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Abstract. We focus on the aspect of sensing in reasoning about actiafes gualitative and prob-
abilistic uncertainty. We first define the action langu&der reasoning about actions with sensing,
which has a semantic foundation on the autoepistemic geterilogic ALCK o=, and which is
given a formal semantics in a system of deterministic ttaors between epistemic states. As an
important feature, the main computational tasks an be done in linear and polynomial time. We
then introduce the action languafje for reasoning about actions with sensing under qualitating
probabilistic uncertainty, which is an extensior€dby actions with nondeterministic and probabilis-
tic effects, and which is given a formal semantics in a sysiédeterministic, nondeterministic, and
probabilistic transitions between epistemic states. \&e défine the notion of a belief graph, which
represents the belief state of an agent after a sequencéeofrii@stic, nondeterministic, and prob-
abilistic actions, and which compactly represents a setnabtmalized probability distributions.
Using belief graphs, we then introduce the notion of a camuil plan and its goodness for rea-
soning about actions under qualitative and probabilisticentainty. We formulate the problems of
optimal and threshold conditional planning under qualiteand probabilistic uncertainty, and show
that they are both uncomputable in general. We then give garithms for conditional planning in
our framework. The first one is always sound, and it is alsopdeta for the special case in which
the relevant transitions between epistemic states are-fsext. The second algorithm is a sound and
complete solution to the problem of finite-horizon conditib planning in our framework. Under
suitable assumptions, it computes every optimal finitézieorconditional plan in polynomial time.
We also describe an application of our formalism in a robsticcer scenario, which underlines its
usefulness in realistic applications.
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1 Introduction

Representation and reasoning about actions is a basic component figsiiga of cognitive robots. In
reasoning about the actions of mobile robots operating in real-world emegots, one of the most crucial
problems that we have to face is uncertainty, both about the initial situatiore bbot's world and about
the results of the actions taken by the robot. One way of adding uncertairgpgoning about actions is
based on qualitative models, in which all possible alternatives are equalydeved. Another way is based
on quantitative models, where we have a probability distribution on the setsflge alternatives, and thus
can numerically distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about actions, sutheesituation calculus [34], easily
allow for expressing qualitative uncertainty about the initial situation of theédxand the effects of actions
through disjunctive knowledge. Similarly, recent formalisms for reasoabwut actions that are inspired
by the early action languagd [16], such as the action language- [17], and the planning languagé
[11], allow for qualitative uncertainty in the form of incomplete initial states aoddeterministic effects of
actions.

The need for dealing with quantitative uncertainty has lead to a number pbgats for probabilistic
reasoning about actions. They include in particular probabilistic extemsifthe situation calculus [3, 28],
of logic programming formalisms [31], and of the action languzigé].

Even though there is extensive work on reasoning about actions gualéative and probabilistic uncer-
tainty separately, there is only few work that orthogonally combines quatitatid probabilistic uncertainty
in a uniform framework for reasoning about actions. One seminal gyatoach is due to Halpern and Tut-
tle [19], which combines nondeterminism and probabilistic uncertainty in a gaewgetic framework. In
particular, Halpern and Tuttle [19] draw the following important conclusion:

“This discussion leads us to conclude that some choices in a distributethgysist be viewed
as inherently nondeterministic (or, perhaps better, nonprobabilisticihand is inappropriate,
both philosophically and pragmatically, to model probabilistically what is intitreondeter-
ministic.”

This underlines the strong need for explicitly modeling qualitative uncertainagdition to probabilistic
uncertainty in reasoning about actions. The following example illustratesitbigysneed for modeling both
gualitative and probabilistic uncertainty.

Example 1.1 (Robotic Soccer)n a robotic soccer domain, the action “align to ball” may succeed resp. fail
with the probability0.7 resp.0.3, while the goalkeeper’s action “open legs” may either save the goal or not
save the goal. That is, the former action has probabilistic effects, whiletteedation has nondeterministic
effects. More precisely, in the latter case, it may not be possible to agsigahplities to the possible effects,
which in fact depend on external factors (such as the speed and thefkiitk performed by an opponent
robot) and thus cannot be given a priori. That is, we only know thatdldkgeper’s action “open legs” may
save the goal resp. not save the goal with the probabiligsp.1 — p, where the valug € [0, 1] is unknown.
Hence, rather than having exactly one probability distribution, we havedtedifferent situation of a set

of possible probability distributions for the effects of an action. Obserpaiticular that we cannot simply
assume the uniform distribution, that is, thpat 1 — p = 0.5 holds.

The work [12] is among the few papers that orthogonally combine qualitatideprobabilistic uncer-
tainty in a uniform framework for reasoning about actions. However,apgoach does not deal with the
crucial issue okensingn reasoning about actions under qualitative and probabilistic uncertaihigh is
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needed to operate in dynamic environments in which it is not possible to aedjuine necessary informa-
tion before executing a task (that is, in the initial state). In contrast to adii@tshange the state of the
world (also calleceffect actiony sensing actions reasoning about actions (see especially [24, 26, 37]) are
actions that allow an agent or a robot to obtain information about certapegres of the world. Sensing
actions are strongly motivated by the overwhelming part of real-world adfits where the initial state
of the world is not fully specified or where exogenous actions may oecut,consequently an agent or a
robot is forced to use sensors of some sort to determine the valuedaihgaoperties of the world. One
important way to represent the sensing capabilities of the robotic agenbiggthanepistemicoperator,
which allows to distinguish what the agdatowsfrom what is true in the world [24, 21].

In this paper, we develop a formalism that allowsgensingn reasoning about actions undgralitative
and probabilistic uncertainty thus formulating and addressing the problem of conditional planningrunde
gualitative and probabilistic uncertainty. The proposed formalism proadesmplete integration of the
notion ofepistemic beliefwith that ofprobabilistic belief Furthermore, we show that, in this setting, under
rather feasible hypotheses, the basic reasoning task can be solvaghiomial time.

More specifically, the contributions of this paper can be summarized as follow

e We present the action languagefor reasoning about actions with sensing. We define a formal
semantics of action descriptionsdrby systems of transitions betweepistemic statefr e-state},
which are sets of possible states of the world. We show that all basic compatadtieks i€ (among
which there are especially the tasks of deciding whether an action is ellecurtaan e-state, and of
computing the successor e-state after executing an action in an e-stat®) dane in linear resp.
polynomial time.

e We show that the action languages semantically founded on the autoepistemic description logic
ALCK nr. This semantic foundation on description logics is in the spirit of an importarente
trend towards combining action languages with description logics [1] for magpdeeb services in
the Semantic Welb, 13] of which theOWL Web Ontology Languagd@8, 20] (recommended by the
W3C) is crucially based on description logics.

e We define the action language- for reasoning about actions with sensing under qualitative and prob-
abilistic uncertainty, which is an extension of the action languagg actions with nondeterministic
and probabilistic effects. Note that such an extension can also be dé&inéd and related action
languages as core action language inste&d @¥e define a formal semantics of action descriptions in
&+ through systems of deterministic, nondeterministic, and probabilistic transitdwsén e-states.

e We introduce the concept of a belief graph, which represents the beltefaf an agent after a se-
guence of deterministic, nondeterministic, and probabilistic actions. We afsee dbe notions of
lower and upper probabilities of fluent formulas in belief graphs, and m&dlyi prove the important
result that every belief graph is a compact representation of a senofmialized probability distri-
butions, which intuitively shows that combining nondeterminism with precisbgtiities leads to
imprecise probabilities.

e We introduce the concept of a conditional plan in our framework foramiag about actions under
qualitative and probabilistic uncertainty. We define the notion of goodrfessonditional plan for
achieving a goal from an initial observation, and the problems of optimattaedhold conditional
planning under qualitative and probabilistic uncertainty. We then show ditlafdooblems are uncom-
putable in the general case.
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e We present an algorithm for cycle-free conditional planning undelitgtige and probabilistic un-
certainty, which computes a set of conditional plans with goodness abgiwem threshold) > 0.
The algorithm is always sound, and it is also complete when the relevasitiarsystem between
e-states is acyclic. That is, in the latter case, the algorithm returns theadketohditional plans with
goodness abov

e We also present an algorithm for finite-horizon conditional planning ugdalitative and probabilis-
tic uncertainty, which computes all optimal conditional plans of length belowengnorizonh > 0.
An important feature of this algorithm is that every optimal conditional plarbeacomputed in poly-
nomial time, when the horizon is bounded by a constant, which is a reas@ssmption in many
applications in practice.

e The concepts and techniques of this paper are illustrated along a robotierscenario, which also
gives evidence of the usefulness of our formalism in realistic applications.

The rest of this paper is organized as follows. In Sections 2 and 3, fieedle action languagé
and show that it can be semantically reduced to the autoepistemic descripimalldgiCr, respectively.
Section 4 extend§ by actions with nhondeterministic and probabilistic effects. In Section 5, wedut®
the concept of a belief graph, and in Section 6, we formally define theitommal planning problem in our
framework. Sections 7 and 8 provide algorithms for cycle-free and firatezon conditional planning in
our framework, respectively. In Section 9, we discuss related wagti@ 10 summarizes the main results
and gives an outlook on future research. To not distract from thedfawading, some technical details of
the presented results have been moved to Appendix A.

2 TheAction Language &

In this section, we introduce the action langudgevhich is syntactically similar to the action languade
and its variants including the recefitt, but which has a formal semantics in description logics. More
precisely, it is equivalent to a fragment of the autoepistemic description JOGEKC A+ [9] for modeling
dynamic systems, which has been successfully implemented and used lfotia smccer team [21].

As a central feature, the action languagellows for sensing actions and for modeling tgstemic
stateof an agent, which is the set of all world states that the agent considssif®in a given situation.
Intuitively, the epistemic state encodes what the agent knows about the wocontrast to what is true
in the world [24, 36]. Reasoning about actions in the presence of geissthen done by modeling the
dynamics of the agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified éxthrough an initial state description and an action description, which
express what an agent knows about the initial properties of the wodchaw this knowledge changes
through the execution of actions, respectively. We now describe thaxsgnd the semantics of initial state
and action descriptions.

2.1 Syntax

An action description ir€ consists of a set of formulas that encode dynamic knowledge aboutehe pr
conditions and effects of actions as well as static background knowkdulme the world. The states and
properties of the world are described through fluent formulas, whielBaolean combinations of elemen-
tary propositions, called fluents. They may directly or indirectly changeufiréhe execution of actions.
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We first define fluents, actions, and fluent formulas. We assume a nonéinipgyset offluents 7
and a nonempty finite set @fctions.A, which are divided inteeffect actionsand sensing actiongwith
binary sensing outcome). We ugeand T to denote the constanfaise and true, respectively. The set
of fluent formulass the closure ofF U{_L, T} under the Boolean operatorsand A (that is, if ¢ and
are fluent formulas, then alsap and(¢ A ). We use(¢ V ) and (¢ < ¢) to abbreviate-(—-¢ A —)) and
—(¢ N ), respectively, and adopt the usual conventions to eliminate parentieesnt literal/ is either
a fluentf or the negation of a fluentf. A fluent conjunctiory is eitherL, or T, or a fluent formula of the
forméi A --- AL, Wherelq, ..., ¢, are fluent literals and > 1.

We next introduce precondition, conditional effect, sensing effetauiteframe, and domain constraint
axioms in the action language We useprecondition axiomso encode the preconditions of actions. They
are expressions of the form

executable ac if ¢, Q)

where ¢ is a fluent conjunction, and is an action. Informally, the axiom (1) encodes that the action
is executable in every state that satisitesin particular, if¢ =T, thena is always executable. We use
conditional effect axiom® represent the different conditional effects of effect actionsy®ne of the form

caused ¢ after o when ¢, 2)

whereg andy are fluent conjunctions, andis an effect action. Informally, the axiom (2) encodes that if the
current state of the world satisfiesthen the successor state after executing the aatgatisfies). If =T,
then the axiom (2) is also called affect axiomand abbreviated asused ) after a. Sensing effect axioms
associate with sensing actions their possible two sensing outcomes. Tleehbdorm

caused to know w or —w after «, 3)

wherew is a fluent literal, andv is a sensing action. Informally, after executimgthe agent knows that is
either true or false. Note that, for ease of presentation, we consides@méjng actions with two outcomes,
but the formalism and all our results can be easily extended to sensingsaettbrmore than two outcomes.
Default frame axiomassociate with actions properties of the world that they generally do nogehahey
are of the form

inertial ¢ after a, (4)

where¢ is a fluent conjunction, and is an effect action. Informally, i holds in the current state of the
world, then¢ holds also in the successor state after executing the agtidinthis is consistent with the
effects ofa. Finally,domain constraint axiomdescribe background knowledge, and are of the form

caused ¢ if ¢, )

where/ is a fluent literal, andp is a fluent conjunction. Informally, every state of the world that satigfies
should also satisfy). Such an axiom (5) represents static background knowledge abawubthte which is
invariant relative to the execution of actions.

We are now ready to define the notions of an initial state description and afteon description as
follows. Aninitial state descriptiony; is a fluent conjunction. Amction descriptiond D is a finite set of
precondition axioms, conditional effect axioms, sensing effect axiosfault frame axioms, and domain
constraint axioms.

The following example shows how some actions of a goalkeeper in robotieis¢RoboCup Four-
Legged League) can be expressed in the action langtiage
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Example 2.1 (Robotic Soccer cont’'dThe fluents aréallclose (the goalkeeper is close to the babijllin-

area (the ball is in the penalty arealeeahead (the space ahead the goalkeeper is fr@gjpsition (the
goalkeeper is in the correct positiomglimoving (the ball is moving towards the goaBlignedtoball (the
goalkeeper is aligned with the direction of the ball), giodlsaved (the goal has been saved). We assume
the effect actiongotoball (a movement towards the ball, which may touch the ball and move it outside the
penalty area)bodykick, straightkick, andsidekick (three different kinds of kicks with different capabili-
ties),openlegs (a position for intercepting a ball kicked towards the goal), alightoball (a movement for
aligning to the direction of the ball moving towards the goalkeeper’s own gasivell as several sensing
actions for some of the properties.

An action description is shown in Fig. 1. In particular, the actgomoball is executable only if the
ball is in the penalty area and not moving towards the goal (1). The aspieriegs has the effect that the
goalkeeper is able to save the goal when it is aligned to the ball directiowk®h encodes a possible
capability of saving the goal even when the alignment is unknown. Afterghsiisg actiorsenseballclose,
the goalkeeper knows if the ball is close or not (9). All fluents are ingtid), and thus they generally do
not change through the execution of an action. Finally, the ball is in thdtpearaa, if the goalkeeper is
close to the ball (13), since we assume that the goalkeeper is always imitsrea

2.2 Semantics

An initial state descriptiod; represents an epistemic state, which is a set of possible states of the world,
while an action descriptioml D encodes a system of transitions between epistemic states (which forms
a directed graph where the nodes represent epistemic states and the ememde transitions between
epistemic states through actions).

We first define states and epistemic states, which are truth assignments tefite fisp. sets of states
that satisfy every domain constraint axiomArD and that are representable by a fluent conjunction. For-
mally, astates of an action descriptiom D is a truth assignment to the fluents/in A set of statesS
satisfiesa fluent formulap, denotedS |~ ¢, iff every s € S satisfiesp. It satisfiesa domain constraint ax-
iom caused v if ¢ iff either S = ¢ or S |=1. An epistemic statéor e-stat@ S of AD is a nonempty set of
statess of AD such that (i)S satisfies every domain constraint axiomAm, and (i) there exists a fluent
conjunctiong such thatS is the set of all statesof AD that satisfye.

We next define the executability of actions in e-states and the transitionsdmeeastates through the
execution of effect and sensing actions. An actiois executablén an e-states of AD iff S |= ¢ for every
precondition axiomexecutable o/ if ¢ in AD.

Given an e-stat& of AD and an effect actiom that is executable ii¥, let direct(S, o) denote the
conjunction of alk) such thataused ¢ after « when ¢ isin AD andS = ¢. We say thatS’ is asuccessor
e-stateof S under the effect action iff S’ is an e-state ofi D such that (i)S’ satisfiesdirect (.S, «), (ii)

S’ satisfies every domain constraint axiomAmD, and (iii) S’ satisfies a maximal subset of default frame
axioms (that is, there exists ¥’ # () such that (1)S” C 5’, (2) S” satisfiesdirect(S, ), (3) S” satisfies
every domain constraint axiom ihD, and (4) there exists a default frame axiomartial ¢ after o in AD
such thatS = ¢, S’ = ¢ and S” = ¢). Intuitively, a successor e-state Sfunder« encodes the direct
effects ofa (expressed througttirect (S, «v)), the indirect effects due to the domain constraint axioms, and
a maximal propagation of inertial properties that are consistent with the=s dimd indirect effects.

Analogously,S’ is asuccessor e-statef S under a sensing actiam with outcomeo € {w, —~w} iff S’
is an e-state ofi D such that (i)S’ satisfieso, (ii) S’ satisfies every domain constraint axiomAm, and
(iii) S’ satisfies a maximal subset of default frame axioms (that isy’hg () exists such that (13" c 5/,
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(i) precondition axioms:
(1) executable gotoball if ballinareaA—ballmoving

(2) executable bodykick if ballclose

(3) executablestraightkick if ballcloseAfreeahead
(4) executablesidekick if ballcloseA—freeahead
(5) executablealigntoball if ballmoving

(6) executableopenlegs if ballmoving

(7) executablesensealignedtoball if ballmoving

(i) conditional effect axioms and effect axioms:

(8) caused goalsaved after openlegs when alignedtoball
(9) caused ballclose after gotoball

(10) caused —ballinarea after bodykick

(11) caused —ballinarea after straightkick

(12) caused —ballinarea after sidekick

(iif) sensing effect axioms:

(13) caused to know ballclose or —ballclose after senseballclose
(14) caused to know freeahead or —freeahead after sensefreeahead
(15) caused to know alignedtoball or —alignedtoball after sensealignedtoball

(iv) default frame axioms:
(16) inertial ¢ after o (for every fluent literal and every actiom)

(v) domain constraint axioms:
(17) caused ballinarea if ballclose

Figure 1: Robotic Soccer Example: Action descriptio.

(2) S” satisfieso, (3) S” satisfies every domain constraint axiomArD, and (4) there is a default frame
axiominertial ¢ after «in AD with S = ¢, S’ £ ¢ andS” = ¢). Intuitively, a successor e-state®tinder a
sensing actiom encodes the sensing outcomexgthe indirect effects due to the domain constraint axioms,
and the propagation of inertial properties consistent with them.

The following result shows an important uniqueness property for sgoce-states, namely that there
exists at most one successor e-state of an e-Stated D under an effect actioa (resp., a sensing action
with outcomeo), denotedd (S, o) (resp.,®(S, ay)).

Theorem 2.2 Let AD be an action description in the action languagglet S be an e-state ofi D, and let
a be an effect axiom (resp., sensing action with outcomédw, ~w}). If a successor e-state Sfundera
(resp.,« with outcome») exists, then it is unique.

We are now ready to define the formal semantics of action and initial stateplests as follows. An
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So = S5, = —ballmovingAballinarea

S1 | —ballmovingAballinareaAfreeahead S7 |= —ballmovingAballinareaAballcloseAfreeahead
Sa = —ballmovingAballinareaA—freeahead Sg = —ballmovingAballinareaAballcloseA—freeahead
S3 |= —ballmovingAballinareaA—ballclose So [= —ballmovingA—ballinarea

S4 = —ballmovingAballinareaAballclose S10 = —ballmovingA—ballinareaAfreeahead

S5 = —ballmovingAballinareaA—ballcloseAfreeahead S11 = —ballmovingA—ballinareaA—freeahead

S = —ballmovingAballinareaA—ballcloseA—freeahead

Figure 2: A part of the directed graggh, p s, for 6; = —ballmovingAballinarea.

action descriptiom D represents the directed graph p = (IV, E), whereN is the set of all e-states dfD,
andE C N x N containsS — S’ labeled with ‘&” (resp., ‘a,”) iff (i) « is an effect action (resp., sensing
action with outcome» € {w, —w}) that is executable irt, and (ii) S’=®(S, ) (resp., S’ =®(S, a,)).
An initial state descriptiod; encodes the greatest e-statedd that satisfies);, denotedSs,, if it exists

(if there is an e-state that satisfi&s then there is also a greatest such e-state). We denat& by, the
subgraph of+ 4 p consisting of all successors §f, along with their incident arrows.

Example 2.3 (Robotic Soccer cont'dConsider the action descriptiohD shown in Fig. 1 and the initial
state descriptiod; = —ballmovingAballinarea, where the ball is in the penalty area and not moving. A
portion of the directed grap@ 4 p 5, is shown in Fig. 2.

We finally define the notion of consistency for action and initial state desangtiin action description
is consistent iff it has at least one e-state and every action executiofirisadleAn initial state description
is consistent if its e-state is defined. Formally, an action descriptibris consistentff (i) AD has at least
one e-states, (i) ®(S, «) is defined for every e-statg¢ of AD and every effect action that is executable
in S, and (iii) ®(S, a,) is defined for every e-staté of AD and every sensing actiom with outcome
o€ {w,~w} that is executable it. An initial state descriptiord; is consistenif Ss, is defined. In the
sequel, we implicitly assume that all action and initial state descriptions are tmonisis

2.3 Computation

The main computational tasks related to action descriptibhsn £ are (i) deciding whether an actienis
executable in an e-stat§ (ii) computing the e-stat8, for a fluent conjunctiow (if it exists), (iii) deciding
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if an e-stateS satisfies a fluent conjunctiafy and (iv) computing the successor e-state of an e-Stateder
an actiona (if it exists). In this section, we provide upper bounds for the complexityhese tasks, which
show that they all can be solved efficiently. In detail, (i) and (i) can bothidr@e in linear time in the
size of AD, while (iii) can be done in polynomial time in the size 4D.

For fluent literald = f (resp./ = —f), we use-./ to denote-f (resp.,f), and for sets of fluent literals,
we define~.L ={—.¢| ¢ € L}. For fluent conjunctions, we denote by.it(¢) the set of all fluent literals in
o, if ¢ is satisfiable, and the set of all fluent literals, otherwise. For e-stqgte® denote by.it(S) the set
of all fluent literals satisfied by.

Given an action descriptioAD, an e-stateS of AD (represented by.it(.S)), and an actiomy, deciding
whethera is executable irt' can be done in linear time in the size 4D along the set of all precondition
axioms inA D using standard data structures. Similarly, give and a fluent conjunction, computing the
e-stateS, (represented by.it(S,)) of AD and deciding whether a given e-stat€represented by.it(S))
of AD satisfiesp can also both be done in linear time in the sizedd? using standard data structures.

In the rest of this section, we provide a polynomial-time algorithm for computingubeessor e-state
of an e-state under an effect action (which can also easily be adaptedhfute the successor e-state of
an e-state under a sensing action). The algorithm, c&ladpute-Successor, is presented in Fig. 3. It
takes as input an action descriptidrD, an e-state5 of AD (represented by.it(.S)), and an effect action
a, and it returns as output the successor e-sfatsf S undera (represented by.it(S’)). The set of fluent
literals L' = Lit(S") is constructed as follows. We start by initializidg to an empty set, which is first
augmented with all the fluent literals corresponding to the direct effectedddhiona in S (steps 2—3 of
the algorithm). Then, all the indirect effects due to the domain constrainimaxére added td’ (steps
4-8). Then, it is verified (step 9) whether the set of litel&lsomputed so far isonsistentthat is, for
each literall belonging toL’, the literal—./ does not belong td’. Finally, the effects of the default frame
axioms are computed and addedfo(steps 10-19). In particular, for each default frame axioential ¢
afte o such thatp holds in the initial e-stat® (step 11), the set of literals,,,,. initially contains the inertial
literals propagated by the default frame axiom (that is, the ones occumrig)g then (steps 13—-17),4ux
is closed with respect to the domain constraint axioms (that is, it is augmentetheititerals indirectly
derived by the domain constraint axioms); finally, it is verified (step 18thér the set of literal,,,. thus
computed is consistent with!, that is, the set of literal&’ U L., is consistent: if this is the case, then the
default frame axiom can be applied and the literalg {and all their indirect consequences) are propagated
in the successor state’ by adding the literals in_,,, to the setL’. The following theorem shows that
Compute-Successor is correct.

Theorem 2.4 Given an action descriptiod D in the action languag¢, an e-stateS of AD (represented
by Lit(S)), and an effect actiom, Compute-Successor computes the successor e-stateof S undera
(represented by.it(S")), if it exists.

Proof. First, it is easy to verify that there exists no successor e-stafe wider« iff the set of fluent
literals obtained by the union of the direct effectscofn S and the indirect effects given by the domain
constraint axioms is unsatisfiable. Thus, the algorithm returns no seteott fliterals (step 9) iff there
exists no successor e-state fundera. Then, we prove that, for eachD, S, anda as stated in the
theorem, the algorithm returns the set of fluent lited&ls- Lit(S’), whereS’ is the successor e-state of

S undera. First, notice that, whem is a fluent conjunction, thefi = ¢ iff Lit(¢) C Lit(S) (steps 3 and

11 of the algorithm). Now, the first for—each cycle at step 2 guarante¢shih above e-state represented
by L' satisfiesdirect(S, ), while the two repeat—until loops guarantee that the e-state represenféd by
satisfies all domain constraint axiomsAD. Finally, the last for—each cycle at step 9 guarantees that the
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Algorithm Compute-Successor

Input: action descriptiom D, e-stateS of AD (represented by.it(.S)), and effect actiom.
Output: successor e-stat¥ of S undera (represented by.it(S")), if it exists.

1. L=

2. for each conditional effect axiomc¢aused v after o when ¢”in AD do
3 if Lit(¢) C Lit(S) then L' = L' U Lit(¢));

4. repeat

5. L'=1r"

6 for each domain constraint axiomcaused v if £”in AD do

7 if ¢ € L'then L' = L' U Lit(¢))

8. until L” =L’;

9. if L' is not consistenthen return “there exists no successor e-statesaindera”;
10. for each default frame axiomihertial ¢ after o”in AD do
11.  if Lit(¢p) C Lit(S) then begin

12. Lauz = Lit(¢);

13. repeat

14. Lizuz = Laue,

15. for each domain constraint axiomcaused ) if £”in AD do
16. if £ € Lauaz then Layz = Laue U Lit ()

17. until L. = Laue,

18. if L' U Laus is consistenthen L' = L' U Laua

19. end;

20. return L'

Figure 3: Algorithm Compute-Successor

e-state represented iy satisfies a maximal subset of default frame axioms as requested by thgatetih
successor e-state. Thus, the returhé equal toLit(S”), whereS’ is the successor e-state®findera. O

Finally, as an immediate consequence of the previous result, we state an mhpgpar bound for
the complexity of computing successor e-states. The following theoremssitaty computing successor
e-states can be done in polynomial time. Here, we denotel by (resp.,||AD||) the number of elements
in AD (resp., the size ofl D).

Theorem 2.5 Let AD be an action description in the action languagiget « be an effect action, and Iét
be an e-state ofl D (represented by it(S)). The successor e-stafd = & (.5, «) (represented by.it(S"))
can be computed in tim@(|AD]| - || AD||). Moreover, ifa is a sensing action, andis an outcome aof, the
successor e-state’ = ®(S, «,) (represented by.it(S’)) can be computed in tim@(|AD| - || AD]|).

Proof. For effect actionsy, the proof is an immediate consequence of the algorifompute-Successor

in Fig. 3. Indeed, it is easy to see that the algorithm runs in tined D| - || AD||) using standard data
structures (note that the size bft(S) is linearly bounded by AD||). The case when is a sensing action
can be proved analogousiy.

3 Description Logic Semanticsof £

In this section, we show that the action langu&gmn be semantically reduced to the autoepistemic descrip-
tion logic ALCK a7+ [9]. The reduction is essentially based on the following correspondd@d¢ (i) roles
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and concepts encode actions and fluents, respectively, and (@pistemic operatorK and A are used to
encode the epistemic state of an agent. Note tha€ -+ is a special case of Lifschitz’s loglel KNF
[25] and has a similar semantics in possible-world structures, where easlble world corresponds to a
standard description logic interpretation.

We first recall the syntax and semantics of the description ldgi€ X -, and then describe the reduc-
tion from the action languagg to the description logicALCK \r.

3.1 Syntax of ALCK \r

We now define the syntax of the description logi€C/C . Intuitively, description logics model a domain
of interest in terms of concepts and roles, which represent classafividirals and binary relations between
classes of individuals, respectively. A knowledge base encodeststdiationships between classes, the
membership of individuals to classes, and the membership of pairs of indisittubinary relations between
classes.

We assume pairwise disjoint and nonempty finite sgt$k, and A\ of atomic conceptsatomic roles
andindividual namesrespectively. We denote by (resp.,T) thebottom(resp.,top) concept The set of
all conceptsandrolesis inductively defined as follows. Every element4f) { L, T} is a concept. I{” and
D are concepts, ang is arole, then-C,C 11 D, C U D, 3R.C,VR.C, KC, andAC are concepts. Every
element ofR is a role. IfR is a role, then als& R and A R. The conceptC andAC (resp., roleXKR
and A R) are also calle@pistemic conceptgesp.,roles). The operator& and A are called theminimal
knowledge operataand thedefault assumption operatorespectively.

An inclusion axiomis an expression of the for@ C D, whereC' and D are concepts. Aoncept
membership axioris an expression of the forfi(a), whereC' is a concept, and is an individual name.
A role membership axiorhas the formR(a,b), where R is a role, anda andb are individual names.
A knowledge basd(B is a set of inclusion axioms, concept membership axioms, and role membership
axioms.

3.2 Semanticsof ALCK v r

We next define the semantics AfLCKC 7. Roughly, individual names € \, the atomic conceptd € A,

and the atomic role® € R are interpreted with respect to standard description logic interpretatitish w
consist of a nonempty denumerable domaiand a function” that associates with the above items elements
of A, subsets of\, and binary relations oA, respectively. The formal meaning of the concepisr, —C,
CnD,CuD,3R.C,andvVR.C is defined in the standard way, while the operalérand A are interpreted
with respect to two sets of possible worldg and N, respectively, where each possible world is a standard
description logic interpretation. For examplE('(d) encodes that is “known” to be an instance af’,
which holds ifd is an instance o€ in every possible world of\. Similarly, AC(d) encodes that is
“assumed to be” an instance @f which holds ifd is an instance of” in every possible world aiV.

Formally, aclassical interpretatiorf = (A, -Z) consists of a nonempty denumerabemainA and a
function-Z that associates with each individual name A" an element ofA (under the usuainique name
assumptionwherea? # b% for any two different individual names, b € \), with each atomic concept
A€ A a subset ofA, and with each atomic rolé> € R a subset ofA x A. An epistemic interpreta-
tion W = (Z, M, N') over the domain\ consists of a classical interpretatidrover the domaim\ and two
sets of classical interpretatiorisl and A" over the domaim\. The function-”” then interprets individual
names, concepts, and roles by induction as shown in Fig. 4 (wheran individual name froml/, A is an
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aV =at (AR.CYWY ={de A |3d": (d,d) € R andd' € C"}
AV = AT (YR.C)W ={de A|Vd': if (d,d) € R thend' € C"}
V=90 (KOYY = {CTMN) | 7 e M}
™=A (ACYY = N{CT-MM | T e N}
(-CYW=A-CW pW=pZ
(CnDYW=cWnbDW (KR)YW = {RVMN) | 7 e M}
(CuDyY =Cc"uD¥ (AR = ({RTMN) | 7 € N}

Figure 4: Semantics of the autoepistemic description lgQi€ K ~.

atomic concept fromd, C' and D are conceptsP are atomic roles frorR, and R is a role). For example,
de (KC)TMN)iff de CT-MN) for all 7 € M. Furthermored € (A-C)TMN) iff d e -C(T-MN)
for all 7 € V. Similarly, d € (FKR.T)ZMN) iff somed’ € A exists such thatd, d') € RW-MN) for all
JeM.

An epistemic interpretatiolV = (Z, M, ') is a modelof an inclusion axiomC' C D, or W satis-
fiesC C D, denotedV = C C D, iff C*Y C D"V, The epistemic interpretation is amodelof a concept
membership axiont’(a), or W satisfiesC(a), denotedV |= C(a), iff a"¥ € C*V. Similarly, W is amodel
of a role membership axiorR(a, b), or W satisfiesR(a, b), denotedV |= R(a, b), iff (a"V,b"V)c RY. We
say)V is amodelof a knowledge bas& B, denotedV = KB, iff W is a model of everyf’ € KB.

We finally define the notions of satisfiability and logical consequence fowlatdge base& B in terms
of preferred models of(B. A modelW =(Z, M,N) of KB is apreferredmodel of KB iff (i) Z € M,
(i) M =N, (iii) (7, M,N) E KB for all 7 € M, and (iv) M is maximal with (iii) (that is, there exists
no M’ > M such that(7, M, N') = KB for all 7 € M’). A knowledge base(B is satisfiable(resp.,
unsatisfiablg iff KB has a (resp., no) preferred model. An axidimis a logical consequencef KB,
denotedK B |= F, iff every preferred model oK' B is also a model of".

3.3 Description Logic Semanticsof £ in ALCK x+

We finally show how the action languagecan be semantically reduced to the autoepistemic description
logic ALCK . In the sequel, lel D be an action description.

We associate withl D the description logic knowledge bagd3, which is obtained fromd D by replac-
ing (i) every precondition axiomxecutable « if ¢ by K¢ C 3dKa. T, (ii) every conditional effect axiom
caused ¢ after oo when ¢ by Ko C Va1, (iii) every sensing effect axiomwaused to know w or —w after o
by T C K(Va.w) UK (Va.—w), (iv) every default frame axiormertial ¢ after a by K¢ C VKa.A—-¢pLK,
and (v) every domain constraint axiacaused v if £ by K¢ C <. The fluents inA D act as atomic concepts
in KB, the actions inA D act as roles ik B, and the operators, A, andV in fluent formulas inAD act
as the operators, M, andL! in concepts inK B, respectively. The above correspondences betweand
ALCK nrr are compactly summarized in Table 1.

For every state of AD, we define the concegt, = [ 1{p(f) | f € F}, wherep(f) = f, if s(f) =true,
andp(f)=~f, if s(f)="false, for all f € F. For every e-stat& of AD, we define the concepts as the
conjunction of all fluent literalg € 7 U —.F that are satisfied by every state S (which is equal toT if no
such fluent literal exists).
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Table 1: Correspondences betweeand ALCK \r.

Action Language Description LogicALCKCarr
fluent atomic concept

L, T,/ AV 1,7, - mu

action role

executable « if ¢ K¢ C dKa. T

caused ¢ after o when ¢ KopCVa.ap

caused to know w or —w after « TCK(Vaw) UK(Va.—w)
inertial ¢ after « Ko CVKa.A-¢ UKo
caused 1 if ¢ KiCwoy

The following theorem shows the important result that the notion of an e-shee=xecutability of
actions in e-states, and the transition between e-states through actiodeedmntan action description
AD in £ can be reduced to the notion of logical consequence from the knowtetge( B in ALCK prr
associated witd D.

Theorem 3.1 Let AD be an action description in the action language and let KB be its associated
knowledge base in the autoepistemic description logiiC/C - Lets be a state ofA D, and letS be an
e-state ofdD. Then:

(@) An actiona is executable it iff KB =K¢g C IKa.T.

(b) Leta be an effect action that is executable $h Then, ®(S, «) is the smallest e-stat§’ such
that KB ': Kos EVa.pgr.

(c) Leta be a sensing action with outcomes {w, —w} that is executable ir5. Then,®(S, a,) is the
smallest e-staté’ such thatk B =K¢gs C Va.¢g and S’ =o.

4 TheAction Language £+

In this section, we introduce the action language, which is an extension of the action languag®y
actions with nondeterministic and probabilistic effects. We define the syn@us@mantics of extended
action descriptions i&-+, which extend action descriptions éhby axioms to encode nondeterministic and
probabilistic effects of actions.

41 Syntax

We divide the set of effect actions intteterministic nondeterministic and probabilistic effect actions
The nondeterministic and probabilistic conditional effects of the latter two tgpastions are encoded in
nondeterministic and probabilistic conditional effect axioms, respectivelyondeterministic conditional
effect axiorrhas the form

caused 1, ..., 1, after a when ¢, (6)
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(vi) nondeterministic conditional effect axioms:
(18) caused goalsaved, —goalsaved after openlegs

(vii) probabilistic conditional effect axioms:

(19) caused ballclose: 0.8, =ballinarea: 0.1, —ballclose: 0.1 after gotoball

(20) caused —ballinareaA—inposition: 0.1, —ballinareaAinposition: 0.5,
—inposition: 0.1, T: 0.3 after bodykick

(21) caused —ballinarea: 0.9, T: 0.1 after straightkick

(22) caused —ballinarea: 0.7, T: 0.3 after sidekick

(23) caused alignedtoball: 0.7, —alignedtoball: 0.3 after aligntoball

Figure 5: Robotic Soccer Example: Nondeterministic and probabilistic conditedfect axioms.

wherey, . . ., 1, and¢ are fluent conjunctionsgy is a nondeterministic effect action, and> 2. Informally,
if the current state of the world satisfies then the successor state after executirgptisfiesy; for some
i€{1,...,n}. A probabilistic conditional effect axioms an expression of the form

caused v : p1,...,Un: p, after a when ¢, @)

wherey, ..., , and¢ are fluent conjunctionsy is a probabilistic effect actiom, ..., p, >0, p1+---+
pn=1, andn > 2. Informally, if the current state of the world satisfigsthen the successor state after
executingy satisfiea); with the probabilityp;, foralli € {1,...,n}. If ¢ =T, then the axiom (6) (resp., (7))
is also called amondeterministi¢resp. probabilistic) effect axiomand we omit When ¢” in (6) (resp., (7)).

We define extended action descriptions as follows. ektended action descriptioBAD is a finite
set of precondition, conditional effect, sensing effect, default frasheenain constraint, nondeterministic
conditional effect, and probabilistic conditional effect axioms.

Example 4.1 (Robotic Soccer cont'd)The effect actiongotoball, bodykick, straightkick, sidekick, and
aligntoball of the robotic soccer scenario in Example 2.1 have either nondeterministiolzalplistic ef-
fects, and thus cannot be encoded in action descriptio&is lHowever, using nondeterministic and prob-
abilistic conditional effect axioms, they can be easily be expressed indedeaction descriptions ifi+.
More precisely, the extended action descriptiohD is given by the precondition, conditional effect, sens-
ing effect, default frame, and domain constraint axioms in Fig. 1 and théatemministic and probabilistic
conditional effect axioms in Fig. 5. In particular, after executing the eterhinistic effect actionpenlegs,

the goal is saved or not (14). After executing the probabilistic effeibmagotoball, the ball is close with
probability 0.8, or the ball is not in the penalty area with probabilityt, or the ball is not close with proba-
bility 0.1 (15).

4.2 Semantics

We define the semantics of an extended action descrifid® by a system of deterministic, nondeter-
ministic, and probabilistic transitions between e-states. To this end, we exettisition system of an
action descriptionrd D by nondeterministic and probabilistic transitions between e-states througle-non
terministic and probabilistic effect actions, respectively. These transiticmsdefined by associating with
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every pair(S, «) of a current e-staté and a nondeterministic (resp., probabilistic) effect actiothat is
executable irb, a set (resp., probability distribution on a set) of successor e-stategxd®iting in S.

Note that the above probabilistic transitions are similar to the probabilistic trarssitidally observable
Markov decision processes (MDPs) [33] and partially observablekdWadecision processes (POMDPS)
[22]. However, they are between e-states and fais of statemther tharsingle states

In the sequel, leFAD be an extended action description. We define states, e-states, the kiicofa
actions in e-states, and the transitions between e-states through the exetdeterministic effect actions
and sensing actions in the same way as in Section 2.2, but relatikel f» instead ofAD. Hence, it
now only remains to define the nondeterministic and probabilistic transitions &etevstates through the
execution of nondeterministic and probabilistic effect actions, respéctive

Let S be an e-state oA D, anda be a nondeterministic (resp., probabilistic) effect action that is
executable inS. We now define the set (resp., probability distribution on a set) of suacesstates af-
ter executingn in S. We first collect the set of all axioms (6) (resp., (7)) B D that arerelevant to
S and o, that is, for whichS |= ¢ holds. Let{caused 1;1,..., ¥;., after a when ¢;|jc J} (resp.,
{caused ©j1: pj1,---,Yjn;: Pjm; after a when ¢;|j € J}) denote this set. For every combination
c=(Vj)jes = (Vji;)jes (calledcontex) from Cs o = {(v))jes | Vi€ : i€{tj1,...,%jn, }}, We then
compute one successor e-state (which is associated with the prob&biity(c) =I1;c s p;;;, if o is prob-
abilistic). We thus assume that any two nondeterministic (resp., probabilistidjtmmal effect axioms
relevant toS and« are logically (resp., probabilistically) independent. Formally,shecessor e-statf S
after executingy in the context = (vj)cs € Cs,o, denotedd. (S, «), is the e-stat@ (.S, o) under the ac-
tion description obtained fro#A D by removing all axioms (6) and (7) and addicayised /\jeJ 1 after a.
We finally define the overall nondeterministic (resp., probabilistic) transitiofolbows. If o is nondeter-
ministic, then theset of successor e-statebS undera is defined ag, (S) = {®.(5,a) | c€ Cs4}. If
is probabilistic, then therobability distribution on the successor e-statéss undera, denotedPr, ( - |.5),
is defined byPrq (S]5) = X ey ., s7—a.(8.a) LTs.a(c) for all e-statesS” of EAD. Intuitively, executing
a nondeterministic action in an e-state5 nondeterministically leads to son$ € F,(.S), while executing
a probabilistic actiorx in .S leads toS” with the probabilityPr(S’|.S).

We are now ready to define the semantics of an extended action desciiptibnin terms of a sys-
tem of deterministic, nondeterministic, and probabilistic transitions between fegtessas follows. The
extended action descriptiafiA D represents the directed graphyap = (N, E), whereN is the set of alll
e-states offAD, and E C N x N contains (i) an arrons — S’ labeled with ‘«” for every e-stateS € N
and deterministic effect actiom that is executable i¥, whereS’ = ®(S, a), (ii) an arrowS — S’ labeled
with “a,” for every e-stateS € N and sensing actioa with outcomeo € {w, —w} that is executable 9,
whereS’ = ®(S, a,), (i) an arrow S — S’ labeled with ‘@..” for every e-states € NV, nondeterministic ef-
fect actiona that is executable it¥, and context € C's o, whereS’ = ®.(S, «), and (iv) an arrons — S’
labeled with ‘@, pr” for every e-states € N, probabilistic effect actiom that is executable i¥, and con-
textc e Cg o, Wherepr = Prg o (c) andS’ = ®.(S, o). We denote by7gap 5, the subgraph ofi g4 p that
consists of all successors §f, along with their incident arrows.

We finally define the consistency of extended action descriptions. WE4ayis consistentff (i) £AD
has at least one e-sta$e (i) ®(5, «) is defined for every e-statg of £AD and every deterministic effect
action« that is executable iy, (i) ®(S, «,) is defined for every e-statg of EAD and every sensing
actiona with outcomeo € {w, —w} that is executable iy, and (iv) ®.(S, «) is defined for every e-state
of EAD, nondeterministic or probabilistic effect actionthat is executable i¥, and context € Cg . In
the sequel, we implicitly assume that all extended action descriptions areteohsis
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So = S5, = —ballmovingAballinareaAinposition

S1 = —ballmovingA—ballinareaAinposition

Sa = —ballmovingAballinareaAinpositionA—ballclose

S3 = —ballmovingAballinareaAinpositionAballclose

S4 | —ballmovingAballinareaAinpositionAballcloseAfreeahead
S5 = —ballmovingAballinareaAinpositionAballclose A—freeahead
Se = —ballmovingA—ballinareaAinposition

S7 = —ballmovingA—ballinareaA—inposition

Sg = —ballmovingAballinareaA—inpositionAballclose

So = —ballmovingA—ballinareaAinpositionAfreeahead

S10 = —ballmovingA—ballinareaAinposition A—freeahead

S11 E —ballmovingA—ballinareaAinposition A—ballclose

Figure 6: A part of the directed graghg4p s, for §; = —ballmovingAballinareaAinposition.

Example 4.2 (Robotic Soccer cont'dlet the extended action descriptiddd D be given by the axioms

in Figs. 1 and 5 excluding the axioms (9) to (12). Furthermore, let the initied gscription be given by

07 = —ballmovingAballinareaAinposition, where the goalkeeper is in the correct position, and the ball is in
the penalty area and not moving. Then, a portion of the directed @raply 5, is shown in Fig. 6.

5 Belief Graphs

In this section, we define the notion of a belief graph and the concepts ef lamd upper probabilities
of fluent formulas in belief graphs. We then show that every belief gimjphcompact representation of a
finite set of unnormalized probability distributions over the set of all e-stétethe sequel, leEAD be an
extended action description.

5.1 Belief Graphs

Intuitively, a belief graph encodes the overall epistemic state of an afienstarting from a single initial
e-state and then performing a finite sequence of actions. A belief graygistoof a directed acyclic graph
(which is a directed graph that does not contain any directed path formiggle) in which every node
represents an e-state and every arrow represents a transition bétweerstates. Given an initial e-state
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and a sequence of actions, . . . , «,,, their belief graph is built by using the initial e-state as a root and then
adding for every actiom;, i € {1,...,n}, a new layer of descendent nodes, namely, the set of all possible
successor e-states after executipgn the e-states added before.

Formally, every belief grap? = (V, E, ¢, Pr) consists of a directed acyclic graph= (V, E), a label-
ing function/ that associates with every node V' an e-staté(v) = S of EAD, and a partial mappingr
that associates with some arrows E a real number(e) € [0, 1]. Every belief graphB = (V, E, ¢, Pr)
has exactly one nodec V' without parents, called th®ot of B, and some nodes without children, called
theleavesof B. A deepest leadf B is a leaf of B that has the maximum distance from the rootfAn
action« is executablen a belief graphB iff « is executable in the labed of some deepest leaf of B.
More preciselypelief graphsare inductively defined as follows. Any noddabeled with an e-stat§ of
FEAD is a belief graph. In particular, for fluent conjunctionsuch thatS,, is defined, we denote b, the
belief graph that consists of a single nadibeled withS,;. If B is a belief graph and is a deterministic
(resp., nondeterministic) effect action executabl@&irthenB o « is also a belief graph, which is obtained
from B by (i) adding a new node’ labeled withS’ for every S’ = ®(S, a) (resp.,S’ € F,,(S)) such thatS
is the label of a deepest leafbf B in which « is executable, and (ii) connecting the nodesnd’ of such
S andS’, respectively, by a new arrow— o'. If B is a belief graph and is a probabilistic effect action
executable inB, thenB o « is also a belief graph, which is obtained frashby (i) adding a new node’
labeled withS’ for every S’ = ®.(S, «) such that (i.1y € Cs, and (i.2).S is the label of a deepest leaf
of B in which« is executable, and (ii) connecting the nodemdy’ of suchS andsS’, respectively, by a new
arrowe = v — v’ with the probabilityPr(e) = Pr,(S’|S). If B is a belief graph and is a sensing action
with outcomeo € {w, —w} executable iMB, thenB o a, is also a belief graph, which is obtained frasnby
(i) adding a new node’ labeled withS’ for every S’ = ®(S, a,,) such thatS is the label of a deepest leaf
of B in which« is executable, and (ii) connecting the nodemdy’ of suchS andS’, respectively, by a new
arrowe =v — v’. Informally, B o a (resp.,B o «,) is the successor belief graph after executing the action
(resp.,« with outcomeo) in B.

Example 5.1 (Robotic Soccer cont'dConsider the fluent conjunctiai = ballinarea A inposition A —ball-
moving. Fig. 7, left side, shows the belief graphs after executing the followiggesgces of actions s,
(that is, the belief graph associated with): (1.a)goto- ball andbodykick; (1.b) gotoball, sensefreeahead
with outcome€T, andstraightkick; and (1.c)gotoball, sensefreeahead with outcomeF, andsidekick.

Consider next the fluent conjuncti@n = ballmoving. Fig. 7, right side, shows the belief graphs after
executing the following sequences of actions in the belief giagh (2.a)openlegs; (2.b) aligntoball and
openlegs; (2.C)sensealignedtoball with outcomeTl’ andopenlegs; and (2.dkensealignedtoball with outcome
F, aligntoball, andopenlegs.

5.2 Lower and Upper Probabilities of Fluent Formulas

We next evaluate the truth of fluent formulas in belief graphs. Since a lggheh as an overall epistemic
state of an agent contains qualitative and probabilistic uncertainty, it ggeaifiet of probability values for
the truth of a fluent formula, rather than an exact binary truth value. \Wecesly deal with the smallest
and the largest probability value of a fluent formglan a belief graphB, called thelower and theupper
probability of ¢ in B, respectively. Intuitively, given the qualitative and probabilistic knowkedf B, the
fluent formulag holds with at least (resp., most) its lower (resp., upper) probabilify.in
Formally, letB = (V, E, ¢, Pr) be a belief graph with the roete V, and lety be a fluent formula. Let

Gq=(Vy, E4) denote the subgraph 6f= (V, E') where (i)V; is the set of all nodes € V' on a path fromr
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Figure 7: Belief graphs and lower probabilities of fluent formulas.

to a deepest leaf i/, and (ii) F; is the restriction off’ to the nodes ifV;. Then, thdower probabilityof ¢
in B, denotedprob; 5(¢), is the valueprob, ,.(¢), where the functiomrob; .(¢): Va— [0, 1] is defined by:

e prob,,(¢) is 1 for every leafv € V; with £(v) |= ¢, and0 for all other leaves € Vy;
e prob, ,(¢) = mine—, ../ex, prob; ,,(¢) for everyv € V; wherePr(e) is undefined;
o proby ()= 3oy _ep, Pr(e) - prob, (o) for everyv € V; wherePr(e) is defined.

Informally, the deepest leavesof B whose e-staté(v) satisfies (resp., does not satisfypssociate with
¢ the lower probabilityl (resp.,0). We then propagate the lower probability to every nodé:gf using
the lower probabilities of the children and the probabilities that are assoegiitedome arrows. The lower
probability of ¢ in B is the lower probability that the roetassociates witkp. Similarly, theupper proba-
bility of ¢ in B, denotedprob,, 5(¢), is the valueprob,, ,.(¢), whereprob,, .(¢): V4 — [0, 1] is defined by:

e prob, ,(¢)is1 for every leafv € V; with £(v) [= =, and0 for all other leaves € Vy;
e prob, ,(¢) = max.—, ..er, prob, . (¢) for everyv € V; wherePr(e) is undefined;

o prob, ()= —y wep, P'r(e) - prob, (o) for everyv € V; wherePr(e) is defined.
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Finally, theexecutability probabilityof a belief graphB is defined agprob, 5(T). Intuitively, this is the
probability with which the sequence of actions behikhds executable.

Example 5.2 (Robotic Soccer cont'd)The lower probabilities o = —ballinarea A inposition in the
belief graphs of Fig. 7 (1.a), (1.b), and (1.c) are giverdby 0.72, and0.56, respectively, while the lower
probabilities of; = goalsaved in the belief graphs of Fig. 7 (2.a), (2.b), (2.c), and (2.d) are given, by7,
1, and0.7, respectively. The executability probabilities of the belief graphs of F{§.&) to (1.c) are al).8g,
while the executability probabilities of the belief graphs of Fig. 7 (2.a) to (2elph1.

The following lemma shows that the lower probability of a fluent formuia a belief graphB is always
below the upper probability af in B. This result can be easily proved along the recursive definition of the
lower and the upper probability gfin B.

Lemma5.3 If B is a belief graph and is a fluent formula, theprob, 5(¢) < prob,, p(¢).

5.3 Representation Results

We finally show that every belief graph is a compact representation df @ senormalized probability
distributions over the sef of all e-states ofEAD. That is, every belief graph can be associated with a set
of unnormalized probability distributions such that (i) deciding the executabilign action, (ii) executing
an action, and (iii) evaluating the lower and the upper probability of a flemdla in a belief grapl can
be defined in an isomorphic way on the set of unnormalized probability distitzuof B.

Let B=(V, E, ¢, Pr) be a belief graph with the roote V, and letG; = (Vy, E;) be the subgraph
of G=(V, E) defined in Section 5.2. Then, the set of unnormalized probability distributiessciated
with B, denotedu g, is defined ags,, where the function. . associates with every nodec V; a set of
unnormalized probability distributions by:

o u,={u,} forevery leafv € V;, wherep, (¢(v)) =1 andpu,(S) =0 for all otherS € S;
o u,=U{p,|e=v—' € E,} for every node € V; such thatPr(e) is undefined;

o p,=U{Decivep, Pr(e) py | Ve=v—v'€Ey: py € p,y} for every nodev € V; such that
Pr(e) is defined, whergd ., . cp Pr(e) pw)(S)= > ey ep, Pr(e) - us(S) for all e-states
SeSs.

Example 5.4 (Robotic Soccer cont’'d)rhe belief graph in Fig. 7 (1.a) has one unnormalized probability
distribution, which maps the e-states of the deepest leaves to the probabilite®.4, 0.08, and0.24,
while the belief graph in Fig. 7 (2.a) has two probability distributions, one thatsrtize first leaf td, and
one that maps the second leafito

The following theorem shows that the executability of an action a belief graphB can be expressed
in terms of u, that is, B's set of unnormalized probability distributions over the Sedf all e-states of
EAD. It also shows that there exists an operatibsuch thatu; o' = pp,,, for all belief graphsB and
all actionsa that are executable iB.

Theorem 5.5 Let FAD be an extended action description, Ietbe a belief graph, and let be an action,
which is executable i3 for (b) to (e). LetS be the set of all e-states @A D, and letu i be B’s set of
unnormalized probability distributions ovét. Then:
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(a) The action is executable irB iff it is executable in some e-statec S such thatu(.S) > 0 for some
HERR-

(b) If « is a deterministic effect action, theng,, = {poca|u e g},
where(poa)(S') = X ges. sr—a(s,qa) H(S) forall S" e S.

(c) If ais a sensing action with outcomes {w, —w}, thenug,, ={roa,|p € pg},
Where(/.L o O[O)(S/) - ZSES: SIZCI)(S,OQ;) ,LL(S) fOl’ a” S, S S

(d) If «is a nondeterministic effect action, thag,, = {noda|p e pg, a € inst(a)}, where(uoa)(S”)
=2 ses: s—a(s,a) H(S) forall 5" € S, andinst(«) denotes the set of all actioassuch that> (S, @)
€ F,(S) forall S €S. Intuitively, inst(«) is the set of all possible “deterministic instances”of

(e) If«is a probabilistic effect action, theag,, = {uoa|pcpug},
where(u o a)(S") = Y ges: acecy o : 7= (5,0) Lra(S[S) - p(S) forall §” € S.

The next theorem shows that (i) lower and upper probabilities of fleentilas in a belief grap® and
(i) the executability probability of a belief graph can also be expressed in termd33$ set of unnormalized
probability distributions.

Theorem 5.6 Let EAD be an extended action description, Ietbe a belief graph, and let be a fluent for-
mula. LetS be the set of all e-states 614 D, and letu ; be the set of unnormalized probability distributions
overS associated wittB. Then, (a)prob; (¢) (resp.,prob, p(¢)) is given bymin,cp, 3 ges simg #(S)
(resp.,max,,c,, , ZSE&S%W ©(S)), and (b) the executability probability @ is min,cp,,, > ges 1(S).

6 Conditional Planning

The conditional planning problem in our framework can be describedliasvs. Given an extended action
descriptionEA D, an initial state descriptiofi;, and agoal descriptioni, which is a fluent conjunction,
compute the best conditional plan to achiégerom ;. We first define conditional plans and their goodness
for achievingds from §;. We then formally state the conditional planning problems and provide some
uncomputability results.

6.1 Conditional Plans

Intuitively, a conditional plan (see especially [24, 26, 37]) is a binargaed tree where every arrow
represents an action, and every branching expresses the two outobmesensing action, which can
thus be used to select the proper actions. We recall trditeated treeis a directed acyclic graph in
which every node has exactly one parent, except fordlog which has no parents; nodes without chil-
dren are calledeaves Formally, aconditional plan CP is either (i) theempty conditional plande-
noted \, or (ii) of the forma/; CP’, or (iii) of the form 3;if w then {CP,} else {CP_,}, wherea is
an effect action/s is a sensing action with outcomesand —w, and CP’, CP,,, and CP-,, are condi-
tional plans. We calke and g in (i) and (i), respectively, theoot actionof C'P, and we often abbreviate
“m; A" in (i) by “7”. The lengthof a conditional planCP, denotediength(CP), is inductively defined
by (i) length(\) =0, (i) length(a; CP') =1+ length(CP"), and (iii) length(3;if w then {CP,} else
{CP_,}) =14 max(length(CP,), length(CP-)).
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CP1 = gotoball;bodykick

CPy = gotoball; sensefreeahead; if freeahead then {straightkick}
else {sidekick}
CP3 = gotoball;senseballclose; if ballclose then {sensefreeahead:; if freeahead then {straightkick}
else {sidekick}}
CP, = openlegs
CPs = aligntoball; openlegs
CPg = sensealignedtoball;if alignedtoball then {openlegs}

else {aligntoball; openlegs}

Figure 8: Conditional plans.

Example 6.1 (Robotic Soccer cont'dConsider first the following initial state descriptiop= ballinarea A
inposition A =ballmoving, which encodes the initial state where the robot is in its standard position@and th
ball is in the robot’s own area and not moving, and the goal descrifigiega—ballinarea Ainposition, which
encodes the goal state where the robot should kick away the ball anthrenita position. Some potential
conditional plang’P1, CP, and CP3 for achievingi from é; are shown in Fig. 8. Consider next an initial
state descriptioa; = ballmoving, where the ball is moving, and a goal descriptien= goalsaved, where

the goal has been saved. Some potential conditional gldhs CP5, and CPg for achievingds from §;

are also shown in Fig. 8.

6.2 Goodness of Conditional Plans

We next define the notion of goodness for conditional plans. Intuitiledybest conditional plans are those
that reach a goal state from an initial state with highest probability.

We first define the goodness of a conditional plan for achieving a gat@ §om a belief graph. Given
a belief graphB and a conditional plai@P, we say thatCP is executablen B iff either (i) CP = X, or (ii)
CP = «; CP" anda and CP’ are executable i and B o a, respectively, or (ii)CP = j3; if w then {CP,,}
ese{CP-,}andg, CP,,andCP-, are executable i®, B o 3, andB o (-, respectively. Given a belief
graph B, a conditional planC'P that is executable if3, and a goal descriptiofy;, thegoodnes®f CP for
achievingd from B, denotedjoodness(CP, B, é¢), is defined as follows:

prob; p(dc) if CP=2X\
goodness(CP', Boa,d¢) if CP=a; CP’
min(goodness(CP,, Bo f3,,0q),
goodness(CP—,, Bo 3-y,0¢c)) if CP=g;ifwthen {CP,} ese{CP-,}.

Informally, if CP is empty, then its goodness for achievifigfrom B is the lower probability o in B.
Otherwise, ifCP consists of an effect actiam and a conditional plai@P”’, then its goodness for achieving
d¢ from B is the goodness af' P’ for achievingd; from the successor belief graph Bfafter executingy.
Finally, if CP consists of a sensing actighand one conditional plad’P,, for each outcome € {w, —~w},
then its goodness is the minimum of the goodness valuesiyf and CP—,, for achievingds from the
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successor belief graphs &f after executing? and observings and—w, respectively. We next extend the
notion of goodness for conditional plans from belief graphs to initial stageriptions as follows. Given
an initial state descriptiofi;, a conditional planCP that is executable in the belief gragh, (that is, the
belief graph that consists only of the e-stafe, which is the greatest e-sta$g, of £AD that satisfies;),
and a goal descriptioft;, thegoodnes®f CP for achievingds from 7, denotedjoodness(CP, d1,0¢), iS
defined as the goodness @P for achievingés from By, .

Example 6.2 (Robotic Soccer cont'dThe goodness values of the conditional pléfi3, and CP5 in Fig. 8
for achievingds = —ballinarea A inposition from §; = ballinarea A inposition A —ballmoving are given by
0.4 andmin(0.72,0.56) = 0.56, respectively, wheré.4 and0.72 and0.56 are the lower probabilities o

in the belief graphs in Fig. 7 (1.a), (1.b), and (1.c), respectively. Dnéitional planCP3 has the goodness
0.56 for achievingd from é;. The goodness values of the conditional plai3,, CP5, and CPg in Fig. 8
for achievingd = goalsaved from ¢; = ballmoving are given by, 0.7, andmin(1,0.7) = 0.7, respectively,
where0, 0.7, 1, and0.7 are the lower probabilities of; in the belief graphs in Fig. 7 (2.a), (2.b), (2.¢), and
(2.d), respectively.

The following result shows that the goodness of a conditional pl&ris the minimum of the goodness
values of all linearizations of’P, which are roughly all possible sequences of actions from the root to a
leaf of CP. Formally,linearizationsof a conditional plarC'P are defined as follows. The only linearization
of the empty conditional pla@P = ) is ) itself. A linearization of CP = «; CP’ has the formu; [, where
[ is a linearization ofCP’. A linearization of CP = 3;if w then {CP,} else {CP_,} has the formg,; [,
whereo € {w, ~w} andl, is a linearization ofCP,. The executability in belief graphs and the goodness for
achieving a goal description from a belief graph or an initial state desariptie then naturally extended
from conditional plans to their linearizations.

Proposition 6.3 Let EAD be an extended action description, detbe an initial state description, lefs
be a goal description, and lef’P be a conditional plan that is executable I#5,. Then, the goodness of
CP for achievingds from 67 is the minimum of the goodness values of all the linearizationSmffor
achievingds fromd;.

6.3 Problem Statements

The conditional planning problem in our framework of extended actiorrgg®ons in£+ can now be
formalized as the problem of finding a conditional plan with maximum possibldrgEss for achieving a
goal state from an initial state and as the problem of finding a conditionalytara goodness of at least a
given threshold as follows:

OPTIMAL CONDITIONAL PLANNING: Given an extended action descriptiél D, an initial state descrip-
tion 7, and a goal descriptiofy;, compute a conditional pla@iP that has the maximal goodness among all
conditional plans for achieving; from ¢;.

THRESHOLD CONDITIONAL PLANNING: Given an extended action descriptidii D, an initial state de-
scriptiond;, a goal descriptiof, and a threshold > 0, compute a conditional pla@iP that has a goodness
g = 0 for achievingdg from 67 (if one exists).

Example 6.4 (Robotic Soccer cont'dsome conditional plans of goodnegs> 6 = 0.4 for achieving
0 = —ballinarea A inposition from é; = ballinarea A inposition A —ballmoving are given byCP,, CP5, and
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CPs. In fact, the latter two conditional plans have the maximum possible goodmasghus they are both
optimal.

Observe that IRESHOLD CONDITIONAL PLANNING can be easily reduced toF@IMAL CONDI-
TIONAL PLANNING by first computing a conditional plan of maximal goodngssid then checking whether
g = 0. The following theorem shows that the above two problems are both uncdofguita proof is similar
to the undecidability proof of the plan existence problem in sequential (uiiti@nal) probabilistic planning
given in [27]. Note that the variant of HRESHOLD CONDITIONAL PLANNING where the conditiory > 6
(> 0) is replaced by, > 6 (> 0) is also uncomputable.

Theorem 6.5 The optimization problems @PTIMAL CONDITIONAL PLANNING and THRESHOLD CON-
DITIONAL PLANNING are both uncomputable.

7 Cycle-Free Conditional Planning

In this section, we show that®¥IMAL and THRESHOLDCONDITIONAL PLANNING are both computable in
the special case in whidlig4p s, is acyclic. More precisely, we present an algorithm for solviMRESH
oLD CONDITIONAL PLANNING. For every given problem instance, the algorithm terminates and returns
someconditional plans of goodnegs> 6 for achievingd from §;. In the special case in whidigap 5, is
acyclic, the algorithm returrall conditional plans of goodnegs> 6 for achievingds from é;.

The algorithm is shown in Fig. 9. It uses the functjéid _all_cycle_free_paths, which takes as input the
directed grapliz4p s,, an e-stateSy, and a fluent formula, and which returns as output the set of all paths
without cycles fromS, to an e-state5,, that satisfies). Every such patiP = Sy —,, S1 —a, S2- - Sn—1
—a, Sn 1S encoded as the sequeneg as; . .. ; ay, Of labels of the arrows of’. Recall that everyy; is
either (a) a deterministic effect action or a sensing action along with one difittemes, or (b) a nonde-
terministic (resp., probabilistic) effect action along with one of its contextp(r@ne of its contexts and a
probability value). We then writé”* to denote the sequence of actiaxis o%; . . . ; o), where (a), = o
if «; is a deterministic effect action or a sensing action along with one of its outcamégp)c; is ob-
tained froma; by removing the context (resp., the context and the probability value) elongs to a
nondeterministic (resp., probabilistic) effect action. For sensing actiongh outcomeo € {w, ~w}, we
write ——w to denotew. For fragments of conditional planSP, we denote by x CP thatp is a pre-
fix of a linearization of CP. We defineunify(CP, L) by unify(c; CP',o; L') = «;unify(CP’, L') and
unify(ao; CP' a—p; L') =a; if othen {CP'} else {L'}.

The algorithm in Fig. 9 works as follows. Step 1 computes the set of all gathéthout cycles in
GEap,s, from S5, to an e-stateS that satisfies;. By Proposition 7.2 below, their sequences of actibrs
are candidates for linearizations of the desired conditional plans. Ir2steging Proposition 6.3, we keep
only those linearizations with a goodness of at lga&tr achievingds from ;. In steps 3—11, we then
combine them to conditional plans, and in step 12, we finally return thesétiomadl plans.

Example 7.1 (Robotic Soccer cont'dConsider the initial state descriptidn = ballinarea A inposition A
—ballmoving, where the ball is in the penalty area and not moving, and the goalkeepeths gorrect
position, and the goal descripti@g: = —ballinarea A inposition, where the ball is outside the penalty area,
and the goalkeeper is in the correct position. By applying the algorithm irfFgupposing the threshold
6 =0.5, we compute the set of all cycle-free pathsGig4p s, from Ss, to some e-stat@ satisfyingdc.
Consider the two path®}, Py € Sz, in step 2 given byP;" = gotoball; sensefreeahead; straightkick and
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Algorithm Cycle-Free Conditional Planning

Input: extended action descriptidiiAd D, initial state descriptiod;, goal descriptiond ¢,
and threshold > 0.

Output: set of conditional plan€’'P such thatyoodness(CP, 1, dc) > 0.

1. Sp = find_all_cycle_free_paths(Grap,s;, Ss;,0c);

2. Sy ={P*|P€SL, goodness(P*,0r,dc) >0},

3. Scp = SL;

4. while 3CP € Scp such that«, x CP but notra—,x CP do begin
5. Louz = {L €S |ra-.xL};

6 SCP:SCP—{CP};

7 for each L € Ly, dobegin

8 CPrew = unify(CP,L);

9. SCPZSCPU{CPnew}

10. end
11. end;
12. return Scp.

Figure 9: Algorithm Cycle-Free Conditional Planning

Py = gotoball; sensefreeaheady; sidekick (with goodness).72 resp.0.56 as shown in Fig. 7). The path
CP = Py satisfies the condition in step 4 of the algorithm, thus entering the loop. In thestegs,L,,,,
containsP; and these two paths are unified through the unify function in step 8. Th#ingsSCP,,c.,
which is included in the output, is the conditional pl@i®s shown in Fig. 8 with goodnegs56.

The following result shows that linearizations from conditional plans Gitp@ goodness for achiev-
ing ¢ from 67 correspond to paths i@ g4p 5, from S;, to an e-stateS that satisfie$, which essentially
states the correctness of step 1 of the algorithm.

Proposition 7.2 Let EAD be an extended action description, dgtbe an initial state description, and let
0¢c be a goal description. Lef’P be a conditional plan of positive goodness for achievindrom ;. Then,
for every linearizationL = a; as; . . . ; oy, Of CP, there exists a deepest leaf nodédf) oajoago---oay,
whose e-state satisfiég.

The next result shows that the algorithm always terminates sdgtheconditional plans of goodness
g = 0 for achievingd from 47 in its output. Moreover, itz g4p s, is acyclic, therall conditional plans of
goodnesg > 6 for achievingds from §; are returned.

Theorem 7.3 Let EAD be an extended action description, detbe an initial state description, l&; be a
goal description, and lef > 0 be a threshold. Then, (a) Cycle-Free Conditional Planning terminated, a
(b) the algorithm returns a set of conditional plans of goodness for achievingdc fromor; if Grap s,

is acyclic, then it returns the set of all conditional plans of goodres® for achievingds fromé;.

As a corollary, we obtain that HRESHOLD CONDITIONAL PLANNING is computable in the case in
which Ggap s, is acyclic. Observe that a variant of Cycle-Free Conditional Planningrevt> 0" is re-
placed by “> 6" can be used for computing a set of conditional plans of goodgesé > 0, and thus in
particular for computing the set of all conditional plans of positive gosdrire the acyclic case. Since we
can then compute the goodness of every such conditional plan and tbelemtes of maximal goodness,
also CPTIMAL CONDITIONAL PLANNING is computable in the case in whichg4p s, is acyclic.
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Corollary 7.4 OPTIMAL CONDITIONAL PLANNING and THRESHOLD CONDITIONAL PLANNING are
both computable for the class of all instances in whiths p 5, is acyclic.

8 Finite-Horizon Conditional Planning

In this section, we define the problem of finite-horizon conditional planmimich is roughly the problem of
finding a conditional plan of bounded length with maximal goodness foracigia goal description from an
initial state description. We then show how some (and even all) optimal condifimme of bounded length
can be computed, which thus proves that this problem is computable. Wehalsotisat finite-horizon

conditional planning can be used to perform cycle-free conditionalnpign Formally, the optimization
problem of finite-horizon conditional planning is defined as follows:

FINITE-HORIZON CONDITIONAL PLANNING: Given an extended action descriptiél D, an initial state
descriptiond;, a goal descriptiod, and a horizorh > 0, compute a conditional pla@’P of lengthl <h
with maximal goodness for achievirdg: from §;.

We now show how to compute a solution to this problem. In the sequekAdd be an extended
action description, and Iét; be a goal description. Let’ = AU {nop}, wherenop is a new deterministic
effect action that is executable in every e-stétef FAD and that satisfie$(S, nop) =S for every such
S. Informally, nop is the empty action, which is always executable and does not change the ei$
subsequently allows us to consider only conditional plans that have a leafyéxactly the horizork and
whose linearizations all have a lendthf exactly the horizom, even if the optimal conditional plans or some
of their linearizations have a length< h, since we can always enlarge such shorter conditional plans and
linearizations by filling innop. We first define the functiofr™, n > 0, which associates with every belief
graphB and goal description; the maximal goodness of a conditional plan of lenfgthn to achievedq
from B:

prob; p(dc) if n=0
max {Q" (B, «a,0¢) |a € A, ais executable iB} if n>0,

V™(B,dq) = {
whereQ" (B, a, ;) denotes the maximal goodness of a conditional plan that starts with the acéiod
has the lengthh < n to achieve) from B:

n Vi (Boa,dg) if o is an effect action
Q" (B, d¢) =

min {V" Y Boa,,dg)|o€{w,~w}} otherwise.

Informally, V°(B, §¢) is the lower probability ofé in B, while V*(B,dg), n >0, is the maximum
of Q"(B,«a,ds) subject to all actionsy € A’ that are executable iB. If « is an effect action, then
Q"(B, a,dg) is the maximal goodness of a conditional plan of lergth.—1 to achieve; from B o a. If
a is a sensing action with outcomesand—w, thenQ™ (B, «, i) is the minimum of the maximal goodness
of a conditional plan of length< n—1 to achievej from B o a,, subject to € {w, —~w}.

The following result shows thadt™ (B, i) is indeed the maximal goodness of a conditional plan of
lengthl < n to achieve the goal descriptidi: from the belief graplB.

Theorem 8.1 Let EAD be an extended action description, anddgtbe a goal description. LeB be a
belief graph, and letv € A’ be an action that is executable B. Then, V" (B, d¢) (resp.,Q™ (B, o, d¢)) IS



INFSYS RR 1843-03-05 25

the maximal goodness of a conditional plan (resp., a conditional plarstiaats with the actiom) of length
I < n for achievingds from B.

We next specify a solution toIRITE-HORIZON CONDITIONAL PLANNING in terms of the function
CP", n >0, which assigns to every belief gragh and goal descriptiod; a conditional plan of length
I =n with maximal goodness for achieving: from B:

A ifn=0

CP"(B,da) = { Auz™(B,a, ), wherea € A’ such that (i is
executable inB and (i) V"™ (B, d¢) = Q" (B, a,dg) if n>0,

where Auz" (B, «, 6 ) is the conditional plan that (i) starts with an optimal actien(ii) has the length
[ =mn, and (iii) has maximal goodness for achieviigfrom B:

a; CP" Y (Boa,dg) if o is an effect action

Auz"™(B, @, 66) = § o;if w then {CP" "1 (Bo ay,6¢)}
dse {CP" Y (Boa_,,6g)} otherwise.

Informally, CP°(B, é¢) is the empty conditional plan, whil€P™ (B, dg), n> 0, is the conditional plan
Auz™(B,a,0¢). If ais an effect action, theduz™ (B, a, i) is built from o and one conditional plan
of lengthl =n—1. Otherwise, Auz™(B, «, i) is constructed fronax and two conditional plans of length
l=n—1, one for each outcome of.

The following theorem shows thatP" (B, , 6 ) provides indeed a conditional plan of lengta ~ with
maximal goodness for achievinig; from 6;, and thus the problem ofIRITE-HORIZON CONDITIONAL
PLANNING can be solved by computingP" (Bs, , ).

Theorem 8.2 Let EAD be an extended action description, dgtbe an initial state description, lel; be
a goal description, and let > 0 be a horizon. Then, the conditional plan obtained frdbﬁh(B(;I, dg) by
removing all the occurrences of the actianp is a conditional plan of length< ~ with maximal goodness
for achievingds fromé;.

As an immediate corollary of the previous theorem, we thus obtain that the praflBiNITE-HORI-
ZON CONDITIONAL PLANNING is computable.

Corollary 8.3 FINITE-HORIZON CONDITIONAL PLANNING is computable.

The next result provides an upper bound for the complexity of solvingrE-HORI1ZON CONDITIONAL
PLANNING by using the functiorCP™ (as described in Theorem 8.2) in terms of basic operations on belief
graphs. In particular, it implies that for horizons bounded by a consdgrdlynomial number of such basic
operations is sufficient.

Theorem 8.4 Let EAD be an extended action description, dgetbe an initial state description, lel; be
a goal description, and lett > 0 be a horizon. Then, the conditional pm‘P"(B(;I, d¢c) can be computed
by (i) O(a - b"*1) checks whether an actiamnc A is executable in a belief graph, (i(p(b"+?2) executions
of an actiona € A’ in a belief graph, and (ii)O(b"+!) evaluations of; on a belief graph, where = | A|,
b=|A.| +2-|As| + 1, and A, and. 4, denote the set of all effect and sensing actiond jmespectively.
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Algorithm Finite-Horizon Conditional Planning
Input: extended action descriptidiid D, initial state descriptiod;, goal descriptiond ¢,
and horizom > 0.
Output: set of all conditional plang'P of lengthl < h such thatgoodness(CP, dr,d¢c) is maximal.
1. Scp:= CP"(Bs,,éc);
2. Scp:={CP'|CP € Scp, CP'is obtained fromCP by removing all occurrences afop} ;
3. return Scp.

Figure 10: Algorithm Finite-Horizon Conditional Planning

As a corollary, we also obtain an upper bound for the complexity of usinfutiction CP™ in terms of
basic operations on e-states, which implies that for horizons boundeddnystéant, a polynomial number
of basic operations on e-states is sufficient.

Corollary 85 Let FAD be an extended action description, detbe an initial state description, I&i; be
a goal description, and let > 0 be a horizon. TherCPh(B(;p dc) can be computed by (@ (a - b"*! - o)
checks whether an actiane A is executable in an e-state, (i))(b"*2 - o) executions of an action € A’
in an e-state, and (iiip(bthl . oh) evaluations ob on an e-state, where andb are as in Theorem 8.4,
ando is the maximal number of alternatives of nondeterministic and probabilistioras

We next show how to compute all conditional plans of lerigthh with maximal goodness for achieving
0q from é;. To this end, we generalize the functiéiP™ to the following functionCP", which assigns to
every belief graphB and goal descriptioi the set of all conditional plans of lengthk< n with maximal
goodness for achievingy; from B:

A ifn=0
CP"(B,dg) = { | J{Auz™(B, o, 6¢) | a € A, a is executable irB,
andV"(B,dq)=Q"(B,a,c)} if n>0,
where the sets of conditional pladsux™ (B, «, ) are defined as follows:

{a; CP| CP € CP" }(Boa,dg)} if ais an effect action
{a;if wthen {CP,)} dse {CP_.} |

CP., € CP" Y(Boay,dc)

CP_,c CP" Y(Boa-,,dq)} otherwise.

Aux"(B,a,0¢) =

The following result shows that‘Ph(B(;,, d¢) provides indeed the set of all conditional plans of length
[ < h with maximal goodness for achievidg: from d;.

Theorem 8.6 Let EAD be an extended action description, dgtbe an initial state description, |, be a
goal description, and lett > 0 be a horizon. Then, the set of conditional plans obtained W(B(;I, ed)

by removing all the occurrences abp is the set of all conditional plans of length< & with maximal
goodness for achievingy; fromé;.

An algorithm for computing the set of all optimal conditional plans of lengthh for achievingdg
from §; using the functionCP" is shown in Fig. 10. The following example illustrates the underlying
computation via the functiorig” andQ".



INFSYS RR 1843-03-05 27

Example 8.7 (Robotic Soccer cont'dConsider again the initial state descripti®n= ballinarea A inposi-
tion A —ballmoving and the goal descriptiofi; = —ballinarea A inposition. For the horizonh =2, the
algorithm in Fig. 10 computes the set of all conditional plans of lerdgtl2 with maximal goodness for
achievingds from §;. In particular, the returned set of conditional plans contéifs = gotoball; bodykick,
shown in Fig. 8, which is computed via the functidi$, @2, V1, Q', andV? as follows:

V2(Bs,,0¢) = max{Q?*(Bs,,q,dq)|ac {gotoball, sensefreeahead, senseballclose, nop} }
= Q*(Bs,,gotoball,i¢)
= V(Bs, ogotoball, d¢)
= max {Q!(Bs, o gotoball, o, 6c) | @ € {bodykick, gotoball, sensefreeahead,
senseballclose, nop}}
= Q%(Bs, o gotoball, bodykick, §¢)
= VY9(Bs, ogotoball o bodykick, §¢)

= Pmbl, Bs, o gotoball o bodykick((sG)
0.4 (see Fig. 7).

Note that a slightly modified version of the functig?” (resp., CP"), where the conditionV" (B,
dc)=Q"(B,a, )" is replaced by the condition@" (B, «, i) > 6” can be used for computing a condi-
tional plan (resp., the set of all conditional plans) of lenigthh with goodnesg > 6 > 0 for achievingdqa
from ¢;.

The next result shows that, @ z4p s, is acyclic, then for sufficiently large horizos> 0, the set of
all solutions of an instance ofiRITE-HORIZON CONDITIONAL PLANNING coincides with the set of all
solutions of the corresponding instance af1@MAL CONDITIONAL PLANNING, which in turn is a subset
of the set of all solutions of a corresponding instance BRESHOLD CONDITIONAL PLANNING (if it is
solvable). Hence, ilzgap 5, is acyclic, then the problems off@IMAL and THRESHOLD CONDITIONAL
PLANNING can both be reduced tafiTE-HORIZON CONDITIONAL PLANNING.

Theorem 8.8 Let FAD be an extended action description, detbe an initial state description, l&; be a
goal description. Suppose thatz4p s, is acyclic. Then, there exists a horizér: 0 such that the set of
all conditional plans of maximal goodness for achieviiggfrom d; is given by the set of conditional plans
obtained fromCPh(B(;I, d¢) by removing all the occurrences of the actioop.

9 Related Work

The literature contains several probabilistic extensions of formalisms &soréng about actions. In par-
ticular, Bacchus et al. [3] propose a probabilistic generalization of that&tucalculus, which is based on
first-order logics of probability, and which allows to reason about amtEgyprobabilistic degrees of belief
and how these beliefs change when actions are executed. Poole'srid@ep choice logic [31, 32] is based
on acyclic logic programs under different “choices”. Each choicegleith the acyclic logic program pro-
duces a first-order model. By placing a probability distribution over theréiffechoices, one then obtains
a distribution over the set of first-order models. Mateus et al. [28] allowiéscribing the uncertain effects
of an action by discrete, continuous, and mixed probability distributions f@b especially on proba-
bilistic temporal projection and belief update. Finzi and Pirri [14] add abiliiies to the situation calculus
to quantify and compare the safety of different sequences of actiom4iliBr et al. [6] introduce and ex-
plore an approach to first-order Markov decision processes (MDRs)are formulated in a probabilistic
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generalization of the situation calculus, and present a dynamic programppnggah for solving them. A
companion paper by Boutilier et al. [7] presents a generalization of Goddlgd DTGolog, that combines
robot programming in Golog with decision-theoretic planning in MDPs. Othebatilistic extensions of
the situation calculus and Golog are given in [28, 18]. A probabilistic eidars the action languagd

is given by Baral et al. [4], which aims especially at an elaboration-toteepresentation of MDPs and at
formulating observation assimilation and counterfactual reasoning.

Among the above approaches, the most closely related is perhaps Rodégendent choice logic
(ICL) [31], which uses a similar way of adding probabilities to an apprdaased on acyclic logic pro-
grams. But, as a central conceptual difference, like all the other adggw®aches, Poole’s ICL does not
allow for qualitative uncertainty in addition to probabilistic uncertainty. Pooleucitvents the problem of
dealing with qualitative uncertainty by imposing the strong acyclicity condition git lprograms. More-
over, Poole’s formalism is inspired more by the situation calculus and lessduyigtion logics.

Another closely related work is [12], which proposes the action langatye for probabilistic rea-
soning about actions, and which is among the few works in the literature dlahtwdth both qualitative
and probabilistic uncertainty in reasoning about actions. More precidély, allows for expressing non-
deterministic and probabilistic effects of actions as well as qualitative armhpiigstic uncertainty about
the initial situation of the world. A formal semanticsB€+ is defined in terms of probabilistic transitions
between sets of states, and it is then shown how the problems of predidgidigiion, and unconditional
planning under qualitative and probabilistic uncertainty can be formulaté . However, this work
especially does not address sensing.

From a more general perspective, our approach is also related tangammder uncertainty in Al,
since it can be roughly understood as a combination of (i) conditional plgrunder nondeterministic
uncertainty [15] with (ii) conditional planning under probabilistic uncertgibth in partially observable
environments. Previous work on planning under probabilistic uncertaarybe roughly divided into (a)
generalizations of classical planning and (b) decision-theoretic planmimgformer (see for example [10,
29, 23]) typically considers the problem of determining a sequence ofnactjiven a success threshold,
with some extensions that consider also sensing and conditional planssiobgbeoretic planning, on
the other hand, deals with fully observable Markov decision proce$4b$¢) [33] or the more general
partially observable Markov decision processes (POMDPSs) [22], walso include costs and/or rewards
associated with actions and/or states, and their solutions are mappingsitiratioss to actions of high
expected utility, rather than courses of actions achieving a goal with higbapility. Summarizing, our
approach can perhaps best be seen as combining conditional plamgiegnondeterministic and under
probabilistic uncertainty, where the latter is perhaps closest to generaigaficlassical planning in Al. In
contrast to the decision-theoretic framework, we do not assume co$ts eawlards associated with actions
and/or states. Furthermore, sensing actions in our approach are minie filean observations in POMDPs,
since they allow for preconditions, and they can be performed at any timevgoen executable.

10 Conclusion

In this paper, we have presented the languagdor reasoning about actions with sensing under qualitative
and probabilistic uncertainty.

The proposed framework has several interesting features of liegsalmout actions, such as sensing,
persistence, and static constraints, and it combines them with nondetermingicababilistic effects of
actions. The proposed formalism also provides a complete integration gfigteraic and the probabilistic
belief of an agent.
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We have formulated the problem of conditional planning under qualitatidgpesbabilistic uncertainty,
and we have presented two algorithms for conditional planning in our framkew he first one is always
sound, and it is also complete for the special case where the relevasititnas between epistemic states
are cycle-free. The second algorithm is a sound and complete solution prablem of finite-horizon
conditional planning. Under the assumption that the horizon is boundedccbystant, it computes every
optimal finite-horizon conditional plan in polynomial time.

Finally, several examples have illustrated our formalism. They describbadicasoccer scenario in
which we model at the same time the sensing abilities of a robot, as well as nonidétéc and prob-
abilistic uncertainty in the execution of its actions. More precisely, the examspl@s how this scenario
can be modeled in our formalism, and they illustrate the concepts of belief grapbonditional plan, the
evaluation of different possible conditional plans, and their computatiomg uke presented algorithms.
They show not only the need for an integrated formalism in realistic applicatirt also that the choices
in modeling uncertainty in the actions affect the behavior of the robot.

While from the representation standpoint our formalism provides a ratteframework, a number of
issues still deserve further investigation. Specifically, we are curretdreasing extensions of the proposed
framework that generalize it by introducing noise in sensing actionsXtmple, along the lines of [2, 35]),
as well as actions with costs and/or rewards (for example, such as in POE2]). Moreover, we are
improving the implementation of the prototype planner to make it suitable for quarditatperiments and
performance evaluation.

Another interesting topic of future research would be to elaborate anstaiteof the presented formal-
ism to multi-agent systems. Furthermore, it would be very interesting to investgeoncrete application
of the presented formalism in web services, as a part of the very adldeofiuncertainty reasoning in the
Semantic Web.

A Appendix: Proofs

Proof of Theorem 2.2. For effect actions, the computation of the algorit@wmpute-Successor shows that,
once computed the direct and indirect effects of the aatipwhich must be satisfied by every successor
e-state ofS undera, there is a unique maximal set of default frame axioms that can be satisfié by
successor e-state. Therefore, the successor e-statenodera is uniqgue. Observe in particular that all
the fluent literals that are indirectly (via domain constraint axioms) added tsutteessor e-state due to
default frame axioms are already §h and thus any two sets of fluent literals that are indirectly added due
to different applicable default frame axioms are consistent with each other

For sensing actions, the proof is almost identical to the line of argumentatime adnd is based on a
straightforward modification of the algorith@ompute-Successor by eliminating the computation of the
direct effects of an action and by handling the outcome of a sensing agaati\elike the direct effects of
an effect actionD

Proof of Theorem 3.1. We prove (b) (the proofs of (a) and (c) are analogous). Supp@dextis an
effect action that is executable 1 By Theorem 2.2®(S, «) is characterized by the fluent conjunction
7= N £, WhereL' is the set of literald’ returned by the algorithri@ompute-Successor (AD, S, ).
We first prove thalk B = K¢ g C Va.7. In fact:

(1) for each conditional effect axiogaused ¢ after o when ¢ in AD and such thads = ¢, we have
that KB = K¢g C Va.i, since the inclusion axiodK¢ C V.t is in KB andK¢gs C Ko is a valid
inclusion axiom. Hencel{ B |= K¢g C Va.direct (S, a);
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(2) for each domain constraint axiotaused 1 if £ in AD and such thatlirect(S, o) |= ¢, we have that
KB = Ko¢g CVa., since the inclusion axio®/ C v is in KB and KB = Ko¢g C Va.direct(S, a);

(3) now letr’ be the conjunction of the set of literals computed by the algoritht@ompute-Successor
before the execution of the for—each cycle at step 10. For eachldieéane axiominertial ¢ after
« in AD and such thabs = ¢ and 7’ [~ ¢, we have thatk B |= K¢s C Va.¢, since the inclusion
axiomK¢ CVKa.A-¢ LI K¢ is in KB and it can be proved that, due to the form of the inclusion
axioms inK B and to the semantics of the modal operagithe inclusion axionK ¢ C VKa.—~A—¢
holds for each domain element in every modeko® (because the form ok B is such that it is not
possible to derive the validity ofi¢ in the a-successors), consequeni§y C VKa. K¢ holds for
each domain element in every model/ioB;

(4) now letr” be the conjunction of the set of literal$ computed byCompute-Successor before any
execution of the for—each cycle at step 16. Again, for each domairtragrtsaxiomcaused v if £ in
AD and such that” = ¢, we have thal B = K¢g C Va.1), since the inclusion axio/ C ¢ is in
KB andKB = Kg¢g CVa.r".

Furthermore, it is not difficult to verify that, due to the form A and due to the minimal knowledge
semantics ofALCK -7, for no other formular’ such that’ =7 andr [~ 7/, KB |=Kg¢g C Va.7’/, which
proves the statement in ().

Proof of Theorem 5.5. (a) Recall first that an action is executable imB iff it is executable in the e-state
¢(v) =S of some deepest leafof B. Observe then that the e-states of the deepest leav@sacé exactly
the e-state$ € S such thay(S) > 0 for someu € pg.

(b) (resp., (c)) The set of unnormalized probability distributions @vexssociated with the belief graph
Boa (resp.,B o a,) coincides with the set of unnormalized probability distributions @vassociated with
the belief graph obtained fromB by replacing the e-stat§v) = S of every deepest leaf such thatx is
executable it by the e-states’ = ®(S, o) (resp.,S' = ®(S, a,)). The latter is given by the set of allo «
(resp.p o a,) with p € pp.

(d) The set of unnormalized probability distributions oeassociated withB o « coincides with the union
of all u5 such thatv € inst(«), where everyuy is the set of unnormalized probability distributions oer
associated with the belief graph obtained fréhby replacing the e-statév) = S of every deepest leaf
such thatu is executable it by the e-states’ = ®(S, a). Every suchu; is given by the set of allio &
with p € pg.

(e) Recall that for every deepest leadf B, the set of unnormalized probability distributions associated
with v in B is given by the probability distributiop, that maps the e-statév) =S to 1 and all other
e-statesS € S to 0. Observe then that for every deepest leasf B such thato is executable in the e-
state/(v) = .S, the set of unnormalized probability distributiops associated withv in B o « is given by
the unnormalized probability distributiom that maps everys’ € S for which somec € Cg,, exists with
S'=®.(S,a) to Pro(S’]S) and all other e-stateS’ € S to 0. Hence, the set of unnormalized probability
distributions overS associated witlB o « is given by the set of ajk o o with € pug. O

Proof of Theorem 5.6. (a) Let B=(V,E,¢, Pr), and letr €V be the root of B. Let the subgraph
Gq = (Vy, Ey) of G=(V, E) be defined as in Section 5.2. By induction on the recursive structure of
Gaq, we show thaprob; ,(¢) = minyep, > ges seg #(S) for all v € V. Analogously, it can be shown that
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proby (@) = maxuep, D ges, s 1(S) for all v e V. Since the above holds in particular for the root
of B, this then proves (a).

Basis:Letv € V; be a leaf. Thenprob, ,(¢) is 1if £(v) = ¢, and0 otherwise. Furthermorgy,, is given by
{1}, wherep, (¢(v)) =1 andu, (S) =0 for every other e-staté € S. Hencemin,ep, > ges smg 1(S) =
D_ses, seg Ho(9) is1if £(v) = ¢, and0 otherwise. This shows thatob; ,(¢) = minjcp, D ges smg H(S)-

Induction: Let v € V; be a non-leaf node. Suppose first ti#at(e) is undefined for all outgoing arrows

of v. Then,prob, ,(¢) = min, .,.cp, prob, ,,(#). By the induction hypothesis, the latter coincides with
Miny e g, Mipep,, D ges, smp M(S) = Miluep, D ges sig 1(S). Suppose next thatr(e) is defined
for all outgoing arrowse of v. Then, prob; ,(¢) = >_._, ..icp, Pr(e)-prob, . (¢). By the induction
hypothesis, thisis equal 0, _, ., cp, Prie) mingep , > ges g 4(S) = mingep, D ges smg 1(S)-

In summary, this shows thatob, () = min,cp, > ges sg #(5)-

(b) Immediate by (a) and the definition of the executability probabilitysofd

Proof of Proposition 6.3. By induction on the structure of conditional pla6$’, we show that for every
belief graphB in which CP is executablegoodness(CP, B, d¢) is the minimum ofgoodness(l, B, 0¢)
subject to all linearizationsof CP.

Basis: Let CP = \. Since is the only linearization ofCP, goodness(CP, B, d¢) is the minimum of
goodness(l, B, d¢) subject to all linearizationsof CP.

Induction: Let CP =q«; CP’. Then, goodness(CP, B, q) = goodness(CP’, Boa, ). By the induc-
tion hypothesis, the latter is the minimum @fodness(l’, B o o, ¢) subject to all linearization® of CP’,
which coincides with the minimum afoodness(l, B, ) subject to all linearizationsof CP. Finally, let

CP = p;if wthen {CP,} else {CP-,}. Then,goodness(CP, B, ) is the minimum ofgoodness(CP,,

Bo f3,,dc) subject too € {w, ~w}. By the induction hypothesis, each of the latter is given by the mini-
mum of goodness(l,, B o (3,,d¢) subject to all linearizations, of CP,, which coincides with the minimum

of goodness(l, B, d¢) subject to all linearizationsof CP. O

Proof of Theorem 6.5. Let THRESHOLD CONDITIONAL PLAN EXISTENCE denote the following decision
problem: Given an extended action descriptiés D, an initial state descriptiofi;, a goal description,
and a threshold > 0, decide whether there exists a conditional ptah that has a goodness of at leést
for achievingds from ;. Observe then thatHRESHOLD CONDITIONAL PLAN EXISTENCE can be eas-
ily reduced to HRESHOLD CONDITIONAL PLANNING, which in turn can be easily reduced teQMAL
CONDITIONAL PLANNING. It is thus sufficient to show thatHRESHOLD CONDITIONAL PLAN EXIS-
TENCEIs undecidable. We show this by a reduction from the language emptinddemrtor probabilistic
finite automata (PFA), which is undecidable by [30] and [8]. More prégiseprobabilistic finite automa-
ton (PFA)is a tuple(S, X, T, so, s, ), whereS is a nonempty finite set of states,is a finite input alphabet,
T ={T,|a€ X} where everyl, is a transition function that associates with every state5 a probability
distributionT,( - |s) over the set of stateS, sy € S is an initial state, and,, € S is an accepting state. The
language emptiness problem is the problem of deciding, given & PFA T, so, s,) and a threshold > 0,
whether there exists an input stringe >* that the PFA accepts with a probability of at le@st

We reduce the language emptiness problem for PFASIREEHOLDCONDITIONAL PLAN EXISTENCE
as follows. Let(S, X, T, so, s,) be a PFA, wheré& = {so, ..., s, = s, } andn > 0, and letd > 0 be a thresh-
old. We then define the set of actiodsas the input alphabét, where every: € A is a probabilistic effect
action, and the set of fluenis as the set of stateS. The extended action descriptidgfd D contains one
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conditional probabilistic effect axiom of the foroaused ¢q: po, . . ., ¢n: p, after a when ¢, for every ac-
tiona € Aandj € {0,...,n}, whereg; = s;i A \ycqo, ny—giy sk @Ndp; =T (sils;) foralli € {0, ..., n}.
Let 67 =s0 A Ageqr,...ny 7Sk @NAoG =50 A Nicgo . n—13 Sk- Then, there exists an input stringe X
that the PFA accepts with a probability of at le@sff there exists a conditional plat’P with a goodness
of at leas® for achievingds from é;. O

Proof of Proposition 7.2. Towards a contradiction, suppose there exists a linearizétiof; as; . . . ;
of CP such that the e-statv) =S of every deepest leaf nodein B;s, o o o ag o - - 0 a;, dO€S Nnot
satisfy§. Hence, the goodness aéf for achievingds from ¢; is given by0. Thus, by Proposition 6.3,
the goodness of'P for achievingds from ¢; is also given by). But this contradicts”P having a positive
goodness for achievingy; from §;. This shows that for every linearizatidn= oy ; as; . . . ; o, of CP, there
exists a deepest leaf nodeMy, o o; o g o - - - 0 v, WhoSeE e-state satisfieg. O

Proof of Theorem 7.3. (a) Immediate by the observation that (i) there are only finitely many acyclispath
in Grap s, from S5, to some e-stat®' that satisfied, and thus (ii) both the while-loop and the for-loop
terminate after a finite number of iterations.

(b) We now prove that for all conditional plarsP, it holds thatCP is returned by the algorithm if€'P
has a goodness of at ledsior achievingi from 7, where the “="-part of the statement holds only in the
special case in whict'g4p 5, is acyclic.

(=) SupposeCP is a conditional plan returned by the algorithm. By step’Z, consists only of linear-
izations of goodness of at leaétfor achievingds from 6;. Hence, by Proposition 6.3)P has also a
goodness of at leastfor achievingd from §;.

(«=) Suppose&’'P is a conditional plan of goodness of at le@&br achievingi from é;. By Proposition 7.2,

for every linearizatiorL = a1; an;. . . ; o, Of CP, there exists a deepest leaf nodédf) cajoazo---oay,
whose e-state satisfiég. Thus, every such linearizatianof CP has a corresponding pathin Ggap s,
from S5, to some e-stat¢' that satisfied,. SinceGrap s, is acyclic, alsoP is acyclic, and thus is
included inSy, in step 1 of the algorithm. By Proposition 6 3has a goodness of at leédbr achievingig
from §;, and thusL is included inSy, in step 2 of the algorithm. It thus follows th&t-» and Sy, in step

3 contain all linearizations o’P, and thusCP is constructed in steps 4-11 and included in the set of
conditional plans returned in step 12.

Proof of Theorem 8.1. We prove by induction om > 0 that, for every belief grapl and goal description
dc, it holds thatV" (B, é¢) (resp.,Q™ (B, «, d¢)) is the maximal goodness of a conditional plan (resp., a
conditional plan that starts with the actiof) over A’ =AU {nop} of lengthl =n to achieved from B.
This then proves that, for every belief graphand goal descriptio¢, it holds thatV" (B, ) (resp.,
Q"(B, a,dg)) is the maximal goodness of a conditional plan (resp., a conditional plasttréd with the
actiona) over A of lengthl < n to achievels from B.

Basis: For n=0, only the empty conditional plan has the lengti =0. Since \ has the goodness
prob; p(d¢) for achievingde from B, it follows thatV?(B, é¢) = prob; p(d¢) is the maximal goodness
of a conditional plan of length= 0 to achievej from B.

Induction: Let n > 0. By the induction hypothesi$;"~!(B’, i¢) is the maximal goodness of a conditional
plan of lengthl = n — 1 to achieve); from the belief graptB’. This shows tha®" (B, «, i) is the maximal
goodness of a conditional plan that starts witbf length/ =n to achievel; from B. It thus follows that
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V™(B, d¢) (which is the maximum o)™ (B, «, ) subject to all actions € A’ that are executable iB)
is the maximal goodness of a conditional plan of lerigén to achievel from B. O

Proof of Theorem 8.2. We prove by induction o > 0 that, for every belief grapl and goal description
da, it holds thatCP" (B, i) is a conditional plan of length< h with maximal goodness for achievirdg,
from B. This then shows th’d@Ph(Bgl, d¢) is a conditional plan of length< 4 with maximal goodness
for achievingd from 6 .

Basis: For h =0, only the empty conditional plah is of length0. Thus, CP%(B, dg) = A is a conditional
plan of lengthl < 0 with maximal goodness for achievirdg from B.

Induction: Let 4 > 0. By the induction hypothesis, for every belief graph it holds thatCP"~(B’, 6¢) is

a conditional plan of length< h — 1 with maximal goodness for achievirdg; from B’. By Theorem 8.1,
VB, éq) (resp.,Q"(B, a, é¢)) is the maximal goodness of a conditional plan (resp., a conditional plan
that starts with the action) of length! < h to achieveds from B. It thus follows thatCP" (B, é¢) is a
conditional plan of lengtl < 2 with maximal goodness for achievirg: from B. O

Proof of Theorem 8.4. The valueV" (B, i) and all value)" (B, «, i) such that (ay € A’ and (b)«
is executable irB can be computed by (i) at most b checks whether an actiane A is executable in a
belief graph, (i) at mosi” ™! executions of an actiom € A’ in a belief graph, and (iii) at most evaluations
of 6 on a belief graph. Hence, i is nonempty, therC’P" (B, i) can be computed by (i) at mast b1
checks whether an actienc A is executable in a belief graph, (i) at me&t™2 + 2" executions of an action
a € A’ in a belief graph, and (iii) at mo$ftt! evaluations of; on a belief graphi

Proof of Theorem 8.6. Immediate by the proof of Theorem 8.2.

Proof of Theorem 8.8. Since the subgraph 6f x4 p that consists of all successors%f is finite and has no
cycles, the set of all conditional plans is finite. Thus, s@me0 exists such that every conditional plan has
a lengthl < h. By Theorem 8.6, the set of conditional plans obtained fl@mh(B(;I, d¢) by removing all
the occurrences of the actianp is the set of all conditional plans with maximal goodness for achie¥ing
fromd;. O
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