
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

COMBINING ANSWER SET PROGRAMMING

WITH DESCRIPTION LOGICS FOR THE

SEMANTIC WEB

THOMAS EITER THOMAS LUKASIEWICZ ROMAN SCHINDLAUER

HANS TOMPITS

INFSYS RESEARCH REPORT 1843-03-13

DECEMBER 2003

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-03-13, DECEMBER 2003

COMBINING ANSWER SET PROGRAMMING WITH

DESCRIPTION LOGICS FOR THE SEMANTIC WEB

(PRELIMINARY VERSION, 9TH MARCH 2004)

Thomas Eiter1 Thomas Lukasiewicz2 1 Roman Schindlauer1 Hans Tompits1

Abstract. Towards the integration of rules and ontologies in the Semantic Web, we propose a combi-
nation of logic programming under the answer set semantics with the description logics SHIF(D)
and SHOIN (D), which underly the Web ontology languages OWL Lite and OWL DL, respec-
tively. This combination allows for building rules on top of ontologies but also, to a limited ex-
tent, building ontologies on top of rules. We introduce description logic programs (dl-programs),
which consist of a description logic knowledge base L and a finite set of description logic rules
(dl-rules) P . Such rules are similar to usual rules in logic programs with negation as failure, but
may also contain queries to L, possibly default-negated, in their bodies. We define Herbrand mod-
els for dl-programs, and show that satisfiable positive dl-programs have a unique least Herbrand
model. More generally, consistent stratified dl-programs can be associated with a unique minimal
Herbrand model that is characterized through iterative least Herbrand models. We then generalize
the (unique) minimal Herbrand model semantics for positive and stratified dl-programs to a strong
answer set semantics for all dl-programs, which is based on a reduction to the least model semantics
of positive dl-programs. We also define a weak answer set semantics based on a reduction to the
answer sets of ordinary logic programs. Strong answer sets are weak answer sets, and both properly
generalize answer sets of ordinary normal logic programs. We then give fixpoint characterizations
for the (unique) minimal Herbrand model semantics of positive and stratified dl-programs, and show
how to compute these models by finite fixpoint iterations. Furthermore, we give a precise picture of
the complexity of deciding strong and weak answer set existence for a dl-program.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
e-mail: {eiter, lukasiewicz, roman, tompits}@kr.tuwien.ac.at.

2Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, I-00198 Rome,
Italy; e-mail: lukasiewicz@dis.uniroma1.it.

Acknowledgements: This work has been partially supported by the Austrian Science Fund project Z29-
N04 and a Marie Curie Individual Fellowship of the European Community programme “Human Potential”
under contract number HPMF-CT-2001-001286 (disclaimer: The authors are solely responsible for infor-
mation communicated and the European Commission is not responsible for any views or results expressed).
We would like to thank Ian Horrocks and Ulrike Sattler for providing valuable information on complexity-
related issues during the preparation of this paper.

Copyright c© 2004 by the authors

INFSYS RR 1843-03-13 I

Contents

1 Introduction 1

2 Normal Programs under the Answer Set Semantics 3
2.1 Syntax . 3
2.2 Semantics . 3

3 SHOIN (D) and SHIF(D) 4
3.1 Syntax . 4
3.2 Semantics . 4

4 DL-Programs 5
4.1 Syntax . 5
4.2 Semantics . 7

5 Computation and Complexity 10
5.1 General Algorithm for Computing Weak Answer Sets . 10
5.2 Fixpoint Semantics . 11
5.3 Complexity . 12

5.3.1 Deciding strong / answer set existence . 13
5.3.2 Brave and cautious reasoning . 14

6 Related Work 15

7 Summary and Outlook 16

A Appendix: Proofs for Section 4 17

B Appendix: Proofs for Section 5 18

INFSYS RR 1843-03-13 1

1 Introduction

The World Wide Web is impressively successful. Both the information that is stored in the Web and the
number of its human users have been growing exponentially in the recent years. For many people, the Web
has started to play a fundamental role as a means of providing and searching for information. However,
searching the Web in its current form is not always a joyful experience, since today’s search engines often
return a huge number of answers, many of which are completely irrelevant, while some relevant answers
are not returned. One of the main reasons for this problem is that the current Web is designed for human
consumption, but not for automated processing through machines, since the HTML standard only allows
for describing the layout of Web pages, but not their semantic content.

The Semantic Web [5, 6, 13] is an extension of the current Web by standards and technologies that help
machines to understand the information on the Web so that they can support richer discovery, data integra-
tion, navigation, and automation of tasks. The Semantic Web will not only allow for more exact answers
when we search for information, but also provide knowledge necessary for integrating and comparing in-
formation from different sources, and allow for various forms of automated services. Roughly, the main
idea behind the Semantic Web is to add a machine-readable meaning to Web pages, to use ontologies for a
precise definition of shared terms in Web resources, to make use of KR technology for automated reasoning
from Web resources, and to apply cooperative agent technology for processing the information of the Web.
The development of the Semantic Web proceeds in layers of Web technologies and standards, where every
layer is lying on top of lower layers. The highest layer that has currently reached a sufficient maturity is the
Ontology layer in the form of the OWL Web Ontology Language [33, 22].

The language OWL provides the three increasingly expressive sublanguages OWL Lite, OWL DL, and
OWL Full, where OWL DL basically corresponds to the web ontology language DAML+OIL [18, 19],
which was developed by merging DAML [15] and OIL [12]. The languages OWL Lite and OWL DL are
essentially very expressive description logics with an RDF syntax [22]. One can therefore exploit a large
body of existing previous work on description logic research, for example, to define the formal semantics of
the languages, to understand their formal properties (in particular, the decidability and the complexity of key
inference problems), and for an automated reasoning support. In fact, as shown in [21], ontology entailment
in OWL Lite and OWL DL reduces to knowledge base (un)satisfiability in the description logics SHIF(D)
and SHOIN (D), respectively, where SHIF(D) is a restriction of SHOIN (D), and SHOIN (D) is
closely related to the description logic SHOQ(D) [23].

The next step in the development of the Semantic Web is the realization of the Rules, Logic, and Proof
layers, which will be developed on top of the Ontology layer, and which should offer sophisticated repre-
sentation and reasoning capabilities. A first effort in this direction is RuleML (Rule Markup Language) [7],
fostering an XML-based markup language for rules and rule-based systems, while the OWL Rules Lan-
guage [20] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the Rules and the
Ontology layer. In particular, it is crucial to allow for building rules on top of ontologies, that is, for rule-
based systems that use vocabulary specified in ontology knowledge bases. Another type of combination is
to build ontologies on top of rules, which means that ontological definitions are supplemented by rules or
imported from rules.

In this paper, we propose, towards the integration of rules and ontologies in the Semantic Web, a com-
bination of logic programming under the answer set semantics with description logics, focusing here on
SHIF(D) and SHOIN (D). This combination allows for building rules on top of ontologies but also, to
some extent, building ontologies on top of rules.

2 INFSYS RR 1843-03-13

The main innovations and contributions of this paper are the following:

• We introduce description logic programs (dl-programs), which consist of a knowledge base L in a
description logic and a finite set of description logic rules (dl-rules) P . Such rules are similar to usual rules
in logic programs with negation as failure, but may also contain queries to L, possibly default-negated, in
their bodies. As an important feature, such queries also allow for specifying an input from P , and thus for
a flow of information from P to L, besides the flow of information from L to P , given by any query to L.
For example, concepts and roles in L may be enhanced by facts generated from dl-rules, possibly involving
heuristic knowledge and other concepts and roles from L.

• The queries to L are treated, fostering an encapsulation view, in a way such that logic programming and
description logic inference are technically separated; mainly interfacing details need to be known. Compared
to other similar work, this increases flexibility and is also amenable to privacy aspects for L and P . Further-
more, the nondeterminism inherent in answer sets is retained, supporting brave reasoning and the answer set
programming paradigm in which solutions of problems are encoded in answer sets of a logic program.

• We define Herbrand models for dl-programs, and show that satisfiable positive dl-programs, in which
default-negation does not occur and all queries to L are monotonic, have a unique least Herbrand model.
Furthermore, we show that more general stratified dl-programs can be associated, if consistent, with a unique
minimal Herbrand model that is characterized through iterative least Herbrand models.

• We define strong answer sets for all dl-programs, based on a reduction to the least model semantics
of positive dl-programs. For positive and stratified dl-programs, the strong answer set semantics coincides
with the (unique) minimal Herbrand model semantics associated. We also consider weak answer sets based
on a reduction to the answer sets of ordinary logic programs. Strong answer sets are weak answer sets, and
both properly generalize answer sets of ordinary normal logic programs.

• We give fixpoint characterizations for the least model of a positive dl-program and the canonical mini-
mal model of a stratified dl-program, and show how to compute these models by finite fixpoint iterations.

• Finally, we give a precise picture of the complexity of deciding strong and weak answer set existence for
a dl-program KB . From this, the complexity of brave and cautious reasoning is easily derived. We consider
the general case as well as the restrictions where KB is (a) positive, (b) stratified and has only monotonic
queries, and (c) stratified. We consider SHIF(D) and SHOIN (D), but most of our results can be easily
transferred to other description logics having the same complexity (EXP and NEXP, respectively).

Previous work on combining logic programs and description logics can be roughly divided into (i) hybrid
approaches, which use description logics to specify structural constraints in the bodies of logic program
rules, and (ii) approaches that reduce description logic inference to logic programming. The basic idea
behind (i) is to combine the semantic and computational strengths of the two different systems, while the
main rationale of (ii) is to use powerful logic programming technology for inference in description logics.
However, both kinds of approaches significantly differ from our work in this paper; cf. Section 6 for a
detailed discussion on related work.

The rest of this paper is organized as follows. Sections 2 and 3 recall normal logic programs under the
answer set semantics and the description logics SHOIN (D) and SHIF(D), respectively. In Section 4,
we introduce the syntax of dl-programs. We also define Herbrand models of dl-programs, unique minimal
Herbrand models of positive and stratified dl-programs, and finally the strong and weak answer set semantics
for general dl-programs. Section 5 shows how the unique minimal Herbrand models of positive and stratified
dl-programs can be computed through fixpoint iterations. It also provides a precise picture of the complexity

INFSYS RR 1843-03-13 3

of deciding strong and weak answer set existence for a dl-program. Section 7 summarizes the main results
and gives an outlook on future research. Detailed proofs of most results are given in Appendices A and B.

2 Normal Programs under the Answer Set Semantics

In this section, we recall normal programs (over classical literals) under the answer set semantics.

2.1 Syntax

Let Φ be a first-order vocabulary with nonempty finite sets of constant and predicate symbols, but no function
symbols. Let X be a set of variables. A term is either a variable from X or a constant symbol from Φ. An
atom is an expression of the form p(t1, . . . , tn), where p is a predicate symbol of arity n ≥ 0 from Φ,
and t1, . . . , tn are terms. A classical literal (or simply literal) l is an atom p or a negated atom ¬p. Its
complementary literal is ¬p (resp., p). A negation as failure literal (or NAF-literal) is a literal l or a default-
negated literal not l. A normal rule (or simply rule) r is an expression of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

where a, b1, . . . , bm are classical literals. The literal a is the head of r, while the conjunction b1, . . . , bk,

not bk+1, . . . ,not bm is the body of r, where b1, . . . , bk (resp., not bk+1, . . . ,not bm) is the positive (resp.,
negative) body of r. We use H(r) to denote its head literal a, and B(r) to denote the set of all its body literals
B+(r)∪B−(r), where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. If the body of r is empty (that
is, k = m = 0), then r is a fact, and we often omit “←”. A normal program (or simply program) P is a finite
set of rules. A positive program P is a finite set of “not”-free rules.

2.2 Semantics

The Herbrand universe of a program P , denoted HU P , is the set of all constant symbols appearing in P .
If there is no such constant symbol, then HU P = {c}, where c is an arbitrary constant symbol from Φ.
As usual, terms, atoms, literals, rules, programs, etc. are ground iff they do not contain any variables.
The Herbrand base of a program P , denoted HBP , is the set of all ground (classical) literals that can
be constructed from the predicate symbols appearing in P and the constant symbols in HU P . A ground
instance of a rule r∈P is obtained from r by replacing every variable that occurs in r by a constant symbol
from HU P . We use ground(P) to denote the set of all ground instances of rules in P .

A set of literals X ⊆HBP is consistent iff {p,¬p} 6⊆X for every atom p∈HBP . An interpretation I

relative to a program P is a consistent subset of HBP . A model of a positive program P is an interpreta-
tion I ⊆HBP such that B(r)⊆ I implies H(r)∈ I , for every r∈ ground(P). An answer set of a positive
program P is the least model of P w.r.t. set inclusion.

The Gelfond-Lifschitz transform of a program P relative to an interpretation I ⊆HBP , denoted P I ,
is the ground positive program that is obtained from ground(P) by (i) deleting every rule r such that
B−(r)∩ I 6= ∅, and (ii) deleting the negative body from every remaining rule. An answer set of a program P

is an interpretation I ⊆HBP such that I is an answer set of P I .
The main reasoning tasks that are associated with normal programs under the answer set semantics are

the following: (1) decide whether a given program P has an answer set; (2) given a program P and a ground
formula φ, decide whether φ holds in every (resp., some) answer set of P (cautious (resp., brave) reasoning);

4 INFSYS RR 1843-03-13

(3) given a program P and an interpretation I ⊆HBP , decide whether I is an answer set of P (answer set
checking); and (4) compute the set of all answer sets of a given program P .

3 SHOIN (D) and SHIF(D)

In this section, we recall the description logics SHIF(D) and SHOIN (D), which correspond to the
ontology languages OWL Lite and OWL DL, respectively [21, 22].

3.1 Syntax

We first describe the syntax of the description logic SHOIN (D). We assume a set D of elementary
datatypes. Every d∈D is associated with a set of data values, called the domain of d, denoted dom(d).
We use dom(D) to denote

⋃
d∈D

dom(d). A datatype is either an element of D or a subset of dom(D)
(called datatype oneOf). Let A, RA, RD, and I be nonempty finite and pairwise disjoint sets of atomic
concepts, abstract roles, datatype roles, and individuals, respectively. We use R−

A to denote the set of all
inverses R− of abstract roles R∈RA.

A role is an element of RA ∪R−

A ∪RD. Concepts are inductively defined as follows. Every atomic con-
cept from A is a concept. If o1, o2, . . . are individuals from I, then {o1, o2, . . .} is a concept (called oneOf).
If C and D are concepts, then also (C uD), (C tD), and ¬C (called conjunction, disjunction, and nega-
tion, respectively). If C is a concept, R is a role from RA ∪R−

A, and n is a nonnegative integer, then ∃R.C,
∀R.C, ≥nR, and ≤nR are concepts (called exists, value, atleast, and atmost restriction, respectively). If U

is a datatype role from RD, n is a nonnegative integer, and d is a datatype from D, then ∃U.d, ∀U.d, ≥nU ,
and ≤nU are concepts (called datatype exists, value, atleast, and atmost restriction, respectively). We write
> (resp., ⊥) to abbreviate C t ¬C (resp., C u ¬C), and we eliminate parentheses as usual.

Axioms are expressions of the following forms: (1) C vD, where C and D are concepts (concept
inclusion); (2) RvS, where either R, S ∈RA or R, S ∈RD (role inclusion); (3) Trans(R), where R∈RA

(transitivity); (4) C(a), where C is a concept and a∈ I (concept membership); (5) R(a, b) (resp., U(a, v)),
where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I and v ∈ dom(D)) (role membership axiom); and (7)
a = b (resp., a 6= b), where a, b∈ I (equality resp. inequality). A knowledge base L is a finite set of axioms.

For decidability reasons, number restrictions in a knowledge base L are restricted to simple abstract
roles [24]: A role R is called simple w.r.t. L iff for each role S such that Sv? R, it holds that Trans(S) 6∈L,
where v? is the transitive and reflexive closure of v on L, that is, Sv? R iff either (i) SvR is in L, or
(ii) S =R, or (iii) Sv? Q and Qv? R, for some role Q.

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf constructor
and with the atleast and atmost constructors limited to 0 and 1.

3.2 Semantics

An interpretation I =(∆, ·I) w.r.t. D consists of a nonempty (abstract) domain ∆, which is disjoint from
the datatype domain dom(D), and a mapping ·I that assigns to each atomic concept from A a subset of ∆,
to each individual o∈ I an element of ∆, to each abstract role from RA a subset of ∆ × ∆, and to each
datatype role from RD a subset of ∆ × dom(D). The mapping ·I is extended by induction to all concepts
and roles as follows (where #S denotes the cardinality of a set S):

• ({o1, o2, . . .})
I = {oI1 , oI2 , . . .}, (C uD)I = CI ∩DI ,

(C tD)I = CI ∪DI , and (¬C)I = ∆ \CI ,

INFSYS RR 1843-03-13 5

• (∃R.C)I = {x∈∆ | ∃y : (x, y)∈RI ∧ y ∈CI},
• (∀R.C)I = {x∈∆ | ∀y : (x, y)∈RI → y ∈CI},
• (≥nR)I = {x∈∆ | #({y | (x, y)∈RI}) ≥ n},
• (≤nR)I = {x∈∆ | #({y | (x, y)∈RI}) ≤ n},
• (∃U.d)I = {x∈∆ | ∃y : (x, y)∈UI ∧ y ∈ dom(d)},
• (∀U.d)I = {x∈∆ | ∀y : (x, y)∈UI → y ∈ dom(d)}.
• (≥nU)I = {x∈∆ | #({y | (x, y)∈UI}) ≥ n},
• (≤nU)I = {x∈∆ | #({y | (x, y)∈UI}) ≤ n},
• (R−)I = {(a, b) | (b, a)∈RI}.

The satisfaction of an axiom F in an interpretation I =(∆, ·I), denoted I |=F , is defined as follows:
(1) I |= C vD iff CI ⊆DI , (2) I |= RvS iff RI ⊆SI , (3) I |=Trans(R) iff RI is transitive, (4) I |= C(a)
iff aI ∈CI , (5) I |= R(a, b) iff (aI , bI)∈RI , (6) I |= U(a, v) iff (aI , v)∈UI , (7) I |= a = b iff aI = bI ,
and (8) I |= a 6= b iff aI 6= bI . The interpretation I satisfies the axiom F , or I is a model of F , iff I |=F .
I satisfies a knowledge base L, or I is a model of L, denoted I |=L, iff I |= F for all F ∈L. We say L is
satisfiable (resp., unsatisfiable) iff L has a (resp., no) model. An axiom F is a logical consequence of L,
denoted L |= F , iff every model of L satisfies F . A negated axiom ¬F is a logical consequence of L,
denoted L |=¬F , iff every model of L does not satisfy F .

Some important reasoning tasks related to description logic knowledge bases L are the following: (1) de-
cide whether a given L is satisfiable; (2) given L and a concept C, decide whether L 6|=C v⊥; (3) given L

and two concepts C and D, decide whether L |= C vD; (4) given L, a∈ I, and a concept C, decide
whether L |= C(a); and (5) given L, a, b∈ I (resp., a∈ I and v ∈ dom(D)), and R∈RA (resp., U ∈RD),
decide whether L |= R(a, b) (resp., L |= U(a, v)). Here, (1) is a special case of (2), since L is satisfiable iff
L 6|=>v⊥. Moreover, (2) and (3) can be reduced to each other, since L |=C u ¬D v ⊥ iff L |= C v D.
Finally, in SHOIN (D), (4) and (5) are special cases of (3).

4 DL-Programs

In this section, we introduce description logic programs (or simply dl-programs), which are a novel combi-
nation of normal programs and description logic knowledge bases.

4.1 Syntax

Informally, a dl-program consists of a description logic knowledge base L and a generalized normal pro-
gram P , which may contain queries to L. Roughly, in such a query, it is asked whether a certain description
logic axiom or its negation logically follows from L or not.

We first define dl-queries and dl-atoms, which are used to express queries to the description logic knowl-
edge base L. A dl-query Q(t) is either (a) a concept inclusion axiom F or its negation ¬F , or (b) of the
forms C(t) or ¬C(t), where C is a concept and t is a term, or (c) of the forms R(t1, t2) or ¬R(t1, t2),
where R is a role and t1, t2 are terms. A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm; Q](t) , m≥ 0, (2)

where each Si is either a concept or a role, opi ∈{], −∪, −∩}, pi is a unary resp. binary predicate symbol,
and Q(t) is a dl-query. We call p1, . . . , pm its input predicate symbols. Intuitively, op i =] (resp., opi = −∪)

6 INFSYS RR 1843-03-13

increases Si (resp., ¬Si) by the extension of pi, while opi = −∩ constrains Si to pi. A dl-rule r has the
form (1), where any literal b1, . . . , bm ∈B(r) may be a dl-atom. A dl-program KB = (L, P) consists of a
description logic knowledge base L and a finite set of dl-rules P .

We use the following example to illustrate our main ideas.

Example 4.1 (Reviewer Selection) Suppose we want to assign reviewers to papers, based on certain in-
formation about the papers and available persons, using a description logic knowledge base LS containing
knowledge about scientific publications.

We assume not to be aware of the entire structure and contents of LS , but of the following aspects.
LS classifies papers into research areas, stored in a concept Area, depending on keyword information. The
roles keyword and inArea associate with each paper its relevant keywords and the areas it is classified into
(obtained, e.g., by reification of the classes). Furthermore, a role expert relates persons to their areas of
expertise, and a concept Referee contains all referees. Furthermore, a role hasMember associates with a
cluster of similar keywords all its members. Consider then the following dl-program:

(1) paper(p1); kw(p1,Semantic Web);
(2) paper(p2); kw(p2,Bioinformatics); kw(p2,Answer Set Programming);
(3) kw(P, K2)← kw(P, K1), DL[hasMember](S, K1), DL[hasMember](S, K2);
(4) paperArea(P, A)← DL[keywords] kw ; inArea](P, A);
(5) cand(X, P)← paperArea(P, A), DL[Referee](X), DL[expert](X, A);
(6) assign(X, P)← cand(X, P),not ¬assign(X, P);
(7) ¬assign(Y, P)← cand(Y, P), assign(X, P), X 6= Y ;
(8) a(P)← assign(X, P);
(9) error(P)← paper(P),not a(P).

Intuitively, lines (1) and (2) specify the keyword information of two papers, p1 and p2, which should
be assigned to reviewers. The rule (3) augments, by choice of the designer, the keyword information with
similar ones (hoping for good). The rule (4) queries the augmented LS to retrieve the areas each paper is
classified into, and the rule (5) singles out review candidates based on this information from experts among
the reviewers according to LS . Rules (6) and (7) pick one of the candidate reviewers for a paper (multiple
reviewers can be selected similarly). Finally, (8) and (9) check if each paper is assigned; if not, an error is
flagged. Note that, in view of rules (3)–(5), information flows in both directions between the description
logic knowledge base LS and the knowledge represented by the above dl-program.

To illustrate the use of −∩, a predicate poss Referees may be defined in the dl-program, and
“Referee −∩ poss Referees” may be added in the first dl-atom of (5), which thus constrains the set of refer-
ees.

The dl-rule below shows in particular how dl-rules can be used to encode certain qualified number
restrictions, which are not available in SHOIN (D). It defines an expert as an author of at least three
papers of the same area:

expert(X,A)← DL[isAuthorOf](X,P1),
DL[isAuthorOf](X,P2),
DL[isAuthorOf](X,P3),
DL[inArea](P1, A),
DL[inArea](P2, A),
DL[inArea](P3, A),
P1 6= P2, P2 6= P3, P3 6= P1.

INFSYS RR 1843-03-13 7

4.2 Semantics

We first define Herbrand interpretations and the truth of dl-programs in Herbrand interpretations. In the
sequel, let KB =(L, P) be a dl-program.

The Herbrand base of P , denoted HBP , is the set of all ground literals with a standard predicate symbol
that occurs in P and constant symbols in Φ. An interpretation I relative to P is a consistent subset of HB P .
We say I is a model of l∈HBP under L, or I satisfies l under L, denoted I |=L l, iff l∈ I . It is a model of a
ground dl-atom a =DL[S1op1 p1, . . . , Smopmpm; Q](c) under L, or I satisfies a under L, denoted I |=L a,
iff L∪

⋃m
i=1

Ai(I) |= Q(c), where

• Ai(I) = {Si(e) | pi(e)∈ I}, for opi =];

• Ai(I) = {¬Si(e) | pi(e)∈ I}, for opi = −∪;

• Ai(I) = {¬Si(e) | pi(e)∈ I does not hold}, for opi = −∩.

We say I is a model of a ground dl-rule r iff I |=L l for all l∈B+(r) and I 6|=L l for all l∈B−(r) implies
I |=L H(r). It is a model of a dl-program KB = (L, P), or I satisfies KB , denoted I |=KB , iff I |=L r for
all r∈ ground(P). We say KB is satisfiable (resp., unsatisfiable) iff it has some (resp., no) model.

Least Model Semantics of positive dl-programs

We now define positive dl-programs, which are “not”-free dl-programs that involve only monotonic dl-
atoms. Like ordinary positive programs, every positive dl-program that is satisfiable has a unique least
model, which naturally characterizes its semantics.

A ground dl-atom a is monotonic relative to KB = (L, P) iff I ⊆ I ′⊆HBP implies that if I |=L a

then I ′ |=L a. A dl-program KB = (L, P) is positive iff (i) P is “not”-free, and (ii) every ground dl-atom
that occurs in ground(P) is monotonic relative to KB .

Observe that a dl-atom containing −∩ may fail to be monotonic, since an increasing set of pi(e) in P

results in a reduction of ¬Si(e) in L, whereas dl-atoms containing] and −∪ only are always monotonic.
For ordinary positive programs P , the intersection of two models of P is also a model of P . The

following lemma shows that a similar result holds for positive dl-programs KB .

Lemma 4.2 Let KB = (L, P) be a positive dl-program. If the interpretations I1, I2⊆HBP are models
of KB , then I1 ∩ I2 is also a model of KB .

As an immediate corollary of this result, every satisfiable positive dl-program KB has a unique least
model, denoted MKB , which is contained in every model of KB .

Corollary 4.3 Let KB = (L, P) be a positive dl-program. If KB is satisfiable, then there exists a unique
model I ⊆HBP of KB such that I ⊆J for all models J ⊆HBP of KB .

Example 4.4 Consider the dl-program KB comprising of the rules (1)–(6) from Example 4.1. Clearly, KB

is “not”-free. Moreover, as the dl-atoms do not contain −∩, they are all monotonic. Thus, the dl-program is
positive. As well, its unique least model contains all review candidates for the given papers p1 and p2. 2

8 INFSYS RR 1843-03-13

Iterative Least Model Semantics of stratified dl-programs

We next define stratified dl-programs, which are intuitively composed of hierarchic layers of positive dl-
programs linked via default-negation and certain dl-atoms. Like for ordinary stratified programs, a canonical
minimal model can be singled out by a number of iterative least models, which naturally describes the
semantics, provided some model exists. We can accommodate this with possibly non-monotonic dl-atoms
by treating them similarly as NAF-literals. This is particularly useful, if we do not know a priori whether
some dl-atoms are monotonic, and determining this might be costly; notice, however, that absence of −∩
in (2) is a simple syntactic criterion which implies monotonicity of a dl-atom (cf. also Example 4.4).

For any dl-program KB = (L, P), we denote by DLP the set of all ground dl-atoms that occur in
ground(P). We assume that KB has an associated set DL+

P ⊆ DLP of ground dl-atoms which are known
to be monotonic, and we denote by DL?

P =DLP −DL+
P the set of all others. An input literal of a∈DLP is

a ground literal with an input predicate of a and constant symbols in Φ.
A stratification of KB = (L, P) (w.r.t. DL+

P) is a mapping λ :HBP ∪DLP→{0, 1, . . . , k} such that

(i) λ(H(r))≥λ(l′) (resp., λ(H(r))>λ(l′)) for each r∈ground(P) and l′∈B+(r) (resp., l′∈B−(r)), and

(ii) λ(a)≥λ(l) (resp., λ(a) > λ(l)) for each input literal l of each a∈DL+
P (resp., a∈DL?

P),

and k≥ 0 is its length. For i∈{0, . . . , k}, let KB i =(L, Pi) = (L, {r∈ ground(P) |λ(H(r)) = i}), and
let HBPi

(resp., HB?
Pi

) be the set of all l∈HBP such that λ(l) = i (resp., λ(l)≤ i).
A dl-program KB = (L, P) is stratified iff it has a stratification λ of some length k≥ 0. We define its

iterative least models Mi⊆HBP with i∈{0, . . . , k} as follows:

(i) M0 is the least model of KB0;

(ii) if i > 0, then Mi is the least model of KB i such that Mi|HB?
Pi−1

=Mi−1|HB?
Pi−1

.

We say KB is consistent, if every Mi with i∈{0, . . . , k} exists, and KB is inconsistent otherwise. If KB is
consistent, then MKB denotes Mk. Notice that MKB is well-defined, since it does not depend on a particu-
lar λ (cf. Corollary 4.10). The following result shows that MKB is in fact a minimal model of KB .

Theorem 4.5 Let KB = (L, P) be a stratified dl-program. Then, MKB is a minimal model of KB .

Example 4.6 Consider the dl-program KB = (L, P) given by the rules and facts from Example 4.1, but
without the rules (6) and (7). This program has a stratification of length 2, with the associated set DL+

P

comprising all dl-atoms occurring in P . The least model of P contains all review candidates of the given
papers, together with error flags for them, because no paper is assigned so far. 2

Strong Answer Set Semantics of dl-programs

We now define the strong answer set semantics of general dl-programs KB , which is reduced to the least
model semantics of positive dl-programs. We use a generalized transformation that removes all NAF-literals
and all dl-atoms except for those known to be monotonic. If we ignore this knowledge and remove all
dl-atoms, then we arrive at the weak answer set semantics of KB (see next subsection).

In the sequel, let KB = (L, P) be a dl-program, and let DLP , DL+
P , and DL?

P be as above. The strong dl-
transform of P relative to L and an interpretation I ⊆ HBP , denoted sP I

L, is the set of all dl-rules obtained
from ground(P) by (i) deleting every dl-rule r such that either I 6|=L a for some a∈B+(r)∩DL?

P , or I |=L l

for some l∈B−(r), and (ii) deleting from each remaining dl-rule r all literals in B−(r)∪ (B+(r)∩DL?
P).

INFSYS RR 1843-03-13 9

Notice that (L, sP I
L) has only monotonic dl-atoms and no NAF-literals anymore. Thus, (L, sP I

L) is a
positive dl-program, and by Corollary 4.3, has a least model if it is satisfiable.

Definition 4.1 Let KB = (L, P) be a dl-program. A strong answer set of KB is an interpretation I ⊆HB P

such that I is the least model of (L, sP I
L).

The following result shows that the strong answer set semantics of a dl-program KB = (L, P) without
dl-atoms coincides with the ordinary answer set semantics of P .

Theorem 4.7 Let KB = (L, P) be a dl-program without dl-atoms. Then, I ⊆HBP is a strong answer set
of KB iff it is an answer set of the ordinary program P .

The next result shows that, as desired, strong answer sets of a dl-program KB are also models, and
moreover minimal models if all dl-atoms are monotonic (and known as such).

Theorem 4.8 Let KB = (L, P) be a dl-program, and let M be a strong answer set of KB . Then, (a) M is
a model of KB , and (b) M is a minimal model of KB if DLP = DL+

P .

The following theorem shows that positive and stratified dl-programs have at most one strong answer
set, which coincides with the canonical minimal model MKB .

Theorem 4.9 Let KB =(L, P) be a (a) positive (resp., (b) stratified) dl-program. If KB is satisfiable
(resp., consistent), then MKB is the only strong answer set of KB . If KB is unsatisfiable (resp., inconsis-
tent), then KB has no strong answer set.

Since the strong answer sets of a stratified dl-program KB are independent of the stratification λ of KB ,
we thus obtain that consistency of KB and MKB are independent of λ.

Corollary 4.10 Let KB be a stratified dl-program. Then, the notion of consistency of KB and the model
MKB do not depend on the stratification of KB .

Example 4.11 Consider now the full dl-program from Example 4.1. This program is not stratified, in view
of rules (6) and (7), which take care of the selection between the different candidates for being reviewers.
Each strong answer set containing no error flags corresponds to an acceptable review assignment scenario. 2

Weak Answer Set Semantics of dl-programs

We finally introduce the weak answer set semantics of dl-programs, which associates with a dl-program a
larger set of models than the strong answer set semantics. It is based on a generalized transformation that
removes all dl-atoms and NAF-literals, and reduces to the answer set semantics of ordinary programs.

In the sequel, let KB = (L, P) be a dl-program. The weak dl-transform of P relative to L and to an
interpretation I ⊆HBP , denoted wP I

L, is the ordinary positive program obtained from ground(P) by

(i) deleting all dl-rules r where either I 6|=La for some dl-atom a∈B+(r), or I|=Ll for some l∈B−(r); and

(ii) deleting from every remaining dl-rule r all the dl-atoms in B+(r) and all the literals in B−(r).

Observe that wP I
L is an ordinary ground positive program, which does not contain any dl-atoms any-

more, and which also does not contain any NAF-literals anymore. We thus define the weak answer set
semantics by reduction to the least model semantics of ordinary ground positive programs as follows.

10 INFSYS RR 1843-03-13

Definition 4.2 Let KB = (L, P) be a dl-program. A weak answer set of KB is an interpretation I ⊆HB P

such that I is the least model of the ordinary positive program wP I
L.

The following result shows that the weak answer set semantics of a dl-program KB = (L, P) without
dl-atoms coincides with the ordinary answer set semantics of P .

Theorem 4.12 Let KB = (L, P) be a dl-program without dl-atoms. Then, I ⊆HBP is a weak answer set
of KB iff it is an answer set of the ordinary normal program P .

The following result shows that every weak answer set of a dl-program KB is also a model of KB . Note
that differently from strong answer sets, the weak answer sets of KB are generally not minimal models
of KB , even if KB has only monotonic dl-atoms.

Theorem 4.13 Let KB be a dl-program. Then, every weak answer set of KB is also a model of KB .

The following result shows that the weak answer set semantics of dl-programs can be expressed in terms
of a reduction to the answer set semantics of ordinary normal programs.

Theorem 4.14 Let KB = (L, P) be a dl-program. Let I ⊆HBP and let P I
L be obtained from ground(P)

by (i) deleting every dl-rule r where either I 6|=L a for some dl-atom a∈B+(r), or I |=L a for some
dl-atom a∈B−(r), and (ii) deleting from every remaining dl-rule r every dl-atom in B+(r)∪B−(r).
Then, I is a weak answer set of KB iff I is an answer set of P I

L.

Finally, the next result shows that the set of all strong answer sets of a dl-program KB is contained
in the set of all weak answer sets of KB . Intuitively, the additional information about the monotonicity
of dl-atoms that we use for specifying strong answer sets allows for focusing on a smaller set of models.
Hence, the set of all weak answer sets of KB can be seen as an approximation of the set of all strong answer
sets of KB . Note that the converse of the following theorem generally does not hold. That is, there exist
dl-programs KB , which have a weak answer set that is not a strong answer set.

Theorem 4.15 Every strong answer set of a dl-program KB is also a weak answer set of KB .

5 Computation and Complexity

In this section, we give fixpoint characterizations for the strong answer set of satisfiable positive and con-
sistent stratified dl-programs, and we show how to compute it by finite fixpoint iterations. We then draw a
precise picture of the complexity of deciding strong and weak answer set existence for a dl-program, and of
brave and cautious reasoning from the strong and weak answer sets of a dl-program, respectively. We start
with a general guess-and-check algorithm for computing weak answer sets.

5.1 General Algorithm for Computing Weak Answer Sets

The construction of the weak answer sets of a given dl-program KB = (L, P) can be realized by a straight-
forward guess-and-check algorithm as follows:

1. We first replace each dl-atom a in P of form

DL[S1op1p1, . . . , Smopm pm; Q](t) (3)

by a globally new atom da(t).

INFSYS RR 1843-03-13 11

2. We then add to the result of Step 1 all ground facts of form

da(c) ∨ ¬da(c)←, (4)

for each dl-atom a occurring in P and each ground term (resp., pair of ground terms) c ∈ HB L.
Intuitively, the rules of form (4) “guess” the truth values of the dl-atoms of P . We denote the resulting
program by Pguess .

3. We construct the answer sets of Pguess and check whether the original “guess” of the truth values
of the auxiliary atoms da(c) is correct with respect to the given description logic knowledge base
L. That is, for each answer set I of Pguess and each dl-atom a of form (3), we check whether it
holds that da(c) ∈ I iff L∪

⋃m
i=1

Ai(I) |= Q(c), where Ai(I) = {Si(e) | pi(e)∈ I}, for opi =],
Ai(I) = {¬Si(e) | pi(e)∈ I} for opi = −∪, and Ai(I) = {¬Si(e) | pi(e)∈ I does not hold}, for opi = −∩.
If this condition holds, then I is a weak answer set of P .

Although this basic algorithm is in general not efficient and leaves room for improvements, it shows
that the weak answer set semantics can be realized on top of extant answer set solvers like DLV [10] or
GnT [25].

5.2 Fixpoint Semantics

The answer set of an ordinary positive resp. stratified normal program P has a well-known fixpoint char-
acterization in terms of an immediate consequence operator TP , which gracefully generalizes to analog
dl-programs. This can be exploited for a bottom up computation of their strong answer set.

Positive dl-programs

For any (not necessarily satisfiable) dl-program KB =(L, P), we define the operator TKB on the subsets
of HBP as follows. For every I ⊆HBP , let

TKB (I) =

{
HBP , if I is not consistent,
{H(r) | r∈ ground(P), I |=L l for all l∈B(r)} , otherwise.

The following lemma shows that for positive KB , the operator TKB is monotonic, that is, I ⊆ I ′⊆HBP

implies TKB (I)⊆TKB (I ′). This result is immediate from the fact that in ground(P), for a positive dl-
program KB = (L, P), each dl-atom is monotonic relative to KB .

Lemma 5.1 Let KB = (L, P) be a positive dl-program. Then, TKB is monotonic.

The next result gives a characterization of the pre-fixpoints of TKB . If KB is satisfiable, then every
pre-fixpoint of TKB is either a model of KB , or equal to HBP . If KB is unsatisfiable, then HBP is the only
pre-fixpoint of TKB . Recall that I ⊆HBP is a pre-fixpoint of TKB iff TKB (I)⊆ I .

Proposition 5.2 Let KB = (L, P) be a positive dl-program. Then, I ⊆HBP is a pre-fixpoint of TKB iff
I is either (a) a model of KB or (b) equal to HBP .

Since every monotonic operator has a least fixpoint, which coincides with its least pre-fixpoint, we
immediately obtain the following corollary: The least fixpoint of TKB , denoted lfp(TKB), is given by the
least model of KB , if KB is satisfiable, and by HBP , if KB is unsatisfiable.

12 INFSYS RR 1843-03-13

Corollary 5.3 Let KB = (L, P) be a positive dl-program. Then, (a) lfp(TKB) = MKB , if KB is satisfiable,
and (b) lfp(TKB) =HBP , if KB is unsatisfiable.

The next result shows that the least fixpoint of TKB can be computed by a finite fixpoint iteration (which
is based on the assumption that P and the number of constant symbols in Φ are finite). Note that for
every I ⊆HBP , we define T i

KB (I) = I , if i =0, and T i
KB (I) = TKB (T i−1

KB (I)), if i > 0.

Theorem 5.4 Let KB be a positive dl-program. Then, lfp(TKB) =
⋃n

i=1
T i

KB (∅) = T n
KB (∅) for some n≥ 0.

Example 5.5 Suppose that P in KB=(L, P) consists of the rules r1: b←DL[S] p; C](a) and r1: p(a)← ,
and L is the axiom SvC. Then, KB is positive, and lfp(TKB) = {p(a), b}, where T 0

KB (∅) = ∅, T 1
KB (∅) =

{p(a)}, and T 2
KB (∅) = {p(a), b}. 2

Stratified dl-programs

Using Theorem 5.4, we can characterize the answer set MKB of a stratified dl-program KB by a sequence
of fixpoint-iterations along a stratification as follows. Let T̂ i

KB (I) = T i
KB (I) ∪ I , for all i ≥ 0.

Theorem 5.6 Suppose KB = (L, P) has a stratification λ of length k≥ 0. Define the literal sets Mi⊆HBP ,
i∈{−1, 0, . . . , k}, as follows: M−1 = ∅ and

Mi = T̂ni

KB i
(Mi−1), where ni≥ 0 such that T̂ni

KB i
(Mi−1) = T̂ni+1

KB i
(Mi−1), i ≥ 1.

Then, KB is consistent iff Mk 6= HBP , and in this case, Mk = MKB .

Notice that M0 = lfp(TKB0
) and that Mi−1 = T̂

j
KB i

(Mi−1) ∩ HB?
Pi−1

holds for any j if T̂
j
KB i

(Mi−1) is
consistent, which means that ni always exists.

Example 5.7 Assume that also rule r3: q(x)←not ¬b,not DL[S](x) is in P of Example 5.5. Then, the
λ assigning 1 to q(a), 0 to DL[S](a), and 0 to all other atoms in HBP ∪ DLP stratifies KB , and M0 =
lfp(TKB0

) = {p(a), b} and M1 = {p(a), b, q(a)} = MKB . 2

5.3 Complexity

In this subsection, we address the complexity of dl-programs, where we consider the following canonical
reasoning problems:

• Deciding whether a given dl-program KB has a strong (resp., weak) answer set.

• Deciding whether a given literal l ∈ HBP is in every strong (resp., weak) answer set of a given
dl-program KB (Cautious Reasoning).

• Deciding whether a given literal l ∈ HBP is in some strong (resp., weak) answer set of a given
dl-program KB (Brave Reasoning).

We recall that deciding whether a given normal logic program has an answer set is complete for NEXP
(nondeterministic exponential time) [8]. Furthermore, deciding satisfiability of a knowledge base L in

INFSYS RR 1843-03-13 13

dl-program KB = (L, P) L in SHIF(D) L in SHOIN (D)

KB positive EXP NEXP
KB stratified, mon-dl EXP PNEXP / NPNEXP

KB stratified EXP NPNEXP

KB general NEXP NPNEXP

Table I: Complexity of deciding strong / weak answer set existence for dl-programs (completeness results).

SHIF(D) (resp. SHOIN (D)) is complete for EXP (exponential time) [31, 21] (resp., NEXP, assum-
ing unary number encoding; see [21] and the NEXP-hardness proof for ACLQI in [31], which implies the
NEXP-hardness of SHOIN (D)).

An easy consequence is that deciding, evaluating a given ground dl-atom a of form (1) in a given dl-
program KB = (L, P) and an interpretation Ip of its input predicates p = p1, . . . , pm (i.e., deciding whether
I |=L a for each I which coincides on p with Ip) is EXP-complete for L from SHIF(D) resp. co-NEXP-
complete for L from SHOIN (D).

5.3.1 Deciding strong / answer set existence

We first consider the problem of deciding whether a given dl-program KB has an answer set resp. a weak
answer set. Table I compactly summarizes our results on this problem. There, mon-dl means that all dl-
atoms in P are monotone and treated accordingly in case of strong answer sets. The results are briefly
explained as follows.

An important observation is that each dl-program KB give rise to only a polynomial number (in the size
of KB) of ground dl-atoms a. Moreover, there is an exponential number of different concrete inputs to a

(given by an interpretation Ip of the respective input predicates), but each of them has polynomial size.
Now for L in SHIF(D), the evaluation of any ground dl-atom is, as mentioned above, feasible in

EXP. Thus, the least fixpoint lfp(TKB) for a positive KB is computable in exponential time; notice that
any ground dl-atom a needs to be evaluated only polynomially often, as its input can increase only that
many times. From lfp(TKB) it is immediate whether KB has an answer set resp. a weak answer set, viz. iff
lfp(TKB) 6= HBP . For other KB , we can, one by one, explore the exponentially many possible inputs of
those dl-atoms which disappear in the reduction sP I

L resp. wP I
L. For each input, evaluating these dl-atoms

and building sP I
L resp. wP I

L is feasible in exponential time. If we are left with a positive resp. stratified
dl-program KB ′, we need just to compute MKB , which we can do by (a sequence of) fixpoint iterations, and
check compliance with the input of the dl-atoms. For unstratified KB , we need in addition an (exponential
size) guess for the value of the default negated classical literals, which brings us to NEXP. The EXP- resp.
NEXP-hardness lower bound for positive resp. general KB is inherited from the complexity of datalog and
of deciding the existence of an answer set for a normal logic program, respectively [8].

For L in SHOIN (D), we make use of the following observation: A positive KB has a strong resp.
weak answer set, just if there exists an interpretation I and a subset S⊆{a∈LP | I 6|=L a}, such that
the positive logic program PI,S obtained from ground(P) by deleting each rule which contains a dl-atom
a ∈ S, and all remaining dl-atoms, has an answer set included in I . A suitable I and S, along with “proofs”
L 6|=I a for all a∈S (where each proof is a certificate of size bounded by an exponential), can be guessed and
verified in exponential time. Hence, deciding the existence of a a strong resp. weak answer set (tantamount
to consistency of KB) is in NEXP. The matching NEXP-hardness follows from co-NEXP-hardness of

14 INFSYS RR 1843-03-13

KB = (L, P) L in SHIF(D) L in SHOIN (D)

KB positive EXP co-NEXP
KB stratified, mon-dl EXP PNEXP / co-NPNEXP

KB stratified EXP co-NPNEXP

KB general co-NEXP co-NPNEXP

Table II: Complexity of cautious reasoning from the strong / weak answer sets of a dl-program (completeness
results)

KB = (L, P) L in SHIF(D) L in SHOIN (D)

KB positive EXP Dexp / NPNEXP

KB stratified, mon-dl EXP PNEXP / NPNEXP

KB stratified EXP NPNEXP

KB general NEXP NPNEXP

Table III: Complexity of brave reasoning from the strong / weak answer sets of a dl-program (completeness
results)

dl-atom evaluation.
For non-positive KB , we can guess inputs Ip for all dl-atoms, and evaluate them with a NEXP oracle in

polynomial time. For the (monotonic) ones remaining in sP I
L, we can further guess a chain ∅ = I0

p ⊂ I1
p ⊂

· · · ⊂ Ik
p = Ip along which their inputs are increased in a fixpoint computation for sP I

L, and evaluate the
dl-atoms on it in polynomial time with a NEXP oracle. We then ask a NEXP oracle if an interpretation I

exists which is the answer set of sP I
L resp. wP I

L compliant with the inputs and valuations of the dl-atoms
and as well as their input increase in fixpoint computation. This yields the NPNEXP upper bounds. For a
strong answer set of a stratified, mon-dl KB guesses can be avoided by increasing the monotonic dl-atoms
along a stratification, and the problem is in PNEXP.

We can obtain matching lower bounds by a generic reduction from Turing machines, by exploiting an
NEXP-hardness proof for ACLQI in [31]. The idea is to use a dl-atom to decide the result of the i-th
oracle call made by a polynomial-time bounded Turing machine M with access to a NEXP oracle, where
the results of the previous calls are known and input to the dl-atom. By a proper sequence of dl-atom
evaluations, the result of M ’s computation on input w can be obtained; a nondeterministic M is modeled by
further providing nondeterministically generated bits (either by unstratified rules or dl-atoms).

5.3.2 Brave and cautious reasoning

The canonical tasks of cautious and brave reasoning, whether a classical literal l belongs to every (resp.,
some) strong answer set or weak answer set of KB , are as usually easily reduced to the complement of
answer set existence and answer set existence itself, respectively, by adding two rules p← l and ¬p← l in
P (resp., p← not l and ¬p← not l in P), where p is a fresh propositional symbol.

Thus except for brave reasoning from positive dl-programs, the complexity of cautious and brave rea-
soning is in all cases considered in Table I immediate from the respective complexity of deciding answer set
existence for a dl-program. The results are summarized in Tables II and III.

INFSYS RR 1843-03-13 15

Brave reasoning from the (unique) strong answer set of a positive dl-program is complete for Dexp =
{L× L′ | L ∈ NEXP, L′ ∈ co-NEXP}, which is the “conjunction” of NEXP and co-NEXP. Intuitively, we
have to decide consistency of KB , which is in NEXP, and a literal l might be included in the answer set on
behalf of a dl-atom, which is in co-NEXP.

Brave reasoning from the weak answer sets of a positive dl-program is harder, however, and in fact
NPNEXP-complete. Intuitively, an exponential number of candidate weak answer sets containing the query
literal l might exist which are larger than the (unique) answer set of KB . This is a source of complexity
which requires another guess.

6 Related Work

The works by Donini et al. [9], Levy and Rousset [26], and Rosati [29] are representatives of hybrid ap-
proaches using description logic as input. In detail, Donini et al. [9] introduce a combination of (disjunction-,
negation-, and function-free) datalog with the description logic ALC. An integrated knowledge base con-
sists of a structural component in ALC and a relational component in datalog, where the integration of both
components lies in using concepts from the structural component as constraints in rule bodies of the rela-
tional component. Donini et al. also present a technique for answering conjunctive queries (existentially
quantified conjunctions of atoms) with such constraints, where SLD-resolution as an inference method for
datalog is integrated with a method for inference in ALC. The closely related work by Levy and Rous-
set [26] presents a combination of Horn rules with the description logic ALCNR. In contrast to Donini et
al. [9], Levy and Rousset also allow for roles as constraints in rule bodies, and do not require the safety con-
dition that variables in constraints in the body of a rule r must also appear in ordinary atoms in the body of r.
Levy and Rousset [26] also present a technique for answering queries, which are of the very general form
of disjunctions of conjunctive queries, conditioned on conjunctive queries. Finally, Rosati [29] presents a
combination of disjunctive datalog (with classical and default negation, but without function symbols) with
the description logic ALC, which is based on a generalized answer set semantics. Similarly to Levy and
Rousset [26], Rosati [29] also allows for roles as constraints in rule bodies, and does not require the above-
mentioned safety condition. He presents a technique for answering queries of the form of ground atoms,
which is based on a combination of ordinary answer set programming with inference in ALC.

Some representatives of approaches reducing description logic to logic programming are the works
by Van Belleghem et al. [32], Alsaç and Baral [3], Swift [30], Grosof et al. [14], and Heymans and Ver-
meir [16, 17]. In detail, Van Belleghem et al. [32] analyze the close relationship between description logics
and open logic programs, and present a mapping of description logic knowledge bases in ALCN to open
logic programs. They also show how other description logics correspond to sublanguages of open logic
programs, and they explore the computational correspondences between a typical algorithm for description
logic inference and the resolution procedure for open logic programs. The works by Alsaç and Baral [3]
and Swift [30] reduce inference in the description logic ALCQI to query answering from normal logic
programs (with default negation, but without disjunctions and classical negations) under the answer set se-
mantics. Grosof et al. [14] show especially how inference in a subset of the description logic SHOIQ
can be reduced to inference in a subset of Horn programs (in which no function symbols, negations, and
disjunctions are permitted), and conversely how the latter inference can be reduced to the former. Finally,
Heymans and Vermeir [16, 17] present an extension of disjunctive logic programming under the answer set
semantics by inverses and an infinite universe. In particular, they prove that this extension is still decidable
under the assumption that the rules form a tree structure, and they show how inference in the description
logic SHIF extended by transitive closures of roles can be simulated in it.

16 INFSYS RR 1843-03-13

Closest in spirit to our work is perhaps the work by Rosati [29], which also combines description logics
and answer set programming. There are, however, several crucial differences. (1) Rather than the description
logic ALC, we use the more expressive description logics SHOIN (D) and SHIF(D), which underly
OWL DL and OWL Lite, respectively. On the other hand, [29] considers disjunctive rule heads; we refrain
from this here, but our approach can be easily extended in this direction (keeping the main conceptual ideas).
(2) Instead of using roles and concepts from L as constraints in rule bodies of a logic program P , we allow
for queries to L in rule bodies of P , where every query also allows for specifying an input from P , and thus
for a flow of knowledge from P to L besides the flow of knowledge from L to P . Thus, in our approach,
inference from L also depends on what is encoded in P , which is not the case in [29]. Furthermore, in
our approach, queries to L are not subject to any safety condition and can be orthogonally combined with
classical and default negation. (3) We allow for a technical separation and thus a more flexible combination
of description logic inference and logic programming. Namely, our approach permits cautious as well as
brave reasoning under the answer set semantics, while [29] technically permits only cautious reasoning.
Indeed, in [29], an integrated knowledge base KB = (L, P) represents all pairs (I, S) of models I of L and
answer sets S of P , while in our work KB represents all answer sets S of P , where queries are evaluated
relative to each single answer set S and all models I of L compatible with S. Furthermore, the technical
separation complies with the impedance mismatch of the usual interpretations of answer set programs (finite
Herbrand interpretations), and of description logics (general first-order interpretations over possibly infinite
domains). This mismatch cannot be easily eliminated when combining existing implemented systems.

Finally, we mention recent work by Antoniou [1], which deals with a combination of defeasible reason-
ing with description logics. Like in other work mentioned above, the considered description logic serves
in [1] only as an input for the default reasoning mechanism running on top of it. Also, early work on dealing
with default information in the context of description logic is the approach due to Baader and Hollunder [2],
where Reiter’s default logic is adapted to terminological knowledge bases, differing significantly from our
approach. Less closely related work includes also the investigations in [4] and [28].

7 Summary and Outlook

Towards the integration of rules and ontologies in the Semantic Web, we have proposed a combination of
logic programming under the answer set semantics with the description logics SHIF(D) and SHOIN (D),
which stand behind OWL Lite and OWL DL, respectively. We have introduced dl-programs, which consist
of a description logic knowledge base L and a finite set P of dl-rules, which may also contain queries to L,
possibly default-negated, in their bodies. We have defined Herbrand models for dl-programs, and shown
that satisfiable positive dl-programs have a unique least Herbrand model. More generally, consistent strat-
ified dl-programs can be associated with a unique minimal Herbrand model that is characterized through
iterative least Herbrand models. We have then generalized the unique minimal Herbrand model semantics
for positive and stratified dl-programs to a strong answer set semantics for all dl-programs, which is based
on a reduction to the least model semantics of positive dl-programs. We have also defined a weak answer set
semantics based on a reduction to the answer sets of ordinary logic programs. We have then given fixpoint
characterizations for the unique minimal Herbrand model semantics of positive and stratified dl-programs,
and shown how to compute these models by finite fixpoint iterations. Furthermore, we have given a precise
picture of the complexity of deciding strong and weak answer set existence for a dl-program.

An interesting topic of future research is to extend our approach to dl-programs with disjunctions,
NAF-literals, and dl-atoms in the heads of dl-rules.

INFSYS RR 1843-03-13 17

On the computational side, it remains to find efficient means for implementation of the approach, and
to identify suitable algorithms and strategies for realizing (possibly interleaved) execution of the rules in
the dl-program and calls to the description logic knowledge base. On the other hand, also mappings of the
semantics to answer set programming itself, for which work on mapping description logics to (disjunctive)
logic programs may be utilized [14, 27, 30], may be investigated. We note that the problems in Section 5.3
which have complexity within EXP (resp., NEXP) can be polynomially transformed into deciding conse-
quence from an ordinary (negation-free) datalog program (resp., deciding answer set existence of an ordi-
nary normal logic program). The problems with higher complexity can be polynomially transformed into
disjunctive logic programs, since NPNEXP ⊆ NEXPNP, and for disjunctivel logic programs deciding answer
set existence, as well as brave reasoning NEXPNP-complete [8]. However, intuitively NPNEXP has much
less computational power than NEXPNP, and thus not the full power of logic programming may be needed.
It thus remains to find efficient and useful transformations tailored to the complexity of the problems.

A Appendix: Proofs for Section 4

Proof of Lemma 4.2. Suppose that I1, I2⊆HBP are models of KB . We now show that I = I1 ∩ I2 is
also a model of KB , that is, I |=L r for all r∈ ground(P). Consider any r∈ ground(P), and assume
that I |=L l for all l∈B+(r) = B(r). That is, I |=L l for all classical literals l∈B(r) and I |=L a for
all dl-atoms a∈B(r). Hence, Ii |=L l for all classical literals l∈B(r), for every i∈{1, 2}. Moreover,
Ii |=L a for all dl-atoms a∈B(r), for every i∈{1, 2}, since every dl-atom in ground(P) is monotonic
relative to KB . Since I1 and I2 are models of KB , it follows that Ii |=L H(r), for every i∈{1, 2}, and
thus I |=L H(r). This shows that I |=L r. Hence, I is a model of KB . 2

Proof of Theorem 4.5 (sketch). The statement can be proved by induction along a stratification of KB . 2

Proof of Theorem 4.7. Let I ⊆HBP . If KB is free of dl-atoms, then sP I
L=P I . Hence, I is the least model

of (L, sP I
L) iff I is the least model of P I . Thus, I is a strong answer set of KB iff I is an answer set of P . 2

Proof of Theorem 4.8. (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we
have to show that I |=L r for all r∈ ground(P). Consider any r∈ ground(P). Suppose that I |=L l for
all l∈B+(r) and I 6|=L l for all l∈B−(r). Then, the dl-rule r′ that is obtained from r by removing all the
literals in B−(r)∪ (B+(r)∩DL?

P) is contained in sP I
L. Since I is a least model of (L, sP I

L) and thus in
particular a model of (L, sP I

L), it follows that I is a model of r′. Since I |=L l for all l∈B+(r′) and I 6|=L l

for all l∈B−(r′) = ∅, it follows that I |=L H(r). This shows that I |=L r. Hence, I is a model of KB . 2

(b) By Theorem 4.8, every strong answer set I of KB is a model of KB . Assume that every dl-atom in
DLP is monotonic relative to KB . We now show that then I is also a minimal model of KB . Towards a
contradiction, suppose the contrary. That is, there exists a model J of KB such that J ⊂ I . Since J is
a model of KB , it follows that J is also a model of (L, sP J

L). Since every dl-atom in DLP is monotonic
relative to KB , it then follows that sP I

L⊆ sP J
L . Hence, J is also a model of (L, sP I

L). But this contradicts
I being the least model of (L, sP I

L). This shows that I is a minimal model of KB . 2

Proof of Theorem 4.9. (a) If KB = (L, P) is satisfiable, then MKB is defined. A strong answer set of KB

is an interpretation I ⊆HBP such that I is the least model of (L, sP I
L). Since KB is a positive dl-program,

it follows that sP I
L coincides with ground(P). Hence, I ⊆HBP is a strong answer set of KB iff I = MKB .

If KB is unsatisfiable, then KB has no model. Thus, by Theorem 4.8, KB has no strong answer set. 2

18 INFSYS RR 1843-03-13

(b) Let λ be a stratification of KB of length k≥ 0. Suppose that I ⊆HBP is a strong answer set of KB .
That is, I is the least model of (L, sP I

L). Hence,

• I|HB?
P0

is the least among all models J ⊆HB ?
P0

of (L, sP0
I
L); and

• if i > 0, then I|HB?
Pi

is the least among all models J ⊆HB ?
Pi

of (L, sPi
I
L) with J |HB?

Pi−1
= I|HB?

Pi−1
.

It thus follows that

• I|HB?
P0

is the least among all models J ⊆HB ?
P0

of KB0; and

• if i > 0, then I|HB?
Pi

is the least among all models J ⊆HB ?
Pi

of KB i with J |HB?
Pi−1

= I|HB?
Pi−1

.

Hence, KB is consistent, and I = MKB . Since the above line of argumentation also holds in the converse
direction, it follows that I ⊆HBP is a strong answer set of KB iff KB is consistent and I = MKB . 2

Proof of Theorem 4.12. Let I ⊆HBP . If KB is free of dl-atoms, then wP I
L = P I . Thus, I is the least

model of wP I
L iff I is the least model of P I . So, I is a weak answer set of KB iff I is an answer set of P . 2

Proof of Theorem 4.13. Let I ⊆HBP be a weak answer set of KB = (L, P). To show that I is also a
model of KB , we have to show that I |=L r for all r∈ ground(P). Consider any r∈ ground(P). Suppose
that I |=L l for all l∈B+(r) and I 6|=L l for all l∈B−(r). Then, the dl-rule r′ that is obtained from r by
removing all the dl-atoms in B+(r) and all literals in B−(r) is in wP I

L. As I is the least model of wP I
L and

thus in particular a model of wP I
L, it follows that I |=L r′. Since I |=L l for all l∈B+(r′) and I 6|=L l for

all l∈B−(r′) = ∅, it follows I |=L H(r′) = H(r). This shows that I |=L r. Thus, I is a model of KB . 2

Proof of Theorem 4.14. Immediate by the observation that wP I
L coincides with (P I

L)I . 2

Proof of Theorem 4.15. Let I ⊆HBP be a strong answer set of KB =(L, P). That is, I is the least model
of (L, sP I

L). Hence, I is also a model of wP I
L. We now show that I is in fact the least model of wP I

L.
Towards a contradiction, assume the contrary. That is, there exists a model J ⊂ I of wP I

L. Hence, J is also
a model of (L, sP I

L). But this contradicts I being the least model of (L, sP I
L). This shows that I the least

model of wP I
L. That is, I is a weak answer set of KB . 2

B Appendix: Proofs for Section 5

Proof of Lemma 5.1. Let I ⊆ I ′⊆HBP . Consider any r∈ ground(P). Then, for every classical lit-
eral l∈B(r), it holds that I |=L l implies I ′ |=L l. Furthermore, for every dl-atom a∈B(r), it holds
that I |=L a implies I ′ |=L a, since a is monotonic relative to KB . This shows that TKB (I)⊆TKB (I ′). 2

Proof of Proposition 5.2. (⇒) Assume that TKB (I)⊆ I ⊆HBP . Suppose first that I is consistent. Then,
for every r∈ ground(P), I |=L l for all l∈B(r) implies that I |=L H(r), and thus I |=L r. Hence, I is a
model of KB . Suppose next that I is not consistent. Then, TKB (I) =HBP , and thus I =HBP .

(⇐) Suppose first that I is a model of KB . That is, I |=L r for all r∈ ground(P). Equivalently, I |=L l

for all l∈B(r) implies that I |=L H(r), for all r∈ ground(P). It thus follows that TKB (I)⊆ I . Suppose
next that I =HBP . Then, TKB (I) =HBP = I . 2

INFSYS RR 1843-03-13 19

Proof of Theorem 5.4. Since TKB is monotonic and HBP is finite, it follows that T i
KB (∅) for i≥ 0 is an

increasing sequence of sets contained in lfp(TKB), and T n
KB (∅) = T n+1

KB (∅) for some n≥ 0. Since T n
KB (∅)

is a fixpoint of TKB that is contained in lfp(TKB), it follows that T n
KB (∅) = lfp(TKB). 2

Proof of Theorem 5.6 (sketch). The statement follows from Theorem 5.4. 2

References

[1] G. Antoniou. Nonmonotonic rule systems on top of ontology layers. In Proceedings ISWC-2002,
volume 2342 of LNCS, pages 394–398. Springer, 2002.

[2] F. Baader and B. Hollunder. Embedding defaults into terminological representation systems. J. Auto-
mated Reasoning, 14:149–180, 1995.

[3] C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge Uni-
versity Press, Cambridge, UK, 2002.

[4] P. Baumgartner, U. Furbach, and B. Thomas. Model-based deduction for knowledge representation.
In Proceedings of the 17th Workshop on Logic Programming (WLP-2002), pages 156–166, 2002.

[5] T. Berners-Lee. Weaving the Web. Harper, San Francisco, CA, 1999.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5):34–43,
2001.

[7] H. Boley, S. Tabet, and G. Wagner. Design rationale of RuleML: A markup language for semantic web
rules. In Proceedings SWWS-2001, 2001.

[8] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic program-
ming. ACM Computing Surveys, 33(3):374–425, 2001.

[9] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating datalog and description
logics. Journal of Intelligent Information Systems (JIIS), 10(3):227–252, 1998.

[10] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving using the DLV system.
In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic Publishers,
2000.

[11] T. Eiter, G. Gottlob, and H. Veith. Modular logic programming and generalized quantifiers. In Pro-
ceedings LPNMR-1997, volume 1265 of LNCS/LNAI, pages 290–309. Springer, 1997.

[12] D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuiness, and P. F. Patel-Schneider. OIL: An ontology
infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.

[13] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential. MIT Press, 2002.

[14] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining logic
programs with description logics. In Proceedings WWW-2003, 2003.

20 INFSYS RR 1843-03-13

[15] J. Hendler and D. L. McGuiness. The DARPA agent markup language. IEEE Intelligent Systems,
15(6):67–73, 2000.

[16] S. Heymans and D. Vermeir. Integrating ontology languages and answer set programming. In Pro-
ceedings of the 14th International Workshop on Database and Expert Systems Applications, pages
584–588. IEEE Computer Society, 2003.

[17] S. Heymans and D. Vermeir. Integrating semantic web reasoning and answer set programming. In
Proceedings ASP-2003, pages 194–208, 2003.

[18] I. Horrocks. DAML+OIL: A description logic for the semantic web. IEEE Bulletin of the Technical
Committee on Data Engineering, 25(1):4–9, 2002.

[19] I. Horrocks. DAML+OIL: A reason-able web ontology language. In Proceedings EDBT-2002, volume
2287 of LNCS, pages 2–13. Springer, 2002.

[20] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL Rules Language, 2003.
Draft Version (16 October 2003): http://www.cs.man.ac.uk/˜horrocks/DAML/Rules/
WD-OWL-rules-20031016/.

[21] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfiability. In
Proceedings ISWC-2003, volume 2870 of LNCS, pages 17–29. Springer, 2003.

[22] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making
of a web ontology language. Journal of Web Semantics, 2003. To appear.

[23] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proceedings
IJCAI-01, pages 199–204, 2001.

[24] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In Pro-
ceedings LPAR-1999, volume 1705 of LNCS/LNAI, pages 161–180. Springer, 1999.

[25] T. Janhunen, I. Niemelä, P. Simons, and J.-H. You. Partiality and disjunctions in stable model seman-
tics. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings of the Seventh International
Conference on Principles of Knowledge Representation and Reasoning (KR 2000), pages 411–419.
Morgan Kaufmann, 2000.

[26] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN. Artif. Intell.,
104(1-2):165–209, 1998.

[27] B. Motik, R. Volz, and A. Maedche. Optimizing query answering in description logics using disjunc-
tive deductive databases. In F. Bry, C. Lutz, U. Sattler, and M. Schoop, editors, Proceedings of the
10th International Workshop on Knowledge Representation meets Databases (KRDB 2003), Hamburg,
Germany, September 15-16, 2003, volume 79 of CEUR Workshop Proceedings. Technical University
of Aachen (RWTH), 2003. Online http://CEUR-WS.org/Vol79/.

[28] A. Provetti, E. Bertino, and F. Salvetti. Local Closed-World Assumptions for reasoning about Semantic
Web data. In Proceedings APPIA-GULP-PRODE, LNCS/LNAI. Springer, 2003.

INFSYS RR 1843-03-13 21

[29] R. Rosati. Towards expressive KR systems integrating datalog and description logics: Preliminary
report. In Proceedings of the 1999 International Workshop on Description Logics (DL-1999), pages
160–164, 1999.

[30] T. Swift. Deduction in ontologies via ASP. In Proceedings LPNMR-7. Springer, 2004. To appear.

[31] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Represen-
tation. PhD thesis, RWTH Aachen, Germany, 2001. http://citeseer.nj.nec.com/
tobies01complexity.html.

[32] K. Van Belleghem, M. Denecker, and D. De Schreye. A strong correspondence between description
logics and open logic programming. In Proceedings ICLP-1997, pages 346–360. MIT Press, 1997.

[33] W3C. OWL web ontology language overview, 2003. W3C Candidate Recommendation (18 August
2003): http://www.w3.org/TR/2003/CR-owl-features-20030818/.

