
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

REASONING ABOUT ACTIONS WITH

SENSING UNDERQUALITATIVE AND

PROBABILISTIC UNCERTAINTY

LUCA IOCCHI THOMAS LUKASIEWICZ DANIELE NARDI

RICCARDO ROSATI

INFSYS RESEARCHREPORT1843-03-05

APRIL 2003; MARCH 2006





INFSYS RESEARCHREPORT

INFSYS RESEARCHREPORT1843-03-05, APRIL 2003; MARCH 2006

REASONING ABOUT ACTIONS WITH SENSING UNDER

QUALITATIVE AND PROBABILISTIC UNCERTAINTY

16 MARCH 2006

Luca Iocchi1 Thomas Lukasiewicz1 2 Daniele Nardi1 Riccardo Rosati1

Abstract. We focus on the aspect of sensing in reasoning about actions under qualitative and prob-
abilistic uncertainty. We first define the action languageE for reasoning about actions with sensing,
which has a semantic foundation on the autoepistemic description logicALCKNF , and which is
given a formal semantics in a system of deterministic transitions between epistemic states. As an
important feature, the main computational tasks inE can be done in linear and polynomial time. We
then introduce the action languageE+ for reasoning about actions with sensing under qualitativeand
probabilistic uncertainty, which is an extension ofE by actions with nondeterministic and probabilis-
tic effects, and which is given a formal semantics in a systemof deterministic, nondeterministic, and
probabilistic transitions between epistemic states. We also define the notion of a belief graph, which
represents the belief state of an agent after a sequence of deterministic, nondeterministic, and prob-
abilistic actions, and which compactly represents a set of unnormalized probability distributions.
Using belief graphs, we then introduce the notion of a conditional plan and its goodness for rea-
soning about actions under qualitative and probabilistic uncertainty. We formulate the problems of
optimal and threshold conditional planning under qualitative and probabilistic uncertainty, and show
that they are both uncomputable in general. We then give two algorithms for conditional planning in
our framework. The first one is always sound, and it is also complete for the special case in which
the relevant transitions between epistemic states are cycle-free. The second algorithm is a sound and
complete solution to the problem of finite-horizon conditional planning in our framework. Under
suitable assumptions, it computes every optimal finite-horizon conditional plan in polynomial time.
We also describe an application of our formalism in a robotic-soccer scenario, which underlines its
usefulness in realistic applications.

1Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, I-00198 Rome,
Italy; e-mail:{iocchi, lukasiewicz, nardi, rosati}@dis.uniroma1.it.

2Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
e-mail: lukasiewicz@kr.tuwien.ac.at.

Acknowledgements: This work has been partially supported by a Heisenberg Professorship of the German
Research Foundation, by the Austrian Science Fund ProjectsP18146-N04 and Z29-N04, and by a Marie Curie
Individual Fellowship of the EU programme “Human Potential” under contract number HPMF-CT-2001-
001286 (disclaimer: The authors are solely responsible forinformation communicated and the European
Commission is not responsible for any views or results expressed). We thank Fabio Patrizi for his work on
the implementation of the plannerPKPLANNER.

Copyright c© 2006 by the authors



INFSYS RR 1843-03-05 I

Contents

1 Introduction 1

2 The Action Language E 3
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3
2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
2.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3 Description Logic Semantics of E 9
3.1 Syntax ofALCKNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Semantics ofALCKNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Description Logic Semantics ofE in ALCKNF . . . . . . . . . . . . . . . . . . . . . . . . 11

4 The Action Language E+ 12
4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12
4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13

5 Belief Graphs 15
5.1 Belief Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
5.2 Lower and Upper Probabilities of Fluent Formulas . . . . . . . . . . . . . . .. . . . . . . 16
5.3 Representation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 18

6 Conditional Planning 19
6.1 Conditional Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19
6.2 Goodness of Conditional Plans . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 20
6.3 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 21

7 Cycle-Free Conditional Planning 22

8 Finite-Horizon Conditional Planning 24

9 Related Work 27

10 Conclusion 28

A Appendix: Proofs 29



INFSYS RR 1843-03-05 1

1 Introduction

Representation and reasoning about actions is a basic component for thedesign of cognitive robots. In
reasoning about the actions of mobile robots operating in real-world environments, one of the most crucial
problems that we have to face is uncertainty, both about the initial situation of the robot’s world and about
the results of the actions taken by the robot. One way of adding uncertainty toreasoning about actions is
based on qualitative models, in which all possible alternatives are equally considered. Another way is based
on quantitative models, where we have a probability distribution on the set of possible alternatives, and thus
can numerically distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about actions, such asthe situation calculus [34], easily
allow for expressing qualitative uncertainty about the initial situation of the world and the effects of actions
through disjunctive knowledge. Similarly, recent formalisms for reasoningabout actions that are inspired
by the early action languageA [16], such as the action languageC+ [17], and the planning languageK
[11], allow for qualitative uncertainty in the form of incomplete initial states andnondeterministic effects of
actions.

The need for dealing with quantitative uncertainty has lead to a number of proposals for probabilistic
reasoning about actions. They include in particular probabilistic extensions of the situation calculus [3, 28],
of logic programming formalisms [31], and of the action languageA [4].

Even though there is extensive work on reasoning about actions underqualitative and probabilistic uncer-
tainty separately, there is only few work that orthogonally combines qualitative and probabilistic uncertainty
in a uniform framework for reasoning about actions. One seminal such approach is due to Halpern and Tut-
tle [19], which combines nondeterminism and probabilistic uncertainty in a game-theoretic framework. In
particular, Halpern and Tuttle [19] draw the following important conclusion:

“ This discussion leads us to conclude that some choices in a distributed system must be viewed
as inherently nondeterministic (or, perhaps better, nonprobabilistic), andthat it is inappropriate,
both philosophically and pragmatically, to model probabilistically what is inherently nondeter-
ministic.”

This underlines the strong need for explicitly modeling qualitative uncertainty inaddition to probabilistic
uncertainty in reasoning about actions. The following example illustrates this strong need for modeling both
qualitative and probabilistic uncertainty.

Example 1.1 (Robotic Soccer)In a robotic soccer domain, the action “align to ball” may succeed resp. fail
with the probability0.7 resp.0.3, while the goalkeeper’s action “open legs” may either save the goal or not
save the goal. That is, the former action has probabilistic effects, while the latter action has nondeterministic
effects. More precisely, in the latter case, it may not be possible to assign probabilities to the possible effects,
which in fact depend on external factors (such as the speed and the kind of kick performed by an opponent
robot) and thus cannot be given a priori. That is, we only know that the goalkeeper’s action “open legs” may
save the goal resp. not save the goal with the probabilityp resp.1− p, where the valuep∈ [0, 1] is unknown.
Hence, rather than having exactly one probability distribution, we have the very different situation of a set
of possible probability distributions for the effects of an action. Observe inparticular that we cannot simply
assume the uniform distribution, that is, thatp= 1− p=0.5 holds.

The work [12] is among the few papers that orthogonally combine qualitativeand probabilistic uncer-
tainty in a uniform framework for reasoning about actions. However, thisapproach does not deal with the
crucial issue ofsensingin reasoning about actions under qualitative and probabilistic uncertainty,which is



2 INFSYS RR 1843-03-05

needed to operate in dynamic environments in which it is not possible to acquireall the necessary informa-
tion before executing a task (that is, in the initial state). In contrast to actionsthat change the state of the
world (also calledeffect actions), sensing actionsin reasoning about actions (see especially [24, 26, 37]) are
actions that allow an agent or a robot to obtain information about certain properties of the world. Sensing
actions are strongly motivated by the overwhelming part of real-world applications where the initial state
of the world is not fully specified or where exogenous actions may occur,and consequently an agent or a
robot is forced to use sensors of some sort to determine the values of certain properties of the world. One
important way to represent the sensing capabilities of the robotic agent is through anepistemicoperator,
which allows to distinguish what the agentknowsfrom what is true in the world [24, 21].

In this paper, we develop a formalism that allows forsensingin reasoning about actions underqualitative
andprobabilistic uncertainty, thus formulating and addressing the problem of conditional planning under
qualitative and probabilistic uncertainty. The proposed formalism providesa complete integration of the
notion ofepistemic belief, with that ofprobabilistic belief. Furthermore, we show that, in this setting, under
rather feasible hypotheses, the basic reasoning task can be solved in polynomial time.

More specifically, the contributions of this paper can be summarized as follows:

• We present the action languageE for reasoning about actions with sensing. We define a formal
semantics of action descriptions inE by systems of transitions betweenepistemic states(or e-states),
which are sets of possible states of the world. We show that all basic computational tasks inE (among
which there are especially the tasks of deciding whether an action is executable in an e-state, and of
computing the successor e-state after executing an action in an e-state) canbe done in linear resp.
polynomial time.

• We show that the action languageE is semantically founded on the autoepistemic description logic
ALCKNF . This semantic foundation on description logics is in the spirit of an important recent
trend towards combining action languages with description logics [1] for modeling web services in
theSemantic Web[5, 13] of which theOWL Web Ontology Language[38, 20] (recommended by the
W3C) is crucially based on description logics.

• We define the action languageE+ for reasoning about actions with sensing under qualitative and prob-
abilistic uncertainty, which is an extension of the action languageE by actions with nondeterministic
and probabilistic effects. Note that such an extension can also be definedfor C+ and related action
languages as core action language instead ofE . We define a formal semantics of action descriptions in
E+ through systems of deterministic, nondeterministic, and probabilistic transitions between e-states.

• We introduce the concept of a belief graph, which represents the belief state of an agent after a se-
quence of deterministic, nondeterministic, and probabilistic actions. We also define the notions of
lower and upper probabilities of fluent formulas in belief graphs, and we finally prove the important
result that every belief graph is a compact representation of a set of unnormalized probability distri-
butions, which intuitively shows that combining nondeterminism with precise probabilities leads to
imprecise probabilities.

• We introduce the concept of a conditional plan in our framework for reasoning about actions under
qualitative and probabilistic uncertainty. We define the notion of goodness of a conditional plan for
achieving a goal from an initial observation, and the problems of optimal andthreshold conditional
planning under qualitative and probabilistic uncertainty. We then show that both problems are uncom-
putable in the general case.



INFSYS RR 1843-03-05 3

• We present an algorithm for cycle-free conditional planning under qualitative and probabilistic un-
certainty, which computes a set of conditional plans with goodness above agiven thresholdθ> 0.
The algorithm is always sound, and it is also complete when the relevant transition system between
e-states is acyclic. That is, in the latter case, the algorithm returns the set ofall conditional plans with
goodness aboveθ.

• We also present an algorithm for finite-horizon conditional planning under qualitative and probabilis-
tic uncertainty, which computes all optimal conditional plans of length below a given horizonh> 0.
An important feature of this algorithm is that every optimal conditional plan canbe computed in poly-
nomial time, when the horizon is bounded by a constant, which is a reasonableassumption in many
applications in practice.

• The concepts and techniques of this paper are illustrated along a robotic-soccer scenario, which also
gives evidence of the usefulness of our formalism in realistic applications.

The rest of this paper is organized as follows. In Sections 2 and 3, we define the action languageE
and show that it can be semantically reduced to the autoepistemic description logic ALCKNF , respectively.
Section 4 extendsE by actions with nondeterministic and probabilistic effects. In Section 5, we introduce
the concept of a belief graph, and in Section 6, we formally define the conditional planning problem in our
framework. Sections 7 and 8 provide algorithms for cycle-free and finite-horizon conditional planning in
our framework, respectively. In Section 9, we discuss related work. Section 10 summarizes the main results
and gives an outlook on future research. To not distract from the flowof reading, some technical details of
the presented results have been moved to Appendix A.

2 The Action Language E

In this section, we introduce the action languageE , which is syntactically similar to the action languageA
and its variants including the recentC+, but which has a formal semantics in description logics. More
precisely, it is equivalent to a fragment of the autoepistemic description logicALCKNF [9] for modeling
dynamic systems, which has been successfully implemented and used for a robotic soccer team [21].

As a central feature, the action languageE allows for sensing actions and for modeling theepistemic
stateof an agent, which is the set of all world states that the agent considers possible in a given situation.
Intuitively, the epistemic state encodes what the agent knows about the world, in contrast to what is true
in the world [24, 36]. Reasoning about actions in the presence of sensing is then done by modeling the
dynamics of the agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified inE through an initial state description and an action description, which
express what an agent knows about the initial properties of the world and how this knowledge changes
through the execution of actions, respectively. We now describe the syntax and the semantics of initial state
and action descriptions.

2.1 Syntax

An action description inE consists of a set of formulas that encode dynamic knowledge about the pre-
conditions and effects of actions as well as static background knowledgeabout the world. The states and
properties of the world are described through fluent formulas, which are Boolean combinations of elemen-
tary propositions, called fluents. They may directly or indirectly change through the execution of actions.



4 INFSYS RR 1843-03-05

We first define fluents, actions, and fluent formulas. We assume a nonemptyfinite set offluentsF
and a nonempty finite set ofactionsA, which are divided intoeffect actionsand sensing actions(with
binary sensing outcome). We use⊥ and⊤ to denote the constantsfalse and true, respectively. The set
of fluent formulasis the closure ofF ∪{⊥,⊤} under the Boolean operators¬ and∧ (that is, if φ andψ
are fluent formulas, then also¬φ and(φ∧ψ)). We use(φ∨ψ) and(ψ⇐φ) to abbreviate¬(¬φ∧¬ψ) and
¬(φ∧¬ψ), respectively, and adopt the usual conventions to eliminate parentheses. A fluent literalℓ is either
a fluentf or the negation of a fluent¬f . A fluent conjunctionφ is either⊥, or⊤, or a fluent formula of the
form ℓ1 ∧ · · · ∧ ℓn, whereℓ1, . . . , ℓn are fluent literals andn> 1.

We next introduce precondition, conditional effect, sensing effect, default frame, and domain constraint
axioms in the action languageE . We useprecondition axiomsto encode the preconditions of actions. They
are expressions of the form

executable α if φ , (1)

whereφ is a fluent conjunction, andα is an action. Informally, the axiom (1) encodes that the actionα

is executable in every state that satisfiesφ. In particular, ifφ=⊤, thenα is always executable. We use
conditional effect axiomsto represent the different conditional effects of effect actions. They are of the form

caused ψ after α when φ , (2)

whereφ andψ are fluent conjunctions, andα is an effect action. Informally, the axiom (2) encodes that if the
current state of the world satisfiesφ, then the successor state after executing the actionα satisfiesψ. If φ=⊤,
then the axiom (2) is also called aneffect axiomand abbreviated ascaused ψ after α. Sensing effect axioms
associate with sensing actions their possible two sensing outcomes. They have the form

caused to know ω or ¬ω after α , (3)

whereω is a fluent literal, andα is a sensing action. Informally, after executingα, the agent knows thatω is
either true or false. Note that, for ease of presentation, we consider onlysensing actions with two outcomes,
but the formalism and all our results can be easily extended to sensing actions with more than two outcomes.
Default frame axiomsassociate with actions properties of the world that they generally do not change. They
are of the form

inertial φ after α , (4)

whereφ is a fluent conjunction, andα is an effect action. Informally, ifφ holds in the current state of the
world, thenφ holds also in the successor state after executing the actionα, if this is consistent with the
effects ofα. Finally,domain constraint axiomsdescribe background knowledge, and are of the form

caused ψ if ℓ , (5)

whereℓ is a fluent literal, andψ is a fluent conjunction. Informally, every state of the world that satisfiesℓ

should also satisfyψ. Such an axiom (5) represents static background knowledge about theworld, which is
invariant relative to the execution of actions.

We are now ready to define the notions of an initial state description and of anaction description as
follows. An initial state descriptionδI is a fluent conjunction. Anaction descriptionAD is a finite set of
precondition axioms, conditional effect axioms, sensing effect axioms, default frame axioms, and domain
constraint axioms.

The following example shows how some actions of a goalkeeper in robotic soccer (RoboCup Four-
Legged League) can be expressed in the action languageE .



INFSYS RR 1843-03-05 5

Example 2.1 (Robotic Soccer cont’d)The fluents areballclose (the goalkeeper is close to the ball),ballin-
area (the ball is in the penalty area),freeahead (the space ahead the goalkeeper is free),inposition (the
goalkeeper is in the correct position),ballmoving (the ball is moving towards the goal),alignedtoball (the
goalkeeper is aligned with the direction of the ball), andgoalsaved (the goal has been saved). We assume
the effect actionsgotoball (a movement towards the ball, which may touch the ball and move it outside the
penalty area),bodykick, straightkick, andsidekick (three different kinds of kicks with different capabili-
ties),openlegs (a position for intercepting a ball kicked towards the goal), andaligntoball (a movement for
aligning to the direction of the ball moving towards the goalkeeper’s own goal), as well as several sensing
actions for some of the properties.

An action description is shown in Fig. 1. In particular, the actiongotoball is executable only if the
ball is in the penalty area and not moving towards the goal (1). The actionopenlegs has the effect that the
goalkeeper is able to save the goal when it is aligned to the ball direction (8),which encodes a possible
capability of saving the goal even when the alignment is unknown. After the sensing actionsenseballclose,
the goalkeeper knows if the ball is close or not (9). All fluents are inertial(12), and thus they generally do
not change through the execution of an action. Finally, the ball is in the penalty area, if the goalkeeper is
close to the ball (13), since we assume that the goalkeeper is always in its own area.

2.2 Semantics

An initial state descriptionδI represents an epistemic state, which is a set of possible states of the world,
while an action descriptionAD encodes a system of transitions between epistemic states (which forms
a directed graph where the nodes represent epistemic states and the arrows encode transitions between
epistemic states through actions).

We first define states and epistemic states, which are truth assignments to the fluents resp. sets of states
that satisfy every domain constraint axiom inAD and that are representable by a fluent conjunction. For-
mally, a states of an action descriptionAD is a truth assignment to the fluents inF . A set of statesS
satisfiesa fluent formulaφ, denotedS |=φ, iff every s∈S satisfiesφ. It satisfiesa domain constraint ax-
iom caused ψ if ℓ iff either S 6|= ℓ or S |=ψ. An epistemic state(or e-state) S of AD is a nonempty set of
statess of AD such that (i)S satisfies every domain constraint axiom inAD , and (ii) there exists a fluent
conjunctionφ such thatS is the set of all statess of AD that satisfyφ.

We next define the executability of actions in e-states and the transitions between e-states through the
execution of effect and sensing actions. An actionα is executablein an e-stateS of AD iff S |=φ for every
precondition axiomexecutable α if φ in AD .

Given an e-stateS of AD and an effect actionα that is executable inS, let direct(S, α) denote the
conjunction of allψ such thatcaused ψ after α when φ is in AD andS |=φ. We say thatS′ is asuccessor
e-stateof S under the effect actionα iff S′ is an e-state ofAD such that (i)S′ satisfiesdirect(S, α), (ii)
S′ satisfies every domain constraint axiom inAD , and (iii) S′ satisfies a maximal subset of default frame
axioms (that is, there exists noS′′ 6= ∅ such that (1)S′′⊂S′, (2) S′′ satisfiesdirect(S, α), (3) S′′ satisfies
every domain constraint axiom inAD , and (4) there exists a default frame axiominertial φ after α in AD

such thatS |=φ, S′ 6|=φ andS′′ |=φ). Intuitively, a successor e-state ofS underα encodes the direct
effects ofα (expressed throughdirect(S, α)), the indirect effects due to the domain constraint axioms, and
a maximal propagation of inertial properties that are consistent with these direct and indirect effects.

Analogously,S′ is asuccessor e-stateof S under a sensing actionα with outcomeo∈{ω,¬ω} iff S′

is an e-state ofAD such that (i)S′ satisfieso, (ii) S′ satisfies every domain constraint axiom inAD , and
(iii) S′ satisfies a maximal subset of default frame axioms (that is, noS′′ 6= ∅ exists such that (1)S′′⊂S′,



6 INFSYS RR 1843-03-05

(i) precondition axioms:

(1) executable gotoball if ballinarea∧¬ballmoving

(2) executable bodykick if ballclose

(3) executable straightkick if ballclose∧freeahead

(4) executable sidekick if ballclose∧¬freeahead

(5) executable aligntoball if ballmoving

(6) executable openlegs if ballmoving

(7) executable sensealignedtoball if ballmoving

(ii) conditional effect axioms and effect axioms:

(8) caused goalsaved after openlegs when alignedtoball

(9) caused ballclose after gotoball

(10) caused ¬ballinarea after bodykick

(11) caused ¬ballinarea after straightkick

(12) caused ¬ballinarea after sidekick

(iii) sensing effect axioms:

(13) caused to know ballclose or ¬ballclose after senseballclose

(14) caused to know freeahead or ¬freeahead after sensefreeahead

(15) caused to know alignedtoball or ¬alignedtoball after sensealignedtoball

(iv) default frame axioms:

(16) inertial ℓ after α (for every fluent literalℓ and every actionα)

(v) domain constraint axioms:

(17) caused ballinarea if ballclose

Figure 1: Robotic Soccer Example: Action descriptionAD .

(2) S′′ satisfieso, (3) S′′ satisfies every domain constraint axiom inAD , and (4) there is a default frame
axiominertial φ after α in AD with S |=φ, S′ 6|=φ andS′′ |=φ). Intuitively, a successor e-state ofS under a
sensing actionα encodes the sensing outcome ofα, the indirect effects due to the domain constraint axioms,
and the propagation of inertial properties consistent with them.

The following result shows an important uniqueness property for successor e-states, namely that there
exists at most one successor e-state of an e-stateS of AD under an effect actionα (resp., a sensing actionα
with outcomeo), denotedΦ(S, α) (resp.,Φ(S, αo)).

Theorem 2.2 LetAD be an action description in the action languageE , letS be an e-state ofAD , and let
α be an effect axiom (resp., sensing action with outcomeo∈{ω,¬ω}). If a successor e-state ofS underα
(resp.,α with outcomeo) exists, then it is unique.

We are now ready to define the formal semantics of action and initial state descriptions as follows. An



INFSYS RR 1843-03-05 7

S0

S4

S7 S8

S10 S11

S3S1 S2

S5 S6
S9

gotoball

T F

sensefreeahead

sidekick

bodykicksenseballclose

T

senseballclose

FT F

sensefreeahead

F

gotoball
senseballclose

T
T

F

gotoball
gotoball

gotoballgotoball
straightkick

S0 = SδI
|= ¬ballmoving∧ballinarea

S1 |= ¬ballmoving∧ballinarea∧freeahead

S2 |= ¬ballmoving∧ballinarea∧¬freeahead

S3 |= ¬ballmoving∧ballinarea∧¬ballclose

S4 |= ¬ballmoving∧ballinarea∧ballclose

S5 |= ¬ballmoving∧ballinarea∧¬ballclose∧freeahead

S6 |= ¬ballmoving∧ballinarea∧¬ballclose∧¬freeahead

S7 |= ¬ballmoving∧ballinarea∧ballclose∧freeahead

S8 |= ¬ballmoving∧ballinarea∧ballclose∧¬freeahead

S9 |= ¬ballmoving∧¬ballinarea

S10 |= ¬ballmoving∧¬ballinarea∧freeahead

S11 |= ¬ballmoving∧¬ballinarea∧¬freeahead

Figure 2: A part of the directed graphGAD ,δI
for δI =¬ballmoving∧ballinarea.

action descriptionAD represents the directed graphGAD = (N,E), whereN is the set of all e-states ofAD ,
andE⊆N ×N containsS→S′ labeled with “α” (resp., “αo”) iff (i) α is an effect action (resp., sensing
action with outcomeo∈{ω,¬ω}) that is executable inS, and (ii) S′ = Φ(S, α) (resp.,S′ = Φ(S, αo)).
An initial state descriptionδI encodes the greatest e-state ofAD that satisfiesδI , denotedSδI

, if it exists
(if there is an e-state that satisfiesδI , then there is also a greatest such e-state). We denote byGAD ,δI

the
subgraph ofGAD consisting of all successors ofSδI

along with their incident arrows.

Example 2.3 (Robotic Soccer cont’d)Consider the action descriptionAD shown in Fig. 1 and the initial
state descriptionδI =¬ballmoving∧ballinarea, where the ball is in the penalty area and not moving. A
portion of the directed graphGAD ,δI

is shown in Fig. 2.

We finally define the notion of consistency for action and initial state descriptions. An action description
is consistent iff it has at least one e-state and every action execution is defined. An initial state description
is consistent if its e-state is defined. Formally, an action descriptionAD is consistentiff (i) AD has at least
one e-stateS, (ii) Φ(S, α) is defined for every e-stateS of AD and every effect actionα that is executable
in S, and (iii) Φ(S, αo) is defined for every e-stateS of AD and every sensing actionα with outcome
o∈{ω,¬ω} that is executable inS. An initial state descriptionδI is consistentif SδI

is defined. In the
sequel, we implicitly assume that all action and initial state descriptions are consistent.

2.3 Computation

The main computational tasks related to action descriptionsAD in E are (i) deciding whether an actionα is
executable in an e-stateS, (ii) computing the e-stateSφ for a fluent conjunctionφ (if it exists), (iii) deciding



8 INFSYS RR 1843-03-05

if an e-stateS satisfies a fluent conjunctionφ, and (iv) computing the successor e-state of an e-stateS under
an actionα (if it exists). In this section, we provide upper bounds for the complexity ofthese tasks, which
show that they all can be solved efficiently. In detail, (i) and (ii) can both bedone in linear time in the
size ofAD , while (iii) can be done in polynomial time in the size ofAD .

For fluent literalsℓ= f (resp.,ℓ=¬f ), we use¬.ℓ to denote¬f (resp.,f ), and for sets of fluent literalsL,
we define¬.L= {¬.ℓ | ℓ∈L}. For fluent conjunctionsφ, we denote byLit(φ) the set of all fluent literals in
φ, if φ is satisfiable, and the set of all fluent literals, otherwise. For e-statesS, we denote byLit(S) the set
of all fluent literals satisfied byS.

Given an action descriptionAD , an e-stateS of AD (represented byLit(S)), and an actionα, deciding
whetherα is executable inS can be done in linear time in the size ofAD along the set of all precondition
axioms inAD using standard data structures. Similarly, givenAD and a fluent conjunctionφ, computing the
e-stateSφ (represented byLit(Sφ)) of AD and deciding whether a given e-stateS (represented byLit(S))
of AD satisfiesφ can also both be done in linear time in the size ofAD using standard data structures.

In the rest of this section, we provide a polynomial-time algorithm for computing thesuccessor e-state
of an e-state under an effect action (which can also easily be adapted to compute the successor e-state of
an e-state under a sensing action). The algorithm, calledCompute-Successor, is presented in Fig. 3. It
takes as input an action descriptionAD , an e-stateS of AD (represented byLit(S)), and an effect action
α, and it returns as output the successor e-stateS′ of S underα (represented byLit(S′)). The set of fluent
literalsL′ =Lit(S′) is constructed as follows. We start by initializingL′ to an empty set, which is first
augmented with all the fluent literals corresponding to the direct effects of the actionα in S (steps 2–3 of
the algorithm). Then, all the indirect effects due to the domain constraint axioms are added toL′ (steps
4–8). Then, it is verified (step 9) whether the set of literalsL′ computed so far isconsistent, that is, for
each literalℓ belonging toL′, the literal¬.ℓ does not belong toL′. Finally, the effects of the default frame
axioms are computed and added toL′ (steps 10–19). In particular, for each default frame axiominertial φ
afte α such thatφ holds in the initial e-stateS (step 11), the set of literalsLaux initially contains the inertial
literals propagated by the default frame axiom (that is, the ones occurringin φ); then (steps 13–17),Laux

is closed with respect to the domain constraint axioms (that is, it is augmented withthe literals indirectly
derived by the domain constraint axioms); finally, it is verified (step 18) whether the set of literalsLaux thus
computed is consistent withL′, that is, the set of literalsL′ ∪ Laux is consistent: if this is the case, then the
default frame axiom can be applied and the literals inφ (and all their indirect consequences) are propagated
in the successor stateL′ by adding the literals inLaux to the setL′. The following theorem shows that
Compute-Successor is correct.

Theorem 2.4 Given an action descriptionAD in the action languageE , an e-stateS of AD (represented
by Lit(S)), and an effect actionα, Compute-Successor computes the successor e-stateS′ of S underα
(represented byLit(S′)), if it exists.

Proof. First, it is easy to verify that there exists no successor e-state ofS underα iff the set of fluent
literals obtained by the union of the direct effects ofα in S and the indirect effects given by the domain
constraint axioms is unsatisfiable. Thus, the algorithm returns no set of fluent literals (step 9) iff there
exists no successor e-state ofS underα. Then, we prove that, for eachAD , S, andα as stated in the
theorem, the algorithm returns the set of fluent literalsL′ =Lit(S′), whereS′ is the successor e-state of
S underα. First, notice that, whenφ is a fluent conjunction, thenS |=φ iff Lit(φ)⊆Lit(S) (steps 3 and
11 of the algorithm). Now, the first for–each cycle at step 2 guarantees that the above e-state represented
by L′ satisfiesdirect(S, α), while the two repeat–until loops guarantee that the e-state represented byL′

satisfies all domain constraint axioms inAD . Finally, the last for–each cycle at step 9 guarantees that the



INFSYS RR 1843-03-05 9

Algorithm Compute-Successor

Input: action descriptionAD , e-stateS of AD (represented byLit(S)), and effect actionα.

Output: successor e-stateS′ of S underα (represented byLit(S′)), if it exists.

1. L′ = ∅;
2. for each conditional effect axiom “caused ψ after α when φ” in AD do
3. if Lit(φ)⊆Lit(S) then L′ = L′ ∪ Lit(ψ);
4. repeat
5. L′′ = L′;
6. for each domain constraint axiom “caused ψ if ℓ ” in AD do
7. if ℓ ∈ L′ then L′ = L′ ∪ Lit(ψ)
8. until L′′ = L′;
9. if L′ is not consistentthen return “there exists no successor e-state ofS underα”;

10. for each default frame axiom “inertial φ after α” in AD do
11. if Lit(φ)⊆Lit(S) then begin
12. Laux = Lit(φ);
13. repeat
14. L′

aux = Laux;
15. for each domain constraint axiom “caused ψ if ℓ ” in AD do
16. if ℓ ∈ Laux then Laux = Laux ∪ Lit(ψ)
17. until L′

aux = Laux;
18. if L′ ∪ Laux is consistentthen L′ = L′ ∪ Laux

19. end;
20. return L′.

Figure 3: Algorithm Compute-Successor

e-state represented byL′ satisfies a maximal subset of default frame axioms as requested by the definition of
successor e-state. Thus, the returnedL′ is equal toLit(S′), whereS′ is the successor e-state ofS underα. 2

Finally, as an immediate consequence of the previous result, we state an important upper bound for
the complexity of computing successor e-states. The following theorem shows that computing successor
e-states can be done in polynomial time. Here, we denote by|AD | (resp.,‖AD‖) the number of elements
in AD (resp., the size ofAD).

Theorem 2.5 LetAD be an action description in the action languageE , letα be an effect action, and letS
be an e-state ofAD (represented byLit(S)). The successor e-stateS′ =Φ(S, α) (represented byLit(S′))
can be computed in timeO(|AD | · ‖AD‖). Moreover, ifα is a sensing action, ando is an outcome ofα, the
successor e-stateS′ = Φ(S, αo) (represented byLit(S′)) can be computed in timeO(|AD | · ‖AD‖).

Proof. For effect actionsα, the proof is an immediate consequence of the algorithmCompute-Successor
in Fig. 3. Indeed, it is easy to see that the algorithm runs in timeO(|AD | · ‖AD‖) using standard data
structures (note that the size ofLit(S) is linearly bounded by‖AD‖). The case whenα is a sensing action
can be proved analogously.2

3 Description Logic Semantics of E

In this section, we show that the action languageE can be semantically reduced to the autoepistemic descrip-
tion logicALCKNF [9]. The reduction is essentially based on the following correspondences [21]: (i) roles



10 INFSYS RR 1843-03-05

and concepts encode actions and fluents, respectively, and (ii) theepistemic operatorsK andA are used to
encode the epistemic state of an agent. Note thatALCKNF is a special case of Lifschitz’s logicMKNF
[25] and has a similar semantics in possible-world structures, where each possible world corresponds to a
standard description logic interpretation.

We first recall the syntax and semantics of the description logicALCKNF , and then describe the reduc-
tion from the action languageE to the description logicALCKNF .

3.1 Syntax of ALCKNF

We now define the syntax of the description logicALCKNF . Intuitively, description logics model a domain
of interest in terms of concepts and roles, which represent classes of individuals and binary relations between
classes of individuals, respectively. A knowledge base encodes subset relationships between classes, the
membership of individuals to classes, and the membership of pairs of individuals to binary relations between
classes.

We assume pairwise disjoint and nonempty finite setsA, R, andN of atomic concepts, atomic roles,
and individual names, respectively. We denote by⊥ (resp.,⊤) thebottom(resp.,top) concept. The set of
all conceptsandrolesis inductively defined as follows. Every element ofA∪{⊥,⊤} is a concept. IfC and
D are concepts, andR is a role, then¬C, C ⊓D, C ⊔D, ∃R.C, ∀R.C, KC, andAC are concepts. Every
element ofR is a role. IfR is a role, then alsoKR andAR. The conceptsKC andAC (resp., rolesKR
andAR) are also calledepistemic concepts(resp.,roles). The operatorsK andA are called theminimal
knowledge operatorand thedefault assumption operator, respectively.

An inclusion axiomis an expression of the formC ⊑ D, whereC andD are concepts. Aconcept
membership axiomis an expression of the formC(a), whereC is a concept, anda is an individual name.
A role membership axiomhas the formR(a, b), whereR is a role, anda and b are individual names.
A knowledge baseKB is a set of inclusion axioms, concept membership axioms, and role membership
axioms.

3.2 Semantics of ALCKNF

We next define the semantics ofALCKNF . Roughly, individual namesa∈N , the atomic conceptsA∈A,
and the atomic rolesP ∈R are interpreted with respect to standard description logic interpretations, which
consist of a nonempty denumerable domain∆ and a function·I that associates with the above items elements
of ∆, subsets of∆, and binary relations on∆, respectively. The formal meaning of the concepts⊥, ⊤, ¬C,
C ⊓D,C ⊔D, ∃R.C, and∀R.C is defined in the standard way, while the operatorsK andA are interpreted
with respect to two sets of possible worldsM andN , respectively, where each possible world is a standard
description logic interpretation. For example,KC(d) encodes thatd is “known” to be an instance ofC,
which holds ifd is an instance ofC in every possible world ofM. Similarly, AC(d) encodes thatd is
“assumed to be” an instance ofC, which holds ifd is an instance ofC in every possible world ofN .

Formally, aclassical interpretationI = (∆, ·I) consists of a nonempty denumerabledomain∆ and a
function ·I that associates with each individual namea∈N an element of∆ (under the usualunique name
assumption, whereaI 6= bI for any two different individual namesa, b∈N ), with each atomic concept
A∈A a subset of∆, and with each atomic roleP ∈R a subset of∆ × ∆. An epistemic interpreta-
tion W = (I,M,N ) over the domain∆ consists of a classical interpretationI over the domain∆ and two
sets of classical interpretationsM andN over the domain∆. The function·W then interprets individual
names, concepts, and roles by induction as shown in Fig. 4 (wherea is an individual name fromN ,A is an



INFSYS RR 1843-03-05 11

aW = aI

AW = AI

⊥W = ∅

⊤W = ∆

(¬C)W = ∆ − CW

(C ⊓D)W = CW ∩DW

(C ⊔D)W = CW ∪DW

(∃R.C)W = {d∈∆ | ∃d′ : (d, d′) ∈ RW andd′ ∈ CW}

(∀R.C)W = {d∈∆ | ∀d′ : if (d, d′) ∈ RW thend′ ∈ CW}

(KC)W =
⋂
{C(J ,M,N ) | J ∈ M}

(AC)W =
⋂
{C(J ,M,N ) | J ∈ N}

PW = P I

(KR)W =
⋂
{R(J ,M,N ) | J ∈ M}

(AR)W =
⋂
{R(J ,M,N ) | J ∈ N}

Figure 4: Semantics of the autoepistemic description logicALCKNF .

atomic concept fromA, C andD are concepts,P are atomic roles fromR, andR is a role). For example,
d∈ (KC)(I,M,N ) iff d∈C(J ,M,N ) for all J ∈M. Furthermore,d∈ (A¬C)(I,M,N ) iff d∈¬C(J ,M,N )

for all J ∈N . Similarly, d∈ (∃KR.⊤)(I,M,N ) iff somed′ ∈∆ exists such that(d, d′)∈R(J ,M,N ) for all
J ∈M.

An epistemic interpretationW = (I,M,N ) is a modelof an inclusion axiomC ⊑D, or W satis-
fiesC ⊑ D, denotedW |=C ⊑D, iff CW ⊆DW . The epistemic interpretationW is amodelof a concept
membership axiomC(a), orW satisfiesC(a), denotedW |=C(a), iff aW ∈CW . Similarly,W is amodel
of a role membership axiomR(a, b), orW satisfiesR(a, b), denotedW |=R(a, b), iff (aW , bW)∈RW . We
sayW is amodelof a knowledge baseKB , denotedW |=KB , iff W is a model of everyF ∈KB .

We finally define the notions of satisfiability and logical consequence for knowledge basesKB in terms
of preferred models ofKB . A modelW = (I,M,N ) of KB is a preferredmodel ofKB iff (i) I ∈M,
(ii) M=N , (iii) (J ,M,N ) |= KB for all J ∈M, and (iv)M is maximal with (iii) (that is, there exists
no M′⊃M such that(J ,M′,N ) |= KB for all J ∈M′). A knowledge baseKB is satisfiable(resp.,
unsatisfiable) iff KB has a (resp., no) preferred model. An axiomF is a logical consequenceof KB ,
denotedKB |=F , iff every preferred model ofKB is also a model ofF .

3.3 Description Logic Semantics of E in ALCKNF

We finally show how the action languageE can be semantically reduced to the autoepistemic description
logicALCKNF . In the sequel, letAD be an action description.

We associate withAD the description logic knowledge baseKB , which is obtained fromAD by replac-
ing (i) every precondition axiomexecutable α if φ by Kφ ⊑ ∃Kα.⊤, (ii) every conditional effect axiom
caused ψ after α when φ by Kφ⊑∀α.ψ, (iii) every sensing effect axiomcaused to know ω or ¬ω after α
by⊤⊑K(∀α.ω)⊔K(∀α.¬ω), (iv) every default frame axiominertial φ after α byKφ⊑∀Kα.A¬φ⊔Kφ,
and (v) every domain constraint axiomcaused ψ if ℓ by Kℓ⊑ψ. The fluents inAD act as atomic concepts
in KB , the actions inAD act as roles inKB , and the operators¬, ∧, and∨ in fluent formulas inAD act
as the operators¬, ⊓, and⊔ in concepts inKB , respectively. The above correspondences betweenE and
ALCKNF are compactly summarized in Table 1.

For every states of AD , we define the conceptφs = {p(f) | f ∈F}, wherep(f)= f , if s(f)= true,
andp(f)=¬f , if s(f)= false, for all f ∈F . For every e-stateS of AD , we define the conceptφS as the
conjunction of all fluent literalsℓ∈F ∪¬.F that are satisfied by every states∈S (which is equal to⊤ if no
such fluent literal exists).



12 INFSYS RR 1843-03-05

Table 1: Correspondences betweenE andALCKNF .

Action LanguageE Description LogicALCKNF

fluent atomic concept
⊥, ⊤, ¬, ∧, ∨ ⊥, ⊤, ¬, ⊓, ⊔
action role
executable α if φ Kφ ⊑ ∃Kα.⊤
caused ψ after α when φ Kφ⊑∀α.ψ
caused to know ω or ¬ω after α ⊤⊑K(∀α.ω) ⊔ K(∀α.¬ω)
inertial φ after α Kφ⊑∀Kα.A¬φ ⊔ Kφ

caused ψ if ℓ Kℓ ⊑ ψ

The following theorem shows the important result that the notion of an e-state, the executability of
actions in e-states, and the transition between e-states through actions encoded in an action description
AD in E can be reduced to the notion of logical consequence from the knowledgebaseKB in ALCKNF

associated withAD .

Theorem 3.1 Let AD be an action description in the action languageE , and letKB be its associated
knowledge base in the autoepistemic description logicALCKNF . Let s be a state ofAD , and letS be an
e-state ofAD . Then:

(a) An actionα is executable inS iff KB |=KφS ⊑∃Kα.⊤.

(b) Let α be an effect action that is executable inS. Then,Φ(S, α) is the smallest e-stateS′ such
thatKB |=KφS ⊑∀α.φS′ .

(c) Letα be a sensing action with outcomeo∈{ω,¬ω} that is executable inS. Then,Φ(S, αo) is the
smallest e-stateS′ such thatKB |=KφS ⊑ ∀α.φS′ andS′ |= o.

4 The Action Language E+

In this section, we introduce the action languageE+, which is an extension of the action languageE by
actions with nondeterministic and probabilistic effects. We define the syntax and semantics of extended
action descriptions inE+, which extend action descriptions inE by axioms to encode nondeterministic and
probabilistic effects of actions.

4.1 Syntax

We divide the set of effect actions intodeterministic, nondeterministic, andprobabilistic effect actions.
The nondeterministic and probabilistic conditional effects of the latter two typesof actions are encoded in
nondeterministic and probabilistic conditional effect axioms, respectively.A nondeterministic conditional
effect axiomhas the form

caused ψ1, . . . , ψn after α when φ , (6)



INFSYS RR 1843-03-05 13

(vi) nondeterministic conditional effect axioms:

(18) caused goalsaved,¬goalsaved after openlegs

(vii) probabilistic conditional effect axioms:

(19) caused ballclose: 0.8,¬ballinarea: 0.1,¬ballclose: 0.1 after gotoball

(20) caused ¬ballinarea∧¬inposition: 0.1,¬ballinarea∧inposition: 0.5,
¬inposition: 0.1,⊤: 0.3 after bodykick

(21) caused ¬ballinarea: 0.9,⊤: 0.1 after straightkick

(22) caused ¬ballinarea: 0.7,⊤: 0.3 after sidekick

(23) caused alignedtoball: 0.7,¬alignedtoball: 0.3 after aligntoball

Figure 5: Robotic Soccer Example: Nondeterministic and probabilistic conditional effect axioms.

whereψ1, . . . , ψn andφ are fluent conjunctions,α is a nondeterministic effect action, andn> 2. Informally,
if the current state of the world satisfiesφ, then the successor state after executingα satisfiesψi for some
i∈{1, . . . , n}. A probabilistic conditional effect axiomis an expression of the form

caused ψ1 : p1, . . . , ψn : pn after α when φ , (7)

whereψ1, . . . , ψn andφ are fluent conjunctions,α is a probabilistic effect action,p1, . . . , pn> 0, p1+ · · ·+
pn = 1, andn> 2. Informally, if the current state of the world satisfiesφ, then the successor state after
executingα satisfiesψi with the probabilitypi, for all i∈{1, . . . , n}. If φ=⊤, then the axiom (6) (resp., (7))
is also called anondeterministic(resp.,probabilistic) effect axiom, and we omit “when φ” in (6) (resp., (7)).

We define extended action descriptions as follows. Anextended action descriptionEAD is a finite
set of precondition, conditional effect, sensing effect, default frame, domain constraint, nondeterministic
conditional effect, and probabilistic conditional effect axioms.

Example 4.1 (Robotic Soccer cont’d)The effect actionsgotoball, bodykick, straightkick, sidekick, and
aligntoball of the robotic soccer scenario in Example 2.1 have either nondeterministic or probabilistic ef-
fects, and thus cannot be encoded in action descriptions inE . However, using nondeterministic and prob-
abilistic conditional effect axioms, they can be easily be expressed in extended action descriptions inE+.
More precisely, the extended action descriptionEAD is given by the precondition, conditional effect, sens-
ing effect, default frame, and domain constraint axioms in Fig. 1 and the nondeterministic and probabilistic
conditional effect axioms in Fig. 5. In particular, after executing the nondeterministic effect actionopenlegs,
the goal is saved or not (14). After executing the probabilistic effect action gotoball, the ball is close with
probability0.8, or the ball is not in the penalty area with probability0.1, or the ball is not close with proba-
bility 0.1 (15).

4.2 Semantics

We define the semantics of an extended action descriptionEAD by a system of deterministic, nondeter-
ministic, and probabilistic transitions between e-states. To this end, we extend the transition system of an
action descriptionAD by nondeterministic and probabilistic transitions between e-states through nonde-
terministic and probabilistic effect actions, respectively. These transitionsare defined by associating with



14 INFSYS RR 1843-03-05

every pair(S, α) of a current e-stateS and a nondeterministic (resp., probabilistic) effect actionα that is
executable inS, a set (resp., probability distribution on a set) of successor e-states after executingα in S.

Note that the above probabilistic transitions are similar to the probabilistic transitions in fully observable
Markov decision processes (MDPs) [33] and partially observable Markov decision processes (POMDPs)
[22]. However, they are between e-states and thussets of statesrather thansingle states.

In the sequel, letEAD be an extended action description. We define states, e-states, the executability of
actions in e-states, and the transitions between e-states through the execution of deterministic effect actions
and sensing actions in the same way as in Section 2.2, but relative toEAD instead ofAD . Hence, it
now only remains to define the nondeterministic and probabilistic transitions between e-states through the
execution of nondeterministic and probabilistic effect actions, respectively.

Let S be an e-state ofEAD , andα be a nondeterministic (resp., probabilistic) effect action that is
executable inS. We now define the set (resp., probability distribution on a set) of successor e-states af-
ter executingα in S. We first collect the set of all axioms (6) (resp., (7)) inEAD that arerelevant to
S and α, that is, for whichS |=φ holds. Let{caused ψj,1, . . . , ψj,nj

after α when φj | j ∈J} (resp.,
{caused ψj,1 : pj,1, . . . , ψj,nj

: pj,nj
after α when φj | j ∈J}) denote this set. For every combination

c= (ψj)j∈J = (ψj,ij )j∈J (calledcontext) from CS,α = {(ψj)j∈J | ∀j∈J : ψj∈{ψj,1, . . . , ψj,nj
}}, we then

compute one successor e-state (which is associated with the probabilityPrS,α(c)= Πj∈J pj,ij , if α is prob-
abilistic). We thus assume that any two nondeterministic (resp., probabilistic) conditional effect axioms
relevant toS andα are logically (resp., probabilistically) independent. Formally, thesuccessor e-stateof S
after executingα in the contextc = (ψj)j∈J ∈CS,α, denotedΦc(S, α), is the e-stateΦ(S, α) under the ac-
tion description obtained fromEAD by removing all axioms (6) and (7) and addingcaused

∧
j∈J ψj after α.

We finally define the overall nondeterministic (resp., probabilistic) transition as follows. If α is nondeter-
ministic, then theset of successor e-statesof S underα is defined asFα(S) = {Φc(S, α) | c∈CS,α}. If α
is probabilistic, then theprobability distribution on the successor e-statesof S underα, denotedPrα( · |S),
is defined byPrα(S′|S) =

∑
c∈CS,α, S′=Φc(S,α) PrS,α(c) for all e-statesS′ of EAD . Intuitively, executing

a nondeterministic actionα in an e-stateS nondeterministically leads to someS′ ∈Fα(S), while executing
a probabilistic actionα in S leads toS′ with the probabilityPrα(S′|S).

We are now ready to define the semantics of an extended action descriptionEAD in terms of a sys-
tem of deterministic, nondeterministic, and probabilistic transitions between its e-states as follows. The
extended action descriptionEAD represents the directed graphGEAD = (N,E), whereN is the set of all
e-states ofEAD , andE⊆N ×N contains (i) an arrowS→S′ labeled with “α” for every e-stateS ∈N
and deterministic effect actionα that is executable inS, whereS′ = Φ(S, α), (ii) an arrowS→S′ labeled
with “αo” for every e-stateS ∈N and sensing actionα with outcomeo∈{ω,¬ω} that is executable inS,
whereS′ = Φ(S, αo), (iii) an arrowS→S′ labeled with “αc” for every e-stateS ∈N , nondeterministic ef-
fect actionα that is executable inS, and contextc∈CS,α, whereS′ = Φc(S, α), and (iv) an arrowS→S′

labeled with “αc, pr” for every e-stateS ∈N , probabilistic effect actionα that is executable inS, and con-
text c∈CS,α, wherepr =PrS,α(c) andS′ = Φc(S, α). We denote byGEAD ,δI

the subgraph ofGEAD that
consists of all successors ofSδI

along with their incident arrows.

We finally define the consistency of extended action descriptions. We sayEAD is consistentiff (i) EAD

has at least one e-stateS, (ii) Φ(S, α) is defined for every e-stateS of EAD and every deterministic effect
actionα that is executable inS, (iii) Φ(S, αo) is defined for every e-stateS of EAD and every sensing
actionα with outcomeo∈{ω,¬ω} that is executable inS, and (iv)Φc(S, α) is defined for every e-stateS
of EAD , nondeterministic or probabilistic effect actionα that is executable inS, and contextc∈CS,α. In
the sequel, we implicitly assume that all extended action descriptions are consistent.



INFSYS RR 1843-03-05 15

S0

S3

S10

S7 S8

S2S1

S4 S5
S6

S9

T F

sidekick
straightkick

0.7

0.3

0.9

sensefreeahead
0.8

gotoball
0.5

0.80.1

gotoball

0.3
bodykick

0.10.1

0.1

S11

0.1

0.1
0.1

S0 = SδI
|= ¬ballmoving∧ballinarea∧inposition

S1 |= ¬ballmoving∧¬ballinarea∧inposition

S2 |= ¬ballmoving∧ballinarea∧inposition∧¬ballclose

S3 |= ¬ballmoving∧ballinarea∧inposition∧ballclose

S4 |= ¬ballmoving∧ballinarea∧inposition∧ballclose∧freeahead

S5 |= ¬ballmoving∧ballinarea∧inposition∧ballclose∧¬freeahead

S6 |= ¬ballmoving∧¬ballinarea∧inposition

S7 |= ¬ballmoving∧¬ballinarea∧¬inposition

S8 |= ¬ballmoving∧ballinarea∧¬inposition∧ballclose

S9 |= ¬ballmoving∧¬ballinarea∧inposition∧freeahead

S10 |= ¬ballmoving∧¬ballinarea∧inposition∧¬freeahead

S11 |= ¬ballmoving∧¬ballinarea∧inposition∧¬ballclose

Figure 6: A part of the directed graphGEAD ,δI
for δI =¬ballmoving∧ballinarea∧inposition.

Example 4.2 (Robotic Soccer cont’d)Let the extended action descriptionEAD be given by the axioms
in Figs. 1 and 5 excluding the axioms (9) to (12). Furthermore, let the initial state description be given by
δI =¬ballmoving∧ballinarea∧inposition, where the goalkeeper is in the correct position, and the ball is in
the penalty area and not moving. Then, a portion of the directed graphGEAD ,δI

is shown in Fig. 6.

5 Belief Graphs

In this section, we define the notion of a belief graph and the concepts of lower and upper probabilities
of fluent formulas in belief graphs. We then show that every belief graphis a compact representation of a
finite set of unnormalized probability distributions over the set of all e-states. In the sequel, letEAD be an
extended action description.

5.1 Belief Graphs

Intuitively, a belief graph encodes the overall epistemic state of an agent after starting from a single initial
e-state and then performing a finite sequence of actions. A belief graph consists of a directed acyclic graph
(which is a directed graph that does not contain any directed path forming acycle) in which every node
represents an e-state and every arrow represents a transition betweentwo e-states. Given an initial e-state



16 INFSYS RR 1843-03-05

and a sequence of actionsα1, . . . , αn, their belief graph is built by using the initial e-state as a root and then
adding for every actionαi, i∈{1, . . . , n}, a new layer of descendent nodes, namely, the set of all possible
successor e-states after executingαi in the e-states added before.

Formally, every belief graphB= (V,E, ℓ,Pr) consists of a directed acyclic graphG = (V,E), a label-
ing functionℓ that associates with every nodev ∈V an e-stateℓ(v)=S of EAD , and a partial mappingPr

that associates with some arrowse∈E a real numberPr(e)∈ [0, 1]. Every belief graphB=(V,E, ℓ,Pr)
has exactly one noder∈V without parents, called theroot of B, and some nodes without children, called
the leavesof B. A deepest leafof B is a leaf ofB that has the maximum distance from the root ofB. An
actionα is executablein a belief graphB iff α is executable in the labelS of some deepest leafv of B.
More precisely,belief graphsare inductively defined as follows. Any nodev labeled with an e-stateS of
EAD is a belief graph. In particular, for fluent conjunctionsφ such thatSφ is defined, we denote byBφ the
belief graph that consists of a single nodev labeled withSφ. If B is a belief graph andα is a deterministic
(resp., nondeterministic) effect action executable inB, thenB ◦ α is also a belief graph, which is obtained
fromB by (i) adding a new nodev′ labeled withS′ for everyS′ = Φ(S, α) (resp.,S′ ∈Fα(S)) such thatS
is the label of a deepest leafv of B in whichα is executable, and (ii) connecting the nodesv andv′ of such
S andS′, respectively, by a new arrowv→ v′. If B is a belief graph andα is a probabilistic effect action
executable inB, thenB ◦ α is also a belief graph, which is obtained fromB by (i) adding a new nodev′

labeled withS′ for everyS′ = Φc(S, α) such that (i.1)c∈CS,α and (i.2)S is the label of a deepest leafv
ofB in whichα is executable, and (ii) connecting the nodesv andv′ of suchS andS′, respectively, by a new
arrowe= v→ v′ with the probabilityPr(e)=Prα(S′|S). If B is a belief graph andα is a sensing action
with outcomeo∈{ω,¬ω} executable inB, thenB ◦ αo is also a belief graph, which is obtained fromB by
(i) adding a new nodev′ labeled withS′ for everyS′ = Φ(S, αo) such thatS is the label of a deepest leafv
ofB in whichα is executable, and (ii) connecting the nodesv andv′ of suchS andS′, respectively, by a new
arrowe= v→ v′. Informally,B ◦α (resp.,B ◦αo) is the successor belief graph after executing the actionα

(resp.,α with outcomeo) in B.

Example 5.1 (Robotic Soccer cont’d)Consider the fluent conjunctionδI = ballinarea∧ inposition∧¬ball-
moving. Fig. 7, left side, shows the belief graphs after executing the following sequences of actions inBδI

(that is, the belief graph associated withδI ): (1.a)goto- ball andbodykick; (1.b)gotoball, sensefreeahead

with outcomeT, andstraightkick; and (1.c)gotoball, sensefreeahead with outcomeF, andsidekick.
Consider next the fluent conjunctionδI = ballmoving. Fig. 7, right side, shows the belief graphs after

executing the following sequences of actions in the belief graphBδI
: (2.a)openlegs; (2.b) aligntoball and

openlegs; (2.c)sensealignedtoball with outcomeT andopenlegs; and (2.d)sensealignedtoball with outcome
F, aligntoball, andopenlegs.

5.2 Lower and Upper Probabilities of Fluent Formulas

We next evaluate the truth of fluent formulas in belief graphs. Since a beliefgraph as an overall epistemic
state of an agent contains qualitative and probabilistic uncertainty, it specifies a set of probability values for
the truth of a fluent formula, rather than an exact binary truth value. We especially deal with the smallest
and the largest probability value of a fluent formulaφ in a belief graphB, called thelower and theupper
probability of φ in B, respectively. Intuitively, given the qualitative and probabilistic knowledge ofB, the
fluent formulaφ holds with at least (resp., most) its lower (resp., upper) probability inB.

Formally, letB=(V,E, ℓ,Pr) be a belief graph with the rootr∈V , and letφ be a fluent formula. Let
Gd = (Vd, Ed) denote the subgraph ofG= (V,E) where (i)Vd is the set of all nodesv ∈V on a path fromr



INFSYS RR 1843-03-05 17

0.8

0.1

0.7
0.1

0.7

0.7

0.3
0

1

1

0

0.7

0.3

0

0.7

0.5

0.1

0.8

0.1

0.4

0.8

0.1

0.9
0.1

0.9

0.9

0.1

1

0

1

0

0.7

0.3

0

0
0

0.7

1

0.70.56

0.72

1

1

1

1

1

1

1

1

0

0.5

0.1

0.3

0

0

δI

δI

δI δI

δI

δI

δI

δG

δG

δG

δG

δG

δG

δG

δG

δG

(1.c)B = BδI
◦ gotoball ◦ sensefreeaheadF ◦ sidekick

g
o
to

b
a
ll

se
n
se

fr
e
e
-

a
h
e
a
d
F

si
d
e
k
ic

k

(2) δI = ballmoving

(1.b)B = BδI
◦ gotoball ◦ sensefreeaheadT ◦ straightkick

o
p
e
n
le

g
s

se
n
se

a
li
g
n
-

a
li
g
n
to

b
a
ll

o
p
e
n
le

g
s

e
d
to

b
a
ll
F

e
d
to

b
a
ll
T

se
n
se

a
li
g
n
-

g
o
to

b
a
ll

b
o
d
y
k
ic

k

g
o
to

b
a
ll

se
n
se

fr
e
e
-

a
h
e
a
d
T

st
ra

ig
h
tk

ic
k

a
li
g
n
to

b
a
ll

o
p
e
n
le

g
s

o
p
e
n
le

g
s

(1) δI = ballinarea ∧ inposition∧¬ballmoving

0.1

δG =¬ballinarea∧inposition δG = goalsaved

probl,B(δG) = 0.56

probl,B(δG) = 0.72

(1.a)B = BδI
◦ gotoball ◦ bodykick

probl,B(δG) = 0.4

(2.a)B = BδI
◦ openlegs

probl,B(δG) = 0

(2.b)B = BδI
◦ aligntoball ◦ openlegs

probl,B(δG) = 0.7

(2.c)B = BδI
◦ sensealignedtoball

T
◦ openlegs

probl,B(δG) = 1

(2.d)B = BδI
◦ sensealignedtoball

F
◦ aligntoball ◦ openlegs

probl,B(δG) = 0.7

Figure 7: Belief graphs and lower probabilities of fluent formulas.

to a deepest leaf inG, and (ii)Ed is the restriction ofE to the nodes inVd. Then, thelower probabilityof φ
in B, denotedprobl,B(φ), is the valueprobl,r(φ), where the functionprobl,·(φ) : Vd → [0, 1] is defined by:

• probl,v(φ) is 1 for every leafv ∈Vd with ℓ(v) |=φ, and0 for all other leavesv ∈Vd;

• probl,v(φ)= mine=v→v′∈Ed
probl,v′(φ) for everyv ∈Vd wherePr(e) is undefined;

• probl,v(φ)=
∑

e=v→v′∈Ed
Pr(e) · probl,v′(φ) for everyv ∈Vd wherePr(e) is defined.

Informally, the deepest leavesv of B whose e-stateℓ(v) satisfies (resp., does not satisfy)φ associate with
φ the lower probability1 (resp.,0). We then propagate the lower probability to every node ofGd, using
the lower probabilities of the children and the probabilities that are associatedwith some arrows. The lower
probability ofφ in B is the lower probability that the rootr associates withφ. Similarly, theupper proba-
bility of φ in B, denotedprobu,B(φ), is the valueprobu,r(φ), whereprobu,·(φ) : Vd → [0, 1] is defined by:

• probu,v(φ) is 1 for every leafv ∈Vd with ℓ(v) 6|=¬φ, and0 for all other leavesv ∈Vd;

• probu,v(φ)= maxe=v→v′∈Ed
probu,v′(φ) for everyv ∈Vd wherePr(e) is undefined;

• probu,v(φ)=
∑

e=v→v′∈Ed
Pr(e) · probu,v′(φ) for everyv ∈Vd wherePr(e) is defined.



18 INFSYS RR 1843-03-05

Finally, theexecutability probabilityof a belief graphB is defined asprobl,B(⊤). Intuitively, this is the
probability with which the sequence of actions behindB is executable.

Example 5.2 (Robotic Soccer cont’d)The lower probabilities ofδG = ¬ballinarea ∧ inposition in the
belief graphs of Fig. 7 (1.a), (1.b), and (1.c) are given by0.4, 0.72, and0.56, respectively, while the lower
probabilities ofδG = goalsaved in the belief graphs of Fig. 7 (2.a), (2.b), (2.c), and (2.d) are given by0, 0.7,
1, and0.7, respectively. The executability probabilities of the belief graphs of Fig. 7(1.a) to (1.c) are all0.8,
while the executability probabilities of the belief graphs of Fig. 7 (2.a) to (2.d) are all1.

The following lemma shows that the lower probability of a fluent formulaφ in a belief graphB is always
below the upper probability ofφ in B. This result can be easily proved along the recursive definition of the
lower and the upper probability ofφ in B.

Lemma 5.3 If B is a belief graph andφ is a fluent formula, thenprobl,B(φ)6 probu,B(φ).

5.3 Representation Results

We finally show that every belief graph is a compact representation of a set of unnormalized probability
distributions over the setS of all e-states ofEAD . That is, every belief graph can be associated with a set
of unnormalized probability distributions such that (i) deciding the executabilityof an action, (ii) executing
an action, and (iii) evaluating the lower and the upper probability of a fluent formula in a belief graphB can
be defined in an isomorphic way on the set of unnormalized probability distributions ofB.

Let B= (V,E, ℓ,Pr) be a belief graph with the rootr∈V , and letGd = (Vd, Ed) be the subgraph
of G=(V,E) defined in Section 5.2. Then, the set of unnormalized probability distributionsassociated
with B, denotedµB, is defined asµr, where the functionµ · associates with every nodev ∈Vd a set of
unnormalized probability distributions by:

• µv = {µv} for every leafv ∈Vd, whereµv(ℓ(v))= 1 andµv(S)= 0 for all otherS ∈S;

• µv =
⋃
{µv′ | e= v→ v′ ∈Ed} for every nodev ∈Vd such thatPr(e) is undefined;

• µv =
⋃
{
∑

e=v→v′∈Ed
Pr(e) ·µv′ | ∀e= v→ v′ ∈Ed : µv′ ∈µv′} for every nodev ∈ Vd such that

Pr(e) is defined, where(
∑

e=v→v′∈Ed
Pr(e) ·µv′)(S)=

∑
e=v→v′∈Ed

Pr(e) ·µv′(S) for all e-states
S ∈S.

Example 5.4 (Robotic Soccer cont’d)The belief graph in Fig. 7 (1.a) has one unnormalized probability
distribution, which maps the e-states of the deepest leaves to the probabilities0.08, 0.4, 0.08, and0.24,
while the belief graph in Fig. 7 (2.a) has two probability distributions, one that maps the first leaf to1, and
one that maps the second leaf to1.

The following theorem shows that the executability of an actionα in a belief graphB can be expressed
in terms ofµB, that is,B’s set of unnormalized probability distributions over the setS of all e-states of
EAD . It also shows that there exists an operation◦′ such thatµB ◦′ α= µB◦α for all belief graphsB and
all actionsα that are executable inB.

Theorem 5.5 LetEAD be an extended action description, letB be a belief graph, and letα be an action,
which is executable inB for (b) to (e). LetS be the set of all e-states ofEAD , and letµB beB’s set of
unnormalized probability distributions overS. Then:



INFSYS RR 1843-03-05 19

(a) The actionα is executable inB iff it is executable in some e-stateS ∈S such thatµ(S)> 0 for some
µ∈µB.

(b) If α is a deterministic effect action, thenµB◦α = {µ ◦α |µ∈µB},
where(µ ◦α)(S′) =

∑
S∈S : S′=Φ(S,α) µ(S) for all S′ ∈S.

(c) If α is a sensing action with outcomeo∈{ω,¬ω}, thenµB◦αo
= {µ ◦αo |µ ∈ µB},

where(µ ◦αo)(S
′)=

∑
S∈S : S′=Φ(S,αo) µ(S) for all S′ ∈S.

(d) If α is a nondeterministic effect action, thenµB◦α = {µ ◦ α̃ |µ∈µB, α̃∈ inst(α)}, where(µ◦α̃)(S′)
=

∑
S∈S : S′=Φ(S,eα) µ(S) for all S′ ∈S, andinst(α) denotes the set of all actions̃α such thatΦ(S, α̃)

∈ Fα(S) for all S ∈S. Intuitively,inst(α) is the set of all possible “deterministic instances” ofα.

(e) If α is a probabilistic effect action, thenµB◦α = {µ ◦α |µ∈µB},
where(µ ◦ α)(S′) =

∑
S∈S : ∃c∈CS,α : S′=Φc(S,α) Prα(S′|S) ·µ(S) for all S′ ∈S.

The next theorem shows that (i) lower and upper probabilities of fluent formulas in a belief graphB and
(ii) the executability probability of a belief graphB can also be expressed in terms ofB’s set of unnormalized
probability distributions.

Theorem 5.6 LetEAD be an extended action description, letB be a belief graph, and letφ be a fluent for-
mula. LetS be the set of all e-states ofEAD , and letµB be the set of unnormalized probability distributions
overS associated withB. Then, (a)probl,B(φ) (resp.,probu,B(φ)) is given byminµ∈µB

∑
S∈S, S|=φ µ(S)

(resp.,maxµ∈µB

∑
S∈S, S 6|=¬φ µ(S)), and (b) the executability probability ofB is minµ∈µB

∑
S∈S µ(S).

6 Conditional Planning

The conditional planning problem in our framework can be described as follows. Given an extended action
descriptionEAD , an initial state descriptionδI , and agoal descriptionδG, which is a fluent conjunction,
compute the best conditional plan to achieveδG from δI . We first define conditional plans and their goodness
for achievingδG from δI . We then formally state the conditional planning problems and provide some
uncomputability results.

6.1 Conditional Plans

Intuitively, a conditional plan (see especially [24, 26, 37]) is a binary directed tree where every arrow
represents an action, and every branching expresses the two outcomesof a sensing action, which can
thus be used to select the proper actions. We recall that adirected treeis a directed acyclic graph in
which every node has exactly one parent, except for theroot, which has no parents; nodes without chil-
dren are calledleaves. Formally, aconditional planCP is either (i) theempty conditional plan, de-
notedλ, or (ii) of the formα ; CP ′, or (iii) of the form β ; if ω then {CPω} else {CP¬ω}, whereα is
an effect action,β is a sensing action with outcomesω and¬ω, andCP ′, CPω, andCP¬ω are condi-
tional plans. We callα andβ in (i) and (ii), respectively, theroot actionof CP , and we often abbreviate
“π ;λ” in (i) by “ π”. The lengthof a conditional planCP , denotedlength(CP), is inductively defined
by (i) length(λ)= 0, (ii) length(α ; CP ′)= 1 + length(CP ′), and (iii) length(β ; if ω then {CPω} else
{CP¬ω})= 1 + max(length(CPω), length(CP¬ω)).



20 INFSYS RR 1843-03-05

CP1 = gotoball; bodykick

CP2 = gotoball; sensefreeahead; if freeahead then {straightkick}
else {sidekick}

CP3 = gotoball; senseballclose; if ballclose then {sensefreeahead; if freeahead then {straightkick}
else {sidekick}}

CP4 = openlegs

CP5 = aligntoball; openlegs

CP6 = sensealignedtoball; if alignedtoball then {openlegs}
else {aligntoball; openlegs}

Figure 8: Conditional plans.

Example 6.1 (Robotic Soccer cont’d)Consider first the following initial state descriptionδI = ballinarea∧
inposition ∧ ¬ballmoving, which encodes the initial state where the robot is in its standard position and the
ball is in the robot’s own area and not moving, and the goal descriptionδG =¬ballinarea∧ inposition, which
encodes the goal state where the robot should kick away the ball and remain in its position. Some potential
conditional plansCP1, CP2 andCP3 for achievingδG from δI are shown in Fig. 8. Consider next an initial
state descriptionδI = ballmoving, where the ball is moving, and a goal descriptionδG = goalsaved, where
the goal has been saved. Some potential conditional plansCP4, CP5, andCP6 for achievingδG from δI
are also shown in Fig. 8.

6.2 Goodness of Conditional Plans

We next define the notion of goodness for conditional plans. Intuitively,the best conditional plans are those
that reach a goal state from an initial state with highest probability.

We first define the goodness of a conditional plan for achieving a goal state from a belief graph. Given
a belief graphB and a conditional planCP , we say thatCP is executablein B iff either (i) CP =λ, or (ii)
CP =α;CP ′ andα andCP ′ are executable inB andB ◦α, respectively, or (iii)CP =β; if ω then {CPω}
else {CP¬ω} andβ, CPω, andCP¬ω are executable inB,B ◦βω, andB ◦β¬ω, respectively. Given a belief
graphB, a conditional planCP that is executable inB, and a goal descriptionδG, thegoodnessof CP for
achievingδG fromB, denotedgoodness(CP , B, δG), is defined as follows:





probl,B(δG) if CP =λ

goodness(CP ′, B ◦α, δG) if CP =α;CP ′

min(goodness(CPω, B ◦βω, δG),

goodness(CP¬ω, B ◦β¬ω, δG)) if CP =β; if ω then {CPω} else {CP¬ω}.

Informally, if CP is empty, then its goodness for achievingδG fromB is the lower probability ofδG in B.
Otherwise, ifCP consists of an effect actionα and a conditional planCP ′, then its goodness for achieving
δG fromB is the goodness ofCP ′ for achievingδG from the successor belief graph ofB after executingα.
Finally, if CP consists of a sensing actionβ and one conditional planCPo for each outcomeo∈{ω,¬ω},
then its goodness is the minimum of the goodness values ofCPω andCP¬ω for achievingδG from the



INFSYS RR 1843-03-05 21

successor belief graphs ofB after executingβ and observingω and¬ω, respectively. We next extend the
notion of goodness for conditional plans from belief graphs to initial state descriptions as follows. Given
an initial state descriptionδI , a conditional planCP that is executable in the belief graphBδI

(that is, the
belief graph that consists only of the e-stateSδI

, which is the greatest e-stateSδI
of EAD that satisfiesδI ),

and a goal descriptionδG, thegoodnessof CP for achievingδG from δI , denotedgoodness(CP , δI , δG), is
defined as the goodness ofCP for achievingδG fromBδI

.

Example 6.2 (Robotic Soccer cont’d)The goodness values of the conditional plansCP1 andCP2 in Fig. 8
for achievingδG =¬ballinarea ∧ inposition from δI = ballinarea ∧ inposition ∧ ¬ballmoving are given by
0.4 andmin(0.72, 0.56)= 0.56, respectively, where0.4 and0.72 and0.56 are the lower probabilities ofδG
in the belief graphs in Fig. 7 (1.a), (1.b), and (1.c), respectively. The conditional planCP3 has the goodness
0.56 for achievingδG from δI . The goodness values of the conditional plansCP4, CP5, andCP6 in Fig. 8
for achievingδG = goalsaved from δI = ballmoving are given by0, 0.7, andmin(1, 0.7)= 0.7, respectively,
where0, 0.7, 1, and0.7 are the lower probabilities ofδG in the belief graphs in Fig. 7 (2.a), (2.b), (2.c), and
(2.d), respectively.

The following result shows that the goodness of a conditional planCP is the minimum of the goodness
values of all linearizations ofCP , which are roughly all possible sequences of actions from the root to a
leaf ofCP . Formally,linearizationsof a conditional planCP are defined as follows. The only linearization
of the empty conditional planCP =λ is λ itself. A linearization ofCP =α;CP ′ has the formα; l, where
l is a linearization ofCP ′. A linearization ofCP =β; if ω then {CPω} else {CP¬ω} has the formβo; lo
whereo∈{ω,¬ω} andlo is a linearization ofCPo. The executability in belief graphs and the goodness for
achieving a goal description from a belief graph or an initial state description are then naturally extended
from conditional plans to their linearizations.

Proposition 6.3 Let EAD be an extended action description, letδI be an initial state description, letδG
be a goal description, and letCP be a conditional plan that is executable inBδI

. Then, the goodness of
CP for achievingδG from δI is the minimum of the goodness values of all the linearizations ofCP for
achievingδG from δI .

6.3 Problem Statements

The conditional planning problem in our framework of extended action descriptions inE+ can now be
formalized as the problem of finding a conditional plan with maximum possible goodness for achieving a
goal state from an initial state and as the problem of finding a conditional planwith a goodness of at least a
given threshold as follows:

OPTIMAL CONDITIONAL PLANNING : Given an extended action descriptionEAD , an initial state descrip-
tion δI , and a goal descriptionδG, compute a conditional planCP that has the maximal goodness among all
conditional plans for achievingδG from δI .

THRESHOLD CONDITIONAL PLANNING : Given an extended action descriptionEAD , an initial state de-
scriptionδI , a goal descriptionδG, and a thresholdθ > 0, compute a conditional planCP that has a goodness
g> θ for achievingδG from δI (if one exists).

Example 6.4 (Robotic Soccer cont’d)Some conditional plans of goodnessg > θ = 0.4 for achieving
δG =¬ballinarea∧ inposition from δI = ballinarea∧ inposition∧¬ballmoving are given byCP1, CP2, and



22 INFSYS RR 1843-03-05

CP3. In fact, the latter two conditional plans have the maximum possible goodness,and thus they are both
optimal.

Observe that THRESHOLD CONDITIONAL PLANNING can be easily reduced to OPTIMAL CONDI-
TIONAL PLANNING by first computing a conditional plan of maximal goodnessg and then checking whether
g> θ. The following theorem shows that the above two problems are both uncomputable. Its proof is similar
to the undecidability proof of the plan existence problem in sequential (unconditional) probabilistic planning
given in [27]. Note that the variant of THRESHOLD CONDITIONAL PLANNING where the conditiong> θ

(> 0) is replaced byg > θ ( > 0) is also uncomputable.

Theorem 6.5 The optimization problems ofOPTIMAL CONDITIONAL PLANNING andTHRESHOLDCON-
DITIONAL PLANNING are both uncomputable.

7 Cycle-Free Conditional Planning

In this section, we show that OPTIMAL and THRESHOLDCONDITIONAL PLANNING are both computable in
the special case in whichGEAD ,δI

is acyclic. More precisely, we present an algorithm for solving THRESH-
OLD CONDITIONAL PLANNING . For every given problem instance, the algorithm terminates and returns
someconditional plans of goodnessg> θ for achievingδG from δI . In the special case in whichGEAD ,δI

is
acyclic, the algorithm returnsall conditional plans of goodnessg> θ for achievingδG from δI .

The algorithm is shown in Fig. 9. It uses the functionfind all cycle free paths, which takes as input the
directed graphGEAD ,δI

, an e-stateS0, and a fluent formulaφ, and which returns as output the set of all paths
without cycles fromS0 to an e-stateSn that satisfiesφ. Every such pathP =S0 →α1

S1 →α2
S2 · · ·Sn−1

→αn Sn is encoded as the sequenceα1;α2; . . . ;αn of labels of the arrows ofP . Recall that everyαi is
either (a) a deterministic effect action or a sensing action along with one of its outcomes, or (b) a nonde-
terministic (resp., probabilistic) effect action along with one of its contexts (resp., one of its contexts and a
probability value). We then writeP ⋆ to denote the sequence of actionsα′

1;α
′
2; . . . ;α

′
n, where (a)α′

i =αi

if αi is a deterministic effect action or a sensing action along with one of its outcomes,and (b)α′
i is ob-

tained fromαi by removing the context (resp., the context and the probability value) ifαi belongs to a
nondeterministic (resp., probabilistic) effect action. For sensing actionsα with outcomeo∈{ω,¬ω}, we
write ¬¬ω to denoteω. For fragments of conditional plansCP , we denote byp ⋉ CP that p is a pre-
fix of a linearization ofCP . We defineunify(CP , L) by unify(α;CP ′, α;L′) = α; unify(CP ′, L′) and
unify(αo;CP ′, α¬o;L

′)=α; if o then {CP ′} else {L′}.
The algorithm in Fig. 9 works as follows. Step 1 computes the set of all pathsP without cycles in

GEAD ,δI
from SδI

to an e-stateS that satisfiesδG. By Proposition 7.2 below, their sequences of actionsP ⋆

are candidates for linearizations of the desired conditional plans. In step2, using Proposition 6.3, we keep
only those linearizations with a goodness of at leastθ for achievingδG from δI . In steps 3–11, we then
combine them to conditional plans, and in step 12, we finally return these conditional plans.

Example 7.1 (Robotic Soccer cont’d)Consider the initial state descriptionδI = ballinarea ∧ inposition ∧
¬ballmoving, where the ball is in the penalty area and not moving, and the goalkeeper is inthe correct
position, and the goal descriptionδG =¬ballinarea ∧ inposition, where the ball is outside the penalty area,
and the goalkeeper is in the correct position. By applying the algorithm in Fig.9, supposing the threshold
θ= 0.5, we compute the set of all cycle-free paths inGEAD ,δI

from SδI
to some e-stateS satisfyingδG.

Consider the two pathsP ⋆
1 , P

⋆
2 ∈SL in step 2 given byP ⋆

1 = gotoball; sensefreeaheadT; straightkick and



INFSYS RR 1843-03-05 23

Algorithm Cycle-Free Conditional Planning

Input: extended action descriptionEAD , initial state descriptionδI , goal descriptionδG,
and thresholdθ > 0.

Output: set of conditional plansCP such thatgoodness(CP , δI , δG) > θ.

1. SL = find all cycle free paths(GEAD,δI
, SδI

, δG);
2. SL = {P ⋆ |P ∈SL, goodness(P ⋆, δI , δG) > θ};
3. SCP = SL;
4. while ∃CP ∈SCP such thatrαo⋉CP but notrα¬o⋉CP do begin
5. Laux = {L∈SL | rα¬o⋉L};
6. SCP = SCP − {CP};
7. for each L∈Laux do begin
8. CPnew = unify(CP , L) ;
9. SCP = SCP ∪ {CPnew}

10. end
11. end;
12. return SCP .

Figure 9: Algorithm Cycle-Free Conditional Planning

P ⋆
2 = gotoball; sensefreeaheadF; sidekick (with goodness0.72 resp.0.56 as shown in Fig. 7). The path

CP =P ⋆
1 satisfies the condition in step 4 of the algorithm, thus entering the loop. In the next steps,Laux

containsP ⋆
2 and these two paths are unified through the unify function in step 8. The resulting CPnew,

which is included in the output, is the conditional planCP2 shown in Fig. 8 with goodness0.56.

The following result shows that linearizations from conditional plans of positive goodness for achiev-
ing δG from δI correspond to paths inGEAD ,δI

from SδI
to an e-stateS that satisfiesδG, which essentially

states the correctness of step 1 of the algorithm.

Proposition 7.2 Let EAD be an extended action description, letδI be an initial state description, and let
δG be a goal description. LetCP be a conditional plan of positive goodness for achievingδG fromδI . Then,
for every linearizationL=α1;α2; . . . ;αn of CP , there exists a deepest leaf node inBδI

◦α1 ◦α2 ◦ · · · ◦αn

whose e-state satisfiesδG.

The next result shows that the algorithm always terminates withsomeconditional plans of goodness
g> θ for achievingδG from δI in its output. Moreover, ifGEAD ,δI

is acyclic, thenall conditional plans of
goodnessg> θ for achievingδG from δI are returned.

Theorem 7.3 LetEAD be an extended action description, letδI be an initial state description, letδG be a
goal description, and letθ > 0 be a threshold. Then, (a) Cycle-Free Conditional Planning terminates, and
(b) the algorithm returns a set of conditional plans of goodnessg> θ for achievingδG from δI ; if GEAD ,δI

is acyclic, then it returns the set of all conditional plans of goodnessg> θ for achievingδG from δI .

As a corollary, we obtain that THRESHOLD CONDITIONAL PLANNING is computable in the case in
whichGEAD ,δI

is acyclic. Observe that a variant of Cycle-Free Conditional Planning where “> θ ” is re-
placed by “>θ ” can be used for computing a set of conditional plans of goodnessg > θ> 0, and thus in
particular for computing the set of all conditional plans of positive goodness in the acyclic case. Since we
can then compute the goodness of every such conditional plan and selectthe ones of maximal goodness,
also OPTIMAL CONDITIONAL PLANNING is computable in the case in whichGEAD ,δI

is acyclic.



24 INFSYS RR 1843-03-05

Corollary 7.4 OPTIMAL CONDITIONAL PLANNING and THRESHOLD CONDITIONAL PLANNING are
both computable for the class of all instances in whichGEAD ,δI

is acyclic.

8 Finite-Horizon Conditional Planning

In this section, we define the problem of finite-horizon conditional planning, which is roughly the problem of
finding a conditional plan of bounded length with maximal goodness for achieving a goal description from an
initial state description. We then show how some (and even all) optimal conditional plans of bounded length
can be computed, which thus proves that this problem is computable. We also show that finite-horizon
conditional planning can be used to perform cycle-free conditional planning. Formally, the optimization
problem of finite-horizon conditional planning is defined as follows:

FINITE-HORIZON CONDITIONAL PLANNING : Given an extended action descriptionEAD , an initial state
descriptionδI , a goal descriptionδG, and a horizonh> 0, compute a conditional planCP of lengthl6h

with maximal goodness for achievingδG from δI .

We now show how to compute a solution to this problem. In the sequel, letEAD be an extended
action description, and letδG be a goal description. LetA′ =A∪{nop}, wherenop is a new deterministic
effect action that is executable in every e-stateS of EAD and that satisfiesΦ(S,nop)=S for every such
S. Informally, nop is the empty action, which is always executable and does not change the e-state. It
subsequently allows us to consider only conditional plans that have a lengthl of exactly the horizonh and
whose linearizations all have a lengthl of exactly the horizonh, even if the optimal conditional plans or some
of their linearizations have a lengthl <h, since we can always enlarge such shorter conditional plans and
linearizations by filling innop. We first define the functionV n, n> 0, which associates with every belief
graphB and goal descriptionδG the maximal goodness of a conditional plan of lengthl6n to achieveδG
fromB:

V n(B, δG) =

{
probl,B(δG) if n=0

max {Qn(B,α, δG) |α∈A′, α is executable inB} if n> 0,

whereQn(B,α, δG) denotes the maximal goodness of a conditional plan that starts with the actionα and
has the lengthl6n to achieveδG fromB:

Qn(B,α, δG) =

{
V n−1(B ◦α, δG) if α is an effect action

min {V n−1(B ◦αo, δG) | o∈{ω,¬ω}} otherwise.

Informally, V 0(B, δG) is the lower probability ofδG in B, while V n(B, δG), n> 0, is the maximum
of Qn(B,α, δG) subject to all actionsα∈A′ that are executable inB. If α is an effect action, then
Qn(B,α, δG) is the maximal goodness of a conditional plan of lengthl6n−1 to achieveδG fromB ◦α. If
α is a sensing action with outcomesω and¬ω, thenQn(B,α, δG) is the minimum of the maximal goodness
of a conditional plan of lengthl6n−1 to achieveδG fromB ◦αo subject too∈{ω,¬ω}.

The following result shows thatV n(B, δG) is indeed the maximal goodness of a conditional plan of
lengthl6n to achieve the goal descriptionδG from the belief graphB.

Theorem 8.1 Let EAD be an extended action description, and letδG be a goal description. LetB be a
belief graph, and letα∈A′ be an action that is executable inB. Then,V n(B, δG) (resp.,Qn(B,α, δG)) is



INFSYS RR 1843-03-05 25

the maximal goodness of a conditional plan (resp., a conditional plan thatstarts with the actionα) of length
l6n for achievingδG fromB.

We next specify a solution to FINITE-HORIZON CONDITIONAL PLANNING in terms of the function
CPn, n> 0, which assigns to every belief graphB and goal descriptionδG a conditional plan of length
l=n with maximal goodness for achievingδG fromB:

CPn(B, δG) =





λ if n=0

Auxn(B,α, δG), whereα∈A′ such that (i)α is
executable inB and (ii)V n(B, δG)=Qn(B,α, δG) if n> 0,

whereAuxn(B,α, δG) is the conditional plan that (i) starts with an optimal actionα, (ii) has the length
l=n, and (iii) has maximal goodness for achievingδG fromB:

Auxn(B,α, δG) =





α;CPn−1(B ◦α, δG) if α is an effect action

α; if ω then {CPn−1(B ◦αω, δG)}
else {CPn−1(B ◦α¬ω, δG)} otherwise.

Informally, CP0(B, δG) is the empty conditional plan, whileCPn(B, δG), n> 0, is the conditional plan
Auxn(B,α, δG). If α is an effect action, thenAuxn(B,α, δG) is built from α and one conditional plan
of lengthl=n−1. Otherwise,Auxn(B,α, δG) is constructed fromα and two conditional plans of length
l=n−1, one for each outcome ofα.

The following theorem shows thatCPn(BδI
, δG) provides indeed a conditional plan of lengthl6hwith

maximal goodness for achievingδG from δI , and thus the problem of FINITE-HORIZON CONDITIONAL

PLANNING can be solved by computingCPn(BδI
, δG).

Theorem 8.2 Let EAD be an extended action description, letδI be an initial state description, letδG be
a goal description, and leth> 0 be a horizon. Then, the conditional plan obtained fromCPh(BδI

, δG) by
removing all the occurrences of the actionnop is a conditional plan of lengthl6h with maximal goodness
for achievingδG from δI .

As an immediate corollary of the previous theorem, we thus obtain that the problem of FINITE-HORI-
ZON CONDITIONAL PLANNING is computable.

Corollary 8.3 FINITE-HORIZON CONDITIONAL PLANNING is computable.

The next result provides an upper bound for the complexity of solving FINITE-HORIZON CONDITIONAL

PLANNING by using the functionCPn (as described in Theorem 8.2) in terms of basic operations on belief
graphs. In particular, it implies that for horizons bounded by a constant,a polynomial number of such basic
operations is sufficient.

Theorem 8.4 Let EAD be an extended action description, letδI be an initial state description, letδG be
a goal description, and leth> 0 be a horizon. Then, the conditional planCPh(BδI

, δG) can be computed
by (i) O(a · bh+1) checks whether an actionα∈A is executable in a belief graph, (ii)O(bh+2) executions
of an actionα∈A′ in a belief graph, and (iii)O(bh+1) evaluations ofδG on a belief graph, wherea= |A|,
b= |Ae| + 2 · |As| + 1, andAe andAs denote the set of all effect and sensing actions inA, respectively.



26 INFSYS RR 1843-03-05

Algorithm Finite-Horizon Conditional Planning

Input: extended action descriptionEAD , initial state descriptionδI , goal descriptionδG,
and horizonh> 0.

Output: set of all conditional plansCP of lengthl6 h such thatgoodness(CP , δI , δG) is maximal.

1. SCP := CP
h(BδI

, δG) ;
2. SCP := {CP ′ |CP ∈SCP , CP ′ is obtained fromCP by removing all occurrences ofnop} ;
3. return SCP .

Figure 10: Algorithm Finite-Horizon Conditional Planning

As a corollary, we also obtain an upper bound for the complexity of using thefunctionCPn in terms of
basic operations on e-states, which implies that for horizons bounded by aconstant, a polynomial number
of basic operations on e-states is sufficient.

Corollary 8.5 Let EAD be an extended action description, letδI be an initial state description, letδG be
a goal description, and leth> 0 be a horizon. Then,CPh(BδI

, δG) can be computed by (i)O(a · bh+1 · oh)
checks whether an actionα∈A is executable in an e-state, (ii)O(bh+2 · oh) executions of an actionα∈A′

in an e-state, and (iii)O(bh+1 · oh) evaluations ofδG on an e-state, wherea andb are as in Theorem 8.4,
ando is the maximal number of alternatives of nondeterministic and probabilistic actions.

We next show how to compute all conditional plans of lengthl6hwith maximal goodness for achieving
δG from δI . To this end, we generalize the functionCPn to the following functionCP

n, which assigns to
every belief graphB and goal descriptionδG the set of all conditional plans of lengthl6n with maximal
goodness for achievingδG fromB:

CP
n(B, δG) =





λ if n=0
⋃
{Aux

n(B,α, δG) |α∈A′, α is executable inB,
andV n(B, δG)=Qn(B,α, δG)} if n> 0,

where the sets of conditional plansAux
n(B,α, δG) are defined as follows:

Aux
n(B,α, δG) =





{α;CP |CP ∈CP
n−1(B ◦α, δG)} if α is an effect action

{α; if ω then {CPω} else {CP¬ω} |

CPω ∈CP
n−1(B ◦αω, δG)

CP¬ω ∈CP
n−1(B ◦α¬ω, δG)} otherwise.

The following result shows thatCP
h(BδI

, δG) provides indeed the set of all conditional plans of length
l6h with maximal goodness for achievingδG from δI .

Theorem 8.6 LetEAD be an extended action description, letδI be an initial state description, letδG be a
goal description, and leth> 0 be a horizon. Then, the set of conditional plans obtained fromCP

h(BδI
, δG)

by removing all the occurrences ofnop is the set of all conditional plans of lengthl6h with maximal
goodness for achievingδG from δI .

An algorithm for computing the set of all optimal conditional plans of lengthl6h for achievingδG
from δI using the functionCP

h is shown in Fig. 10. The following example illustrates the underlying
computation via the functionsV h andQh.



INFSYS RR 1843-03-05 27

Example 8.7 (Robotic Soccer cont’d)Consider again the initial state descriptionδI = ballinarea ∧ inposi-
tion ∧ ¬ballmoving and the goal descriptionδG =¬ballinarea ∧ inposition. For the horizonh= 2, the
algorithm in Fig. 10 computes the set of all conditional plans of lengthl6 2 with maximal goodness for
achievingδG from δI . In particular, the returned set of conditional plans containsCP1 = gotoball; bodykick,
shown in Fig. 8, which is computed via the functionsV 2,Q2, V 1,Q1, andV 0 as follows:

V 2(BδI
, δG) = max {Q2(BδI

, α, δG) |α∈{gotoball, sensefreeahead, senseballclose,nop}}

= Q2(BδI
, gotoball, δG)

= V 1(BδI
◦ gotoball, δG)

= max {Q1(BδI
◦ gotoball, α, δG) |α ∈ {bodykick, gotoball, sensefreeahead,

senseballclose,nop}}
= Q1(BδI

◦ gotoball, bodykick, δG)

= V 0(BδI
◦ gotoball ◦ bodykick, δG)

= probl, BδI
◦ gotoball ◦ bodykick(δG)

= 0.4 (see Fig. 7).

Note that a slightly modified version of the functionCPh (resp.,CP
h), where the condition “V n(B,

δG)=Qn(B,α, δG)” is replaced by the condition “Qn(B,α, δG)> θ” can be used for computing a condi-
tional plan (resp., the set of all conditional plans) of lengthl6h with goodnessg> θ > 0 for achievingδG
from δI .

The next result shows that, ifGEAD ,δI
is acyclic, then for sufficiently large horizonsh> 0, the set of

all solutions of an instance of FINITE-HORIZON CONDITIONAL PLANNING coincides with the set of all
solutions of the corresponding instance of OPTIMAL CONDITIONAL PLANNING , which in turn is a subset
of the set of all solutions of a corresponding instance of THRESHOLD CONDITIONAL PLANNING (if it is
solvable). Hence, ifGEAD ,δI

is acyclic, then the problems of OPTIMAL and THRESHOLD CONDITIONAL

PLANNING can both be reduced to FINITE-HORIZON CONDITIONAL PLANNING .

Theorem 8.8 LetEAD be an extended action description, letδI be an initial state description, letδG be a
goal description. Suppose thatGEAD ,δI

is acyclic. Then, there exists a horizonh> 0 such that the set of
all conditional plans of maximal goodness for achievingδG from δI is given by the set of conditional plans
obtained fromCP

h(BδI
, δG) by removing all the occurrences of the actionnop.

9 Related Work

The literature contains several probabilistic extensions of formalisms for reasoning about actions. In par-
ticular, Bacchus et al. [3] propose a probabilistic generalization of the situation calculus, which is based on
first-order logics of probability, and which allows to reason about an agent’s probabilistic degrees of belief
and how these beliefs change when actions are executed. Poole’s independent choice logic [31, 32] is based
on acyclic logic programs under different “choices”. Each choice along with the acyclic logic program pro-
duces a first-order model. By placing a probability distribution over the different choices, one then obtains
a distribution over the set of first-order models. Mateus et al. [28] allow for describing the uncertain effects
of an action by discrete, continuous, and mixed probability distributions, andfocus especially on proba-
bilistic temporal projection and belief update. Finzi and Pirri [14] add probabilities to the situation calculus
to quantify and compare the safety of different sequences of actions. Boutilier et al. [6] introduce and ex-
plore an approach to first-order Markov decision processes (MDPs)that are formulated in a probabilistic



28 INFSYS RR 1843-03-05

generalization of the situation calculus, and present a dynamic programming approach for solving them. A
companion paper by Boutilier et al. [7] presents a generalization of Golog,called DTGolog, that combines
robot programming in Golog with decision-theoretic planning in MDPs. Other probabilistic extensions of
the situation calculus and Golog are given in [28, 18]. A probabilistic extension of the action languageA
is given by Baral et al. [4], which aims especially at an elaboration-tolerant representation of MDPs and at
formulating observation assimilation and counterfactual reasoning.

Among the above approaches, the most closely related is perhaps Poole’sindependent choice logic
(ICL) [31], which uses a similar way of adding probabilities to an approachbased on acyclic logic pro-
grams. But, as a central conceptual difference, like all the other aboveapproaches, Poole’s ICL does not
allow for qualitative uncertainty in addition to probabilistic uncertainty. Poole circumvents the problem of
dealing with qualitative uncertainty by imposing the strong acyclicity condition on logic programs. More-
over, Poole’s formalism is inspired more by the situation calculus and less by description logics.

Another closely related work is [12], which proposes the action languagePC+ for probabilistic rea-
soning about actions, and which is among the few works in the literature that deal with both qualitative
and probabilistic uncertainty in reasoning about actions. More precisely,PC+ allows for expressing non-
deterministic and probabilistic effects of actions as well as qualitative and probabilistic uncertainty about
the initial situation of the world. A formal semantics ofPC+ is defined in terms of probabilistic transitions
between sets of states, and it is then shown how the problems of prediction, postdiction, and unconditional
planning under qualitative and probabilistic uncertainty can be formulated inPC+. However, this work
especially does not address sensing.

From a more general perspective, our approach is also related to planning under uncertainty in AI,
since it can be roughly understood as a combination of (i) conditional planning under nondeterministic
uncertainty [15] with (ii) conditional planning under probabilistic uncertainty, both in partially observable
environments. Previous work on planning under probabilistic uncertainty can be roughly divided into (a)
generalizations of classical planning and (b) decision-theoretic planning. The former (see for example [10,
29, 23]) typically considers the problem of determining a sequence of actions given a success threshold,
with some extensions that consider also sensing and conditional plans. Decision-theoretic planning, on
the other hand, deals with fully observable Markov decision processes (MDPs) [33] or the more general
partially observable Markov decision processes (POMDPs) [22], which also include costs and/or rewards
associated with actions and/or states, and their solutions are mappings from situations to actions of high
expected utility, rather than courses of actions achieving a goal with high probability. Summarizing, our
approach can perhaps best be seen as combining conditional planning under nondeterministic and under
probabilistic uncertainty, where the latter is perhaps closest to generalizations of classical planning in AI. In
contrast to the decision-theoretic framework, we do not assume costs and/or rewards associated with actions
and/or states. Furthermore, sensing actions in our approach are more flexible than observations in POMDPs,
since they allow for preconditions, and they can be performed at any time point when executable.

10 Conclusion

In this paper, we have presented the languageE+ for reasoning about actions with sensing under qualitative
and probabilistic uncertainty.

The proposed framework has several interesting features of reasoning about actions, such as sensing,
persistence, and static constraints, and it combines them with nondeterministic and probabilistic effects of
actions. The proposed formalism also provides a complete integration of the epistemic and the probabilistic
belief of an agent.



INFSYS RR 1843-03-05 29

We have formulated the problem of conditional planning under qualitative and probabilistic uncertainty,
and we have presented two algorithms for conditional planning in our framework. The first one is always
sound, and it is also complete for the special case where the relevant transitions between epistemic states
are cycle-free. The second algorithm is a sound and complete solution to theproblem of finite-horizon
conditional planning. Under the assumption that the horizon is bounded by aconstant, it computes every
optimal finite-horizon conditional plan in polynomial time.

Finally, several examples have illustrated our formalism. They describe a robotic soccer scenario in
which we model at the same time the sensing abilities of a robot, as well as nondeterministic and prob-
abilistic uncertainty in the execution of its actions. More precisely, the examplesshow how this scenario
can be modeled in our formalism, and they illustrate the concepts of belief graphand conditional plan, the
evaluation of different possible conditional plans, and their computation using the presented algorithms.
They show not only the need for an integrated formalism in realistic applications, but also that the choices
in modeling uncertainty in the actions affect the behavior of the robot.

While from the representation standpoint our formalism provides a rather rich framework, a number of
issues still deserve further investigation. Specifically, we are currently addressing extensions of the proposed
framework that generalize it by introducing noise in sensing actions (for example, along the lines of [2, 35]),
as well as actions with costs and/or rewards (for example, such as in POMDPs [22]). Moreover, we are
improving the implementation of the prototype planner to make it suitable for quantitative experiments and
performance evaluation.

Another interesting topic of future research would be to elaborate an extension of the presented formal-
ism to multi-agent systems. Furthermore, it would be very interesting to investigate a concrete application
of the presented formalism in web services, as a part of the very active field of uncertainty reasoning in the
Semantic Web.

A Appendix: Proofs

Proof of Theorem 2.2. For effect actions, the computation of the algorithmCompute-Successor shows that,
once computed the direct and indirect effects of the actionα, which must be satisfied by every successor
e-state ofS underα, there is a unique maximal set of default frame axioms that can be satisfied bythe
successor e-state. Therefore, the successor e-state ofS underα is unique. Observe in particular that all
the fluent literals that are indirectly (via domain constraint axioms) added to thesuccessor e-state due to
default frame axioms are already inS, and thus any two sets of fluent literals that are indirectly added due
to different applicable default frame axioms are consistent with each other.

For sensing actions, the proof is almost identical to the line of argumentation above, and is based on a
straightforward modification of the algorithmCompute-Successor by eliminating the computation of the
direct effects of an action and by handling the outcome of a sensing action exactly like the direct effects of
an effect action.2

Proof of Theorem 3.1. We prove (b) (the proofs of (a) and (c) are analogous). Suppose that α is an
effect action that is executable inS. By Theorem 2.2,Φ(S, α) is characterized by the fluent conjunction
τ =

∧
ℓ∈L′ ℓ, whereL′ is the set of literalsL′ returned by the algorithmCompute-Successor(AD , S, α).

We first prove thatKB |=KφS ⊑∀α.τ . In fact:

(1) for each conditional effect axiomcaused ψ after α when φ in AD and such thatφS |= φ, we have
thatKB |=KφS ⊑∀α.ψ, since the inclusion axiomKφ⊑∀α.ψ is in KB andKφS ⊑Kφ is a valid
inclusion axiom. Hence,KB |=KφS ⊑∀α.direct(S, α);



30 INFSYS RR 1843-03-05

(2) for each domain constraint axiomcaused ψ if ℓ in AD and such thatdirect(S, α) |= ℓ, we have that
KB |=KφS ⊑∀α.ψ, since the inclusion axiomKℓ⊑ψ is in KB andKB |=KφS ⊑∀α.direct(S, α);

(3) now letτ ′ be the conjunction of the set of literalsL′ computed by the algorithmCompute-Successor
before the execution of the for–each cycle at step 10. For each default frame axiominertial φ after
α in AD and such thatφS |=φ andτ ′ 6|=¬φ, we have thatKB |=KφS ⊑∀α.φ, since the inclusion
axiomKφ⊑∀Kα.A¬φ ⊔ Kφ is in KB and it can be proved that, due to the form of the inclusion
axioms inKB and to the semantics of the modal operatorA, the inclusion axiomKφ⊑∀Kα.¬A¬φ
holds for each domain element in every model ofKB (because the form ofKB is such that it is not
possible to derive the validity of¬φ in theα-successors), consequentlyKφ⊑∀Kα.Kφ holds for
each domain element in every model ofKB ;

(4) now letτ ′′ be the conjunction of the set of literalsL′ computed byCompute-Successor before any
execution of the for–each cycle at step 16. Again, for each domain constraint axiomcaused ψ if ℓ in
AD and such thatτ ′′ |= ℓ, we have thatKB |=KφS ⊑ ∀α.ψ, since the inclusion axiomKℓ⊑ψ is in
KB andKB |=KφS ⊑∀α.τ ′′.

Furthermore, it is not difficult to verify that, due to the form ofKB and due to the minimal knowledge
semantics ofALCKNF , for no other formulaτ ′ such thatτ ′ |= τ andτ 6|= τ ′, KB |=KφS ⊑∀α.τ ′, which
proves the statement in (a).2

Proof of Theorem 5.5. (a) Recall first that an actionα is executable inB iff it is executable in the e-state
ℓ(v)=S of some deepest leafv of B. Observe then that the e-states of the deepest leaves ofB are exactly
the e-statesS ∈S such thatµ(S)> 0 for someµ∈µB.

(b) (resp., (c)) The set of unnormalized probability distributions overS associated with the belief graph
B ◦α (resp.,B ◦αo) coincides with the set of unnormalized probability distributions overS associated with
the belief graph obtained fromB by replacing the e-stateℓ(v)=S of every deepest leafv such thatα is
executable inS by the e-stateS′ =Φ(S, α) (resp.,S′ = Φ(S, αo)). The latter is given by the set of allµ ◦α
(resp.,µ ◦αo) with µ∈µB.

(d) The set of unnormalized probability distributions overS associated withB ◦ α coincides with the union
of all µeα such that̃α∈ inst(α), where everyµeα is the set of unnormalized probability distributions overS
associated with the belief graph obtained fromB by replacing the e-stateℓ(v)=S of every deepest leafv
such thatα is executable inS by the e-stateS′ =Φ(S, α̃). Every suchµeα is given by the set of allµ ◦ α̃
with µ∈µB.

(e) Recall that for every deepest leafv of B, the set of unnormalized probability distributionsµv associated
with v in B is given by the probability distributionµv that maps the e-stateℓ(v)=S to 1 and all other
e-statesS ∈S to 0. Observe then that for every deepest leafv of B such thatα is executable in the e-
stateℓ(v)=S, the set of unnormalized probability distributionsµv associated withv in B ◦ α is given by
the unnormalized probability distributionµ that maps everyS′ ∈S for which somec∈CS,α exists with
S′ = Φc(S, α) to Prα(S′|S) and all other e-statesS′ ∈S to 0. Hence, the set of unnormalized probability
distributions overS associated withB ◦ α is given by the set of allµ ◦α with µ∈µB. 2

Proof of Theorem 5.6. (a) Let B= (V,E, ℓ,Pr), and letr∈V be the root ofB. Let the subgraph
Gd = (Vd, Ed) of G= (V,E) be defined as in Section 5.2. By induction on the recursive structure of
Gd, we show thatprobl,v(φ)= minµ∈µv

∑
S∈S, S|=φ µ(S) for all v ∈Vd. Analogously, it can be shown that



INFSYS RR 1843-03-05 31

probu,v(φ)= maxµ∈µv

∑
S∈S, S 6|=¬φ µ(S) for all v ∈Vd. Since the above holds in particular for the rootr

of B, this then proves (a).

Basis:Let v ∈Vd be a leaf. Then,probl,v(φ) is 1 if ℓ(v) |=φ, and0 otherwise. Furthermore,µv is given by
{µv}, whereµv(ℓ(v))= 1 andµv(S)= 0 for every other e-stateS ∈S. Hence,minµ∈µv

∑
S∈S, S|=φ µ(S) =∑

S∈S, S|=φ µv(S) is1 if ℓ(v) |=φ, and0 otherwise. This shows thatprobl,v(φ)= minµ∈µv

∑
S∈S, S|=φ µ(S).

Induction: Let v ∈Vd be a non-leaf node. Suppose first thatPr(e) is undefined for all outgoing arrowse
of v. Then,probl,v(φ)= minv→v′∈Ed

probl,v′(φ). By the induction hypothesis, the latter coincides with
minv→v′∈Ed

minµ∈µv′

∑
S∈S, S|=φ µ(S) = minµ∈µv

∑
S∈S, S|=φ µ(S). Suppose next thatPr(e) is defined

for all outgoing arrowse of v. Then,probl,v(φ)=
∑

e=v→v′∈Ed
Pr(e) · probl,v′(φ). By the induction

hypothesis, this is equal to
∑

e=v→v′∈Ed
Pr(e) · minµ∈µv′

∑
S∈S, S|=φ µ(S) = minµ∈µv

∑
S∈S, S|=φ µ(S).

In summary, this shows thatprobl,v(φ) = minµ∈µv

∑
S∈S, S|=φ µ(S).

(b) Immediate by (a) and the definition of the executability probability ofB. 2

Proof of Proposition 6.3. By induction on the structure of conditional plansCP , we show that for every
belief graphB in which CP is executable,goodness(CP , B, δG) is the minimum ofgoodness(l, B, δG)
subject to all linearizationsl of CP .

Basis: Let CP =λ. Sinceλ is the only linearization ofCP , goodness(CP , B, δG) is the minimum of
goodness(l, B, δG) subject to all linearizationsl of CP .

Induction: Let CP =α;CP ′. Then, goodness(CP , B, δG)= goodness(CP ′, B ◦α, δG). By the induc-
tion hypothesis, the latter is the minimum ofgoodness(l′, B ◦α, δG) subject to all linearizationsl′ of CP ′,
which coincides with the minimum ofgoodness(l, B, δG) subject to all linearizationsl of CP . Finally, let
CP =β; if ω then {CPω} else {CP¬ω}. Then,goodness(CP , B, δG) is the minimum ofgoodness(CPo,

B ◦βo, δG) subject too∈{ω,¬ω}. By the induction hypothesis, each of the latter is given by the mini-
mum ofgoodness(lo, B ◦βo, δG) subject to all linearizationslo of CPo, which coincides with the minimum
of goodness(l, B, δG) subject to all linearizationsl of CP . 2

Proof of Theorem 6.5. Let THRESHOLDCONDITIONAL PLAN EXISTENCE denote the following decision
problem: Given an extended action descriptionEAD , an initial state descriptionδI , a goal descriptionδG,
and a thresholdθ > 0, decide whether there exists a conditional planCP that has a goodness of at leastθ

for achievingδG from δI . Observe then that THRESHOLD CONDITIONAL PLAN EXISTENCE can be eas-
ily reduced to THRESHOLD CONDITIONAL PLANNING , which in turn can be easily reduced to OPTIMAL

CONDITIONAL PLANNING . It is thus sufficient to show that THRESHOLD CONDITIONAL PLAN EXIS-
TENCE is undecidable. We show this by a reduction from the language emptiness problem for probabilistic
finite automata (PFA), which is undecidable by [30] and [8]. More precisely, a probabilistic finite automa-
ton (PFA)is a tuple(S,Σ, T, s0, sa), whereS is a nonempty finite set of states,Σ is a finite input alphabet,
T = {Ta | a∈Σ} where everyTa is a transition function that associates with every states∈S a probability
distributionTa( · |s) over the set of statesS, s0 ∈S is an initial state, andsa ∈S is an accepting state. The
language emptiness problem is the problem of deciding, given a PFA(S,Σ, T, s0, sa) and a thresholdθ > 0,
whether there exists an input stringw∈Σ⋆ that the PFA accepts with a probability of at leastθ.

We reduce the language emptiness problem for PFAs to THRESHOLDCONDITIONAL PLAN EXISTENCE

as follows. Let(S,Σ, T, s0, sa) be a PFA, whereS= {s0, . . . , sn = sa} andn> 0, and letθ > 0 be a thresh-
old. We then define the set of actionsA as the input alphabetΣ, where everya∈A is a probabilistic effect
action, and the set of fluentsF as the set of statesS. The extended action descriptionEAD contains one



32 INFSYS RR 1843-03-05

conditional probabilistic effect axiom of the formcaused φ0 : p0, . . . , φn : pn after a when φj for every ac-
tion a∈A andj ∈{0, . . . , n}, whereφi = si∧

∧
k∈{0,...,n}−{i} ¬sk andpi =Ta(si|sj) for all i∈{0, . . . , n}.

Let δI = s0 ∧
∧

k∈{1,...,n} ¬sk andδG = sn ∧
∧

k∈{0,...,n−1} ¬sk. Then, there exists an input stringw∈Σ⋆

that the PFA accepts with a probability of at leastθ iff there exists a conditional planCP with a goodness
of at leastθ for achievingδG from δI . 2

Proof of Proposition 7.2. Towards a contradiction, suppose there exists a linearizationL=α1;α2; . . . ;αn

of CP such that the e-stateℓ(v)=S of every deepest leaf nodev in BδI
◦ α1 ◦ α2 ◦ · · · ◦ αn does not

satisfyδG. Hence, the goodness ofL for achievingδG from δI is given by0. Thus, by Proposition 6.3,
the goodness ofCP for achievingδG from δI is also given by0. But this contradictsCP having a positive
goodness for achievingδG from δI . This shows that for every linearizationL=α1;α2; . . . ;αn of CP , there
exists a deepest leaf node inBδI

◦ α1 ◦ α2 ◦ · · · ◦ αn whose e-state satisfiesδG. 2

Proof of Theorem 7.3. (a) Immediate by the observation that (i) there are only finitely many acyclic paths
in GEAD ,δI

from SδI
to some e-stateS that satisfiesδG, and thus (ii) both the while-loop and the for-loop

terminate after a finite number of iterations.

(b) We now prove that for all conditional plansCP , it holds thatCP is returned by the algorithm iffCP

has a goodness of at leastθ for achievingδG from δI , where the “⇐”-part of the statement holds only in the
special case in whichGEAD ,δI

is acyclic.

(⇒) SupposeCP is a conditional plan returned by the algorithm. By step 2,CP consists only of linear-
izations of goodness of at leastθ for achievingδG from δI . Hence, by Proposition 6.3,CP has also a
goodness of at leastθ for achievingδG from δI .

(⇐) SupposeCP is a conditional plan of goodness of at leastθ for achievingδG from δI . By Proposition 7.2,
for every linearizationL=α1;α2; . . . ;αn of CP , there exists a deepest leaf node inBδI

◦α1 ◦α2 ◦ · · · ◦αn

whose e-state satisfiesδG. Thus, every such linearizationL of CP has a corresponding pathP in GEAD ,δI

from SδI
to some e-stateS that satisfiesδG. SinceGEAD ,δI

is acyclic, alsoP is acyclic, and thusP is
included inSL in step 1 of the algorithm. By Proposition 6.3,L has a goodness of at leastθ for achievingδG
from δI , and thusL is included inSL in step 2 of the algorithm. It thus follows thatSCP andSL in step
3 contain all linearizations ofCP , and thusCP is constructed in steps 4–11 and included in the set of
conditional plans returned in step 12.2

Proof of Theorem 8.1. We prove by induction onn> 0 that, for every belief graphB and goal description
δG, it holds thatV n(B, δG) (resp.,Qn(B,α, δG)) is the maximal goodness of a conditional plan (resp., a
conditional plan that starts with the actionα) overA′ =A∪{nop} of lengthl=n to achieveδG from B.
This then proves that, for every belief graphB and goal descriptionδG, it holds thatV n(B, δG) (resp.,
Qn(B,α, δG)) is the maximal goodness of a conditional plan (resp., a conditional plan thatstarts with the
actionα) overA of lengthl6n to achieveδG fromB.

Basis: For n= 0, only the empty conditional planλ has the lengthl=0. Sinceλ has the goodness
probl,B(δG) for achievingδG from B, it follows thatV 0(B, δG)= probl,B(δG) is the maximal goodness
of a conditional plan of lengthl= 0 to achieveδG fromB.

Induction: Let n> 0. By the induction hypothesis,V n−1(B′, δG) is the maximal goodness of a conditional
plan of lengthl=n− 1 to achieveδG from the belief graphB′. This shows thatQn(B,α, δG) is the maximal
goodness of a conditional plan that starts withα of lengthl=n to achieveδG fromB. It thus follows that



INFSYS RR 1843-03-05 33

V n(B, δG) (which is the maximum ofQn(B,α, δG) subject to all actionsα∈A′ that are executable inB)
is the maximal goodness of a conditional plan of lengthl=n to achieveδG fromB. 2

Proof of Theorem 8.2. We prove by induction onh> 0 that, for every belief graphB and goal description
δG, it holds thatCPh(B, δG) is a conditional plan of lengthl6h with maximal goodness for achievingδG
from B. This then shows thatCPh(BδI

, δG) is a conditional plan of lengthl6h with maximal goodness
for achievingδG from δI .

Basis: Forh= 0, only the empty conditional planλ is of length0. Thus,CP0(B, δG)=λ is a conditional
plan of lengthl6 0 with maximal goodness for achievingδG fromB.

Induction:Leth> 0. By the induction hypothesis, for every belief graphB′, it holds thatCPh−1(B′, δG) is
a conditional plan of lengthl6h− 1 with maximal goodness for achievingδG fromB′. By Theorem 8.1,
V h(B, δG) (resp.,Qh(B,α, δG)) is the maximal goodness of a conditional plan (resp., a conditional plan
that starts with the actionα) of length l6h to achieveδG from B. It thus follows thatCPh(B, δG) is a
conditional plan of lengthl6h with maximal goodness for achievingδG fromB. 2

Proof of Theorem 8.4. The valueV n(B, δG) and all valuesQn(B,α, δG) such that (a)α∈A′ and (b)α
is executable inB can be computed by (i) at mosta · bn checks whether an actionα∈A is executable in a
belief graph, (ii) at mostbn+1 executions of an actionα∈A′ in a belief graph, and (iii) at mostbn evaluations
of δG on a belief graph. Hence, ifA is nonempty, thenCPh(B, δG) can be computed by (i) at mosta · bh+1

checks whether an actionα∈A is executable in a belief graph, (ii) at mostbh+2 +2h executions of an action
α∈A′ in a belief graph, and (iii) at mostbh+1 evaluations ofδG on a belief graph.2

Proof of Theorem 8.6. Immediate by the proof of Theorem 8.2.2

Proof of Theorem 8.8. Since the subgraph ofGEAD that consists of all successors ofSδI
is finite and has no

cycles, the set of all conditional plans is finite. Thus, someh> 0 exists such that every conditional plan has
a lengthl6h. By Theorem 8.6, the set of conditional plans obtained fromCP

h(BδI
, δG) by removing all

the occurrences of the actionnop is the set of all conditional plans with maximal goodness for achievingδG
from δI . 2

References

[1] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description logics and action
formalisms: First results. InProceedings AAAI-2005, pp. 572–577. AAAI Press / MIT Press, 2005.

[2] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors in the
situation calculus. InProceedings IJCAI-1995, pp. 1933–1940. Morgan Kaufmann, 1995.

[3] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors in the
situation calculus.Artif. Intell., 111:171–208, 1999.

[4] C. Baral, N. Tran, and L.-C. Tuan. Reasoning about actions in a probabilistic setting. InProceedings
AAAI-2002, pp. 507–512. AAAI Press, 2002.

[5] T. Berners-Lee.Weaving the Web. Harper, San Francisco, CA, 1999.



34 INFSYS RR 1843-03-05

[6] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs. InPro-
ceedings IJCAI-2001, pp. 690–700. Morgan Kaufmann, 2001.

[7] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent program-
ming in the situation calculus. InProc. AAAI-2000, pp. 355–362. AAAI Press / MIT Press, 2000.

[8] A. Condon and R. Lipton. On the complexity of space bounded interactive proofs. InProceedings
FOCS-1989, pp. 462–467. IEEE Computer Society, 1989.

[9] F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and negation as
failure. ACM Trans. Comput. Log., 3(2):1–49, 2002.

[10] D. Draper, S. Hanks, and D. S. Weld. Probabilistic planning with information gathering and contingent
execution. InProceedings AIPS-1994, pp. 31–36. AAAI Press, 1994.

[11] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logicprogramming approach to knowledge-
state planning, II: The DLVK system.Artif. Intell., 144(1-2):157–211, 2003.

[12] T. Eiter and T. Lukasiewicz. Probabilistic reasoning about actions innonmonotonic causal theories. In
Proceedings UAI-2003, pp. 192–199. Morgan Kaufmann, 2003.

[13] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors.Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential. MIT Press, 2002.

[14] A. Finzi and F. Pirri. Combining probabilities, failures and safety in robot control. InProceedings
IJCAI-2001, pp. 1331–1336. Morgan Kaufmann, 2001.

[15] H. Geffner. Perspectives on artificial intelligence planning. InProceedings AAAI-2002, pp. 1013–1023.
AAAI Press, 2002.

[16] M. Gelfond and V. Lifschitz. Representing action and change by logic programs.J. Logic Program.,
17:301–322, 1993.

[17] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories.Ar-
tif. Intell., 153(1–2):49–104, 2004.

[18] H. Grosskreutz and G. Lakemeyer. Belief update in the pGOLOG framework. In Proceedings
KI / ÖGAI-2001, volume 2174 ofLNCS, pp. 213–228. Springer, 2001.

[19] J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and adversaries. J. ACM, 40(4):917–962,
1993.

[20] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. FromSHIQ and RDF to OWL: The making
of a web ontology language.J. Web Semantics, 1(1):7–26, 2003.

[21] L. Iocchi, D. Nardi, and R. Rosati. Planning with sensing, concurrency, and exogenous events: Logical
framework and implementation. InProceedings KR-2000, pp. 678–689. Morgan Kaufmann, 2000.

[22] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains.Artif. Intell., 101(1–2):99–134, 1998.



INFSYS RR 1843-03-05 35

[23] L. Karlsson. Conditional progressive planning under uncertainty. In Proceedings IJCAI-2001, pp.
431–438. Morgan Kaufmann, 2001.

[24] H. J. Levesque. What is planning in presence of sensing? InProceedings AAAI-1996, pp. 1139–1149.
AAAI Press / MIT Press, 1996.

[25] V. Lifschitz. Minimal belief and negation as failure.Artif. Intell., 70(1–2):53–72, 1994.

[26] J. Lobo, G. Mendez, and S. R. Taylor. Adding knowledge to the action description language A. In
Proceedings AAAI-1997, pp. 454–459. AAAI Press / MIT Press, 1997.

[27] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and related
stochastic optimization problems.Artif. Intell., 147(1–2):5–34, 2003.

[28] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas, and C. Sernadas. Probabilistic situation calculus.Ann.
Math. Artif. Intell., 32:393–431, 2001.

[29] N. Onder and M. E. Pollack. Conditional, probabilistic planning: A unifying algorithm and effective
search control mechanisms. InProceedings AAAI-1999, pp. 577–584. AAAI Press / MIT Press, 1999.

[30] A. Paz.Introduction to Probabilistic Automata. Academic Press, New York, 1971.

[31] D. Poole. The independent choice logic for modelling multiple agents under uncertainty.Artif. Intell.,
94(1-2):7–56, 1997.

[32] D. Poole. Logic, knowledge representation, and Bayesian decision theory. InProceedings CL-2000,
volume 1861 ofLNCS, pages 70–86. Springer, 2000.

[33] M. L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
1994.

[34] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems. MIT Press, 2001.

[35] S. Shapiro. Belief change with noisy sensing and introspection. InProceedings NRAC-2005.

[36] T. C. Son and C. Baral. Formalizing sensing actions: A transition function based approach.Artif. Intell.,
125(1–2):19–91, 2001.

[37] T. C. Son, P. H. Tu, and C. Baral. Planning with sensing actions andincomplete information using logic
programming. InProc. LPNMR-2004, volume 2923 ofLNCS/LNAI, pp. 261–274. Springer, 2004.

[38] W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 February 2004).
Available atwww.w3.org/TR/2004/REC-owl-features-20040210/.


