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Abstract. The action language
���

is an important high-level formalism for describing actions, which
has evolved from a number of earlier proposals for action languages, and which is based on McCain
and Turner’s nonmonotonic causal logics. In this paper, we present the action language � ��� for
probabilistic reasoning about actions, which is a generalization of

���
that allows to deal with prob-

abilistic as well as nondeterministic effects of actions. We define a formal semantics of � ��� in terms
of probabilistic transitions between sets of states. Using the concept of a history and its belief state,
we then show how several important problems in reasoning about actions can be concisely formu-
lated in our formalism. A history � is a sequence of actions and observations, which are labeled with
a reasoning modality over sets of states. It has an associated belief state, which comprises possible
sets of states and probabilistic information to describe the qualitative and quantitative knowledge
about � . As for computation, we present a compact representation of belief states and prove its cor-
rectness in implementing belief states. We also show how it can be used to reduce reasoning about
actions in � ��� to reasoning in nonmonotonic causal theories, which is a step towards implementa-
tion on top of existing technology for nonmonotonic causal theories such as the Causal Calculator.
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1 Introduction

One of the most crucial problems that we have to face in reasoning about actions for mobile robotics in real-
world environments is uncertainty, both about the initial situation of the robot’s world and about the results
of the actions taken by the robot (due to noisy effectors and/or sensors). One way of adding uncertainty to
reasoning about actions is based on qualitative models in which all possible alternatives are equally taken
into consideration. Another way is based on quantitative models where we have a probability distribution
on the set of possible alternatives, and thus can numerically distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about actions such as the situation calculus [19] eas-
ily allow for expressing qualitative uncertainty about the effects of actions and the initial situation of the
world through disjunctive knowledge. Furthermore, there are generalizations of the action language � [6]
that allow for qualitative uncertainty in the form of nondeterministic actions. An important recent formal-
ism in this family is the action language ��� [7], which is based on the theory of nonmonotonic causal
reasoning presented in [13], and has evolved from the action language � [8]. In addition to allowing for
conditional and nondeterministic effects of actions, ��� also supports concurrent actions [2] as well as indi-
rect effects and preconditions of actions through static causal laws [20]. Closely related to it is the recent
planning language � [4].

There are a number of formalisms for probabilistic reasoning about actions. In particular, Bacchus et
al. [1] propose a probabilistic generalization of the situation calculus, which is based on first-order logics of
probability, and which allows to reason about an agent’s probabilistic degrees of belief and how these beliefs
change when actions are executed. Poole’s independent choice logic [16, 17, 18] is based on acyclic logic
programs under different “choices”. Each choice along with the acyclic logic program produces a first-order
model. By placing a probability distribution over the different choices, we then obtain a distribution over
the set of first-order models. Other probabilistic extensions of the situation calculus are given in [12, 5].
A probabilistic extension of the action language � is given in [3].

The main idea behind the present paper is to orthogonally combine qualitative and quantitative un-
certainty in a uniform framework for reasoning about actions: Even though there is extensive work on
qualitative and quantitative models separately, there is only few work on such combinations. One such
approach is due to Halpern and Tuttle [10], which combines nondeterminism and probabilistic uncertainty
in a game-theoretic framework. Halpern and Tuttle argue in particular that “some choices in a distributed
system must be viewed as inherently nondeterministic (or, perhaps better, nonprobabilistic), and that it is
inappropriate, both philosophically and pragmatically, to model probabilistically what is inherently nonde-
terministic”. This underlines the strong need for explicitly modeling qualitative uncertainty in addition to
probabilistic uncertainty.

In this paper, we combine the qualitative uncertainty in the action language ��� with probabilistic un-
certainty as in [16, 17, 18]. The main contributions of this paper are summarized as follows:

� We present the language ����� for probabilistic reasoning about actions, which is a probabilistic gen-
eralization of the action language ��� . It allows for representing actions with conditional and indirect
effects, nondeterministic actions, and concurrently executed actions as the main features of ��� as
well as probabilistic knowledge about the effects of actions and the initial situation of the world.

� As a central property, ����� combines in a single framework qualitative as well as quantitative uncer-
tainty, both about the effects of actions and about the initial situation of the world. Here, qualitative
uncertainty is represented by forming a set of possible alternatives, while quantitative uncertainty is
expressed through a probability distribution on a set of possible sets of possible alternatives.
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� We define a formal semantics of � ��� by interpreting probabilistic action descriptions in � ��� as
probabilistic transitions as in partially observable Markov decision processes (POMDPs) [11]. How-
ever, it is important to point out that these probabilistic transitions are between sets of states rather
than single states. It is this which allows to handle qualitative uncertainty in addition to the quan-
titative probabilistic uncertainty as in POMDPs. Differently from standard POMDPs, our approach
here only allows for observations without noise, but not for noisy sensing. It also does not deal with
costs/rewards of actions.

� We define histories and their belief states in ����� . Informally, a history
�

is a sequence of actions
and observations, which are labeled with a reasoning modality over sets of states. It has an associated
belief state, which comprises possible sets of states and probabilistic information to describe the qual-
itative and quantitative knowledge about

�
. Note that such belief states model partial observability.

Moreover, we present a compact representation of belief states, which is based on the notion of a
context to encode possible sets of states, and prove a representation theorem, which can be exploited
in implementation.

� We show how to express a number of important problems in probabilistic reasoning about actions
(namely, the problems of prediction, postdiction, and planning; see especially [19, 12, 7]) in terms of
belief states in � ��� . We also show how to formulate conditional planning in � ��� .

� We discuss how to reduce probabilistic reasoning about actions in ����� to reasoning in nonmonotonic
causal theories [7]. This is a step towards implementation on top of existing technology (such as the
Causal Calculator [14]).

The work closest in spirit to this paper is perhaps the one by Baral et al. [3], which also proposes a logic-
based formalism for probabilistic reasoning about actions. However, there are several crucial differences.
First, and as a central conceptual difference, our work orthogonally combines quantitative and qualitative
uncertainty, in the form of probability distributions and sets of possible alternatives, respectively, while
Baral et al. only allow for quantitative uncertainty in the form of probability distributions. Note that Baral
et al. circumvent the problem of dealing with qualitative uncertainty by making the strong assumption of a
uniform distribution whenever the probabilities for possible alternatives are not known. Second, Baral et al.
allow only for a quite restricted form of probability distributions, which are either uniform distributions or
produced from uniform distributions. Third, our language � ��� generalizes the action language ��� , while
Baral et al.’s language generalizes the action language � . Note that ��� is a novel action language that
evolved from � and that is much more expressive than � .

Another important formalism that is related to ours is Poole’s independent choice logic [16, 17, 18],
which uses a similar way of adding probabilities to an approach based on acyclic logic programs. But also
here the central conceptual difference is that Poole’s independent choice logic does not allow for qualitative
uncertainty in addition to quantitative uncertainty. Poole circumvents the problem of dealing with qualitative
uncertainty by imposing the strong condition of acyclicity on logic programs. Furthermore, Poole’s work is
more inspired by the situation calculus and less by the action languages around � .

The rest of this paper is organized as follows. In Section 2, we define ����� and its semantics in prob-
abilistic transitions between sets of states. Section 3 introduces histories, belief states, and compact belief
states. In Section 4, we describe how several important problems in probabilistic reasoning about actions
can be expressed in our framework. Section 6 shows how to reduce reasoning in ����� to reasoning in
nonmonotonic causal theories. In Section 7, we summarize the main results and give an outlook on future
research. Note that detailed proofs of all results are given in Appendix A.
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2 Syntax and Semantics of P
���

In this section, we first recall nonmonotonic causal theories from [7]. We then present the language � ���
for probabilistic reasoning about actions, and give an example of a probabilistic action description and
initial database expressed in � ��� . We finally define the semantics of ����� through probabilistic transitions
between sets of states.

Informally, the main idea behind our probabilistic extension of ��� is to associate with the initial database
and with every stochastic action a probability distribution on a set of contexts, which are values of exogenous
variables. Every sequence of actions from an initial database is then associated with a probability distribution
on a set of combined contexts. Hence, probabilistic reasoning about actions in ����� can essentially be
reduced to standard reasoning about actions in ��� with respect to such combined contexts. Note that Poole’s
independent choice logic [16, 17, 18] uses a similar way of adding probabilities to an approach based on
acyclic logic programs.

2.1 Preliminaries

We now recall (nonmonotonic) causal theories from [7], which are used to specify initial sets of states and
transitions from states to sets of states through actions. Roughly, a causal theory � is a set of “causal rules”�����

with the meaning “if
�

holds, then there is a cause for
�

”. In this paper, we consider only finite � .
We now first define the syntax of causal theories and then their semantics.

We assume a finite set of variables 	 . Every variable 
��
	 may take on values from a finite do-
main ����
�� . We define formulas by induction as follows. False and true, denoted � and � , respectively,
are formulas. If 
���	 and �
������
�� , then 
���� is a formula (called atom). If

�
and
�

are formu-
las, then also � � and � ����� � are formulas. As usual, 
 ���� abbreviates �!
"��� . A (causal) rule is
an expression of the form

�����
, where

�
and
�

are formulas, called its head and body, respectively.
A causal theory is a finite set of rules.

An interpretation � of #�$�	 maps every %&��# to an element of ���'%�� . We use �(�'#)� to denote the set
of all interpretations of # . We obtain ��� � � and �(� ���*� � from

�
and
�+���

, respectively, by replacing
every atom %���, such that %-�.# and ���'%/�0��, (resp., ���'%��!���, ) by � (resp., � ). An interpretation �
of # satisfies an atom %���, with %&�.# , denoted �)1 ��%2��, , iff �(�'%3�0��, . Satisfaction is extended to
all formulas over # as usual (that is, �)1 �4� � iff �51 � � does not hold, and �61 �2� ����� � iff �)1 � � and �)1 � � ).

Let � be a causal theory and � be an interpretation of the variables in � . The reduct of � relative to � ,
denoted �57 , is defined as 8 � 1 ����� �)�:9;�51 � �=< . The interpretation � is a model of � , denoted �61 �>� ,
iff � is the unique model of � 7 . The theory � is consistent iff it has a model.

2.2 Syntax of P ?.@
We next define the syntax of the probabilistic action language ����� , which generalizes the syntax of ��� [7].
We refer to [7] for further motivation and background for ��� . We illustrate the language � ��� along a
(simplistic) robot action domain, which is summarized in Fig. 1. This example shows in particular how
quantitative as well as qualitative uncertainty about both the effects of actions and the initial situation of the
world can be encoded in � ��� .

We divide the variables in 	 into rigid, fluent, action, and context variables. The fluent variables (or
fluents) are additionally divided into simple and statically determined ones. We assume that action variables
have the Boolean domain 8A�=9B� < . Intuitively, the world is described through rigid variables and fluents.
The values of rigid variables do not change when actions are performed, while those of simple (resp.,
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statically determined) fluents may directly (resp., indirectly) change through actions. Action variables are
used to describe actions, while context variables allow for adding probabilistic knowledge about the effects
of actions and about the initial situation of the world.

Example 2.1 In the robot action domain in Fig. 1, a mobile robot � may move to the locations � ,
�
, and � ,

and carry one of two objects ��� and ��� after pickup. This world is described through the simple fluents	�
 ���
� � , 	�
 ����� � , and 	�
 ��� � with the domain 8��;9 � 9��A9������ 
 < , where 	�
 ���
�0��� iff � is at location � . Moreover,
we have the simple fluent ��������� with the domain 8���� 9���� 9��! "� < , where ��������� �#� iff � holds � . We then have
the action variables $%� 
 �(��� � , $
� 
 �;� � � , $%� 
 �(��� � , &' )(+*�,-& , and ��./�0& , which represent the elementary actions
“move to location � ”, “move to location

�
”, “move to location � ”, “pick up an object”, and “drop an object”,

respectively. Finally, the action “move to location � ”, where � �38���9 � 9�� < , succeeds only with a certain
probability. To model this, we use the context variables �-1 ���0� , �21 � � � , and �+1 ��� � with the domain 8-��* 9)3 	  �� < ,
where �21 ��� �0����* iff “move to location � ” succeeds, for every � �38���9 � 9�� < . 4

We next define static causal laws, which represent knowledge about fluents and rigid variables. Formally,
a static causal law is an expression of the form

576'8:9<;�= �?>�@ � 9 (1)

where
�

and
�

are formulas such that either (a) every variable occurring in
�

is a fluent, and no variable
occurring in

�
is an action variable, or (b) every variable occurring in

�
or
�

is rigid. If
� ��� , then (1)

is abbreviated by 5%6!8:9�;
= � . Roughly, (1) encodes that every state of the world that satisfies
�

should also
satisfy

�
. More formally, (1) is interpreted as the causal rule

�����
.

Example 2.2 The static causal law (6) 576!8A9<;�= 	�
 �����0��� >�@ �B���C��� �#� � 	�
 ��� �0�D� expresses that if the
robot � is at location � , and � holds � , then � is also at location � . 4

We now define dynamic causal laws, which express how the simple fluents change through actions, and
which also encode execution denials for actions. Formally, a dynamic causal law is an expression

576'8:9<;�= �?>�@ � 6 @�E ;�FHG 9 (2)

where
�

,
�

, and G are formulas such that (i) every variable occurring in
�

is a simple fluent, (ii) no variable
in
�

is an action variable, and (iii) no variable in G is a context variable. If
� ��� , then (2) is abbreviated by576!8A9<;
= � 6 @�E ;�FHG . We use

>�I ;�F E-> 6!J 
 to abbreviate the set of all rules (2) such that
� � � � G ��
��5�

and �
������
�� . If
� �4� and

� � � , then (2) is called an execution denial and abbreviated by
IAK'I ;%LM;�5%8 E 6�NOJ�;PGRQ (3)

Roughly, (2) expresses that every possible next state of the world that satisfies
�

should also satisfy
�

,
if the current state and the executed action satisfy G . More formally, (2) is interpreted as the causal rule�+���4� G , where

�
and
�

refer to the possible next states of the world, and G refers to the current state
and the executed action.

Example 2.3 The dynamic causal law (13) 576!8A9<;�= ���������)�S�! "� 6 @TE ;
F ��./�0& says that � holds nothing after
��.U�2& . The execution denial (12) expresses that &V �(�*-,-& cannot be executed if � already holds an object or
if there is no object at the same location as � . The dynamic causal law (11) says that � cannot pick up an
object that is not at the same location as � , and (10) says that � holds �'� respectively ��� after &' )(+*-,-& . Thus,
there is qualitative uncertainty in the effects of &' )(+*-,-& : if both �!� and ��� are at the same location as � , then
&' �(�*-,-& results in � picking up either � � or � � , but it is unpredictable which object � actually picks up. 4
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A causal law (or axiom) is a static or dynamic causal law. Our causal laws generalize their classical
counterparts from [7] in the sense that they may also contain context variables. We next introduce the new
concept of a context law. Context variables along with such context laws allow for expressing probabilistic
effects of actions and probabilistic knowledge about the initial situation of the world.

More formally, a dynamic context law for a context variable 
 �
	 is an expression of the form


 � ���:�����M� 9 Q�Q�Q 9 ���������0� 6 @TE ;�F�� 9 (4)

where (i) �(��
��0�28 �:� 9 Q�Q�Q 9 ��� < , (ii) �:� 9 Q�Q�Q 9	����

� , (iii) �:� ������� ����� ��� , and (iv) � is a formula over
action variables. We use � .0��
 �>��� � to denote ��� . If � � � , then (4) is called a static context law and
abbreviated by


 � ��� � ��� � 9 Q�Q�Q 9 � � ��� � � Q (5)

Roughly, (4) encodes that after executing an action that satisfies � , the probability that 
 has the value ���
is given by ��� . Note that a possible generalization of context laws could be to specify a set of probability
distributions rather than a single probability distribution.

Example 2.4 The actions $%� 
 �(���0� , $%� 
 ��� � � , and $%� 
 �(��� � succeed only with certain probabilities. This is
modeled using the context variables �<1 ���0� , �21 � � � , and �+1 ��� � in the dynamic causal laws (7) and (8), along with
the dynamic context laws (14)–(16). For example, the probability that � really arrives at � after executing
$%� 
 �����0� is given by � Q���� . 4

We next define the notion of a probabilistic action description (resp., probabilistic initial database),
which encodes the effects of all actions (resp., the initial situation of the world).

Definition 2.5 A probabilistic action description � is a finite set of causal and dynamic context laws such
that � contains exactly one dynamic context law for every context variable 
��
	 in � . Any such � is a
probabilistic initial database, if all causal and context laws in � are static.

Example 2.6 In the robot action domain in Fig. 1, the probabilistic action description � is completely given
by the sentences (6)–(17). Here, axioms (6) and (17) take care of the well-known ramification and frame
problem, respectively. Note that axiom (18) forbids concurrent actions.

A probabilistic initial database ��� may be given as follows. The initial locations of ��� and ��� are
known with probabilities, which we express by the context variables � �"!	#%$'&)( and ���"!	#*$,+-( , the static context
laws ���"!	#%$-&)( �2���.�'� Q � 9 � �-� Q�/ 9��0�'� Q � � and ���"!	#*$,+"( �2���.�'� Q�1 9 � �-� Q�2 9��0�-� Q � � , respectively, and the static causal
laws 576'8:9<;�= �43 ���
�0��� >�@ � �"!	#%56( �D� , where � �38�� � 9�� � < and � �38���9 � 9�� < . For example, object � � is at
location � with a probability of � Q � . Moreover, � is at � or

�
, expressed by 576!8A9<;�= �73 ��� �0���98 �73 ��� �0� � .

Finally, � holds no object, expressed by 576!8A9<;�= ��������� � �� "� . 4
In the sequel, � (resp., �:� ) denotes a probabilistic action description (resp., probabilistic initial database).

2.3 Semantics of P ?6@
We now define the semantics of ����� . Informally, certain interpretations of rigid and fluent variables serve
as possible states of the world. We then associate with �;� a collection of sets of such states, where each
set of states has an associated probability. Furthermore, we associate with � a mapping that assigns to
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(i) simple fluents: 	�
 ����� , � �38��B� 9���� 9/� < : 8��;9 � 9��A9������ 
 < ;
��������� : 8�� � 9�� � 9��� �� < .

(ii) action variables: $%� 
 ����� � , � �=8���9 � 9�� < ; &V �(�*-,-& ; ��.U�0& .

(iii) context variables: ��1 ��� � , �&��8���9 � 9�� < : 8-��* 9)3 	  "� < .
(iv) static causal laws:

576!8A9<;�= 	�
 ���
�0�D� >�@ ��������� �#� � 	�
 ��� �0�D� (6)

(v) dynamic causal laws:
5%6!8:9�;
= 	7
 ��� �0��� >"@ � 1 ��� �0����* 6 @TE ;
F $
� 
 �(��� � (7)5%6!8:9�;
= 	7
 ��� � �?��� >�@ 	�
 ��� � � ��� � �21 ��� �0� 3 	  "� (8)6 @�E ;�F $%� 
 ����� � � for � � ��D� �IAK'I ;
LM;
5%8 E 6�NOJ�; $%� 
 ����� � � 	�
 ��� �0�D� (9)
5%6!8:9�;
= �B���C��� �#� >�@ ��������� �#� (10)6 @�E ;�F &' )(+*-,-& � for �2�38��
� 9���� < �5%6!8:9�;
= � >�@ � � ����� � � (11)6 @�E ;�F &' )(+*-,-& � 	�
 ��� �0�D� � 	7
 ���
�!����IAK'I ;
LM;
5%8 E 6�NOJ�; &' )(+*�,�& ��� ���������)�� �� �� (12)

8 � 	7
 ��� �0��� � 	�
 ���
� �!���� � 	�
 ����� �!��D� �
	
5%6!8:9�;
= �B���C��� � �� �� 6 @TE ;
F ��.U�0& (13)

(vi) dynamic context laws:

�21 ���0� � �)��*��"� Q���� 9)3 	  �� �"� Q � � � 6 @�E ;�F $%� 
 �����0� (14)

� 1 � � � ���)��*.�'� Q���� 9)3 	  �� �"� Q � � � 6 @�E ;
F $
� 
 ��� � � (15)

�21 ��� � ���)��*��"� Q�� � 9)3 	  �� �'� Q ��� � 6 @�E ;
F $
� 
 ����� � (16)

(vii) inertial laws: for all simple fluents � :>�I ;
F E-> 6!J � (17)

(viii) other execution denials: for all action variables �M���� ��� :IAK'I ;%LM;�5%8 E 6�NOJ�; ��� � ��� (18)

Figure 1: Robot Action Domain
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each pair ��� 9�� � , consisting of a current set of states � and a labeled action or observation � , a probabil-
ity distribution on a collection of future sets of states. Thus, we interpret � by probabilistic transitions as
in partially observable Markov decision processes (POMDPs) [11]. But the probabilistic transitions here
are between sets of states rather than single states, which allows to handle qualitative uncertainty in addi-
tion to quantitative probabilistic uncertainty. Actions and observations are treated in a uniform way and
labeled with modalities to specify how their preconditions (resp., observed formulas) are evaluated on sets
of states (see also Section 4).

Semantics of ��� . Informally, we associate with ��� a finite set of contexts � , where each � is in turn
associated with a probability value � .7� ��� � and a set of states 	�
 . Thus, � � is interpreted as the collection of
all 	�
 , where each 	�
 has the probability �H.�� ��� � . We say that � � is consistent iff 	�
6���
 for all contexts � .

Formally, let 	 � denote the set of all context variables in � � . We call �/�6��� 	 � � a context for � � . Its
probability, denoted � . � ��� � , is defined as ��������� � .0��
���� ��
�� � . For 	 � ��
 , the empty mapping �6��
 is
the only context for �:� , which has the probability � . � ��� �0� � . For each �=����� 	 � � , we define 	�
 as the set
of all models over rigid and fluent variables of the causal theory comprising all � � �
�&� � for each axiom
(1) in � � and all 
��5� � 
 ��� for each simple fluent 
���	 and �
�.�(��
�� .

To define the semantics of � , we now formally define states, actions, and observations. We also define
how a context � , current state

�
, and action or observation � is associated with a set of future states 	�
;� � 9�� � .

States. A state
�

is either a member of some 	�
 , or a model over rigid and fluent variables of the causal
theory comprising all � � �+��� � for each axiom (1) in � , for any interpretation � of the context variables
in 	 , and all 
"��� � 
���� for each simple fluent 
+�!	 and � � �(��
�� .
Actions. An action � is an interpretation of the action variables in 	 . Intuitively, each action variable is a
basic action, and � is the concurrent execution of all basic actions that are true under � . The precondition
for � , denoted ��� , is the conjunction of all � G for every execution denial (3) in � such that

� � � 1 � G for
some state

�
. An action � is executable in a state

�
, denoted �!� � � � , iff

� � � 1 �"��� .
We next associate with every action � a set of contexts, and with each such context � a probability

� .�� ��� � and a mapping from states
�

to a set of future states 	#
;� � 9$� � . Intuitively, if � is executed in the
state

�
under the context � , then the set of future states is given by 	 
 � � 9$� � .

Formally, for states
�

such that �%� � � � , denote by 	'&)( � the set of all context variables in some axiom (1)
or (2) in � such that

� � � 1 � G . We define 	�� as the union of all 	�&)( � . We call �/�6��� 	��;� a context for � .
Its probability, denoted � .*� ��� � , is defined as �������,+��H. ��
��-� ��
 � � .

An action transition is a triple � � 9$� 9 � � � , where
�

and
� � are states such that

� ��
 �0� � � ��
�� for every rigid
variable 
��=	 , and � is an action such that �.� � � � . A formula

�
is caused in � � 9$� 9 � � � under �3�.��� 	��;�

iff � contains either (a) an axiom (1) such that
� � � � 1 � � , or (b) an axiom (2) such that

�/� � 1 � G and� � � ��1� � . We say � � 9$� 9 � � � is causally explained under � iff
� � is the only interpretation that satisfies

all formulas caused in � � 9$� 9 � � � under � . For every state
�

and action � , we define 	�
;� � 9$�!� as the set of
all

� � such that � � 9$� 9 � � � is causally explained under � . Note that 	�
;� � 9$�!�0�0
 if no such � � 9$� 9 � � � exists, in
particular, if the action � is not executable in the state

�
.

Observations. An observation 1 is a formula over fluents. For states
�
, we use �!2 � � � to abbreviate

� 1 �-1 .
To treat actions and observations in a uniform way, we also associate with every observation 1 a set of con-
texts � , and with each � a probability � .*2 ��� � and a mapping from states

�
to a set of future states 	#
;� � 9)1 � .

We define 	 2 ��
 . The empty mapping �=�.�(� 	 2 � is the context for 1 . It has the probability � . 2 ��� �0� � .
For states

�
and observations 1 , we define 	'
;� � 9)1 �0��8 � < , if �32 � � � , and 	�
;� � 9)1 �0��
 , otherwise.

We are now ready to define the semantics of � .
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Semantics of � . Intuitively, we use � to associate with sets of states � , and actions or observations �
a probability distribution on future sets of states � .���� � 1 � � . We say � is consistent iff 	�
;� � 9$� �!���
 for
all states

�
, actions � such that �%� � � � , and contexts �=�.�(� 	��;� . We now first extend ���;� � � and 	�
;� � 9�� �

from states
�

to sets of states � .
To specify how preconditions of actions (resp., observed formulas) are evaluated on sets of states, we add

modality labels to actions (resp., observations). Formally, a labeled action (resp., labeled observation) is of
the form ��� , where � ��8 � 9<4 < and � is an action (resp., observation). For sets of states � , we use ���	� ��� �
(resp., ��
 � ��� � ) to denote � � � � ��� � � � � (resp., 
 � � � �3� � � � � ). We define 	�� � �4	 � and �H.�� � � � . � .

For every set of states � , every labeled action or observation �=� ��� with ���(��� � , and every con-
text �3�.��� 	�� � , we then define 	�
;���!9�� �0��� &)��� 	 
;� � 9 � � . Observe that for observations 1 , it then holds
that 	�
 ��� 9 � 1 �0��8 � � � 1 � 1 � 1 < and 	�
;���!9<4 1 �0��� .

We now define the probabilistic transition between sets of states � and � � under � with �	�(��� � by:

�H. � ��� � 1 � � ��� 
*� 7 # ��� ( (������ �"! # � ( � ( �H. � ��� �
Q

Intuitively, given any set of states � such that � � ��� � , the 	 
 ���!9�� � ’s are the future sets of states under � ,
where each 	�
 ��� 9�� � has the probability � .��(��� � .

Assumption 2.7 In the rest of this paper, we implicitly assume that � and � � are consistent, and that all
static causal laws (1) in � over rigid variables also belong to �;� .

3 Histories and Belief States for P
���

Our framework for reasoning and planning in ����� involves finite sequences of labeled actions and obser-
vations, called histories, which are inductively defined as follows. The empty history # is a history. If

�
is

a history, and � is a labeled action or observation, then
� 9�� is a history. Histories # 9/� are abbreviated by � .

The action length of a history
�

, denoted 	 �%$+� � � � , is the number of occurrences of actions in
�

.

Example 3.1 In the running example,
� $
� 
 �;� � �B9<4 &' �(�*-,-& 9�4 $%� 
 �(��� �B9�4 �43 ����� � � � 8 �73 ����� � � � is a history of

action length 1 . Informally, it represents the statement “if $
� 
 �;� � � has been executed, then &' )(+*�,�& 9 $%� 
 �(��� �
can be executed, and �43 �����B� � � 8 �43 ����� � � � is observed after that”. 4

We use the notion of a belief state to describe the probabilistic information associated with a history
�

.
Intuitively, a belief state consists of a probability value for

�
and a probability function on a set of state sets.

We now first define belief states and then a compact representation of them.

3.1 Belief States

The belief state
�'& �/� � & 9)( & 9-� . & � for a history

�
consists of a real number �

& � � � 9 � 	 (called probability of
�

,
denoted � .0� � � ), a set of state sets ( & , and a probability function � . & on ( & . It is inductively defined by:

� If
� �*# , then �

& ��� , ( & �+8 	 
 1 �=�.�(� 	 � � < , and for all � �+( & , �H. & ��� �0� � 
 � 7 # ��� ( (,�-� �.! �H. � ��� � .
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� If
� �D� 9�� , then

�'&
is defined iff (i)

��� �2� � � 9 ( � 9-�H. � � is defined, and (ii) � �(��� � for some � ��( � .
If
� &

is defined, then it is given as follows:

�
& � �

�
� � � ����� ( � � # � ( �H. � ��� �

( & � 8 	�
 ��� 9�� � 1 �=����� 	 � �B9%� � ( � 9 � �;��� � <
�H. & ��� � �!� � ���� � �
	���
��������� 	�� � . ����� � 1 � �-�*� . � ��� � ( 
.� � � ( & ).

Intuitively,
���

describes the probabilistic knowledge associated with �;� , while
��� (,� represents the proba-

bilistic knowledge about the world after the history � 9 � � (resp., � 9 � 1 ), which depends on (i) our respective
knowledge after � , and (ii) the effects of � encoded in � (resp., the observation 1 ).

The following result shows that ��� � 1 corresponds to a conditioning of � . � on all state sets � � ( �
with �	�(��� � , along with removing from such � all states violating 1 .

Proposition 3.2 Let
� � �A9�� be a history, where �
� � 1 is a labeled observation. Then,

� & ��� � & 9)( & 9-� . & �
is defined iff (i)

��� �2� � � 9)( � 9-�H. � � is defined, and (ii) some � � ( � exists with � ����� � . If
�'&

is defined,
then it is given by:

�
& � �

�
� � ������� (�� � # � ( � . � ��� �

( & � 8 8 � � � 1 � 1 � 1 < 1�� � ( � 9 �	�;��� � <
� . & ��� � � � � �� � � � 	���
 � � � � � 	����	 �"!$#&%��'	)(*%+( !-,�.�H. � ��� � (
�� � � ( & ).

(19)

3.2 Compact Belief States

A sequence of belief states for a sequence of labeled actions and observations can be more compactly
represented as a collection of sequences of sets of states, along with a probability for each such sequence.
Following this idea, we now introduce the concept of a compact belief state.

For every history
�

of action length / , we define the set of variables 	 & by induction as follows:

	 & �
0
� � 	 � if

� � #
	 �.� /��B	 � if

� � �A9�� ,

where / � 	 � ��8�/ � 
�1 
 �
	 � < and ���1/ �B
��0���(��
�� . We call �3�.��� 	 & � a context for
�

. Each of the above
sequences of sets of states is of the form 	�
�2A� # �B9 Q�Q�Q 9 	 
 � � � � , where 	�
 � � � is inductively defined by:

	 
;� � � �
0
	 
 � if

� � #
	 
 ����	 
�� ��� �B9�� � if

� � �A9�� ,

where � � maps every 
�� 	 � to � �	� � 
�� , �.� maps every 
��!	�� to � �1/ � 
�� , and � � ��� 1 	 � . Note that 	�
 � � �
is defined iff (i) 	�
 � ��� � is defined, and (ii) ���;��	 
 � ��� � � .

The following notion of a compact belief state comprises a set of contexts from �(� 	 & � , a probability for
each such context � , and one for the compact belief state as a whole. Formally, the compact belief state��3& �2� � 3& 9�4 3& 9-� . 3& � for a history

�
consists of a real number �

3& � � � 9 � 	 , a set of contexts 4 3& $ ��� 	 & � , and a
probability function �H. 3& on 4 3& . It is inductively defined as follows:

� If
� � # , then �

3& � � , 4 3& ���(�	� � 	 � � , and �H. 3& ��� � � �H. � ��� � � for all �3�54 3& .
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� If
� � �A9�� , then

� 3& is defined iff (i)
� 3� �3� � 3� 9�4 3� 9-� . 3� � is defined, and (ii) � ����	 
;��� � � for some �=�54 3� .

If
��3& is defined, then it is given as follows (where / is the action length of

�
):

�
3& � �

3� � � 
*����� � ( � � # �.! # � ( ( � . 3� ��� �4 3& � 8 � � � � 1 �/� 4 3� 9�� �(��	 
���� � �B9 � � �.�(�1/ � 	 � � <
� . 3& ��� �!� � � �� � � � � . 3� ��� � ��� � . ������� � (for all �=�54 3& ).

Example 3.3 In the running example, 4 3� comprises the contexts ���;9��0�B9 ����9 � �B9 ����9�� �B9 � � 9�� � 9 � � 9 � �B9 � � 9 � �B9
��� 9��0�B9 ���A9 � �B9 ��� 9�� � , where every � � 9 � � � stands for the mapping �	� �0� �"!	#%$'&)( 9"� � ���"!	#%$,+'( ���� � � 9 � � � . They are un-
der � . 3� mapped to � Q � 1 9"� Q � / 9"� Q � � 9"� Q��
	 9"� Q�	4/ 9"� Q � / 9"� Q � 1 9"� Q � 2 9"� Q ��� . 4

Every compact belief state
� 3& � � � 3& 9�4 3& 9-� . 3& � represents the following belief state �(� � 3& �0�2� � 9)( 9-�H. � :

� � �
3&

( � 8 	 
 � � � 1 �=�54 3& <
�H. ��� � � � 
 �
� � � (,��� � ! # & ( � . 3& ��� � (for all � � ( ).

The following theorem shows that, as desired, the compact belief state
� 3&

correctly implements the belief
state

� &
. This can be exploited for implementation (see Section 6).

Theorem 3.4 (Representation Theorem) Let
�

be a history. Then, (i) the compact belief state
� 3& is defined

iff the belief state
�'&

is defined, and (ii) �(� � 3& � � � &
.

4 Reasoning and Planning in P
���

In this section, we show at the examples of prediction, postdiction, and planning [19, 12, 7] how important
problems in probabilistic reasoning about actions can be formulated in our framework of � ��� . We define
them in terms of probabilities of histories in � ��� . Recall that the probability of a history

�
, denoted � . � � � ,

is defined as �
&
, which coincides with �

3& , by Theorem 3.4, where
� & �2� � & 9)( & 9-� . & � is the belief state

and
� 3& �/� � 3& 9�4 3& 9-� . 3& � is the compact belief state for

�
.

4.1 Prediction

We consider the following probabilistic prediction (or also probabilistic temporal projection) problem:
Compute the probability that a sequence � of actions and observations is certainly possible, given that
another sequence � � of actions and observations has occurred. Here, the probability that � is certainly pos-
sible after � � is the tight lower bound for the probability that � is possible after � � . We now define this
probability in terms of probabilities of histories. Note that further semantically meaningful probabilities can
be defined in a similar way, for example, the probability that � may be possible after � � , which is the tight
upper bound for the probability that � is possible after � � .
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Figure 2: Evolving Contexts1

Definition 4.1 Let �����:� 9 Q�Q�Q 9��;: and � � �"� � � 9 Q�Q�Q 9�� �� be sequences of actions and observations. The prob-
ability that � is certainly possible, denoted � . $�� � #=<�� � , is defined as �H. �U4�� � 9 Q�Q�Q 9<4��;:)� . The probability
that � is certainly possible after � � , denoted � . $�� � � � < � � , is defined as � . � � � � � 9 Q�Q�Q 9 � � �� 9<4�� � 9 Q�Q�Q 9<4��;:6��>
� .0� � � � � 9 Q�Q�Q 9 � � �� � .

Proposition 4.2 Let �!� � � 9$�A� 9 Q�Q�Q 9$� � (resp., 1 � 9)1 � 9 Q�Q�Q 9 1 � ) be a sequence of actions (resp., observa-
tions), and let ? and @ be observations. Then,

� �H.)$ � � #A<B? 9$� 9�@ � is the probability that ? certainly holds initially, that � can certainly be executed,
and that @ certainly holds after that.

� �H.)$ � �&?C< � 9�@ � is the probability that � can certainly be executed, and that then @ certainly holds,
given that ? is observed initially.

� �H.)$ � �&? 9$��<=@ � is the probability that @ certainly holds, given ? is observed initially, and � has been
executed.

1Pairs ��DE��F*� are short for � �HG �%I�J � K�L � � �MG �%I�J � K�N � � � ��DE��F*� .
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� �H.)$ � � # < ? 9$� � 9)1 � 9$�A� 9)1A� 9 Q�Q�Q 9$� �(9)16�0� is the probability that ? certainly holds initially, that �"�
� � 9$�:� 9 Q�Q�Q 9$� � can certainly be executed, and that then 1 � 9)1A�A9 Q�Q�Q 9)16� , respectively, certainly hold.

Example 4.3 Let � � and � be given as in Example 2.6. Suppose that the robot � is initially at loca-
tion � and holds no object. Moreover, assume that the two objects �!� and ��� are both at location

�
.

Then, the probability that the robot � can certainly move to
�
, can certainly pickup an object, and can

certainly move to � , and that then at least one object is certainly at location � is given by � Q�/���� : Let
?�� �43 ��� �0��� � �43 ���
�B�0� � � �43 ����� �0� � � ��������� � �� �� , �!� $
� 
 �(� � �B9 &V �(�*-,-& 9 $
� 
 �(��� � , and @"� �43 ����� � � ��8
�73 ����� � � � . We then have � . $�� �&? <�� 9�@ �0� � Q�/���� , which is obtained as follows (cf. Fig. 2.a). Observation ?
leads to a context �	� �2���"!	#%$-& ( 9"� � ���'!	#*$,+'( �0� � � 9 � � of probability � Q�/ �'� Q�2 . Action $%� 
 �(� � � then yields two con-
texts, ���0� 1 � � �0����* and ��� � 1 � � �0� 3 	  �� of probabilities � Q���� and � Q � � , respectively. Action &V �(�*-,-& is only ex-
ecutable in ��� �+1 � � �0����* , which leads to the empty context 
 of probability � . Finally, action $%� 
 ����� � yields
two contexts 1 � �+1 ��� �0� ��* and 1 �0�21 ��� � � 3 	  �� of probabilities � Q�� and � Q � , respectively; in the former, @ is
true in all states, but not in the latter. In summary, � . $�� �&? < � 9�@ �0� � .0� � ? 9<4�� 9<4�@ ��>�� .;� � ?(�0� �	� Q�/ �-� Q�2 �
� Q���� �-� Q�� � > �	� Q�/ � � Q�2 �0� � Q�/���� .

The probability that at least one object is certainly at location � after � moved to
�
, picked up an object,

and then moved to � is given by � . $�� �&? 9$� < @ �0� � Q�� .
The probability that � can certainly move to

�
, can certainly pickup an object, and can certainly move

to � , and that then object �B� is certainly at location � is given by � . $�� �&? <�� 9�@ � �0� � , where @ � � �43 ���
� � � � ,
as in no emerging context, @ � is true in all states. Indeed, in the worst case, � might pick up ��� and carry it
to � . Thus, the probability that �B� is at � after ? 9$� may be � . In contrast, if we have a probability distribution
for &' )(+*�,�& , then �H.)$ � �&? < � 9�@ � � 
 � , if � picks up ��� with a positive probability.

Finally, suppose that object � � is initially at either � or
�
, rather than at

�
. Hence, consider now ? � �

�73 ��� �0�D� � �43 ���%� �0� � � ���43 ����� �0�#�98 �43 ����� �0� � � � ��������� � �� "� , which is weaker than ? . We then obtain
� . $�� �&? � < � 9�@ � � � . $�� �&? < � 9�@ � and � . $�� �&? � < � 9�@ � � 
 � . $�� �&? < � 9�@ � � . Here, we have a positive
probability, since there exists a combined context of positive probability that satisfies ? � , where object ��� is
absent from

�
, which makes &' )(+*�,�& deterministic, and thus ��� is certainly carried to � . 4

4.2 Postdiction

Informally, the probabilistic postdiction (or also probabilistic explanation) problem that we consider here
can be formulated as follows: Compute the probability that observations were certainly holding along a
sequence of actions and observations � that actually happened.

Definition 4.4 Let � � be a sequence of actions and observations, and let � � result from � � by removing
some observations. Then, the probability that � � certainly occurred if � � has occurred, denoted � ��� 
 � � � 1 � �B� ,
is defined as �H. � � �� � > �H. � � �� � , where � �� and � �� result from � � and � � , respectively, by labeling removed
observations in � � with 4 and all other actions and observations with

�
.

Proposition 4.5 Let � ��� � 9$�:� 9 Q�Q�Q 9$�6� (resp., 1 � 9)1A�A9 Q�Q�Q 9�16� ) be a sequence of actions (resp., observa-
tions), � � � � 9 1 � 9$�:� 9)1 �A9 Q�Q�Q 9$�6�;9)16� , and ? 9�@ be observations. Then,

� � ��� 
 �&? 9$� 9�@61 � 9�@ � is the probability that ? certainly held initially, given � was executed and @ was
observed.

� � ��� 
 �&? 9 � 1 � � is the probability that ? was certainly holding initially, given � � 9$�:� 9 Q�Q�Q 9$�6� was exe-
cuted, and 1 � 9)1 � 9 Q�Q�Q 9)1 � , respectively, was observed after that.
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� � ��� 
 �&? 9 � 1 � � is the probability that ? was certainly holding initially, and 1 � 9)1 �A9 Q�Q�Q 9)16� was certainly
holding after � � 9$�A� 9 Q�Q�Q 9$�6� , respectively, given � was executed.

Example 4.6 Let � � and � be given as in Example 2.6. Suppose that the robot � moved to
�
, picked up an

object, and then moved to � , and that the object ��� was observed at � after that. Then, the probability that the
object �
� was certainly at

�
in the initial situation is given by � Q��
��1 : Consider �3��$
� 
 ��� � �B9<&' �(�*-,-&!9 $
� 
 �(��� � ,

@ � �73 ���
� � � � , and ?)���43 ���
�B� � � . We then have � ��� 
 �&? 9$� 9�@)1 � 9�@ �0��� Q��
��1 , which is obtained as follows:
Each of the 9 initial contexts, given by the value pairs for �	� : � �'!	#*$ & ( 9 0: � �"!	#*$ + ( � , except ���A9�� � admits execution
of � resulting in a context in which @ is observable. In detail, � � 9��0� , � � 9 � � , � � 9�� � , and ���A9 � � can be extended
by ��� �21 � � �0�#��* , 
 , and 1 � �+1 ��� �0�#��* , and ���;9��0� , ���;9 � � , ���;9�� � , and ���A9��0� by ���0�+1 � � �0� 3 	  "� , 
 , 1 � �21 ��� �0�#��*
(cf. Fig. 2.b). Let � � ��� 9�@ and � � � ? 9$� 9�@ . Then, � .0� � �� � �*�	� Q�� 	 � � Q�	7/ � � Q � / � � Q � 2 � � � Q���� � � Q�� �
�	� Q � 1 � � Q � 2 � � Q � � � � Q � 1 � � � Q � � � � Q�� � � Q���	 � and �H. � � �� � � �	� Q�� 	 � � Q�	7/ � � Q � / � � � Q���� � � Q�� � � Q�2�/ 	 , as ?
only holds in � � 9��0� , � � 9 � � , and � � 9�� � . Hence, � ��� 
 �&? 9$� 9�@�1 � 9�@ � � �H. � � �� ��> � . � � �� � � � Q��
��1 . Note that if
�43 ��� �!�� � would be observed after $%� 
 ��� � � in � , then we could conclude that initially ? has the probability 0,
which is intuitive. 4

4.3 Planning

We now formulate the notions of a (sequential) plan and of its goodness for reaching a goal observation
given that a sequence of actions and observations has occurred.

Definition 4.7 Let � be a sequence of actions and observations and @ an observation. The sequence of
actions � � � � 9 Q�Q�Q 9$� � is a plan of goodness � for @ after � has occurred, denoted � � 	 � � ��� � � @ �0��� ,
iff � . $�� � � <�� 9�@ �0��� .

In the general planning problem in our framework, we are then given a sequence of actions and obser-
vations � that has occurred, a goal observation @ , and a threshold � , and we want to compute a plan � such
that �H� 	 � � ��� � � @ �	�
� .

Example 4.8 Let � � and � be as in Example 2.6. Let ? � �73 ��� � � � � �73 ���B� � � � � �43 ����� � � � and @��
�43 ���
� � � ��8 �73 ����� � � � . Then, �=���
� 3 �0� � �B9	�+/T����
 � 9��
� 3 �0��� � is a plan of goodness � Q�/�/�� for @ given that ?
holds initially.

On the other hand, � � 	 � �&? � � � @ � �0� � for @ � �D�73 ���
�B� � � , since � might (unpredictably) carry �%� to �
instead of ��� . However, � � 	 � �&? 9$� � 9�@ � � � � Q�/�/�� � ��� Q�� 1 � for � � ��� 9 � ���-� 9��
� 3 �0� � �B9	�+/T����
 � 9��
� 3 �0��� � . Note
that � � is optimal, since moving twice to � and to

�
is necessary in general.

If �+/ ����
7� would be probabilistic and, e.g., obey the uniform distribution, then � � 	 � �&? � � � @ � � 

� would
hold. Indeed, there would be a context � after executing � where @ holds in all its associated states. A wrong
�+/T����
7� decreases the success probability, which is, however, still non-zero. 4

5 Conditional Planning in P
���

In this section, we show how conditional planning can be expressed in � ��� . We define the concept of a
conditional plan and its goodness for reaching a goal observation. Intuitively, conditional plans generalize
plans by interleaved observations, which may be used to select the proper actions for all contingencies.
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Definition 5.1 A conditional plan � � is either the empty conditional plan, denoted � , or of the form
� � 1 � ��� � � 1 �����!1 1 ����� ���0� , where (i) � is an action, (ii) � ��8 1 � 9 Q�Q�Q 9)1 � < , � � � , is a set of exhaustive
and pairwise exclusive observations, and (iii) � � � , ��� /���� , is a conditional plan. A path for � � is either
(i) the empty path, denoted # , or (ii) of the form � or � 1 � , if � �4��� � 1 � �	� � � 1-�����A1 1 � ��� � � � , or (iii) of the
form � 1 �'��� , if � � ��� � 1 � ��� � � 1-����� 1 16�.�	� ��� � and ��� is a non-empty path for � � � .

Observe that every path � for � � addresses a subexpression of � � , denoted � � Q � , which is defined by:

� If �)�*# , then � � Q �)�
� � .

� If �)��� and � �4��� � 1 � �	� � �!1-����� 1 1 � �	� ���0� , then � � Q �)� � 1 � �	� � �!1-����� 1 1 � �	� ���0� .
� If �)��� 1 � and � �4��� � 1 � �	� � � 1-����� 1 1 � �	� � � � , then � � Q �)��� � � .
� If �)��� 16�-��� and � �4��� � 1 � �	� � �!1-����� 1 16�.�	� ��� � , then � � Q �)�
� � � Q ��� .
We next define the concept of a belief tree for a conditional plan under an initial observation. Intuitively,

a belief tree is a directed tree (that is, a directed acyclic graph in which every node has exactly one parent,
except for one node, called root, which has no parents; nodes without children are leaves) of possible sets of
states. Its branchings represent different possible effects of actions or different possible observations. Every
arc has a real number that represents the probability of its transition.

Definition 5.2 The belief tree ����� � 9-� . � for a conditional plan � � under an initial observation ? , denoted
�
����� , consists of a directed tree

� �2��� 9��=� , where the nodes are pairs � � 9 � � consisting of a path � for � �
and a set of states � , and a mapping � .0��� �

� � 9 � 	 , which are constructed by the following steps (1)–(3)
(where � ��� � � , if �6�*# , and � ��� � � � , otherwise):

(1) Initially, � consists of all the arcs � # 9$
 � � � # 9 � � such that ���+8 � � 	#
:1 � 1 � ? < ���
 for some � �
�(� 	 � � , and � . maps every such arc to � 
*� 7 # ��� ( ( ��� �.! � . � ��� � > � 
*� 7 # ��� ( (�� &�� �.!�� &�� � � � . � ��� � .

(2) Consider the tree � �2� � 9-� . � with
� � ��� 9��3� constructed thus far. For every leaf � � 9 � � such that

� � Q �6��� � 1 � �	� � �!1-����� 1 1 � �	� ���0� and 
 � � � �
�/� � 1 ��� � , we enlarge � as follows:

(2.1) We add to � all the arcs � � 9 � � � � � � � 9 � � � such that � � �0	 
 ���!9$�!� for some �=�.�(� 	 � � , and
each such arc is under �H. associated with � 
*� 7 # � + ( (���� � � ! # � (�� ( �H. � ��� � .

(2.2) We then add to � all the arcs � � � � 9 � � � � � � � � 16� 9 � � � � with � � � ��8 � � � � 1 � 1 � 1 � < ��0
 along
with the value � under � . for each such arc.

(3) We repeat (2) until � does not contain any leaves � � 9 � � such that � � Q �)��� � 1 � �	� � �A1-����� 1 1 ����� ���0�
and 
 � � � �

� � � 1 �"��� .

We finally define the goodness of a conditional plan � � for obtaining a goal @ under an initial obser-
vation ? . It is computed using the belief tree ����� �3� � ��� 9��3�B9-� . � . Roughly, the success (resp., failure)
leaves of �!����� are associated with the goodness value � (resp., � ). We then propagate such goodness values
to every node of �!����� , using the goodness values of the children and the numerical values associated with
every arc. The goodness of � � is then defined as the goodness value of the root of ����� � .

Definition 5.3 The goodness of a conditional plan � � for obtaining a goal @ given an initial observation ? ,
denoted � � � 	 � �&? � � � � @ � , is defined as the value �(� � # 9$
 � � , where � �!� �

� � 9 � 	 is recursively defined as
follows on the set � of nodes of �"�������2� ��� 9��=�B9-�H. � :
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� � ��� �0� � for every leaf � �2� � 9 � �(� � (called success leaf) such that � � Q �)� # and 
 � � � �
� 1 � @ ;

� � ��� �0� � for every leaf � �2� � 9 � �(� � (called failure leaf) such that either � � Q � ��*# or � � � � �
� �1 � @ ;

� � ��� �0��� �����
	�� � �
� � .0��� ��� � �����(��� � � for every non-leaf node � �2� ��� 9 � �(� � ;

� � ��� �0� � �
	�� ����� �H. ��� ��� � � � �(��� � � for every other node � �2� � 9 � �(� � .

We illustrate the concept of a conditional plan and its goodness in our robot example, where � 9	� � �
and � abbreviate � � � � � � �B� and � � � � �(� , respectively.

Example 5.4 For reaching the goal @ � ���73 ���
� � � � given the initial observation ?)���43 ��� � � � � �43 �����B� � � �
�43 ����� � � � , consider the conditional plan

� �&� $
� 
 ��� � �B9 &' )(+*�,-&�� �����C��� = �
� �0$%� 
 ����� � 1
�����C���(�� �
� � $%� 
 �(��� �B9���.U�0& 9 $
� 
 �(� � �B9 &V �(�*-,-& 9 $
� 
 �(��� � � Q

It is not difficult to verify that its goodness is given by � � � 	 � �&? � � � � @ � �0� � Q����
� ��� Q�� � � Q�� ��� , which is
higher than � � 	 � �&? � � � � @ � �0� � Q�� 1 � in Example 4.8.

Clearly, � Q���� �-� Q�� is an upper bound for the goodness of any (conditional or normal) plan for reaching
the goal @ � given the initial observation ? . The one of the conditional plan � � �
�
� 3 �0� � �B9 � �� converges to it
( � ��� ), where � �� � &' )(+*�,�&�� ��������� � �
� � $
� 
 ����� � 10�B���C���(�� �
� : $%� 
 �(���0�B9���.U�2& 9 $%� 
 �(� � �B9 &' �(�*-,-& 9 $%� 
 �(��� � � and� �� � &' �(�*-,-&/� �B���C��� � �
� � $%� 
 �(��� � 12�����C���(�� �%� : ��./�0& 9 � ���� � � for � 
 � . 4

6 Reduction to Causal Theories

Section 4 shows that several important problems in reasoning about actions can be formulated in terms of
probabilities of histories. To compute such probabilities, it is sufficient to compute compact belief states.
Here, the main computational task is to decide whether � � ��	 
 � � � � holds for contexts �=����� 	 & � . We now
show how this can be reduced to reasoning about models of causal theories.

We first give some preparative definitions. For each non-rigid variable 
��
	 and /��
� , let / � 
 be a
new variable of the same type and domain. We denote by / � � the formula obtained from a formula

�
by

replacing each atom 
 ��� with non-rigid 
��
	 by / � 
���� . We define

� � �-� � as the set of all � � 
 ��� � � � 
 ��� for each simple fluent 
��
	 and �=�.����
 � , and all
� � �+� � � � for each axiom (1) in �:� , and

� /��'� as all / � ��� / � � for each axiom (1) in � , and all / � ��� �1/ � � � � �1/��9��� G � for each axiom (2)
in � , /�

� .

We next associate every history
�

and context �=����� 	 & � with a causal theory � 
& as follows.

Definition 6.1 For histories
�

of action length � , the associated causal theory �
&

is inductively defined by:

�
& �

��� �� � �'� � if
� � #

�
� � � �"�

� 8���� ��� �� � � < if
� � �A9 � �

�
� � 8�� �)1 � � < if

� � �A9 � 1 ,

where � is an action, �� is a formula encoding � , and 1 is an observation. For each �3�.��� 	 & � , let � 
& be
obtained from �

&
by replacing each

�����
by � � �+�*� � .
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The following theorem then finally describes how deciding whether � ����	 
;� � � � holds can be reduced to
reasoning about the models of the causal theory � 
& .

Theorem 6.2 Let
�

be a history of action length � . Let �3�.��� 	 & � and � be an action � (resp., observa-
tion 1 ). Suppose that 	�
�� � � is defined. Then, � �	� ��	 
�� � � � iff � � ���#�<� �	� 
& ��� � 1 � � �$��� (resp.,

� 1 � � �)1 ),
and � 
 �0��	 
 � � � � iff 
 � ��� �<� �	� 
& ��� � 1 � � ��� � (resp.,

� 1 � � �)1 ), where �#�<� �	� 
& � denotes the set of all
models of � 
& .

Using this result, we can inductively test if 	 
 � � � is defined along the prefixes of
�

. As � 
& is poly-
nomially constructible, we thus can compute � . � � � with an oracle for causal theory consistency (which is� � � -complete [7]) using a simple (in worst case exponential) backtracking procedure. Moreover, deciding
� .0� � � 
 � is feasible in � �

��� + , i.e., in nondeterministic polynomial time with a
� � � oracle.

7 Summary and Outlook

We have presented the probabilistic action language ����� , which generalizes ��� by probabilistic infor-
mation into an expressive framework for dealing with qualitative as well as quantitative uncertainty about
actions. Its formal semantics is defined in terms of probabilistic transitions between sets of states. We have
then shown that, using the concepts of a history and its belief state, several important problems in reasoning
about actions can be concisely expressed in it, which may be solved employing reductions to causal theories
and solvers for them.

An interesting topic of future research is to provide more efficient algorithms and a detailed complex-
ity analysis for probabilistic reasoning about actions in ����� . Other interesting topics are to add costs to
planning and conditional planning and to define in our framework further semantic notions like counter-
factuals, interventions, actual cause, and causal explanations, taking inspiration by similar concepts in the
structural-model approach to causality [15, 9].

A Proofs

Proof of Proposition 3.2. Let
� �D�A9�� be a history, where �
� � 1 is a labeled observation. It is sufficient

to show that if
�'& �2� � & 9)( & 9-�H. & � is defined, then (19) holds. Thus, suppose that

� &
is defined. Then,

�
& � �

�
� � ������� (�� � # � ( � . � ��� � �

( & � 8 	 
����!9�� � 1 �3�.��� 	 � �B9 ��� ( � 93� �(��� � <
� 8 8 � � � 1 � 1 � 1 < 1�� � ( � 9 � � ��� � < �

�H. & ��� � � � � ���� � � 	 ��
 � ������ 	�� � . �(��� � 1 � �0� �H. � ��� � (for all � � � ( & )

� � ���� � � 	���
���� ����� 	����	 �"!$#&%�� 	)(*% ( ! ,�.�H. � ��� � (for all � � � ( & ).

This shows that (19) holds. 4
Proof of Theorem 3.4. Observe first that � � � 3& � is defined, if

� 3& is defined. It is thus sufficient to show that
(i)

� 3& is defined iff
�'&

is defined, and (ii) if
� 3& is defined, then �(� � 3& �0� � & . We show this by induction along

�
.
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Basis: Let
� �*# . Then, both

� 3& and
� &

are defined, and thus
� 3& is defined iff

�'&
is defined. That is, (i) holds.

Let
��3& �2� � 3& 9�4 3& 9-� . 3& � , � & �2� � & 9)( & 9-�H. & � , and � � ��3& �0�2� � 9)(:9-� . � . Trivially, �)���

3& ��� ���
&
. Observe

then that ( ��8 	�
�� � � 1 �/� 4 3& < �+8 	�
 � 1 �3� 4 3& < ��8 	 
51 �/�.��� 	 � � < �*( & . Finally, for every � �+( � ( & :

� .0��� � � � 
*��� � � (,��� �.! # & ( � . 3& ��� �
� � 
*� 7 # ��� ( ( ��� �.! � . � ��� �
� �H. & ��� � Q

In summary, this shows that �(� � 3& �0� � & . That is, (ii) holds.

Induction: Let � be a history, and suppose that (i)
� 3�

is defined iff
���

is defined, and (ii) if
� 3�

is defined,
then �(� � 3� �0� � � . We now prove that (i)

� 3& is defined iff
�'&

is defined, and (ii) if
� 3& is defined, then �(� � 3& �0� � & ,

where
� � �A9�� with �
� � � . We first prove that (i) holds. By the induction hypothesis,

� 3& is defined iff (a)
� 3�

is defined, and (b) � � ��	 
 ��� � � for some �3� 4 3�
iff (a)

� �
is defined, and (b) � � ��� � for some � �+( �

iff
� &

is defined.

This shows that (i) holds. For the proof of (ii), assume now that
��3& is defined. Let

� 3� �2� � 3� 9�4 3� 9-�H. 3� �
and

��� �2� � � 9)( � 9-� . � � . Let
� 3& �2� � 3& 9�4 3& 9-� . 3& � , � & �2� � & 9)( & 9-� . & � , and � � � 3& �0�2� � 9)(:9-� . � , where

� �D� 9��
with �=� � � . We then obtain the following by the induction hypothesis:

( � 8 	�
�� � � 1 �3�54 3& <
� 8 	�
 � ��	 
 � ��� �B9�� � 1 �=�54 3& <
� 8 	�
 � ��	 
 � ��� �B9�� � 1 � � �54 3� 9 � �(��	 
 � ��� � �B9 ���:�.��� 	 � � <
� 8 	 
 ���!9�� � 1 �3�.��� 	 � �B9 � � ( � 93� � ��� � <
� ( & Q

Moreover, the following holds by the induction hypothesis:

� � �
3&

� �
3� � � 
*� ��� � ( � � # � ! # � ( ( � . 3� ��� �

� �
�
� � � ��� � (�� � # � ( (�
*����� � (,��� � ! # � ( �H. 3� ��� �

� �
�
� � � ����� (�� � # � ( �H. � ��� �

� �
& Q
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Finally, for every � �+( � ( & , the following holds by the induction hypothesis:

�H. ��� � � � 
 � � � � (�� � � ! # & ( � . 3& ��� �
� � � �� � � � � 
 � � � � (,��� � ! # & ( � . 3� ��� � �0� � . �����.� �
� � � �� � � � � 
 � � � � � ( � � # � ! � # � ( ( (�
 � � 7 # � � ( ( ��� � ! � # � ! � # � ( (,� ( � . 3� ��� � ��� � . ������� �
� � �� � � � ��� ��� � (�� � # � � ( ( 
 � �
��� � (,� �)� � ! � # � ( � . 3� ��� � ��� � � 
 � � 7 # � � ( (��-� � ! � # � � ( � ( �H. �(����� � �
� � �� � � � � � ����� (�� � # � � ( � 
 � � � � ( � � � �"! # � ( �H. 3� ��� �0� � � 
*� 7 # ��� ( ( �.! # � � ( � ( � � �H. �;��� � �
� � �� � � � ��� ����� (�� � # � � ( � . � ��� � �0� � � 
*� 7 # ��� ( ( �"! # ��� ( � ( � � � . �;��� � �
� � ���� � � ��� ����� (�� � # � � ( � . � ��� � �0� �H. �(��� 1 � � �
� � . & ��� � Q

In summary, we obtain �(� � 3& �0� � & . This shows that (ii) holds. 4
Proof of Propositions 4.2 and 4.5. The statements follow immediately from the observation that actu-
ally observed formulas (resp., preconditions of actually executed actions) must hold in at least one element
of a possible set of states, while hypothetically observed formulas (resp., preconditions of hypothetical ac-
tions) must hold in all elements of a possible set of states. 4

For the proof of Theorem 6.2, we need the following preparative result.

Proposition A.1 Let
�

be a history of action length � , let �=� ��� 	 & � , and let � (resp., 1 ) be an action
(resp., observation). Suppose 	'
;� � � is defined. Then, �#�<� �	� 
& � is given by

����� ����
�����
	��
	������ � �  �� if ��������������� �"! � �#  �$�%� ��& �$' � if ���)(+*-, '���/. �0& �
	  . �0&2143 �65  �$�������� �7! � �#  �* 	������98 � �;:=<%> * 5  �� if ���)(+*-, 5 ,

where (i) � �
�

maps every fluent variable � � 
 with 
��=	 to
� ��
�� , (ii) ��� ��� � maps every action

variable ��� ��� 
 with 
��
	 to � ��
 � , and (iii) 3�: � � maps every rigid (resp., fluent) variable 
��
	
to 3 ��
�� (resp., 3 ����� ��� 
 � ).
Proof. For

� � # , we have � 
& �2�	� �'� � � 
 and 	�
 � � �0�0	 
 � , where (i) �	� �'� � � 
 is the set of all rules
� �	� � �+� � � � � for all axioms (1) in �:� and all rules � � 
 ��� � � � 
��>� for each simple fluent 
 �
	
and �
�.�(��
�� , and (ii) 	�
 � is the set of all models over rigid and fluent variables of the causal theory
comprising the rules � � � �+�*� � for all axioms (1) in � � and all rules 
 ��� � 
 ��� for each simple
fluent 
���	 and �=�.����
 � . This shows that �#��� �	� 
& �0�+8 � � � 1 � � 	 
;� � � < .

For
� �D� 9 � 1 , we have � 
& � � 
 �� � 8�� �$1 � � < and thus � �<� �	� 
& �0��8 3(� �#�<� �	� 
 �� � 1 3 1 � � �)1 < .

For
� ��� 9 � � , it holds that � 
& � � 
� � ��� �'� � 
 � 8���� ��� �� � � < . Suppose that 3 � � � �<� �	� 
& � . Then,

3 � ��
��0������� ��� � � ��
�� for every action variable 
��
	 . Moreover, the restriction 3 �� of 3 � to all rigid vari-
ables 
 �=	 , all fluent variables /�� 
 such that � � /�� ��� � and 
��
	 , and all action variables / � 
 such
that � � /�� ��� � and 
 �
	 is a model of the reduct of � 
��� relative to 3 �� . We now show that 3 �� is also
a unique such model. Towards a contradiction, suppose the contrary. That is, there exists another such
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model 3 � � . Then, 3 � � � 3 � 1 � � ����� ��� � � , where 3 � 1 � is the restriction of 3 � to all fluent variables � � 
 with

���	 , is a model of the reduct of � 
& relative to 3 � , which contradicts 3 � � �#��� �	� 
& � . This shows that
3 �� � � �<� �	� 
��� � . Finally, it holds that 3 �: satisfies all formulas caused in � 3 �: � � 9$� 9,3 �: � under ��� . We now
show that 3 �: is also a unique such interpretation. Towards a contradiction, suppose there exists another such
interpretation 3 � � . Then, 3 �� � 3 � � 1 � � ����� ��� � � is a model of the reduct of � 
& relative to 3 � , which contradicts
3 � � � �<� �	� 
& � . This shows that 3 �: is a unique such interpretation, and thus 3 �: � 	�
 + � 3 �: � � 9$� � . In summary,
�#��� �	� 
& � is a subset of the set of all 3

� ��� �
� � � ����� ��� �!� such that 3 � �#��� �	� 
 �� � and

� � 	�
$+ � 3�: � � 9$�!� .
To prove the converse, suppose that 3(� �#�<� �	� 
��� � and

� � 	�
 + � 3%: �:� 9$� � . Then, 3 � � 3
� ��� �

� � � ����� ��� � �
is a model of the reduct of � 
& relative to 3 � . We now prove that 3 � is also a unique such model. Towards a
contradiction, suppose there exists another such model 3 � � . Then, 3 � � �����9��� 
��0� 3 ����� ��� 
 � for every ac-
tion variable 
 �
	 . Moreover, 3 � �� � 3 �� as otherwise 3 �� would not be a model of � 
 �� . Hence, 3 � � 1 ���� 3 � 1 � ,
but this contradicts � 3�: � � 9$� 9 � � being causally explained under �3� . This shows that 3 � is a unique model of
the reduct of � 
& relative to 3 � , and thus 3 � � �#�<� �	� 
& � . In summary, every 3

� ��� �
� � � �����9��� �!� such that

3 � �#�<� �	� 
 �� � and
� � 	�
$+ � 3%: � � 9$� � is also an element of �#��� �	� 
& � . 4

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. It is sufficient to show that

	 
;� � � � 8 3�:21 3(��� �<� �	� 
& � < Q (20)

We give a proof by induction along
�

.

Basis: Immediate by Proposition A.1 for the case
� �*# .

Induction: Assume that
� � � 9�� , where �
� � 1 (resp., ��� � � ) and �"� � ��� � ��� � � � ��� � � � � � �

(resp., �>� � ��� � ��� � � � ��� � � � � � �:� � � � ). Suppose that 	'
 � ��� � � 8 3 �61 3(��� �<� �	� 
��� � < .
For ��� � 1 , the following holds by the induction hypothesis and by Proposition A.1:

	 
;� � � � 	 
 �;��	 
�� ��� �B9�� �
� 8 � � 	 
�� ��� � 1 � 1 � 1 <
� 8 3�:21 3(� �#�<� �	� 
��� �B9 3 1 � � ��1 <

� 8 3�:21 3(� �#�<� �	� 
& � < Q

For ��� � � , the following holds by the induction hypothesis and by Proposition A.1:

	 
;� � � � 	 
 �;��	 
�� ��� �B9�� �
� 8 � 1)� � � � 	 
 � ��� �4� � � 	 
 + � � � 9$� � <
� 8 � 1)� 3(� � �<� �	� 
��� �4� � � 	 
 + � 3�: � � 9$�!� <
� 8 3�:21 3(� �#�<� �	� 
& � < Q

In summary, this shows that (20) holds. 4
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