
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

GAME-THEORETIC AGENT

PROGRAMMING IN GOLOG

ALBERTO FINZI THOMAS LUKASIEWICZ

INFSYS RESEARCH REPORT 1843-04-02

APRIL 2007

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-04-02, APRIL 2007

GAME-THEORETIC AGENT PROGRAMMING IN GOLOG

APRIL 14, 2007

Alberto Finzi 2 1 Thomas Lukasiewicz1 2

Abstract. We present the agent programming language GTGolog, which integrates explicit agent

programming in Golog with game-theoretic multi-agent planning in stochastic games. GTGolog

is a generalization of DTGolog to multi-agent systems consisting of two competing single agents

or two competing teams of cooperative agents, where any two agents in the same team have the

same reward, and any two agents in different teams have zero-sum rewards. In addition to being a

language for programming agents in such multi-agent systems, GTGolog can also be considered as

a new language for specifying games. GTGolog allows for defining a partial control program in a

high-level logical language, which is then completed by an interpreter in an optimal way. To this

end, we define a formal semantics of GTGolog programs in terms of Nash equilibria, and we specify

a GTGolog interpreter that computes one of these Nash equilibria. We then show that the computed

Nash equilibria can be freely mixed and that GTGolog programs faithfully extend (finite-horizon)

stochastic games. Furthermore, we also show that under suitable assumptions, computing the Nash

equilibrium specified by the GTGolog interpreter can be done in polynomial time. Finally, we also

report on a first prototype implementation of a simple GTGolog interpreter.

1Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, I-00198 Rome,

Italy; e-mail: {finzi, lukasiewicz}@dis.uniroma1.it.
2Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;

e-mail: lukasiewicz@kr.tuwien.ac.at.

Acknowledgements: This work was supported by the Austrian Science Fund Projects P18146-N04 and

Z29-N04, by a Heisenberg Professorship of the German Research Foundation, and by the Marie Curie Indi-

vidual Fellowship HPMF-CT-2001-001286 of the EU programme “Human Potential” (disclaimer: The au-

thors are solely responsible for information communicated and the European Commission is not responsible

for any views or results expressed).

Copyright c© 2007 by the authors

INFSYS RR 1843-04-02 I

Contents

1 Introduction 1

2 Preliminaries 5

2.1 The Situation Calculus . 5

2.2 Golog . 6

2.3 Normal Form Games . 8

2.4 Stochastic Games . 9

3 Game-Theoretic Golog (GTGolog) 10

3.1 Domain Theory . 10

3.2 Syntax of GTGolog . 13

3.3 Policies and Nash Equilibria of GTGolog . 15

4 A GTGolog Interpreter 19

4.1 Formal Specification . 20

4.2 Optimality, Faithfulness, and Complexity Results . 21

4.3 Implementation . 22

5 Example 22

6 GTGolog with Teams 26

7 Related Work 28

7.1 High-Level Agent Programming . 29

7.2 First-Order Decision- and Game-Theoretic Models . 29

7.3 Other Decision- and Game-Theoretic Models . 30

8 Conclusion 30

References 39

INFSYS RR 1843-04-02 1

1 Introduction

During the recent decades, the development of controllers for autonomous agents in real-world environments

has become increasingly important in AI. One of the most crucial problems that we have to face here is

uncertainty, both about the initial situation of the agent’s world and about the results of the actions taken

by the agent. One way of designing such controllers is based on logic-based languages and formalisms

for reasoning about actions under uncertainty, where control programs and action theories are specified

using high-level actions as primitives. Another way is based on approaches to classical planning under

uncertainty or to decision-theoretic planning, where goals or reward functions are specified and the agent

is given a planning ability to achieve a goal or to maximize a reward function. Both ways of designing

controllers have certain advantages.

In particular, logic-based languages and formalisms for reasoning about actions under uncertainty (i) al-

low for compact representations without explicitly referring to atomic states and state transitions, (ii) allow

for exploiting such compact representations for efficiently solving large-scale problems, and (iii) have the

nice properties of modularity (which means that parts of the specification can be easily added, removed, or

modified) and elaboration tolerance (which means that solutions can be easily reused for similar problems

with few or no extra effort). The literature contains several different logic-based languages and formalisms

for reasoning about actions under uncertainty, which include especially probabilistic extensions of the situ-

ation calculus (Bacchus et al., 1999; Mateus et al., 2001) and Golog (Grosskreutz & Lakemeyer, 2001), of

logic programming formalisms (Poole, 1997), and of the action language A (Baral et al., 2002).

Approaches to classical planning under uncertainty and to decision-theoretic planning, on the other hand,

allow especially for defining in a declarative and semantically appealing way courses of actions that achieve

a goal with high probability and mappings from situations to actions of high expected utility, respectively.

In particular, decision-theoretic planning deals especially with fully observable Markov decision processes

(MDPs) (Puterman, 1994) or the more general partially observable Markov decision processes (POMDPs)

(Kaelbling, Littman, & Cassandra, 1998).

To combine in a unified formalism the advantages of both ways of designing controllers, a seminal work

by Boutilier et al. (2000) presents a generalization of Golog, called DTGolog, where agent programming

in Golog relative to stochastic action theories in the situation calculus is combined with decision-theoretic

planning in MDPs. The language DTGolog allows for partially specifying a control program in a high-

level language as well as for optimally filling in missing details through decision-theoretic planning. It

can thus be seen as a decision-theoretic extension to Golog, where choices left to the agent are made by

maximizing expected utility. From a different perspective, it can also be seen as a formalism that gives

advice to a decision-theoretic planner, since it naturally constrains the search space. Furthermore, DTGolog

also inherits all the above nice features of logic-based languages and formalisms for reasoning about actions

under uncertainty.

A limitation of DTGolog, however, is that it is designed only for the single-agent framework. That

is, the model of the world essentially consists of a single agent that we control by a DTGolog program

and the environment that is summarized in “nature”. But there are many applications where we encounter

multiple agents, which may compete against each other, or which may also cooperate with each other. For

example, in robotic soccer, we have two competing teams of agents, where each team consists of cooperating

agents. Here, the optimal actions of one agent generally depend on the actions of all the other (“enemy” and

“friend”) agents. In particular, there is a bidirected dependence between the actions of two different agents,

which generally makes it inappropriate to model enemies and friends of the agent that we control simply

as a part of “nature”. As an example for an important cooperative domain, in robotic rescue, mobile agents

2 INFSYS RR 1843-04-02

may be used in the emergency area to acquire new detailed information (such as the locations of injured

people in the emergency area) or to perform certain rescue operations. In general, acquiring information

as well as performing rescue operations involves several and different rescue elements (agents and/or teams

of agents), which cannot effectively handle the rescue situation on their own. Only the cooperative work

among all the rescue elements may solve it. Since most of the rescue tasks involve a certain level of risk for

humans (depending on the type of rescue situation), mobile agents can play a major role in rescue situations,

especially teams of cooperating heterogeneous mobile agents.

In this paper, we overcome this limitation of DTGolog. We present the multi-agent programming lan-

guage GTGolog, which combines explicit agent programming in Golog with game-theoretic multi-agent

planning in (fully observable) stochastic games (Owen, 1982) (also called Markov games (van der Wal,

1981; Littman, 1994)). GTGolog allows for modeling two competing agents as well as two competing teams

of cooperative agents, where any two agents in the same team have the same reward, and any two agents in

different teams have zero-sum rewards. It properly generalizes DTGolog to the multi-agent setting, and thus

inherits all the nice properties of DTGolog. In particular, it allows for partially specifying a control program

in a high-level language as well as for optimally filling in missing details through game-theoretic planning.

It can thus be seen as a game-theoretic extension to Golog, where choices left to the agent are made by

following Nash equilibria. It can also be seen as a formalism that gives advice to a game-theoretic planner,

since it naturally constrains the search space. Moreover, GTGolog also inherits from DTGolog all the above

nice features of logic-based languages and formalisms for reasoning about actions under uncertainty.

The main idea behind GTGolog can be roughly described as follows for the case of two competing

agents. Suppose that we want to control an agent and that, for this purpose, we write or we are already

given a DTGolog program that specifies the agent’s behavior in a partial way. If the agent acts alone in an

environment, then the DTGolog interpreter from (Boutilier et al., 2000) replaces all action choices of our

agent in the DTGolog program by some actions that are guaranteed to be optimal. However, if our agent

acts in an environment with an enemy agent, then the actions produced by the DTGolog interpreter are in

general no longer optimal, since the optimal actions of our agent generally depend on the actions of its

enemy, and conversely the actions of the enemy also generally depend on the actions of our agent. Hence,

we have to enrich the DTGolog program for our agent by all the possible action moves of its enemy. Every

such enriched DTGolog program is a GTGolog program. How do we then define the notion of optimality

for the possible actions of our agent? We do this by defining the notion of a Nash equilibrium for GTGolog

programs (and thus also for the above DTGolog programs enriched by the actions of the enemy). Every

Nash equilibrium consists of a Nash policy for our agent and a Nash policy for its enemy. Since we assume

that the rewards of our agent and of its enemy are zero-sum, we then obtain the important result that our

agent always behaves optimally when following such a Nash policy, and this even when the enemy follows

a Nash policy of another Nash equilibrium or no Nash policy at all. More generally, our agent may also have

a library of different DTGolog programs. The GTGolog interpreter then does not only allow for filling them

in optimally against an enemy, but it also allows for selecting the DTGolog program of highest expected

utility. The following example illustrates the above line of argumentation.

Example 1.1 (Rugby Domain) Consider a (robotic) rugby player a, who is carrying the ball and approach-

ing the adversary goal. Suppose that a has no team mate close and is facing only one adversary o on the

way towards the goal. At each step, the two players may either (i) remain stationary, or (ii) move left, right,

forward, or backward, or (iii) kick or block the ball.

Suppose that we control the player a in such a situation and that we do this by using the following simple

DTGolog program, which encodes that a approaches the adversary goal, moves left or right to sidestep the

INFSYS RR 1843-04-02 3

adversary, and then kicks the ball towards the goal:

proc attack

forward ;
(right | left);
kick

end.

How do we now optimally fill in the missing details, that is, how do we determine whether a should better

move left or right in the third line? In the case without adversary, the DTGolog interpreter determines an

optimal action among the two. In the presence of an adversary, however, the actions filled in by the DTGolog

interpreter are in general no longer optimal. In this paper, we propose to use the GTGolog interpreter for

filling in optimal actions in DTGolog programs for agents with adversaries: We first enrich the DTGolog

program by all the possible actions of the adversary. As a result, we obtain a GTGolog program, which

looks as follows for the above DTGolog program:

proc attack

choice(a : forward) ‖ choice(o : stand | left | right | forward | backward | kick | block);
choice(a : right | left) ‖ choice(o : stand | left | right | forward | backward | kick | block);
choice(a : kick) ‖ choice(o : stand | left | right | forward | backward | kick | block)
end.

The GTGolog interpreter then specifies a Nash equilibrium for such programs. Each Nash equilibrium

consists of a Nash policy for the player a and a Nash policy for its adversary o. The former specifies an

optimal way of filling in missing actions in the original DTGolog program.

In addition to optimally filling in missing details, the GTGolog interpreter also helps to choose an

optimal program from a collection of DTGolog programs for agents with adversaries. For example, suppose

that we have the following second DTGolog program:

proc attack ′

(right | left);
forward ;
kick

end.

The GTGolog interpreter then determines the Nash equilibria for the enriched GTGolog versions of the two

DTGolog programs attack and attack ′ along with their expected utilities to our agent, and we can finally

choose to execute the DTGolog program of maximum utility.

In addition to being a language for programming agents in multi-agent systems, GTGolog can also be

considered as a new language for relational specifications of games: The background theory defines the

basic structure of a game, and any action choice contained in a GTGolog program defines the points where

the agents can make one move each. In this case, rather than looking from the perspective of one agent that

we program, we adopt an objective view on all the agents (as usual in game theory). The following example

illustrates this use of GTGolog for specifying games.

Example 1.2 (Rugby Domain cont’d) Consider a rugby player a1, who wants to cooperate with a team

mate a2 towards scoring a goal against another team of two rugby players o1 and o2. Suppose the two

4 INFSYS RR 1843-04-02

rugby players a1 and a2 have to decide their next n > 0 steps. Each player may either remain stationary,

change its position, pass the ball to its team mate, or receive the ball from its team mate. How should the

two players a1 and a2 now best behave against o1 and o2?

The possible moves of the two rugby players a1 and a2 against o1 and o2 in such a part of a game may

be encoded by the following procedure in GTGolog, which expresses that while a1 is the ball owner and

n > 0, all the players simultaneously select one action each:

proc step(n)
if (haveBall(a1) ∧ n > 0) then

πx, x′, y, y′(choice(a1 : moveTo(x) | passTo(a2)) ‖ choice(a2 : moveTo(x′) | receive(a1)) ‖
choice(o1 : moveTo(y) | passTo(o2)) ‖ choice(o2 : moveTo(y′) | receive(o1)));

step(n−1)
end.

Here, the preconditions and effects of the primitive actions are to be formally specified in a suitable domain

theory. Given this high-level program and the domain theory, the program interpreter then fills in an optimal

way of acting for all the players, reasoning about the possible interactions between the players, where the

underlying decision model is a generalization of a stochastic game.

The main contributions of this paper can be summarized as follows:

• We present the multi-agent programming language GTGolog, which integrates explicit agent pro-

gramming in Golog with game-theoretic multi-agent planning in stochastic games. GTGolog is a

proper generalization of both Golog and stochastic games; it also properly generalizes DTGolog to

the multi-agent setting. GTGolog allows for modeling two competing agents as well as two com-

peting teams of cooperative agents, where any two agents in the same team have the same reward,

and any two agents in different teams have zero-sum rewards. In addition to being a language for

programming agents in multi-agent systems, GTGolog can also be considered as a new language for

specifying games in game theory.

• We associate with every GTGolog program a set of (finite-horizon) policies, which are possible (finite-

horizon) instantiations of the program where missing details are filled in. We then define the notion

of a (finite-horizon) Nash equilibrium of a GTGolog program, which is an optimal policy (that is,

an optimal instantiation) of the program. We also formally specify a GTGolog interpreter, which

computes one of these Nash equilibria. GTGolog thus allows for partially specifying a control program

for a single agent or a team of agents, which is then optimally completed by the interpreter against

another single agent or another team of agents.

• We prove several important results about the GTGolog interpreter. First, we show that the interpreter

is optimal in the sense that it computes a Nash equilibrium. Second, we prove that the single-agent

components of two Nash equilibria can be freely mixed to form new Nash equilibria, and thus two

competing teams of agents also behave optimally when they follow two different Nash equilibria.

Third, we show that GTGolog programs faithfully extend (finite-horizon) stochastic games. That is,

they can represent stochastic games, and in the special case where they syntactically model stochastic

games, they also semantically behave like stochastic games. Thus, GTGolog programs show a nice

semantic behavior here.

• We also show that under suitable assumptions, which include that the horizon is bounded by a con-

stant (which is a quite reasonable assumption in many applications in practice), computing the Nash

INFSYS RR 1843-04-02 5

equilibrium specified by the GTGolog interpreter can be done in polynomial time. Furthermore, we

report on a first prototype implementation of a simple GTGolog interpreter (for two competing agents)

in constraint logic programming. Finally, we also provide several detailed examples that illustrate our

approach and show its practical usefulness.

The rest of this paper is organized as follows. In Section 2, we recall the basic concepts of the situation

calculus, Golog, normal form games, and stochastic games. In Section 3, we define the domain theory,

syntax, and semantics of GTGolog programs for the case of two competing agents. In Section 4, we formally

specify a GTGolog interpreter, we provide optimality, faithfulness, and complexity results for the interpreter,

and we describe an implementation of the interpreter. In Section 5, we give an additional extensive example

for GTGolog programs. Section 6 then generalizes GTGolog programs to the case of two competing teams

of cooperative agents. In Sections 7 and 8, we discuss related work, summarize our results, and give an

outlook on future research.

Notice that detailed proofs of all results of this paper as well as excerpts of the implementation of

the GTGolog interpreter along with a sample domain are given in Appendices A to C.

2 Preliminaries

In this section, we first recall the main concepts of the situation calculus (in its standard and concurrent

version) and of the agent programming language Golog; for further details and background see especially

(Reiter, 2001). We then recall the basics of normal form games and stochastic games.

2.1 The Situation Calculus

The situation calculus (McCarthy & Hayes, 1969; Reiter, 2001) is a first-order language for representing

dynamically changing worlds. Its main ingredients are actions, situations, and fluents. An action is a first-

order term of the form a(u1, . . . , un), where the function symbol a is its name and the ui’s are its arguments.

All changes to the world are the result of actions. For example, the action moveTo(r, x, y) may stand for

moving the agent r to the position (x, y). A situation is a first-order term encoding a sequence of actions.

It is either a constant symbol or of the form do(a, s), where do is a distinguished binary function symbol,

a is an action, and s is a situation. The constant symbol S0 is the initial situation and represents the empty

sequence, while do(a, s) encodes the sequence obtained from executing a after the sequence of s. For exam-

ple, the situation do(moveTo(r, 1, 2), do(moveTo(r, 3, 4),S0)) stands for executing moveTo(r, 1, 2) after

executing moveTo(r, 3, 4) in the initial situation S0 . We write Poss(a, s), where Poss is a distinguished

binary predicate symbol, to denote that the action a is possible to execute in the situation s. A (relational)

fluent represents a world or agent property that may change when executing an action. It is a predicate sym-

bol whose most right argument is a situation. For example, at(r, x, y, s) may express that the agent r is at

the position (x, y) in the situation s. A situation calculus formula is uniform in a situation s iff (i) it does not

mention the predicates Poss and < (which denotes the proper subsequence relationship on situations), (ii)

it does not quantify over situation variables, (iii) it does not mention equality on situations, and (iv) every

situation in the situation argument of a fluent coincides with s (cf. (Reiter, 2001)). In the situation calculus,

a dynamic domain is represented by a basic action theory AT = (Σ,Duna ,DS0
,Dssa ,Dap), where:

• Σ is the set of (domain-independent) foundational axioms for situations (Reiter, 2001).

• Duna is the set of unique names axioms for actions, which express that different actions are interpreted

in a different way. That is, (i) actions with different names have a different meaning, and (ii) actions

6 INFSYS RR 1843-04-02

with the same name but different arguments have a different meaning: for all action names a and a′,
it holds that (i) a(x1, . . . , xn) 6= a′(y1, . . . , ym) if a 6= a′, and (ii) a(x1, . . . , xn) 6= a(y1, . . . , yn) if

xi 6= yi for some i∈{1, . . . , n}.

• DS0
is a set of first-order formulas that are uniform in S0 describing the initial state of the domain

(represented by S0). For example, the formula at(r, 1, 2,S0) ∧ at(r′, 3, 4,S0) may express that the

agents r and r′ are initially at the positions (1, 2) and (3, 4), respectively.

• Dssa is the set of successor state axioms (Reiter, 1991, 2001). For each fluent F (~x, s), it contains an

axiom of the form F (~x, do(a, s))≡ΦF (~x, a, s), where ΦF (~x, a, s) is a formula that is uniform in s
with free variables among ~x, a, s. These axioms specify the truth of the fluent F in the next situation

do(a, s) in terms of the current situation s, and are a solution to the frame problem (for determin-

istic actions). For example, the axiom at(r, x, y, do(a, s))≡ a=moveTo(r, x, y) ∨ (at(r, x, y, s) ∧
¬∃x′, y′ (a=moveTo(r, x′, y′))) may express that the agent r is at the position (x, y) in the situation

do(a, s) iff either r moves to (x, y) in the situation s, or r is already at the position (x, y) and does

not move away in s.

• Dap is the set of action precondition axioms. For each action a, it contains an axiom of the form

Poss(a(~x), s) ≡ Π(~x, s), where Π is a formula that is uniform in s with free variables among ~x, s.

This axiom characterizes the preconditions of the action a. For example, Poss(moveTo(r, x, y), s) ≡
¬∃r′ at(r′, x, y, s) may express that it is possible to move the agent r to the position (x, y) in the

situation s iff no agent r′ is at (x, y) in s (note that this also includes that the agent r is not at (x, y)
in s).

In this paper, we use the concurrent version of the situation calculus (Reiter, 2001), which is an extension

of the above standard situation calculus by concurrent actions. A concurrent action c is a set of standard

actions, which are concurrently executed when c is executed. A situation is then a sequence of concurrent

actions of the form do(cm, . . . , do(c0 ,S0)), where do(c, s) states that all the simple actions a in c are

executed at the same time in the situation s.

To encode concurrent actions, some slight modifications to standard basic action theories are necessary.

In particular, the successor state axioms in Dssa are now defined relative to concurrent actions. For exam-

ple, the above axiom at(r, x, y, do(a, s))≡ a=moveTo(r, x, y)∨ (at(r, x, y, s)∧¬∃x′, y′ (a=moveTo(r,
x′, y′))) in the standard situation calculus is now replaced by the axiom at(r, x, y, do(c, s)) ≡ moveTo(r,
x, y)∈ c ∨ (at(r, x, y, s) ∧ ¬∃x′, y′(moveTo(r, x′, y′)∈ c)). Furthermore, the action preconditions in Dap

are extended by further axioms expressing (i) that a singleton concurrent action c = {a} is executable if its

standard action a is executable, (ii) that if a concurrent action is executable, then it is nonempty and all

its standard actions are executable, and (iii) preconditions for concurrent actions. Note that precondition

axioms for standard actions are in general not sufficient, since two standard actions may each be executable,

but their concurrent execution may not be permitted. This precondition interaction problem (Reiter, 2001)

(see also (Pinto, 1998) for a discussion) requires some domain-dependent extra precondition axioms.

2.2 Golog

Golog is an agent programming language that is based on the situation calculus. It allows for constructing

complex actions (also called programs) from (standard or concurrent) primitive actions that are defined in

a basic action theory AT , where standard (and not so-standard) Algol-like control constructs can be used.

More precisely, programs p in Golog have one of the following forms (where c is a (standard or concurrent)

INFSYS RR 1843-04-02 7

primitive action, φ is a condition, which is obtained from a situation calculus formula that is uniform in s
by suppressing the situation argument, p, p1, p2, . . . , pn are programs, P1, . . . , Pn are procedure names, and

x, ~x1, . . . , ~xn are arguments):

(1) Primitive action: c. Do c.

(2) Test action: φ?. Test the truth of φ in the current situation.

(3) Sequence: [p1; p2]. Do p1 followed by p2.

(4) Nondeterministic choice of two programs: (p1 | p2). Do either p1 or p2.

(5) Nondeterministic choice of program argument: πx (p(x)). Do any p(x).

(6) Nondeterministic iteration: p⋆. Do p zero or more times.

(7) Conditional: if φ then p1 else p2. If φ is true in the current situation, then do p1 else do p2.

(8) While-loop: while φ do p. While φ is true in the current situation, do p.

(9) Procedures: proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p.

For example, the Golog program while ¬at(r, 1, 2) do πx, y (moveTo(r, x, y)) stands for “while the agent

r is not at the position (1, 2), move r to a nondeterministically chosen position (x, y)”.

Golog has a declarative formal semantics, which is defined in the situation calculus. Given a Golog

program p, its execution is represented by a situation calculus formula Do(p, s, s′), which encodes that the

situation s′ can be reached by executing the program p in the situation s. The formal semantics of the above

constructs in (1)–(9) is then defined as follows:

(1) Primitive action: Do(c, s, s′)
def
= Poss(c, s) ∧ s′ = do(c, s). The situation s′ can be reached by exe-

cuting c in the situation s iff c is executable in s, and s′ coincides with do(c, s).

(2) Test action: Do(φ?, s, s′)
def
= φ[s]∧ s= s′. Successfully testing the truth of φ in s means that φ holds

in s and that s′ equals to s (testing does not affect the state of the world). Here, φ[s] is the situation

calculus formula obtained from φ by restoring s as the suppressed situation argument for all the fluents

in φ. For example, if φ= at(r, 1, 2), then φ[s] = at(r, 1, 2, s).

(3) Sequence: Do([p1; p2], s, s
′)

def
= ∃s′′(Do(p1, s, s

′′)∧Do(p2, s
′′, s′)). The situation s′ can be reached

by executing [p1; p2] in the situation s iff there exists a situation s′′ such that s′′ can be reached by

executing p1 in s, and s′ can be reached by executing p2 in s′′.

(4) Nondeterministic choice of two programs: Do((p1|p2), s, s
′)

def
= Do(p1, s, s

′)∨Do(p2, s, s
′).

The situation s′ can be reached by executing (p1|p2) in the situation s iff s′ can be reached either by

executing p1 in s or by executing p2 in s.

(5) Nondeterministic choice of program argument: Do(πx (p(x)), s, s′)
def
= ∃x Do(p(x), s, s′). The sit-

uation s′ can be reached by executing πx (p(x)) in the situation s iff there exists an argument x such

that s′ can be reached by executing p(x) in s.

(6) Nondeterministic iteration: Do(p⋆, s, s′)
def
= ∀P{∀s1 P (s1, s1) ∧ ∀s1, s2, s3[P (s1, s2) ∧ Do(p, s2,

s3)→P (s1, s3)]}→P (s, s′). The situation s′ can be reached by executing p⋆ in the situation s iff

either (i) s′ is equal to s or (ii) there exists a situation s′′ such that s′′ can be reached by executing

p⋆ in s, and s′ can be reached by executing p in s′′. Note that this includes the standard definition of

transitive closure, which requires second-order logic.

8 INFSYS RR 1843-04-02

(7) Conditional: Do(if φ then p1 else p2, s, s
′)

def
= Do(([φ?; p1] | [¬φ?; p2]), s, s

′). The conditional is re-

duced to test action, sequence, and nondeterministic choice of two programs.

(8) While-loop: Do(while φ do p, s, s′)
def
= Do([[φ?; p]⋆;¬φ?], s, s′). The while-loop is reduced to test

action, sequence, and nondeterministic iteration.

(9) Procedures: Do(proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p, s, s′)
def
= ∀P1 . . . Pn [

∧n
i=1

∀s1, s2, ~xi (Do(pi, s1, s2) → Do(Pi(~xi), s1, s2))] → Do(p, s, s′), where Do(Pi(~xi), s1, s2)
def
=

Pi(~xi[s1], s1, s2) and Pi(~xi[s1], s1, s2) is a predicate representing the Pi procedure call (Reiter, 2001).

This is the situation calculus definition (of the semantics of programs involving recursive procedure

calls) corresponding to the more usual Scott-Strachey least fixpoint definition in standard program-

ming language semantics (see (Reiter, 2001)).

2.3 Normal Form Games

Normal form games from classical game theory (von Neumann & Morgenstern, 1947) describe the possible

actions of n > 2 agents and the rewards that the agents receive when they simultaneously execute one action

each. For example, in two-finger Morra, two players E and O simultaneously show one or two fingers.

Let f be the total numbers of fingers shown. If f is odd, then O gets f dollars from E, and if f is even,

then E gets f dollars from O. More formally, a normal form game G = (I, (Ai)i∈I , (Ri)i∈I) consists of

a set of agents I = {1, . . . , n} with n > 2, a nonempty finite set of actions Ai for each agent i∈ I , and a

reward function Ri : A→R for each agent i∈ I , which associates with every joint action a∈A =×i∈IAi

a reward Ri(a) to agent i. If n =2, then G is called a two-player normal form game (or simply matrix game).

If additionally R1 =−R2, then G is a zero-sum matrix game; we then often omit R2 and abbreviate R1 by R.

The behavior of the agents in a normal form game is expressed through the notions of pure and mixed

strategies, which specify which of its actions an agent should execute and which of its actions an agent

should execute with which probability, respectively. For example, in two-finger Morra, a pure strategy for

player E (or O) is to show two fingers, and a mixed strategy for player E (or O) is to show one finger with

the probability 7/12 and two fingers with the probability 5/12. Formally, a pure strategy for agent i∈ I is

any action ai ∈Ai. A pure strategy profile is any joint action a∈A. If the agents play a, then the reward

to agent i∈ I is given by Ri(a). A mixed strategy for agent i∈ I is any probability distribution πi over its

set of actions Ai. A mixed strategy profile π =(πi)i∈I consists of a mixed strategy πi for each agent i∈ I .

If the agents play π, then the expected reward to agent i∈ I , denoted E[Ri(a) |π] (or Ri(π)), is defined as∑
a=(ai)i∈I∈A Ri(a) ·Πi∈Iπi(ai).

Towards optimal behavior of the agents in a normal form game, we are especially interested in mixed

strategy profiles π, called Nash equilibria, where no agent has the incentive to deviate from its part, once

the other agents play their parts. Formally, given a normal form game G = (I, (Ai)i∈I , (Ri)i∈I), a mixed

strategy profile π =(πi)i∈I is a Nash equilibrium (or also Nash pair when |I|=2) of G iff for every agent

i∈ I , it holds that Ri(π←π′
i)6 Ri(π) for every mixed strategy π′

i, where π←π′
i is obtained from π by

replacing πi by π′
i. For example, in two-finger Morra, the mixed strategy profile where each player shows

one finger with the probability 7/12 and two fingers with the probability 5/12 is a Nash equilibrium. Every

normal form game G has at least one Nash equilibrium among its mixed (but not necessarily pure) strategy

profiles, and many normal form games have multiple Nash equilibria. In the two-player case, they can be

computed by linear complementary programming and linear programming in the general and the zero-sum

case, respectively. A Nash selection function f associates with every normal form game G a unique Nash

INFSYS RR 1843-04-02 9

equilibrium f(G). The expected reward to agent i∈ I under f(G) is denoted by vi
f (G). In the zero-sum

two-player case, also Nash selection functions can be computed by linear programming.

In the zero-sum two-player case, if (π1, π2) and (π′
1, π

′
2) are two Nash equilibria of G, then R1(π1, π2) =

R1(π
′
1, π

′
2), and also (π1, π

′
2) and (π′

1, π2) are Nash equilibria of G. That is, the expected reward to the

agents is the same under any Nash equilibrium, and Nash equilibria can be freely “mixed” to form new

Nash equilibria. The strategies of agent 1 in Nash equilibria are the optimal solutions of the following linear

program: max v subject to (i) v 6
∑

a1∈A1
π(a1) · R1(a1, a2) for all a2 ∈A2, (ii)

∑
a1∈A1

π(a1)= 1, and

(iii) π(a1)> 0 for all a1 ∈A1. Moreover, the expected reward to agent 1 under a Nash equilibrium is the

optimal value of the above linear program.

2.4 Stochastic Games

Stochastic games (Owen, 1982), or also called Markov games (van der Wal, 1981; Littman, 1994), general-

ize both normal form games and Markov decision processes (MDPs) (Puterman, 1994).

A stochastic game consists of a set of states S, a normal form game for every state s∈S (with common

sets of agents and sets of actions for each agent), and a transition function that associates with every state

s∈S and joint action of the agents a probability distribution on future states s′ ∈S. Formally, a stochastic

game G = (I, S, (Ai)i∈I , P, (Ri)i∈I) consists of a set of agents I = {1, . . . , n}, n > 2, a nonempty finite set

of states S, a nonempty finite set of actions Ai for each agent i∈ I , a transition function P that associates

with every state s∈S and joint action a∈A =×i∈IAi a probability distribution P (· | s, a) over the set of

states S, and a reward function Ri : S×A→R for each agent i∈ I , which associates with every state s∈S
and joint action a∈A a reward R(s, a) to agent i. If n =2, then G is a two-player stochastic game. If

also R1 =−R2, then G is a zero-sum two-player stochastic game; we then often omit R2 and abbreviate R1

by R.

Assuming a finite horizon H > 0, a pure (resp., mixed) time-dependent policy associates with every

state s∈S and number of steps to go h∈{0, . . . , H} a pure (resp., mixed) strategy of a normal form

game. Formally, a pure policy αi for agent i∈ I assigns to each state s∈S and number of steps to go

h∈{0, . . . , H} an action from Ai. A pure policy profile α = (αi)i∈I consists of a pure policy αi for each

agent i∈ I . The H-step reward to agent i∈ I under a start state s∈S and the pure policy profile α = (αi)i∈I ,

denoted Gi(H, s, α), is defined as Ri(s, α(s, 0)), if H = 0, and Ri(s, α(s, H)) +
∑

s′∈S P (s′|s, α(s, H)) ·
Gi(H−1, s′, α), otherwise. A mixed policy πi for agent i∈ I assigns to every state s∈S and number of steps

to go h∈{0, . . . , H} a probability distribution over the set of actions Ai. A mixed policy profile π = (πi)i∈I

consists of a mixed policy πi for each agent i∈ I . The expected H-step reward to agent i under a start state

s and the mixed policy profile π = (πi)i∈I , denoted Gi(H, s, π), is defined as E[Ri(s, a) |π(s, 0)], if H = 0,

and E[Ri(s, a) +
∑

s′∈S P (s′|s, a) ·Gi(H−1, s′, π) |π(s, H)], otherwise.

The notion of a finite-horizon Nash equilibrium for stochastic games is then defined as follows. A mixed

policy profile π = (πi)i∈I is a (H-step) Nash equilibrium (or also (H-step) Nash pair when |I|= 2) of G iff

for every agent i∈ I and every start state s∈S, it holds that Gi(H, s, π←π′
i) 6 Gi(H, s, π) for every mixed

policy π′
i, where π←π′

i is obtained from π by replacing πi by π′
i. Every stochastic game G has at least one

Nash equilibrium among its mixed (but not necessarily pure) policy profiles, and it may have exponentially

many Nash equilibria.

Nash equilibria for G can be computed by finite-horizon value iteration from local Nash equilibria of nor-

mal form games as follows (Kearns et al., 2000). We assume an arbitrary Nash selection function f for nor-

mal form games (with the set of agents I = {1, . . . , n} and the sets of actions (Ai)i∈I). For every state s∈S
and every number of steps to go h∈{0, . . . , H}, the normal form game G[s, h] = (I, (Ai)i∈I , (Qi[s, h])i∈I)

10 INFSYS RR 1843-04-02

is defined by Qi[s, 0](a)=Ri(s, a) and Qi[s, h](a)=Ri(s, a) +
∑

s′∈S P (s′|s, a) · vi
f (G[s′, h−1]) for ev-

ery joint action a∈A =×i∈IAi and every agent i∈ I . For every agent i∈ I , let the mixed policy πi be

defined by πi(s, h) = fi(G[s, h]) for every s∈S and h∈{0, . . . , H}. Then, π = (πi)i∈I is a H-step Nash

equilibrium of G, and it holds Gi(H, s, π)= vi
f (G[s, H]) for every agent i∈ I and every state s∈S.

In the case of zero-sum two-player stochastic games G, by induction on h∈{0, . . . , H}, it is easy to

see that, for every s∈S and h∈{0, . . . , H}, the normal form game G[s, h] is also zero-sum. Moreover,

all Nash equilibria that are computed by the above finite-horizon value iteration produce the same expected

H-step reward, and they can be freely “mixed” to form new Nash equilibria.

3 Game-Theoretic Golog (GTGolog)

In this section, we present the agent programming language GTGolog for the case of two competing agents

(note that its generalization to two competing teams of agents is given in Section 6). We first introduce the

domain theory and then the syntax and semantics of GTGolog programs.

3.1 Domain Theory

GTGolog programs are interpreted relative to a domain theory, which is an extension of a basic action

theory by stochastic actions, reward functions, and utility functions. Formally, in addition to a basic action

theory AT , a domain theory DT = (AT ,ST ,OT) consists of a stochastic theory ST and an optimization

theory OT , which are both defined below. We assume two (zero-sum) competing agents a and o , also

called the agent and the opponent, respectively. In the agent programming use of GTGolog, a is under

our control, while o is not, whereas in the game specifying use of GTGolog, we adopt an objective view

on both agents. The set of primitive actions is partitioned into the sets of primitive actions A and O of

agents a and o , respectively. A single-agent action of agent a (resp., o) is any concurrent action over A
(resp., O). A two-agent action is any concurrent action over A∪O. For example, the concurrent actions

{moveTo(a , 1, 2)}⊆A and {moveTo(o, 2, 3)}⊆O are single-agent actions of a and o , respectively, and

thus also two-agent actions, while the concurrent action {moveTo(a , 1, 2),moveTo(o, 2, 3)} is only a two-

agent action.

A stochastic theory ST is a set of axioms that define stochastic actions. As usual (Boutilier et al., 2000;

Finzi & Pirri, 2001), we represent stochastic actions through a finite set of deterministic actions. When

a stochastic action is executed, then “nature” chooses and executes with a certain probability exactly one

of its deterministic actions. We use the predicate stochastic(c, s, n, p) to encode that when executing the

stochastic action c in the situation s, nature chooses the deterministic action n with the probability p. We

then call n a deterministic component of c in s. Here, for every stochastic action c and situation s, the set of

all (n, p) such that stochastic(c, s, n, p) is a probability function on the set of all deterministic components

n of c in s, denoted prob(c, s, n). We assume that c and all its nature choices n have the same preconditions.

A stochastic action c is then indirectly represented by providing a successor state axiom for each associated

nature choice n. Thus, basic action theories AT are extended to a probabilistic setting in a minimal way.

For example, consider the stochastic action moveS (k, x, y) of the agent k∈{a ,o} moving to the position

(x, y), which has the effect that k moves to either (x, y) or (x, y+1). The following formula associates with

moveS (k, x, y) its deterministic components and their probabilities 0.9 and 0.1, respectively:

stochastic({moveS (k, x, y)}, s, {moveTo(k, x, t)}, p)
def
=

k∈{a ,o} ∧ ((t = y ∧ p =0.9) ∨ (t = y+1 ∧ p =0.1)) .

INFSYS RR 1843-04-02 11

The stochastic action moveS (k, x, y) is then fully specified by the precondition and successor state ax-

ioms of moveTo(k, x, y) in Section 2.1. The possible deterministic effects of the concurrent execution of

moveS (a , x, y) and moveS (o, x, y) along with their probabilities may be encoded by:

stochastic({moveS (a , x, y),moveS (o, x, y)}, s, {moveTo(a , x, t),moveTo(o, x, t′)}, p)
def
=

(t = y ∧ t′ = y+1 ∧ p = 0.5) ∨ (t = y+1 ∧ t′ = y ∧ p =0.5) .

We assume that the domain is fully observable. To this end, we introduce observability axioms, which disam-

biguate the state of the world after executing a stochastic action. For example, after executing moveS (a, x, y),
we test the predicates at(a, x, y, s) and at(a, x, y + 1, s) to check which of the two possible deterministic

components (that is, either moveTo(a, x, y) or moveTo(a, x, y+1)) was actually executed. This condition

is represented by the predicate condStAct(c, s, n), where c is a stochastic action, s is a situation, n is a

deterministic component of c, and condStAct(c, s, n) is true iff executing c in s has resulted in actually exe-

cuting n. For example, the predicate condStAct(c, s, n) for the stochastic action moveS (k, x, y) is defined

as follows:

condStAct({moveS (k, x, y)}, s, {moveTo(k, x, y)})
def
= at(k, x, y, s) ,

condStAct({moveS (k, x, y)}, s, {moveTo(k, x, y+1)})
def
= at(k, x, y+1, s) .

An optimization theory OT specifies a reward function, a utility function, and Nash selection functions.

The reward function associates with every two-agent action α and situation s, a reward to agent a , denoted

reward(α, s). Since we assume two zero-sum competing agents a and o , the reward to agent o is at the

same time given by −reward(α, s). For example, reward({moveTo(a , x, y)}, s)= y may encode that the

reward to agent a when moving to the position (x, y) in the situation s is given by y. Note that the reward

function for stochastic actions is defined through a reward function for their deterministic components. The

utility function utility maps every pair consisting of a reward v and a probability value pr (that is, a real

from the unit interval [0, 1]) to a real-valued utility utility(v, pr). We assume that utility(v, 1)= v and

utility(v, 0)= 0 for all rewards v. An example of a utility function is utility(v, pr)= v · pr . Informally,

differently from actions in decision-theoretic planning, actions in Golog may fail due to unsatisfied precon-

ditions. Hence, the usefulness of an action/program does not only depend on its reward, but also on the

probability that it is executable. The utility function then combines the reward of an action/program with the

probability that it is executable. In particular, utility(v, pr)= v · pr weights the reward of an action/program

with the probability that it is executable. Finally, we assume Nash selection functions selectNash for zero-

sum matrix games of the form (I, (Ai)i∈I , R), where I = {a ,o} and the sets of actions Aa and Ao are

nonempty sets of single-agent actions of agents a and o , respectively. Similarly to all arithmetic operations,

utility functions and Nash selection functions are assumed to be pre-interpreted (rigid), and thus they are not

explicitly axiomatized in the domain theory.

Example 3.1 (Rugby Domain cont’d) Consider the following rugby domain, which is a slightly modified

version of the soccer domain by Littman (1994). The rugby field (see Fig. 1) is a 4× 7 grid of 28 squares,

and it includes two designated areas representing two goals. There are two players, denoted a and o , each

occupying a square, and each able to do one of the following moves on each turn: N , S, E, W and stand

(move up, move down, move left, move right, and no move, respectively). The ball is represented by a

circle and also occupies a square. A player is a ball owner iff it occupies the same square as the ball. The

ball follows the moves of the ball owner, and we have a goal when the ball owner steps into the adversary

goal. When the ball owner goes into the square occupied by the other player, if the other player stands, then

12 INFSYS RR 1843-04-02

a

o’s a’s

G
O
A
L

G
O
A
L

o

Figure 1: Rugby Domain.

the possession of the ball changes. Therefore, a good defensive maneuver is to stand where the other agent

wants to go.

We define the domain theory DT = (AT ,ST ,OT) as follows. As for the basic action theory AT , we

introduce the deterministic action move(α, m) (encoding that agent α performs m among N , S, E, W
and stand), and the fluents at(α, x, y, s) (encoding that agent α is at position (x, y) in situation s) and

haveBall(α, s) (encoding that agent α is the ball owner in situation s), which are defined by the following

successor state axioms:

at(α, x, y, do(c, s)) ≡ at(α, x, y, s) ∧ ¬∃m (move(α, m)∈ c) ∨
∃x′, y′, m (at(α, x′, y′, s) ∧move(α, m)∈ c ∧ φ(x, y, x′, y′, m)) ;

haveBall(α, do(c, s)) ≡ haveBall(α, s) ∧ ¬∃β (cngBall(β, c, s)) ∨ cngBall(α, c, s) .

Here, φ(x, y, x′, y′, m) is true iff the coordinates change from (x′, y′) to (x, y) due to m, that is,

φ(x, y, x′, y′, m)
def
= (m 6∈ {N, S, E, W} ∧ x=x′ ∧ y = y′) ∨

(m= N ∧ x= x′ ∧ y = y′+1) ∨ (m= S ∧ x= x′ ∧ y = y′−1) ∨
(m= E ∧ x=x′+1 ∧ y = y′) ∨ (m= W ∧ x=x′−1 ∧ y = y′) ,

and cngBall(α, c, s) is true iff the ball possession changes to agent α after the action c in s, that is,

cngBall(α, c, s)
def
= ∃x, y, β, x′, y′, m (at(α, x, y, s) ∧move(α, stand)∈ c ∧ β 6=α ∧

haveBall(β, s) ∧ at(β, x′, y′, s) ∧move(β, m)∈ c ∧ φ(x, y, x′, y′, m)) .

The precondition axioms encode that the agents cannot go out of the rugby field:

Poss(move(α, m), s) ≡ ¬∃x, y (at(α, x, y, s) ∧ ((x = 0 ∧m = W) ∨
(x = 6 ∧m = E) ∨ (y = 1 ∧m = S) ∨ (y = 4 ∧m = N))).

Moreover, every possible two-agent action consists of at most one standard action per agent, that is,

Poss({move(α, m1),move(β, m2)}, s) ≡
Poss(move(α, m1), s) ∧ Poss(move(β, m2), s) ∧ α 6= β .

To keep this example technically as simple as possible, we use no stochastic actions here, and thus the

stochastic theory ST is empty. As for the optimization theory OT , we use the product as the utility function

utility and any suitable Nash selection function selectNash for matrix games. Furthermore, we define the

reward function reward for agent a as follows:

reward(c, s)= r
def
= ∃α (goal(α, do(c, s))∧ (α =a ∧ r =1000 ∨ α =o ∧ r =− 1000)) ∨

¬∃α (goal(α, do(c, s))) ∧ evalPos(c, r, s) .

INFSYS RR 1843-04-02 13

Intuitively, the reward to agent a is 1000 (resp., − 1000), if a (resp., o) scores a goal, and the reward to

agent a depends on the position of the ball-owner after executing c in s, otherwise. Here, the predicates

goal(α, s) and evalPos(c, r, s) are defined as follows:

goal(α, s)
def
= ∃x, y (haveBall(α, s) ∧ at(α, x, y, s) ∧ goalPos(α, x, y))

evalPos(c, r, s)
def
= ∃α, x, y (haveBall(α, do(c, s)) ∧ at(α, x, y, do(c, s)) ∧

(α = a ∧ r = 6− x ∨ α = o ∧ r = −x)) ,

where goalPos(α, x, y) is true iff (x, y) are the goal coordinates of the adversary of α, and the predicate

evalPos(c, r, s) describes the reward r to agent a depending on the ball-owner and the position of the ball-

owner after executing c in s. Informally, the reward to agent a is high (resp., low) if a is the ball-owner

and close to (resp., far from) the adversary goal, and the reward to agent a is high (resp., low) if o is the

ball-owner and far from (resp., close to) the adversary goal.

3.2 Syntax of GTGolog

In the sequel, let DT be a domain theory. We define GTGolog by induction as follows. A program p in

GTGolog has one of the following forms (where α is a two-agent action or the empty action nop (which

is always executable and does not change the state of the world), φ is a condition, p, p1, p2, . . . , pn are

programs without procedure declarations, P1, . . . , Pn are procedure names, x, ~x1, . . . , ~xn are arguments,

and a1, . . . , an and o1, . . . , om are single-agent actions of agents a and o , respectively, and τ = {τ1, τ2, . . . ,
τn} is a finite nonempty set of ground terms):

(1) Deterministic or stochastic two-agent action: α.

(2) Nondeterministic action choice of agent a : choice(a : a1| · · · |an).

(3) Nondeterministic action choice of agent o: choice(o : o1| · · · |om).

(4) Nondeterministic joint action choice: choice(a : a1| · · · | an) ‖ choice(o : o1| · · · |om).

(5) Test action: φ?.

(6) Sequence: [p1; p2].

(7) Nondeterministic choice of two programs: (p1 | p2).

(8) Nondeterministic choice of program argument: π[x : τ](p(x)).

(9) Nondeterministic iteration: p⋆.

(10) Conditional: if φ then p1 else p2.

(11) While-loop: while φ do p.

(12) Procedures: proc P1(~x1) p1 end ; . . .; proc Pn(~xn) pn end ; p.

Hence, compared to Golog, we now also have two-agent actions (instead of only primitive or concurrent

actions) and stochastic actions (instead of only deterministic actions). Furthermore, we now additionally

have three different kinds of nondeterministic action choices for the two agents in (2)–(4), where one ore

both of the two agents can choose among a finite set of single-agent actions. Informally, (2) (resp., (3))

stands for “do an optimal action for agent a (resp., o) among a1, . . . , an (resp., o1, . . . , om)”, while (4)

stands for “do any action ai ∪ oj , where i∈{1, . . . , n} and j ∈{1, . . . , m}, with an optimal probability

πi,j”. The formal semantics of (2)–(4) is defined in such a way that an optimal action is chosen for each of

14 INFSYS RR 1843-04-02

the two agents (see Section 4.1). As usual, the sequence operator “;” is associative (for example, [[p1; p2]; p3]
and [p1; [p2; p3]] have the same semantics), and we often use “p1; p2”, “if φ then p1”, and “πx (p(x))” to

abbreviate “[p1; p2]”, “if φ then p1 else nop”, and π[x : τ](p(x)), respectively, when there is no danger of

confusion.

Example 3.2 (Rugby Domain cont’d) A complete rugby session can be encoded through the following

GTGolog procedure relative to the domain theory DT of Example 3.1:

proc game()
while ¬goal(a)∧¬goal(o) do

choice(a : move(a , N) |move(a , S) |move(a , E) |move(a , W) |move(a , stand)) ‖
choice(o : move(o, N) |move(o, S) |move(o, E) |move(o, W) |move(o, stand))

end.

Informally, while no goal is reached, the agents a and o simultaneously perform one move each.

The above GTGolog procedure game represents a generic rugby session. In addition to this, some

more specialized rugby playing behavior can also be formulated in GTGolog. For example, agent a could

discriminate different situations Φi, i∈{1, . . . , l}, where the rugby session can be simplified (that is, the

possible moves of the two agents a and o can be restricted):

proc game ′()
while ¬goal(a)∧¬goal(o) do

if Φ1 then schema1

else if Φ2 then schema2

else game

end.

For example, consider an attacking ball owner a , which is closer to the adversary’s goal than the adversary

(that is, Φ1(s)= ∃x, y, x′, y′ (at(a , x, y, s)∧ at(o, x′, y′, s)∧ x′ > x)). In such a situation, since the adver-

sary o is behind, a good way of acting of agent a is to move quickly towards o’s goal. This can be encoded

as a GTGolog procedure schema1:

proc schema1()
if ¬goal(a) then move(a , W)
end.

As another example, consider a situation s in which Φ2(s)= haveBall(a , s)∧∃x, x′, y (at(a , x, y, s)∧
at(o, x′, y, s) ∧ x′ = x− 1) is true, that is, agent a has the ball and is facing the opponent o who is closer

to its goal. In this case, a good way of acting of agent a is to try a dribbling maneuver in k steps. This can

be encoded by the GTGolog procedure proc schema2 πk (dribbling(k)) end, where dribbling(k) is given

as follows:

proc dribbling(k)
if k > 0 then [

choice(a : move(a , S) |move(a , W)) ‖
choice(o : move(o, S) |move(o, stand));

dribbling(k−1)]

end.

Hence, game ′ specializes game during the run of schema2 by restricting the meaningful possible moves

for both the agent a and its adversary o during the dribbling phase.

INFSYS RR 1843-04-02 15

3.3 Policies and Nash Equilibria of GTGolog

We now define the formal semantics of GTGolog programs p relative to a domain theory DT in terms of

a set of Nash equilibria of p, which are optimal finite-horizon policies of p. We first associate with every

GTGolog program p, situation s, and horizon H > 0, a set of H-step policies π along with their expected

H-step utilities Ua and Uo to agents a and o , respectively. We then define the notion of an H-step Nash

equilibrium to characterize a subset of optimal such policies, which is the natural semantics of a GTGolog

program relative to a domain theory.

Intuitively, given a horizon H > 0, an H-step policy π of a GTGolog program p in a situation s relative

to a domain theory DT is obtained from the H-horizon part of p by replacing every single-agent choice by a

single action, and every multi-agent choice by a collection of probability distributions, one over the actions

of each agent. Every such H-step policy π is associated with an expected H-step reward to a (resp., o), an

H-step success probability (which is the probability that π is executable in s), and an expected H-step utility

to a (resp., o) (which is computed from the expected H-step reward and the H-step success probability

using the utility function).

Formally, the nil -terminated variant of a GTGolog program p, denoted p̂, is inductively defined by

p̂ = [p1; p̂2], if p = [p1; p2], and p̂ = [p;nil], otherwise. Given a GTGolog program p relative to a domain

theory DT , a horizon H > 0, and a start situation s, we say that π is an H-step policy of p in s rel-

ative to DT with expected H-step reward v (resp., −v), H-step success probability pr , and expected

H-step utility Ua(H, s, π)= utility(v, pr) (resp., Uo(H, s, π)=−utility(v, pr)) to agent a (resp., o) iff

DT |=G(p̂, s, H, π, v, pr), where the macro G(p̂, s, h, π, v, pr), for every number of steps to go h∈{0, . . . ,
H}, is defined by induction on the structure of p̂ as follows (intuitively, p̂, s, and h are the input values of

G, while π, v, and pr are the output values of G):

• Null program or zero horizon:

If p̂=nil or h= 0, then:

G(p̂, s, h, π, v, pr)
def
= π =nil ∧ v = 0 ∧ pr = 1 .

Informally, p has only the policy π =nil along with the expected reward v = 0 and the success prob-

ability pr =1.

• Deterministic first program action:

If p̂= [c ; p′], where c is a deterministic action, and h> 0, then:

G([c ; p′], s, h, π, v, pr)
def
=

(¬Poss(c, s) ∧ π = stop ∧ v = 0 ∧ pr = 0) ∨
(Poss(c, s) ∧ ∃π′, v′, pr ′ (G(p′, do(c, s), h−1, π′, v′, pr ′) ∧

π = c ;π′ ∧ v = v′+reward(c, s) ∧ pr = pr ′)) .

Informally, if c is not executable in s, then p has only the policy π = stop along with the expected re-

ward v = 0 and the success probability pr =0. Here, stop is a zero-cost action, which takes the agents

to an absorbing state, where they stop the execution of the policy and wait for further instructions.

Otherwise, every policy of p is of the form π = c ;π′ with the expected reward v = v′+reward(c, s)
and the success probability pr = pr ′, where π′ is a policy for the execution of p′ in do(c, s) with the

expected reward v′ and the success probability pr ′.

16 INFSYS RR 1843-04-02

• Stochastic first program action (choice of nature):

If p̂ = [c ; p′], where c is a stochastic action, and h> 0, then:

G([c ; p′], s, h, π, v, pr)
def
=

∃l, n1, . . . , nl, π1, . . . , πl, v1, . . . , vl, pr1, . . . , pr l (
∧l

i=1 G([ni ; p
′],

s, h, ni ; πi, vi, pr i) ∧ {n1, . . . , nl}= {n | ∃p (stochastic(c, s, n, p))} ∧
π = c ; if condStAct(c, s, n1) then π1 else if condStAct(c, s, n1) then π2

. . . else if condStAct(c, s, nl) then πl ∧

v =
∑l

i=1 vi · prob(c, s, ni) ∧ pr =
∑l

i=1 pr i · prob(c, s, ni)) .

Informally, every policy of p consists of c and a conditional plan expressed as a cascade of if-then-else

statements, considering each possible choice of nature, associated with the expected reward and the

expected success probability. The ni’s are the choices of nature of c in s, and the condStAct(c, s, n1)’s
are their conditions from the observability axioms. Note that the agents perform an implicit sensing

operation when evaluating these conditions.

• Nondeterministic first program action (choice of agent a):

If p̂ = [choice(a : a1| · · · |am) ; p′] and h> 0, then:

G([choice(a : a1| · · · |am) ; p′], s, h, π, v, pr)
def
=

∃π1, . . . , πm, v1, . . . , vm, pr1, . . . , prm, k (
∧m

i=1 G([ai ; p
′], s, h, ai ;πi, vi, pr i) ∧

k∈{1, . . . , m} ∧ π = ak ; if condNonAct(a1| · · · |am, a1) then π1

else if condNonAct(a1| · · · |am, a2) then π2

. . . else if condNonAct(a1| · · · |am, am) then πm ∧
v = vk ∧ pr = prk) .

Informally, every policy π of p consists of any action ak and one policy πi of p′ for every possible

action ai. The expected reward and the success probability of π are given by the expected reward vk

and the success probability prk of πk. For agent o to observe which action among a1, . . . , am was

actually executed by agent a , we use a cascade of if-then-else statements with conditions of the form

condNonAct(a1| · · · |am, ai) (being true when ai was actually executed), which are tacitly assumed to

be defined in the domain theory DT . Note that the conditions condNonAct(a1| · · · |am, ai) here are

to observe which action ai was actually executed by agent a , while the conditions condStAct(c, s, ni)
above are to observe which action ni was actually executed by nature after a stochastic action c in s.

In the sequel, we also use condNonAct(ai) to abbreviate condNonAct(a1| · · · |am, ai).

• Nondeterministic first program action (choice of agent o):

If p̂ = [choice(o : o1| · · · |on) ; p′] and h> 0, then:

G([choice(o : o1| · · · |on) ; p′], s, h, π, v, pr)
def
=

∃π1, . . . , πn, v1, . . . , vn, pr1, . . . , prn, k (
∧n

j=1 G([oj ; p′], s, h, oj ; πj , vj , pr j) ∧

k∈{1, . . . , n} ∧ π = ok ; if condNonAct(o1| · · · |on, o1) then π1

else if condNonAct(o1| · · · |on, o2) then π2

. . . else if condNonAct(o1| · · · |on, on) then πn ∧
v = vk ∧ pr = prk) .

This is similar to the case of nondeterministic first program action with choice of agent a .

INFSYS RR 1843-04-02 17

• Nondeterministic first program action (joint choice of both a and o):

If p̂= [choice(a : a1| · · · |am) ‖ choice(o : o1| · · · |on) ; p′] and h> 0, then:

G([choice(a : a1| · · · |am) ‖ choice(o : o1| · · · |on) ; p′], s, h, π, v, pr)
def
=

∃π1,1, . . . , πm,n, v1,1, . . . , vm,n, pr1,1, . . . , prm,n, πa , πo (
∧m

i=1

∧n
j=1 G([ai ∪ oj ; p′],

s, h, ai ∪ oj ;πi,j , vi,j , pr i,j) ∧ πa ∈PD({a1, . . . , am}) ∧ πo ∈PD({o1, . . . , on})∧

π = πa ·πo ; if condNonAct(a1| · · · |am, a1)∧condNonAct(o1| · · · |on, o1) then π1,1

else if condNonAct(a1| · · · |am, a2)∧condNonAct(o1| · · · |on, o1) then π2,1

. . . else if condNonAct(a1| · · · |am, am)∧condNonAct(o1| · · · |on, on) then πm,n ∧
v =

∑m
i=1

∑n
j=1 vi,j ·πa(ai) ·πo(oj) ∧ pr =

∑m
i=1

∑n
j=1 pr i,j ·πa(ai) ·πo(oj)) ,

where PD({a1, . . . , am}) (resp., PD({o1, . . . , on})) denotes the set of all probability distributions

over {a1, . . . , am} (resp., {o1, . . . , on}), and πa ·πo denotes the probability distribution over {ai ∪
oj | i∈{1, . . . , m}, j ∈{1, . . . , n}} that is defined by (πa · πo)(ai ∪ oj) = πa(ai) · πo(oj) for all

i∈{1, . . . , m} and j ∈{1, . . . , n} (recall that the ai’s (resp., oj’s) are single-agent actions of agent a

(resp., o), and thus concurrent actions over A (resp., O)).

Informally, every policy π of p consists of a probability distribution πa over a1, . . . , am, a probabil-

ity distribution πo over o1, . . . , on, and one policy πi,j of p′ for every possible joint action ai ∪ oj .

The expected reward and the success probability of π are given by the expected reward and the ex-

pected success probability of the policies πi,j . Here, πa specifies the probabilities with which agent a

should execute the actions a1, . . . , am, while πo specifies the probabilities with which agent o should

execute the actions o1, . . . , on. Hence, assuming the usual probabilistic independence between the

distributions πa and πo in stochastic games, every possible joint action ai ∪ oj is executed with the

probability (πa · πo)(ai ∪ oj).

For agents a and o to observe which actions among o1, . . . , on and a1, . . . , am were actually executed

by the opponent, we use a cascade of if-then-else statements involving the conditions condNonAct(a1|
· · · |am, ai) and condNonAct(o1| · · · |on, oj), respectively.

• Test action:

If p̂= [φ? ; p′] and h> 0, then:

G([φ? ; p′], s, h, π, v, pr)
def
=

(¬φ[s] ∧ π = stop ∧ v = 0 ∧ pr = 0) ∨ (φ[s] ∧G(p′, s, h, π, v, pr)) .

Informally, if φ does not hold in s, then p has only the policy π = stop along with the expected reward

v = 0 and the success probability pr = 0. Otherwise, π is a policy of p iff it is a policy of p′ with the

same expected reward and success probability.

• Nondeterministic choice of two programs:

If p̂= [(p1 | p2); p
′] and h> 0, then:

G([(p1 | p2); p
′], s, h, π, v, pr)

def
=

∃π1, π2, v1, v2, pr1, pr2, k (
∧

j∈{1,2} G([pj ; p
′], s, h, πj , vj , pr j) ∧

k∈{1, 2} ∧ π = πk ∧ v = vk ∧ pr = prk) .

Informally, π is a policy of p iff π is a policy of either [p1 ; p′] or [p2 ; p′] with the same expected

reward and success probability.

18 INFSYS RR 1843-04-02

• Conditional:

If p̂ = [if φ then p1 else p2; p
′] and h> 0, then:

G([if φ then p1 else p2; p
′], s, h, π, v, pr)

def
= G([([φ?; p1] | [¬φ?; p2]); p

′], s, h, π, v, pr) .

This case is reduced to the cases of test action and nondeterministic choice of two programs.

• While-loop:

If p̂ = [while φ do p; p′] and h> 0, then:

G([while φ do p; p′], s, h, π, v, pr)
def
= G([[φ?; p]⋆;¬φ?], s, h, π, v, pr) .

This case is reduced to the cases of test action and nondeterministic iteration.

• Nondeterministic choice of program argument:

If p̂ = [π[x : τ](p(x)); p′], where τ = {τ1, τ2, . . . , τn}, and h> 0, then:

G([π[x : τ](p(x)); p′], s, h, π, v, pr)
def
= G([(· · · (p(τ1)|p(τ2))| · · · |p(τn)); p′], s, h, π, v, pr) .

This case is reduced to the case of nondeterministic choice of two programs.

• Nondeterministic iteration:

If p̂ = [p⋆; p′] and h> 0, then:

G([p⋆; p′], s, h, π, v, pr)
def
= G([[proc nit (nop | [p ;nit]) end;nit]; p′], s, h, π, v, pr) .

This case is reduced to the cases of procedures and nondeterministic choice of two programs.

• Procedures: We consider the cases of (1) handling procedure declarations and (2) handling procedure

calls. To this end, we slightly extend the first argument of G by a store for procedure declarations,

which can be safely ignored in all the above constructs of GTGolog.

(1) If p̂ = [proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p]〈〉 and h> 0, then:

G([proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p]〈〉, s, h, π, v, pr)
def
=

G([p]〈proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end〉, s, h, π, v, pr) .

Informally, we store the procedure declarations at the end of the first argument of G.

(2) If p̂ = [Pi(~xi); p
′]〈d〉 and h> 0, then:

G([Pi(~xi); p
′]〈d〉, s, h, π, v, pr)

def
= G([pd(Pi(~xi)); p

′]〈d〉, s, h, π, v, pr) .

Informally, we replace a procedure call Pi(~xi) by its code pd(Pi(~xi)) from d.

We are now ready to define the notion of an H-step Nash equilibrium as follows. An H-step policy π
of a GTGolog program p in a situation s relative to a domain theory DT is an H-step Nash equilibrium of p
in s relative to DT iff (i) Ua(H, s, π′) 6 Ua(H, s, π) for all H-step policies π′ of p in s relative to DT

obtained from π by modifying only actions of agent a , and (ii) Uo(H, s, π′) 6 Uo(H, s, π) for all H-step

policies π′ of p in s relative to DT obtained from π by modifying only actions of agent o .

INFSYS RR 1843-04-02 19

a

o’s a’s

G
O
A
L

G
O
A
L

o

Figure 2: Rugby Domain.

Example 3.3 (Rugby Domain cont’d) Consider again the GTGolog procedure game of Example 3.2 rel-

ative to the domain theory of Example 3.1. Let the initial situation of AT be as in Fig. 1, where agent a

is at (3, 2), agent o is at (2, 3), and agent a is the ball owner in situation S0, which is expressed by the

formula at(a , 3, 2, S0) ∧ at(o, 2, 3, S0) ∧ haveBall(a , S0). Assuming the horizon H = 3, a 3-step policy

of game along with its expected 3-step utility to agent a in situation S0 is then given by π and utility(v, pr)
such that DT |=G([game;nil], S0, 3, π, v, pr), respectively. It is not difficult to verify that there exists a

pure 3-step Nash equilibrium π of game in S0 that leads agent a to score a goal after executing three times

move(a , W). Suppose next that (2, 3) and (1, 3) are the initial positions of a and o , respectively (see

Fig. 2). Then, there exist only mixed 3-step Nash equilibria of game in S0, since any pure way of acting

of a can be blocked by o . Furthermore, assuming the same initial situation and a program composed of

a 2-step dribbling(2) (see Example 3.2) followed by the action move(a , W), an associated 3-step policy

along with its expected 3-step utility to agent a in situation S0 is given by π and utility(v, pr) such that

DT |=G([dribbling(2);move(a , W);nil], S0, 3, π, v, pr), respectively. One resulting π is the fully instan-

tiated policy for both agents a and o of utilities 507.2652 and −507.2652 that can be divided into the

following two single-agent policies for agents a and o , respectively (which is in fact the optimal policy

computed by the GTGolog interpreter in Section 4.1; see Appendix C):

πa = [(move(a , S), 0.5042), (move(a , W), 0.4958)];
if condNonAct(move(a , W)) then move(a , S)

else if condNonAct(move(o, S)) then [(move(a , S), 0.9941), (move(a , W), 0.0059)]
else move(a , W);

move(a , W);

πo = [(move(o, S), 0.5037), (move(o, stand), 0.4963)];
if condNonAct(move(a , S)) ∧ condNonAct(move(o, S))

then [(move(o, S), 0.0109), (move(o, stand), 0.9891)]
else move(o, S);

nop.

4 A GTGolog Interpreter

In this section, we first describe a GTGolog interpreter. We then provide optimality and representation re-

sults, and we finally describe an implementation in constraint logic programming.

20 INFSYS RR 1843-04-02

4.1 Formal Specification

We now define an interpreter for GTGolog programs p relative to a domain theory DT . We do this by

defining the macro DoG(p̂, s, H, π, v, pr), which takes as input the nil -terminated variant p̂ of a GTGolog

program p, a situation s, and a finite horizon H > 0, and which computes as output an H-step policy π for

both agents a and o in s (one among all H-step Nash equilibria of p in s; see Theorem 4.1), the expected

H-step reward v (resp., −v) of π to agent a (resp., o) in s, and the success probability pr of π in s. Thus,

utility(v, pr) (resp., −utility(v, pr)) is the expected H-step utility of π to agent a (resp., o) in s. Note that

if the program p fails to terminate before the horizon end is reached, then it is stopped, and the best partial

policy is returned. Intuitively, in the agent programming use of GTGolog, our aim is to control agent a ,

which is given the H-step policy π that is specified by the macro DoG for p in s, and which then executes

its part of π, whereas in the game specifying use of GTGolog, we have an objective view on both agents,

and thus we are interested in the H-step policy π that is specified by the macro DoG for p in s as a whole.

We define the macro DoG(p̂, s, h, π, v, pr), for every nil -terminated variant p̂ of a GTGolog program

p, situation s, and number of steps to go h∈{0, . . . , H}, by induction as follows:

• The macro DoG(p̂, s, h, π, v, pr) is defined in the same way as the macro G(p̂, s, h, π, v, pr) for the

cases null program and zero horizon, deterministic first program action, stochastic first program action

(nature choice), test action, nondeterministic choice of action arguments, nondeterministic iteration,

conditional, while-loop, and procedures.

• Nondeterministic first program action (choice of agent a): The definition of DoG is obtained from the

one of G by replacing “k∈{1, . . . , m}” by “k = argmaxi∈{1,...,m} utility(vi, pr i).” Informally, given

several possible actions a1, . . . , am for agent a , the interpreter selects an optimal one for agent a ,

that is, an action ai with greatest expected utility utility(vi, pr i).

• Nondeterministic first program action (choice of agent o): The definition of DoG is obtained from the

one of G by replacing “k∈{1, . . . , n}” by “k = argminj∈{1,...,n} utility(vj , pr j).” Informally, agent

a assumes a rational behavior of agent o , which is connected to minimizing the expected utility of

agent a (since we consider a zero-sum setting). Hence, the interpreter selects an action oj among

o1, . . . , on with smallest expected utility utility(vj , pr j).

• Nondeterministic first program action (joint choice of both a and o): The definition of DoG is

obtained from the one of G by replacing “πa ∈PD({a1, . . . , am})∧πo ∈PD({o1, . . . , on})” by

“(πa , πo)= selectNash({ri,j = utility(vi,j , pr i,j) | i∈{1, . . . , m}, j ∈{1, . . . , n}}).” Informally, for

every possible joint action choice ai ∪ oj , we compute an optimal policy πi,j along with its expected

reward vi,j and success probability pr i,j . We then select a Nash pair (πa , πo) from all mixed strategies

of the matrix game consisting of all ri,j = utility(vi,j , pr i,j) with i∈{1, . . . , m} and j ∈{1, . . . , n}
by using the Nash selection function selectNash.

• Nondeterministic choice of two programs: The definition of DoG is obtained from the one of G by re-

placing “k∈{1, 2}” by “k = argmaxi∈{1,2} utility(vi, pr i).” Informally, given two possible program

choices p1 and p2, the interpreter selects an optimal one for agent a , that is, a program pi with greatest

expected utility utility(vi, pr i).

INFSYS RR 1843-04-02 21

4.2 Optimality, Faithfulness, and Complexity Results

The following theorem shows that the macro DoG is optimal in the sense that, for every horizon H > 0,

among the set of all H-step policies π of a GTGolog program p relative to a domain theory DT in a

situation s, it computes an H-step Nash equilibrium and its expected H-step utility. The main idea behind

its proof is that DoG generalizes the computation of an H-step Nash equilibrium by finite-horizon value

iteration for stochastic games (Kearns et al., 2000).

Theorem 4.1 Let DT = (AT ,ST ,OT) be a domain theory, and let p be a GTGolog program relative to

DT . Let s be a situation, let H > 0 be a horizon, and let DT |=DoG(p̂, s, H, π, v, pr). Then, π is an

H-step Nash equilibrium of p in s, and utility(v, pr) is its expected H-step utility.

In general, for every horizon H > 0, there may be exponentially many Nash equilibria among the H-step

policies of a GTGolog program p. When controlling the agent a by providing it with a Nash equilibrium

of p, we assume that the agent o follows a Nash equilibrium. However, we do not know which one the

agent o actually uses. The next theorem shows that this is not necessary, as long as the agent o computes

its Nash equilibrium in the same way as we do for the agent a . That is, different Nash equilibria computed

by DoG can be freely “mixed”. This result follows from a similar result for matrix games (von Neumann &

Morgenstern, 1947) and Theorem 4.1.

Theorem 4.2 Let DT be a domain theory, and let p be a GTGolog program relative to DT . Let s be a

situation, and let H > 0 be a horizon. Let π and π′ be H-step policies of p in s computed by DoG using

different Nash selection functions. Then, π and π′ have the same expected H-step utility, and the H-step

policy of p in s obtained by mixing π and π′ is also an H-step Nash equilibrium.

The following theorem shows that GTGolog programs faithfully extend stochastic games. That is, GT-

Golog programs can represent stochastic games, and in the special case where they syntactically model

stochastic games, they are also semantically interpreted as stochastic games. Thus, GTGolog programs have

a nice semantic behavior in such special cases. More concretely, the theorem says that, given any horizon

H > 0, every zero-sum two-player stochastic game can be encoded as a program p in GTGolog, such that

DoG computes one of its H-step Nash equilibria and its expected H-step reward. Here, we slightly extend

basic action theories in the situation calculus by introducing one situation constant Sz for every state z of

the stochastic game (see the proof of Theorem 4.3 for technical details). The theorem is proved by induction

on the horizon H > 0, using finite-horizon value iteration for stochastic games (Kearns et al., 2000).

Theorem 4.3 Let G = (I, Z, (Ai)i∈I , P, R) with I = {a ,o} be a zero-sum two-player stochastic game,

and let H > 0 be a horizon. Then, there exists a domain theory DT = (AT ,ST ,OT), a set of situation

constants {Sz | z ∈Z}, and a set of GTGolog programs {ph |h∈{0, . . . , H}} relative to DT such that

δ =(δa , δo) is an H-step Nash equilibrium of G, where every (δa(z, h), δo(z, h)) = (πa , πo) is given by

DT |=DoG(p̂h, Sz, h+1, πa‖πo ; π′, v, pr) for every state z ∈Z and every h∈{0, . . . , H}. Furthermore,

the expected H-step reward G(H, z, δ) is given by utility(v, pr), where DT |=DoG(p̂H , Sz, H+1, π, v, pr),
for every state z ∈Z.

The following theorem shows that using DoG for computing the H-step Nash equilibrium of a GTGolog

program p relative to a domain theory DT in a situation s along with its expected H-step utility generates

O(n4H) leaves in the evaluation tree, where H > 0 is the horizon, and n is the maximum among (a) 2, (b)

the maximum number of actions of an agent in nondeterministic (single or joint) action choices in p, (c)

22 INFSYS RR 1843-04-02

the maximum number of choices of nature after stochastic actions in p, and (d) the maximum number of

arguments in nondeterministic choices of an argument in p. Hence, in the special case where the horizon

H is bounded by a constant (which is a quite reasonable assumption in many applications in practice), this

number of generated leaves is polynomial. Since in zero-sum matrix games, one Nash equilibrium along

with its reward to the agents can be computed in polynomial time by linear programming (see Section 2.3),

it thus follows that in the special case where (i) the horizon H is bounded by a constant, and (ii) evaluating

the predicates Poss(c, s), reward(c, s), etc. relative to DT can be done in polynomial time, the H-step

Nash equilibrium of p in s and its expected H-step utility can also be computed in polynomial time.

Theorem 4.4 Let DT be a domain theory, and let p be a GTGolog program relative to DT . Let s be a

situation, and let H > 0 be a horizon. Then, computing the H-step policy π of p in s and its expected

H-step utility utility(v, pr) via DoG generates O(n4H) leaves in the evaluation tree.

4.3 Implementation

We have implemented a simple GTGolog interpreter for two competing agents, where we use linear pro-

gramming to calculate the Nash equilibrium at each two-agent choice step. The interpreter is realized as a

constraint logic program in Eclipse 5.7 and uses the eplex library to define and solve the linear programs for

the Nash equilibria. Some excerpts of the interpreter code are given in Appendix B, and we illustrate how

the Rugby Domain is implemented in Prolog in Appendix C.

5 Example

In this section, we give another illustrative example for GTGolog programs. It is inspired by the stratagus

domain due to Marthi et al. (2005).

Example 5.1 (Stratagus Domain) The stratagus field consists of 9× 9 positions (see Fig. 3). There are

two agents, denoted a and o , which occupy one position each. The stratagus field has designated areas

representing two gold-mines, one forest, and one base for each agent (see Fig. 3). The two agents can move

one step in one of the directions N, S, E, and W, or remain stationary. Each of the two agents can also pick

up one unit of wood (resp., gold) at the forest (resp., gold-mines), and drop these resources at its base. Each

action of the two agents can fail, resulting in a stationary move. Any carried object drops when the two

agents collide. After each step, the agents a and o receive the (zero-sum) rewards ra − ro and ro − ra ,

respectively, where rk for k∈{a ,o} is 0, 1, and 2 when k brings nothing, one unit of wood, and one unit

of gold to its base, respectively.

The domain theory DT = (AT ,ST ,OT) for the above stratagus domain is defined as follows. As for

the basic action theory AT , we assume the deterministic actions move(α, m) (agent α performs m among

N , S, E, W , and stand), pickUp(α, o) (agent α picks up the object o), and drop(α, o) (agent α drops the

object o), as well as the relational fluents at(α, x, y, s) (agent α is at the position (x, y) in the situation s),

onFloor(o, x, y, s) (object o is at the position (x, y) in the situation s), and holds(α, o, s) (agent α holds the

INFSYS RR 1843-04-02 23

a

a’s base

wood

o
’s

b
aseo

gold

gold

Figure 3: Stratagus Domain.

object o in the situation s), which are defined through the following successor state axioms:

at(α, x, y, do(c, s)) ≡ at(α, x, y, s) ∧ ¬∃m (move(α, m)∈ c) ∨
∃x′, y′(at(α, x′, y′, s) ∧ ∃m (move(α, m)∈ c ∧ φ(x, y, x′, y′, m))) ;

onFloor(o, x, y, do(c, s)) ≡ onFloor(o, x, y, s) ∧ ¬∃α (pickUp(α, o)∈ c) ∨
∃α (holds(α, o, s) ∧ at(α, x, y, s) ∧ (drop(α, o)∈ c ∨ collision(c, s))) ;

holds(α, o, do(c, s)) ≡ holds(α, o, s)∧ drop(α, o) 6∈ c∧¬collision(c, s) ∨ pickUp(α, o)∈ c .

Here, φ(x, y, x′, y′, m) represents the coordinate change due to m, and collision(c, s) encodes that action c
causes a collision between the agents a and o in the situation s, that is,

collision(c, s)
def
= ∃α, β, x, y (α 6= β ∧ ∃x′, y′(at(α, x′, y′, s) ∧

∃m (move(α, m)∈ c ∧ φ(x, y, x′, y′, m))) ∧ ∃x′′, y′′(at(β, x′′, y′′, s) ∧
∃m (move(β, m)∈ c ∧ φ(x, y, x′′, y′′, m))) ∧ (x′ 6= x ∨ y′ 6= y) ∧ (x′′ 6= x ∨ y′′ 6= y)) .

The deterministic actions move(α, m), drop(α, o), and pickUp(α, o) are associated with precondition ax-

ioms as follows:

Poss(move(α, m), s) ≡ ¬∃x, y (at(α, x, y, s) ∧ ((y = 9 ∧m = N)∨
(y = 1 ∧m = S) ∨ (x = 9 ∧m = E) ∨ (x = 1 ∧m = W))) ;

Poss(drop(α, o), s) ≡ holds(α, o, s) ;
Poss(pickUp(α, o), s) ≡ ¬∃o′ holds(α, o′, s) ∧ ∃x, y (at(α, x, y, s) ∧ onFloor(o, x, y, s)) .

Here, the first axiom forbids α to go out of the 9× 9 game-field. Every two-agent action consists of at most

one standard action per agent, and we assume the following extra precondition axiom, which encodes that

two agents cannot pick up the same object at the same time:

Poss({pickUp(α, o1), pickUp(β, o2)}, s) ≡ ¬∃o
′ holds(α, o′, s) ∧ ¬∃o′′ holds(β, o′′, s) ∧

∃x, y, x′, y′(at(α, x, y, s) ∧ onFloor(o1, x, y, s) ∧ at(β, x′, y′, s) ∧
onFloor(o2, x

′, y′, s) ∧ (x 6= x′ ∨ y 6= y′ ∨ (α =β ∧ o1 = o2))) .

24 INFSYS RR 1843-04-02

As for the stochastic theory ST , we assume the stochastic actions moveS (α, m) (agent α executes m
among N , S, E, W , and stand), pickUpS (α, o) (agent α picks up the object o), dropS (α, o) (agent α
drops the object o), which may succeed or fail with certain probabilities, and which are associated with their

deterministic components as follows:

stochastic({moveS (α, m)}, s, {a}, p)
def
=

a = move(α, m) ∧ p = 1.0 ;

stochastic({pickUpS (α, o)}, s, {a}, p)
def
=

a = pickUp(α, o) ∧ p = 0.9 ∨ a = move(α, stand) ∧ p = 0.1 ;

stochastic({dropS (α, o)}, s, {a}, p)
def
=

a = drop(α, o) ∧ p = 0.9 ∨ a = move(α, stand) ∧ p = 0.1 .

Here, move(α, stand) encodes the action failure.

As for the optimization theory OT , we use again the product as the utility function utility and any

suitable Nash selection function selectNash for matrix games. Furthermore, we define the reward function

reward for agent a as follows:

reward(c, s)= r
def
=

∃ra , ro(rewardAct(a , c, s)= ra ∧ rewardAct(o, c, s)= ro ∧ r = ra − ro) .

Here, rewardAct(α, c, s) for α∈{a ,o} is defined as follows:

rewardAct(α, c, s)= r
def
= ∃o (drop(α, o) ∈ c ∧ ∃x, y (at(α, x, y, s) ∧

base(α, x, y) ∧ (¬holds(α, o, s) ∧ r = 0 ∨ holds(α, o, s) ∧ (gold(o) ∧ r = 20 ∨
wood(o) ∧ r =10)) ∨ ¬base(α, x, y) ∧ (¬holds(α, o, s) ∧ r =− 1 ∨
holds(α, o, s) ∧ (gold(o) ∧ r =− 4 ∨ wood(o) ∧ r =− 2)))) ∨

∃o (pickUp(α, o) ∈ c ∧ (holds(α, o, s) ∧ r =− 1 ∨ ¬holds(α, o, s) ∧ r = 3)) ∨
move(α, m) ∈ c ∧ (¬collision(c, s) ∧ r =− 1 ∨ collision(c, s) ∧ (¬∃o holds(α, o, s) ∧

r =− 1 ∨ ∃o (holds(α, o, s) ∧ (gold(o) ∧ r =− 4 ∨ wood(o) ∧ r =− 2)))) .

Consider now the situation shown in Fig. 3. Agent a holds one unit of wood and is going towards its

base, while agent o is close to the gold-mine at the corner of the two bases. How should the agents now act

in such a situation? There are several aspects that the agents have to consider. On the one hand, agent a

should try to move towards the base as soon as possible. On the other hand, however, agent a should also

avoid to collide with agent o and lose the possession of the carried object. Hence, agent o may try to reach

a collision, but agent o is also interested in picking up one unit of gold as soon as possible and then move

towards its base. This decision problem for the two agents a and o is quite complex. But, assuming the

finite horizon H = 5, a partially specified way of acting for both agents is defined by the following GTGolog

program:

proc schema(n)
if n > 0 then [

if facing(a ,o) then surpass(1)
else dropToBase(a ,o);

schema(n−1)]
end,

INFSYS RR 1843-04-02 25

where surpass and dropToBase are defined as follows:

proc surpass(k)
if k > 0 then [

choice(a : move(a , E) |move(a , S) |move(a , W)) ‖
choice(o : move(o, E) |move(o, W) |move(o, stand));

surpass(k−1)]
end;

proc dropToBase(a ,o)
if atBase(a) ∧ atBase(o) then πo1 (πo2 ({drop(a , o1), drop(o, o2)}))

else if atBase(a) ∧ ¬atBase(o) then πo1 ({drop(a , o1)})
else if ¬atBase(a) ∧ atBase(o) then πo2 ({drop(o, o2)})

else getObject(a ,o)
end.

Here, getObject makes the agents decide whether to move or pick up, depending on the context:

proc getObject(a ,o)
if condPickUp(a) ∧ condPickUp(o) then

πo1 (πo2 ({pickUp(a , o1), pickUp(o, o2)}))
else if condPickUp(a) ∧ ¬condPickUp(o) then

πo1 ({pickUp(a , o1),move(o, E)})
else if ¬condPickUp(a) ∧ condPickUp(o) then

πo2 ({move(a , S), pickUp(o, o2)})
else if ¬condPickUp(a) ∧ ¬condPickUp(o) then

{move(a , S),move(o, E)}
end,

where condPickUp(x)
def
= ¬∃o (holds(x, o)) ∧ atObject(x) ∧ ¬atBase(x). Hence, we select a set of pos-

sible action choices for the two agents, and leave the charge of determining a fully instantiated policy

to the GTGolog interpreter. For example, an optimal 5-step policy π that the GTGolog interpreter asso-

ciates with schema(5), along with its expected utility utility(v, pr) to agent a in situation S0, is given by

DT |=DoG([schema(5);nil], S0, 5, π, v, pr). One such optimal policy π (of utilities 6.256 and −6.256 to

agents a and o , respectively) can be divided into the following two single-agent policies for agents a and

o , respectively:

πa = [(move(a , E), 0.5128), (move(a , S), 0.4872)];
if condNonAct(move(a , E)) ∧ condNonAct(move(o, E)) then

[move(a , S); drop(a , p1);move(a , S);move(a , S)]
else if condNonAct(move(a , S)) ∧ condNonAct(move(o, E)) then

[move(a , S); drop(a , p1);move(a , S); nop]
else if condNonAct(move(a , E)) ∧ condNonAct(move(o, stand)) then

[move(a , S); pickUp(a , p1);move(a , S); drop(a , p1)]
else if condNonAct(move(a , S)) ∧ condNonAct(move(o, stand)) then

[move(a , S); drop(a , p1);move(a , S);move(a , S)];

26 INFSYS RR 1843-04-02

πo = [(move(o, E), 0.4872), (move(o, stand), 0.5128)];
if condNonAct(move(a , E)) ∧ condNonAct(move(o, E)) then

[move(o, E); drop(a , p1);move(a , S);move(a , S)]
else if condNonAct(move(a , S)) ∧ condNonAct(move(o, E)) then

[pickUp(o, p2); nop;move(o, E); drop(o, p2)]
else if condNonAct(move(a , E)) ∧ condNonAct(move(o, stand)) then

[move(o, E); pickUp(o, p2);move(o, E); drop(o, p2)]
else if condNonAct(move(a , S)) ∧ condNonAct(move(o, stand)) then

[move(o, E); nop; pickUp(o, p2);move(o, E)].

6 GTGolog with Teams

In this section, we extend the presented GTGolog for two competing agents to the case of two compet-

ing teams of agents, where every team consists of a set of cooperative agents. Here, all members of the

same team have the same reward, while any two members of different teams have zero-sum rewards. For-

mally, we assume two competing teams a = {a1, . . . ,an} and o = {o1, . . . ,om} consisting of n > 1 agents

a1, . . . ,an and m> 1 agents o1, . . . ,om, respectively. The set of primitive actions is now partitioned into

the sets of primitive actions A1, . . . , An, O1, . . . , Om of agents a1, . . . ,an,o1, . . . ,om, respectively. A

single-agent action of agent a i (resp., oj) is any concurrent action over Ai (resp., Oj), for i∈{1, . . . , n}
and j ∈{1, . . . , m}. A single-team action of team a (resp., o) is any concurrent action over A1 ∪ · · · ∪An

(resp., O1 ∪ · · · ∪Om). A two-team action is any concurrent action over A1 ∪ · · · ∪An ∪O1 ∪ · · · ∪Om.

As for the syntax of GTGolog for two competing teams of agents, the nondeterministic action choices

(2)–(4) for two agents in Section 3.2 are now replaced by the following nondeterministic action choices

(2′)–(4′) for two teams of agents (where ai,1, . . . , ai,ki
and oj,1, . . . , oj,lj are single-agent actions of agents

a i and oj , for i∈{1, . . . , n} and j ∈{1, . . . , m}, respectively):

(2′) Nondeterministic action choice of team a :

choice(a1 : a1,1| · · · |a1,k1
) ‖ · · · ‖ choice(an : an,1| · · · |an,kn

) .

(3′) Nondeterministic action choice of team o:

choice(o1 : o1,1| · · · |o1,l1) ‖ · · · ‖ choice(om : om,1| · · · |om,lm) .

(4′) Nondeterministic joint action choice:

choice(a1 : a1,1| · · · |a1,k1
) ‖ · · · ‖ choice(an : an,1| · · · |an,kn

) ‖

choice(o1 : o1,1| · · · |o1,l1) ‖ · · · ‖ choice(om : om,1| · · · |om,lm) .

Informally, (2′) (resp., (3′)) now stands for “do an optimal action among ai,1, . . . , ai,ki
(resp., oj,1, . . . ,

oj,lj) for every member a i (resp., oj) of the team a (resp., o)”, while (4′) stands for “do any action a1,p1
∪

· · ·∪an,pn ∪ o1,q1
∪· · ·∪om,qm with an optimal probability”. Observe that the selection of exactly one action

per team member in (2′)–(4′) can be easily extended to the selection of at most one action per team member

by simply adding the empty action nop to the set of actions of each agent. Similarly, nondeterministic action

INFSYS RR 1843-04-02 27

a1

a2

o’s a’s

G
O
A
L

G
O
A
L

o1

o2

Figure 4: Rugby Domain: Two competing teams a = {a1,a2} and o = {o1,o2}.

choices of a subteam of a (resp., o) and nondeterministic joint action choices of subteams of a and o can

also be realized by using nop. The formal semantics of (2′)–(4′) can then be defined in such a way that an

optimal two-team action is chosen for each of the two teams. In particular, an H-step policy is obtained from

the H-step part of an extended GTGolog program by replacing (i) every nondeterministic action choice of

a team by one of its single-team actions and (ii) every nondeterministic joint action choice by a collection

of probability distributions over its single-agent actions, namely one probability distribution over the single-

agent actions of each agent. An optimal H-step policy of an extended GTGolog program is then chosen by

(i) maximizing (resp., minimizing) the expected H-step utility and (ii) selecting a Nash equilibrium. Here,

the members of every team are coordinated by assuming that (i) they select a common unique maximum

(resp., minimum), which is achieved by assuming a total order on the set of all single-team actions, and (ii)

they select a common unique Nash equilibrium, which is achieved by assuming that the members of every

team have the same Nash selection functions.

Example 6.1 (Rugby Domain cont’d) We assume a team of two agents a = {a1,a2} against a team of two

agents o = {o1,o2}, where a1 and o1 are the captains of a and o , respectively (see Fig. 4). An agent can

pass the ball to another agent of the same team, but this is possible only if the receiving agent is not closer

to the opposing end of the field than the ball; otherwise, an offside fault is called by the referee, and the ball

possession goes to the captain of the opposing team. Each agent can do one of the following actions on each

turn: N , S, E, W , stand , passTo(β), and receive (move up, move down, move right, move left, no move,

pass, and receive the ball, respectively).

We define the domain theory DT = (AT ,ST ,OT) as follows. Concerning the basic action theory AT ,

we assume the deterministic action move(α, m) (encoding that agent α executes m), where α∈a ∪o ,

m∈{N, S, E, W, stand , passTo(α′), receive}, and α′ is a team mate of α, and the fluents at(α, x, y, s)
(encoding that agent α is at position (x, y) in situation s) and haveBall(α, s) (encoding that agent α has the

ball in situation s). They are defined by the following successor state axioms, which are a slightly modified

version of the successor state axioms in Example 3.1:

at(α, x, y, do(c, s)) ≡ at(α, x, y, s) ∧ ¬∃m (move(α, m)∈ c) ∨
∃x′, y′, m (at(α, x′, y′, s) ∧move(α, m)∈ c ∧ φ(x, y, x′, y′, m)) ;

haveBall(α, do(c, s)) ≡ haveBall(α, s) ∧ ¬∃β (cngBall(β, c, s) ∨ rcvBall(β, c, s)) ∨
cngBall(α, c, s) ∨ rcvBall(α, c, s) .

Here, φ(x, y, x′, y′, m) is as in Example 3.1, cngBall(α, c, s) is true iff the ball possession changes to α after

an action c in s (in the cases of either an adversary block or an offside ball passage), and rcvBall(α, c, s) is

28 INFSYS RR 1843-04-02

true iff agent α (not in offside) receives the ball from the ball owner, that is,

cngBall(α, c, s)
def
= ∃x, y, β, x′, y′, m (at(α, x, y, s) ∧move(α, stand)∈ c ∧ β 6=α ∧

haveBall(β, s) ∧ at(β, x′, y′, s) ∧move(β, m)∈ c ∧ φ(x, y, x′, y′, m)) ∨
∃β, γ, x, y, x′, y′ (β 6= γ ∧ haveBall(γ, s) ∧move(γ, passTo(β))∈ c ∧ at(β, x, y, s) ∧
at(γ, x′, y′, s) ∧ (α =o1 ∧ β ∈a ∧ γ ∈a ∧ x <x′ ∨ α =a1 ∧ β ∈o ∧ γ ∈o ∧ x > x′)) ;

rcvBall(α, c, s)
def
= ∃β, x, y, x′, y′ (α 6= β ∧ haveBall(α′, s) ∧move(β, passTo(α))∈ c ∧

at(α, x, y, s) ∧ at(β, x′, y′, s) ∧ (α∈a ∧ β ∈a ∧ x ≥ x′ ∨ α∈o ∧ β ∈o ∧ x ≤ x′)) .

Furthermore, we assume similar precondition axioms as in Example 3.1.

As for the stochastic theory ST , we assume the stochastic action moveS (α, m), which represents agent

α’s attempt in doing m∈{N, S, E, W, stand , passTo(β), receive}. It can either succeed, and then the

deterministic action move(α, m) is executed, or it can fail, and then the deterministic action move(α, stand)
(that is, no change) is executed:

stochastic({moveS (α, m)}, s, {a}, p)
def
= m = stand ∧ a=move(α, stand) ∧ p = 1 ∨

m 6= stand ∧ (a=move(α, m) ∧ p = 0.9 ∨ a=move(α, stand) ∧ p = 0.1) ;

stochastic({moveS (α, m),moveS (α′, m′)}, s, {aα, aα′}, p)
def
=

∃p1, p2 (stochastic({moveS (α, m)}, s, {aα}, p1) ∧
stochastic({moveS (α′, m′)}, s, {aα′}, p2) ∧ p = p1 · p2) .

As for the optimization theory OT , two agents in the same team have common rewards, and two agents

in different teams have zero-sum rewards. The reward function for team a is defined by:

reward(c, s)= r
def
= ∃α (goal(α, do(c, s))∧ (α∈a ∧ r = 1000∨α∈o ∧ r =− 1000))∨

¬∃α (goal(α, do(c, s))) ∧ evalTeamPos(c, r, s) ,

where evalTeamPos(c, r, s) estimates the reward r associated with the team a in the situation s, considering

the ball possession and the positions of the agents in both teams.

The GTGolog procedure game (for two agents a and o) of Example 3.1 may now be generalized to the

following GTGolog procedure game ′′ (for two teams a = {a1,a2} and o = {o1,o2}):

proc game ′′()
while ¬goal(a1)∧¬goal(a2)∧¬goal(o1)∧¬goal(o2) do

choice(a1 : move(a1, N) |move(a1, S) |move(a1, E) |move(a1, W) |move(a1, stand)) ‖
choice(a2 : move(a2, N) |move(a2, S) |move(a2, E) |move(a2, W) |move(a2, stand)) ‖
choice(o1 : move(o1, N) |move(o1, S) |move(o1, E) |move(o1, W) |move(o1, stand)) ‖
choice(o2 : move(o2, N) |move(o2, S) |move(o2, E) |move(o2, W) |move(o2, stand))

end.

7 Related Work

In this section, we discuss closely related work on (i) high-level agent programming, (ii) first-order decision-

and game-theoretic models, and (iii) other decision- and game-theoretic models.

INFSYS RR 1843-04-02 29

7.1 High-Level Agent Programming

Among the most closely related works are perhaps other recent extensions of DTGolog (Dylla, Ferrein,

& Lakemeyer, 2003; Ferrein, Fritz, & Lakemeyer, 2005; Fritz & McIlraith, 2005). More precisely, Dylla

et al. (2003) present IPCGolog, which is a multi-agent Golog framework for team playing. IPCGolog

integrates different features like concurrency, exogenous actions, continuous change, and the possibility

to project into the future. This framework is demonstrated in the robotic soccer domain (Ferrein et al.,

2005). In this context, multi-agent coordination is achieved without communication by assuming that the

world models of the agents do not differ too much. Differently from GTGolog, however, no game-theoretic

mechanism is deployed. Fritz and McIlraith (2005) propose a framework for agent programming extending

DTGolog with qualitative preferences, which are compiled into a DTGolog program, integrating compet-

ing preferences through multi-program synchronization. Here, multi-program synchronization is used to

allow the execution of a DTGolog program along with a concurrent program that encodes the qualitative

preferences. Qualitative preferences are ranked over the quantitative ones. Differently from our work, high-

level programming is used only for a single agent and no game-theoretic technique is employed to make

decisions.

A further approach that is closely related to DTGolog is ALisp (Andre & Russell, 2002), which is a

partial programming language, which augments Lisp with a nondeterministic construct. Given a partial

program, a hierarchical reinforcement learning algorithm finds a policy that is consistent with the program.

Marthi et al. (2005) introduce the concurrent version of ALisp, a language for hierarchical reinforcement

learning in multi-effector problems. The language extends ALisp to allow multi-threaded partial programs.

In this framework, the high-level programming approach is deployed to support hierarchical reinforcement

learning, however, differently from GTGolog, no background (logic-based) theory is provided and reasoning

is not deployed.

7.2 First-Order Decision- and Game-Theoretic Models

Other related research deals with relational and first-order extensions of MDPs (Boutilier et al., 2001; Yoon

et al., 2002; Martin & Geffner, 2004; Gardiol & Kaelbling, 2003; Sanner & Boutilier, 2005), multi-agent

MDPs (Guestrin et al., 2003, 2001), and stochastic games (Finzi & Lukasiewicz, 2004b). In (Gardiol &

Kaelbling, 2003), the envelope method is used over structured dynamics. An initial trajectory (an enve-

lope of states) to the goal is provided, and then the policy is gradually refined by extending the envelope.

The approach aims at balancing between fully ground and purely logical representations, and between se-

quential plans and full MDP policies. In (Yoon et al., 2002) and (Martin & Geffner, 2004), policies are

learned through generalization from small problems represented in first-order MDPs. Boutilier et al. (2001)

find policies for first-order MDPs by computing the value-function of a first-order domain. The approach

provides a symbolic version of the value iteration algorithm producing logical expressions that stand for

sets of underlying states. A similar approach is used in our work on relational stochastic games (Finzi &

Lukasiewicz, 2004b), where a multi-agent policy is associated with the generated state formulas. In the

GTGolog approach, instead, the generated policy is produced as an instance of an incomplete program.

Another first-order decision- and game-theoretic formalism is Poole’s independent choice logic (ICL)

(1997, 2000), which is based on acyclic logic programs under different “choices”. Each choice along with

the acyclic logic program produces a first-order model. By placing a probability distribution over the dif-

ferent choices, one then obtains a distribution over the set of first-order models. Poole’s ICL can be used

for logically encoding games in extensive and normal form (Poole, 1997). Differently from our work, this

framework aims more at representing generalized strategies, while the problem of policy synthesis is not

30 INFSYS RR 1843-04-02

addressed. Furthermore, our view in this paper is more directed towards using game theory for optimal

agent control in multi-agent systems.

7.3 Other Decision- and Game-Theoretic Models

Less closely related are works on factored and structured representations of decision- and game-theoretic

problems. An excellent overview of factored and structured representations of decision-theoretic problems

is given in (Boutilier, Dean, & Hanks, 1999), focusing especially on abstraction, aggregation, and decompo-

sition techniques based on AI-style representations. Structured representations of games (Kearns, Littman,

& Singh, 2001; Koller & Milch, 2001; Vickrey & Koller, 2002; Blum, Shelton, & Koller, 2003) exploit a

notion of locality of interaction for compactly specifying games in normal and extensive form. They include

graphical games (Kearns et al., 2001; Vickrey & Koller, 2002) and multi-agent influence diagrams (Koller

& Milch, 2001). Graphical games compactly specify normal form games: Each player’s reward function

depends on a subset of players described in a graph structure. Here, an n-player normal form game is ex-

plicitly described by an undirected graph on n vertices, representing the n players, and a set of n matrices,

each representing a local subgame (involving only some of the players). Multi-agent influence diagrams

compactly specify extensive form games. They are an extension of influence diagrams to the multi-agent

case and are represented as directed acyclic graphs over chance, decision, and utility nodes. Hence, the main

focus of the above works is on compactly representing normal and extensive form games and on using these

compact representations for efficiently computing Nash equilibria. Our main focus in this paper, in contrast,

is on agent programming in environments with adversaries. Furthermore, from the perspective of specifying

games, differently from the above works, our framework here allows for specifying the game structure using

logic-based action descriptions and for encoding game runs using agent programs (which are procedurally

much richer than extensive form games).

Finally, another less closely related work deals with interactive POMDPs (I-POMDPs) (Gmytrasiewicz

& Doshi, 2005), which are essentially a multi-agent generalization of POMDPs, where agents maintain

beliefs over physical states of the environment and over models of other agents. Hence, I-POMDPs are very

different from the formalism of this paper, since they concern the partially observable case, they are not

based on logic-based action descriptions along with agent programs, and they also do not use the concept of

a Nash equilibrium to define optimality.

8 Conclusion

We have presented the agent programming language GTGolog, which is a combination of explicit agent

programming in Golog with game-theoretic multi-agent planning in stochastic games. It is a generalization

of DTGolog to multi-agent systems with two competing single agents or two competing teams of cooperative

agents, where any two agents in the same team have the same reward, and any two agents in different teams

have zero-sum rewards. In addition to being a language for programming agents in multi-agent systems,

GTGolog can also be considered as a new language for specifying games in game theory. GTGolog allows

for specifying a partial control program in a high-level logical language, which is then completed by an

interpreter in an optimal way. We have defined a formal semantics of GTGolog programs in terms of a

set of Nash equilibria, and we have then specified a GTGolog interpreter that computes one of these Nash

equilibria. We have shown that the interpreter has other nice features. In particular, we have proved that the

computed Nash equilibria can be freely mixed to form new Nash equilibria, and that GTGolog programs

faithfully extend (finite-horizon) stochastic games. Furthermore, we have also shown that under suitable

INFSYS RR 1843-04-02 31

assumptions, computing the specified Nash equilibrium can be done in polynomial time. Finally, we have

also described a first prototype implementation of a simple GTGolog interpreter.

In a companion work (Finzi & Lukasiewicz, 2005b, 2007a), we extend GTGolog to the cooperative par-

tially observable case. We present the agent programming language POGTGolog, which combines explicit

agent programming in Golog with game-theoretic multi-agent planning in partially observable stochastic

games (POSGs) (Hansen et al., 2004), and which allows for modeling one team of cooperative agents under

partial observability, where the agents may have different initial belief states and not necessarily the same

rewards. In a closely related paper (Farinelli, Finzi, & Lukasiewicz, 2007), we present the agent program-

ming language TEAMGOLOG for programming a team of cooperative agents under partial observability. It

is based on the key concepts of a synchronization state and a communication state, which allow the agents

to passively resp. actively coordinate their behavior, while keeping their belief states, observations, and ac-

tivities invisible to the other agents. In another companion work (Finzi & Lukasiewicz, 2006, 2007b) to

the current paper, we present an approach to adaptive multi-agent programming, which integrates GTGolog

with adaptive dynamic programming techniques. It extends GTGolog in such a way that the transition prob-

abilities and reward values of the domain need not be known in advance, and thus that the agents themselves

explore and adapt these data. Intuitively, it allows the agents to on-line instantiate a partially specified be-

havior playing against an adversary. Differently from the classical Golog approach, here the interpreter

generates not only complex sequences of actions (the policy), but also the state abstraction induced by the

program at the different executive stages (machine states).

An interesting topic for future research is to explore whether GTGolog (and thus also POGTGolog) can

be extended to the general partially observable case, where we have two competing agents under partial

observability or two competing teams of cooperative agents under partial observability. Another interesting

topic is to investigate whether POGTGolog and an eventual extension to the general partially observable case

can be combined with adaptive dynamic programming along the lines of the adaptive version of GTGolog

in (Finzi & Lukasiewicz, 2006, 2007b).

Appendix A: Proofs for Sections 4.2

Proof of Theorem 4.1. Let DT = (AT ,ST ,OT) be a domain theory, let p be a GTGolog program relative

to DT , let s be a situation, and let H > 0 be a horizon. Observe first that DT |=DoG(p̂, s, H, π, v, pr)
implies DT |=G(p̂, s, H, π, v, pr). Hence, if DT |=DoG(p̂, s, H, π, v, pr), then π is a H-step policy of

p in s, and utility(v, pr) is its expected H-step utility. Therefore, it only remains to prove the following

statement: (⋆) if DT |=DoG(p̂, s, H, π, v, pr), then π is an H-step Nash equilibrium of p in s. We give a

proof by induction on the structure of DoG .

Basis: The statement (⋆) trivially holds for the null program (p̂=nil) and zero horizon (H = 0) cases.

Indeed, in these cases, DoG generates only the policy π =nil .

Induction: For every program construct that involves no action choice of one of the two agents, the statement

(⋆) holds by the induction hypothesis. We now prove (⋆) for the remaining constructs:

(1) Nondeterministic action choice of agent a (resp., o): Let p̂= [choice(a : a1| · · · |am) ; p′], and let π
be the H-step policy associated with p̂ via DoG . By the induction hypothesis, for every i∈{1, . . . , m},
it holds that DT |=DoG([ai; p

′], s, H, ai; πi, vi, pri) implies that the policy ai; πi is an H-step Nash equi-

librium of the program [ai; p
′] in s. By construction, π is the policy with the maximal expected H-step

utility among the ai; πi’s. Hence, any different action selection aj would not be better for a , that is,

32 INFSYS RR 1843-04-02

Ua(H, s, aj ; πj)6 Ua(H, s, π) for all j ∈{1, . . . , m}. That is, any first action deviation from π would

not better for a . Moreover, since each ai; πi is an H-step Nash equilibrium of [ai; p
′] in s, also any follow-

ing deviation from π would not be better for a . In summary, this shows that Ua(H, s, π′)6 Ua(H, s, π) for

every H-step policy π′ of p̂ in s that coincides with π on the actions of o . Also for agent o , any unilateral

deviation π′′ from π cannot be better. In fact, since o is not involved in the first action choice, o can devi-

ate from π only after a’s selection of ai; πi, but this would not be better for o by the induction hypothesis.

Hence, Uo(H, s, π′′)6 Uo(H, s, π) for every H-step policy π′′ of p̂ in s that coincides with π on the actions

of a . For the case of nondeterministic action choice of agent o , the line of argumentation is similar, using

the minimal expected H-step utility instead of the maximal one.

(2) Nondeterministic joint action choice: Let p̂ = [choice(a : a1| · · · |am) ‖ choice(o : o1| · · · |on); p′], and

let π be the H-step policy that is associated with p̂ via DoG . By the induction hypothesis, DT |=DoG([ai∪
oj ; p

′], s, H, ai∪oj ; πi,j , vi,j , pri,j) implies that each ai∪oj ; πi,j is an H-step Nash equilibrium of [ai∪oj ; p
′]

in s. We now prove that π is an H-step Nash equilibrium of p̂ in s. Observe first that, by construc-

tion, π is of the form πa ·πo ; π′, where (πa , πo) is a Nash equilibrium (computed via the Nash selection

function selectNash) of the matrix game consisting of all ri,j = utility(vi,j , pr i,j) with i∈{1, . . . , m} and

j ∈{1, . . . , n}. Thus, if agent a deviates from πa with π′
a

, it would not do better, that is, Ua(H, s, π′
a
·πo ;

π′)6 Ua(H, s, πa ·πo ; π′). The same holds for o , that is, for any deviation π′
o

from πo , we get Uo(H, s,
πa ·π

′
o
; π′)6 Uo(H, s, πa ·πo ; π′). That is, any first action deviation from π would not be better for a and

o . Moreover, by the induction hypothesis, also any following deviation from π′ would not be better for a

and o . In summary, this shows that Ua(H, s, π′)6 Ua(H, s, π) and Uo(H, s, π′)6 Uo(H, s, π) for every

H-step policy π′ of p̂ in s that coincides with π on the actions of o and a , respectively.

(3) Nondeterministic choice of two programs: The line of argumentation is similar to the one in the case of

nondeterministic action choice of agent a above. 2

Proof of Theorem 4.2. Immediate by Theorem 4.1 and the result that in zero-sum matrix games, the

expected reward is the same under any Nash equilibrium, and Nash equilibria can be freely “mixed” to form

new Nash equilibria (von Neumann & Morgenstern, 1947). 2

Proof of Theorem 4.3. Suppose that G = (I, Z, (Ai)i∈I , P, R) with I = {a ,o} is a zero-sum two-player

stochastic game. Without loss of generality, let Aa and Ao be disjoint. We now construct a domain

theory DT = (AT ,ST ,OT), a set of situation constants {Sz | z ∈Z}, and a set of GTGolog programs

{ph |h∈{0, . . . , H}} relative to DT such that δ =(δa , δo) is an H-step Nash equilibrium of G, where ev-

ery (δa(z, h), δo(z, h))= (πa , πo) is given by DT |=DoG(p̂h, Sz, h+1, πa ·πo ; π′, v, pr) for every z ∈Z
and h∈{0, . . . , H}, and the expected H-step reward G(H, z, δ) is given by utility(v, pr), where DT |=
DoG(p̂H , Sz, H+1, π, v, pr), for every z ∈Z.

The basic action theory AT comprises a situation constant Sz for every state z ∈Z and a fluent state(z, s)
that associates with every situation s a state z ∈Z such that state(z, Sz) for all z ∈Z. Here, every state z ∈Z
serves as a constant, and different states are interpreted in a different way. Informally, the set of all situations

is given by the set of all situations that are reachable from the situations Sz with z ∈Z (and thus we do not

use the situation S0), and Z partitions the set of all situations into equivalence classes (one for each z ∈Z)

via the fluent state(z, s). It also comprises a deterministic action na,o,z for every (a, o)∈Aa ×Ao and

z ∈Z, which performs a transition into the situation Sz , that is, state(z, do(na,o,z, s)) for all states z ∈Z
and situations s. The actions na,o,z are executable in every situation s, that is, Poss(na,o,z, s)≡⊤ for all

states z ∈Z and situations s. We assume two agents a and o , whose sets of actions are given by Aa and

Ao , respectively.

INFSYS RR 1843-04-02 33

The stochastic theory ST comprises a stochastic two-agent action {a, o} for every joint action (a, o) ∈
Aa ×Ao along with the set of all axioms stochastic({a, o}, s, na,o,z′ , P (z′ | z, a, o)) such that z, z′ ∈Z
and s is a situation that satisfies state(z, s) and that contains at most H + 1 actions, which represent the

transition probabilities for the joint action (a, o) of G.

The optimization theory OT comprises the set of all axioms reward({na,o,z′}, s)=R(z, a, o) such that

(a, o)∈Aa ×Ao , z, z′ ∈Z, and s is a situation that satisfies state(z, s) and that contains at most H + 1
actions, which encode the reward function of G. Let f = selectNash be a Nash selection function for zero-

sum matrix games of the form M = (I, (Ai)i∈I , S), and let the expected reward to agent a under the Nash

equilibrium f(M) be denoted by vf (M).
Finally, every program ph is a sequence of h+1 nondeterministic joint action choices of the form

choice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om), where a1, . . . , an and o1, . . . , om are all the singleton sub-

sets of Aa and Ao (representing all the actions in Aa and Ao), respectively.

Observe first that pr = 1 for every success probability pr computed in DoG for such programs ph. By

the assumed properties of utility functions, it thus follows that utility(v, pr)= v for every expected reward

v and success probability pr computed in DoG for the programs ph.

We now prove the statement of the theorem by induction on the horizon H > 0. For every state z ∈Z
and h∈{0, . . . , H}, let the zero-sum matrix game G[z, h] = (I, (Ai)i∈I , Q[z, h]) be defined by Q[z, h](ai,
oj)= vi,j , where vi,j is given by DT |=DoG([{ai, oj}; p̂

h−1], Sz, h+1, πi,j , vi,j , pr i,j). By induction on

the horizon H > 0, we now prove that

(⋆) (i) Q[z, 0](ai, oj) = R(z, ai, oj) for every state z ∈Z, and (ii) Q[z, h](ai, oj) = R(z, ai, oj) +∑
z′∈Z P (z′|z, ai, oj) · vf (G[z′, h−1]) for every state z ∈Z and h∈{1, . . . , H}.

This then implies hat vf (G[z, h])= v and f(G[z, h])= (πa , πo) are given by DT |= DoG(p̂h, Sz, h+ 1,
πa ·πo ; π′, v, pr) for every z ∈Z and h∈{0, . . . , H}. Furthermore, by finite-horizon value iteration (Kearns

et al., 2000), the mixed policy δ =(δa , δo) that is defined by (δa(z, h), δo(z, h)) = f(G[z, h]), for every

z ∈Z and h∈{0, . . . , H}, is a H-step Nash equilibrium of G, and it holds that G(H, z, δ)= vf (G[z, H])
for every z ∈Z. This then proves the theorem. Hence, it only remains to show by induction on the horizon

H > 0 that (⋆) holds, which is done as follows:

Basis: Let H =0, and thus we only have to consider the case h= 0. Let DT |= DoG([{ai, oj}; p̂
−1],

Sz, 1, πi,j , vi,j , pr i,j). Using the definition of DoG for the case of stochastic first program action, we then

obtain vi,j =
∑

z′∈Z vz′ ·prob({ai, oj}, Sz, nai,oj ,z′), where vz′ is given by DT |= DoG([{nai,oj ,z′}; p̂
−1],

Sz, 1, πz′ , vz′ , prz′). Using the definition of DoG for the case of deterministic first program action, we

obtain vz′ = v′z′+reward({nai,oj ,z′}, Sz)= 0+R(z, ai, oj). In summary, this shows that vi,j =
∑

z′∈Z R(z,
ai, oj) · prob({ai, oj}, Sz, nai,oj ,z′)= R(z, ai, oj).

Induction: Let H > 0. By the induction hypothesis, (i) Q[z, 0](ai, oj)=R(z, ai, oj) for every state z ∈Z
and (ii) Q[z, h](ai, oj)=R(z, ai, oj) +

∑
z′∈Z P (z′|z, ai, oj) · vf (G[z′, h−1]) for every state z ∈Z and

number of steps to go h∈{1, . . . , H−1}. Furthermore, as argued above, vf (G[z, h])= v and f(G[z, h]) =
(πa , πo) are given by DT |=DoG(p̂h, Sz, h+ 1, πa ·πo ; π′, v, pr) for every state z ∈Z and number of

steps to go h∈{0, . . . , H−1}. Assume that DT |= DoG([{ai, oj}; p̂
h−1], Sz, h+ 1, πi,j , vi,j , pr i,j). Using

the definition of DoG for the case of stochastic first program action, we then obtain vi,j =
∑

z′∈Z prob({ai,
oj}, Sz, nai,oj ,z′) ·vz′ = P (z′|z, ai, oj) ·vz′ , where the value vz′ is given by DT |=DoG([{nai,oj ,z′}; p̂

h−1],
Sz, h+ 1, πz′ , vz′ , prz′). Using the definition of DoG for the case of deterministic first program action,

we obtain vz′ = reward({nai,oj ,z′}, Sz) + v′z′ = R(z, ai, oj) + v′z′ . By the induction hypothesis, it fol-

lows that v′z′ = vf (G[z′, h−1]). In summary, this proves that vi,j = R(z, ai, oj) +
∑

z′∈Z P (z′|z, ai, oj) ·
vf (G[z′, h−1]). 2

34 INFSYS RR 1843-04-02

Proof of Theorem 4.4. The maximal number of branches that DoG can generate in one step of the horizon

is achieved by combining (b) nondeterministic joint action choices with a maximum number of actions for

each agent, (c) stochastic actions with a maximum number of choices of nature, and (d) nondeterministic

choices of an argument with a maximum number of arguments. Since an upper bound for this maximal

number is given by n4, computing the H-step policy π of p in s and its expected H-step utility utility(v, pr)
via DoG generates O(n4H) leaves in the evaluation tree. 2

Appendix B: Implementation of the GTGolog Interpreter

We have realized a simple GTGolog interpreter for two competing agents, which is implemented as a con-

straint logic program in Eclipse 5.7 and uses the eplex library for solving linear programs. Similarly as for

standard Golog, the interpreter is obtained by translating the rules of Section 3.4 into Prolog clauses, which

is illustrated by the following excerpts from the interpreter code:

• Null program or zero horizon:

doG(P,S,0,Pi,V,Pr) :- Pi=nil, V=0, Pr=1.

doG(nil,S,H,Pi,V,Pr) :- Pi=nil, V=0, Pr=1.

• Deterministic first program action:

doG(A:C,S,H,Pi,V,Pr) :- concurrentAction(A), (not poss(A,S), Pi=stop, V=0,

Pr=0; poss(A,S), H1 is H-1, doG(C,do(A,S),H1,Pi1,V1,Pr1), agent(Ag),

reward(Ag,R,A,S), seq(A,Pi1,Pi), V is V1+R, Pr=Pr1).

Here, concurrentAction(C) means that C is a concurrent action:

concurrentAction([A|C]) :- not A=choice(_,_), primitive_action(A),

concurrentAction(C).

• Stochastic first program action (choice of nature):

doG(A:B,S,H,Pi,V,Pr) :- genDetComponents(A,C,S),

bigAndDoG(A,C,B,S,H,Pi1,V,Pr), seq(A,Pi1,Pi).

bigAndDoG(A,[],B,S,H,nil,0,0).

bigAndDoG(A,[C1|LC],B,S,H,Pi,V,Pr) :-

doG([C1]:B,S,H,Pi1,V1,Pr1), bigAndDoG(A,LC,B,S,H,Pi2,V2,Pr2),

prob(C1,A,S,Pr3), Pi=if(condStAct(A,C1),Pi1,Pi2), Pr is Pr1*Pr3+Pr2,

V is V1*Pr1*Pr3+V2*Pr2.

Here, genDetComponents(A, N, S) defines the deterministic components N of the stochastic action

A, and prob(C, A, S, P) defines its associated probabilities:

genDetComponents([],[],S).

genDetComponents([A|LA],List,S) :- setof(X,stochastic(A,S,X,_),C),

genDetComponents(LA,List1), append(C,List1,List).

prob(C,A,S,P) :- stochastic(A,S,C,P), poss(C,S), !; P=0.0.

INFSYS RR 1843-04-02 35

• Nondeterministic first program action (choice of one agent):

doG([choice(Ag,C1)]:E,S,H,Pi,R,Pr) :- agent(Ag), doMax(C1,E,S,H,Pi,R,Pr);

opponent(Ag), doMin(C1,E,S,H,Pi,R,Pr).

Here, the predicate doMax (resp., doMin) selects an optimal policy associated with a possible choice

in C1 (resp., C2):

doMax([A],E,S,H,Pi,R,Pr) :- doG([A]:E,S,H,Pi,R,Pr).

doMax([A|L],E,S,H,Pi,R,Pr) :- doG([A]:E,S,H,Pi1,R1,Pr1),

doMax(L,E,S,H,Pi2,R2,Pr2), utility(Ut1,R1,Pr1), utility(Ut2,R2,Pr2),

(Ut1>=Ut2, Pi=Pi1, R=R1, Pr=Pr1; Ut1<Ut2, Pi=Pi2, R=R2, Pr=Pr2).

doMin([A],E,S,H,Pi,R,Pr) :- doG([A]:E,S,H,Pi,R,Pr).

doMin([A|L],E,S,H,Pi,R,Pr) :- not L=[], doG([A]:E,S,H,Pi1,R1,Pr1),

doMax([A|L],E,S,H,Pi2,R2,Pr2),utility(Ut1,R1,Pr1),utility(Ut2,R2,Pr2),

(Ut2>=Ut1, Pi=Pi1, R=R1, Pr=Pr1; Ut2<Ut1, Pi=Pi2, R=R2, Pr=Pr2).

• Nondeterministic first program action (joint choice of both agents):

doG([choice(Ag1,C1),choice(Ag2,C2)]:E,S,H,Pi,R,Pr) :-

agent(Ag1), opponent(Ag2), doMinMax(C1,C2,E,S,H,Pi,R,Pr);

agent(Ag2), opponent(Ag1), doMinMax(C2,C1,E,S,H,Pi,R,Pr).

Here, doMinMax provides the policy Pi and the probability Pr using a minmax algorithm over the

choices C1 and C2 in S, given the horizon H and the program E:

doMinMax(C1,C2,E,S,H,Pi,R,Pr) :-

doMatrix(C2,C1,E,S,H,PiMatrix,RMatrix,UtMatrix,PrMatrix),

selectNash(StrA,StrO,UtMatrix,R), probNash(StrA,StrO,PrMatrix,Pr),

strNash(C1,C2,StrA,StrO,PiMatrix,Pi).

The predicate doMatrix defines the matrix game associated with the possible choices C2 and C1.

This is encoded by the matrix of utilities UtMatrix , the matrix of rewards RMatrix , and the matrix

of probabilities PrMatrix :

doMatrix([],B,E,S,H,[],[],[],[]).

doMatrix([A|L],B,E,S,H,[PiLine|PiSubMatrix],[RLine|RSubMatrix],

[UtLine|UtSubMatrix],[PrLine|PrSubMatrix]) :-

doVector(A,B,E,S,H,PiLine,RLine,UtLine,PrLine),

doMatrix(L,B,E,S,H,PiSubMatrix,RSubMatrix,UtSubMatrix,PrSubMatrix).

doVector(A,[],E,S,H,[],[],[],[]).

doVector(A,[B|L],E,S,H,[Pi|PiM],[R|RM],[Ut|UtM],[Pr|PrM]) :-

doG([B,A]:E,S,H,Pi1,R,Pr), seq([B,A],Pi,Pi1),

doVector(A,L,E,S,H,PiM,RM,UtM,PrM), utility(Ut,R,Pr).

The predicate selectNash(StrA,StrO ,UtMatrix , R) solves the matrix game UtMatrix , providing

the probability distributions StrA and StrO over the possible choices C1 and C2, respectively. The

Nash equilibrium is computed by a constraint solver implemented in C++ using the glpk library for

linear programming. Here, the yield command (see eclipse-C++ embedding library) sends the util-

ity matrix UtMatrix to the C++ solver receiving back the result result(StrA,StrO , R), that is, the

probability distributions StrA and StrO for the agent and the opponent, along with the utility R:

36 INFSYS RR 1843-04-02

selectNash(StrA,StrO,UtMatrix,R) :- yield(UtMatrix,result(StrA,StrO,R)).

The predicate probNash(StrA,StrO ,PrMatrix ,Pr) calculates the success probability Pr = StrA ·
PrMatrix · StrO , while the predicate strNash(C1, C2,StrA,StrO ,PiMatrix ,Pi) inductively de-

fines the Nash strategy Pi :

strNash(C1,C2,StrA,StrO,PiMatrix,Pi) :- genNashStrategy(C1,C2,PiMatrix,Pi1),

Pi=alea([[C1,StrA],[C2,StrO]],Pi1).

genNashStrategy(LA,[O],[PiL],Pi) :- genNashStrategy1(O,LA,PiL,Pi), !.

genNashStrategy(LA,[O|CO],[PiL|PiMatrix],Pi) :-

genNashStrategy1(O,LA,PiL,Pi2), genNashStrategy(LA,CO,PiMatrix,Pi3),

Pi=if(condNonAct(O),Pi2,Pi3).

genNashStrategy1(O,[A],[Pi],Pi) :- !.

genNashStrategy1(O,[A|LA],[Pi1|PiL],Pi) :-

genNashStrategy1(O,LA,PiL,Pi2), Pi=if(condNonAct(A),Pi1,Pi2).

• Test action, conditional, and while-loop (as in standard Golog):

doG(?(T):A,S,H,Pi,R,Pr) :- holds(T,S), doG(A,S,H,Pi,R,Pr);

not holds(T,S), Pi=stop, V=0, Pr=0.

doG(if(T,A,B):C,S,H,Pi,R,Pr) :- holds(T,S), doG(A:C,S,H,Pi,R,Pr);

not holds(T,S), doG(B:C,S,H,Pi,R,Pr).

doG(while(T,A):B,S,H,Pi,R,Pr):- holds(T,S),

doG(A:while(T,A):B,S,H,Pi,R,Pr); not holds(T,S), doG(B,S,H,Pi,R,Pr).

• Procedures (as in standard Golog):

doG(A:B,S,H,Pi,R,Pr) :- proc(A,C), doG(C:B,S,H,Pi,R,Pr).

In the above code, the predicate utility defines the utility function, and the predicates sub and holds are

from the standard Golog implementation:

utility(Ut,R,Pr) :- Ut is R*Pr.

sub(X1,X2,T1,T2) :- var(T1), T2=T1.

sub(X1,X2,T1,T2) :- not var(T1), T1=X1, T2=X2.

sub(X1,X2,T1,T2) :- not T1=X1, T1=..[F|L1], sub_list(X1,X2,L1,L2), T2=..[F|L2].

sub_list(X1,X2,[],[]).

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

holds(P & Q,S) :- holds(P,S), holds(Q,S).

holds(P v Q,S) :- holds(P,S); holds(Q,S).

holds(P => Q,S) :- holds(-P v Q,S).

holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).

holds(-(-P),S) :- holds(P,S).

holds(-(P & Q),S) :- holds(-P v -Q,S).

holds(-(P v Q),S) :- holds(-P & -Q,S).

INFSYS RR 1843-04-02 37

holds(-(P => Q),S) :- holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).

holds(-all(V,P),S) :- holds(some(V,-P),S).

holds(-some(V,P),S) :- not holds(some(V,P),S). % Negation

holds(-P,S) :- isAtom(P), not holds(P,S). % by failure.

holds(all(V,P),S) :- holds(-some(V,-P),S).

holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

holds(A,S) :- restoreSitArg(A,S,F), F;

not restoreSitArg(A,S,F), isAtom(A), A.

seq(A,Pi1,A:Pi1).

isAtom(A) :- not (A=-W; A=(W1 & W2); A=(W1 => W2); A=(W1 <=> W2);

A=(W1 v W2); A=some(X,W); A=all(X,W)).

Appendix C: Implementation of the Rugby Domain

The domain theory of the Rugby Domain in Examples 3.1 to 3.3 is implemented by the following Prolog

program, which encodes its basic action theory and its optimization theory.

We first declare two players, that is, the agent a and its opponent o , and we encode a game configuration

that represents the initial state of the world: We consider an initial situation S0 , where agent a is in position

(2, 3) and has the ball, and agent o is in position (1, 3):

agent(a). opponent(o).

at(a,2,3,s0). haveBall(a,s0). at(o,1,3,s0).

The action move(α, m) described in Example 3.1 is encoded by the action move(α, x, y), where the argu-

ments x and y represent horizontal and vertical shifts, respectively, that is, N , S, E, W , and stand are en-

coded by (0, 1), (0,−1), (1, 0), (−1, 0), and (0, 0), respectively. The fluents at(α, x, y, s), haveBall(α, s),
and cngBall(α, c, s) require the following successor state axioms:

at(Ag,X,Y,do(C,S)) :- at(Ag,X,Y,S), not member(move(Ag,X1,Y1),C);

at(Ag,X2,Y2,S), member(move(Ag,DX,DY),C), X is X2+DX, Y is Y2+DY.

haveBall(Ag1,do(C,S)) :- (agent(Ag1), opponent(Ag2); agent(Ag2), opponent(Ag1)),

(haveBall(Ag1,S), not cngBall(Ag2,C,S); cngBall(Ag1,C,S)).

cngBall(Ag1,C,S) :- (agent(Ag1), opponent(Ag2); agent(Ag2), opponent(Ag1)),

at(Ag1,X,Y,S), member(move(Ag1,0,0),C), at(Ag2,X1,Y1,S), haveBall(Ag2,S),

member(move(Ag2,DX,DY),C), X2 is X1+DX, Y2 is Y1+DY, X2=X, Y2=Y.

We next define the preconditions Poss(a, s) for each primitive action a in situation s, and (as in concurrent

Golog) the preconditions Poss(c, s) for each concurrent action c in s, where the latter here require that all

the primitive actions mentioned in c are executable in s:

poss(move(Ag,X,Y),S) :- (X=0; Y=0), (X=1; X=-1; X=0), (Y=1; Y=-1; Y=0),

at(Ag,X2,Y2,S), (X2=0, not X=-1; X2=6, not X=1; Y2=1, not Y=-1;

Y2=4, not Y=1).

38 INFSYS RR 1843-04-02

poss([move(Ag1,X1,Y1), move(Ag2,X2,Y2)],S) :-

poss(move(Ag1,X1,Y1),S), poss(move(Ag2,X2,Y2), not Ag1=Ag2.

poss(C,S) :- allPoss(C,S).

allPoss([],S).

allPoss([A|R],S) :- poss(A,S), allPoss(R,S).

We finally represent the function reward(c, s) through the predicate reward(α, r, c, s), which gives a high

(resp., low) reward r in the case of a goal by α (resp., the adversary of α), and the reward r depends on the

positions of the agents a and o , as defined by evalPos(α, c, r, s), otherwise:

reward(Ag,R,C,S) :- goal(Ag1,do(C,S)), (Ag1=Ag, R is 1000;

not Ag1=Ag, R is -1000), !; evalPos(Ag,C,R,S).

evalPos(Ag,C,R,S) :- haveBall(Ag1,do(C,S)), at(Ag1,X,Y,do(C,S)),

(Ag=o, Ag1=o, R is X; Ag=o, Ag1=a, R is X-6;

Ag=a, Ag1=a, R is 6-X; Ag=a, Ag1=o, R is -X).

goal(Ag,S) :- haveBall(Ag,S), at(Ag,X,Y,S), goalPos(Ag,X,Y).

goalPos(a,0,Y) :- Y=1; Y=2; Y=3; Y=4.

goalPos(o,6,Y) :- Y=1; Y=2; Y=3; Y=4.

Given the domain theory, we can formulate a GTGolog program. For example, consider the following

program, which coincides with dribbling(2);move(a , W) (see Example 3.2), where twice agent a (resp.,

o) can move either S or W (resp., stand), and then agent a moves W :

proc(schema,

[choice(a,[move(a,0,-1),move(a,-1,0)]),choice(o,[move(o,0,-1),move(o,0,0)])]:

[choice(a,[move(a,0,-1),move(a,-1,0)]),choice(o,[move(o,0,-1),move(o,0,0)])]:

[move(a,-1,0)]).

Informally, the two agents a and o are facing each other. The former has to perform a dribbling in order to

score a goal, while the latter can try to guess a’s move to change the ball possession. This action requires a

mixed policy, which can be generated by the following query:

:- doG(schema:nil,s0,3,Pi,R,Pr).

The result of the previous query is a fully instantiated policy π for both agents a and o , which can be divided

into the following two single-agent policies πa and πo for agents a and o , respectively:

[move(a,0,-1),move(a,-1,0)]:[0.5042,0.4958];

if condNonAct(move(a,-1,0))

then move(a,0,-1)

else if condNonAct(move(o,0,-1))

then [move(a,0,-1),move(a,-1,0)]:[0.9941,0.0059]

else move(a,-1,0);

move(a,-1,0);

[move(o,0,-1),move(o,0,0)]:[0.5037,0.4963];

if condNonAct(move(a,0,-1)) and condNonAct(move(o,0,-1))

then [move(o,0,-1),move(o,0,0)]:[0.0109,0.9891]

else move(o,0,-1);

nop.

INFSYS RR 1843-04-02 39

The other computed results (in 0.27s cpu time), namely, the expected 3-step reward r and the success

probability pr of the computed 3-step policy are given as follows:

R = 507.2652

Pr = 1.0

References

Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In

Proceedings AAAI-2002, pp. 119–125. AAAI Press.

Bacchus, F., Halpern, J. Y., & Levesque, H. J. (1999). Reasoning about noisy sensors and effectors in the

situation calculus. Artif. Intell., 111(1–2), 171–208.

Baral, C., Tran, N., & Tuan, L.-C. (2002). Reasoning about actions in a probabilistic setting. In Proceedings

AAAI-2002, pp. 507–512. AAAI Press.

Blum, B., Shelton, C. R., & Koller, D. (2003). A continuation method for Nash equilibria in structured

games. In Proceedings IJCAI-2003, pp. 757–764. Morgan Kaufmann.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions and com-

putational leverage. J. Artif. Intell. Res., 11, 1–94.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for first-order MDPs. In

Proceedings IJCAI-2001, pp. 690–700. Morgan Kaufmann.

Boutilier, C., Reiter, R., Soutchanski, M., & Thrun, S. (2000). Decision-theoretic, high-level agent program-

ming in the situation calculus. In Proceedings AAAI-2000, pp. 355–362. AAAI Press/MIT Press.

Dylla, F., Ferrein, A., & Lakemeyer, G. (2003). Specifying multirobot coordination in ICPGolog – from

simulation towards real robots. In Proceedings AOS-2003.

Eiter, T., & Lukasiewicz, T. (2003). Probabilistic reasoning about actions in nonmonotonic causal theories.

In Proceedings UAI-2003, pp. 192–199. Morgan Kaufmann.

Farinelli, A., Finzi, A., & Lukasiewicz, T. (2007). Team programming in Golog under partial observability.

In Proceedings IJCAI-2007, pp. 2097–2102. AAAI Press/IJCAI.

Ferrein, A., Fritz, C., & Lakemeyer, G. (2005). Using Golog for deliberation and team coordination in

robotic soccer. Künstliche Intelligenz, 1, 24–43.

Finzi, A., & Pirri, F. (2001). Combining probabilities, failures and safety in robot control. In Proceedings

IJCAI-2001, pp. 1331–1336. Morgan Kaufmann.

Finzi, A., & Lukasiewicz, T. (2003). Structure-based causes and explanations in the independent choice

logic. In Proceedings UAI-2003, pp. 225–232. Morgan Kaufmann.

Finzi, A., & Lukasiewicz, T. (2004a). Game-theoretic agent programming in Golog. In Proceedings ECAI-

2004, pp. 23–27. IOS Press.

Finzi, A., & Lukasiewicz, T. (2004b). Relational Markov games. In Proceedings JELIA-2004, Vol. 3229 of

LNCS/LNAI, pp. 320–333. Springer.

Finzi, A., & Lukasiewicz, T. (2005a). Game-theoretic reasoning about actions in nonmonotonic causal

theories. In Proc. LPNMR-2005, Vol. 3662 of LNCS/LNAI, pp. 185–197. Springer.

40 INFSYS RR 1843-04-02

Finzi, A., & Lukasiewicz, T. (2005b). Game-theoretic Golog under partial observability (poster). In Pro-

ceedings AAMAS-2005, pp. 1301–1302. ACM Press.

Finzi, A., & Lukasiewicz, T. (2007a). Game-theoretic agent programming in Golog under partial observ-

ability. In Proceedings KI-2006, Vol. 4314 of LNCS/LNAI, pp. 389–403. Springer. Extended Report

1843-05-02, Institut für Informationssysteme, TU Wien, December 2006.

Finzi, A., & Lukasiewicz, T. (2006). Adaptive multi-agent programming in GTGolog (poster). In Proceed-

ings ECAI-2006, pp. 753–754. IOS Press.

Finzi, A., & Lukasiewicz, T. (2007b). Adaptive multi-agent programming in GTGolog. In Proceedings

KI-2006, Vol. 4314 of LNCS/LNAI, pp. 113–127. Springer.

Fritz, C., & McIlraith, S. (2005). Compiling qualitative preferences into decision-theoretic Golog programs.

In Proceedings NRAC-2005.

Gardiol, N. H., & Kaelbling, L. P. (2003). Envelope-based planning in relational MDPs. In Proceedings

NIPS-2003. MIT Press.

Goldman, C. V., & Zilberstein, S. (2004). Decentralized control of cooperative systems: Categorization and

complexity analysis. J. Artif. Intell. Res., 22, 143–174.

Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent settings. J.

Artif. Intell. Res., 24, 49–79.

Grosskreutz, H., & Lakemeyer, G. (2001). Belief update in the pGOLOG framework. In Proceedings

KI/ÖGAI-2001, Vol. 2174 of LNCS/LNAI, pp. 213–228. Springer.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003). Generalizing plans to new environments in

relational MDPs. In Proceedings IJCAI-2003. Morgan Kaufmann.

Guestrin, C., Koller, D., & Parr, R. (2001). Multiagent planning with factored MDPs. In Proceedings

NIPS-2001, pp. 1523–1530. MIT Press.

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially observable

stochastic games. In Proceedings AAAI-2004, pp. 709–715. AAAI Press/MIT Press.

Iocchi, L., Lukasiewicz, T., Nardi, D., & Rosati, R. (2004). Reasoning about actions with sensing under

qualitative and probabilistic uncertainty. In Proc. ECAI-2004, pp. 818–822. IOS Press.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable

stochastic domains. Artif. Intell., 101(1–2), 99–134.

Kearns, M. J., Mansour, Y., & Singh, S. P. (2000). Fast planning in stochastic games. In Proceedings

UAI-2000, pp. 309–316. Morgan Kaufmann.

Kearns, M. J., Littman, M. L., & Singh, S. P. (2001). Graphical models for game theory. In Proceedings

UAI-2001, pp. 253–260. Morgan Kaufmann.

Koller, D., & Milch, B. (2001). Multi-agent influence diagrams for representing and solving games. In

Proceedings IJCAI-2001, pp. 1027–1036. Morgan Kaufmann.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Proceed-

ings ICML-1994, pp. 157–163. Morgan Kaufmann.

Marthi, B., Russell, S. J., Latham, D., & Guestrin, C. (2005). Concurrent hierarchical reinforcement learn-

ing. In Proceedings IJCAI-2005, pp. 779–785. Professional Book Center.

INFSYS RR 1843-04-02 41

Martin, M., & Geffner, H. (2004). Learning generalized policies from planning examples using concept

languages. Appl. Intell., 20(1), 9–19.

Mateus, P., Pacheco, A., Pinto, J., Sernadas, A., & Sernadas, C. (2001). Probabilistic situation calculus.

Ann. Math. Artif. Intell., 32(1–4), 393–431.

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelli-

gence. In Machine Intelligence, Vol. 4, pp. 463–502. Edinburgh University Press.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D. V., & Marsella, S. (2003). Taming decentralized POMDPs:

Towards efficient policy computation for multiagent settings. In Proceedings IJCAI-2003, pp. 705–

711. Morgan Kaufmann.

Owen, G. (1982). Game Theory: Second Edition. Academic Press.

Peshkin, L., Kim, K.-E., Meuleau, N., & Kaelbling, L. P. (2000). Learning to cooperate via policy search.

In Proceedings UAI-2000, pp. 489–496. Morgan Kaufmann.

Pinto, J. (1998). Integrating discrete and continuous change in a logical framework. Computational Intelli-

gence, 14(1), 39–88.

Poole, D. (1997). The independent choice logic for modelling multiple agents under uncertainty. Ar-

tif. Intell., 94(1–2), 7–56.

Poole, D. (2000). Logic, knowledge representation, and Bayesian decision theory. In Proceedings CL-2000,

Vol. 1861 of LNCS, pp. 70–86. Springer.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley.

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a com-

pleteness result for goal regression. In Artificial Intelligence and Mathematical Theory of Computa-

tion: Papers in Honor of John McCarthy, pp. 359–380. Academic Press.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical

Systems. MIT Press.

Sanner, S., & Boutilier, C. (2005). Approximate linear programming for first-order MDPs. In Proceedings

UAI-2005, pp. 509–517.

van der Wal, J. (1981). Stochastic Dynamic Programming, Vol. 139 of Mathematical Centre Tracts. Morgan

Kaufmann.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms for solving graphical games. In Proceedings

AAAI-2002, pp. 345–351. AAAI Press.

von Neumann, J., & Morgenstern, O. (1947). The Theory of Games and Economic Behavior. Princeton

University Press.

Yoon, S. W., Fern, A., & Givan, R. (2002). Inductive policy selection for first-order MDPs. In Proceedings

UAI-2002, pp. 568–576. Morgan Kaufmann.

