immediate by
Theorem 6.2 and Proposition 7.1.

Theorem 7.6 Given a domain-bounded causal modél= (U,V, F), X CV,z€ D(X),ue D(U), and
an event, whereGy (M) is layered (relative toX and¢) and width-bounded for a constaht 0, deciding
whetherX = x is a weak (resp., an actual) causeg@itinderw in M is possible in polynomial time.

Similarly, by Proposition 7.1, all the tractability results of Theorems 6.3-6.9 &®bEms 6.11 and
6.12 also hold for width-bounded layered causal graphs.

8 Refinements and Model Application

In this section, we show that with some slight technical adaptations, all thedabohniques and results
carry over to a recent refinement of the notion of weak cause and tetamséon of causal models due to
Halpern and Pearl [17]. This shows that the results are robust atcitreir Furthermore, we describe an
application of our results for dealing with structure-based causes ghanaxions in first-order reasoning
about actions.

8.1 Refined Weak Causes

We first consider the refined notion of weak cause that has beertlyeicéroduced by Halpern and Pearl in
[17]. Let M = (U, V, F') be a causal model. Let CV andz € D(X), and lety be an event. ThenY =z
is a(refined) weak causef ¢ underu € D(U) in M iff AC1 and the following conditiodC2’ hold:

AC2’. SomelWW C V' \ X and some € D(X) andw € D(W) exist such that:

(@) ~¢zw(u), and
(b) purs(u) forall W W, ZCV\(XUW),w =w|W, andz = Z(u).

Nearly all the results of this paper carry over to this refined notion of waake. The following theorem
shows that this applies directly to Theorems 4.1 and 4.2.

Theorem 8.1 Theorems 4.1 and 4.2 hold also for the refined notion of weak cause.

For the results of Sections 4.2 and 4.3 to carry over to the refined notiorai sause, we slightly
adapt the definitions there as follows. The setadévant(resp.,strongly relevantendogenous variables
of M = (U,V, F) w.rt. X = z and ¢, denotedR%__(M) (resp.,R%__(M)), is redefined as the set of all
A €V such that eitheR1 (resp.,S1), or R2 (resp.,S2), or the following conditiorR3 (resp.,S3) holds:

R3. A satisfies neitheR1 norR2, andA is an ancestor iG/(M) of a variableB € V' that satisfiefRR2.

S3. A satisfies neitheB1nor S2 andA is an ancestor id: (/) of a variableB € V\ X that satisfie$S2
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Notice that nodes behind parents of nodes that are on directed pathsafuariable inX to a variable
in ¢ cannot be simply pruned, since by the refined condid@®’ subtle interactions between the vari-
ables inW U Z are possible. Theeduced(resp., strongly reducell causal modelof M = (U, V,F),
whereF = {F4|AeV}, wrt. X =z and¢, denotedM§__ (resp.,]\?ﬁzzx), is redefined as the causal
model M’ = (U, V', F'), whereV' = R}f’(:m(M) (resp., V' = Eﬁ’(:x(M)) and F' ={F), | AeV'} with
Fy=F, forall Ac V' (resp.,F, = F'; (defined as in Section 4.3) for all € V' N X andF’, = F4 for
allAeV'\ X).

It is then not difficult to verify that all the results of Sections 4.2 and 4.8epkfor Theorem 4.12, also
hold for the refined notion of weak cause, using the above reducestienmdly reduced causal models. In
particular, the following theorem shows that Theorems 4.7 and 4.10 carymthe refined notion of weak
cause.

Theorem 8.2 Let M = (U, V, F) be a causal model. LeX' C X CV (resp.,X’ = X CV), 2’ € D(X'),
xeD( ), andu e D(U), and let¢ be an event. LeX” = X’ N R% (M) (resp., X" = X' N R%(M)) and

=2/|X". Then, X' =1'is a (refined) weak cause gfunderw in M iff (i) (X \X")(u) = ’\ X"\ X")
in M, and (ii) X" = 2" is a (refined) weak cause ofunderu in M¢ (resp. MX)

For the results of Sections 6.1 to 6.3 to carry over to the refined notion d&f eaese, we slightly adapt
the relationsR’, i € {0, ..., k}, in Section 6.1 by replacings, ;,,,(w)" and “F' 5., (u) € ¢” by
¢[q<Z(u o (1) for all W' CW andw’ =w|W'" and “F’[q<2(u)}w,(u) e ¢’ forall W C W andw’ = w|W",
respectlvely

Using these newk’’s, all the results of Sections 6.1 to 6.3 (and thus all the results of Sectiond 5 a
7) hold also for the refined notion of weak cause. In particular, the fatigwheorem is an extension of
Theorem 6.1 to the refined notion of weak cause. Note that the resultctdr56.4 can be similarly
extended.

Theorem 8.3 Let M = (U, V, F) be a causal model. LeX CV, letze€ D(X) andue D(U), and let¢
be an event. Let(7°,S),...,(T*, S*)) be a decomposition af (M) relative to X and ¢, and let R*
be defined as above. Thek,=z is a (refined) weak cause @funderu in M iff () X (u) =2 and ¢(u)
in M, and(3) some(p, q, X) € R* exists such thagp # () andz € q.

8.2 Refined Weak Causes in Extended Causal Models

We next consider the recent generalization of causal models to exteadsdl models [17]. Aextended
causal modelM/ = (U, V, F, E) consists of a standard causal mo@gl V, F') as in Section 2.1 and a set
E C D(V) of allowable settingsor V. For anyY C V, a valuey € D(Y') is anallowable settingor Y iff
y=wv|Y for somev € E. Informally, y can be extended to an allowable setting ¥ar In the sequel, we
assumer is represented in such a way that deciding whether a give(Y'), Y C V, is an allowable
setting forY is possible in polynomial time.

The notion of(refined) weak causi extended causal modeld = (U, V, F, E) is then defined by
slightly modifying the conditionsAC2’(a) and AC2’(b) in the definition of (refined) weak causality to
restrict to allowable settings.

To extend the results in Section 4.1 to the refined notion of weak cause irdegteausal models, we
introduce a natural closure property as follows. We &ay- (U, V, F, E) is closed(resp. closed relative to
X CV)iff yu(V\Y),(u) is an allowable setting fo¥ for all allowable settingg for Y, allY C V' (resp.,
allY CV with X CY), and allu e D(U). Informally, if y is an allowable setting foY’, then extending
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by the values of all other endogenous variabledfn under anyu € D(U) is an allowable setting fov’.
Notice that) is closed relative to alX C V, if M is closed. The following result says that Theorems 4.1
and 4.2 carry over to the refined notion of weak cause in closed exteadsdl models.

Theorem 8.4 Theorems 4.1 and 4.2 hold also for the refined notion of weak cause imlegteausal models
= (U, V, F, E) that are closed relative t&’.

For the results of Sections 4.2 and 4.3, we generalize the notions of dicedaied a strong reduction
to extended causal models as follows. Thduced(resp., strongly reduceyl extended causal modef
M=(U,V,F,E) wrt. X =z and ¢, denotedM$ _ ., (resp., MX ), is defined as the extended causal
model M’ = (U, V', F', E"), where(U, V', F') is the reduced (resp., strongly reduced) causal model of
(U,V, F)w.rt. X =z andg, andE’ = {v|V' |v € E'}. Notice here that, sinc®’ is the restriction of2 to V’,
any procedure for deciding allowability relative fois immediately a procedure for deciding allowability
relative toE’. The following result says that reductions and strong reductions kesgdbure property.

Theorem 8.5 Let M = (U, V, F, E) be an extended causal model. DC V andz € D(X), let X' =X N
Rf((M), and lety be an event. Then: (a) I¥/ is closed, then alst; is closed. (b) IfM is closed relative
to X/, then alsaM ¥, is closed relative tox’.

Using these notations, all the results of Sections 4.2 and 4.3, exceptdorérh 4.12, hold also for
the refined notion of weak cause in closed extended causal modelsrticulza, the following theorem
generalizes Theorems 4.7 and 4.10.

Theorem 8.6 Let M = (U, V, F, E) be an extended causal model. D¢t C X CV (resp., X' =X CV),
letz’ € D(X'),z € D(X),andu e D(U), and letp be an event. LeX” = X’ ﬂRX( ) (resp., X" =X"nN
R%(M “(M))andz” = 2’| X". Suppose that/ is closed relative toX”. Then,X'=2' is a (refined) weak cause
ofgb underu in M iff (i) (X \X")(u) =2|(X\X") in M, and (ii) X" =" is a (refined) weak cause of
underw in M (resp., X)

For the results of Sections 6.1 to 6.3, we generalize the notion of a decompasi€ig- (/) in Section
6.1 and the relation®&?, i € {0, ..., k}, in Section 8.1 to extended causal models as followsledompo-
sition of Gy (M) relative toX =z (or simply X) and¢ is a tuple((7°, S%), ..., (T*, S*)), k>0, of pairs
(T, S*) such thaD1-D6 in Section 6.1 and the following conditidd7 hold:

D7. Everyy® withi € {0,...,k} is an allowable setting of * C T
iff 4°U---Uy"isanallowable settingdf®uU---UY*CV.

We then finally adapt the relatiod®, i€ {0, .. ., k}, in Section 8.1 by replacing-¢,,, (u)” and “F’,,, (u) €
p’” with “ =, (u) andpw|(X U W) is allowable” and ¥”p,,(u) € p’ and pw|(X UW) is allowable”,
respectively.

Using the above notations, all the results of Sections 6.1 to 6.3 (and thus &disilies of Sections 5
and 7) hold also for the refined notion of weak cause in closed exteradesgicmodels. In particular, the
following theorem is a generalization of Theorem 6.1 to the refined notioreakwause in closed extended
causal models. Note that the results of Section 6.4 can be similarly generalized

Theorem 8.7 Let M = (U, V, F, E) be an extended causal model. Let_ V, letz € D(X) andu € D(U),
and letp be an event. Le{7°, S), ..., (T*, S*)) be a decomposition @y (M) relative toX and¢, and
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let R* be defined as above. Suppose thais closed relative toX. Then,X =z is a (refined) weak cause
of ¢ underw in M iff (o) X (u) =2 and¢(u) in M, and (3) some(p, q, X) € R* exists such thap # ()
andz €q.

8.3 Causes and Explanations in First-Order Reasoning about &ions

The work [9] presents a combination of the structural-model approachfivgtirorder reasoning about ac-

tions in Poole’s independent choice logic (ICL) [32, 33]. It shows llwsviCL can be extended by structure-
based causes and explanations, and thus how structure-basegts@acebe made available in first-order
reasoning about actions. From another perspective, it also shawreborder modeling capabilities and

explicit actions can be added to the structural-model approach.

From a technical point of view, this combination is based on a mapping obfid&r theories in the ICL
to binary causal models via some grounding step. The generated causd$imave a subset of the Herbrand
base as a set of endogenous variables, and thus they generally dnaite large number of variables. But
they also have a natural layering through the time line, and thus they oftentie\structure of layered
causal graphs as described in Section 7.

Roughly, ICL-theories are defined as follows. choice space’ is a set of pairwise disjoint and
nonempty subsets of the Herbrand base, callecitieenativesof C'. The elements of the alternatives@©f
are called thetomic choicesf C. A total choiceof C'is a set of atomic choice8 such thatB N A| =1 for
all alternativesA of C'. Anindependent choice logic theofgr ICL-theory) T'= (C, L) consists of a choice
spaceC and an acyclic logic program such that no atomic choice ifi coincides with the head of any
clause in the grounding di. Semantically, every total choice 6f along with the acyclic logic prograrh
produces a first-order model [9]. Hend= (C, L) encodes the set of all such models. Every total choice
and thus every first-order model is often also associated with a probalailitg.v

It is not difficult to see that there is a natural relationship between birteugtare-based causal mod-
elsM = (U,V, F) and ICL-theorie§" = (C, L): (i) The exogenous variables in along with their domains
correspond to the alternatives 6f along with their atomic choices, (ii) the endogenous variableg in
along with their binary domains correspond to the ground atonis tifat do not act as atomic choices,
along with their binary truth values, (iii) the functions in correspond to collections of clauses with the
same head in the grounding 6f and (iv) a probability function on the contexts inU') corresponds to
a probability function on the atomic choices©f This natural relationship nicely supports the definition
of structure-based causes and explanations in the ICL. The followem e illustrates ICL-theories and
structure-based causes in ICL-theories.

Example 8.1 (mobile robot)Consider a mobile robot, which can navigate in an environment and pick
up objects. We assume the constantgrobot), o; ando, (two objects),p; andp, (two positions), and
0,1,...,h (time points within éhorizonh > 0). The domain is described by the fluentgrying(O,T) and
at(X, Pos,T), whereO € {01,092}, T €{0,1,...,h}, X € {r1, 01,02}, andPos € {p1, p2}, which encode
that the robot- is carrying the objecO at timeT (where we assume that at any tirffiethe robot can
hold at most one object), and that the robot or objgéds at the positionPos at time T, respectively. The
robot is endowed with the actionsoveTo(Pos), pickUp(O), and putDown(O), where Pos € {p1, p2}
andO € {o1, 02}, which represent the actions “move to the positij “pick up the objectO,” and “put
down the objecD,” respectively. The actiopickUp(O) is stochastic: It is not reliable, and thus can fail.
Furthermore, we have the predicatkg A, T'), which represents the execution of an actibat time7’, and
fa(A,T) (resp.,su(A,T)), which represents the failure (resp., success) of an actierecuted at timg".
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An ICL-theory (C, L) is then given as follows. The choice spaCeencodes that picking up an object
o; € {o1,02} attimet €{0,1, ..., h} may fail (fa(pickUp(o;),t)) or succeeddu(pickUp(o;),1)):

C = {{fa(pickUp(0;),t), su(pickUp(o;),t)} | i€{1,2}, t€{0,1,... ,h}}.
The acyclic logic prograni, consists of the clauses below, which encode the following knowledge:

e The robot is carrying the obje@ at time7'+1, if either (i) the robot and the object were both at
Pos at timeT, and the robot was not carrying any object and successfully pickirteiobjectD at
time T, or (ii) the robot was carrying the obje€tand not putting it down at timé'.

(1) carrying(O, T+1) < (—carrying(o1,T) A —carrying(oz,T) A at(r1, Pos,
T) A at(O, Pos, T) A do(pickUp(O), T) A su(pickUp(O),T))
V(carrying(O,T) A =do(putDown(O),T)).

e The robot is atPos at timeT'+1, if either (i) it moved toPos at timeT, or (ii) it was atPos and did
not move away at timé.

(2) at(ri, Pos, T+1) <= do(moveTo(Pos),T)V
(at(ry, Pos,T) A —~do(moveTo(Pos’), T) A Pos # Pos’).

e The objectO is at Pos at timeT'+1, if either (i) the object was aPos and not carried by the robot at
time T, or (ii) the robot was carrying the obje@tand moved taPos at timeT', or (iii) the object was
at Pos and carried by the robot, who did not move away at tifhe

(3) at(O, Pos, T+1) < (—carrying(O,T) A at(O, Pos,T)) V
(carrying(O,T) N do(moveTo(Pos),T)) V (carrying(O,T) A
at(O, Pos,T) A =do(moveTo(Pos'),T) A Pos # Pos').

e The object is at the position, at time0.
(4) at(o1,p2,0)<=T.

e The robot is at the positiom, at time0.
(5) at(ri,p2,0)<=T.

Consider the horizoh =3 and suppose that picking up an object succeeds at everyttige, 1, 2, 3},
which is encoded by the total choice

B = {su(pickUp(o;),t)|ie{1,2},t€{0,1,2,3}}.

Suppose that the robot executes a pick up.0ét time0, a move top; at time 1, and a pick up ob, at
time 2, which is represented by the additional facts

E ={do(pickUp(01),0), do(moveTo(p1),1), do(pickUp(o2),2)}.
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The structural-model approach now allows to give a semantics to causmhstgs in the ICL such as e.g.
“the objecto; being at positiorp, at time0 is an actual cause of the robot not carrying the ohje@t time

3 under the abové3 in T'U E”. Intuitively, the robot and the objeet; are both at positiop, at time0.
Hence, picking um; succeeds at time, the robot moves witla; to positionp; at timel, there its picking
up o, fails at time2, and this is why the robot is not carryig at time3. However, ifo; was not in position
po attime0, andoy was always at positiop,, then the robot would hold no object at tideand its picking
up oo at time2 would succeed, and thus the robot would then be carryirag time3.

Notice that the grounding step produces a causal model that has, etléa gimple example, more
than 90 variables (for a horizan> 0, we have24 - (h + 1) variables), which largely increases if we have
more than only two positions and two objects different from the robot. Furtbie, the causal graph of this
model is naturally layered through the time line, such that the results of Sectian e fruitfully applied
toit. O

9 Conclusion

Defining causality between events is an issue which beyond the philosbliteicdure has also been con-
sidered in Al for a long time. Because of its key role for hypothesis andaegtion forming, it is an
important problem for which a number of different approaches haea peoposed. In the approach by
Halpern and Pearl [15, 16], causality is modeled using structural egsatilistinguishing between weak
and actual causes of events which are modeled by Boolean combinatiatiosri¢ value statements. Based
on weak causes, a notion of causal explanation and probabilistic vathent®f have been defined in [18],
while a refinement of actual causality in terms of responsibility and blame resrkeently given in [3].
As has been argued and demonstrated, the structural-model appyoldalpkrn and Pearl deals well with
difficulties of other approaches, including recent ones in the literateee[{$5, 18]).

In order to bring the theoretical approach by Halpern and Pearl ttiggaan understanding of the com-
putational properties and (efficient) algorithms are required. In thistibhredhe computational complexity
of major decision and computation problems for the approach has beerdsitufize 6, 7], and algorithms
for computing causes proposed in [21]. Since arbitrary Boolean fursctice used to model structural equa-
tions, determining causes and explanations is unsurprisingly intractableénade Hence, the important
issue of tractable cases arose, as well as how unnecessary complewitypatations can be avoided.

Investigating these issues, we have first explored, extending workopkikk [21], how to focus the
computation of (potential) weak causes and causal models, by efficraovat of irrelevant variables. We
have then presented a new characterization of weak cause for a ctasirof causal models in which the
causal graph over the endogenous variables is benignly decompoBableatural and important subclasses
of it are causal trees and layered causal graphs, which can biedengliy recognized, namely in linear time.
By combining the removal of irrelevant variables with this new characterizafizveak cause, we have then
obtained techniques for deciding and computing causes and explanatibessinuctural-model approach,
which show that these problems are tractable under suitable conditionsur km@wvledge, these are the
first explicit tractability results for causes and explanations in the strdahweel approach. Moreover,
by slightly extending the new characterization of weak cause, we haveettaimilar techniques for
computing the degrees of responsibility and blame, and thus also new tractedslitlys for structure-
based responsibility and blame. Finally, we have shown that all the abdweidees and results carry
over to recent refinements of the notion of weak cause and causal ndoeels Halpern and Pearl [17], and
we have also described an application of our results and techniquesdianglwith structure-based causes
and explanations in first-order reasoning about actions in Poole’s ICL.
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We have thus identified tractable special cases for decision and optimizeatademps of relatively high
complexity, which is to some extend remarkable. These tractability results are @mputational property
of causes, explanations, responsibility, and blame in the structural-muoutelech.

An interesting topic of further studies is to explore whether there are otharien classes of causal
graphs different from causal trees and layered causal graphsidhthe tractable cases can be recognized
efficiently (that is, in which width-bounded decompositions can be recedrand computed efficiently).
Another direction is analyzing how the techniques and results of this papebe further developed for
reasoning about actions [9] and commonsense causal reasonind-[@4lly, implementation and further
optimization remains for future work.

A Appendix: Proofs for Section 4

Proof of Theorem 4.1. Let X, € X be such thatid7(1/), there is no directed path froii, to any variable
in¢. Let X" =X\ {Xo} and2” =z|X”. Then, as shown in [7]X =z is a weak cause af underu iff
(i) Xo(u) = x(Xy) and (i) X" =2" is a weak cause af underu. By iteratively applying this result to
every X, € X\ X', we thus obtain thak = z is a weak cause af underu iff (i) (X\X’)(u) = z|(X\X")
and (i) X’ = 2’ is a weak cause aef underu. O

Proof of Theorem 4.2. Let X, € X be such that ir7(M ), each directed path fronY, to a variable inp
contains someX; € X" = X\{Xy}, and letz” = 2| X”. As in the proof of Theorem 4.1, it is sufficient to
show thatX =z is a weak cause af underu iff (i) Xo(u)=x(Xy) and (ii) X” = 2" is a weak cause af
underu.

(=) Assume thafX = x is a weak cause af underu. Thatis,AC1 X (u) =z and¢(u), andAC2 some
W CV\X,Ze D(X), andw € D(W) exist such that (@) ¢z, (1) and (b)¢,.:(u) forall Z CV \ (X U
W) andz = Z(u). In particular, (i)Xo(u) = x(X), and alscAC1 X" (u) = 2” and¢(u). Furthermore, as
every directed path id/(M) from X to a variable ing contains someX; € X", it follows that AC2(a)
gy (1) @nd (b) gy (u) hold for all Z C V\ (X”UW’) and 2= Z(u), where W’ = WU{X,},
' =7| X", w' =wxy € D(W'), andxy = x(Xy). Hence, (i) X" =" is a weak cause af underu.

(<) Assume that (i)X((u) =z(Xo) and (i) X" =2" is a weak cause af underu. That is,AC1
X"(u)=2"and¢(u) hold, andAC2 there exist soméV C V\X", 7" € D(X"), w € D(W) such that (a)
(1), @Nd (D)prz(u) forall Z € V\(X” UW) andz = Z(u). By (i), it holds thatAC1 X (u) =
and ¢(u). Furthermore, since every directed pathGit)/) from X, to a variable ing contains some
X, € X", it follows thatACZ(a) Gz gy (1) AN () gz () forall Z CV\ (X UW') and2 = Z(u),
whereW’ =W\ {Xo}, w' =w|W'e D(W'), andzy = z(Xy). It thus follows thatX =z is a weak cause
of ¢ underu. O

Proof of Proposition 4.3. (a) We first compute the sety of all variables in¢ and their ancestors in
Gy (M), and then the seX’ = Ay N X. Using standard methods and data structures, the first step can be
done in timeO(||¢|| + |E|) whereGy (M) = (V, E), and the second step in tini&|V]). In summary,X’
is computable in tim& (||Gy (M)|| + ||¢]]), and hence in tim& (|| M || + ||¢]])-
(b) We first compute the directed graph obtained fromGy (M) = (V, E) by removing every arrow
X, — X; with X; € X. We then compute the set;, of all ancestors irG’ of variables ing. We finally
computeX’= A’y N X. Using standard methods and data structures, the first step can be dime in
O(|V| + |E|), the second step in tim@(|V'| + |E| + ||¢||), and the third step in tim@(|V|). In summary,
X" is computable in tim&(|V| + |E| + ||¢]]), hence in timeO(|| M || + [|¢||). O
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Proof of Proposition 4.4. Consider anyB € X N R% (M). Thatis,Bc X and B e R%(M). If B is
included intoR}f’((M) by R1, then there exists a directed pathGii)/) from B to a variable inp. If B is
included intoR}’ﬁ((M) by R2, then eitherB occurs ing or B is a parent of a variable that satisfle$. Thus,
there also exists a directed pathGiiA/) from B to a variable inp.

Conversely, suppose thBte X and that there exists a directed patlti\/) from B to a variable inp.
If B occurs ing, thenB € R_?((M) by eitherR1 or R2. Otherwise, there exists a childl of B in G(M)
such that4 is on a directed path i&'(M ) from B € X\{ A} to a variable inp. Hence,A € Rﬁ’((M) by R1.
It thus follows thatB € R% (M) by eitherR1 or R2. O

Proof of Theorem 4.5. Let M{ = (U, V', F'). Let X' =X NV’ anda’ =z|X’. We have to show that
X =z is aweak cause af underu in M iff (i) (X\X’)(u) = z[(X\X’) in M, and (ii) X’ =2’ is a weak
cause ofp underu in M;?. LetV/ (resp.,V;) denote the set of all € V' that satisfyR1 (resp.,R2).

Roughly, the main idea behind the proof is to move all the variablég inX’ into W in AC2. Then,
setting the variables ik’ and W in AC2 makes the truth of) underu independent from the values of
the variables inV/ \ V’. Thus, the variables i¥ \ V/ can be simply ignored i/ and added a2,
respectively.

Fact A.Vy,(u) = V](/[‘b (u) andeps (u) = qu;? (w).

(=) Assume thatX — « is a weak cause op underw in M. That is,AC1 X (u)=2x and ¢(u)
in M, andAC2 someW CV\X, z€ D(X), we D(W) exist such that (a)¢z,(u) and (b) dywz(u)
in M forall ZCV\(XUW) and z=Z(u). This already shows that ()X \X")(u)=2z|(X\X’) in
M. We next show that also (ii) holds. From Fact A, it follows te€1 X'(u) =2' and ¢(u) in Mig.
Since for any valuet! of X' it holds that(Vy\X")z, = (V5\X")w in M, it follows in particular that
(VANX )z (w) = (VAANX ) (w) = (VE\X") 2 (w) in M, wherez’ =z| X", It then follows that (a) ¢z, (u)
and (b)¢,yz(u) in M forall Z C V\(X'UW') andz = Z(u), whereW’'= (W nV’) U (V;\X’), and
w' =W, (u) in M. Hence AC2(8) ~¢z, (u) in M and (b)parrz(u) in M forall ZCV/\ (X' UW')
andz = Z(u). In summary, (i)X’ = 2’ is a weak cause af underu in Mf}.

(<) Assume that (i X\ X”)(u) = z|(X\X') in M and (ii)) X' = 2’ is a weak cause @f underu in Mﬁ.
Thus,AC1 X'(u) =2’ andg(u) in M}é, andAC2 someW C V\ X', 7' € D(X), w € D(W) exist such that
(@) b0 (1) @Nd (D) oz (u) in M forall ZC V' \ (X’ UW) andz = Z(u). By Fact A, we have\C1
X(u)=x and¢(u) in M. Since ian}, the variables il;\ X’ do not depend on any variable X, it
holds that( Vi\ X" )z, (1) = (VOAX ) (1) = (VE\X") 20 (w) in M?;. It then follows that (a)¢z, (u) and
(B) Ppryrz(u) in Mf} forall Z C V/\ (X' UW’) andz = Z(u), whereW’ = W U (VJ\X’), andw’ is
such that'|W =w andw'|(Vo\(X"UW)) = (Vu\(X"UW))y(u) in Mf;. Since no variable fron'\V’
can influence any variable i if all variables in X a}nd W' have a value as§igned M, it follows that
AC2(a) ¢z (u) in M and (b)p .z (u) in M forall ZCV\ (X UW') andz = Z(u), wherez| X' =7" and
Z|(X\X') = (X\X")(u). In summary,X =z is a weak cause af underu in M. O

Proof of Proposition 4.6. Let My=(U, V', F'), M%,=(U, V", F"), and(M%)%, = (U, V", F"). We
first show thati’” = V" and then that”’ = F", which proves that/$, coincides with(M%)%.,. We note
the following easy fact.

Fact B.R1 andR?((M) are monotonic inX, i.e., if A satisfiesR1 for X, then also for each superset.®f
andX C X'impliesR% (M) C R%.(M).
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Let V' (resp.,V{") denote the set of all variables included i®t8 (resp.,V"”) by R1. We now first show
thatV/” = V/”. Consider anyd € V/”". Then,A is on a directed path iG(M;’g) from a variable inX"\ {A}
to a variable ing. SinceG(M}’z) is a subgraph o&(M), it follows that A is also on a directed path in
G(M) from a variable inX"\ { A} to a variable inp, and thusA € V{". Conversely, suppose thdte V.
Then, A is on a directed path i6/()) from a variable inX’\ { A} to a variable inp. SinceX’ C X, this
path also exists iﬁJ(M;’i), and thusA € V", This shows that” = V. Observe then that (¢) C V" and
V(¢) CV". Consider finally any parent € V of a variableB € V{ in G(M). By Fact B,A € V' and since
V/'=V{", Ais also parent o3 € V" in G(MY). Conversely, ifA €V is parent ofB € V" in G(M%),
thenA €V is also a parent aB € Vl” in G(M). In summary, this shows th&t” =V"".

We finally show that?” = F"”. As shown abovel,” =V{" andV"” =V"". By Fact B, for eactd € V/’
we haveFj = F4 and Fy' = I, = F4. For eachd e V”\V”, we haveF’| = F; and Fl{ = (F'))* = F}.
Hence,F” =F". O

Proof of Theorem 4.7. Let X* be the set of all variables iX that are not connected by a directed
path in G(M) to a variable ing. By Proposition 4.4, X" =X\ X*. By Theorem 45X'=2"is a
weak cause of underu in M iff (i) (X'\X")(u)=2'|(X\X") in M, and (i) X" = 2" is a weak cause
of ¢ underu in M?%,. Moreover, again by Theorem 4.5 (invoked f&rthere equal taX”, which means
X'=X"NRY, (M%) =X"), X" =" is a weak cause af underu in MY iff X =2z" is a weak cause
of ¢ underu in (M$)%.,=(M%)%,. By Proposition 4.6M%, = (M%)%,, which proves the resultl

Proof of Proposition 4.8. We first show that the directed grap}v(Mf;) is computable in linear time.
Its set of noded”’ = R% (M (M) is the set of all variablesl € V' that satisfyR1 or R2. The set of all vari-
ablesA € V that satlsfle is given byDx N Ay, whereDx denotes the set of all proper descendents of
variables inX, and A, denotes the set of all variables ¢gnand of all ancestors of variables ¢ Thus,
the part oft” satisfyingR1 can be computed in tim@(||G(M)|| + ||¢]]), sinceDx is computable in time
O(|G(M)|)=0(U| + |V| + |E|) whereG(M) = (UUV,E), andA, and Dx N A, are computable
in time O(||G(M)]| + ||¢||) using standard methods and data structures. The set of all varidledés
that satisfyR2 is given by (V,, U PA(Dx NAy))\ (Dx NAy). As already notedDx N A, can be com-
puted in timeO(||G(M)| + ||¢||). FurthermoreVy and PA(Dx N Ag) given Dx N Ay can be computed
in time O(|¢]|) andO(||G(M)]|), respectively. Since all set operations are feasible in linear time using
standard methods and data structures, it thus follows that the p&it sditisfyingR2 can be computed
in time O(||G(M)|| + [|¢]]). In summary,V’ is computable in time(||G(M)|| + ||¢|/), hence in time
O(||M]| + ||¢]|)- This already shows thﬁV(Mgz) can be computed in time linear in the sizeMdfande,
since it is the restriction off (M) to V".

We next show thaM¢ (U, V', F') can be computed in polynomial time. As argued ab&/eand its
partition into variables that satisfyl and those that satisfg2 is computable in tim&(||G(M)|| + ||#]]).
We next show that a representation of every function where A satisfiesR2, is computable in time
O(||M]|). Every F'3(U,) is given as follows. The set of argumeidts is the set of all ancesto8 € U of
Ain G(M). The functionF’; itself can be represented by the restrictign of M = (U, V, F) to V and all
ancestors3 € U of Ain G(M). Then,F;(ua) forua € D(Uy) is given byA(u,) in M4. Observe that by
Proposition 2.1, every; (u4) is computable in polynomial time. Clearl/,4 and /4 can be computed in
linear time. Thus, the set of all functiods], whereA satisfiesR2, can be computed i@ (|V'|||M]]) time.

In summary,MX (U, V', F") can be computed i@ (|V'||| M| + ||¢||) time. O

Proof of Proposition 4.9. Consider anyB € X N fi}’é(M). That is,Be€ X andB € ﬁf((M). Then, B
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is not included int(ﬁ?{(M) by S1, as otherwiseB ¢ X. Thus,B is included intof-i?((M) by S2 Hence,
either B occurs ing, or B is a parent of a variable that satisfied Thus, there exists a directed path in
G(M) from B to a variable inp that contains no{; € X\{B}.

Conversely, suppose th&te X and that there exists a directed pattGio)/) from B to a variable inp
that contains noX; € X\{B}. If B occurs ing, thenB € ﬁﬁ’{(M) by S2(note thatB does not satisf1).
Otherwise, there exists a chitlof B in G(M ) such thatd is on a directed patF in G(M/) from a variable
in X\{A} (=X) to a variable inp, where P does not contain any variable frox\{B}. It follows that
Ae R% (M) by S1,and thusB € R% (M) by S2. O

Proof of Theorem 4.10. The proof is similar to the one of Theorem 4.5, using nﬁ@ instead ofo}
andS1(resp.,S2) instead ofR1 (resp.,R2). O

Proof of Proposition 4.11. The proof is similar to the proof of Proposition 4.8. The main difference is
that we now define x as the set of all proper descendentg=hof variables inX, and A4 as the set of

all variables ing and of all ancestors it of variables ing, where the directed graph’ is obtained from

Gy (M) by removing every arrowk;, — X; with X; € X. The result then follows from the observation that
the newDx and A4 can also be both computed in tind¥ || M || + ||¢||), sinceG’ is computable in time
O(||Gv(M)|)), andDx and A, are both computable in tim@(||G’|| + ||¢||) andO(||G’||) = O(||M]|). O

Proof of Theorem 4.12. If X is a singleton, theiR1 (resp.,R2) in the definition ofRf((M) coincides
with S1(resp.,S2) in the definition of R (M), sinceX \{ B} = (). This shows thak% (M) = R% (M) and
M%=M%. O

B Appendix: Proofs for Section 5

Proof of Proposition 5.1. Using standard methods and data structures, deciding whether there exists
exactly one directed path @&y (M) = (V, E) from every variabled € V' \ {Y'} toY can be done i@ (|V |+

|E|) time. Moreover, deciding whether evefye 1\ { X } has a bounded number of parents can also be done
in O(|V| + |E]) time. In summary, deciding whethéf is a causal tree with respectid andY is feasible

in O(|V| + |E|)=0(||M||) time. By Proposition 4.8, the directed graph (M) can be computed in
O(||M||) time from M and X, Y. Thus, deciding if\/}; is a (bounded) causal tree can also be done in time
o(|[Mm])). 0

Proof of Theorem 5.2. Clearly, («) coincides withAC1. Assume that«) holds. We now show thdt3) is
equivalent toAC2:

AC2. Some set of variableld” C 1\ X and some values e D(X ) andw € D(WW) exist such that:

(a) wa(u) 7é Y,
(b) Y, (w) =y foral ZCV\ (XUuW).

Clearly, we can assume th& ¢ W for all i € {0,...,k — 1}, since otherwis&%,(u) = Y, (u). This
shows thatV C W' U --- U W¥. Observe then that we can enlarge every D (W) to somew’ € D(W'),
whereW' =W U - .- U WF, by definingw’|W =w andw’|(W/\W) = (W'\W)(u). Hence, we can as-
sume thatZ C {P°,..., Pk} and thus also, by the path structure of the causal tree /Ahaf P’} with
ie{l,...,k—1}. Hence, itis sufficient to prove th&8) is equivalent to the following conditioAC2’:
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AC2’. Some values € D(X) andw € D(W! U --- U W*) exist such that:

(@) Yzw(u) #y,
(b) Yyu(u) =y forall je{1,... k}.

We now show thatx) for everyi € {1, ..., k}, it holds thatp € R! iff there exists som&e D(W'U--- U
W) such that:

() pep iff Yym(u)#£y, forallpe D(P?),
(i) Yig(u)=yforallje{l,...,i}.

This then shows thdt3) is equivalent teAC2’: (=) Assume some € R* exists such thagb () andx ¢ p.
Then, somev € D(W'U---UW*) andp € p exist such thalz(u) # y andYyiq(u) =y forall j € {1,. ..,
k}. That is,AC2’ holds. (<) Conversely, suppose thAC2’(a) and (b) hold for som& € D(X) and
we DWIU---UWF). Letp={p € D(P*) | Y,m(u) # y}. Then,p € R*, p#0, andz ¢ p. Thatis,(3)
holds.

We prove(x) by induction oni € {1, ..., k}:

Basis: SinceR’ = {D(Y)\{y}}, it holds thatp € R! iff somew € D(W1) exists such that:
() pep iff YVyu(u)e DY)\{y} iff You(u)#y, forallpe D(P),

(i) Pgw(u) c{y},i.e., Yo, (u)=y.

Induction: Observe thape R iff somew € D(W?) andp’ € R*~! exist such that:
(i) pep iff P;;l(u) cp/, forallpe D(PY),
(ii") P;ZJ(U) e D(PH)\p'.

By the induction hypothesigy/ € R'~! iff somew’ € D(W! U --. U W™!) exists such that:
(") p'ep’ iff Yy (u)#y, forallp’ e D(P1),

(i”) Ypigr(u)=yforall je{l,...,i—1}.

Thus,p € R! iff somew € D(W?) andw’ € D(W! U --- U Wi 1) exist such that:

(i) pep iff PN (u)ep’ iff Y,

www (W) £y, forall pe D(P?), by () and (1),

(ii) Pg;j(u) =p' andY,, (u) =y, by (ii") and ('), as well as
Yy (w) =y forall je{1,...,i — 1} by (i").
Thatis,p € R' iff somew € D(W! U --- U W?) exists such that:
() pep iff Yyu(u)#£y, forallpe D(P?),

(i) Ypig(u)=yforallje{1,... i} (note thaty,m(u) = Yji,g). O
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Proof of Theorem 5.3. By Theorem 5.2X =z is a weak cause df =y underu in M iff (o) X(u)=2x
andY (u) =y in M, and(3) somep € R* exists such thap # () andz ¢ p. It is thus sufficient to show
that deciding whethef«) and (3) hold can be done in polynomial time. By Proposition 2.1, deciding
whether(a) holds can be done in polynomial time. Next, we observe ffat .., P andW?!,... W*

can be computed in tim@(||M||). By Proposition 2.1, every® with i € {1,...,k} can be computed in
polynomial time. We then iteratively compute eveétywith i € {0, ..., k}. Clearly, R can be computed in
constant time, sinc¥ is domain-bounded. Observe then that the cardinality of é@h*) is bounded by

a constant, sinc¥ is domain-bounded an@dy (M) is bounded. Furthermore, the size of ed&h'! and the
cardinality of eachD(P?) are both bounded by a constant, sifités domain-bounded. By Proposition 2.1,
the vaIuesD];'i‘J(u) andPﬁ;l(u) can be computed in polynomial time. Hence, evBhcan be computed by

a constant number of polynomial computations, and thus in polynomial time.eiBfican be computed
in polynomial time. GivenRk*, deciding whethef3) holds can be done in constant time. In summary,
computingR* and deciding whethei3) holds, and thus deciding whethr) and(3) hold, can be done in
polynomial time.

By Theorem 2.3 X =« is an actual cause &f =y underu in M iff X is a singleton and{ =x is a
weak cause o¥ =y underu in M. Thus, deciding whetheX =« is an actual cause &f =y underu in
M can also be done in polynomial time.

Proof of Theorem 5.4. By Theorem 4.5X =« is a weak cause of =y underu in M iff X =z is
a weak cause of =y underu in M. By Proposition 4.8) Y is computable in polynomial time. By
Theorem 5.3, gived/ Y, deciding whetheX =z is a weak cause df =y underu in MY can be done in
polynomial time. In summary, deciding wheth&r= z is a weak cause df =y underu in M3 and thus
in M is possible in polynomial time

Proof of Theorem 5.5. Recall thatX =z is an explanation ot” =y relative toC iff EX1 Y (u) =y for
everyu € C, EX2 X =z is a weak cause df =y under every, € C such thatX (u) =z, EX3 X is minimal,
andEX4 X (u) =z and X (v') # = for someu, v’ € C. By Proposition 2.1, checking whethEX1 andEX4
hold can be done in polynomial time. ClearX3 always holds, sinc& is a singleton. By Theorem 5.4,
deciding whetheX =z is a weak cause df =y under some: € C in M such thatX (u) =« can be done
in polynomial time. Thus, by Proposition 2.1, deciding whetBX¥2 holds can be done in polynomial time.
In summary, deciding wheth&X1-EX4 hold can be done in polynomial timel

Proof of Theorem 5.6. We first compute the sét* of all u € C such that either (i)X (u) # x in M, or (ii)
X(u) =z andX =z is a weak cause df =y underu in M. By Proposition 2.1 and Theorem 5.4, this can
be done in polynomial time. IK =« is a partial explanation of = y relative to(C, P) in M, thenC}Zg

is defined, and’y—Y =C* by Proposition 2.4. Givel}-", the explanatory poweP(Cy - | X =z) is
computable in polynomial time by Proposition 2.1, if we assume as usudptisatomputable in polynomial
time. In summary, this shows (c).

To check partial (respg-partial) explanations in (a) (resp., (b)), we compdteas above. We then
check Whethec}?j’jﬁ is defined. That is, by Proposition 2.4, we check that x is an explanation of
Y =y relative toC* in M, which is possible in polynomial time by Theorem 5.5. Théﬁ,jg =C* by
Proposition 2.4. We finally computB(C}Zi | X =) as above and check that it is positive (resp., at least
«), which can clearly be done in polynomial time. In summary, this provesdap(y (b)) O
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C Appendix: Proofs for Section 6

Proof of Theorem 6.1. Obviously,(«) coincides withAC1. We now prove thats) is equivalent toAC2:
AC2. SomelV CV'\ X and somer € D(X) andw € D(W) exist such that:

(B) Gy (w) forall ZC VA (X UW).
By D6, the variables inS* have no parents i (M). Hence, every variable is* only depends on
the variables i/, and thus we can move anyc S\ (WU X) into W by settingw(A) = A(u). We

can thus assume that = S*\ W holds. Since (i)’ CV and X =S¥\ W impliesW C V' \ X, and (ii)
X =S¥\ W implies S* U W = X UW, itis thus sufficient to show thdf3) is equivalent toAC2*:

AC2*. SomelW CV, 7€ D(X), andw € D(W) exist such tha® = S*\ W and

(a) _'Qbfw(u)a
() By (w) forall ZC VA (SEUW).

We now prove thafx) for all i € {0, ..., k}, it holds that(p, g, F) € R iff someW CT°U --- UT" and
w € D(W) exist such thaf" = S\ W and

(i) foreveryp,qe D(F):

(i.1) pep iff —~ppm(u),
(i2) geq iff dpy 0 mw) for all ZC (T°U --- UTH)\ (SFUW).

In particular, this then implies thdp, ¢, F') € R¥ iff some W CT° U --- UT* =V andw € D(W) exist
such that?” = S¥ \ W and

(i) foreveryp,qe D(F):

(i.1) pep iff —gpm(u),
(i2) ¢€q iff G0 m®)
forall ZC (T0U --- UTK)\ (SFUW) =V \ (SFUW).

This then shows thadC2* is equivalent to 3) some(p, q, X) € R¥ exists such thap # () andz € g:
(<) Suppose first that3) holds. Hence, somB’ C V and somas € D(W) exist such tha{’ = SF\W
and (a)~¢,w(u) for somep € p #0, and (0)¢y, 5, (w) for =z €gandallZ C v\ (S¥UW). Thatis,
AC2* holds. (=) Conversely, suppose now th&C2* holds. Let(p, g, X ) be defined by (i), usingy” C V'
andw € D(W) from AC2* asW C V andw € D(W), respectively. Ther(p, q, X) € R*, p# (), andz € q.
That is,(/) holds.

We give a proof of x) by induction on; € {0, ..., k}:

Basis:Recall thatp, q, F') € R" iff someW C T° andw € D(W) exist such that" = S°\ W and
(i) foreveryp,qe D(F):

(i.1) pep iff =gy (u),
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(i2) g€ q iff dp 70, (w) for all ZCc T\ (Skuw).

Induction: Recall that(p, q, F) € R! iff some W C T%, w € D(W), and(p’, ¢’, F') € Ri~! exist such that
F=S8"\W and

(i") foreveryp,qe D(F):

(i.) pep iff F'p,(u)ep’,
(i.2) geq iff F'y 5 (u)eq forall Z C T\ (SFUW).

u)|w

The induction hypothesis says thal, q’, F/)e R\ iff someW' C T0U---UTi~! andw’ € D(W') exist
such that?’ = -1\ W' and

(i") foreveryp',q' € D(F'):
(i.1") p'ep” iff =@y (u),
(i.2") d €q’ iff @z (W) forall 2/ C (10U - LTI\ (SFUTW),
It thus follows that(p, ¢, F) € R' iff some W' CTOU --- UT*L, W CT%, w’ € D(W'), andw € D(W)
exist such thaf’ = S\ W and
(i’") for F/ = Si=1\ W and every,q € D(F):
(i.1”) pep iff ~¢ym(u), wherep' = F'p,(u), by (i.1’) and (i1”),
and allZ CT%\ (S UW), by (i.2") and (i2").

By D4-D6 in the definition of a decomposition, setting some of Il’fevqriables adV- or Z-variables in
(i.1") and (i2"") does not influence the values of the variableS'ity (W U Z). Thus,F” ., (u) = F' e (w),

and S0-¢,g (1) = Py (). FurthermoreA[ G )]w( )—A[q<Z(u)}w2,(u)ﬂ( u)forall A € F’'\ Z', and
thU5¢[q/<2/(u)}m/ (u), whereq’:F’[q@(u)]w( u), is equivalent D 2 (w)jwz () —(u) = qb[q W) 2 (w)w ().
Hence, it follows thatp, ¢, F) € R iff someW' C T°U.--UT'~1, W C T, w' € D(W'), andw e D(W)
exist such thaf"= S*\ W and

(i) foreveryp,qe D(F):

(Il) pep iff _'gbpwﬁ/(u)a
(i2) g€ q iff Gz (W) forall ZC(TOU - UTH\ (SFUW UT),

That is, it holds thatp, g, F) € R! iff someW CT° U --- U T* andw € D(W) exist such that” = S*\ W
and

(i) foreveryp,qe D(F):

(i.1) pep iff =¢pw(u),
(i2) g€ q iff bz () forall ZC (TOU - UT)\ (SFUW). O
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Proof of Theorem 6.2. By Theorem 2.3 X =z is an actual cause @f underu in M iff () X ==z is
a weak cause ob underwu in M and (ii) X is a singleton. Since deciding wheth&ris a singleton can
clearly be done in constant time, it is sufficient to prove the statement of theethefor the notion of weak
cause. LeD = ((7°,59),...,(T*, S*)). By Theorem 6.1X =z is a weak cause af underu in M iff
(@) X(u)=2 and¢(u) in M, and(3) some(p, q, X) € RF exists such thap # () and = € g, where R
is computed using the decompositidhof Gy (M) relative to X and ¢. By Proposition 2.2, deciding
whether(«) holds can be done in polynomial time. Sinkgeis domain-bounded an® is width-bounded,
it follows that R° can be computed in polynomial time, and that e&éhi € {1, . .., k}, can be computed in
polynomial time fromR*~!. Hence,R* can be computed in polynomial time. Singes domain-bounded
and D is width-bounded, it then follows that, giveR*, checking(3) can be done in constant time. In
summary, deciding whethé¢p) holds can also be done in polynomial tinte.

Proof of Theorem 6.3. By Theorem 2.3, it is sufficient to prove the statement of the theorem fardatien

of weak cause. LeK”:X’me((M) andz”=2'|X". By Theorem 4.7X’' =z’ is a weak cause af under
win M iff (i) (X\X")(u) = 2/|(X’\X") in M, and (ii) X" = 2" is a weak cause af underu in Mg‘;. By
Proposition 4.8R_¢§((M) can be computed in linear time, and th¥i§\ X" = X’\R_‘Q(M) can be computed
in linear time. By Proposition 2.1, giveki’\ X", checking (i) can be done in polynomial time. In summary,
deciding whether (i) holds can be done in polynomial time. By PropositionM%,can be computed in
polynomial time. By Theorem 6.2, giveﬂ7I¢, checking (ii) can be done in polynomial time. In summary,
deciding whether (ii) holds can be done in polynomial tirfe.

Proof of Theorem 6.4. By Theorem 2.3, it is sufficient to prove the statement of the theorem fardatien

of weak cause. Lek’'=XNR% (M) andz’'=z|X’. By Theorem 4.10X =z is a weak cause af under
win M iff (i) (X\X")(u) = «|(X\X’) in M, and (ii) X’ =2’ is a weak cause af underu in M\j‘;. By
Proposition 4. 11ﬁX( ) can be computed in linear time, and thki§ X' = X\§¢ (M) can be computed
in linear time. By Proposition 2.1, giveki \ X', checking (i) can be done in polynomial time. In summary,
deciding whether (i) holds can be done in polynomial time. By Proposition mpan be computed in
polynomial time. By Theorem 6.2, glveh7[¢, checking (ii) can be done in polynomial time. In summary,
deciding whether (ii) holds can be done in polynomial tirie.

Proof of Theorem 6.5. By Theorem 2.3, it is sufficient to prove the statement of the theorem fakwe
causes. SincP (resp.,Dx) for (a) (resp., (b)) is width-bounded, it follows tha | is bounded by a constant.
Moreover, if X’ = 2’ is a weak cause af underu in M, thenX’(u) =2’ in M. Thus, itis sufficient to show
that for everyX’ C X anda’ € D(X), wherez’ = X'(u) in M, deciding whetheX’ =2’ is a weak cause
of ¢ underu in M can be done in polynomial time. Observe then for (a) has also a decomposition of
Gy (M) relative toX' N R% (M) and¢. By Theorem 6.3 (resp., 6.4) for (a) (resp., (b)), it then follows
that deciding whethek’ = 2’ is a weak cause af underu in M can be done in polynomial time.

In case (a), by exploiting the monotonicityﬂﬁ’( ) w.r.t. X, we can proceed as follows, avoiding mul-

tiple computations of the sét*. First, check tha(u) holds and comput&” for D andX” = X N R% (M (M),
Then, for each subséf’ C X" such that some triplep, g, X') exists inR” such thap # () andz’ ¢ q, where
' =X'(u) in M, we have thatX’ =z’ is a weak cause af underu in M. Extending each suck”’ by
an arbitrary subsef of variables fromX\ X”, we obtain that\’Z = 2’z, wherez = Z(u) in M, is also a
weak cause op underu. In this way, all weak causek’ =z’ for ¢ underu in M whereX’ C X can be
computed.
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For computing all actual causes in case (a), by Theorem 2.3, one canrlimilack thatp(«) holds,
computeR* for D and X" = X N R% (M), and then outpu’ = 2’ for each tuple(p, g, X’) in R* such
that X’ C X is a singleton and’ = X’(u) in M. No extension ofX’ by variablesZ from X\ X" needs to
be considered

Proof of Theorem 6.6. Recall thatX =z is an explanation of relative toC iff EX1 ¢(u) for everyu € C,
EX2 X =z is a weak cause af under everyu € C such thatX (v) =z, EX3 X is minimal, that is, for
every X’ C X, someu € C exists such that (1X'(u) = x| X" and (2) X' =x| X’ is not a weak cause of
underu, andEX4 X (u) =x and X (u') # x for someu, v’ € C. By Proposition 2.2, checking whethEX1
andEX4 hold can be done in polynomial time. By Theorem 6.3 (resp., 6.4) for (ap(réb)), deciding
whetherX =z is a weak cause af under some: € C such thatX (u) =z can be done in polynomial time.
Thus, by Proposition 2.1, deciding whetlieX2 holds can be done in polynomial time. We finally show that
checkingEX3 is possible in polynomial time. For (a), notice thatis also a decomposition @V(Mg’z)
relative toX’' N R?((M) andg, for eachX’ C X. SinceD (resp.,Dx) for (a) (resp., (b)) is width-bounded,
it follows that|X | is bounded by a constant. By Proposition 2.1 and Theorem 6.3 (respfo6(d) (resp.,
(b)), deciding whether (1X'(u) =z|X’" and (2) X' =x| X’ is not a weak cause af under some: € C
can be done in polynomial time, for eve/ C X. Hence, deciding whethd&tX3 holds can be done in
polynomial time. In summary, deciding whetHeX1-EX4 hold can be done in polynomial timél

Proof of Theorem 6.7. We first compute the sét* of all u € C such that either (i)X (u) # z in M, or (ii)
X(u)=2 and X =z is a weak cause af underu in M. By Proposition 2.1 and Theorem 6.3 (resp., 6.4)
for (a) (resp., (b)), this can be done in polynomial time Xlf=z is a partial explanation ab relative to
(C, P)in M, thenC%__ is defined, and’%__ = C* by Proposition 2.4. Gived}__, the explanatory power
P(C?}Zx | X =) is computable in polynomial time by Proposition 2.1 Afis computable in polynomial
time, as usual. In summary, this shows (3).

To check partial (respg-partial) explanations in (1) (resp., (2)), we compdteas above. We then
check that??}:x is defined. That is, by Proposition 2.4, we check tRat x is an explanation of relative
to C* in M, which is possible in polynomial time by Theorem 6.6. Théﬁtx =C* by Proposition 2.4.
We finally computeP(C_?}:x | X =x) as above and check that it is positive (resp., at lagstvhich can be
done in polynomial time. In summary, this proves (1) (resp., (2)).

Proof of Theorem 6.8. Observe that the set of ai’ = 2’ such thatX’ C X andz’ € D(X’) is bounded by

a constant, sinc¥ is domain-bounded, arfd (resp.,Dx) for (a) (resp., (b)) is width-bounded, and tHug

is bounded by a constant. Hence, it is sufficient to show that for e¥éy X andz’ € D(X'), deciding
whetherX’ =2’ is an explanation of relative toC in M is possible in polynomial time. This can be done
in a similar way as the proof of Theorem 6[8.

Proof of Theorem 6.9. As argued in the proof of Theorem 6.8, the set of&ll= 2’ such thatX’ C X and
2’ € D(X') is bounded by a constant. Hence, it is sufficient to show that for e¥éry X andz’ € D(X’),
deciding whetheX’ = 2/ is a partial (resp., an-partial) explanation of relative to(C, P) in M is possible
in polynomial time. This can be done in the same way as the proof of Theore(@)gresp., (2)), using
only Theorem 6.8 instead of Theorem 6.6.

Proof of Theorem 6.10. We generalize the proof of Theorem 6.1. We show that sgme, X, 1) € R*
exists withp # () andx € ¢ iff AC2I holds:
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AC2I. SomelV C V' \ X and som& € D(X) andw € D(W) exist such that:

@) ~¢zw(u),
(B) Pz (w) forall ZC vV \ (X UW),
(c) diff (w, W(u))=1.

As in the proof of Theorem 6.1, by moving aay< S* \ (W U X) into W by settingw(A) = A(u) (which
does not influencdiff (w, W (u))), it is sufficient to show that som@, q, X, 1) € R* exists withp # () and
x € q iff AC2l’ holds:

AC2l’. SomeW CV, 7€ D(X), andw € D(W) exist such thaf{ =S*\ W and

@) ~¢zw(u),
(B) Bz (w) forall ZC v\ (SFUW),
(c) diff(w, W(u)) =1.

This can be done in a similar way as showing thal is equivalent toAC2’ in the proof of Theorem 6.1,
where we use the following resultx) instead of(x), which can be proved by induction e {0, ..., k}
(in a similar way agx)): (»x) Foralli € {0, ..., k}, it holds thatp, q, F, 1) € R iff someW C TU- - -UT"
andw € D(W) exist such thaf” = S\ W, diff (w, W (u)) =1, and

(i) foreveryp,qe€ D(F):

(i.1) pep iff —~ppw(u),
(i2) geq iff b,z mw) for all ZC (T°U --- UTH)\ (SFUW). O

Proof of Theorem 6.11. We first decide if(x) X =z is an actual cause af underu in M, which can
be done in polynomial time by Theorem 6.2. (¥) does not hold, thedr((M,u), X=xz,¢)=0. Other-
wise, dr((M,u), X=x,¢)=1/(1*+1), wherel* is the minimall for which somelW C V\ X, 7 € D(X),
andw € D(W) exist such thaAC2(a) and (b) hold andliff(w, W (u))=1. By Theorem 6.10]* is the
minimal [ for which some(p, q, X, 1) € R* exists such thap # () andz € g. SinceV is domain-bounded
and D is width-bounded,R° can be computed in polynomial time, and eath i< {1,...,k}, can be
computed in polynomial time fron*~'. Thus, R* can be computed in polynomial time. Sinbeis
domain-bounded ar is width-bounded]* can be computed in polynomial time froRf. In summary]*
and thusdr((M, u), X=z, ¢) =1/(I*+1) can be computed in polynomial time.

Proof of Theorem 6.12. By Theorem 6.11, everyir((M,u), X=x, ¢), (M, u) € K, can be computed in

polynomial time. Assuming tha®? can be computed in polynomial time, aldb(XC, P, X < z, ¢) can be
computed in polynomial time

D Appendix: Proofs for Section 7

Proof of Proposition 7.1. Let (SY, ..., S¥) be an arbitrary layering of'y-(M) w.r.t. X and¢. We now
show that((7° S°), ..., (T* S*)), whereT®=S°,..., T* = S* is a decomposition of’y (M) w.r.t. X
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and ¢, that is, thatD1-D6 hold. Trivially, D1 andD2 hold. Moreover,L2 implies D3, andL1 implies
D4-D6. O

Proof of Proposition 7.2. Assume thatl = (S, ..., S¥) is an arbitrary layering of:y (M) relative toX
and¢. By L2, everyA € V(¢) NV belongs toS?, and at least one such variable exists. [Byand since
Gy (M) is connected relative t& ande, every variabled € X belongs taS*, and at least on such variable
exists, wherek is given via a pathP from a variableB € V(¢) to a variable inX (in the undirected graph
for Gy (M)) as the number of arrows i@y (M) that go against the direction ¢t minus the number of
arrows inGy (M) that go in the same direction &5 Indeed, if we move fronB to A (against the direction
of P), any step backwards towarsf must be compensated later with a step forward. LRyand since
Gy (M) is connected relative t& and ¢, for everyi € {0,...,k}, the setS? is the set of alld € V' that
are reachable from sonig € X UV (¢) on a pathP (in the undirected graph fd@ry (M)) such that is the
number of arrows itz (M) that go against the direction & minus the number of arrows i@y (1) that
go in the same direction & plusj with B € 7. That is, the layering is unique.C

Proof of Proposition 7.3. In Step (1), we initialize\(A) to undefined for allA € V\V(¢). In Step
(2), every variable occurring in is put into.SY, in order to satisfy one part &f2. In Steps (3)—(13), since
Gy (M) is connected, all the other variables are put into séfmguch that 1 is satisfied. Step (3) takes care
of the special case in which variables fr@nibelong toX, where then only a trivial layered decomposition
is possible. Steps (6) and (11) catch cases in which no layering mappdaesiasd exists, and theMil is
returned. Notice that the for-loop in Step (9) is executed at most oncallyiiwe check in Steps (14) and
(15) thatX C S*, wherek is the maximal indey of someS7, and thus whether the other partldf is also
satisfied. If so, then we return the computed layeringtherwise, we returiNil. O

Proof of Proposition 7.4. By Proposition 7.2, if a layering afy (M) relative toX and¢ exists, then it is
unique. By Proposition 7.3, AlgorithmAYERING returns the unique layering of Gy (M) relative to.X
andg, if it exists, andNil, otherwise. Observe then that Steps (1)-(3) a¥ERING takeO(|V| + [V (¢)])
time, Steps (4)-(13) tak@(|E| + | X|) time, and Step (14) is feasible (|V']) time (using an auxiliary
variable for the maximum oR, even in constant time). HenceAXERING can be implemented to run in
O(lV|+|V(¢)| + |E|) time, i.e., inO(||Gv(M)|| + |V (¢)]) time. Given thatGy (M) is layered, deciding
whetherZ is width-bounded by some integer 0 can be done in time i (|V]). O

E Appendix: Proofs for Section 8

Proof of Theorem 8.1. We generalize the proof of Theorem 4.1 (resp., 4.2) to the refined notion o
weak cause. Lef)c X be such thatd) there is no directed path i&' (M) from X, to a variable in
¢ (resp., () each directed path itr(M) from X to a variable ing contains someX; € X\{Xy}). Let
X"=X\{Xo} andz” =z|X”. It is now sufficient to show thakK =z is a (refined) weak cause gf
underu iff (i) Xo(u)=x(Xy) and (ii) X" =2" is a (refined) weak cause ¢funderu.

(=) SupposeX =z is a (refined) weak cause @funderu. That is,AC1 X (u) =2 and¢(u), andAC2’
somelWW CV\ X,z e D(X),andw € D(W) exist such that (&) ¢z, (u) and (b)¢, 2 (uw) forall W C W,
ZCV\(XUW), w =w|W’', andz = Z(u). In particular, (i)Xo(u) = z(Xy), and alscAC1 X" (u) = z”
ando(u). By («) (resp., ), it then follows thatAC2’(a) — ¢z, (u) and (b)d,, 2 (1) hold for all W/ C W,
ZCV\(X"UW), w' =w|W’', andz=Z(u), wherez” =z|X”. This shows that (i)X” =" is a (re-
fined) weak cause af underu.
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(<) Suppose ()Xo (u) =z(Xp) and (i) X" =2" is a (refined) weak cause @f underu. That is,
AC1 X"(u)=2" and ¢(u), andAC2’ someW CV\X", 7" e D(X"), andw € D(W) exist such that
(@) =z, (1), and (D) oz (u) for all W/ CW, ZCV\ (X" UW), w’ =w|W’, andz = Z(u). By (i),
we thus obtainPAC1 X (u) =z and ¢(u). By (a) (resp., (3)), it follows that AC2’(a) —¢ 7z, (u) and
(b) ¢orragwrs(u) for all W’ C W', Z CV\(XUW'), w” =w'|W”, and2 = Z(u), whereW’ = W\{ Xy},
w' =w|W’, To=(Xo)pn, (u), andzo=x(Xo). This shows thatX =z is a (refined) weak cause of
undery. O

Proof of Theorem 8.2. Let M' = Mf} (resp., M’ = ]\7?2). We prove the statement of the theorem for the
caseX’'=X andM' = M?}. The proof forX’ = X andM’ = ]\7?; can be done in a similar way, usinﬁ§?
instead ofM}*}. The proof forX’ ¢ X andM' = Mf} is similar to the proof of Theorem 4.7.

Let X'=X andM' = Mf} = (U, V', F’). We extend the proof of Theorem 4.5 to the refined notion of
weak cause. LeX” = X' NV’ andz” =2'| X”. We have to show thaX’ =2’ is a (refined) weak cause of
¢ underu in M iff (i) (X\X")(u) = 2/|(X'\X") in M, and (ii)) X" = 2" is a (refined) weak cause ¢f
underu in M%),

Fact A.Vj,(u) = V](/[;,)( (u) andgpy(u) = ¢M§; (u).

(=) SupposeX’ =z is a (refined) weak cause o@funderu in M. Thatis,AC1 X'(u) =2’ and¢(u) in
M, andAC2’ somelW C V\ X', 7" € D(X'), w € D(W) exist such that (ay¢z,,(v) in M and (D)p,r s ()
in M forall W CW, ZCV\ (X'UW), w =w|W’', and2=Z(u) in M. This shows that (i X"\
X" (u) = 2/'|[(X'\X") in M. We next show that also (ii) holds. By Fact AC1 X" (u)=2a" and¢(u)
in M}?. Notice then that (&) @5z (u) in M and (D)2 (u) in M, wherez” =7'| X", W =W NV’,
W=w|W, W =W'nV, @ =uw'|W =w|W', Z/=2nV’, and? = 5|Z'. Since each amongep(u),
Gz (1), andZ’ (u) has the same values i and M, this shows thabdC2’ (@) ~¢;(w) in M and (b)
Gz () in M forall 2/ CV/\ (X"UW), W CW,w =w|W, and2’ = Z'(u) in M%. In summary,
(i) X" =2"is a (refined) weak cause ofunderu in M;?.

(<) Suppose (I X'\X")(u)=2'|(X"\X") in M and (ii)) X" =2" is a (refined) weak cause of
underu in M%. Thus,AC1 X”(u)=2" and¢(u) in M%, andAC2’ someW C V/\X", 7" € D(X"),

w e D(W) exist such that (@), (u) in M$ and (b)pm,z(w) in M% forall W CW, ZCV/\ (X" U
W), w' =w|W’', and2 = Z(u) in M}*}. By Fact A,AC1 X'(u) =2’ and¢(u) in M. Since each among
(1), urz(w), and Z(u) has the same values i/ and M}z, this shows that (ay ¢z, (u) in
M and (b) ¢grryz(u) in M for all W CW, ZCV'\(X"UW), o' =w|W’, and2=Z(u) in M. It
then follows thatAC2’ (a) ¢z, (u) i M and (b) ¢,ryrz(u) in M for all W’ CW, ZCV\(X'UW),
w' =w|W',andz = Z(u) in M, wherez’| X" =7" andz’|( X"\ X") = (X'\X")z7,(u) in M. In summary,
this shows thafl’ = 2’ is a (refined) weak cause ofunderu in M. O

Proof of Theorem 8.3. The proof is nearly identical to the proof of Theorem 6.1, exceptAlst is now
replaced byAC2’ (for the refined notion of weak cause), the relatidiisre replaced by the relatiod¥ for
the refined notion of weak cause, afd is replaced by the following stateme): for all i € {0, ..., k},
it holds that(p, q, F) € R' iff some W CT° U --- UT* andw € D(W) exist such that" = S*\ W and
(i) for everyp, g€ D(F): (i.1) pep iff —¢pw(u), and (i.2)q € q iff ¢[q<2(u)]w(u) forall ZC (T°U ---U

TH\ (SFUW), W CW, andw’ = w|[W'. O

Proof of Theorem 8.4. The proof is nearly identical to the proof of Theorem 8.1, exceptAlz#’ is now
replaced byAC2” (for the refined notion of weak cause in extended causal models). In=tfigéart, we
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use thatt”w is allowable ifzw is allowable, while in the &"-part, we use that’zyw’ is allowable ifz"w
is allowable, which follows from the assumption thidtis closed relative ta(”. O

Proof of Theorem 8.5. (a) LetV’ = R% (M) and M’ = M$. AssumeM is closed. Lety CV’, lety
be an allowable setting far" in M’, and letu € D(U). Then,y is an allowable setting fo¥” in M, and
(V\Y)y(u) has the same value it/ andM’. SinceM is closedy U (V\Y),(u) is an allowable setting
for Y in M, and thugyU (V'\Y"),(u) is an allowable setting for” in A/". Hence M’ is closed.

(b) LetV’ :ﬁf}’?(M) and M’ = J\//.ng SupposeV is closed relative toX’. LetY CV’ with X' CY,
let y be an allowable setting for” in M’, and letu € D(U). Then,y is an allowable setting fol” in
M, and(V'\Y),(u) has the same value i/ andM’. SincelM is closed relative toX’, it follows that
yU(V\Y),(u) is an allowable setting for” in A/, and thugy U (V'\Y'),(u) is an allowable setting foY”
in M’. This shows thai/’ is closed relative to’. O

Proof of Theorem 8.6. The proof is nearly identical to the proof of Theorem 8.2, except AGR’ is
now replaced byAC2” (for the refined notion of weak cause in extended causal models). In=theart,
we use that”w is allowable inM¢ if Z'w is allowable inM, while in the “="-part, we use thaf'w is

allowable inM if 7w is allowable inM;’z, which follows fromA/ being closed relative t&”.

Proof of Theorem 8.7. The proof is nearly identical to the proof of Theorem 8.3, except AGR’ is
now replaced byAC2” (for the refined notion of weak cause in extended causal models), lti@ns R’
for the refined notion of weak cause are replaced by the relafidrier the refined notion of weak cause
in extended causal models, af) is replaced by the following statemeft”): for all i € {0, ..., k}, it
holds that(p, q, F') € R! iff someW CT°U - .- UT? andw € D(W) exist such that’ = S\ W and (i) for
everyp,q € D(F): (i.1) pe p iff =¢,w(u) andpw|(X U W) is allowable, and (i.2) € q iff Dz ) (u)
forall ZC (T0U --- UTY)\ (SF UW), W CW, andw’ = w|W'. Observe that in the step froAC2”

to (AC2")*, we then use the assumption thidtis closed relative toX. Moreover, in the induction step,
we use the propert® 7 of decompositions in extended causal models.
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