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FORMULATION AND PoLICY CONSTRUCTION

Chitta Barat Thomas Eitet Marcus Bareland Mutsumi Nakamura

Abstract. The notion of maintenance often appears in the Al literaituthe context of agent behav-
ior and planning. In this paper, we argue that earlier chiaraations of the notion of maintenance
are not intuitive to characterize the maintenance behafigertain agents in a dynamic environ-
ment. We propose a different characterization of mainteaamd distinguish it from earlier notions
such asstabilizability. Our notion of maintenance is more sensitive to a good-edtagent which
struggles with an “adversary” environment, which hindezsliy unforeseeable events to reach her
goals (not in principle, but in case). It has a paramgteeferring to the length of non-interference
(from exogenous events) needed to maintain a goal; we @fars notion a%-maintainability We
demonstrate the notion on examples, and address the impbuianon-trivial issue of efficient con-
struction of maintainability control functions. We presam algorithm which in polynomial time
constructs &-maintainable control function, if one exists, or tellsttha such control is possible.
Our algorithm is based on SAT Solving, and employs a suitidslaulation of the existence df-
maintainable control in a fragment of SAT which is tractalfter smallk (bounded by a constant),
our algorithm is linear time. We then give a logic programgnimplementation of our algorithm
and use it to give a standard procedural algorithm, and aedlye complexity of constructink-
maintainable controls, under different assumptions sséh-al, and states described by variables.
On the one hand, our work provides new concepts and algaitbnmaintenance in dynamic envi-
ronment, and on the other hand, a very fruitful applicatiboamputational logic tools.
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1 Introduction and Motivation

For an agent situated in a static environment, the goal is often to reach oofeseueral states where certain
conditions are satisfied. Such a goal is usually expressed by a formulapagitional or first-order logic.
Sometimes the goal requires constraining the path taken to reach one otéise Istéhat case, the goal can
be expressed by a formula in temporal logic [1, 41, 4].

Our concern in this paper is about agents in a dynamic environment. Inatbat things are more complex
since the state of the world can change through both actions of the aglesftthe environment. The agent’s
goal in a dynamic environment is then often more than just achieving a desated as after the agent has
successfully acted to reach a desired state, the environment may chairgfatia In such a case, a common
goal of an agent s to ‘maintain’ rather than just ‘achieve’ certain conditidihne goal of maintaining certain
conditions (or a set of states that satisfy these conditions) is referradrtaiatenance goaldMaintenance
goals are well-known in the Al literature, e.g., [52, 30, 1, 42], and haumterparts in other areas such as
in stability theory of discrete event dynamic systems [43, 45, 47, 46, Sl ]raactive databases [10, 38].
However, as we argue in this paper, earlier characterizations of mancgaals are not adequate under
all circumstances.

To see what is wrong with earlier definition of maintenance goals, suppoagent’'s goal is to maintain
a fluentf, i.e., the propositiorf should be true. A straightforward atterhpd express it using temporal
operators is the formula f, whereO is the temporal operatolways and O f means thaf is true in all

the future states of the world. This is too strong a condition, as maintaininggintfiemeans that things go
out of shape and they have to be maintained back to shape. A better tetogarakpresentation of this
goal is thus the formula< f, where< is the temporal operatoEventually’ Intuitively, the formulad < f

is satisfied by an infinite trajectory of states of the fosgsy, so, .. ., if at any stage > 0, there exists
some stagg > 7 such thatf is true ins;. An agent’s control is said to satisfy< f if all trajectories that
characterize the evolution of the world due to the environment and the’agentrol satisfy0< f. At first
glance the formul@&< f seems to express the goal of maintainfi@s it encodes that jf becomesfalse

in any state in the trajectory then it beconiese in a later state.

We consideZ< f to be also too strong a specification—in many situations—to express the intuwitioe n
of ‘maintaining f’, if we take on a more refined view of the (sometimes nasty) part which thecamrent
might play, which we illustrate by some examples. Supppskenotes the condition that the Inbox of a
customer service department be empty. Here the environment rnfidkése by adding new requests to the
Inbox while the agent tries to malfetrue by processing the messages in the Inbox and removing them from
it. If the agent is diligent in processing the message in the Inbox and makapty every chance the agent
gets, we would then like to say that agent maintains the Inbox empty. But sumtiral does not satisfy the
formulad< f under all circumstances, because there will be trajectories where thieisgeerwhelmed by
the environment (flooding the Inbox) arfchever becomes-ue.

Another example in support of our intuition behind maintainability is the notion of taiimg the consis-
tency of a database [10, 38, 53]. When direct updates are made tdbasitanaintaining the consistency
of the database entails the triggering of additional updates that may bring adbditional changes to the
database so that in the final state (after the triggering is done) the databakes a consistent state. This
does not mean that the database will reach consistency if continuoutesi@ila made to it and it is not
given a chance to recover. In fact, if continuous update requestaade we may have something similar

LAll through the paper we consider the evaluation of linear temporal flasnwith respect to all ‘valid’ trajectories. An
alternative approach would be to use a variation of the branching timeifigraA, such as the operatéx,. from [6], before the
linear temporal formulas.
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to denial service of attacks. In this case we can not fault the triggensgsthat they do not maintain the
consistency of the database. They do. It is just that they need to be @iverdow of opportunityor a
respite from continuous harassment from the environment to bring #@aidditional changes which are
necessary to restore database consistency. The same holds for mairséaiogm clean; we can not fault
the cleaning person if he or she is continually sent away because thégbaing continuously used.
Another example is a mobile robot [8, 35] which is asked to ‘maintain’ a stateanthere are no obstacles
in front of it. Here, if there is a belligerent adversary that keeps on gu#timobstacle in front of the robot,
there is no way for the robot to reach a state with no obstacle in front of ftofsen we will be satisfied if
the robot avoids obstacles in its front when it is not continually haras3édourse, we would rather have
the robot take a path that does not have such an adversary, but ibstiece of such a path, it would be
acceptable if it takes an available path and ‘maintains’ states where there abstacles in front.

The inadequacy of the expressiard f in expressing our intuition about ‘maintaininfg is becaused< f

is defined on trajectories which do not distinguish between transitions dgend actions and environment
actions. Thus we can not distinguish the cases

(?) where the agent does its best to maintfifand is sometimes thwarted by the environment) and can
indeed make¢ true in some (say) steps if there is no interference from the environment during those
steps; and

(i7) where the agent really does not even try.

We refer to () ask-maintainabilityin this paper. The expressian f can not express the idea ohendow

of opportunity(or window of non-interferengeduring which an agent can perform the actions necessary
for maintaining. In fact, none of the standard notions of temporal logics3&p, which are defined on
trajectories that do not distinguish between the cause behind the transitivethiér they are due to agent’s
actions or due to the environment), can express the idea beéhimaintainability.

The main contributions of this paper can be summarized as follows.

1. We introduce and formally define the notionfemaintainability, and distinguish it from earlier no-
tions of maintainability, in particular the specificatior® f and the similar notion of stabilizability
from discrete event dynamic systems.

2. We provide polynomial time algorithms that can constritechaintainable control policies, if one
exists. (In the rest of the paper we will refer to ‘control policy’ simply bpntrol’.) Our algorithm is
based on SAT Solving, and employs a suitable formulation of the existericenaintainable control
in a tractable fragment of SAT. We then give a logic programming implementatitimsofmethod,
and finally distill from it a standard procedural algorithm.

3. We analyze the computational complexity of constructifmgaintainable controls, under different set-
tings of the environment and the windows of opportunity open to the agewglaas under different
forms of representation. We show that the problem is completeTOME in the standard setting,
where the possible states are enumerated, and compleEEXfeTIME in a STRIPS-style setting
where states are given by value assignments to fluents. Furthermorkjoidate the impact of the
different factors and show, by our proofs of the hardness reshésthe full problem complexity is
inherent already to certain restricted cases.

Overall, our work not only provides new concepts and algorithms fdizieg maintenance of an agent in
dynamic environment, but also illustrates a very fruitful application of contjmunal logic tools.
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The rest of this paper is organized as follows. In Section 2 we preseriabkground definitions of a
system with an agent in an environment and define the notions of stabilitytaitizability. In Section 3

we describe a running example of a system with two buffers. We use thimspéxdor illustrating the
concepts of stabilizability ané-maintainability, which is formally defined in Section 4. In Section 5 we
present our algorithms for constructikgmaintaining controls, based on SAT Solving as well as a genuine
algorithm extracted from it. In Section 6 we present an encoding for ctingpa control function using a
logic programming engine and devote Section 7 to complexity analysis. Finallgcins 8 we conclude,
mention related work and outline some future directions.

2 Background: Systems, Goals, Control, Stability and Stabilizability

In this paper, we are concerned with goal-directed agents in a dynamid. weuch agents can perform
actions that change the state of the world. Because of the dynamic nathesvedrld, certain changes can
happen to the state of the world beyond the control of an agent. The ag@nts thus to make the world
evolve in a way coherent with a goal assigned to it. As for the agent ¢onecadopt here that an agent
follows a Markovian control policy to do its job; that is, its control is a functicm the set of states to the
set of actions, detailed as follows.

Definition 1 (System)A systemis a quadrupled = (S, A, ®, poss), where
e Sis the set of system states;

e Ais the set of actions, which is the union of the set of agents actigs,.;, and the set of environ-
mental actionsA.,.;

e & :S x A — 2°is anon-deterministic transition function that specifies how the state of the world
changes in response to actions; and

e poss : S — 24 is a function that describes which actions are possible to take in which states.

The above notion of system is used in the discrete event dynamic systems gitynfouinstance in [43, 45,
47, 46, 51]. In practice, the functiodsandposs are required to be effectively (and efficiently) computable,
and they may often be specified in a representation language such as 23[28]. The possibility of an
action has different meaning depending on whether it is an agent’s actiinether it is an environmental
action. In case of an agent’s action, it is often dictated by the policy folldwete agent. For environmental
actions, it encodes the various possibilities that are being accountedtfoe model. We tacitly assume
here that possible actions lead always to some successor state, i.e., thelteti® (s, a) # () whenever
a € poss(s) holds for any state and actior, is satisfied by any system.

An example of a systemdl = (S, A, @, poss), whereS = {b,¢, d, f,g,h}, A = { a, &, €}, and the
transition function® is shown in Figure 1, wherg € ®(s,a) iff an arcs — s labeled witha is present
andposs(s) are all actions that label arcs leaviag Notice that in this exampleb(s, a) is deterministic
i.e.,®(s,a)is a singleton if nonempty.

The evolution of the world with respect to a system is characterized by lloeviiog definition.

Definition 2 (Trajectory) Given a systemd = (S, A, ¢, poss), an alternating infinite sequence of states
and actionssg, a1, s1,as9, ..., Sk, ak+1, Sk+1, - - - IS Said to be drajectory consistent withd, if sp,1 €
D (sg, ax+1), andagy1 € poss(si). O
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Figure 1: Transition diagram of system

A common restriction on how the world evolves is defined using the noticstadfility. The following
definition of stability is adapted from [43] and has its origin in control thearg discrete event dynamic
systems [43, 45, 47, 46].

Definition 3 (Stable state 1)Given a systemd = (S, A, ®, poss) and a set of stateB, a states is said
to bestablein A w.r.t. £ if all trajectories consistent witlll and starting froms go through a state i
in a finite number of transitions and they vigitinfinitely often afterwards. A set of statésis stable with
respect ta¥ if all states inS are stable with respect .

We sayA = (S, A, ®, poss) is astable systenif all states inS are stable ird with respect taF. O

Although the above definition of stability is with respect to a set of stateis can be easily adapted to a
formulap that can be evaluated at the states of systenn that casel = {s € S | 4,s = ¢}, i.e. itis
the set of states at whiche is true.

An alternative approach to characterize the evolution of states is throongotal operators. Some of the
important temporal operators talking about the future are (cf. [36; Xgxt (O), Always (@), Eventually
(©), and Until ¢/). Their meaning with respect a trajectary= so, a1, s1, . .., Sk, Gg+1, Sk+1, - - - IS defined
as follows.

Let (7, ), for j > 0, denote the remainder ofstarting ats;; then

(1,7) E= piff pistrueins;, for any propositiorp;
(1.9) | O¢iff (1.5 +1) = &
(1,7) E Q¢ iff (1,k) E ¢, forall k > j.

(1,) = ©oiff (1,k) |= ¢, for somek > ;.

o (7,7) = ¢1 U ¢ iff there existsk > j such thai(r, k) = ¢2 and for alli, j < i < k, (7,7) = ¢1.

The standard Boolean connectivesv, and— are defined as usual. An alternative definition of stability can
then be given as follows:

Definition 4 (Stable state 2)Given a systeml = (S, A, ®, poss) and an objective formula (i.e., without
temporal operators), let, = {s € S | ¢ is true ins}. A states is then said to bstablein A w.rt. £
if for all trajectoriest of the formr = so, a1, $1,..., Sk, axt1, Ski1, - - - CONSistent withA4, it holds that
(1,0) | OCp. 0O
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In fact, this definition is equivalent to Definition 3. The advantage of usimpteal operators, as in the
above definition, instead of Definition 3 is that the former allows us to speddyger class of goals and
build on top of the notion of stability. For example, a notion similar to stability, reteto as aesponse
property[36], is of the formO(p — <q).

2.1 Stabilizability

The notion of stability is defined with respect to a system and the evolution @fdHd consistent with the
system. When we focus on an agent and its ability to make a system stablescheemation oktabilizability
which intuitively means that there exists a control policy which the agent samoufashion a stable system.
Given a systemd = (S, A, ®, poss), when discussing stabilizability of the system, we need to consider the
following additional aspects:

e the set of actions!,,.,; which the agent is capable of executing in principle (Whéyg.,.; C A);

e the set ofexogenous actionthat may occur in the state beyond the agent’s control, modeled by
a functionezo : S — 24 whereezo(s) C poss(s) for each states (recall thatA.,, are the
environmental actions). We call any suetv anexogenous function

Intuitively, given a systemd = (S, A, ®, poss), Augent, exo, andE, a states is stabilizable with respect to

E, if we are able to find a policy arontrol functionsuch that the agent picks an action it can da,ime

have stability if all other agent actions srand the other states that are reached are disabled, and no state is
reached frony where no further actions are possible.

The last condition is referred to as aliveness. It is formally defined bfotlmving two definitions, the first

of which defines the seR( A, s) of states that can be reached frenm the systemA.

Definition 5 Given a systemd = (S, A, ®, poss) and a state, R(A,s) C S is the smallest set of states
that satisfying the following conditions:

1. se R(A,s),
2. If & € R(A,s), anda € poss(s'), then®(s',a) C R(A, s). O

Definition 6 (Aliveness)Given a systerd=(S, A, @, poss) and a state, we says is aliveif poss(s’) # 0,
forall ' € R(A,s). We sayA=(S, A, @, poss) is aliveif all states inS are alive. O

The notion of control function is formally defined as follows.

Definition 7 (Control) Given a systemd = (S, A, ®, poss) and a setd,q..: C A of agent actions, a
control function forA w.r.t. A,4en¢ is a partial function

K:S§— -Aagenta
such thatK'(s) € poss(s) wheneverK (s) is defined. O
We are now ready to formally define the notion of stabilizability.

Definition 8 (Stabilizability) Given a systemd = (S, A, ®, poss), a setdqgzen: C A, a functionezo as
above, and a set of statés we say thats € S is stabilizablewith respect toF, if there exists a control
functionK : S — Aggen: for A w.rt. Aygen: With the following properties:
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1. s is stable with respect t& in the systemAy c.o = (S, A, ®, possk .,,), Where, for any state’,
POSS ¢ oo (8) = {K (')} U exo(s'); and

2. sisalive iNnAg ez0-

A set of statesS' C S is stabilizable with respect td, if there is a control functior< for A w.r.t. A,gen:
such that every statec S is stabilizable with respect tB withessed byx. O

Having provided this definition, we shall illustrate it on an elaborated exampiteeinext section, where we
describe an intuitive control function for the management of two finite baiffe
Before closing this section, we introduce for later use the notion of a swpdrol.

Definition 9 (Super-control) Given a systemd = (S, A, ®, poss) and a setd g,y A of agent actions,
a partial functionk : S — 24asent such thatil (s) C poss(s) and K (s) # () wheneverK (s) is defined, is
calledsuper-controfor A w.r.t. Asgent- O

Informally, a super-control is an envelope for multiple control functievisch result by refining< to some
arbitrary action inK (s) wheneverK (s) is defined; the notion of stabilizability is defined similar as for
control functions, with the only change thatl ..., We setposs .., (s") = K (s") U exo(s’) in place of
possK,ezo(sl) = {K(S/)} U 61’0(8/).

The following proposition is immediate.

Proposition 1 Given a systemdl = (S, A, ®, poss), a setAqqent C A, and a functionezo, a set of states
S C S is stabilizable with respect to a set of stateés— S under a control functior for A w.r.t. A, gen iff
S is stabilizable with respect t& under a super-controK ™ for A w.r.t. A,ge,: . Furthermore, each such
K is a refinement of som& ™ with this property (i.e., for each, K(s) € K*(s) and K (s) is defined iff
K*(s) is defined), and each refineméiitof K is a control function witnessing stabilizability 6fwith
respect tok.

3 Example Scenario: Two Finite Buffers

In this section, we introduce a running example which we will use in illustratingdtien of stabilizability
and also other concepts in the rest of the paper.

We imagine a system with two finite buffers, andb., where objects are added&pin an uncontrollable
way. An agent moves objects frobm to by and processes them there. When an object has been processed,
it is automatically removed fror,. This is a slight modification of a finite buffer example from [45] and
generalizes problems such as ftp agents maintaining a clean ftp area by reabimgted files to other
directories, or robots moving physical objects from one location to another

In our framework, we shall describe a systeimwhich models this scenario. For simplicity, we assume
that the agent has three control actidvis, that moves an object from to bs (if such an object exists), the
opposite actionM»; that moves an object frof to b1, andProc that processes and removes an object in
bs. There is one exogenous actidins, that inserts an object into buffér. The capacities af; andb, are
assumed to be equal.

Let us assume that the control goal of this system is to keempty. Then, the system is not stabilizable,
since objects can be continually inserted before the agent has a chaswgtpthe buffer. However, if
no insertions are performed for a certain window of non-interferetheeagent can always empty. This
implies that the system is maintainable but not stabilizable. We now make the algoveemt explicit by
using a concrete instance df,.
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Example 1 (Running Example)
We assume that the maximum capacity of the bufferandb, is 3. The components of, = (S;, Ay, Py,
poss,) are then as follows.

e We model every state by the current number of objects imndb,. That is, a stata is identified by
a pair of integersi, j) wherei denotes the number of objectsiinand; the number of objects ity,.
With the maximum capacity of 3, the set of stai8g,consists oft x 4 = 16 states and is given by

S, ={0,1,2,3} x {0,1,2,3}.

e The set of actions igl, = {Mj3, My, Proc, Ins}.

e We assume that the transition functidp is deterministic, i.e.|®;(s,a)| < 1, defined as follows,
where we write®, (s, a) = s’ for (s, a) = {s'}. For everyi, j € {0,...,3}, let

where addition and subtraction are modsj@nd and in all other cas€s,(s,a) = (.

e The enabling functionyoss,, is defined by

M, € possy({i,j)) iff i>1andj <2
Moy, € possy({i,j)) iff i<2andj>1
Proc € poss,((i,j)) iff 7>1

Ins € possy((i,7)) iff <2

It is easy to see that f&¥ = {(0,0)} (no objects in the buffers) anfl = {(0,0), (0, 1), (0, 2), (0, 3)} (that
is, we want to keep; empty).S is not stabilizable w.r.t.E, since the exogenous actidns can always
interfere in the task of bringing the system backHo For example, consider the contral, defined as
follows:

Ky((i,7)) = M12 wheni > 1 andj < 3, and
Ky({i,§)) = Procwhen ¢ = 0 andj > 1) orj = 3.

Intuitively, the above control directs the transfer of objects from louffeo 2 whenever possible, and if that
is not possible it directs processing of objects in buffer 2 if that is possibl&igure 1, which shows the
transition diagram between states, the transitions by the cdsijrate marked witiv 15, andProc.
Consider the following trajectory consistent with the control system.,, = (Sp, Ap, D, possbeym):

7 =1(0,0), Ins, (1,0), Ins, (2,0), M2, (1, 1), Ins, (2, 1), M12, (1, 2), Ins, (2,2), M2, (1, 3), Proc.
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Figure 2: The transition diagram of the buffer systdgfor the concrete instance (buffer capacity 3).

It consists of a prefiX0, 0), Ins,...,M2 and acyclgl,2), ..., Proc. In 7, no state inF is ever reached
after the starting stat@, 0). Similar trajectories can be found for any control and hefcenot stabilizable
with respect tav.

On the other handS = {(0,0)} is stabilizable w.rtE’ = {0,1,2} x {0,1,2,3} (that is, we want to
have at most two objects in at any time): Followingk}, we can go from any of the statesd \ £/ =
{(3,0),(3,1),(3,2),(3,3)} to E" with the execution of at most two control actions, while no exogenous
actions are possible for those states. |

4 Limited Interference and k-Maintainability

As we mentioned in Section 1, our main intuition behind the notion of maintainability ismihattenance
becomes possible only if there is a window of non-interference from thieoement during which main-
tenance is performed by the agent. In other words, an dgemintains a conditiom if its control (or its
reaction) is such that if we allow it to make the controlling actions without intenfez from the environment
for at leastk steps, then it gets to a state that satisfiesthin thosek steps.

Our definition of maintainability has the following parameters:

(i) aset of initial states that the system may be initially in,
(ii) a set of desired statds that we want to maintain,
(iii) asystemA = (S, A, ®, poss),
(iv) asetAqn: C A of agent actions,
(v) afunctionezo : S — 24w detailing exogenous actions, such that(s) C poss(s), and

(vi) a control function/K” (mapping a relevant part & to A,gen:) such thati((s) € poss(s).
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The next step is to formulate when the contkbimaintainsk assuming that the system is initially in one of
the states ir. The exogenous actions are accounted for by defining the notion cdarelofS with respect

to the systemA g s = (S, A, @, possy ), denoted byClosure(S, Ak ezo); Wherepossg .., (s) is the
set{K(s)} U exo(s). This closure is the set of states that the system may get into startingSflmenause
of K and/orezo. Maintainability is then defined by requiring the control to be such that if tiséesy is

in any state in the closure and is given a window of non-interference é&xwgenous actions, then it gets
into a desired state during that windo@ne of the importance of using the notion of closure is that one can
focus only on a possibly smaller state of states, rather than all the statedirttitiisg the possibility of an
exponential blow-up - as warned in [26] - of the number of control sule

Now a next question might be: Suppose the above condition of maintainabilif§isied, and while the
control is leading the system towards a desired state, an exogenoushegmens and takes the system off
that path. What then? The answer is that the state the system will reactihaféstogenous action will be a
state from the closure. Thus, if the system is then left alone (without inéexdée from exogenous actions)
it will be again on its way to a desired state. So in our notion of maintainability, theaas always taking
the system towards a desired state, and after any disturbance fronogenexs action, the control again
puts the system back on a path to a desired state.

We now formally define the notions of closure and maintainability.

Definition 10 (Closure)Let A = (S, A, ®, poss) be a system and le&f C S be a set of states. Then the
closure ofA w.r.t. S, denoted byClosure(S, A), is defined byClosure(S, A) = Uyeg R(A, s). O

Example 2 In the systemA in Figure 1, we have thak(A,d) = {d,h} and R(A, f) = {f,g,h}, and
thereforeClosure({d, f}, A) ={d, f, g, h}. O

We note some properties 6flosure(S, A), which follow immediately from the definition aR(A, s).
Lemma 2 Let A = (S, A, , poss) be a system anl C S be a set of states. Then,
1. Closure(S, A) satisfies the Kuratowski closure axioms [32], i.e.,

Closure((), A) = 0,

S C Closure(S, A),

Closure(Closure(S, A), A) = Closure(S, A), and
Closure(S1 U Sa2, A) = Closure(S1, A) U Closure(Sa, A));

2. if s € Closure(S, A), anda € poss(s), then®(s,a) C Closure(S, A). O

Next we define the notion of unfolding a control.

Definition 11 (Unfold, (s, A, K)) Let A=(S, A, ®, poss) be a system, letcS, and letK be a control for
A. Then Unfold, (s, A, K) is the set of all sequences= sy, s1,...,s; wherel<k andsy=s such that
K (s;) is defined for allj<i, s;4+1€®(s;, K(s;)), and ifi<k, thenK (s;) is undefined. O

Intuitively, an element of/nfold, (s, A, K) is a sequence of states of length at miest that the system may

go through if it follows the controk starting from the state. The above definition ot/nfold, (s, A, K) is
easily extended to the case wh&nis a super-control, meaning (s) is a set of actions instead of a single
action. In that case, we overloddand for any set of actions®, define®(s, a*) = U,eq+ P(s,a).

We now define the notion éfmaintainability. This definition can be used to verify the correctness of a
control.
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Definition 12 (k-Maintainability) Given asysteml = (S, A, ®, poss), a set of agents actiof,gen: C A,
and a specification of exogenous action occurrenge we say that a contrdlK for A w.r.t. Aagent k-
maintainsS C S with respect to’ C S, wherek > 0, if for each states € Closure(S, Ak, ex0) and each
sequence = sg, s1, - - -, §; IN Unfold(s, A, K) with sg = s, it holds that{sg, ..., s} N E # (.

We say that a set of stat&sC S (resp.4, if S = §) is k-maintainablek > 0, with respect to a set of states
E C S, if there exists a contrak’ which k-maintainsS w.r.t. E. K is then referred to as the witnessing
control function. Furthermorey (resp.A) is calledmaintainablew.r.t E, if S (resp.A) is k-maintainable
w.r.t. &/ for somek > 0. O

We often will omit explicit mention ofd,4.,.:, S, andE for control functions and maintainability if they are
clear from the context.

Intuitively, the condition{sg, s1, ..., s;} N E # () above means that we can get from a stgteutsideFE to
a state inE within at mostk transitions—where each transition is dictated by the cortretif the world
were to unfold as iz = sg, s1, ..., s;. In particular, 0O-maintainability means that the agent has nothing to

do: after any exogenous action happening, the system will be in a statg=frd@ herefore, a trivial control
K will do which is undefined on every state.

Example 3 Reconsider the system in Figure 1. Let us assume thal,g.,. = { &, @ }, that ezo(s)

={ e} iff s = f and thatezo(s) = () otherwise. Suppose now that we want a 3-maintainable control
policy for S = {b} w.r.t. E = {h}. Clearly, such a control polick is to takea in b, ¢, andd. Indeed,
Closure({b}, Ak ez0) = {b, ¢, d, h} and Unfolds(b, A, K) = {(b,c,d, h)}, Unfolds(c, A, K) ={(c,d, h)},

and Unfolds(d, A, K') = {(d, h) }; furthermore, each sequence contdins

Suppose now tha®(c,a)={d, f} instead of{d} (i.e., nondeterminism im). Then, nok-maintainable
control policy forS = {b} w.r.t. E = {h} exists for anyk > 0. Indeed, the agent can always end up in the
dead-end. If, however, in additionb(g,a’) = {f, h} anda’ € poss(g), @ 3-maintainable control polick

is K(s)=afors e {b,c,d, f} andK(g)=4. O

Example 4 Buffer Example (cont'd)

Earlier we showed that inl,, S = {(0,0)} is not stabilizable w.rtE = {(0,0),(0,1),(0,2),(0,3)}.
Thus, we might ask whethéf is at least maintainable w.r&? The answer is positive: For the worst case
system state(3, 3), a control can move the system{& 0) (by three transitions executif@roc) without
interfering occurrences of exogenous actions. If there then arefilméer transitions without interference,
the control can appliv;, three times and effect the stdte 3). This implies thatS is 6-maintainable w.r.t.
E. We can, with a similar argument show th&iis 9-maintainable w.r.t{(0,0)}. A similar argument can
be made with respect to the contig), of Example 1.

However, we have thatl is not maintainable w.r.t., for exampl€,0, 3)} (Since we cannot go from, for
example{(0,0)}, to {(0, 3)} with control actions only). O

As the above example points out, it is possible th& maintainable but not stabilizable with respectio

The converse is also possible. In other words, in certain cases we maylsystem where a givefiis
stabilizable with respect to a sét, but yet is not maintainable. This happens when every path between a
state inS and a state irF’ involves at least one exogenous action. In that case the agent, whoald®rave
control over the exogenous actions, can not on its own make the transdgrarafstate ir to a state in~.
However, often for each exogenous action there are equivalentr(ins tef effects) agent actions. In that
case, any stabilizable system is also maintainable.

Note that here only (s) for s € Closure(S, Ax,es0) is Of relevance. For all othey, K (s) can be arbitrary or undefined.
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We note the following monotonicity property éfmaintainability, which is an easy consequence of the
definition:

Proposition 3 Suppose that for a systerh = (S, A, ®, poss), a set of agents actiodgen: < A, and
a specification of exogenous action occurrence, the control functionK k-maintainsS C S w.r.t.
E C S. Then, K also k-maintains any sef’ C Closure(S, Ak ez0) With respect to any sek’ C
Closure(S, Ak ez0) SUCh thattl C E'. O

4.1 An alternative characterization of k-maintainability

The characterization of stability and stabilizability in Section 2 is based on imposimgjtions on trajec-
tories obtained from the transition graph of a system. Such a characteribascthe advantage that it is
amenable to developing temporal operators that can express morel genelitons.

In contrast, the definition of maintainability in Definition 12 is not based on trajestoNonetheless, one
can give an alternative characterization based on trajectories, whidb next. To bridge from finite trajec-
tories (which are relevant with respect to maintainability), to infinite ones agiimiion 2, we consider for
each systeml = (S, A, ®, poss) an extensionA>°, which results by adding a fresh environmental action
anop Such that inA>, for each state we haved(s, anop) = {s} andaney, € poss(s) if poss(s) = 0in A.
Informally, A, adds infinite loops to halting states af

Proposition 4 Given a systemd = (S, A, ®, poss), a set of agents actiad, 4., C A, a specification of
exogenous action occurreneeo, and a set of states, a set of state$' is k-maintainablewith respect to
E, k> 0, if and only if there exists a contrd{ for A w.r.t. A,4.,: such that for each statein S and every
trajectory of formr = so, a1, s1,a2,...,a;,8;5,a;41, ... consistent withA g°,,, andsyp = s, it holds that
{aiy1,. .. aisk} € Aggent O Git = anop fOr somei > 0 implies that{s;, ..., sitx} N E # 0. O

Proof. For the only if direction, suppose théts k-maintainable w.r.tE, withessed by the control function
K. Lets € Sandt = sg,a1,s1,a2,...,4a;4,5;,a;+1, ... be consistent witmf‘g?exo such thatsy) = s and
{ait1, ... aivk} € Aagent OF @iy = Gnop, fOr somei > 0. Then, we have; € Closure(S, Ag?m). If

k = 0, then sincek is a witnessing control, we havg € E, and thus{s;, s;+1, ..., Sitx} N E # () holds.
Consider thuge > 0. If a;11 € Aggent (Which implies{a;i1,...,ai1x} C Aqgent), then the sequence
Siy Sit+1,- - -, Si+k belongs toUnfold, (s;, A, K). SinceK is a witnessing control function, we again have
{Si, Sit1s-- -, vk} N E # 0. Otherwise, ifa; 1 = anep, letl > 1 be the least index such that = ay,p.
By definition of AgS,,,, we have that{(s;—1) is undefined. Hence, the sequence= s;_; belongs to
Unfold,(s;—1, A, K). SinceK is a control, it follows thas;_; € E. Sinces; = s;_; for eachj > [, and in
particulars; , = s;_1, it follows again thaf s;, s; 11, - .., si+x} N E # 0. This proves the only if direction.
Conversely, suppos&’ is a control forA w.r.t. Ayg.n¢ such that for eacls € S and trajectoryr =
80,01, 81,02, - - -, 4j, Sj,Aj+1, - - . CONsistent withA 2, ~and sy = s, it holds that{a;;1,..., a4k} C
Aggent OF @iy, = anop fOr somei > 0 implies that{s;, s;11,..., 4%} N E # 0. We claim thatK wit-
nesseg-maintainability ofS w.r.t. E. Towards a contradiction, suppose the contrary. Hence, it follows fro
the definition ofA;gfm, that there is some statec .S and trajectoryr = sg, a1, s1,a2,...,a;,5;,aj+1,- -
consistent withA2°,,, andsp = s, such that for somg > 0 we haves; € Closure(S, Ag°,,,) and
S5y Sj41y -y Sjtl isin UnfOde,(Sj, A, K), wherel < k, but £ N {Sj, RN Sj—H} = .

By definition of Unfold, (s;, A, K), we have thaf{a;,1,...,aj41-1} € Aagent and thata;; = a;q41

= .- = ajip = Gnep. By hypothesis,E N {s;,...,s;j1x} # 0 holds. Thus, we conclude thd@ N
{Sjti+1,---,5j+x} # 0 must hold, and hende< k. However, by definition of(s, a,.,) we haves;; =
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Sjti41 =+ = Sjpk. Thisimpliesthat? N {s;,...,s;4} # 0, which is a contradiction. This proves tht
witnesses:-maintainability ofS w.r.t. E. O

While this result shows that we could equally well have developed our nofi@gamaintainability on the
basis of trajectories, in the rest of this paper we shall stick to the setting wheshclosure and unfolding.
We find the latter more intuitive, as well as more convenient for designingitdges and for proofs. Fur-
thermore, this setting requires no special handling of possible finite tragstarhich complicates matters
as becomes apparent from Proposition 4.

5 Polynomial Time Methods to Constructk-Maintainable Controls

Now that we have defined the notion/eimaintainability, our next step is to show how sokeaintainable
control can be constructed in an automated way. We start with some histm@dajround. There has been
extensive use of situation control rules [17] and reactive control ifitdr@ture. But there have been far
fewer efforts [30] to define correctness of such control Ajlaed to automatically construct correct control
rules. In [31], it is suggested that in a control rule of the form: “if conditiois satisfied then do action
a”, the actiona is the action thakeads tothe goal from any state where the conditiois satisfied. In [5] a
formal meaning of “leads to” is given as: for all statethat satisfyc, a is the first action of a minimal cost
plan froms to the goal. Using this definition, an algorithm is presented in [39] to construtdintainable
controls. This algorithm is sound but not complete, in the sense that itajeserorrect controls only, but
there is no guarantee that it will find always a control if one exists. THieudlify in developing a complete
algorithm — also recognized in [29] in a slightly different context — canxy@aéned as follows. Suppose
one were to do forward search from a staté&ifNow suppose there are multiple actions from this state that
‘lead’ to E. Deciding on which of the actions or which subsets one needs to choseoisgdatarministic
choice necessitating backtracking if one were to discover that a partichubéce leads to a state (due to
exogenous actions) from whekecan not be reached. Same happens in backward seardin this paper
we overcome the problems one faces in following the straightforward agipesaand give a sound and
complete algorithm for constructingmaintainable control policies.

We provide it in two sets: First we consider the case when the transitiotidarike is deterministic, and then
we generalize to the case whebamay be non-deterministic. In each case, we present different methods,
which illustrates our discovery process and also gives a better gralsp fifial algorithm. We first present
an encoding of our problem as a propositional theory and appeal pogitmmnal SAT solvers to construct
the control. As it turns out, this encoding is in a tractable fragment of SATyliich specialized solvers (in
particular, Horn SAT solvers) can be used easily. Finally, we presdireat algorithm distilled from the
previous methods.

The reasoning behind this line of presentation is the following:

() ltillustrates the methodology of using SAT and Horn SAT encodings tcespteblems;
(i) the encodings allow us to quickly implement and test algorithms;
(iii) the proof of correctness mimics the encodings; and

(iv) we can exploit known complexity results for Horn SAT to determine themexity of our algorithm,
and in particularly to establish tractability.

3Here we exclude the works related to MDPs as it is not known how to exfitesind of goal we are interested in — suctkas
maintenance goals — using reward functions.
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As for (ii), we can make use of Answer Set Solvers such as DLV [2DpBSmodels [40, 50] which extend
Horn logic programs by nonmonotonic negation. These solvers allow efficemputation of the least
model and some maximal models of a Horn theory, and can be exploited toumnstoust or “small”
controls, respectively.

The problem we want to solve, which we refer tokaB AINTAIN , has the following input and output:

Input: Aninput/ is a systemd = (S, A, ®, poss), sets of stated C S andS C S, asetdygen: C A, @
function ezo, and an integek > 0.

Output: A control K such thatS is k-maintainable with respect t© (using the controkK), if such a control
exists. Otherwise the output is the answer that no such control exists.

We assume here that the functignss(s) andezo(s) can be efficiently evaluated; e.g., when both functions
are given by their graphs (i.e., in a table).

5.1 Deterministic transition function ®(s, a)

We start with the case of deterministic transitions, g, a) is a singleton sefs’} whenever nonempty.

In abuse of notation, we simply will writ@(s, a) = s in this case.

Ouir first algorithm to solvé-MAINTAIN will be based on a reduction to propositional SAT solving. Given
an input! for k-MAINTAIN, we construct a SAT instanceit(I) in polynomial time such thatat(I) is
satisfiable if and only if the input allows for ak-maintainable control, and that the satisfying assignments
for sat(I) encode possible such controls.

In our encoding, we shall use for each state .S propositional variablesy, si, ..., sg. Intuitively, s; will
denote that there is a path from stat® some state i’ using only agent actions and at mesif them, to
which we refer asthere is an a-path from to I of length at most.”

The encodingat(I) contains the following formulas:

(0) Foralls € S, and forallj, 0 < j < k:
S5 = Sj+1
(1) Foralls e EN S:

50

(2) For any two states, s’ € S such thatd(a, s) = s’ for some actiom € ezo(s):
Sk = S,

(3) Forany state € S\ Fandalli, 1 <i < k:
si = Vyeps(s) Si—1»  Where
PS(s) ={s' € S| 3a € Aggent N poss(s) : s’ = ®(a,s)};
(4)Foralls € S\ E:

Sk

(5) Foralls € S\ E:

—|SO
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The intuition behind the above encoding is as follows. The clauses in (O}istai€there is an a-path from
s to E of length at mosjj then, logically, there is also an a-path of length at mjadt. Next, the clauses in
(1) say that for statesin S N E, there is an a-path of length O frosto £. Next, (4) states that for any
starting state in S outsideF, there is an a-path fromto £ of length at mosk, and (5) states that for any
states outsideF, there is no a-path fromto E of length 0. The clauses in (3) state that if, for any state
there is an a-path fromto £ of length at most, then for some possible agent actioand successor state
s’ =®(a, s), there is an a-path frost to £ of length at most-1. When looking fork-maintainable controls
the clauses in (2) take into account the possibility thatay be in the closure. If indeedis in the closure
and there is an a-path frogto F of length at mosk;, then the same must be true with respect to the states
s’ reachable frony using exogenous actions. When looking for super-control they plaiean computing
maximal super-controls. The role of each of the above clauses becoreeiear when relating the models
of sat(I) with controls that:-maintain.

Given any model! of sat(I), we can extract a desired contil from it by defining K (s) = a for all s
outsideF with sy true in M, wherea is a possible agent action insuch thats’ = ®(s, a) ands’ is closer
to F thans is. In case of multiple possibleands’, onea can be arbitrarily picked. Otherwisg;(s) is left
undefined.

In particular, fork = 0, only the clauses from (1), (2), (4) and (5) do exist. As easily seet{,[) is
satisfiable in this case if and only.$f C E and no exogenous action leads outsitld.e., the closure of
under exogenous actions is containedinThis means that no actions of the agent are required at any point
in time, and we thus obtain the trivial O-conti&l which is undefined on all states, as desired.

The next result states that the SAT encoding works properly in general.

Proposition 5 Let I consist of a system = (S, A, ®, poss) where® is deterministic, a setl,gen: C A,
sets of state& C S andS C S, an exogenous functiorro, and an integek. For any modelM of sat (1),
letCy = {s € S | M [= si}, and for any state € C), let £,/(s) denote the smallest indexsuch that
M = s; (i.e., 80, 51,...,55+—1 are false ands;- is true), which we call thdevelof s w.r.t. M. Then,

(i) Sis k-maintainable w.r.tE iff sat(I) is satisfiable.

(ify Given any modelM of sat(I), the partial functionk, : S — 24«sent defined onC)y, \ E such that

K]J\r/[(s) = {a € Aggent N poss(s) | ®(s,a) = s,
8/ S CM,EM(S/) < eM(S)},

is a valid super-control fod w.r.t. Aggent;

(i) any control K which refinesk {; for some model of sat(I) k-maintainsS w.r.t. E. O

Proof. Since the if direction of (i) follows from (ii) and (iii), it is sufficient to showetonly if direction of
(), and then (i) and (iii).

As for the only if direction of (i), suppos# is k-maintainable w.r.tE'. Then there exists a contrél such
that for each state € Closure(S, Ax cz0), and for each sequenee= s, s ... s() wheres(®) = sin

Unfold,(s, A, K), {s9, ..., s} N E # (). We now construct an interpretatidd for sat(I) as follows.
Since® is deterministic, for eachin Closure (S, Ak ..,) there is a unique sequene® (=s), sV, .. ., s¥

in Unfold,(s, A, K). Leti (> 0) be the smallest index such that! € E. We assignfalse to sg, s1,...,
s;—1 and assigmrue to s;, s;11,. .., Sk. All other propositions are assigngdi/se. We now argue that/ is
a model ofsat([I).
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It is straightforward to see thadt/ satisfies the formulas generated by (0), (1), (4) and (5). Now caniside
formulas generated in (2). §; is true, thers € Closure(S, Ak, cs0) Dy cOnstruction. In this case, in order to
k-maintainS w.r.t. E, for anys’ = ®(a, s) of an exogenous actian one of the states ibinfold, (s', A, K)
must be inE. Hence,s, has been assigned trued. Now let us consider the formulas generated in (3).
If s; is true for some < k, then there must be an a-path frento £ of length at most, emerging from
possible agent actions only (via contig). Let s’ be the next state in this path. Obviously, there must be an
a-path froms’ to E of length at most—1 (via K). Hence,s,_; must be true inV/. Thus,M is a model of
sat(I), which means thatat(7) is satisfiable.

To show (ii), let us assume thatt(7) has a modelM and consider the partial functidﬁ]\j, . S — 2Aagent
which is defined o \ F by KA‘Z(S) = {a € Aggent N poss(s) | ©(s,a) = ¢, s € Cpr andlps(s’) <
(x(s)}; and for any othes, K (s) is undefined. Foi<;; to be a valid super-control it must satisfy the
following conditions: (a)K;;(s) C poss(s), and (b)K;;(s) # 0 wheneverk;(s) is defined. Condition
() is true by virtue of the construction d@f,;. Condition (b) is true becausk;,(s) is defined when
s € Cypr \ E which meansV = si for somek > 0, which in turn means thaty,(s) > 0, thus making
Ki;(s) #0.

Now to show (jii), letK be any control which refinek’;, for some modelM of sat(I). Let the distance
dk (s, S) of a states from the set of state§ be the minimum number of transitions — through exogenous
actions and/or control actions dictated by the contfol needed to reachfrom any state irt.

We will show, by using induction od(s,.S) > 0, that for every state € Closure(S, Ak, cz0) and every
sequence = s s s with s = 5O in Unfold, (s, A, K), the set{s(?) ..., s()} intersects with
E and thatM |= sy, (i.e.,s € Cyy). This proves the claim.

The base caséjs, S) = 0, is about states € S. From the formulas in (0), (1), and (4) we haVé |= s
for every such state. Then from the construction CKAZ above and the formulas in (3), it follows that
for any such state and for every sequence= s, s(1) ... s with s = 5 in Unfold, (s, A, K), the
set{s, ..., s} intersects withE. Indeed, by taking the actioft (s)) (¢ K;,(s)) in s(), a state
s+ = @ (s, K (s011)) is reached, such thég, (s 1)) < £3,(s®). If | = K, then clearlyl;(s®)) = 0;
otherwise, ifl < k, thenK (s()) must be undefined, which again impliég (s®)) = 0. Thus,s") € E,
which means thags(©), ..., s}y N E #£ (.

Thus the statement holds in the base case. Now for the induction step, stuwmseathat it holds for every
states € Closure(S, Ak, ez0) atdistancel > 0 from S. Let us now consider a state= Closure(S, Ak, ezo)

at distancel+1 from S. Then there is a staté€ at distancel from S such thats = ®(a, s’') and either (i)

a € exo(s') or (i) a = K(s'). In both cases, we have by the induction hypothesis Alfat= s}, and
using (2), (3), and (1) we can concludé |= s;; Furthermore, by construction & and the formulas in
(3), we have by similar arguments as above that for each sequeacel®, sV, ... s®) with s = s in
Unfold,.(s, A, K), {s©0, ..., sOY N E #.

This proves our claim. Now each contil as in (ii) is a refinement ok ;. This completes the proof. O

5.1.1 Horn SAT encoding

While sat(I) is constructible in polynomial time from, we can not automatically infer that solvirig
MAINTAIN is polynomial, since SAT is a canonical NP-hard problem. However, ardlosieat the structure
of the clauses irat(]) reveals that this instance is solvable in polynomial time. Indeed, itaserse Horn
theory; i.e., by reversing the propositions, we obtain a Horn theory. 4 e$e propositiorns whose intuitive
meaning is converse of the meaningsef Then the Horn theory correspondings@t (1), denotedsat(1),
is as follows:
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(0) For allseS andj, 0<j<k:
541 =55
(1) Foralls e EN S:
50 = L.
(2) For any states, s’ € S such that’=®(a, s) for some actioruc exo(s):
sh = 5.
(3) For any state is \ E, and for alli, 1 <i < k:
(/\s’EPS(s) 327—1) = Sis where
PS(s)={s'eS|FacAygentNposs(s): s =P(a, s)}.

(4)Foralls € S\ E:
5= L.
(5) Foralls € S\ E:
50-
Here, | denotes falsity. We then obtain a result similar to Proposition 5, and the mbfelssat(I) lead
to k-maintainable controls, which we can construct similarly; just replace in(iatty; with C; = {s €
S | M = si}. Notice thatC'y; coincides with the set of stat&%;; for the modelM of sat(I) such that

M = piff M [~ p, for each atonp.
We now illustrate the above Horn encoding with respect to an example.

Example 5 Consider the syste = (S, A, @, poss), whereS = {b,¢,d, f,g9,h}, A= {a &, e}, and the
(deterministic) transition functio® was shown in Figure 1, where(s,a) = s’ iff an arcs — s’ labeled
with a is present angloss(s) are all actions that label arcs leaviag

ForA ={a & }andezo(s) = { e}iff s = f andezo(s) = () otherwise, this leads f& = {b}, F = {h},

andk = 3 to the following Horn encodingat(!):

(From 0)

ok Beh heh  osm geo geo
di = dp. do = dj. ds = do. f_1:>f_0 f_2:>f_1 f_3:>f_2
g1 = go- g2 = g1- g3 = §2. h1:>h0. h2:>h1. h3=>h2.

(From 1)
(From 2)
3 = fs.

(From 3)
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EAE:E. aAﬁ:E. @AE:@
do = 1. d1 = G. do = C3.
h__0:>@ h__1:>d__2 h__2:>d__3
ho = f1. hi = fo. ha = f3.

g1- 2. g3.
(From 4)
by = L.

(From 5)

bg. [ do. fo- go-

This theory has the least model

hence(C; = {b,c,d, h}, which gives rise to the super-contil™ such thatk ™ (s) = {a} for s € {b, ¢, d}
and K" (s) is undefined fos € {f, g, h}. In this case, there is a single contéglrefining K, which has
K(s) =afor s € {b,c,d} and is undefined otherwise. This is intuitive: The agent must réaeind has
to avoid takinga’ in b since then it might arrive at the no-good stateThus, she has to takein b and, as
the only choice, in the subsequent statesdd. Also, we might not add any state apart fréme:, andd
without losing3-maintainability. In this particular casé/ is also maximal on the propositioss, where

s € S\ E = {b,c,d, f,g}: By (4), we can not adtl;, and by (0) and the clausesA f» = b3 andd; = &

in (3) then also neithets nor d3. Thus, the above contrdl is also smallest and, in fact, the only one
possible for 3-maintainability. O

As computing a model of a Horn theory is a well-known polynomial problenj, [ thus obtain the
following result.

Theorem 6 Under deterministic state transitions, probl&AV AINTAIN is solvable in polynomial time(d

An interesting aspect of the above is that, as well-known, each satisfiabtetieoryl” has the least model,
My, which is given by the intersection of all its models. Moreover, the least hisdemputable in linear
time, cf. [16, 37]. This model not only leads t&amnaintainable control, but also leads tmaximalcontrol,

in the sense that the control is defined on a greatest set of states dutsideng all possiblé-maintainable
controls forS’ w.r.t. E such thatS C S’. This gives a clear picture of which other states may be added to
S while k-maintainability is preserved; namely, any state€’ify,.. Furthermore, any contrd computed
from M applying the method in Proposition 5 (usif,,.) works for such an extension ¢fas well.

On the other hand, intuitively/amaintainable control constructed from some maximal modeka(fl ) with
respect to the propositiors;, is undefined to a largest extent, and works merely for a smallest extension.
We may generate, starting frodd, such a maximal model df' by trying to flip first, step by step all
propositionssi, which arefalse to true, as well as other propositions entailed. In this way, we can generate
a maximal model of" on {5% | s € S\ E} in polynomial time, from which a “lean” control can also be
computed in polynomial time.
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5.2 Non-deterministic transition function ®(s, a)

We now generalize our method for constructiirgnaintainable controls to the case in which transitions due
to & may be non-deterministic. As before, we first present a general gitap@l SAT encoding, and then
rewrite to a propositional Horn SAT encoding. To explain some of the nosgtwe need the following
definition, which generalizes the notion of an a-path to the non-determinigiiingse

Definition 13 (a-path) We say that there exists an a-path of length at nkost0 from a states to a set of
statesY’, if eithers € S’, ors ¢ S’, k > 0 and there is some actiane Aggen: N poss(s) such that for
everys’ € ®(s, a) there exists an a-path of length at mést 1 from s’ to 5. O

In the following encoding of an instandeof problemk-MAINTAIN to SAT, referred to asat’(I), s; will
again intuitively denote that there is an a-path froto F of length at most. The propositiors_a;, i > 0,
will denote that for such there is an a-path fromto £ of length at most starting with actior (€ poss(s)).
The encodingat’ (1) has again groups (0)—(5) of clauses as follows:

(0), (1), (4) and (5) are the same assirt(1).

(2) For any state € S ands’ such thats’ € ®(a, s) for some actior € exo(s):
Sk = S,

(3) For every state € S\ F and foralli, 1 <i < k:

(31) si = Vacdugenirposs(s) S-i;

(3.2) for everya € AgygentNposs(s) ands'e®(s, a):
s.a; = Si_q;

(3.3) for everya € Aggent N poss(s), if i < k:

S_a; = S_j41-

Group (2) above is very similar to group (2) @ft(/) in the previous subsection. The only change is that
we now haves’ € ®(a, s) instead ofs’ = ®(a, s). The main difference is in group (3). We now explain
those clauses. The clauses in (3.1) and (3.2) together state that if thera-ga#h froms to £ of length at
mosti, then there is some possible actiofor the agent, such that for each statéhat potentially results
by takinga in s, there must be an a-path froshto E of length at mosi-1. The clauses_a; = s_a; i1

in (3.3) say that on a longer a-path froithe agent must be able to piekalso. Notice that there are no
formulas insat’(I) which forbid to pick different actions anda’ in the same state, and thus we have a
super-control; however, we can always refine it easily to a control.

Proposition 7 Let I consist of a systeml = (S, A, ®, poss), a setAygent C A, sets of state&, S C S,
an exogenous functioero, and an integek. For any modelM of sat’(I), letCy = {s € S | M = si},
and for any state € C)y, \ E let /;/(s) denote the smallest indgxsuch thatM = s_a; for some action
a € Aagent N poss(s), which we call thea-levelof s w.r.t. M. Then,

(i) Sis k-maintainable w.r.tE iff sat’(I) is satisfiable;
(ii) given any modelM! of sat’(I), the partial functionKy, : S — 24agent which is defined o'y, \ F by

Ki(s) ={a | M |= s.ag,,(5)}
is a valid super-control; and
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(i) any control K which refinesk’y, for some modeM of sat(I) k-maintainsS w.r.t. E.

Proof. The proof follows the line of argumentation in the proof of Proposition & s$ufficient to show the
only if direction of (i) and both (ii) and (iii).

As for the only if direction of (i), supposé& is k-maintainable w.r.t.E. Then there exists a control
K such that for each state € Closure(S, Ak ), and for each sequenee = (0 s ... s in
Unfold,,(s, A, K) wheres(®) = s, {5 . . sOYn FE # (. We now construct an interpretation for
sat’(I) as follows.

For eachs € Closure(S, A c10), let in each sequenae = 50, s() .. s in Unfold, (s, A, K) with

s = (9, the numbei,, (> 0) be the smallest indexsuch thats(?) € E, and leti* be the maximum over all
i, for s. Intuitively, i* is the length of the longest path in the tree with re@there each node not in £ is
sprouted by taking the control actidf(n) and adding each statedn(n, K (n)) as a child. Then, we assign
trueto s;x, Si=4+1,. .., and, ifi* > 0, t0 s_a;+, s_a;«41, . . . .s_ax, whereK (s) = a. All other propositions
are assignedlalse in M. We now argue that/ is a model ofsat([).

It is straightforward to see thadt/ satisfies the formulas generated by (0), (1), (4) and (5). Now caniside
formulass;, = s}, generated in (2). 1§, is true, thens € Closure(S, Ak .z0) by construction. In this case,
foranys’ € ®(a, s) of an exogenous action we haves’ € Closure(S, Ak, ez0), and sincek k-maintains
S w.rt. E, s, is true in M for somei < k which implies, by construction, thaf, is assignedrue in M.
Let us finally consider the formulas generated in (3);lfwheres € S\ E, is assignedrue in M for some

i € {1 <i <k}, thens € Closure(S, A, K.;,) holds by construction al/. SinceK is ak-maintaining
control ands ¢ E, we must haveX (s) defined and thus, by construction f, we haves_K (s); assigned
true in M. SinceK (s) € Aqgent N poss(s), the clause (3.1) is thus satisfied. Furthermore, each clause in
(3.2) is satisfied when # K(s), since thers,, is assignedfalse in M. Fora = K(s), propositions,,

is true in M and thus, by construction, alse SinceK is k-maintaining control, every staté € ®(s, a)
belongs toClosure(S, A, K .4,). Let, for each sequenceg = s, sV .. s in Unfold, (s, A, K) such
thats(®) = &/, the sequenc® (o) = s(©, s(1) ... s() be the shortest prefix af such thats') € E (notice
that: < k). Then, the sequence P(o) is a prefix of some sequence imfold(s, A, K). Hence, it follows
that in the construction af/, the numbet* for s is larger than the one fof. Thus, by construction af/,

it follows thats!_, is assigned true id/. This means that the formulas in (3.2) are satisfied/inFinally,
the clauses (3.3) are clearly satisfiedlih by construction of\/. Thus, M is a model ofsat’(I), which
means thatat'(I) is satisfiable.

To show (ii), let us assume thadt’ (1) has a mode), and consider the partial functidii,; : S — 2 Aagent
which is defined orCy; \ E by K} (s) = {a | M | s_a,,,(s)}- We thus have to show tha; (s) C
poss(s) andK;;(s) # 0 when K3, (s) is defined. By clause (3.1), and the definition(afr, £, and K5,
this is immediate.

To show (i), let K be any control which refine&’;; for some modelM of sat’(I). Let the distance
dk (s, S) of a states from the set of stateS be as in the proof of Proposition 5. i.e., the minimum number
of transitions — through exogenous actions and/or control actions ditiateeé controlK’ — needed to reach
s from any state irf.

We will show, by using induction od(s,.S) > 0, that for every state € Closure(S, Ak, ¢z0) and every
sequence = 50 s . s with s = 5O in Unfold,(s, A, K), the set{s(?) ... s} intersects with
E and thatM = sy, (i.e.,s € Cyy). This proves thaf{ k-maintainsS w.r.t. E.

The base casé(s, S) = 0, is about states € S. From the formulas in (0), (1), and (4) we haVe |~ sy, for
every such state. Consider any sequenee= s, s(1) ... s in Unfold, (s, A, K) such thats = s(0).

If s € E, then we must have= 0, and{s"),... sV} N E # (). Otherwise,M = s,, wherea = K (s).
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We then haves!) e ®(s,a), and thus by our construction @f and the clauses in (3.2) we have that
M = 5,9_)1. Repeating this argument, we can infer thgf, s,(fl_)l, ...,s,(f)_l are all assignedrue in M. If

k = 1, it follows from the clauses in (5) that!) ¢ E. Otherwise, ifl < k, thenK must be undefined on
s(); by the clauses (1), this again meaf$ ¢ E. Hence,{s(V) ... sW} N E # 0.

Thus the statement holds in the base case. Now for the induction step, Isswsethat it holds for
every states € Closure(S, Ak ¢z0) at distanced(s,S) = d > 0 from S. Let us now consider a state
s € Closure(S, Ak ez0) at distancel(s’, S) = d+ 1 from S. Then there is a staté at distancel(s, S) = d
from S such thats € ®(a, s’) and either (ia € exo(s’) or (i) a € K(s'). In both cases, we have by the
induction hypothesis thal/ |= s}, and we can conclud®/ |= s; from the clauses in (2) in case (i) and
from our construction of{ and the clauses in (3.2), (1), and (0) in case (ii), respectively. Runthre, by

similar argumentation as in the cage= 0 above, we obtain that for each sequeace s, s ... s
in Unfold,,(s, A, K) with s = s(0) it holds that{s(?), ..., s!)} N E # (). This concludes the induction and
the proof of (iii). O

One advantage of the encodingt’(I) over the encodingat(I) for deterministic transition functiod®
above is that it directly gives us the possibility to read off a suitable contvot thes_a; propositionsg €
poss(s), which are true in any modél/ that we have computed, without looking at the transition function
®(s,a) again. On the other hand, the encoding is more involved, and uses a datgefr propositions.
Nonetheless, the structure of the formulasadn' (1) is benign for computation and allows us to compute a
model, and from it &-maintainable control in polynomial time.

5.2.1 Horn SAT encoding (general case)

The encodingat’(I) is, like sat(I), a reverse Horn theory. We thus can rewsii# (1) similarly to a Horn
theory,ﬁ’([) by reversing the propositions, where the intuitive meaning; @nds_a; is the converse of
the meaning of; ands_a; respectively. The encodingit' () is as follows:

(0), (1), (4) and (5) are as isut(I)
(2) For every states, s’ € S such thats’ € ®(a, s) for some actior € exo(s): sh = 3.
(3) For every state € S\ F and foralli, 1 <i < k:
(31) (/\aeAagemﬂposs(s) m) = Si;
(3.2) for everya € AggentNposs(s) ands'e®(s, a):
sy = 5
(3.3) for everya € Aggent N poss(s), if i < k:
S-Git1 = S-G;.

We obtain from Proposition 7 easily the following result, which is the main res$titti® section so far.

Theorem 8 Let I consist of a system = (S, A, ®, poss), a SetA,gen: C A, sets of state&, S C S, an
exogenous functionzo, and an integek. Let, for any model\/ of sat' (I), Cpr = {s | M }~ 55}, and let
Cr(s) =min{j | M V= 52a;, a € Aggent N poss(s)} for everys € S. Then,

(i) Sis k-maintainable w.r.tE iff the Horn SAT instanceat () is satisfiable;
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(i) Given any modelM of sat’(I), every controlK such thatk (s) is defined iffs € C; \ E and satisfies
K(s) € {a € Aggent N poss(s) | M = 52a;,j = u(s)},

k-maintainsS w.r.t. . O

Corollary 9 Problemk-MAINTAIN is solvable in polynomial time. More precisely, it is solvable in time
O(k||I]|), where||I|| denotes the size of input O

Proof. A straightforward analysis yields that the sizesaf (1), measured by the number of atoms in it,
is O(k(|S| + |®| + |poss|)), if Aggent, S, E, ®, poss and ezo are stored in a standard way as bitmaps,
i.e., a (multi-dimensional) array with value ran§@,1} (thus,||I|| = O(|S|?|A| + logk)). Furthermore,
the clauses inﬁ’([) can be easily generated within the same time bound. Since the least model of any
Horn theoryT" is computable in time)(|7'|) where|T'| is the number of atoms in it [16, 37], deciding
satisfiability and computing some mod@ of sat'(I) is feasible inO(k||I||) time. Furthermore(',; and
{(s,0pn(3)) | s € S} are computable frond/ in linear time in the number of atoms, using suitable data
structures, and from this a contrfl as in Theorem 8.(ii) in the same time. Hencé;-maintaining control
for S w.r.t. E is computable irO (k| I]) time.

Note that a more economic representation stéfeB, Aqqe,: as sets (i.e., lists) andl, poss, andezo by
their graphs in tables, i.e., sets of tuplgs, a, ®(s,a)) | s € S,a € A}, {(s,poss(s)) | s € S}, and
{(s,exo(s)) | s € S}. Also under this representation, and if moreover tuples wikigrea)=0 (resp.,
poss(s)=0 andezo(s)=0) are not stored (which is of the same order as storing the sets of fuples s’) |

s e ®(a,s)}, {(s,a) | a € poss(s)}, {(s,a) | a € exo(s)}), theO(k| I|) time bound holds. Indeed, arrays
storingS, E, and.A,gen: for lookup inO(1) time are constructible in tim@(|S| + |A|). Then,poss, g, =
{(s,a) € poss | a € Aqgent} StOringAggent N poss(s) for all s is constructible inD(|poss|) time. From
this, all clauses ofat'(I) except (2) and (3.2) can be readily generated in tiDé(|S| + |P0SS gent!))-
The clauses (2) and (3.2) can be easily constructed flo = {(s,a,s’) € ® | a € ezxo(s)} and
Pposs = {(s,a,5") € @ | a € poss(s)}intime O(|P,0|) andO(k|Pposs|), respectively. The setg,,, and
P05 Can be generated fromandezo in time O(|®|+ |ezo| + poss|), using an auxiliary arrayuxz|.A, S] to
enable random accessdqa, s); notice thatzuz|a, s] needs not be definedd(a, s) = (. In total, sat (I)

is constructible irO(|A| + |exo| + k(|S| + |®| + |poss|)) = O(k||I]]) time. O

Thus in particular, finding a maintaining control under a small window of dppdy, a k-maintaining
control fork bounded by a constant, is feasibldimear timein the size of the input.

Similar as in Section 5.1.1, the least model of the theory giverdsy(I), M,y leads to anaximal
control in the sense that the pre-imagefofoutsider, i.e., the states outside in which K is defined, is
greatest among all possilfemaintaining controls which includg. Furthermore, a smallestmaintaining
control can be similarly computed from any maximal modekaf (1) with respect to the propositions
wheres is outsidely, which can be generated mem'uf by stepwise maximization. Again, both maximal

and smallest controls can be computed in polynomial time.

Example 6 Reconsider the system = (S, A, ®, poss) from Example 5. Let us modify the transition
function® such tha®(c,a) = {d, f} instead of®(c,a) = {d}. Then, for the respective modified instance
I of 3-MAINTAIN , denotedly, the encoding;ﬂ’(]l) looks as follows.

(0), (1), (2), (4), and (5) are as Hut(I;) in Example 5;
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(38.1): b.a; Aba) = by. b_ay A b_al, = bs. b_ag A b_al = bs.
cay; = . cag = C3. cas = C3.
d.a; = d_1 d_.as = d_g d,a3 = d_3
far=fi fas = fo f-az = fs.
(3.2): hg=da;. hi=das. hy=das. hy=fa. h = fas hy= fas.
dy = caj. di = cay. dy = cas. fo = cay. f1 = ca. fo = cas.
20 = b.aj. cGi=bay. @=bas fo=bal. fi=ba, fo=ba).
(33) d_.as = d_aj. d_ag = d_as. fras = f_aj. frazg = f_as. c_ag = c_aj.
c_az3 = c_as. b_as = b_a;. b_as = b_as. b_as = b _a;. _asg = b _as.

It turns out tha@’([) has no models: Fromg, the clausgz = f3 in (2), and clauses in (0), we obtain
thatf;, i € {0,...,3}, is true in every modeM of sat (I;). Hence, by the clausg = b_a3 in (3.2), also
b_al; is true inM. On the other hand, from the formufa = ¢-a3 in (3.2), we obtain that-a; must be true
in M, and thus by the clauseésa; = & in (3.1) ande; = b_as in (3.2) thatb_as is true inM. The clause
b_az Ab_aj = bs thus implies thabs is true in). However, by the formulds = 1 in (4), b; must be false
in M. Thus, no model of sat’(I;) can exist, which by Theorem 8 means that there i§4neaintaining
control forS = {b} w.rt E = {h}. Indeed, regardless of whether a control functidrselectsa or & in
stateb, within at most 2 steps fromthe statef might be reached, from which the exogenous function might
move the system to the no-good state

Suppose now again thét(c,a) = {d, f} and that the agent can takéin g, which results in eitheh or f
(i.e.,®(g,a’) = {f, h} anda’ € poss(g)). Then the Horn encoding:t (I;) changes as follows:

In (3.1), the factgy;, i € {1,2,3}, are replaced by—a; = g;;
In (3.2.), the clauses f& and f, h are added; € {1, 2, 3}:

fo=g.aj. f1 = g.a. fa = g.al. ho = g.a). hy = g_a,. hy = g_al.

In (3.3), the clauses f@& andg are added:

g-al, = g.aj. g-ah = g_a,.

In this encodingsat’ (1) of the modified instancé,, we now longer have a fagg in (3.1.) and thus the
above derivation of a contradiction for the truth valuebgin any model ofﬁ’(lg) is not applicable. In
fact, sat (I,) is satisfiable, and its least model is

M = {%7 Cp, jﬂ%) 90, b—alv cai, b—all) g—alla Ea c1, g1, b—aZ}'

Then, we have®y, = {b,c,d, f,g,h}, L (b) = €rr(c) = Cy(g) = 2 andlps(d) = x(f) = 1, which
leads to a single 3-maintaining contril such thatk'(s) = afor s € {b,¢,d, f} andK(g)=a. Note that
sinceK is defined on every state exceptit 3-maintains every sef w.r.t. everyE which includesh. As
for S = {b}, K(c) and K (d) could remain undefined, since they are not in the closute(ahich can be
easily detected) at the price of losing robustness with respect to enlatgiftgere is an alternative solution
in which K (b) = & instead ofK (b) = a. Here K (s) can not be made undefined on any: 1.0
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5.3 Genuine algorithm

From the encoding to Horn SAT above, we can distill a direct algorithm tetcoct ak-maintainable
control, if one exists. The algorithm mimics the steps which a SAT solver mightitakeder to solve
sat’(I). It uses counters[s] andc[s_a] for each state € S and possible agent actianin states, which
range ovef —1,0,...,k} and{0,1,..., k}, respectively. Intuitively, valué of counterc[s] (at a particular
step in the computation) represents that sGfar. ., s; are assigned true; in particular= —1 represents
that nos; is assigned true yet. Similarly, valaéor c[s_a| (at a particular step in the computation) represents
that so fars_ay, . . ., 5_a; are assigned true (and in particulas: 0 that nos_a; is assigned true yet).
Starting from an initialization, the algorithm updates by demand of the clauses () the counters (i.e.,
sets propositions true) using a commangi(c,:) which is short for “ifc < ¢ thenc := ,” towards a
fixpoint. If a counter violation is detected, corresponding to violation of asday; — 1 fors € SN Ein
(1) orsgy — Lfors e S\ Ein (4), then no control is possible. Otherwise, a control is constructend fhe
counters.

In detail, the algorithm is as follows:

Algorithm k-CONTROL

Input: A systemA = (S, A, ®, poss), a setA.qent C A of agent actions, sets of states.S C S, an
exogenous functioazo, and an integek > 0.

Output: A control K which k-maintainsS with respect ta?, if any such control exists. Otherwise, output
that no such control exists.

(Step 1) Initialization

(i) SetP.y, = {(s,a,5') | s € S, a € exo(s),s’ € P(s,a)}, OE = {(s,a,8') | s€ S\ E, a €

POSS

poss(s), s’ € ®(s,a)}, and for every € S, poss,;(s) = Aagent N poss(s).
(i) For everys in E, setc[s] := —1.
(iii) For everys in S\ E, setc[s] := kif s € S andposs,,(s) = 0; otherwise, set[s] := 0.
(iv) For everys in S\ E anda € poss,(s), sete[s_a] := 0.

(Step 2) Repeat the following steps until there is no changgsprk for somes € S\ E or ¢[s]>0 for
somes € SN E:

(i) For any(s, a, s') € ® ., such that[s'|=k do upd(c[s], k).
(i) For any (s, a, s') € ®E __ such that[s'|=i and0 < i < k do upd(c[s_a], i + 1).

poss
(i) For any states € S\ E such thatposs,,(s) # 0 andi= min(c[s.a] | a € poss,,(s))
do upd(cls], ).

(Step 3) Ifc[s]=k for somes € S\ E or ¢[s]|>0 for somes € SNE, then output tha$ is notk-maintainable
w.r.t. £ and halt.

(Step 4) Output any contrdt’ : S\ £ — Aggent defined on all states € S\ £ with ¢[s] < k and such
that K (s) € {a € poss,4(s) | c[s-a] = minyeppss, () c[s-b] <k} O
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The above algorithm is easily modifiable if we simply want to output a supdraisuch that each of its
refinements is @-maintainable control, leaving a choice about the refinement to the usematitely, we
can implement in Step 4 such a choice based on preference information.

The following proposition states that the algorithm works correctly andirupslynomial time.

Proposition 10 Algorithm k-CONTROL solves problemk-MAINTAIN, and terminates for any inputin
polynomial time. Furthermore, it can be implemented to ru@{k||||) time.

Proof. The correctness of the algorithms follows from Theorem 8 and the fatk#€ONTROL mimics,
starting from facts in (5) and (3.1), the computation of the least modﬂftﬁ([ ) by a standard fix-point
computation. As for the polynomial time complexity, since counters are onlydseck and the loop in
Step 2 is reentered only if at least one counter has increased in the latestfollows that the number of
iterations is polynomially bounded. Since the body of Step 2 and each otpes gtelynomial, it follows
thatk-CONTROL runs in polynomial time.

For the more detailed account, note that bitmapsSpt and A (if not available in the input) can be
generated in ime©(|S| + | A|). In (i) of Step 1, the set&.,, and®’, . can be constructed in tin@(|®| +
lezo|) andO(|®| + |poss| + |S|), respectively, using an auxiliary array for random acceds(tg s) in case

if the functions are given by their graphs (cf. proof of Corollary 9n€tructingposs,,,(s) for all s€S takes
O(|poss|) time, and (ii)—(iv) of Step 1 is feasible in tim@(|S| + |poss|).

Using flags to signal changes to countels, c[s,], and auxiliary counters fanin(c[s_a] | a € poss,4(s)),

the number of calls ofipd in Step 2 iSO (k(|Pezo| + [Pposs| + |S])), and each call takeQ(1) time. The
loop condition can be checked@(m) time wherem is the number of changes in the loop. Hence, the total
time for Step 2 i0(k||I]|). Step 3isO(1) if a flag is set in Step 2 indicating the reason for the loop exit.
Finally, in Step 4, a contrak” can be easily output in tim@(|poss|). In total, the time isD (k|| I||) O

Thus, fork bounded by a constarit; CONTROL can be implemented to run in linear time. We remark that
further improvements are possible. For example, states may be eliminatedhaafdrwhich will not be
reachable from any state $iunder any control that is eventually constructed. This can be don&effic

by computing an upper bound éflosure (S, K 4,¢40) In Which all possible actions at any state are merged
into a single action. We leave a detailed discussion of this and further refinefoe future work.

6 Encoding Maintainability for an Answer Set Solver

In this section, we use the results of the previous section to show how cogppuitimaintainable control
can be encoded as finding answer sets of a non-monotonic logic prolytara.precisely, we describe an
encoding to non-monotonic logic programs under the Answer Set Seméttjcsvhich can be executed on
one of the available Answer Set Solvers such as DLV [20, 33] or Smpt&IS0]. These solvers support the
computation of answer sets (models) of a given program, from which setufio our casek-maintaining
controls) can be extracted.

The encoding is generic, i.e., given byixed programwhich is evaluated over the instanteepresented
by input factsF'(7). It makes use of the fact that non-monotonic logic programs can have muitgdels,
which correspond to different solutions, i.e., differéamaintainable controls.

In the following, we first describe how a system is represented in a logigram, and then we develop
the logic programs for both deterministic and general, nondeterministic donvdashall follow here the
syntax of the DLV system; the changes needed to adapt the programs té\n#iveer Set Solvers such as
Smodels are very minor.
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6.1 Inputrepresentation
The input/ of problemk-MAINTAIN, can be represented by fadt$/) as follows.

e The systemd = (S, A, @, poss) can be represented using predicaést e, t ransi ti on, and
poss by the following facts:

— state(s), foreachs € S;

— action(a),foreacha € A;

—transition(s, a, s),foreachs,s’ € Sanda € A such that’ € ®(s,a);
— poss( s, a), for eachs € S anda € A such that € poss(s).

o the setA, ..t CA of agent actions is represented using a prediageent by factsagent ( a) , for

e the set of state§ is represented by using a predicatear t by factsst art ( s), for eachs € S;
e the set of state&’ is represented by using a predicgteal s by factsgoal ( s) , for eachs € F;

¢ the exogenous functiofxo is represented by using a predicateo by factsexo( s, a) for eachseS
andacezo(s).

e finally, the integelk is represented using a predicatieni t by thefactl i mt (k).

Example 7 Coming back to Example 3, the inpLis represented as follows:

state(b). state(c). state(d). state(f). state(g). state(h).
action(a). action(al). action(e).

trans(b,a,c). trans(b,al,f). trans(c,a,d). trans(d,a,h).
trans(f,a,h). trans(f,e,g).

poss(b,a). poss(b,al). poss(f,a). poss(f,e).

poss(c,a). poss(d,a).

agent (a). agent(al).

start(b). goal (h).

exo(f,e).

limt(3).

6.2 Deterministic transition function ®

The following is a program, executable on the DLV engine, for deciding tisence of ak-control. In
addition to the predicates for the input faétél), it employs a predicate_pat h( X, I ) , which intuitively
corresponds td(;, and further auxiliary predicates.

% Define range of 0,1,...,%k for stages.
range(l) :- #int(l), | <= K limt(K).

% Rule for (0).
n_path(X 1) :- state(X), range(l), limt(K), 1<K, n_path(XJ), J = 1+1.
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% Rule for (1).
;- n_path(X 0), goal (X), start(X).

% Rule for (2)
n_path(X, Ky :- trans(X A Y), exo(X A, n_path(Y,K), limt(K).

% Rul es for (3)
n_path(X 1) :- state(X), not goal (X), range(l), 1>0, not some_pass(X1I).
some_pass(X, 1) :- range(l), >0, trans(X A Y), agent(A),
poss(X, A, not n_path(Y,J), |=J+1.

% Rule for (4)
c- n_path(X K), linit(K), start(X), not goal (X).

% Rule for (5)
n_path(X 0) :- state(X), not goal (X).

The predicate ange( | ) specifies the index range froito &, given by the input i m t (k). The rules
encoding the clause groups (0) — (2) and (4), (5) are straightfdraradt self explanatory. For (3), we need to
encode rules with bodies of different size depending on the transitiatiém®, which itself is part of the
input. We use that the antecedent of any implication (3) is true if it is not falsifibere falsification means
that some atonﬂ, s’ € PS(s), is false; to assess this, we use the auxiliary predate _pass( X, | ).

To compute the super-contral ™, we may add the rule:

% Define C_M
cbar(X) :- state(X), not n_path(X K), limt(K).

%Define state | evel L
level (X, 1) :- cbar(X), not n_path(X 1), I >0, n_path(XJ), |=J+1.

[ evel (X,0) :- cbar(X), not n_path(X 0).

% Defi ne super-control k_plus
k_plus(X A :- agent(A), trans(X A Y), poss(X A, level (X1),
I evel (Y,J), J<l, not goal (X).

In cbar ( X) , we compute the states @, and inl evel (X, I) the levelé;;(s) of each state € C ),
(=Cy; for the corresponding mode¥ of sat(I)). The super-contrdk ;; is then computed ik _pl us( X, A) .
Finally, by the following rules we can nondeterministically generate any coatich refinesk;:

% Sel ecting a control from k_pl us.
control (X, Y) :- k_plus(X Y), not exclude_k plus(XY).

exclude_k_plus(X Y) :- k_plus(XY), control (X, 2), Y<>Z

The first rule enforces that any possible choice&trs) must be taken unless it is excluded, which by the
second rule is the case if some other choice has been made. In combinatioo thées effect that one and
only one element frond(;; (s) is chosen fork (s).
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Example 8 If the input representation of Example 5is in a #ea3. dl v and the above program, denoted
by T4, in a filedet . dl v, the DLV engine can be invoked e.g. by

dlv exa3.dlv det.dlv -N=3 -filter=control

which outputs the controls; herd\=3 sets the range of integers dynamically supported by the engine to 3,
and -filter=control effects that the answer sets are clipped to the ptedicat r ol . In the particular case,
the output on the call is (apart from system version information)

control (b,a), control (c,a), control (d, a)

yielding the unique control which exists in this case. If we would add a fugbent actiora, to the action
set, and extend the transition function ®yb, as) = ¢, then a call of DLV for the respective representation
would yield

{control (b,a2), control(c,a), control(d,a)}
{control (b,a), control(c,a), control (d,a)}

corresponding to the two alternative controls which emerge, since the@getake either actiomor action
ay in statea.
6.3 Nondeterministic transition function

As for deciding the existence offamaintaining control, the only change in the code for the deterministic
case affects Step (3). The modified code is as follows, wheapat h( X, A, 1) intuitively corresponds to
X_Aj.

% Rules for (3); different from above

% (3.1)
n_path(X 1) :- state(X), not goal (X), range(l), 1>0, not sonme_apass(X1).
some_apass(X, 1) :- range(l), 1>0, agent(A), poss(X, A, not n_apath(X A1),
not goal (X).
% (3. 2)

n_apath(X A ) :- agent(A), trans(X A Y), poss(X A), range(l), 1>0,
n_path(Y,J), [=J+1, not goal (X).

% (3. 3)
n_apath(X, A 1) :- agent(A), poss(X A, range(l), 1>0, limt(K), I<K
n_apath(X, A J), J=I+1, not goal (X).

Here,sone_apass( X, A | ) plays for encoding (3.1) a similar role asmne_pass( X, | ) for encoding

(3) in the deterministic encoding.
To compute the super-contrél;’, we may then add the following rules:

% Define C_.M
cbar(X) :- state(X), not n_path(X K), limt(K).
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% Define state action |evel, alevel (>=1)
alevel (X, 1) :- alevel _leq(X 1), I=3+1, range(J), not level _leq(XJ).

alevel _leq(X, 1) :- cbar(X), not goal (X), poss(X A), agent(A), [>0,
range(l), not n_apath(X A l).

% Defi ne super-control k_plus
k_ plus(X A :- agent(A), alevel (X 1), poss(X A, not n_apath(X A l).

Here, the value of ;(s) is computed iral evel ( X, 1), using the auxiliary predicatd evel _l eq( X, I)
which intuitively means that,; (X) < I.

For computing the controls refining;;, we can add the two rules for selecting a control frempl us
from the program for the deterministic case.

Example 9 Let us revisit the instanch in Example 6. We get the DLV representation/efoy adding the
facttrans(c, a, f) . tothe representation fdr Assuming thatitisin afilexa4. dl v and the program
I1,,4.: in afilendet . dl v, a call

dlv exad.dlv ndet.dlv -N=3 -filter=control

yields no output (apart from some system version print), which is cor@tthe other hand, if we consider
the inputl, for the variant of Example 6 (with agent actiehpossible ing and®(g, a’) = {f, h}), then the
output is

{control (b,al), control(c,a), control(d,a), control (f,a), control(g,al)}
{control (b,a), control (c,a), control(d,a), control (f,a), control(g,al)}

(whereal encodes). Again, this is the correct result.

6.4 Layered use of negation

An important note at this point is that the prograhhg, andIl,,; do not necessarily have models which
correspond to the least models of the Horn theosig$l) andsat (1), respectively. The reason is that the
use of negatiomot sone_pass( X, 1) and respnot sone_apass( X, |) may lead through cycles
in recursion. Thus, not each control computed is necessarily maxina (eeugh the maximal controls
will be computed in some models). Furthermore, because of cyclic negatiomat &priori clear that the
part of the program deciding the existence of a control is evaluated ®yilDpolynomial time. However,
consistency (i.e., existence of an answer set) is guaranteed whe(\[erresp.ﬁ’(l) has a model.

Itis possible to modifytl,.; such that the use of negation in recursion cycles is eliminated, by usingstand
coding methods to evaluate the body of the rule in (3). Namely, introdudé fora predicateal | _tr ue

and replacenot sone_pass( X, 1) in the code for (3) withal | _t rue( X, 1), which is defined such
thatal | _true(s,i) represents that every; ; € PS(s) is assigned true, which can be checked using a
linear ordering< on PS(s). However, we refrain from this here.

Notice that in the case whef@S(s) has size bounded by a constantve can use a predicages of arity

¢+ 1 to representPS(s) = {s(1),... s} by a single factps (s, sV, ... s, ... s!)) wheres® is
reduplicated iff < c. Itis then easy to express the clause (3).

We can similarly modifyll,,4.; such that the use of negation in recursion cycles is eliminated, where we
use a linear ordering oM ,gen: N poss(s) (or simply onA,gen:, @assuming that there are not many agent
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actions overall). Finally, we can also use for the progidg; simply an ordering of4,4c,:, since the
deterministic transformatiof® (s, a) is a (partial) surjective mapping of onto PS(s), which guarantees
that via.4 N poss(s) eachs’ € PS(s) can be accessed through

The modified programs use negation only in a stratified manner, and thus vellabeated by DLV in
guaranteed polynomial time in the size of the DLV representatica(fl) andsat (I), respectively.

6.5 State descriptions by variables

In many cases, states of a system are described by a vector of valpesdmeters which are variable over
time. Itis easy to incorporate such state descriptions into the LP encodimgfove, and to evaluate them
on Answer Set Solvers provided that the variables range over finiteidsia fact, if any state is given
by a (unique) vectos = (s',...,s™) m > 0, of valuess’, 1 < i < m, for variablesX; ranging over
nonempty domains, then we can represeas factst at e( ¢, . . ., v,i,i) and use a vectoXl, ..., Xm
of state variables in the DLV code, in place of a single variakléJo further change of the programs from
above is needed.

Similarly, we can easily accommodate actior{$”;, P, ..., P,,) with parameters, ..., P, (which is
important) from a finite set if desired. However, here rule the defiaigl ude _k_pl us( X, Y) should be
replaced by all rules emerging if the atdfn<> Zin the body isreplaced byi <> Zi,i €{1,..., m}
(assuming tha¥ andZ are replaced by1, . .., YmandZl, . . ., Zm respectively).

Another possibility to handle state descriptions by variables would be to implententing scheme, which
maps each vector = (s!, ..., s™) into an integei(s), represented by factode (i(s), s', ..., s™).

Furthermore, we point out that the input need not consist merely of fagisnay also involve rules to define
the predicates of the input representation more compactly. Finally, the éacsti on can be dropped,
since they are not referenced by any rule in progréims andl,, ;.

For illustration, we consider the buffer example from Section 3.

Example 10 Recall that states in the buffer example are given by pairs of intéggjswherei and; are
the numbers of objects in buffér andb,, respectively. We thus use variablt, X2 andY1, Y2 in place
of XandY, respectively.

For buffer capacity of 35 = {(0,0)}, E = {(0,5) | 1 < j < 3}, andk = 6, the input can be represented
as follows:

state( X1, X2) :- #int(X1), #int(X2), X1l <= 3, X2 <= 3.
start (0,0).
goal (0, X2) :- state(0, X2).

trans(X1, X2, m 12, VY1, Y2) :- state(Xl, X2), state(VYl, Y2), Xl=Y1+1l, Y2=X2+1.
trans(X1, X2, m 21, Y1, Y2) :- state(Xl, X2), state(Yl, Y2), Y1=X1+1, X2=Y2+1.
trans(X X2, proc, X, Y2) :- state(X X2), state(X Y2), X2=Y2+1.

trans(X1, X,ins, Y1, X) :- state(X1,X), state(Yl, X), YL1=X1+1.

poss( X1, X2, m12) :- state(Xl, X2), 1 <= X1, X2 <= 2.
poss( X1, X2, m21) :- state(Xl, X2), 1 <= X2, Xl <= 2.
poss( X1, X2, proc) :- state(Xl, X2), 1 <= X2.

poss( X1, X2,ins) :- state(X1, X2), X1 <= 2.
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agent(m 12). agent(m 21). agent(proc). exo(ins).
[imt(6).

Here, equalitieX1=0 for X1, X2 in the rule defininggoal andX1=Y1 in the definition ot r ans( X, X2,
proc, X, Y2) etc are pushed through.

Invoking DLV, assuming the representation is stored inda- buf f er . dl v and the expanded version
of Il in a filedet 2. dl v, with

dlv exa-buffer.dlv det2.dlv -N=6 -filter=control
yields 13 models, of which encode different controls. Among the maximataisris

{ control (1,0, m12), control (1,1, m12), control (1,2, m12), control (1,3, proc),
control (2,0,m12), control (2,1, m12), control (2, 2,proc), control (2,3, proc),
control (3,0,m12), control (3,1, proc), control (3,2,proc), control (3,3,proc)}

which is defined on all states outside and thus constitutes@amaintaining control for the whole system.

7 Computational Complexity

In this section, we consider the complexity of constructingnaintainable controls under various assump-
tions. To this end, we first describe the problems analyzed and giveesmi@w of the complexity results.
After that, the results are established in a separate subsection; thewadsinot interested in the technical
proofs might safely skip it.

7.1 Problems considered and overview of results

Following the common practice, we consider here the decision problemassbwithk-MAINTAIN , which
we refer to ask-MAINTAINABILITY : Given a systemd = (S, A, @, poss), a setAqgent C A of agent
actions, sets of statds, S C S, an exogenous functiosro, and an integek > 0, decide whethef is
k-maintainable with respect t&' in A. Furthermore, we also considerMAINTAINABILITY , which has
the same input exceptand asks whethef is maintainable with respect # in A.

We consider the problems in two different input settings, in line with the prevéeations:

Enumerative representation: The constituents of an instandeare explicitly given, i.e., the setsA(S,
Aagent, S, andE) in enumerative form and the function®((u, s), poss(s), andezo) by their graphs

in tables.
State variables representation: A system states is represented by a vecter= (v, ..., v,,) of val-
ues for variables,. .. .f,,, ranging over given finite domain8y, ..., D,,, while A and A,.,: are

given in enumerative form. We assume that polynomial-time proceduresdlating the following
predicates are available:

e in_Phi(s,a,s’), in_poss(s,a), andin_exo(s, a) respectively for deciding’ € ®(s, a),
a € poss(s), anda € exo(s), respectively.

e in_S(s)andin_E(s) for deciding whetheg € S ands € E, respectively.
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+/- exogenous actions k-MAINTAINABILITY w-MAINTAINABILITY

givenk constantc > 1
deterministic/ P/NL (Th.11/15)| P/inLH (C L) (Th.11/16)| P/NL (C0.12/Th.15)

nondeterministic P (Th.11/13) P/inLH (C L) (Th.11/16) P (Co0.12/Th.13)

Table 1: Complexity of deciding- andw-MAINTAINABILITY under enumerative representation (logspace
completeness)

+/- exogenous actions k-MAINTAINABILITY w-MAINTAINABILITY
givenk constant; > 1
deterministic| EXP / PSPACE (Th.18/21) | EXP / co-NP (Th.18/22) | EXP / PSPACE(C0.19/Th.21)
nondeterministic EXP (Th.18/20) EXP / co-NP (Th.18/22) EXP (C0.19/Th.20)

Table 2: Complexity of decidings- and w-MAINTAINABILITY under state variables representation
(logspace completeness)

Orthogonal to this, we also consider (1) genérakrsus constarit, in order to highlight the complexity of
small windows of opportunity for maintenance; (2) absence of exogeactions, to see what cost intuitively
is caused by an adversary; and (3) nondeterministic versus determioigticsa

The results of the complexity analysis are compactly summarized in Tables 1 emdlfich unless stated
otherwise, the entries stand for completeness results under logspacgaesl We assume that the reader
is familiar with the classeB (polynomial time),EXP (exponential time)L (logarithmic workspace)\L
(nondeterministic logarithmic work space), Bi? (co-nondeterministic polynomial time), afRSPACE
(polynomial space) appearing in the tables, and refer to [44] ancerefes therein for further background
on complexity. ByLH we denote the logarithmic time hierarchy [7, 27], which is giveiLby= |, Ei‘)g,
whereZiOg denotes the decision problems solvable on an alternating Turing machine rHoge time
with at mosti—1 alternations between existential and universal states, starting in an &aistéate. Note
thatLH is strictly included inL. A more refined complexity assessment is given in Section 7.2. However,
we refrain here from providing a sharp complexity characterization optbklems classified withihH in
terms of completeness under a suitable notion of reduction, since theytarenti@l to the maintainability
issue under an “adversarial” environment.

Under enumerative representation (Table i)and w-MAINTAINABILITY have the same complexity as
Horn SAT, which isP-complete [44]. Thus, according to widely believed complexity hypothésegrob-
lem is difficult to parallelize and to solve within poly-logarithmic workspace. dctf this holds also for
the case of constait= 1 and the restriction that all actions are deterministic and that there is a single ex-
ogenous action. Thus, even in the simplest setting with an adversarydaarts the dimensions above,
the problem already harbors its full complexity; excluding nondeterministioraand/or fixing: does not
make the problems simpler. Intuitively, this is because with the help of exogawions, one can simulate
nondeterminism and split sequences of agent maintenance actions intoegmadings.

On the other hand, when exogenous actions are excluded (listed ut)der-“andw-MAINTAINABILITY

are always easier when the actions are deterministic or the window oftapfgiis small ¢ is constant).

In summary, the results show that exogenous actionsiotime compiled efficiently away (with reasonable
complexity) to an instance of maintainability under a small window opportunity, aatchttmdeterministic
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actions are indispensable for such a compilation.

The reason is that in absence of exogenous actiohdAINTAINABILITY is akin to a graph reachability
resp. planning problem (for the latter, see Section 8.1). Indeed, defiadixed systemi=(S, A, ®, poss),

a set of agent actiot,4en: € A, and setsly, S C S of states the predicates(s), @ > 0, ons € S
inductively by

ro(s) = s € E,
rit1(s) = s € EV 3a € Aggent N poss(s)
Vs' € S(s' € ®(s,a) = ri(s)), fori > 0. 1)

Informally, r; (s) expresses that some stateFirtan be reached fromwithin ¢ agent actions, and it holds that
S is k-maintainable with respect B, exactly ifry(s) holds for everys in S (as proved in Lemma 1 below).
The predicater;(s) is definable in first-order predicate logic with a suitable relational vocaplesing
the predicates given for enumerative representation). As well-knibverirst-order definable properties are
those which can be decidedlitd [7, 27]. SinceLH is considered to contain problems which have much
lower complexity than hard problems it the effect of exogenous actions is drastic in complexity terms.
Furthermore, problems ibH are amenable to parallelization (see [27]).

Under state variables representation (Table 2), the complexity of the prebhdth few exceptions increases
by an exponential. This increase is intuitively explained by the fact that\&aitebles permit in general an
exponentially smaller input representation, which must be unpackedlfangthe problem. The exception
for constant in absence of exogenous functions, where the complexity increasesvithin LH to co-NP,

is intuitively explained by the fact that the quantifiefd’ € Aygent N poss(s)” in equation (1), as opposed
to “vs' € S”, ranges over a polynomial set of values (in the input size), and thubealeterministically
eliminated.

The EXP-completeness means that the problems are provably intractable, i.e., haxpaaential lower
bound in this setting. Even in the “cheapest’ cases under state variabbseafation, the problems are
intractable. Exogenous actions cannot be compiled efficiently away in the cases as under enumerative
representation.

7.2 Enumerative representation

We start with the case of enumerative representation. Our first resudt fsltbwing.

Theorem 11 Problemk-MAINTAINABILITY is P-complete (under logspace reductions). Fibardness
holds under the restriction that= f(A, S, E') is any function of4, S, andE such thatf(A, S, E) > 1 (in
particular, for fixedk > 1), even if in addition all actions are deterministic and there is only one exogeno
action.

Proof. The membership gf-MAINTAINABILITY in P follows from Corollary 9.
We proveP-hardness under the stated restriction by a reduction from deciding legi@élmentr |= g of a
propositional atong from a propositional Horn logic program (PHLR) which is a set of rules of the form

b0<_b17"'767’17 n207 (2)

and eachb; is a propositional atom from an underlying atom det b, is the head and, . . ., b, is the body
of the rule.
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As well-known, 7= |= ¢ holds iff there is a sequence of rules r,...,r,, m > 1, from = wherer;

is of form b;, < b;,,...,0b;,, such that{b;,,...,b;,} < {b1,,....bi—1,}, foralli € {1,...,m} (thus

in particular,1,, = 0) andb,,, = ¢, called aproof of ¢ from 7. Informally, ¢ is derived by successive
application of the rules, .. ., r,,, wherer; “fires” after all previous rules, . .., r;_1 have fired.

A natural idea is to represent backward rule applicatignr,,_1, ..., r; through agent actions; for a rule
r of form (2), there is an agent actianr which applied to a state,, representingy, brings the agent
nondeterministically to any statg, representing;, i € {1,...,n}. Given a state, encodingy, S = {s,}

is maintainable w.r.t. a set of statésencoding the facts ifr if ¢ has a proof fromr. However, this does
not account for the restriction that= f(A, S, E) for any suchf. The key for this is to establish the result
for the extremal case whefe=1 is constant (i.e., for MAINTAINABILITY ) and then to extend it to the
general case.

Using a constrained rule format in and an exogenous action, we can emulate nondeterministic agent
actions and sequences of agent actions with some coding tricks by altgreatjpences of deterministic
agent and exogenous actions, such that provabilityfodm 7 corresponds t@-maintainability ofS w.r.t.

a setF in a systemA constructible in logarithmic workspace frogrand.

Without loss of generality, we assume that each rule has either zero otdws & the body (i.en = 0
orn = 2in (2)). We construct fromr andq a systemAd = (S, A, @, poss), sets of state§ and £, a set
Aagent € A, and a functiorezo as follows:

€
S,
,arl/ X
(

e
@)
@ w@'

Figure 3: Transition diagram of the system for= {a < b,¢; b < ; ¢ <} andq = a (S and E encircled).

1. S: For each atonf in w and ruler € =, f°,... f™andr!, ..., »™ are states i&. Furthermore, if the
body ofr is u, v then(u,v)?, ..., (u,v)™"! are states irs.

2. A={ar|remn}U{e}.

3. @: For any ruler € 7 with headf, ®(a_r, f*) = {r'} fori € {1,...,m} and®(a_r, (u,v)*) = {r'},
for (u,v)! € S,i € {1,...,m — 1}. If moreoverr has bodyu, v, then@(e,r’) {(u,v)""1}, and
®(e, (u,v)"1) = {v=1}, fori € {1,...,m — 1}. In all other casesp(a, s) = ().

4. poss: For each state, poss(s) = {a € A | ®(a,s) # 0}.

5. E={rl,....r"|recn}
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6.5 = {g™).
7. Aggent = A\ {e}.

8. exo: for all rulesr € 7 of form f «— w, v, ezo(r') = {e} fori € {1,...,m} andezo((u,v)?) = {e}
forj € {1,...,m — 1}. For all other states, ezo(s) = 0.

The transition diagram for the system constructed«foe {a < b, b —, ¢ <} is shown in Figure 7.2.
Intuitively, the statef’ encodes thaf can be derived fromr with a proof of length at most. This is
propagated in backward rule application. Each agent aetioselects a rule to prove an atony; if the
rule has a body:, v, the exogenous action pushes the agent to prove ddgfftom (u,v)) andv within
decreased recursion depth.

We claim thatr |= ¢ iff there exists some 1-maintaining contdgl for S with respect ta¥ in A.

Suppose first that = ¢. We then construct a 1-maintaining contfdlfor S with respect taF as follows.
Let P = rq,...,r; be a proof ofg from = such that, without loss of generality, all ruleshave different
heads. Seb = {¢™} and iterate the following untiD remains unchanged: For eaghc D resp.(u, v)’ €
D, i >0, letr; be the rule with head resp.u in P. Define K(f%) = {a.r;} resp.K((u,v)") = {a-r;},
and add, ifr; has bodyu/, v’ the stategu, v)'~! andv’""! to D. SinceP is a proof ofq from , the ruler;
always exists, and for each staten Closure(S, Ak ez0) \ E (=D), K (s) is defined andb (K (s), s) yields
some state irk. Hence,K is a 1-maintaining control fof with respect ta2 in A.

Conversely, suppos& is a 1-maintaining control fof with respect toF in A. Without loss of gener-
ality, K(s) is undefined for all states € E. An easy induction on > 1 shows that for eaclf’ ¢
Closure(S, Ak ezo) T€SP.(u,v)" € Closure(S, Ak exo), it holds thatr = f resp.r = v andr | v. For
i=1, suppose firsK (f') = a_r. Ruler must have formf « ; otherwise, some statés, v)°, v would
be in Closure(S, Ak z0), Which contradicts thak’ is a 1-maintaining control. Hence, = f. Next sup-
poseK ((u,v)') = a_r. Then, for similar reasons, must be of formu «, hencer |= u. Furthermore,
vl € Closure(S, A, ¢z0) and as already established= v. Fori > 1, supposeX (f?) = a_r. Then either
is of form f — and thust = f, or of form f « w, v. Inthe latter cas€u, v)'~! € Closure(S, Ak exo) and
hence, by the induction hypothesisi= u andr |= v. Consequentlyr |= f. Similarly, if K ((u,v)?) = a_r,
then eitherr is of formu < or of formu «— «’,v" and («/,v")""! € Closure(S, Ak exo), Which by the
induction hypothesis implies = «' andr = v/, thust = u. Sincev® € Closure(S, Ak ez0), @s already
establishedr = v. Consequentlyy = f. This proves the statement for> 1, and concludes the induction.
Sinceq™ € Closure(S, Ak ex0), We haver |= ¢. This proves our claim.

Notice thatA4, S and E' can be constructed in logarithmic workspace frerandq. This provesP-hardness
of 1-MAINTAINTABILITY . An easy observation is that every agent action in the systdeads to some
state in the seF described. Hence$ is 1-maintainable with respect t6 in A iff S is k-maintainable
with respect toF in A for any f(A, S, FE) such thatf(A, S, E) > 1. Hence,P-hardness under the stated
restriction follows. O

The following result is immediate from this result and the fact that maintainabilitgusvalent tok-
maintainability wheré: = |S| is the number of states.

Corollary 12 w-MAINTAINABILITY is P-complete. Thé>-hardness holds even if all actions are determin-
istic and there is only one exogenous action.

The following result states a furthBrcomplete restriction of the above problems.

Theorem 13 k-MAINTAINABILITY andw-MAINTAINABILITY without exogenous actions dPecomplete.
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Proof. Membership irP was established above. TRehardness follows from Theorem 11 by merging the
(single) exogenous actianinto the agent actions as follows: For each stagech that € ezo(s), redefine
every actiornn € poss(s) N Aggent DY ®(s,a) := ®(s,a) U P(s,e). Itis easy to see that givesiandE, S

is |S|-maintainable w.r.tE in the resulting system’ iff S is |S|-maintainable w.r.tE' in A. Furthermore,
A’ is computable in logspace fror. This implies the result. O

The hardness results above are at the border of the hardnessrfrontlee sense that in the absence of
exogenous actions and, in caseweMAINTAINABILITY also nondeterminism, the problems are no longer
P-hard. The following lemma gives a useful characterizatioh-ofaintainability for this purpose.

Lemma 14 Given a systemd = (S, A, ®, poss), a set of agents actiaf,g.. C A, and a set of states, a
set of state$' is k-maintainable with respect tB in absence of exogenous actions (iezq is void), k > 0,
iff r(s) asin (1) holds for alk € S.

Proof. For the only if direction, consider any 1-maintaining contkdwhich without loss of generality is
undefined on every € E. For every state € Closure(S, Ak ez0) = Closure(S, Ax ), letd, be the distance
of s from E underK, i.e., the largest such that: = s, s1,...,s; € Unfold,(s, A, K) wheresy = s. By
an easy induction ods > 0, we obtain usind¥ (s) as witness for in (1), thatry, (s), 74, +1(8), ..., rk(s)
must hold fors. Hence;(s) holds for everys € S.

Conversely, let for each € S be i, the least integei such thatr;(s) holds. Ifi; > 0, then define
K(s) := a for some arbitrary actiom € Aygent N poss(s) witnessing (1) fori + 1 = iy, otherwise
(i.e., if i, = 0 or r;(s) does not hold for any > 0) let K(s) undefined. Thenk is a k-maintaining
control for S with respect toF, since by definition of the relations, for eachs € Closure(S, Ak ), and
o = S0, 581,-..,8 € Unfold,(s, A, K) such that, = sitholds that < k ands; € E (recall that, as tacitly
assumed®(a, s) # 0 for eacha € poss(a)). Hence,S is k-maintainable with respect tb. 0

We then establish the following result.

Theorem 15 k-MAINTAINABILITY andw-MAINTAINABILITY for systems with only deterministic actions
and no exogenous actions &tk -complete.

Proof. In this case, deciding;(s) for givens€S andi>0 is in NL: If s¢ F, a propera in (1) and
s’ = ®(s,a) can be guessed and, recursively, | (s') established, maintaining a counterThis is feasi-
ble in logarithmic workspace in the representation sizel 0By looping through alk € S, it thus follows
from Lemma 14 that deciding whethgris k-maintainable with respect t&, wherek < |S|, is nonde-
terministically feasible in logarithmic workspace. This implk-membership ofk-MAINTAINABILITY
andw-MAINTAINABILITY . The hardness follows from a simple reduction of the well-knd¥rrcomplete
REACHABILITY problem [44] tok- resp.w-MAINTAINABILITY : Given a directed graptd = (V, F) and
nodess, t € V, decide whether there is a directed path froto ¢ in G. DefineA = (S, A, ®, poss) such
thatS = A =V, ®(v,w) = w, andposs(v) = {w | v — w € E}. Then, fordsgens = A, S = {s}is
|V |-maintainable w.rtEl = {t} in A iff there is a directed path fromto ¢ in G. Clearly, A is constructible
in logarithmic workspace frort:. This shows thélL -hardness. O

In case of constart, equation (1) is decidable by a straightforward deterministic recursiveepure in
logarithmic workspace, even under nondeterminism, since the recurgtmiddounded by a constant and
each recursion level requires only logarithmic work space. Helidd AINTAINABILITY is decidable in
logarithmic space. A finer grained analysis that it is within the db}@%, of the logarithmic time hierarchy,
which is a much better upper bound and makes completeness for logspdee guitable reductions) fairly
unlikely.
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We assume that the inplitof k-MAINTAINABILITY for fixed &, is a relational structurd; with universe
U(Mj) =SUA, and relations ovel/ (M) for the predicatesn_Phi(s,a, s'), in_poss(s, a), in_exo(s,a),
in_S(s) andin_E(s) from above, and relations for the additional predicatgsact(a), in-S(s), and
in_A(a) representing membership € A,gent, s € S anda € A for eachs,a € U(y), respectively.
The structureM is encoded in a standard way by a bit-string [27].

Theorem 16 Problemk-MAINTAINABILITY for systems without exogenous actions isﬂé’kﬂl (=co-
Sy 1), if k > 0is constant.

Proof. Any first-order formulayy vV Qz o resp.y1 A Qz o such thatyy has no free variables and
Q € {3,V}, is logically equivalent taQx (1 V 12) resp.Qx (1 A o). Exploiting this,r;(s) in (1) can
be written, using the vocabulary from above, as a first-order forla) in prenex form

Jr1Veodas - - Qraptp(wy, ..., Tk, )

wherey(zy, ..., x, x) is quantifier-free, such that for any elemert U (M) of an input structure\, the
sentenceén_S(s) A ¢ (s) is true onM iff r,(s) holds. Hence, by Lemma 14;maintainability ofS w.r.t. £

in A is definable by dl;, 1 prenex sentencéxo3x; - - - Qrap (xo, 21, . . ., xk), Wherey' (zo, 1, ..., xk)

is quantifier-free, on the above vocabulary. Whether a fixed sudbrsamis false on a given structukd ;
can be decided by an alternating Turing machine, starting in an existentialistagarithmic time using:
alternations [7, 27]. Hence, the problem is in©{§¢, = IL}%, |. 0
We remark that the hardness results in this section can be further stneedtioedhe case where only 2 agent
actions are available, but leave a proof of this to the interested reader.

7.3 State variables

The following is an easy lemma, which in combination with the results in the previdasestion implies
most upper bounds in Table 2.

Lemma 17 For any instance df-MAINTAINABILITY resp.w-MAINTAINABILITY in which states are rep-
resented by variables, the corresponding instance in ordinary (eative@form can be generated in poly-
nomial workspace.

Using this lemma, we then prove the following result.

Theorem 18 Under state representation by variablegyl AINTAINABILITY is EXP-complete. Th&aXP-
hardness holds under the restriction that f (A, S, E') is any function of4, S, andE such thatf (4, S, E) >

1 (in particular, for fixedk > 1), even if in addition all actions are deterministic and there is only one ex-
ogenous action.

Proof. Membership irEXP follows easily from Lemma 17 and Theorem 11. TEX¥P-hardness is shown
by a reduction from deciding inferenee = p(t) of a ground atonp(c) from a function-free Horn logic
programm with variables (i.e., a datalog program), which consists of rules of the form

po(to) < pi(t1), ..., pn(tn), n >0, (3

where eaclp; is the name of a predicate of arity > 0 and?; = t;1,...,t;, is a list of constants and
variablest; ;; po(to) is the head ang (t1), . .., pn(%,) the body of the rule.



INFSYS RR 1843-04-04 37

It holds thatr |= p(c) iff there is a sequence rules of the formp;,(t;,) — pi, (ti,),- .., pi, (L) and
substitutiong); for r;, i.e., a mappings from the variablessinto the set of constants. in «, such that
{pil (Z”HZ), ey Diy (Zzn@l)} - {plo (flogl), -y Di—1, (fi_loei_l)}, foralli € {1, e ,m} (thUS in particu—
lar, 1,, = 0) andp,, (tm,0m) = p(¢), called aproof ofp(¢) from . Informally, p(¢) is derived by successive
application of the rule instancest, .. ., 7,0, like in a propositional logic program.
Deciding whetherr = p(t) is well-known to beEXP-complete, cf. [13]. The construction is similar in
spirit to the one in proof of Theorem 11 but more involved.
To prove EXP-hardness ofk-MAINTAINABILITY under the given restriction, we first focus on problem
1-MAINTAINABILITY , and we describe how to reduee = p(¢) in logarithmic workspace to deciding
1-maintainability of a set of statésw.r.t. a set of state&' in an agent syster.

Without loss of generality, we make the following assumptiong @mdp(c):

e The set of constants occurringin C, is {0, 1};

each ruler in 7 has either zero or two atoms in the body;

all rules inr are safe, i.e., each variahlé occurring in the head of a rulealso occurs in the body;

m uses only one predicatg,
e ¢=(0,0,...,0).

Any problemr = p(¢) can be transformed to an equivalent one of this form in logarithmic wodespa
Similar as in the propositional case, the idea is to represent a reversdgd-prd,,,, . . ., 161 of p(¢) from

« through agent actions, and model backward rule applications throwggtt agtions; note that ranges
from 1 to2%, wherea,, is the arity ofp (thusm requiresa,, bits). The problem here which makes this more
complex is the fact that we must, for each rujealso take); into account. Ifr; has a nonempty body, the
candidates fof; are systematically generated by alternating agent and exogenous aetioeach possible
suchd;, the derivation of the body atomgt;,6;) andp(;,0;) is then explored.

More precisely, for each ground atgs(t), andm < {0, ..., 2P}, we have a statg, m, prove) outsideEl
which intuitively says thap(¢) is derivable withinm (0 < m < 2P<) steps. For each rulein =, there is
an agent actiom,., which is possible oric, m, prove) if m > 0 andp(¢) unifies with the heag(t) of r,
and it results in the stat@, m, r, apply), which is in E. Forr of form p(t) < p(t1), p(t2), two phases are
now established: (1) the selection of a substitutldar the variablesX in r, and (2) the generation of states
(¢1,m—1, prove) and(¢;, m—1, prove), wherec; = 6 andé, = 05, for the recursive test.

As for 1) an exogenous actierpushes the agent frotm, m, r, apply) to a statde, m, (0,0, ...,0), r, sel_0).
Here (0,0, ...,0) is the substitutio® : X; = 0,..., X = 0 to all variables in-. By executing an agent
actionincy on this state, this vector is incrementedoo, ..., 0, 1), resulting in a staté&z, m, (0,0, ...0, 1), r,
incg) in E, from whiche pushes the agent to a statem, (0,0, ..., 1), r, sel_0), whereX,, = 1in 6. Here
againincy is possible, leading to a state m, (0,0, ..., 1,0), r,incy) in E from whiche pushes the agent to
the statgm—1,¢,(0,0,...1,0),r, sel_0). Here again amnc action is possible for the agent etc.

In each statéc, m, 0, r, sel_6) such thatp(tf) = ¢, the agent might alternatively take the actigmose,
which brings her to the state, m, 0, r, choseny) in E, which closes phase 1. The exogenous action
pushes the agent from this state to the statet,0, t20, do_split) out of E. From this statee pushes
the agent further to the state 6, m—1, prove), and the agent must take @h, 16, 20, do_split) the ac-
tion split, which brings her to the stat@.0, m—1, goto_prove) in E, from whiche pushes the agent to
(t20, m—1, prove). Figure 4 gives a summary of the steps in graphical form.
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(¢, m, prove) (¢,m, (0, ...,1),, sely) (m, 10,120, do_split) (t26, m—1, prove)

(¢,m,(0,...,0),r, sely) Q@,/m(—l,prove)

(67 m’ 0} T‘7 sele)

— — / . —
(¢, m,r, apply) (e,m, (0,.7,2),r, incy) (t20, m—1, do_prove)
(e,m, (0,...,1), 7, incy) -+ (¢,m,0,r,choseng) E

Figure 4: Schematic transition diagram for backward application of rulep(t) < p(t1),p(t2) with
substitutiord to provep(c).

In this way, the derivation 0f(0,0,...,0) from 7 is encoded to deciding 1-maintainability 8f= {(2¢,
(0,0, ...,0), prove) } with respect to the set of statés described above. Note that to prowé) from =

via rule r, only one instance of must be chosen; the-maintaining control has to single out tHis by
proper placement of the acti@hoseny. The proof of correctness is along the lines of the respective one in
Theorem 11.

Given the regular structure of the states and the easy checks and muamsuthat need to be done for
determining applicability of actions and determining the successor statectigspg it is not difficult to
see that a representation of the ab®v& AINTAINABILITY instance using state variables can be compiled
from 7 andp(0, 0, . ..,0) in logarithmic work space (in particular, that the polynomial-time procedures fo
deciding the membership predicatesPhi(s, a, s'), in_poss(s,a), in_ezo(s,a) in_S(s), andin_E(s) can

be provided in polynomial time). Note that this instance employs only determinigtomacand there is a
single exogenous action. This establiseed>-hardness for 1-MINTAINABILITY .

Furthermore, ford and E as constructed, each agent action results in a stdie iFhus,k-maintainability

of Sw.rt. Ein A, foranyk = f(A4, S, E) such thatf(A, S, E) > 1, is equivalent tol-maintainability of

S w.r.t. E in A. Hence, the reduction shovisXP-hardness ok—MAINTAINABILITY under the stated
restriction. O

Corollary 19 Under state representation by variabledyl AINTAINABILITY is EXP-complete. Th&EXP-
hardness holds even if all actions are deterministic and there is only ogerexas action.

Using Theorem 18 instead of Theorem 11, we can prove the followinidt gmilarly as Theorem 13:

Theorem 20 Under state representation by variables and in absence of exogestimus athe problems
k-MAINTAINABILITY andw-MAINTAINABILITY areEXP-complete.

For the case without exogenous actions and with only deterministic actiorrgwedower complexity:

Theorem 21 Under state representation by variabled AINTAINABILITY andw-MAINTAINABILITY for
systems with only deterministic actions and no exogenous actior3SRACE-complete.

Proof. By well-known standard methods, a computation composed REBACE computationA piped
into anNL computationB (which is NPSPACE in the size of the input ford) can be redesigned as an
NPSPACE computation. Sinc&NPSPACE = PSPACE, membership of the problems IRSPACE thus
follows from Lemma 17 and Theorem 15.
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The PSPACE-hardness can be shown e.g. by a straightforward reduction fropogitenal STRIPS plan-
ning [9]. Rather than to introduce STRIPS here, we give for complesesaee a simple reduction from
SUCCINCT REACHABILITY [44], which is the version of RACHABILITY whereG = (V, E) is such that
the nodes are given by the binary vectots= (vy,...,v,), n > 1, 0n{0,1} and the problem input con-
sists of a Boolean circuif'c with 2n inputswvs, . .., v,, w1, . .., w, wWhich outputs true ift — w € E, and
s=1(0,0,...,0)andt = (1,1,...,1). We construct from this an instance/eM AINTAINABILITY resp.w-
MAINTAINABILITY as follows:S = V' x V, described byn binary variablesf, . . ., fon; A = {inc, arc}

= Aggent; ®(vxw,inc) = vxw' such that’ = w + 1 modulo2”, and® (v x w, arc) = wx (0,0,...,0)

if v — win Gand®(vxw,arc) = vxw otherwise;poss(s) = A, for each state. Then, the state
s = (1,1,...,)x(0,0,...,) is |S|-maintainable with respect t& = {(1,1,...,1)x(1,1,...,1)} in
Aiff (1,1,...,1) is reachable fron{0,0,...,0) in G. A state variable representation dfcan be easily
generated from the circuity; in logarithmic workspace. This impliddSPACE-hardness of the problems.

If the maintenance window is bounded by a constant, the problem is easier.

Theorem 22 Under state representation by variablesv AINTAINABILITY for systems without exogenous
actions and constait> 0 is coNP-complete.

Proof. For a givens € S, falsity of r;(s) can be proved by exhibiting (assumirg¢ E), for eacha €
Aagent N poss(s) a witnessw(s,a) € S such thatw(s,a) € ®(s,a) andr,_;(w(s,a)) is false, which in
recursion can be proved similarly. For constanthis leads ta)(|.Aage:|¥) many guesses (s, a), which

is polynomial in the size of the input. By Lemma 14, it thus follows that deciding tmptement of
k-MAINTAINABILITY isin NP. This proves membership in dgP.

The coNP-hardness, for every > 0, is a simple consequence that under representation by state vari-
ables, deciding whethes C E is coNP-complete (this can be shown, e.g., by a simple reduction from
propositional unsatisfiability). O

8 Discussion and Conclusion

In this paper, we gave a formal characterization of maintenance goatfistimjuished it from the notions
of stabilizability and temporal goals of the form< f (over all valid trajectories). We present several
motivating examples that illustrate the need for our notion of maintainability. Thie idea being that
for certain kinds of maintenance it is important that the maintaining agent e giwwvindow of non-
interference from the environment so that it can do the maintenancerrialize this we need to distinguish
between the agent’s actions and the environment’s actions. In our forti@lizée define the notion of-
maintainability, wherek refers to the maximum window of opportunity necessary for the maintenance.
We then gave polynomial time algorithms to compétenaintainable controls, which are linear-time for
smallk, and we analyzed the complexity of determiningnaintainability under various assumptions. One
interesting aspect of our polynomial time algorithm is the approach that led tomdisdi use of SAT
encoding, and complexity results regarding the special Horn sub-dlasspmsitional logic.

8.1 Other related work

Besides the related works we already mentioned such as stabilizability andrérniggic, the notion of
maintenance has appeared in Al in many other papers. For example, ilOfi2] discusses maintenance
actions. His notion of maintenance is stronger than both the notion of stabilizailitypur notion as he
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requires the formula that is maintained to be true throughout. The notion of mante is also related
to the notion of ‘execution monitoring’ which is studied in the context of robogpams in [14]. In ‘ex-
ecution monitoring’ the world is monitored and if a discrepancy is found betwlee prediction made by
the agent and the real world, then new plans are made to recover fradistinepancy. A deliberative ar-
chitecture for maintenance can be extrapolated from the notions in [2}evameagent executes a cycle of
observe; assimilate; (re)plan_from_current_situation; execute_part_of the_plan.

In other related work, Jensen et al. [28, 29] consider the somewltpdoblem of developing policies
that achieve a given goal while there are interferences from the anvawot. In their model, environment
actions and actions of multiple agents are combined to a joint action, by whiclystesrsis transferred
from the current state to one out of a set of possible successor $tatesuch nondeterministic transitions,
Jensen et al. aim at modeling both an adversial environment and inftsgyuers which make an otherwise
deterministic action non-deterministic. In [28], they consider constructitigip® coping with arbitrarily
many interferences of the environment (but without action failure) bygmnsion of OBDD-based universal
planning, and in [29] they consider generating policies which tolerate upgigea numbem of errors
modeled as “secondary action effects” (caused by improper actiont@xeor environment interference),
by reducing it to a so called strong planning problem, which is solved usingDBased methods. For
arbitrarily many environment interferences as in [28], the problem is @lhsieery similar to our problem
of unbounded maintainability, but interference in goal states has diffsigamficance and goal achievement
is not guaranteed because of possible loops. A formal connection drefwmaintainable controls and
n-fault tolerant policies, if any, remains open. Intuitivehxsfault tolerant plans are easier to construct,
since the number of errors that have occurred can be recorded icguatruction and when the limit is
reached, the problem boils down to an ordinary planning problem.kfoaintaining controls, however,
each environment interference (even at a goal state) causes awdstérpushes the agent to a new initial
state.

In a series of papers [54, 19, 18], Wooldridge and Dunne have famdathe problem of constructing
agent control functions and analyzed its complexity in a rich frameworkyddous kinds of tasks such
as “achievement” tasks (where the agent has to bring about a certdicogaiion), “maintenance” tasks
(where the agent has to avoid that some goal condition is ever satisfiad éxecution), and combinations
thereof [18]. In their framework, action effects and the selection of emtaction by the control may
depend on the history of the execution, and most importantly, exogentossaesp. an adversary are not
taken into account. Under restriction to history-independent state trarssdimh reactive agents, finding
controls for achievement tasks in their framework corresponds to fimdaigtaining controls with an un-
bounded window of opportunity in our framework. Theorems 15 and 2Zespond to respective results in
the Wooldridge-Dunne framework [18].

In Al planning, the seminal STRIPS approach [23] has been one of tis¢ inftuential approaches. We
briefly recall that in STRIPS, states are modeled as sets of propositimmas and actions as operators
which, given that a precondition in terms of a conjunction of literals is true erctirent state, transform
it to a successor state by removing atoms from a delete list and adding atamariradd list. A plan for
achieving a goal, described by a conjunction of atemBom an initial stateS, is a sequence of operators
op1, - .., pn Which takes the agent froisy, to a state where holds. STRIPS planning has been generalized
in several directions, such as conditional effects, nondeterministic actiorplanning under incomplete
information and partial observability using conditional and conformantsplespectively, and a number of
papers has considered the computation and complexity of planning in dtiogsee.g., [9, 3, 11, 22, 49].
However, like in the framework of Wooldridge and Dunne, in none of thveskks agent actions and ex-
ogenous actions are viewed separately, and thus they are best cdrtpparg framework in absence of
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exogenous functions. Furthermore, plans per se are conceiattias strategiegcf. [49]) in which, in
principle, different actions might be taken by the agent if during plan i@t the same state is entered
again; however, such looping is a priori excluded if the goal must beasth under all contingencies.
Cimatti et al. [11] consider constructing universal plans akin to our paliciéth different semantics for
goal achievement, based on OBDD methods and algorithms. In particulisénee of exogenous actions
our maintaining controls correspond to what they call strong solutionsgtaraning problem. Jensen et al.
[28, 29] have generalized this by adversial actions (see above).

As for complexity, Theorem 21, corresponds to the classical resulylainBer [9] that deciding plan ex-
istence in propositional STRIPS BSPACE-complete, while Theorem 20 corresponds to Littman’s result
that conditional planning for STRIPS with nondeterministic actionBEX®TIME -complete [34, 49]. In
conditional planning, via conditions on the current state branching tdaubs possible, such that an ap-
propriate plan is followed depending on the state evolution. Branching mégiidaleled by actions and the
conditional planning problem, with loops disregarded, as the problennstizating a maintaining control.
Outside of Al, our notion ok-maintenance is very closely related to the notion of self-stabilization in [15]
which is used in characterizing fault-tolerant systems. There the coigabout proving correctness of
(hand developed) self-stabilization protocols and achieving self-statmlizéor various distributed algo-
rithms such as mutual exclusion. Our algorithm here can be thought of @ga@ithm that automatically
generates a self-stabilization protocol. Although, this is a new dimension toxisting work on self-
stabilization, further research is needed to compare assumptions madefanmulation and the ones in
the self-stabilization literature, and overcome them. In particular, often ineffistabilization literature
the global states are composed of local states of various distributed eleandrdasparticular element does
not have the access to the complete global state. In those cases oné daaatly use the kind of global
policies generated by the algorithm in this paper.

8.2 Future work and open issues

There are several directions for further research extending thle e¥dhis paper. One direction concerns
variations of the maintenance problem, for instance by taking action duratmadoount. In such scenario,
the maintenance goal may be formulated as requirement that the agerdsrsache desired state always
within a given time frame, if she is not disturbed by the environment. Preliminapsiigations suggest
that the results in this paper can be extended to handle this setting.

The intractability results for the problems under state variable represemstatialenges methods and tech-
niques for handling the problem in practice. Suitable heuristics may therbéoresearched that allow to
solve the problems in many cases in polynomial time, and, in a refined complexityse) meaningful
tractable cases should be singled out. Furthermore, the issue of compptimgld:-maintenance con-
trols efficiently, in the sense thétis as small as possible (which is trivially polynomially solvable in the
enumerative setting), is an interesting issue for variable state representatio

Another issue concerns investigating computational transformations bemaastenance and planning. By
the complexity results in [34] and this paper, transformations betwednINTAINABILITY and conditional
planning are feasible in polynomial time. It would be interesting to study diftdransformations, and to
assess possible benefits of these transformations for salvMgINTAINABILITY and planning by cross-
utilizing different algorithms and implementations (e.g. [11] for planning in deterministic domains).
In particular a transformation similar to the one in the proof of Theorem 13, avithdditional parameter
that keeps count the number of agent’s actions since the last exogaetimrs caf be used to compile out

“This transformation increases the number of statek tiyies. It is unknown if there exist a transformation that can eliminate
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exogenous actions and transform findingnaintainable policies to finding strong cyclic plans [11]; on the
other hand, encodings similar to the one in Section 5.2 for obtaining strotig plans through linear-time
Horn logic programming might be interesting.
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