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Abstract. This paper is directed towards combining Pearl’s structural-model approach to causal
reasoning with high-level formalisms for reasoning about actions. More precisely, we present a
combination of Pearl’s structural-model approach with Poole’s independent choice logic. We show
how probabilistic theories in the independent choice logic can be mapped to probabilistic causal
models. This mapping provides the independent choice logic with appealing concepts of causality
and explanation from the structural-model approach. We illustrate this along Halpern and Pearl’s so-
phisticated notions of actual cause, explanation, and partial explanation. Furthermore, this mapping
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1 Introduction

Dealing with causality is fundamental to many applications in AI. The existing approaches to causality in
the AI literature can be roughly divided into those that have been developed as modal nonmonotonic logics
(especially in logic programming) and those that evolved from the area of Bayesian networks. A representa-
tive of the former is Geffner’s modal nonmonotonic logic for handling causal knowledge [13, 14], which has
been inspired by default reasoning from conditional knowledge bases. Other modal-logic based formalisms
play an important role in dealing with causal knowledge about actions and change; see especially the work
by Turner [35] and the references therein for an overview. A representative of the latter is Pearl’s approach
to modeling causality by structural equations [2, 11, 27, 28], which is central to a number of recent research
efforts. In particular, the evaluation of deterministic and probabilistic counterfactuals has been explored,
which is at the core of problems in fault diagnosis, planning, decision making, and determination of liabil-
ity [2]. It has been shown that the structural-model approach allows a precise modeling of many important
causal relationships, which can especially be used in natural language processing [11]. An axiomatization
of reasoning about causal formulas in the structural-model approach has been given by Halpern [15].

Concepts of causality also play an important role in the generation of explanations, which are of cru-
cial importance in areas like planning, diagnosis, natural language processing, and probabilistic inference.
Different notions of explanations have been studied quite extensively, see especially [18, 12, 33] for philo-
sophical work, and [23, 34, 19] for work in AI that is related to Bayesian networks. A critical examination
of such approaches from the viewpoint of explanations in probabilistic systems is given in [6].

In recent papers [16, 17], Halpern and Pearl formalized causality using a model-based definition, which
allows for a precise modeling of many important causal relationships. Using a notion of weak cause, they
propose appealing definitions of actual cause [16] and of causal explanation [17]. As they show, their no-
tions of actual cause and causal explanation, which is very different from the concept of causal explanation
in [24, 26, 13], models well many problematic examples in the literature. As for computation, Eiter and
Lukasiewicz [7, 9, 8] analyzed the complexity of these notions and identified tractable cases, and Hop-
kins [20] explored search-based strategies for computing actual causes in the general and restricted settings.

However, structural causal models, and thus also the above notions of actual cause and causal explana-
tion, have only a limited expressiveness in the sense that (i) they do not allow for first-order modeling, and
(ii) they only allow for explicitly setting the values of endogenous variables (also called an intervention)
as actions, but not for explicit actions as in well-known formalisms for reasoning about actions.

There are a number of formalisms for probabilistic reasoning about actions. In particular, Bacchus et
al. [1] propose a probabilistic generalization of the situation calculus, which is based on first-order logics
of probability, and which allows to reason about an agent’s probabilistic degrees of belief and how these
beliefs change when actions are executed. Poole’s independent choice logic [29, 30] is based on acyclic logic
programs under different “choices”. Each choice along with the acyclic logic program produces a first-order
model. By placing a probability distribution over the different choices, one then obtains a distribution over
the set of first-order models. Other probabilistic extensions of the situation calculus are given in [25, 10].
A probabilistic extension of the action language � is given in [3].

The main idea behind this paper is to develop a combination of Pearl’s structural-model approach
to (probabilistic) causal reasoning with high-level formalisms for (probabilistic) reasoning about actions.
To this end, we present a combination of Pearl’s structural-model approach with Poole’s independent choice
logic. The main contributions of this paper can be summarized as follows:

� We show how probabilistic theories in the independent choice logic [29, 30] can be translated into
probabilistic causal models. This translation provides the independent choice logic with appealing
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concepts of causality and explanation from the structural-model approach. Moreover, this mapping
also adds first-order modeling capabilities and explicit actions to the structural-model approach.

� We explore how the execution of actions at certain time points can be incorporated into the gener-
ated probabilistic causal models. Furthermore, we also provide a converse translation from binary
probabilistic causal models into probabilistic theories in the independent choice logic.

� We extend Halpern and Pearl’s sophisticated notions of weak and actual cause, explanation, and partial
explanation [16, 17] to the independent choice logic. We give many examples that illustrate these new
concepts in the independent choice logic and that show especially also their usefulness.

The work closest in spirit to this paper is perhaps the recent one by Hopkins and Pearl [21], which
combines the situation calculus [32] with the structural model-approach. However, the generated causal
models are much different from the ones in this paper. First, and as a central conceptual difference, Hopkins
and Pearl consider a standard situation calculus formalization, which allows for expressing uncertainty about
the initial situation, but which does not allow for uncertain effects of actions. In this paper, however, we
consider Poole’s independent choice logic [29, 30], which is a first-order formalism that allows both for
probabilistic uncertainty about the initial situation and about the effects of actions. Second, the work [21]
focuses only on counterfactual and probabilistic counterfactual reasoning, while our work here extends the
notions of actual cause, explanation, and partial explanation to the independent choice logic. Third, [21]
focuses only on hypothetical reasoning about subsequences of an initially fixed sequence of actions, while
our approach here basically allows for hypothetical reasoning about any actions and fluent values.

Note that also Poole [31] defines a notion of explanation for his independent choice logic. However,
Poole’s notion of explanation in [31] is based on abductive reasoning, and assumes that explanations are
defined over choice atoms. Our notion of explanation in this paper, in contrast, is based on causal reasoning
in structural causal models, and assumes that explanations are defined over endogenous variables. Hence,
our concept of explanation here is conceptually much different from the one by Poole in [31].

The rest of this paper is organized as follows. Section 2 recalls some basic concepts from Pearl’s
structural-model approach to causality. In Section 3, we recall Poole’s independent choice logic. Section 4
provides the translation from the independent choice logic to causal models, and also a translation in the
converse direction. In Sections 5–7, we then extend the notions of weak and actual cause, explanation, and
partial explanation by Halpern and Pearl to the independent choice logic. Section 8 summarizes the main
results and gives an outlook on future research.

2 Causal Models

In this section, we recall some basic concepts from Pearl’s structural-model approach to causality [2, 11, 27,
28]. In particular, we recall the notions of causal and probabilistic causal models.

2.1 Preliminaries

We assume a set of random variables. Every variable ��� may take on values from a nonempty do-
main �������	� . A value for a set of variables � is a mapping 
 that associates with each ���
��� an element
of ��������� (for ����� , the unique value is the empty mapping � ). The domain of � , denoted ������� , is the
set of all values for � . For ����� and 
���������� , denote by 
�� � the restriction of 
 to � . For disjoint sets
of variables ����� , and values 
������������! "�����#�$� , denote by 
% the union of 
 and  . We often identify
singletons &'� �)( with � � , and their values 
 with 
*��� � � .
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2.2 Causal Models

A causal model � � ��� ��� ����� consists of two disjoint sets � and � of exogenous and endogenous variables,
respectively, and a set � � &��	� � � �
� ( of functions ���
� ��������� ��� ������� that assign a value of � to
each value of the parents ��� � �������
� &'� ( of � . The values ��������� � of the exogenous variables � are
also called contexts. A probabilistic causal model � � � ��� ��� ����������� consists of a causal model ��� ��� �����
and a probability function � on ������� .

We focus here on the principal class [16] of recursive causal models � � ��� ��� ����� in which a total or-
dering � on � exists such that � ����� � implies ��� � , for all �"��� �
� . In such models, every assignment
to the exogenous variables � ��� determines a unique value  for every set of endogenous variables � � � ,
denoted �"!��#� � (or simply ���#� � ). For any causal model � � ��� ��� ����� , set of variables � � � , and value

�� ������� , the causal model �$��%'& � ��� ���(� �"������%'& � , where ����%'& � &��*)+ � � �,�(� � ( and each �-)+ is
obtained from � + by setting � to 
 , is a submodel of � . We abbreviate �.�/%'& and ���/%'& by ��& and ��& ,
respectively. For � ��� , we abbreviate � !10 �#� � by � & �#� � . A causal model � ����� ��� ����� or probabilistic
causal model � � � ��� ��� ����������� is binary iff � ������� � �32 for all � �4� .

Example 2.1 (stopping robot) Suppose that a mobile robot detects the presence of an obstacle. Then, the
command stop is executed by the control system, which activates two brakes 5 and 2 (wheels behind and
ahead), and the robot stops. The robot can stop using only one of the two brakes.

This scenario can be modeled by the following recursive causal model � � ��� ��� ����� . The exogenous
variables are given by ��� &6�87 ( , where �����97 � � &�: �;5 ( , and �97 is 5 iff an obstacle has been detected.
The endogenous variables are given by � � &=<	> ��?A@'��?CB ��D ( , where ������� � &�: �;5 ( for all � ��� , <	>
is 5 iff the command stop is executed, ?�� is 5 iff brake E is activated, and D is 5 iff the robot stops. The
functions � � &�� � � � �
� ( are given by �9F�G �$� 7 , �IH�J%���IH=K �L<	> , and �IG �.5 iff ? @ �M51NO? B �M5 .
Fig. 1 shows the parent relationships between the variables.

The submodel � H=K %"P'�$��� ��� H'K %"P ��� H=K %"P � is given by � H=K %"P � &=<	> ��?
@'��D ( and � H=K %"P � &��*)F�G �*� F�G ,
� )H�J �C� H�J , � )G �(5 iff ?
@ �M5 ( . For example, it then holds D H'K %"P ���I7%�.5 � �.5 .

A probabilistic causal model �Q� ����� may then be given by the additional probability function � on
����� � defined by � ����7 �
5 � �O:SRUT and � ���97 ��: � �O:SRWV . X

Y
Z B

Z @
[�\] 7

Figure 1: Causal Graph

3 Independent Choice Logic

In this section, we recall Poole’s independent choice logic (ICL) from [29, 30, 31]. We first recall a many-
sorted first-order language of logic programs, which are given a semantics in Herbrand interpretations.
We then recall the main concepts of ICL itself, and give an illustrative example.
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3.1 Preliminaries

Let � be a many-sorted first-order vocabulary with the sorts object, time, and action. Let � contain function
symbols of the sort �������	��

�9������������
 , the function symbols : and �(5 of the sorts 
������ and 
������I��
������ ,
respectively, and function symbols of the sort �������	��
 � ������
������ , where � � : . We call them object, time,
and action symbols, respectively. As usual, constant symbols are 0-ary function symbols. Let � also contain
predicate symbols of the sort �������	��
	�"!#
������ , where � � : , and the predicate symbol $�� of the sort ����
������%!

������ . We call them fluent and action predicate symbols, respectively. Let � be a set of variables, which are
divided into object, time, and action variables.

An object term is either an object variable from � or an expression of the form & ��' @ � R R R �
' � � , where & is
a � -ary object symbol, and ' @ � R R R �
' � are object terms. A time term is either a time variable from � ,
or the time symbol : , or an expression of the form ()�M5 , where ( is a time term. We use 5 � 2
� R R R to
abbreviate :*�M5 ��:*� 5+�.5 � R R R . An action term is either an action variable from � , or an expression of the
form , ��'�@ � R R R �
' � � , where , is a � -ary action symbol, and ' @ � R R R �
' � are object terms.

We define formulas by induction as follows. The propositional constants false and true, denoted -
and . , respectively, are formulas. Atomic formulas (or atoms) are of the form $��!��,%��( � or / ��' @'� R R R'�
' � ��( � ,
where , is an action term, ( is a time term, 0 is a � -ary fluent predicate symbol, and ' @'� R R R'�
' � are ob-
ject terms. We call them action atoms and fluent atoms (or simply actions and fluents), respectively. If 1
and 2 are formulas, then also 341 and �51 672�� . We use �51CN82 � and �51 9:2 � to abbreviate 3��5341 6%3;2 � and
3��5341 682 � , respectively, and adopt the usual conventions to eliminate parentheses. A clause is a formula of
the form 1<9:2 , where 1 (resp., 2 ) is an atom (resp., formula) called its head (resp., body).

Terms and formulas are ground iff they do not contain any variables. Substitutions, ground substitutions,
and ground instances of terms and formulas are defined as usual.

We use =">@? (resp., =BA ? ) to denote the Herbrand base (resp., Herbrand universe) over � . A world C
is a subset of =<> ? . We use D ? to denote the set of all worlds over � . A variable assignment E maps
every variable from � to an element of =#AF? of appropriate sort. It is extended to object, time, and ac-
tion terms as usual. The truth of formulas 1 in C under E , denoted C � �7GH1 , is defined by induction as
follows (we write C � �I1 when 1 is ground):

� C � � GJ$��%��,!��( � iff $��%��E ��, ���	E ��( � � �#C ;
� C � � GK0*��'�@ � R R R �
' � � iff 0*��E ��'�@ ��� R R R �	E ��' � � � �#C ;
� C � � G8341 iff not C��� G71 ;

� C � � G �51%6J2�� iff C��� G81 and C���LGF2 .

A world C is a model of a set of formulas M , denoted C � �NM , iff C���8G4� for all � �<M and all E .

3.2 Independent Choice Logic

We now recall Poole’s independent choice logic (ICL) from [29, 30, 31].
A choice space O is a set of pairwise disjoint and nonempty sets P �N=<>�? . The members of O are

called its alternatives and their elements atomic choices. A total choice of O is a set ? �N=<>Q? such that
� ?SR P$� �.5 for all P �@O . A probability � on a choice space O is a probability function on the set of all total
choices of O . If O and all its alternatives are finite, then � can be defined by (i) a mapping �O�UTVO���W : �;5YX
such that Z\[^]`_4� ��, � �M5 for all P �@O , and (ii) � � ?�� �SaLb ] H � ��c � for all total choices ? of O . Intuitively,
(i) associates a probability with each atomic choice, and (ii) assumes independence between the alternatives.
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A logic program � is a set of clauses. We use ���
��� �^$ ��� � to denote the set of all ground instances of
clauses in � . A logic program is acyclic iff a mapping � from =">�? to the non-negative integers exists such
that � � 0 �	�
� ��� � for all 0 ��� �@=<>8? where 0 (resp., � ) occurs in the head (resp., body) of some clause in
���
��� �^$ ��� � . The answer set (or stable model) of an acyclic logic program � is a world C such that for every
0��@=<>@? , it holds that C � � 0 iff C��� 2 for some clause 0 9 2 in ���
��� �^$ ��� � .

An independent choice logic theory (or ICL-theory) 
�� �5O ��� � consists of a choice space O , and
an acyclic logic program � such that no atomic choice in O coincides with the head of any clause in
���
��� �^$ ��� � . A probabilistic independent choice logic theory (or PICL-theory) 
�� � �5O ��� ������� consists
of an ICL-theory �5O ��� � and a probability � on O .

We next define the semantics of ICL- and PICL-theories by associating with them certain worlds and a
probability distribution on certain worlds, respectively. A world C is a model of an ICL-theory 
�� �5O ��� � ,
denoted C � ��
 , iff C is an answer set of �M� &
0L9 . � 0��4? ( for some total choice ? of O . In a PICL-
theory 
�� � �5O ��� ������� , the probability of such a world C is then defined as � � ?$� .

The following example illustrates how action descriptions and probabilistic action descriptions can be
encoded in ICL- and PICL-theories, respectively.

Example 3.1 (mobile robot) Consider a mobile robot, which can navigate in an environment and pick
up objects. We assume the constants � @ (robot), � @ (object), 0,@ ��0=B (positions), and : (time). The domain is
described by the fluents ��������������� ��� ��
 � and � 
 ���"��� ��� ��
 � , where � � &�� @ ( , � �$&��6@'��� @ ( , � ��� � &
0 @ ��0=B ( ,
and 
 � &�: �;5 � R R R ( . Here, ��������������� ��� �
'�� and � 
 ��
 ��0 �
' � mean that the robot � @ is carrying the object � at
time point ' and that the robot or object 
 is at position 0 at time point ' , respectively. The robot is endowed
with the actions ��������� � ��� ��� � , /^�����^A / ����� , and / � 
"!8��# � ��� � , where � ��� � &
0	@'��0=B ( and � ��&�� @ ( . Here,
��������� � � 0 � , /^���$� A / ��� � , and / � 
"!8��# � ��� � represent the actions “move to the position 0 ”, “pick up the
object � ”, and “put down the object � ”, respectively. The action /^�����^A / ��� � is stochastic: It is not reliable,
and thus can fail. Moreover, we have the predicates $��%��P ��
 � , which represents the execution of an action P
at time 
 , and %U� ��P���
 � (resp., ��� ��P���
 � ), which represents the failure (resp., success) of an action P
executed at time 
 . An ICL-theory �5O ��� � is then given by the choice space

O � & &�%���& �'%U� � /^���$� A / ��� @ ���
' ���(��� & �)��� � /^���$� A / ��� @ ���
' � ( ��' � &�: �;5 ( (
and the logic program � consisting of the following clauses:

��������� ����� ���$��
 �(5 � 9 � 
 �*�6@'��� ��� ��
 � 6#� 
 ��� ��� ��� ��
 � 6 $��%� / �����^A / ��� ����
 �`6+���*� /^�����^A / ��������
 ��,
��������� ����� ���$��
 �(5 � 9 ��������������� ���$��
 �`6#3K$��!� / � 
"!8��# � ��� ����
 ��,
� 
 �*� @ ��� ��� ��
 �(5 � 9 $��%� ����� �-�^�%��� ��� ����
 ��,
� 
 �*�6@'��� ��� ��
 �(5 � 9 ��
 �*� @'��� ��� ��
 �+6#3K$��%� �%�����-�^� ��� ��� 5 ����
 � 6 � ���65/.�$� ����,
� 
 ��� ��� ��� ��
 �(5 � 9 � 
'��� ��� ��� ��
 �
643K� ������������� ��� ��
 ��,
� 
 ��� ��� ��� ��
 �(5 � 9 ��������������� ���$��
 �`6S$�� � ��������� � ��� ��� ����
 ��,
� 
 ��� ��� ��� ��
 �(5 � 9 � 
'��� ��� ��� ��
 �`6#3 $��!� ����� �-�^�%��� ��� 5 ����
 �+6 � ��� 5/.�3� ����,
� 
 ��� @'��0=B ��: � 9 .),
� 
 �*�6@'��0=B ��: � 9 .�R

A PICL-theory � �5O ��� ������� is given through � � &�%�� P �$����@ ( � �O� � &����=P �0%�� @ ( � ��:SRW2S5 , � � &�%�� P �0%U� @ ( � �O:SR :21 ,
and � � &����=P �$����@ ( � �O:SR43-1 , which is obtained from � �5%�� P � ��� �5%�� @ � ��:SRWV and � �6���'P'� �O� �6����@�� �O:SRUT by as-
suming probabilistic independence between the alternatives &�%U� P �$��� P ( and &�%�� @ �$���,@ ( . X
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4 Translations

In this section, we first give a translation of PICL-theories into probabilistic causal models. We then show
how action executions at different time points can be included into this translation. We finally also provide
a converse translation of binary probabilistic causal models into PICL-theories.

4.1 From ICL to Causal Models

We now define a translation of PICL-theories 
�� � �5O ��� ������� into probabilistic causal models. Informally,
the main idea behind this translation is to use (i) each alternative P of the choice space O as an exogenous
variable with the set of all atomic choices of P as domain, and (ii) every other ground atom as an endogenous
variable with binary domain, where the functions are specified by the clauses of the logic program � .

In the sequel, let 
�� � �5O ��� ������� be a PICL-theory. The probabilistic causal model associated with 
 ,
denoted ����� � ����� ����� ����� ��������� , is defined as follows:

� ����� O , where ����P � � P for all P �8O .

� ����� =<> ? � T O , where ����� ��� ��& -�� . ( for all � � �,��� .

� ����� &���� � 0��
��� ( , where ���	� is the set of all ground atoms that occur in the body of some 0 9:2 in
�2� ��� �^$ ��� � , and for every 
 � ��������� � we define ��� �

 � � . iff 
 � � 2 for some 0L9 2 in ���
��� �^$ ��� � .
Notice that then � � � - for all ground atoms 0 in no head of a clause in ���
��� �^$ ��� � .

� ��� �#� � ��� � &;�*��P � �
P �@O ( � for all ��������� � .
For ICL-theories 
�� �5O ��� � , the causal model associated with 
 , denoted ���$� ����� ����� ����� � , is defined
as above. Given a total choice ? for O , we define � H ���������*� by � H ��P � �-?VR7P for all P �A���*�FO .

The following example illustrates the translation of PICL-theories into probabilistic causal models.

Example 4.1 (mobile robot (continued)) Consider the PICL-theory 
�� � �5O ��� ������� given in Example 3.1.
Its associated probabilistic causal model ��� � � ����� ����� ��������������� is given as follows. The exogenous
variables are given by ����� &6�IP � �8@ ( , where �IP � &�%�� P �$���=P ( � �����IP � and � @ � &�%�� @ �$����@ ( �������8@ � . The
endogenous variables ��� are given by all the ground atoms that do not occur in �	� , and they all have
& -�� . ( as associated domain of values. For example, the ground atoms ��������� ����� ��� @ ��: � , ��
 �*� @ ��0 @ �;5 � ,
$��%� ����� �-�^�%� 0,@ ����: � , and $��%� / �����^A / ��� @ ���;5 � all belong to ��� . The functions ����� &���� � 0��
� ( are defined
as specified above. For example, ��������� J���� J�� @�� �F. iff either $��!� ��������� � � 0,@ ����: � �@. , or � 
 �*� @'��0 @ ��: � � . and
$��%� ����� �-�^�%� 0'B ����: � � - . Finally, ��� is defined by ��� �#� � �O� � ?! � for all ��������� � , where ?" denotes the
total choice associated with � . For example, �#� ���	P � %�� P � �8@ � %�� @ � �O� � &�%U� P �0%�� @ ( � ��:SR :21 . X

4.2 Action Execution Sets

We next describe how action executions at different time points in ICL can be incorporated into the proba-
bilistic causal model �$� associated with a PICL-theory 
�� � �5O ��� ������� .

An action execution set % is a set of ground atoms of the form &�� �(' �
'�� . Intuitively, % represents the
following set of action executions: For every &�� �(' �
'�� �)% , the action ' is executed at time point ' .
Example 4.2 (mobile robot (continued)) An action execution set for the PICL-theory of Example 3.1
is given by % � & $�� � ��������� � � 0,@ ����: ����$�� � /^���$� A / ��� @ ���;5 � ( , which represents the execution of the action
“move to the position 0 @ ” at time : and the execution of the action “pick up the object � @ ” at time 5 . X
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In the sequel, let 
�� � �5O ��� ������� be a PICL-theory. An action execution set % can be taken into con-
sideration in the probabilistic causal model ��� either (1) by additionally expressing the elements of % as
clauses in � and then generating � � , or (2) by considering the submodel of � � in which the elements of %
are explicitly set to . . More formally, the probabilistic causal model � � � ��� ��� ����������� for the PICL-
theory 
�� � �5O ��� ������� and the action execution set % are defined as follows:

(1) We define � as � � � , where 
 ) � � �5O ��� � & � 9 . � � � % ( ������� . Then, the elements in % can be
overwritten by explicitly setting them in � (for example, in counterfactual reasoning).

(2) We define � as �Q�!�*��� � �Q�������1%�� , where � ����� % � is defined by � ����� � . for all � � % . Then,
the elements in % are fixed in � : They do not occur in � and thus cannot be changed anymore.

Since from a technical viewpoint, (1) is a special case of (2), we consider only (2) in the rest of this
paper. The following example illustrates the two different representations (1) and (2) of % .

Example 4.3 (mobile robot (continued)) Consider the PICL-theory 
�� � �5O ��� ������� given in Example 3.1,
and the execution set % given in Example 4.2. Under the representation (1), we then obtain the probabilistic
causal model � � � , where 
 ) � � �5O ��� ) ������� and � ) � � � & &-� � ��������� � � 0 @ ����: �
9 .�� &-� � /^���$� A / ��� @ ���;5 �
9 . ( .
Here, alternative executions can be explored by considering submodels that are obtained from � � � by ex-
plicitly setting the values of $��%� ����� �-�^�%� 0	@�����: � and $��%� /^���$� A / ��� @ ���;5 � , for example, to - and . , respec-
tively. Under the representation (2), we obtain the causal model �Q� ����� � �Q���*��� %�� , where � ����� � . for
all � � % . Here, the action executions in % are fixed and cannot be changed anymore. X

4.3 From Causal Models to ICL

We finally also provide a converse translation of binary probabilistic causal models � � � ��� ��� �����������
into PICL-theories. The main ideas behind this translation are (i) to use the domains of the exogenous
variables in � as alternatives in the choice space, and (ii) to represent the functions in � as clauses in an
acyclic logic program under the answer set semantics.

In the sequel, let � � � ��� ��� ����������� be a binary probabilistic causal model, where ������� � &�: �;5 (
for all � �
� , � � &�� � � � �
� ( , and ��� � is finite for every � �
� . The PICL-theory associated with � ,
denoted 
,! � � �5O/!���� ! �����I! � , is then defined as follows:

� O ! � & &6� � � � � ��� � � ����� � � ( ��� � �(� ( ;
� ��!���&'���(5+9 1!� � � ��� � E �`C ( , where � ���%�@ �

�
� ]
	 1 � and each 1!� is a conjunction of assignments

� �� , where � �
����� and  �����#�$� , such that for all 0�� �������1� � : � ���%�@ is true in 0 iff �	� � 0 � �M5 ;
� � ! � ?�� ��� � & ��� � � � � � ��� � ��� � �-? ( � for every total choice ? of O ! .

For binary causal models � � ��� ��� ����� , the ICL-theory associated with � , denoted 
 ! � �5O/!���� ! � , is
defined as above. The following illustrates the translation of probabilistic causal models into PICL-theories.

Example 4.4 (stopping robot (continued)) Consider again the probabilistic causal model � � � ��� ��� �����������
given in Example 2.1. Its associated PICL-theory 
I! � � �5O/!��-��!������	! � is given as follows. The choice
space is given by O�! � & &6�97 ��5 � �97 �*: ( ( . The acyclic logic program ��! is given by the following clauses:

<	>$�
5"9 �I7%�.5�,
?4@ �.5 9 <	> �.5�,
? B �.5 9 <	> �.5�,
D��M5"9 ?
@ �M58N ? B �
5 R
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Finally, the probability function �8! on O/! ’s total choices � @ � &6�I7%�.5 ( and � B � &6�I7 ��: ( is defined
by �I!���� @ � � � ���97%�M5 � and �I!���� B � �O� ���I7%�O: � . X

5 Weak and Actual Causes

In this section, we extend the notions of weak and actual cause by Halpern and Pearl [16] to ICL-theories.
Informally, the main idea behind this extension is to define weak and actual causes in ICL-theories 
 as
weak and actual causes in their associated causal models � � .

Observe that even though [16] defines the notions of weak and actual cause only for the restricted case
of a finite number of endogenous variables, the extended version of [16] also describes how these notions
can be generalized to the infinite case. It also gives an example, which deals with infinite weak and actual
causes, where such a generalization is necessary. In the sequel, we consider only the original definitions
from [16], and we disallow infinite weak and actual causes, to avoid the above-mentioned problems.

We first recall the notions of weak and actual cause for causal models from [16]. A primitive event is an
expression of the form � �� , where � is a variable, and  is a value for � . The set of events is the closure
of the set of primitive events under the Boolean operators 3 and 6 . The truth of an event 1 in a causal
model � � ��� ��� ����� under ��������� � , denoted �Q� � � � � � 1 , is inductively defined as follows:

� �Q� � � � � � � �� iff �"!��#� � �  ,

� �Q� � � � � � 341 iff �Q� � � � � �I1 does not hold,

� �Q� � � � � � 186 2 iff �Q� � � � � �I1 and �Q� � � � � �\2 .

We use 1*�#� � to abbreviate �Q� � � � � � 1 . For � � � and 
���������� , we use 1"& �#� � to abbreviate �Q�$&
� � � � � 1 .
For � � &'� @'� R R R'� � � ( � � with � ��5 and 
 �
�������$��� , we use ����
,@�������
 � to abbreviate � @ ��
,@�6CR R R 6
� � ��
 � . In the sequel, let � � ��� ��� ����� be a causal model, let � � � and 
���������� , and let 1 be an event.
Then, � ��
 is a weak cause of 1 under � iff the following conditions (AC1) and (AC2) hold:

AC1. � �#� � � 
 and 1*�#� � .
AC2. Some set of variables

� � ��� � and some values 
*� ������� , ��� ��� � � exist with:

(a) 341 &�� �#� � , and

(b) 1 & �
	� �#� � for all
�
 � �$� ��� � � � and

�� �
�
 �#� � .

Moreover, ����
 is an actual cause of 1 under � iff additionally the following condition (AC3) is satisfied:

AC3. � is minimal. That is, no proper subset of � satisfies both AC1 and AC2.

We are now ready to define the notions of weak and actual cause for ICL-theories as follows.

Definition 5.1 Let 
�� �5O ��� � be an ICL-theory, let 2 be a conjunction of atoms, and let 1 be a formula.
Let ? be a total choice for O , and let % be an action execution set. Then, 2 is a weak (resp., an actual)
cause of 1 under ? and % in 
 iff � ��2�� � is a weak (resp., an actual) cause of � �51�� � under � H in �Q���*���
for each ground substitution � , where � ��E � is obtained from E by replacing every ground atom 0 by 0 � . .

The following example illustrates weak and actual causes in ICL-theories.
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Example 5.2 (mobile robot (continued)) Consider again the mobile robot scenario described in Exam-
ple 3.1. Suppose now that there are two objects � @ and � B , and that the robot � @ cannot hold them both in
the same time. Consider the ICL-theory 
�� �5O ��� � , where the choice space is given by

O � & &�%���� � & � %U� � /^���$�^A / ��� ���
'����(��� � � & � ��� � /^���$�^A / ��� ���
'�� ( ��� ��&�� @ ��� B ( � ' ��&�: �;5 � 2 ( ( �

and � is given by the following clauses:

��������� ����� ���$��
 �(5 � 9 � 
 �*�6@'��� ��� ��
 �`6 � 
 ��� ��� ��� ��
 � 6 3K��������� ����� ����5 ��
 �)6
$��%� / �����^A / ��� ����
 �`6+���*� /^�����^A / ��������
 �`6 ��5/.� � ,

��������� ����� ���$��
 �(5 � 9 ��������������� ���$��
 �`6#3K$��!� / � 
"!8��# � ��� ����
 ��,
� 
 �*�6@'��� ��� ��
 �(5 � 9 $��%� ����� �-�^�%��� ��� ����
 ��,
� 
 �*�6@'��� ��� ��
 �(5 � 9 ��
 �*� @'��� ��� ��
 �+6#3K$��%� �%�����-�^� ��� ��� 5 ����
 � 6 � ���65/.�$� ����,
� 
 ��� ��� ��� ��
 �(5 � 9 � 
'��� ��� ��� ��
 �
643K� ������������� ��� ��
 ��,
� 
 ��� ��� ��� ��
 �(5 � 9 ��������������� ���$��
 �`6S$�� � ��������� � ��� ��� ����
 ��,
� 
 ��� ��� ��� ��
 �(5 � 9 � 
'��� ��� ��� ��
 �`6#3 $��!� ����� �-�^�%��� ��� 5 ����
 �+6 � ��� 5/.�3� ����,
� 
 ��� @'��0=B ��: � 9 .),
� 
 �*�6@'��0=B ��: � 9 .�R

Assume that executing a pickup succeeds at every time point ' ��&�: �;5 � 2 ( , which is represented by the total
choice ? � &���� � � & � � � &�� @'��� B ( �
' �$&�: �;5 � 2 ( ( , and that the robot � @ executes a pickup of � @ at time point : ,
a move to the position 0�@ at time point 5 , and a pickup of � B at time point 2 , which is expressed the action
execution set % � & $�� � /^���$�^A / ���S@ ����: � , $��%� ����� �-�^�%� 0,@ ���;5 � , $��%� /^���$� A / ��� B ��� 2 � ( . We now show that � @
being at position 0"B at time point : is an actual cause of the robot not carrying � B at time point 2 , that is,
that 2 � � 
 ��� @'��0'B ��: � is an actual cause of 1 � 3 �Y,����  E ��� ���6B � 2 � under ? and % in 
 .

We show that ��
'��� @'��0'B ��: � �@. is an actual cause of ��������������� ���6B � 2 � �@- under � H in �Q������� �$��� ��� ����� .
Clearly, � 
'��� @ ��0 B ��: � �#�"H � � . and ��������� ����� ��� B � 2 � �#�'H � � - in �Q� � � � . That is, (AC1) holds. Consider
next � � & ��
'��� @'��0=B ��: � ( , 
 � & �
� 
'��� @'��0=B ��: ��� .�� ( , 
 � & �
��
'��� @'��0=B ��: ��� -�� ( , � � &�, ' ��� B ��0,@'�
' � � ' �$&�: �;5 �
2
� R R R ( ( , and ��� & � � � � .�� � � � � � ( . We then obtain ��������������� ��� B � 2 � & � �#�'H � � . . That is, (AC2) (a)
holds. Furthermore, we obtain ��������� ����� ��� B � 2 ��& � �#� H � � - and


 & � �#� H � � 
 �#� H � for

 ����� ���O� � �

(setting
� � � and thus inverting , ' ��� B ��0 @'�
' � for ' ��&�: �;5 � 2
� R R R ( does not affect other fluents). That is,

also (AC2) (b) holds. This shows that ��
 ��� @'��0=B ��: � � . is a weak cause of � �����������(� ���6B � 2 � � - under � H
in �Q���*��� . Since � is a singleton, also (AC3) holds. It thus follows that � 
 ��� @'��0=B ��: � � . is also an actual
cause of ��������� ����� ��� B � 2 � � - under �"H in �Q� � � � . X

The next example shows that we can also refer to the actually executed actions in weak and actual causes,
if we make use of representation (1) for action execution sets.

Example 5.3 (waiting collector) We consider a simplified version of Example 3.1, where (i) we have only
the fluent � ������������� � 
 � with 
 � &�: �;5 � R R R ( and the two actions #*����
 and /^���$� A / , and (ii) we assume that the
action /^�����^A / can fail or succeed (which depends on the time point of the execution of /^���$�^A / ). Consider
the ICL-theory 
�� �5O ��� � , where the choice space is given by

O � & &����*� /^���$� A /��
' ���0%�� � /^���$�^A /*�
'�� ( � ' � &�: �;5 ( ( �
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and � describes the dynamics of this simple scenario by means of the following clauses:

� ������������� � 
 � 5 �49 $��%� /^�����^A /���
 � 6+��� � / �����^A /*��
 �`6 3K$��!� #*� ��
 ��
 ��,
� ������������� � 
 � 5 �49 ��������������� � 
 ��R

Assume that executing a pickup succeeds at time point : , but fails at time point 5 , which is represented by the
total choice ? � &�%�� � /^���$�^A /*�;5 ���$���*� /^���$� A /���: � ( , and that the robot � @ waits at time point : and executes a
pickup at time point 5 , which is expressed by the action execution set % ) � & $�� � #*� ��
 ��: ����$�� � /^���$� A /��;5 � ( .
We now show that the robot’s waiting at time point : is an actual cause of not carrying the object ��@
at time point 2 , that is, that 2 � $��!� #*� ��
 ��: � is an actual cause of 1 � 3K� ������������� �Q2 � under ? and % ���
in 
1) � �5O ��� ) � , where �8)'� � � & $�� � #*����
 ��: � 9 .���$�� � /^���$�^A /*�;5 � 9 . ( .

We show that $��%� #*� ��
 ��: � � . is an actual cause of ��������������� �Q2 � � - under � H in the causal model
�Q� � � � � �O� � � � ��� ��� ����� . Obviously, $��%� #*� ��
 ��: � �#��H � � . and ��������������� �Q2 � �#�"H � � - . That is, (AC1)
holds. Next, let ����& $�� � #*����
 ��: � ( , 
 � & �
$��%� #*� ��
 ��: ��� .�� ( , 
 � & �
$��%� #*� ��
 ��: ��� -�� ( , � � & $�� � /^���$�^A /*��: � ( ,
and ��� & �
$�� � /^���$� A /���: ��� .�� ( . We then get ��������� ����� � 5 � & � �#�"H � � . , and so also ��������������� �Q2 � & � �#�'H � � . .
That is, (AC2) (a) holds. Moreover, ��������������� �Q2 � & � �#� H � � - and


 & � �#� H � � 
 �#� H � for

 ���
����� � � � .

That is, also (AC2) (b) holds. This shows that $��%� #*����
 ��: � � . is a weak cause of � ������������� �Q2 � � - un-
der � H in � � � . Since � is a singleton, also (AC3) holds. It thus follows that $��%� #*����
 ��: � � . is also an
actual cause of ��������� ����� �Q2 � � - under � H in � � � . X

6 Explanations

In this section, we extend the concept of a (causal) explanation by Halpern and Pearl [17] to ICL-theories.
We first recall the concept of an explanation for causal models from [17]. In the sequel, let � � ��� ��� �����

be a causal model. Let � � � and 
���������� , let 1 be an event, and let �$� ����� � be a set of contexts. Then,
����
 is an explanation of 1 relative to � iff the following conditions (EX1)–(EX4) hold:

EX1. 1*�#� � holds, for every context ����� .

EX2. � ��
 is a weak cause of 1 under every ����� such that � �#� � ��
 .

EX3. � is minimal. That is, for every ��)���� , some ����� exists such that ��)��#� � ��
�� � ) and � ) ��
�� � ) is
not a weak cause of 1 under � .

EX4. � �#� � ��
 and � �#� ) � .��
 for some � � � ) ��� .

We are now ready to define the notion of an explanation for ICL-theories as follows.

Definition 6.1 Let 
�� �5O ��� � be an ICL-theory, let 2 be a conjunction of atoms, and let 1 be a formula.
Let � be a set of total choices for O , and let % be an action execution set. Then, 2 is an explanation of 1
under � and % in 
 iff � ��2
�
� is an explanation of � �51�� � under &;� H � ? ��� ( in �Q������� for each ground
substitution � , where � is defined as in Definition 5.1.

The following example illustrates the above explanations in ICL-theories.

Example 6.2 (mobile robot (continued)) Consider a new version of the mobile robot scenario in Exam-
ple 3.1, where we have the new fluent � �����������(��� ��� � 
 � , 
 ��&�: �;5 � R R R ( , and � ��������������� ���%��' � means that the
robot � @ is carrying an object at time point ' . Let the ICL-theory 
 ����� � O�� be defined by the choice space

O � & &������ /^���$�^A / ��� @ ����: ���0%�� � /^���$�^A / ��� @ ����: � ( (
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and the logic program � comprising the following clauses:

��������� ����� � ��� � 
 � 9���������� ����� ��� ��
 ��,
��������� ����� ���$��
 �(5 � 9 � 
 �*�6@'��� ��� ��
 � 6#� 
 ��� ��� ��� ��
 � 6 $��%� / �����^A / ��� ����
 �`6+���*� /^�����^A / ��������
 ��,
��������� ����� ���$��
 �(5 � 9 ��������������� ���$��
 �`6#3K$��!� / � 
"!8��# � ��� ����
 ��,
� 
 �*�6@'��� ��� ��
 �(5 � 9 $��%� ����� �-�^�%��� ��� ����
 ��,
� 
 �*�6@'��� ��� ��
 �(5 � 9 ��
 �*� @'��� ��� ��
 �+6#3K$��%� �%�����-�^� ��� ��� 5 ����
 � 6 � ���65/.�$� ����,
� 
 ��� ��� ��� ��
 �(5 � 9 � 
'��� ��� ��� ��
 �
643K� ������������� ��� ��
 ��,
� 
 ��� ��� ��� ��
 �(5 � 9 ��������������� ���$��
 �`6S$�� � ��������� � ��� ��� ����
 ��,
� 
 ��� ��� ��� ��
 �(5 � 9 � 
'��� ��� ��� ��
 �`6#3 $��!� ����� �-�^�%��� ��� 5 ����
 �+6 � ��� 5/.�3� ����,
� 
 ��� @'��0 @'��: � 9 .),
� 
 �*�6@'��0 @ ��: � 9 .),
��� � / �����^A / ��� @ ���;5 � 9 .�R

Assume that executing a pickup of the object � @ either succeeds or fails at time point : , which is expressed by
the set of total choices � � &�? @ ��&���� � /^���$� A / ��� @ ����: � ( ��? B ��&�%�� � / �����^A / ��� @ ����: � ( ( , and that the robot � @
executes a pickup of the object �S@ at time points : and 5 , which is represented by the action execution
set % � & $�� � /^�����^A / ��� @ ����: ��� $��%� /^�����^A / ��� @ ���;5 � ( . We now show that the robot’s carrying � @ at time point 5
is an explanation of the robot’s carrying an object at time point 2 , that is, that 2��V��������������� ���'@'�;5 � is an
explanation of 1 � � ��������������� ��� �Q2 � under � and % in 
 .

In the following, we show that ��������������� ��� @ �;5 � � . is an explanation of ��������������� � ��� �Q2 � � . under
&;� H � ? � � ( in �Q������� . Clearly, we have that ��������������� � ��� �Q2 � �#� H J � � . and ��������������� � ��� �Q2 � �#� H'K � � . .
That is, (EX1) holds. Furthermore, it holds that ��������������� ��� @ �;5 � �#�"H�J � � . and ��������������� ��� @ �;5 � �#�'H'K'� � - .
That is, (EX4) holds. Since ��������������� ��� @ �;5 � � . is atomic, also (EX3) holds. It thus remains to show that
(EX2) holds. We have to show that � �����������(� ��� @ �;5 � � . is a weak cause of � �����������(��� ��� �Q2 � � . under � H J
in �Q���*��� . Obviously, it holds that ��������������� ���S@'�;5 � �#� H J � � . and � �����������(��� ��� �Q2 � �#� H J � � . . That is,
(AC1) holds. Next, let ����& ��������������� ���S@ �;5 � ( , 
 � & �
� �����������(� ��� @'�;5 ��� .�� ( , 
 � & �
��������������� ��� @'�;5 ��� -�� ( ,� � & � 
'��� @ ��0 @ �
'�� � ' �$&�: �;5 � 2
� R R R ( ( , and � � & � � � � - � � � � � � ( . Then, ����������������� ���%�Q2 � & � �#�"H�J�� � - .
That is, (AC2) (a) holds. Moreover, we have that ����������������� ��� �Q2 � & � �#� H J � � . and


 & � �#� H J � � 
 �#� H J � for
 ���
����� � � � . That is, also (AC2) (b) holds. This shows that ��������������� ��� @'�;5 � � . is a weak cause of
��������������� � ��� �Q2 � � . under � H J in �Q���*��� . Hence, also (EX2) holds. In summary, � ������������� ��� @'�;5 � � . is
an explanation of ��������������� � ���%�Q2 � � . under &;� H � ? ��� ( in �Q���*��� . X

7 Partial Explanations

We finally extend the concepts of ' -partial explanations, partial explanations, and explanatory power of
partial explanations by Halpern and Pearl [17] to PICL-theories.

We first recall the notions of ' -partial explanations, partial explanations, and explanatory power of par-
tial explanations for causal models from [17]. In the sequel, let � � ��� ��� ����� be a causal model. Let � � �
and 
���������� , let 1 be an event, let �$� ����� � be such that 1*�#� � for all ����� . We use the expression �

�

�/%'&
to denote the unique largest subset � ) of � such that ����
 is an explanation of 1 relative to � ) . The following
result from [9] gives a characterization of �

�

��%'& .
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Proposition 7.1 (See [9]) If � ��
 is an explanation of 1 relative to some � ) � � , then �
�

�/%'& is defined, and
it contains all ����� such that either � �#� � .��
 , or � �#� � ��
 and � ��
 is a weak cause of 1 under � .

Let � be a probability function on � , and define

��� �
�

��%'& � ����
 � � Z
��������	��

��
 ����� 0

�$�#� � � Z
�����

��
 ������0
�$�#� �=R

Then, � ��
 is an ' -partial explanation of 1 relative to � �*����� iff �
�

��%'& is defined and ��� �
�

�/%'& � ��� 
 � � ' .
Moreover, � ��
 is a partial explanation of 1 relative to � ������� iff ����
 is an ' -partial explanation of 1
relative to � �*����� for some ' � : . Then, �$� �

�

��%'& � ����
 � is called its explanatory power (or goodness).

We are now ready to define ' -partial explanations for PICL-theories. This then implicitly also defines
the notions of partial explanations and of their explanatory power for PICL-theories.

Definition 7.2 Let 
�� � �5O ��� ������� be a PICL-theory, let 2 be a conjunction of atoms, and let 1 be a for-
mula. Let � be a set of total choices for O , and let % be an action execution set. Then, 2 is an ' -
partial explanation of 1 under � and % in 
 iff � ��2
� � is an ' -partial explanation of � �51 �
� relative to
� &;�'H�� ? ��� ( ��� � � in �Q� � � � for every ground substitution � , where � is defined as in Definition 5.1.

We now give an example to illustrate the above concepts.

Example 7.3 (mobile robot (continued)) We consider another version of the mobile robot scenario in Ex-
ample 3.1, where we assume two position 0I@ and 0'B , and two object � @ and � B , which the robot � @ cannot
hold in the same time. Let the PICL-theory 
 ��� ��� � O�������� be given by the choice space

O � & &���� � � & �)��� � /^���$� A / ��� ���
' ���0%�� � � & �'%U� � /^���$� A / ��� ���
'�� ( � ���
�
'�� �$& ��� @'��: ��� ��� B � 2 � ( ( �

the logic program � consisting of the clauses

� ������������� ��� ��
L�(5 � 9 � 
'�*� @'��� ��� ��
 � 6#� 
 ��� ��� ��� ��
 �`6S$�� � /^���$� A / ��� ����
 �`6���� � /^���$� A / ��� ����
 ��,
� ������������� ��� ��
L�(5 � 9 � �����������(� ��� ��
 �`6B3K$�� � / � 
"!8��# � ��� ����
 ��,
��
 �*� @'��� ��� ��
 �A5 � 9 $�� � ��������� � ��� ��� ����
 ��,
��
 �*� @'��� ��� ��
 �A5 � 9 � 
 �*�6@'��� ��� ��
 �`6#3 $��!� ����� �-�^�%��� ��� 5 ����
 �+6 � ��� 5/.��� ���2,
��
 ���$��� ��� ��
 �(5 � 9 ��
 ���$��� ��� ��
 �
643K��������������� ��� ��
 ��,
��
 ���$��� ��� ��
 �(5 � 9 � ������������� ��� ��
 �`6 $��%� �%�����-�^� ��� ��� ����
 ��,
��
 ���$��� ��� ��
 �(5 � 9 ��
 ���$��� ��� ��
 �`6#3K$��%� ��������� � ��� ��� 5 ����
 �+6 � ��� 5/.�3� ���2,
��
 ��� @'��0 @'��: � 9 .),
��
 ��� B ��0=B ��: � 9 .),
��
 �*� @'��0 @'��: � 9 .��

and the probability function � obtained from � �5%U� � � & � ��:SRWV and � �6��� � � & � ��:SRUT by assuming probabilistic
independence between the members of O . Suppose that either (a) executing a pickup of � @ and � B succeeds
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at time points : and 2 , respectively, or (b) executing a pickup of �SB fails at time point 2 , which is expressed
by the set of total choices ��� &�?(@'��?CB ��?�� ( , where

?
@ ��&���� � /^���$� A / ��� @ ����: ���$��� � /^�����^A / ��� B ��� 2 � ( �"? B'��&���� � /^���$� A / ��� @ ����: ���0%�� � /^���$� A / ��� B ��� 2 � ( �
?�� ��&�%U� � /^���$� A / ��� @ ����: ���0%�� � /^���$� A / ��� B ��� 2 � ( R

Furthermore, assume that the robot � @ executes a pickup of the object � @ at time point : , a move to the
position 0,@ at time point 5 , and a pickup of the object � B at time point 2 , which is expressed by the action
execution set % � & $��%� /^���$� A / ��� @ ����: ����$�� � ����� �-�^�%� 0 @����;5 ����$�� � / �����^A / ��� B ��� 2 � ( . We now show that the
robot’s carrying � @ at time point 5 is a partial explanation of the robot’s not carrying �SB at time point V ,
that is, that 2�� � ������������� ��� @'�;5 � is a partial explanation of 1 � 3K� ������������� ��� B � V � under � and % in 
 .

We show that �U,����  E ��� ��� @ �;5 � � . is an ' -partial explanation of � ������������� ��� B � V � � - relative to � &;� H �
? ��� ( ������� in �Q� �*��� , for some ' � : . Observe first that �U,-���  E ��� ����@ �;5 � �#� H � is . (resp., - ) for all
? ��&�?
@'��? B ( (resp., ? ��?�� ). It is then not difficult to see that �U,-���  E ��� ��� @'�;5 � � . is a weak cause of
��������������� ��� B � V � � - under �"H�J , but not under ��H'K . Hence, we obtain � � �

�

��%'& � &�? @ ��? � ( . It is easy to
verify that �U,-���  E ��� ��� @ �;5 � � . is indeed an explanation of ��������� ����� ��� B � V � � - relative to � . This shows
that �U,����  E ��� ��� @'�;5 � � . is an ' -partial explanation of ��������������� ��� B � V � � - relative to � &;� H ��? � � ( �������
in �Q������� , where '$��� � ?
@�� � � � � ?
@'� �M� � ?CB � � �O:SR43-1 � � :SR43-1L�M:SRW2S5 � �3:SRUT . X

8 Summary and Outlook

We have presented a combination of Pearl’s structural-model approach to causality with Poole’s independent
choice logic. We showed how probabilistic theories in the independent choice logic can be mapped to
probabilistic causal models. This mapping provides the independent choice logic with appealing concepts
of causality and explanation from the structural-model approach. We have illustrated this along Halpern
and Pearl’s sophisticated notions of actual cause, explanation, and partial explanation. Furthermore, this
mapping also adds first-order modeling capabilities and explicit actions to the structural-model approach.

An interesting topic of future research is to explore the counterparts of other important concepts from
the structural-model approach (such as probabilistic counterfactuals and probabilistic causal independence)
in the independent choice logic. Moreover, it would be very interesting to explore a generalization of the
presented approach to non-acyclic logic programs, which may then involve non-recursive causal models.
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