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Abstract. In recent research on non-monotonic logic programming, repeatedly strong equivalence
of logic programs P andQ has been considered, which holds if the programs P ∪R andQ∪R have
the same answer sets for any other program R. This property strengthens equivalence of P and Q
with respect to answer sets (which is the particular case for R = ∅), and has its applications in pro-
gram optimization, verification, and modular logic programming. In this paper, we consider more
liberal notions of strong equivalence, in which the actual form of R may be syntactically restricted.
On the one hand, we consider uniform equivalence, where R is a set of facts rather than a set of
rules. This notion, which is well known in the area of deductive databases, is particularly useful
for assessing whether programs P and Q are equivalent as components of a logic program which
is modularly structured. On the other hand, we consider relativized notions of equivalence, where
R ranges over rules over a fixed alphabet, and thus generalize our results to relativized notions of
strong and uniform equivalence. For all these notions, we consider disjunctive logic programs in
the propositional (ground) case, as well as some restricted classes, provide semantical characteriza-
tions and analyze the computational complexity. Our results, which naturally extend to answer set
semantics for programs with strong negation, complement the results on strong equivalence of logic
programs and pave the way for optimizations in answer set solvers as a tool for input-based problem
solving.
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1 Introduction

In the last decade, the approach to reduce finding solutions of a problem to finding “models” of a logical
theory has gained increasing importance as a declarative problem solving method. The idea is that a problem
at hand is encoded to a logical theory, such that the models of this theory correspond to the solutions of the
problem, in a way such that from an arbitrary model of the theory, the corresponding solution can be ex-
tracted efficiently. Given that the mappings can be computed in polynomial time, this facilitates polynomial
time problem solving modulo the computation of a model of the constructed logical theory, for which an
efficient solver may be used. An example of a fruitful application of this approach is [33], which showed
that planning problems can be competitively solved by encodings to the classical propositional satisfiability
problem (SAT) and running efficient SAT solvers. Encodings of planning problems to nonclassical logics,
in particular to non-monotonic logic programs, have later been given in [55, 12, 36, 15]. Because of the fea-
tures of non-monotonic negation, such programs allow for a more natural and succinct encoding of planning
problems than classical logic, and thus are attractive from a declarative point of view.

Given this potential, encoding problems to non-monotonic logic programs under the answer set seman-
tics [24, 25], which is now known as Answer-Set Programming (ASP) [50], has been considered in the
recent years for a broad range of other applications including knowledge-base updates [59, 30, 1, 18], lin-
guistics [23], security requirements engineering [26], or symbolic model checking [28] as well, to mention
some of them. Many of these applications are realized via dedicated languages (see, for instance, [14])
using ASP solvers as back-ends in which a specified reasoning task is translated into a corresponding logic
program. Thus, an ever growing number of programs is automatically generated, leaving the burden of
optimizations to the underlying ASP system.

Despite the high sophistication of current ASP-solvers like [54, 35, 41, 2], their current support for
optimizing the programs is restricted in the sense that optimizations are mainly geared towards on-the-fly
model generation. In an ad-hoc manner, program optimization aims at simplifying an input program in a
way such that the resulting program has the same answer sets. This is heavily exploited in the systems
Smodels [54] and DLV [35], for instance, when variables are eliminated from programs via grounding.

However, such optimization can only be applied to the entire program. Local simplifications in parts of
the program may not be correct at the global level, since by the non-monotonicity of answer set semantics,
adding the same rules to equivalent programs may lead to programs with different models. This in particular
hampers an offline optimization of programs to which at run-time further rules are added, which is important
in different respects. Regarding code reuse, for instance, a program may be used as a “subprogram” or
“expanded macro” within the context of another program (for example, to nondeterministically choose an
element from a set), and thus be utilized in many applications. On the other hand, a problem encoding in
ASP usually consists of two parts: a generic problem specification and instance-specific input (for example,
3-colorability of a graph in general and a particular graph); here, an offline simplification of the generic part
is desirable, regardless of the concrete input at run-time.

As pointed out by several authors [37, 16, 45], this calls for stronger notions of equivalence. As dis-
cussed below, there are different ways to access this problem, depending on the actual context of application
and optimization. Accordingly, different notions of equivalence may serve as a theoretical basis for op-
timization procedures. In this paper, we present a first systematic and thorough exploration of different
notions of equivalence for answer set semantics with respect to semantical characterizations and compu-
tational complexity. It provides a theoretical underpinning for advanced methods of program optimization
and for enhanced ASP application development, as well as a potential basis for the development of ASP
debugging tools. In the following, we recall some notions of equivalence that have been considered for
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answer set semantics, illustrated with some examples.

Notions of Equivalence. A notion of equivalence which is feasible for the issues discussed above is strong
equivalence [37, 56]: Two logic programs P1 and P2 are strongly equivalent, if by adding any set of rules R
to both P1 and P2, the resulting programs P1 ∪R and P2 ∪R are equivalent under the answer set semantics,
i.e., have the same answer sets. Thus, if a program P contains a subprogram Q which is strongly equivalent
to a program Q′, then we may replace Q by Q′, in particular if the resulting program is simpler to evaluate
than the original one.

Example 1 The programs P1 = {a∨ b} and Q1 = {a∨ b; a← not b} are strongly equivalent. Intuitively,
the rule a← not b inQ is redundant since under answer set semantics, awill be derived from the disjunction
a ∨ b if b is false. On the other hand, the programs P2 = {a ∨ b} and Q2 = {a ← not b; b ← not a} are
not strongly equivalent: P2 ∪ {a ← b; b ← a} has the answer set {a, b}, which is not an answer set of
Q2 ∪ {a← b; b← a}.

Note that strong equivalence is, in general, suitable as a theoretical basis for local optimization. However,
it is a very restrictive concept. There are two fundamental options to weaken it and obtain less restrictive
notions. On the one hand, one can restrict the syntax of possible program extensions R, or one can restrict
the set of atoms occurring in R.

The first approach leads us to to the well known notion of uniform equivalence [52, 43]. Two logic
programs P1 and P2 are uniformly equivalent, if by adding any set of facts F to both P1 and P2, the
resulting programs P1 ∪ F and P2 ∪ F have the same set of answer sets. That strong equivalence and
uniform equivalence are different concepts is illustrated by the following simple example.

Example 2 It can be checked that the programs P2 and Q2 from Example 1, while not strongly equivalent,
are uniformly equivalent. We note that by adding the constraint ← a, b to them, the resulting programs
P3 = {a ∨ b; ← a, b} and Q3 = {a ← not b; b ← not a; ← a, b}, which both express exclusive
disjunction of a and b, are strongly equivalent (and hence also uniformly equivalent).

This example may suggest that disjunction is an essential feature to make a difference between strong
and uniform equivalence. In fact this is not the case, as shown by the following example.

Example 3 Let P4 = {a ← not b; a ← b} and Q4 = {a ← not c; a ← c}. Then, it is easily verified
that P4 and Q4 are uniformly equivalent. However, they are not strongly equivalent: For P4 ∪ {b← a} and
Q4 ∪ {b← a}, we have that S = {a, b} is a answer set of Q4 ∪ {b← a} but not of P4 ∪ {b← a}.

As for program optimization, compared to strong equivalence, uniform equivalence is more sensitive to
a modular structure of logic programs which naturally emerges by splitting them into layered components
that receive input from lower layers by facts and in turn may output facts to a higher layer [39, 22]. In
particular, the applies to the typical ASP setting outlined above, in which a generic problem specification
component receives problem-specific input as a set of facts.

However, as mentioned before, a different way to obtain weaker equivalence notions than strong equiv-
alence is to restrict the alphabet of possible program extensions. This is of particular interest, whenever one
wants to exclude dedicated atoms from program extensions. Such atoms may play the role of internal atoms
in program components and are considered not to appear anywhere else in the complete program P . This
notion of equivalence was originally suggested by Lin in [40] but not further investigated. We will formally
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define strong equivalence relative to a given set of atoms A of two programs P and Q as the test whether,
for all sets of rules S over a given set of atoms A, P ∪ S and Q ∪ S have the same answer sets.

Finally, we introduce the notion of uniform equivalence relative to a given set of atomsA, as the property
that for two programs P and Q and for all sets F ⊆ A of facts, P ∪F and Q∪F have the same answer sets.
Note that relativized uniform equivalence generalizes the notion of equivalence of DATALOG programs in
deductive databases [53]. There, DATALOG programs are called equivalent, if it holds that they compute
the same outputs on any set of external atoms (which are atoms that do not occur in any rule head) given as
input. The next example illustrates that relativization weakens corresponding notions of equivalence.

Example 4 Let P5 = {a ∨ b} and Q5 = {a ← not b; b ← not a; c ← a, b; ← c}. The programs P5 and
Q5 have the same answer set, but are neither uniformly equivalent nor strongly equivalent. In particular, it
is sufficient to add the fact c. Then, P5 ∪ {c} has {a, b, c} as an answer set, while Q5 ∪ {c} has no answer
set. However, if we exclude c from the alphabet of possible program extensions, uniform equivalence holds.
More specifically, P and Q are uniformly equivalent relative to for any set of atoms A such that c /∈ A. On
the other hand, P and Q are not strongly equivalent relative to any A which includes both a and b. The
reason is that adding a← b and b← a leads to different answer sets (cf. Example 1).

Main Contributions. In this paper, we study semantical and complexity properties of the above notions
of equivalence, where we focus on the propositional case (to which first-order logic programs reduce by
instantiation). Our main contributions are briefly summarized as follows.

• We provide characterizations of uniform equivalence of logic programs. To this aim, we build on the
concept of strong-equivalence models (SE-models), which have been introduced for characterizing strong
equivalence [56, 57] in logic programming terms, resembling an earlier characterization of strong equiva-
lence in terms of equilibrium logic which builds on the intuitionistic logic of here and there [37]. A strong
equivalence model of a program P is a pair (X,Y ) of (Herbrand) interpretations such that X ⊆ Y , Y
is a classical model of P , and X is a model of the Gelfond-Lifschitz reduct P Y of P with respect to Y
[24, 25]. Our characterizations of uniform equivalence will elucidate the differences between strong and
uniform equivalence, as illustrated in the examples above, such that they immediately become apparent.

• For the finitary case, we provide a mathematical simple and appealing characterization of a logic pro-
gram with respect to uniform equivalence in terms of its uniform equivalence models (UE-models), which is
a special class of SE-models. Informally, those SE-models (X,Y ) of a program P are UE-models, such that
either X equals Y or is a maximal proper subset of Y . On the other hand, we show that uniform equivalence
of infinite programs cannot be captured by any class of SE-models in general. Furthermore, the notion of
logical consequence from UE-models, P |=u Q, turns out to be interesting since programs P and Q are
uniformly equivalent if and only if P |=u Q and Q |=u P holds. Therefore, logical consequence (relative to
UE-models) can be fruitfully used to determine redundancies under uniform equivalence.

• By suitably generalizing the characterizations of strong and uniform equivalence, and in particular SE-
models and UE-models, we also provide suitable semantical characterizations for both relativized strong
and uniform equivalence. Our new characterizations thus capture all considered notions of equivalence
(including ordinary equivalence) in a uniform way. Moreover, we show that relativized strong equivalence
shares an important property with strong equivalence: constraining possible program extensions to sets of
rules of the form A ← B , where A and B are atoms, does not lead to a different concept (Corollary 3).
The observation of Pearce and Valverde [49] that uniform and strong equivalence are essentially the only



4 INFSYS RR 1843-05-01

concepts of equivalence obtained by varying the logical form of the program extensions therefore generalizes
to relative equivalence.

• Besides the general case, we consider various major syntactic subclasses of programs, in particular
Horn programs, positive programs, disjunction-free programs, and head-cycle free programs [4], and con-
sider how these notions of equivalence relate among each other. For instance, we establish that for positive
programs, all these notions coincide, and therefore only the classical models of the programs have to be taken
into account for equivalence testing. Interestingly, for head-cycle free programs, eliminating disjunctions
by shifting atoms from rule heads to the respective rule bodies preserves (relativized) uniform equivalence,
while it affects (relativized) strong equivalence in general.

• We thoroughly analyze the computational complexity of deciding (relativized) uniform equivalence
and relativized strong equivalence, as well as the complexity of model checking for the corresponding
model-theoretic characterizations. We show that deciding uniform equivalence of programs P and Q is
ΠP

2 -complete in the general propositional case, and thus harder than deciding strong equivalence of P and
Q, which is coNP-complete [47, 40, 57]. The relativized notions of equivalence have the same complexity
as uniform equivalence in general (ΠP

2 -completeness). These results reflect the intuitive complexity of
equivalence checking using the characterizations we provide. Furthermore, we consider the problems for
subclasses and establish coNP-completeness results for important fragments, including positive and head-
cycle free programs, and thus obtain a complete picture of the complexity-landscape, which is summarized in
Table 2. Some of the results obtained are surprising; for example, checking relativized uniform equivalence
of head-cycle free programs, is easier than deciding relativized strong equivalence. For an overview and
discussion of the complexity results, we refer to Section 6.

• Finally, we address extensions of our results w.r.t. modifications in the language of propositional pro-
grams, viz. addition of strong negation or nested expressions, as well as disallowing constraints. Moreover,
we briefly discuss the general DATALOG-case.

Our results extend recent results on strong equivalence of logic programs, and pave the way for opti-
mization of logic programs under answer set semantics by exploiting either strong equivalence, uniform
equivalence, or relativized notions thereof.

Related Work. While strong equivalence of logic programs under answer set semantics has been consid-
ered in a number of papers [7, 11, 40, 37, 45, 47, 56, 57, 46, 48], investigations on uniform equivalence
just started with preliminary parts of this work [16]. Recent papers on program transformations [20, 19]
already take both notions into account. In the case of DATALOG, uniform equivalence is a well-known
concept, however. Sagiv [52], who coined the name, has studied the property in the context of definite Horn
DATALOG programs, where he showed decidability of uniform equivalence testing, which contrasts the
undecidability of equivalence testing for DATALOG programs [53]. Also Maher [43] considered uniform
equivalence for definite general Horn programs (with function symbols), and reported undecidability. More-
over, both [52, 43] showed that uniform equivalence coincides for the respective programs with Herbrand
logical equivalence. Maher also pointed out that for DATALOG programs, this result has been indepen-
dently established by Cosmadakis and Kanellakis [10]. Finally, a general notion of equivalence has also
been introduced by Inoue and Sakama [31]. In their framework, called update equivalence, one can exactly
specify a set of arbitrary rules which may be added to the programs under consideration and, furthermore, a
set of rules which may be deleted. However, for such an explicit enumeration of rules for program extension,
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respectively modification, it seems to be much more complicated to obtain simple semantical characteriza-
tions.

The mentioned papers on strong equivalence mostly concern logical characterizations. In particular, the
seminal work by Lifschitz et al. [37] showed that strong equivalence corresponds to equivalence in the non-
classical logic of here-and-there. De Jongh and Hendriks [11] generalized this result by showing that strong
equivalence is characterized by equivalence in all intermediate logics lying between here-and-there (upper
bound) and the logic KC of weak excluded middle [34] (lower bound) which is axiomatized by intuitionistic
logic together with the schema ¬ϕ ∨ ¬¬ϕ. In addition, [7] presents another multi-valued logic known as
L3 which can be employed to decide strong equivalence in the same manner. However, the most popular
semantical characterization was introduced by Turner [56, 57]. He abstracts from the Kripke-semantics as
used in the logic of here-and-there, resulting in the above mentioned SE-models. Approaches to implement
strong equivalence can be found in [20, 32, 47]. Complexity characterizations of strong equivalence were
given by several authors [47, 40, 57]. Our work refines and generalizes this work by considering (relativized)
strong equivalence also for syntactic fragments, which previous work did not pay much attention to. As
well, we present a new syntactical criterion to retain strong equivalence when transforming head-cycle free
programs to disjunction-free ones, complementing work on program transformations [19, 20, 45, 49]. The
recent work by Pearce and Valverde [49] addresses strong equivalence of programs over disjoint alphabets
which are synonymous under structurally defined mappings.

Structure of the paper. The remainder of this paper is organized as follows. The next section recalls
important concepts and fixes notation. After that, in Section 3, we present our characterizations of uniform
equivalence. We also introduce the notions of UE-model and UE-consequence and relate the latter to other
notions of consequence. Then, Section 4 introduces the relativized notions of equivalence, and we present
our generalized characterizations in model-theoretic terms. Section 5 considers two important classes of
programs, in particular positive and head-cycle free logic programs, which include Horn and normal logic
programs, respectively. The subsequent Section 6 is devoted to a detailed analysis of complexity issues,
while Section 7 considers possible extensions of our results to nested logic programs and answer set seman-
tics for programs with strong negation (also allowing for inconsistent answer sets), as well as to DATALOG
programs. The final Section 8 concludes the paper and outlines issues for further research.

2 Preliminaries

We deal with disjunctive logic programs, which allow the use of default negation not in rules. A rule r
is a triple 〈H(r), B+(r), B−(r)〉, where H(r) = {A1, . . . , Al}, B+(r) = {Al+1, . . . , Am}, B−(r) =
{Am+1, . . . , An}, where 0 ≤ l ≤ m ≤ n and Ai, 1 ≤ i ≤ n, are atoms from a first-order language.
Throughout, we use the traditional representation of a rule as an expression of the form

A1 ∨ . . . ∨Al ← Al+1, . . . , Am,not Am+1, . . . ,not An.

We call H(r) the head of r, and B(r) = {Al+1, . . . , Am,not Am+1, . . . ,not An} the body of r. If
H(r) = ∅, then r is a constraint. As usual, r is a disjunctive fact if B(r) = ∅, and r is a (non-disjunctive)
fact if B(r) = ∅ and l = 1, both also represented by H(r) if it is nonempty, and by ⊥ (falsity) otherwise. A
rule r is normal (or non-disjunctive), if l ≤ 1; definite, if l = 1; and positive, if n = m. A rule is Horn if it
is normal and positive. A definite Horn rule is called unary iff its body contains at most one atom.

A disjunctive logic program (DLP) P is a (possibly infinite) set of rules. A program P is a normal
logic program (NLP) (resp., definite, positive, Horn, or unary), if all rules in P are normal (resp., definite,
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positive, Horn, unary). Furthermore, a program P is head-cycle free (HCF) [4], if each each r ∈ P is
head-cycle free (in P ), i.e., if the dependency graph of P (which is defined as usual) where literals of form
not A are disregarded, has no directed cycle that contains two atoms belonging to H(r).

In the rest of this paper, we focus on propositional programs over a set of atoms A – programs with
variables reduce to their ground (propositional) versions as usual. The set of all atoms occurring in a program
P is denoted by Atm(P ).

We shall deal with further variations of the syntax, where either strong negation is available or constraints
are disallowed in Section 7. There we shall also briefly discuss how to apply our results to programs with
nested expressions [38] or to non-ground programs directly.

We recall the answer set semantics for DLPs [25], which generalizes the answer set semantics for
NLPs [24]. An interpretation I , viewed as subset of A, models the head of a rule r, denoted I |= H(r), iff
A ∈ I for some A ∈ H(r). It models B(r), i.e., I |= B(r) iff (i) each A ∈ B+(r) is true in I , i.e., A ∈ I ,
and (ii) each A ∈ B−(r) is false in I , i.e., A 6∈ I . Furthermore, I models rule r, i.e., I |= r iff I |= H(r)
whenever I |= B(r), and I is a model of a program P , denoted I |= P , iff I |= r, for all r ∈ P . If I |= P
(resp. I |= r), I is called a model of P (resp. r).

The reduct of a rule r relative to a set of atoms I , denoted rI , is the positive rule r′ such that H(r′) =
H(r) and B+(r′) = B+(r) if I ∩ B−(r) = ∅; otherwise rI is void. Note that a void rule has any
interpretation as its model. The Gelfond-Lifschitz reduct P I , of a program P is P I = {rI | r ∈ P}. An
interpretation I is an answer set (or a stable model [51]) of a program P iff I is a minimal model (under
inclusion ⊆) of P I . By AS(P ) we denote the set of all answer sets of P .

Several notions for equivalence of logic programs have been considered, cf. [37, 43, 52]. In answer set
programming, two DLPs P and Q are regarded as equivalent, denoted P ≡ Q, iff AS(P ) = AS(Q).

The more restrictive form of strong equivalence [37] is as follows.

Definition 1 Let P and Q be two DLPs. Then, P and Q are strongly equivalent, denoted P ≡s Q, iff for
any rule set R, the programs P ∪R and Q ∪R are equivalent, i.e., P ∪R ≡ Q ∪R.

One of the main results of [37] is a semantical characterization of strong equivalence in terms of the non-
classical logic HT. For characterizing strong equivalence in logic programming terms, Turner introduced the
following notion of SE-models [56, 57]:

Definition 2 Let P be a DLP, and let X,Y be sets of atoms such that X ⊆ Y . The pair (X,Y ) is an
SE-model of P , if Y |= P and X |= P Y . By SE (P ) we denote the set of all SE-models of P . For a single
rule r, we write SE (r) instead of SE ({r}).

Strong equivalence can be characterized as follows.

Proposition 1 ([56, 57]) For every DLPs P and Q, P ≡s Q iff SE (P ) = SE(Q).

To check strong equivalence of two programs P and Q, it is obviously sufficient to consider SE-
interpretations (X,Y ) over Atm(P ∪Q), i.e., with X ⊆ Y ⊆ Atm(P ∪Q). We implicitly make use
of this simplification when convenient.

Example 5 Reconsider the examples from the introduction. First take programs P = {a ∨ b} and Q =
{a← not b; b← not a}. We have1

SE (P ) = {(a, a); (b, b); (a, ab); (b, ab); (ab, ab)};

1To ease notation, we write abc instead of {a, b, c}, a instead of {a}, etc.
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SE (Q) = {(∅, ab); (a, a); (b, b); (a, ab); (b, ab); (ab, ab)}.

Thus, (∅, ab) is SE-model of Q but not of P . This is due to the fact that P {a,b} = {a ∨ b} and Q{a,b} is
the empty program. The latter is modelled by the empty interpretation, while the former is not. Hence, we
derive P 6≡s Q.

Example 6 For the second example, P = {a← not b; a← b} and Q = {a← not c; a← c}, we also get
P 6≡s Q. In this case, we have:

SE (P ) = {(∅, ab); (∅, abc); (c, abc)} ∪ S;

SE (Q) = {(∅, ac); (∅, abc); (b, abc)} ∪ S;

with S = {(X,Y ) | {a} ⊆ X ⊆ Y ⊆ {a, b, c}}. This shows P 6≡s Q.

Note that from the proofs of the results in [37, 57], it appears that for strong equivalence, only the
addition of unary rules is crucial. That is, by constraining the rules in the set R in the definition of strong
equivalence to normal rules having at most one positive atom in the body does not lead to a different concept.
This is encountered by restriction to facts (i.e., empty rule bodies), however.

As well, answer sets of a program can be characterized via its SE-models as follows:

Proposition 2 For any DLP P , Y ∈ AS(P ) iff (Y, Y ) ∈ SE(P ) and (X,Y ) ∈ SE(P ) implies X = Y ,
for any X .

Finally, we define a consequence relation associated to SE-models.

Definition 3 Let P be a DLP and r a rule. Then, r is a SE-consequence of P , denoted P |=s r, iff for each
(X,Y ) ∈ SE (P ), it holds that (X,Y ) ∈ SE(r). Furthermore, we write P |=s Q iff P |=s r, for every
r ∈ Q.

Proposition 3 For any DLP P and Q, P ≡s Q iff P |=s Q and Q |=s P .

Thus, the notion of SE-consequence captures strong equivalence of logic programs.

3 Uniform Equivalence

After the preliminary definitions, we now turn to the issue of uniform equivalence of logic programs. We
follow the definitions of uniform equivalence in [52, 43].

Definition 4 Let P and Q be two DLPs. Then, P and Q are uniformly equivalent, denoted P ≡u Q, iff for
any set of (non-disjunctive) facts F , the programs P ∪ F and Q ∪ F are equivalent, i.e., P ∪ F ≡ Q ∪ F .

3.1 A Characterization for Uniform Equivalence

We proceed by characterizing uniform equivalence of logic programs in model-theoretic terms. As restated
above, strong equivalence can be captured by the notion of SE-model (equivalently, HT-model [37]) for a
logic program. The weaker notion of uniform equivalence can be characterized in terms of SE-models as
well, by imposing further conditions.

We start with a seminal lemma, which allows us to derive simple characterizations of uniform equiva-
lence.
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Lemma 1 Two DLPs P and Q are uniformly equivalent, i.e. P ≡u Q, iff for every SE-model (X,Y ), such
that (X,Y ) is an SE-model of exactly one of the programs P and Q, it holds that (i) Y |= P ∪Q, and (ii)
there exists an SE-model (X ′, Y ), X ⊂ X ′ ⊂ Y , of the other program.

Proof. For the only-if direction, suppose P ≡u Q. If Y neither models P , nor Q, then (X,Y ) is not an
SE-model of any of the programs P and Q. Without loss of generality, assume Y |= P and Y 6|= Q. Then,
since in this case Y |= P Y and no strict subset of Y models P∪Y , Y ∈ AS(P∪Y ), while Y 6∈ AS(Q∪Y ).
This contradicts our assumption P ≡u Q. Hence, (i) must hold.

To show (ii), assume first that (X,Y ) is an SE-model of P but not of Q. In view of (i), it is clear that
X ⊂ Y must hold. Suppose now that for every set X ′, X ⊂ X ′ ⊂ Y , it holds that (X ′, Y ) is not an
SE-model of Q. Then, since no subset of X models QY ∪X , (Y, Y ) is the only SE-model of Q∪X of form
(·, Y ). Thus, Y ∈ AS(Q ∪X) in this case, while Y 6∈ AS(P ∪X) (X |= P Y implies X |= (P ∪X)Y ,
so (X,Y ) is an SE-model of P ∪ X). However, this contradicts P ≡u Q. Thus, it follows that for some
X ′ such that X ⊂ X ′ ⊂ Y , (X,Y ) is an SE-model of Q. The argument in the case where (X,Y ) is an
SE-model of Q but not of P is analogous. This proves (ii).

For the if direction, assume that (i) and (ii) hold for every SE-model (X,Y ) which is an SE-model
of exactly one of P and Q. Suppose that there exist sets of atoms F and X , such that w.l.o.g., X ∈
AS(P ∪ F ) \ AS(Q ∪ F ). Since X ∈ AS(P ∪ F ), we have that F ⊆ X , and, moreover, X |= P .
Consequently, (X,X) is an SE-model of P . Since X 6∈ AS(Q∪F ), either X 6|= (Q∪F )X , or there exists
Z ⊂ X such that Z |= (Q ∪ F )X .

Let us first assume X 6|= (Q ∪ F )X . Then, since (Q ∪ F )X = QX ∪ F and F ⊆ X , it follows that
X 6|= QX . This implies X 6|= Q and hence, (X,X) is not an SE-model of Q. Thus, (X,X) is an SE-model
of exactly one program, P , but (X,X) violates (i) since X 6|= Q; this is a contradiction.

It follows that X |= (Q∪F )X must hold, and that there must exist Z ⊂ X such that Z |= (Q∪F )X =
QX ∪ F . So we can conclude X |= Q and that (Z,X) is an SE-model of Q but not of P . To see the
latter, note that F ⊆ Z must hold. So if (Z,X) were an SE-model of P , then it would also be an SE-model
of P ∪ F , contradicting the assumption that X ∈ AS(P ∪ F ). Again we get an SE-model, (Z,X), of
exactly one of the programs, Q in this case. Hence, according to (ii), there exists an SE-model (X ′, X) of
P , Z ⊂ X ′ ⊂ X . However, because of F ⊂ Z , it follows that (X ′, X) is also an SE-model of P ∪ F ,
contradicting our assumption that X ∈ AS(P ∪ F ).

This proves that, given (i) and (ii) for every SE-model (X,Y ) such that (X,Y ) is an SE-model of
exactly one of P and Q, no sets of atoms F and Z exists such that Z is an answer set of exactly one of
P ∪ F and Q ∪ F . That is, P ≡u Q holds. 2

From Lemma 1 we immediately obtain the following characterization of uniform equivalence of logic
programs.

Theorem 1 Two DLPs, P and Q are uniformly equivalent, P ≡u Q, iff, for interpretations X , Y ,

(i) (X,X) is an SE-model of P iff it is an SE-model of Q, and

(ii) (X,Y ), where X ⊂ Y , is an SE-model of P (respectively Q) iff there exists a set X ′, such that
X ⊆ X ′ ⊂ Y , and (X ′, Y ) is an SE-model of Q (respectively P ).

Example 7 Reconsider the programs P = {a ∨ b} and Q = {a ← not b; b ← not a}. By Theorem 1, we
can easily verify that P and Q are uniformly equivalent: Their SE-models differ only in (∅, ab), which is an
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SE-model of Q but not of P . Thus, items (i) and (ii) clearly hold for all other SE-models. Moreover, (a, ab)
is an SE-model of P , and thus item (ii) also holds for (∅, ab).

Recall that P andQ are strongly equivalent after adding the constraint ← a, b, which enforces exclusive
disjunction (see Example 2). Uniform equivalence does not require such an addition.

From Theorem 1 we can derive the following characterization of uniform equivalence.

Theorem 2 Two DLPs P and Q, such that at least one of them is finite, are uniformly equivalent, i.e.,
P ≡u Q, iff the following conditions hold:

(i) for every X , (X,X) is an SE-model of P iff it is an SE-model of Q, and

(ii) for every SE-model (X,Y ) ∈ SE (P )∪SE(Q) such that X ⊂ Y , there exists an SE-model (X ′, Y ) ∈
SE (P ) ∩ SE(Q) (=SE (P ∪Q)) such that X ⊆ X ′ ⊂ Y .

Proof. Since (i) holds by virtue of Theorem 1, we only need to show (ii). Assume (X,Y ), where X ⊂ Y ,
is in SE (P ) ∪ SE (Q).

If (X,Y ) ∈ SE(P )∩SE (Q), then the statement holds. Otherwise, by virtue of Theorem 1, there exists
(X1, Y ), X ⊆ X1 ⊂ Y , such that (X1, Y ) is in SE(P ) ∪ SE (Q). By repeating this argument, we obtain
a chain of SE-models (X,Y ) = (X0, Y ), (X1, Y ), . . . , (Xi, Y ), . . . such that (Xi, Y ) ∈ SE (P ) ∪ SE(Q)
and Xi ⊆ Xi+1, for all i ≥ 0. Furthermore, we may choose X1 such that X1 coincides with Y on all atoms
which do not occur in P ∪Q (and hence all Xi, i ≥ 1, do so). Since one of P and Q is finite, it follows that
Xi = Xi+1 must hold for some i ≥ 0 and hence (Xi, Y ) ∈ SE (P ) ∩ SE (Q) must hold. This proves the
result. 2

3.2 Introducing UE-Models

In the light of this result, we can capture uniform equivalence of finite programs by the notion of UE-models
defined as follows.

Definition 5 (UE-model) Let P be a DLP. Then, (X,Y ) ∈ SE (P ) is a uniform equivalence (UE) model
of P , if for every (X ′, Y ) ∈ SE (P ) it holds that X ⊂ X ′ implies X ′ = Y . By UE(P ) we denote the set of
all UE-models of P .

That is, the UE-models comprise all total SE-models (Y, Y ) of a DLP plus all its maximal non-total
SE-models (X,Y ), with X ⊂ Y . Formally,

UE(P ) = {(Y, Y ) ∈ SE (P )} ∪ max≥{(X,Y ) ∈ SE (P ) | X ⊂ Y };

where (X ′, Y ′) ≥ (X,Y ) iff jointly Y ′ = Y and X ⊆ X ′.
By means of UE-models, we then can characterize uniform equivalence of finite logic programs by the

following simple condition.

Theorem 3 Let P and Q be DLPs. Then,

(a) P ≡u Q implies UE (P ) = UE(Q);

(b) UE(P ) = UE (Q) implies P ≡u Q, whenever at least one of the programs P , Q is finite.
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Proof. For proving (a), let P ≡u Q. Then, by Theorem 1 (i), UE(P ) and UE (Q) coincide on models
(X,X). Assume w.l.o.g. that (X,Y ), X ⊂ Y , is in UE(P ), but not in UE(Q). By Theorem 1 (ii), there
exists (X ′, Y ), X ⊆ X ′ ⊂ Y , which is an SE-model of Q, and by a further application, the existence of
(X ′′, Y ),X ′ ⊆ X ′′ ⊂ Y , which is an SE-model of P follows. SinceX ⊂ X ′′ contradicts (X,Y ) ∈ UE(P ),
let X ′′ = X ′ = X , i.e., (X,Y ) is an SE-model of Q as well, but it is not in UE(Q). Hence, there exists
(Z, Y ) ∈ SE (Q), X ⊂ Z ⊂ Y and, again by Theorem 1 (ii), there exists (Z ′, Y ), Z ⊆ Z ′ ⊂ Y , which is
an SE-model of P . This again contradicts (X,Y ) ∈ UE(P ). Hence, UE(P ) = UE(Q) must hold.

For (b), assume UE(P ) = UE(Q), and w.l.o.g. let P be finite. Since UE(P ) = UE(Q) implies
Theorem 1 (i), towards a contradiction, suppose that Theorem 1 (ii) is not satisfied, i.e., there exists X ⊂ Y ,
such that either (1) (X,Y ) ∈ SE(P ) and not exists X ⊆ X ′ ⊂ Y , (X ′, Y ) ∈ SE (Q), or vice versa (2)
(X,Y ) ∈ SE (Q) and not exists X ⊆ X ′ ⊂ Y , (X ′, Y ) ∈ SE (P ).
Case (1): We show the existence of a set Z ,X ⊆ Z ⊂ Y , such that (Z, Y ) ∈ UE(P ). If (X,Y ) ∈ UE(P ),
or Y is finite, this is trivial. So let (X,Y ) 6∈ UE(P ) and Y infinite. Then YP = Y ∩ Atm(P ) and XP =
X∩Atm(P ) are finite, (XP , YP ) ∈ SE (P ), andXP ⊂ YP . (To see the latter, observe that otherwise we end
up in a contradiction by the fact that then XP |= P , hence X |= P , and thus (X,X) ∈ UE (P ) = UE(Q),
which implies (X,Y ) ∈ SE(Q), since (Y, Y ) ∈ UE(Q) = UE(P ) holds.) Since YP is finite, there
exists a set ZP , XP ⊆ ZP ⊂ YP , such that (ZP , YP ) ∈ UE(P ). Now, let Z = ZP ∪ (Y \ YP ). Then
X ⊆ Z ⊂ Y holds by construction. Furthermore (Z, Y ) ∈ UE(P ), since Y \ Z = YP \ ZP , P Y = P YP ,
and (ZP , YP ) ∈ UE(P ). By our assumption (Z, Y ) ∈ UE(Q) follows. Contradiction.
Case (2): We show the existence of a set Z , X ⊆ Z ⊂ Y , such that (Z, Y ) ∈ UE(Q). If (X,Y ) ∈ UE(Q),
or Y is finite, this is trivial. So let (X,Y ) 6∈ UE(Q), and Y infinite. Futhermore, Y \X ⊆ Atm(P ) must
hold. (To see the latter, observe that otherwise we end up in a contradiction by taking any atom a ∈ Y \X ,
such that a 6∈ Atm(P ), and considering Z = Y \ {a}. Then X ⊆ Z ⊂ Y holds by construction and since
(Y, Y ) ∈ UE(P ) = UE (Q), Y |= P and so does Z , i.e., (Z, Y ) ∈ SE(P ), a contradiction.) However,
since Atm(P ) is finite, this means that Y \X is finite, i.e., there cannot exist an infinite chain of SE -models
(X,Y ) = (X0, Y ), (X1, Y ), . . . , (Xi, Y ), . . ., such that Xi ⊂ Xj ⊂ Y , for i < j, and (Xi, Y ) ∈ SE (Q).
Thus, there exists a maximal model (Z, Y ) ∈ UE(Q). By our assumption (Z, Y ) ∈ UE (P ) follows.
Contradiction. Thus, Theorem 1 (ii) holds as well, proving P ≡u Q in Case (b). 2

This result shows that UE-models capture the notion of uniform equivalence for finite logic programs, in
the same manner as SE-models capture strong equivalence. That is, the essence of a program P with respect
to uniform equivalence is expressed by a semantic condition on P alone.

Corollary 1 Two finite DLPs P and Q are uniformly equivalent, i.e., P ≡u Q, if and only if UE(P ) =
UE(Q).

Example 8 Each SE-model of the program P = {a ∨ b} satisfies the condition of an UE-model, and thus
UE(P ) = SE (P ). The program Q = {a ← not b; b ← not a} has the additional SE-model (∅, ab), and
all of its SE-models except this one are UE-models of Q. Thus,

UE(P ) = UE(Q) = {(a, a); (b, b); (a, ab); (b, ab); (ab, ab)}.

Note that the strong equivalence of P and Q fails because (∅, ab) is not an SE-model of P . This SE-model
is enforced by the intersection property ((X1, Y ) and (X2, Y ) in SE (P ) implies (X1 ∩X2, Y ) ∈ SE (P )).
This intersection property is satisfied by the Horn program QY , but violated by the disjunctive program P Y

(=P ). The maximality condition of UE-models eliminates this intersection property.
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Example 9 Reconsider P = {a ← not b; a ← b}, which has classical models (over {a, b, c}) of form
{a} ⊆ Y ⊆ {a, b, c}. Its UE-models are (X,Y ) where X ∈ {Y, Y \ {b}, Y \ {c}}. Note that the atoms
b and c have symmetric roles in UE (P ). Consequently, the program obtained by exchanging the roles of b
and c, Q = {a← not c; a← c} has the same UE models. Hence, P and Q are uniformly equivalent.

The following example shows why the characterization via UE-models fails if both compared programs
are infinite. The crucial issue here is the expression of an “infinite chain” resulting in an infinite number of
non-total SE-models. In this case, the concept of maximal non-total SE-models does not capture the general
characterization from Theorem 1.

Example 10 Consider the programs P and Q over A = {ai | i ≥ 1}, defined by

P = {ai ← | i ≥ 1}, and Q = {ai ← not ai, ai ← ai+1 | i ≥ 1}.

Both P and Q have the single classical model A = {ai | i ≥ 1}. Furthermore, P has no “incomplete” SE-
model (X,A) such that X ⊂ A, while Q has the incomplete SE-models (Xi,A), where Xi = {a1, . . . , ai}
for i ≥ 0. Both P and Q have the same maximal incomplete SE-models (namely none), and hence they have
the same UE-models.

However, P 6≡u Q, since e.g. P has an answer set while Q has obviously not. Note that this is caught by
our Theorem 1, item (ii): for (X0,A), which is an SE-model of Q but not of P , we cannot find an SE-model
(X,A) of P between (X0,A) and (A,A).

In fact, uniform equivalence of infinite programs P and Q cannot be captured by a selection of SE-
models:

Theorem 4 Let P and Q be infinite DLPs. There is no selection of SE-models, σ(SE (·)), such that P and
Q are uniformly equivalent, P ≡u Q, if and only if σ(SE (P )) = σ(SE (Q)).

Proof. Consider programs over A = {ai | i ≥ 1} as follows. The program P = {ai ← | i ≥ 1} in
Example 10, as well as

Q = {ai ← not ai, ai ← ai+1, a2i ← a2i−1 | i ≥ 1},

R = {ai ← not ai, ai ← ai+1, a2i+1 ← a2i, a1 ←| i ≥ 1}, and

S = {ai ← , ← a1 | i ≥ 1}.

Considering corresponding SE-models, it is easily verified that SE (P ) = {(A,A)}, SE (S) = ∅, as well as

SE (Q) = {(∅,A), (a1a2,A), . . . , (a1a2 · · · a2i,A), . . . , (A,A) | i ≥ 0}, and

SE (R) = {(a1,A), (a1a2a3,A), . . . , (a1a2 · · · a2i+1,A), . . . , (A,A) | i ≥ 0}.

Hence, we have that SE (Q) ∩ SE (R) = {(A,A)}. Observe also that Q ∪ X and R ∪X do not have an
answer set for any proper subset X ⊂ A, while A is (the only) answer set of both Q ∪A and R ∪A. Thus,
Q ≡u R. However, S ∪ A does not have an answer set and we get Q 6≡u S and R 6≡u S. Since P has the
answer set A, we finally conclude that P 6≡u Q, P 6≡u R, and P 6≡u S.

Towards a contradiction, let us assume that there exists a selection function σ(SE (·)), such that P i ≡u
Pj iff σ(SE (Pi)) = σ(SE (Pj)), for Pi, Pj ∈ {P,Q,R, S}. Then, σ(SE (S)) = ∅ and, since P 6≡u S,
σ(SE (P )) = {(A,A)}. Furthermore, Q ≡u R implies σ(SE (Q)) = σ(SE (R)) and by SE (Q)∩SE (R) =
{(A,A)} we conclude either σ(SE (Q)) = σ(SE (R)) = ∅, or σ(SE (Q)) = σ(SE (R)) = {(A,A)}. From
P 6≡u Q, the former follows, i.e., σ(SE (Q)) = σ(SE (R)) = ∅. However, then σ(SE (Q)) = σ(SE (S))
while Q 6≡u S, which is a contradiction. 2
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3.3 Consequence under Uniform Equivalence

Based on UE-models, we define an associated notion of consequence under uniform equivalence.

Definition 6 (UE-consequence) A rule, r, is an UE-consequence of a program P , denoted P |=u r, if
(X,Y ) ∈ SE (r), for all (X,Y ) ∈ UE (P ).

Clearly, P |=u r for all r ∈ P , and ∅ |= r iff r is a classical tautology. The next result shows that the
UE-models of a program remain invariant under addition of UE-consequences.

Proposition 4 For any program P and rule r, if P |=u r then UE(P ) = UE(P ∪ {r}).

Proof. Let P |=u r, we show that UE(P ) = UE(P ∪ {r}).
“⊆”: Let (X,Y ) ∈ UE(P ). Then, by hypothesis Y |= r and X |= rY . Hence, Y |= P ∪ {r} and
X |= (P ∪ {r})Y . Suppose (X,Y ) 6∈ UE(P ∪ {r}). Then there exists a set X ′, X ⊂ X ′ ⊂ Y , such
that (X ′, Y ) |= (P ∪ {r})Y . But then X ′ |= P Y , which contradicts (X,Y ) ∈ UE(P ). It follows that
(X,Y ) ∈ UE(P ∪ {r}) .
“⊇”: Let (X,Y ) ∈ UE(P ∪ {r}). Then X |= P Y and Y |= P . Suppose (X,Y ) /∈ UE (P ). Then,
some (X ′, Y ) ∈ UE(P ) exists such that X ⊂ X ′ ⊂ Y . By hypothesis, (X ′, Y ) ∈ SE(r) (otherwise
P 6|=u r), hence X ′ |= (P ∪ {r})Y . But then (X,Y ) ∈ UE(P ∪ {r}), which is a contradiction. It follows
(X,Y ) ∈ UE(P ). 2

As usual, we write P |=u R for any set of rules R if P |=u r for all r ∈ R. As a corollary, taking
Theorem 3 (b) into account, we get the following.

Corollary 2 For any finite program P and set of rules R, if P |=u R then P ∪R ≡u P .

From this proposition, we also obtain an alternative characterization of uniform equivalence in terms of
UE-consequence.

Theorem 5 Let P and Q be DLPs. Then,

(a) P ≡u Q implies P |=u Q and Q |=u P ;

(b) P |=u Q and Q |=u P implies P ≡u Q, whenever at least one of the programs P , Q is finite.

Proof. In Case (a), we have UE(P ) = UE(Q) if P ≡u Q by Theorem 3 (a), and thus P and Q have
the same UE-consequences. Since (X,Y ) |= P (resp. (X,Y ) |= Q), for all (X,Y ) ∈ UE (P ) (resp.
(X,Y ) ∈ UE(Q)), it follows Q |=u P and P |=u Q. For (b), we apply Proposition 4 repeatedly and obtain
UE(P ) = UE (P ∪Q) = UE(Q). By Theorem 3 (b) P ≡u Q. 2

Rewriting this result in terms of SE- and UE-models gives the following characterization (which has
also been derived for finite programs in [19]; Proposition 5).

Proposition 5 Let P and Q be DLPs. Then,

(a) P ≡u Q implies UE(P ) ⊆ SE (Q) and UE(Q) ⊆ SE (P );

(b) UE(P ) ⊆ SE(Q) and UE(Q) ⊆ SE (P ) implies P ≡u Q, whenever at least one of the programs P ,
Q is finite.
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We note that with respect to uniform equivalence, every program P has a canonical normal form, P ∗,
given by its UE-consequences, i.e., P ∗ = {r | P |=u r}. Clearly, P ⊆ P ∗ holds for every program P ,
and P ∗ has exponential size. Applying optimization methods built on UE-consequence, P resp. P ∗ may be
transformed into smaller uniformally equivalent programs; we leave this for further study.

As for the relationship of UE-consequence to classical consequence and cautious consequence under
answer set semantics, we note the following hierarchy. Let |=c denote consequence from the answer sets,
i.e., P |=c r iff M |= r for every M ∈ AS(P ).

Proposition 6 For any finite program P and rule r, (i) P |=u r implies P ∪ F |=c r, for each set of facts
F ; (ii) P ∪ F |=c r, for each set of facts F , implies P |=c r; and (iii) P |=c r implies P |= r.

Proof. Since each answer set is a classical model, it remains to show (i). Suppose P |=u r. Then,
P ≡u P ∪ {r} by Corollary 2, i.e., AS(P ∪F ) = AS(P ∪ {r} ∪F ), for each set of facts F . Since X |= r
for each X ∈ AS(P ∪ {r} ∪ F ), it follows that P ∪ F |=c r, for each set of facts F . 2

This hierarchy is strict, i.e., none of the implications holds in the converse direction. (For (i), note that
{a← not a} |=c a but {a← not a} 6|=u a, since the UE-model (∅, {a}) violates a.)

We next present a semantic characterization in terms of UE-models, under which UE- and classical
consequence and thus all four notions of consequence coincide.

Lemma 2 Let P be a DLP. Suppose that (X,Y ) ∈ UE(P ) implies X |= P (i.e., X is a model of P ).
Then, P |= r implies P |=u r, for every rule r.

Proof. Consider (X,Y ) ∈ UE(P ). By hypothesis, X |= P and P |= r, thus X |= r, which implies
X |= rX . Furthermore, Y |= r since Y |= P . We need to show that X |= rY . Note that either rY is void,
or, since X ⊆ Y , we have rY = rX . In both cases X |= rY follows, which proves (X,Y ) ∈ SE (r). Thus,
P |=u r. 2

Theorem 6 Let P be any DLP. Then the following conditions are equivalent:

(i) P |=u r iff P |= r, for every rule r.

(ii) For every (X,Y ) ∈ UE(P ), it holds that X |= P .

Proof.
(ii)⇒ (i). Suppose (ii) holds. The only-if direction in (i) holds immediatly by Lemma 2. The if direction in
(i) holds in gerenal, since P |=u r iff UE (P ) ⊆ SE(r). The latter clearly implies that each total SE-model
of P is a total SE-model of r. Consequently, P |= r.
(i) ⇒ (ii). Suppose P |=u r iff P |= r, for every rule r, but there exists some UE-model (X,Y ) of P
such that X 6|= P . Hence X 6|= r for some rule r ∈ P . Let r ′ be the rule which results from r by shifting
the negative literals to the head, i.e., H(r ′) = H(r) ∪ B−(r), B+(r′) = B+(r), and B−(r′) = ∅. Then,
X 6|= r′. On the other hand, r ∈ P implies (X,Y ) |= r. Hence, Y |= r and thus Y |= r ′. Moreover,
B−(r′) = ∅ implies that r′ ∈ P Y , and hence X |= r′. This is a contradiction. It follows that X |= P for
each UE-model (X,Y ) of P . 2

An immediate corollary to this result is that for finite positive programs, UE-consequence collapses
with classical consequence, and hence uniform equivalence of finite positive programs amounts to classical
equivalence. We shall obtain these results as corollaries of more general results in Section 5.1, though.
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4 Relativized Notions of Strong and Uniform Equivalence

In what follows, we formally introduce the notions of relativized strong equivalence (RSE) and relativized
uniform equivalence (RUE).

Definition 7 Let P and Q be programs and let A be a set of atoms. Then,

(i) P and Q are strongly equivalent relative to A, denoted P ≡As Q, iff P ∪R ≡ Q∪R, for all programs
R over A;

(ii) P and Q are uniformly equivalent relative to A, denoted P ≡Au Q, iff P ∪ F ≡ Q ∪ F , for all
(non-disjunctive) facts F ⊆ A.

Observe that the range of applicability of these notions covers ordinary equivalence (by setting A = ∅)
of two programs P , Q, and general strong (resp. uniform) equivalence (whenever Atm(P ∪Q) ⊆ A). Also
the following relation holds: For any set A of atoms, let A′ = A ∩ Atm(P ∪Q). Then, P ≡Ae Q holds, iff
P ≡A

′

e Q holds, for e ∈ {s, u}.
Our first main result lists some properties for relativized strong equivalence. Among them, we show

that RSE shares an important property with general strong equivalence: In particular, from the proofs of the
results in [37, 57], it appears that for strong equivalence, only the addition of unary rules is crucial. That is,
by constraining the rules in the set R in Definition 7 to unary ones does not lead to a different concept.

Lemma 3 For programs P , Q, and a set of atoms A, the following statements are equivalent:

(1) there exists a program R over A, such that AS(P ∪R) 6⊆ AS(Q ∪R);

(2) there exists a unary program U over A, such that AS(P ∪ U) 6⊆ AS(Q ∪ U);

(3) there exists an interpretation Y , such that (a) Y |= P ; (b) for each Y ′ ⊂ Y with (Y ′∩A) = (Y ∩A),
Y ′ 6|= P Y holds; and (c) Y |= Q implies existence of an X ⊂ Y , such that X |= QY and, for each
X ′ ⊂ Y with (X ′ ∩A) = (X ∩A), X ′ 6|= P Y holds.

Proof. (1) ⇒ (3): Suppose an interpretation Y and a set R of rules over A, such that Y ∈ AS(P ∪ R)
and Y /∈ AS(Q ∪ R). From Y ∈ AS(P ∪ R), we get Y |= P ∪R and, for each Z ⊂ Y , Z 6|= P Y ∪ RY .
Thus (a) holds, and since Y ′ |= RY holds, for each Y ′ with (Y ′ ∩ A) = (Y ∩ A), (b) holds as well.
From Y /∈ AS(Q ∪ R), we get that either Y 6|= Q ∪ R or there exists an interpretation X ⊂ Y , such that
X |= QY ∪ RY . Note that Y 6|= Q ∪ R implies Y 6|= Q, since from above, we have Y |= R. Thus, in the
case of Y 6|= Q ∪ R, (c) holds; otherwise we get that X |= QY . Now since X |= RY , we know that, for
each X ′ ⊂ Y with (X ′ ∩A) = (X ∩A), X ′ 6|= P Y has to hold, otherwise Y /∈ AS(P ∪R). Hence, (c) is
satisfied.

(3) ⇒ (2): Suppose an interpretation Y , such that Conditions (a–c) hold. We have two cases: First,
if Y 6|= Q, consider the unary program U = (Y ∩ A). By Conditions (a) and (b), it is easily seen that
Y ∈ AS(P ∪ U), and from Y 6|= Q, Y /∈ AS(Q ∪ U) follows. So suppose, Y |= Q. By (c), there exists
an X ⊂ Y , such that X |= QY . Consider the program U = (X ∩ A) ∪ {p ← q | p, q ∈ (Y \ X) ∩ A}.
Again, U is unary over A. Clearly, Y |= Q ∪ U and X |= QY ∪ U . Thus Y /∈ AS(Q ∪ U). It remains
to show that Y ∈ AS(P ∪ U). We have Y |= P ∪ U . Towards a contradiction, suppose a Z ⊂ Y , such
that Z |= P Y ∪ U . By definition of U , Z ⊇ (X ∩A). If (Z ∩ A) = (X ∩ A), Condition (c) is violated; if
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(Z ∩ A) = (Y ∩ A), Condition (b) is violated. Thus, (X ∩ A) ⊂ (Z ∩ A) ⊂ (Y ∩ A). But then, Z 6|= U ,
since there exists at least one rule p← q in U , such that q ∈ Z and p /∈ Z . Contradiction.

(2)⇒ (1) is obvious. 2

The next result is an immediate consequence of the fact that Propositions (1) and (2) from above result
are equivalent.

Corollary 3 For programs P , Q, and a set of atoms A, P ≡As Q holds iff, for each unary program U over
A, P ∪ U ≡ Q ∪ U holds.

We emphasize that therefore also for relatived equivalences, it holds that restricting the syntax of the
added rules, RSE and RUE are the only concepts which differ. Note that this generalizes an observation
reported in [49] to relativized notions of equivalence, namely that uniform and strong equivalence are the
only forms of equivalence obtained by varying the logical form of expressions in the extension.

4.1 A Characterization for Relativized Strong Equivalence

In this section, we provide a semantical characterization of RSE by generalizing the notion of SE-models.
Hence, our aim is to capture the problem P ≡As Q in model-like terms. We emphasize that the forthcoming
results are also applicable to infinite programs. Moreover, having found a suitable notion of relativized SE-
models, we expect that a corresponding pendant for relativized uniform equivalence can be derived in the
same manner as general UE-models are defined over general SE-models. As in the case of UE-models, we
need some restrictions concerning the infinite case, i.e., if infinite programs are considered.

We introduce the following notion.

Definition 8 Let A be a set of atoms. A pair of interpretations (X,Y ) is a (relativized) A-SE-interpretation
iff either X = Y orX ⊂ (Y ∩A). The former are called total and the latter non-total A-SE-interpretations.

Moreover, an A-SE-interpretation (X,Y ) is a (relativized) A-SE-model of a program P iff

(i) Y |= P ;

(ii) for all Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A), Y ′ 6|= P Y ; and

(iii) X ⊂ Y implies existence of a X ′ ⊆ Y with (X ′ ∩A) = X , such that X ′ |= P Y holds.

The set of A-SE-models of P is given by SEA(P ).

Compared to SE-models, this definition is more involved. This is due to the fact, that we have to take
care of two different effects when relativizing strong equivalence. The first one is as follows: Suppose a
program P has among its SE-models the pairs (Y, Y ) and (Y ′, Y ) with (Y ′ ∩A) = (Y ∩ A) and Y ′ ⊂ Y .
Then, Y never becomes an answer set of a program P ∪ R, regardless of the rules R over A we add to P .
This is due to the fact that either Y ′ |= (P ∪R)Y still holds for some Y ′ ⊂ Y , or, Y 6|= (P ∪R)Y (the latter
is a consequence of finding an R such that Y′ 6|= (P ∪ R)Y , for (Y ′ ∩ A) = (Y ∩ A), Y ′ ⊂ Y modelling
P ). In other words, for the construction of a program R over A, such that AS(P ∪ R) 6= AS(Q ∪ R), it
is not worth to to pay attention to any original SE-model of P of the form (·, Y ), whenever there exists a
(Y ′, Y ) ∈ SE(P ) with (Y ′ ∩ A) = (Y ∩ A). This motivates Condition (ii). Condition (iii) deals with a
different effect: Suppose P has SE-models (X,Y ) and (X ′, Y ), with (X ∩ A) = (X ′ ∩ A) ⊂ (Y ∩ A).



16 INFSYS RR 1843-05-01

Here, it is not possible to eliminate just one of these two SE-models by adding rules overA. Such SE-models
which do not differ with respect to A, are collected into a single A-SE-model ((X ∩A), Y ).

The different role of these two independent conditions becomes even more apparent in the following
cases. On the one hand, setting A = ∅, the A-SE-models of a program P collapse with the answer sets of
P . More precisely, all such ∅-SE-models have to be of the form (Y, Y ), and it holds that (Y, Y ) is an ∅-SE-
model of a DLP P iff Y is an answer set of P . This is easily seen by the fact that under A = ∅, Conditions
(i) and (ii) in Definition 8 exactly coincide with the characterization of answer sets, following Proposition 2.
Therefore, A-SE-model-checking for DLPs is not possible in polynomial time in the general case; otherwise
we get that checking whether a DLP has some answer set is NP-complete; which is in contradiction to known
results [21], provided the polynomial hierarchy does not collapse. On the other hand, if each atom from P
is contained in A, then the A-SE-models of P coincide with the SE-models (over A) of P . The conditions
in Definition 8 are hereby instantiated as follows: A pair (X,Y ) is an A-SE-interpretation iff X ⊆ Y , and
by (i) we get Y |= P , (ii) is trivially satisfied, and (iii) states X |= PY .

The central result is as follows. In particular, we show that A-SE-models capture the notion of ≡As in
the same manner as SE-models capture ≡s.

Theorem 7 For programs P , Q, and a set of atoms A, P ≡As Q holds iff SEA(P ) = SEA(Q).

Proof. First suppose P 6≡As Q and wlog consider for some R over A, AS(P ∪ R) 6⊆ AS(Q ∪ R). By
Lemma 3, there exists an interpretation Y , such that (a) Y |= P ; (b) for each Y ′ ⊂ Y with (Y ′ ∩ A) =
(Y ∩A), Y ′ 6|= P Y ; and (c) Y 6|= Q or there exists an interpretation X ⊂ Y , such thatX |= QY and, for each
X ′ ⊂ Y with (X ′ ∩A) = (X ∩A), X ′ 6|= P Y . First suppose Y 6|= Q, or Y |= Q and (X ∩A) = (Y ∩A).
Then (Y, Y ) is an A-SE-model of P but not of Q. Otherwise, i.e., Y |= Q and (X ∩ A) ⊂ (Y ∩ A),
((X ∩A), Y ) is an A-SE-model of Q. But, by Condition (c), ((X ∩A), Y ) is not an A-SE-model of P .

For the converse direction of the theorem, suppose a pair (Z, Y ), such that wlog (Z, Y ) is an A-SE-
model of P but not of Q. First, let Z = Y . We show that AS(P ∪R) 6⊆ AS(Q ∪R) for some program R
over A. Since (Y, Y ) is an A-SE-model of P , we get from Definition 8, that Y |= P and, for each Y ′ ⊂ Y
with (Y ∩A) = (Y ′ ∩A), Y ′ 6|= P Y . Thus, Conditions (a) and (b) in Part (3) of Lemma 3 are satisfied for
P by Y . On the other hand, (Y, Y ) is not an A-SE-model of Q. By Definition 8, either Y 6|= Q, or there
exists a Y ′ ⊂ Y , with (Y ′ ∩A) = (Y ∩A), such that Y ′ |= QY . Therefore, Condition (c) from Lemma 3 is
satisfied by either Y 6|= Q or, if Y |= Q, by setting X = Y′. We apply Lemma 3 and get the desired result.
Consequently, P 6≡As Q. So suppose, Z 6= Y . We show that then AS(Q ∪ R) 6⊆ AS(P ∪ R) holds, for
some program R over A. First, observe that whenever (Z, Y ) is an A-SE-model of P , then also (Y, Y ) is an
A-SE-model of P . Hence, the case where (Y, Y ) is not an A-SE-model of Q is already shown. So, suppose
(Y, Y ) is an A-SE-model ofQ. We have Y |= Q and, for each Y ′ ⊂ Y with (Y ′∩A) = (Y ∩A), Y ′ 6|= QY .
This satisfies Conditions (a) and (b) in Lemma 3 for Q. However, since (Z, Y ) is not an A-SE-model of
Q, for each X ′ ⊂ Y with (X ′ ∩ A) = Z , X ′ 6|= QY holds. Since (Z, Y ) in turn is an A-SE-model of P ,
there exists an X ⊂ Y with (X ∩A) = Z , such that X |= P Y . These observations imply that (c) holds in
Lemma 3. We apply the lemma and finally get P 6≡As Q. 2

Altough A-SE-models are more involved than SE-models, they share some fundamental properties with
general SE-models. On the other hand, some properties do not generalize to A-SE-models. We shall discuss
these issues in detail in Section 4.3. For the moment, we list some observations, concerning the relation
between SE-models and A-SE-models, in order to present some examples.
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A A-SE-models of Q A-SE-models of Q′

{a, b, c} (abc, abc), (a, abc), (b, abc) (abc, abc), (a, abc), (b, abc), (∅, abc)
{a, b} (abc, abc), (a, abc), (b, abc) (abc, abc), (a, abc), (b, abc), (∅, abc)
{a, c} (abc, abc), (a, abc), (∅, abc) (abc, abc), (a, abc), (∅, abc)
{b, c} (abc, abc), (∅, abc), (b, abc) (abc, abc), (b, abc), (∅, abc)
{a} - -
{b} - -
{c} (abc, abc), (∅, abc) (abc, abc), (∅, abc)
∅ - -

Table 1: Comparing the A-SE-models for Example Programs Q and Q′.

Lemma 4 Let P be a program and A be a set of atoms. We have the following relations between A-SE-
models and SE-models.

(i) If (Y, Y ) ∈ SEA(P ), then (Y, Y ) ∈ SE(P ).

(ii) If (X,Y ) ∈ SEA(P ), then (X ′, Y ) ∈ SE (P ), for some X ′ ⊆ Y with (X ′ ∩A) = X .

Example 11 Consider the programs

Q = {a ∨ b←; a← c; b← c; ← not c; c← a, b};

Q′ = {a← not b; b← not a; a← c; b← c; ← not c; c← a, b}.

Thus, Q′ results from Q by replacing the disjunctive rule a ∨ b← by the two rules a← not b; b← not a.
Table 1 lists, for each A ⊆ {a, b, c}, the A-SE-models of Q and Q′, respectively. The first row of

the table gives the SE-models (over {a, b, c}) for Q and Q′. From this row, we can by Definition 8 and
Lemma 4, obtain the other rows quite easily. Observe that we have Q 6≡s Q′. The second row shows that,
for A = {a, b}, Q 6≡As Q′, as well. Indeed, adding R = {a ← b; b ← a} yields {a, b, c} as answer set of
Q∪R, whereasQ′∪R has no answer set. For all otherA ⊂ {a, b, c}, theA-SE-models ofQ andQ′ coincide.
Basically, there are two different reasons. First, for A = {a, c}, A = {b, c}, or A = {c}, Condition (iii)
from Definition 8 comes into play. In those cases, at least one of the SE-interpretations (a, abc) or (b, abc) is
“switched” to (∅, abc), and thus the original difference between the SE-models disappears when considering
A-SE-models. In the remaining cases, i.e., A ⊂ {a, b}, Condition (ii) prevents any (·, abc) to be an A-SE-
model of Q or Q′. Then, neither Q nor Q′ possesses any A-SE-model.

4.2 A Characterization for Relativized Uniform Equivalence

In what follows, we consider the problem of checking relativized uniform equivalence. Therefore, we shall
make use of the newly introduced A-SE-models in the same manner as Section 3 provided characterizations
for uniform equivalence using SE-models.2

We start with a generalization of Lemma 1. The proof is similar to the proof of Lemma 1 and thus
relegated to the Appendix.

2For a slightly different way to prove the main results on RUE, we refer to [58].
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Lemma 5 Two DLPs P and Q are uniformly equivalent wrt to a set of atoms A, i.e. P ≡Au Q, iff for every
A-SE-model (X,Y ), such that (X,Y ) is an A-SE-model of exactly one of the programs P and Q, it holds
that (i) (Y, Y ) ∈ SEA(P ) ∩ SEA(Q), and (ii) there exists an A-SE-model (X ′, Y ), X ⊂ X ′ ⊂ Y , of the
other program.

From Lemma 5 we immediately obtain the following characterization of relativized uniform equiva-
lence.

Theorem 8 Two programs, P and Q are uniformly equivalent wrt to a set of atoms A, P ≡Au Q, iff

(i) for each Y , (Y, Y ) ∈ SEA(P ) iff (Y, Y ) ∈ SEA(Q), i.e., the totalA-SE-models of P andQ coincide;

(ii) for each (X,Y ), where X ⊂ Y , (X,Y ) is an A-SE-model of P (respectively Q) iff there exists a set
X ′, such that X ⊆ X ′ ⊂ Y , and (X ′, Y ) is an A-SE-model of Q (respectively P ).

In contrast to uniform equivalence, we can obtain further characterizations for ≡Au also for infinite
programs, provided that A is finite.

Theorem 9 Let P and Q be programs, A a set of atoms, such that P , Q, or A is finite. Then P ≡Au Q, iff
the following conditions hold:

(i) for each Y , (Y, Y ) ∈ SEA(P ) iff (Y, Y ) ∈ SEA(Q), i.e., the totalA-SE-models of P andQ coincide;

(ii) for each (X,Y ) ∈ SEA(P ) ∪ SEA(Q) such that X ⊂ Y , there exists an (X ′, Y ) ∈ SEA(P ) ∩
SEA(Q) such that X ⊆ X ′ ⊂ Y .

The result is proved by the same argumentation as used in the proof of Theorem 2. The only additional
argumentation is needed for the cases that P and Q are both infinite, but A is finite. Recall that in this case
there is also only a finite number of non-total A-SE-interpretations (X,Y ) for fixed Y , since X ⊆ A holds
by definition of A-SE-interpretation. Therefore, any chain (as used in the proof of Theorem 2) of different
A-SE-models (X,Y ) with fixed Y is finite.

As mentioned before, we aim at defining relativized A-UE-models over A-SE-models in the same man-
ner as general UE-models are defined over general SE-models, following Definition 5.

Definition 9 Let A be a set of atoms and P be a program. A pair (X,Y ) is a (relativized) A-UE-model of
P iff it is an A-SE-model of P and, for every A-SE-model (X ′, Y ) of P , X ⊂ X ′ implies X ′ = Y . The set
of A-UE-models of P is given by UEA(P ).

An alternative characterization of A-UE-models, which will be useful later, is immediately obtained
from Definitions 8 and 9 as follows.

Proposition 7 An A-SE-interpretation (X,Y ) is an A-UE-model of a program P iff

(i) Y |= P ;

(ii) for each X ′′ ⊂ Y with either (X ∩A) ⊂ (X ′′ ∩A) or (X ′′ ∩A) = (Y ∩A), X ′′ 6|= P Y ; and

(iii) if X ⊂ Y , there exists a X ′ ⊆ Y with (X ′ ∩A) = (X ∩A), such that X ′ |= P Y .

Next, we derive the desired characterization for relativized uniform equivalence, generalizing the results
in Theorem 3.
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Theorem 10 Let P and Q be DLPs, and A a set of atoms. Then,

(a) P ≡Au Q implies UEA(P ) = UEA(Q);

(b) UEA(P ) = UEA(Q) implies P ≡Au Q, whenever at least one of P , Q, or A is finite.

Proof. Proving (a) is basically done as for Theorem 3, applying Theorem 8 instead of Theorem 1.
We proceed with the more interesting part (b). First assume that P or A is finite. The case where Q (or

A) is finite is analogous. Assume UEA(P ) = UEA(Q). Then Property (i) of Theorem 8 holds, and towards
a contradiction, suppose that Theorem 8 (ii) is not satisfied, i.e., there exists X ⊂ Y , such that either (1)
(X,Y ) ∈ SEA(P ) and not exists X ⊆ X ′ ⊂ Y , (X ′, Y ) ∈ SEA(Q), or vice versa (2) (X,Y ) ∈ SEA(Q)
and not exists X ⊆ X ′ ⊂ Y , (X ′, Y ) ∈ SEA(P ).
Case (1): We show the existence of a set Z , X ⊆ Z ⊂ Y , such that (Z, Y ) ∈ UEA(P ). If (X,Y ) ∈
UEA(P ), or either Y or A is finite, this is trivial. So let (X,Y ) 6∈ UEA(P ) and both Y and A be infinite.
Then YP = Y ∩ Atm(P ) and XP = X ∩ Atm(P ) are finite, and (XP , YP ) ∈ SEA(P ). The latter holds
by the observations that (i) Y |= P implies YP |= P ; (ii) for each Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A),
Y ′ 6|= P Y implies that, for each Y ′′ ⊂ YP with (Y ′′ ∩ A) = (YP ∩ A), Y ′′ 6|= P Y ; and (iii) X ′ |= P Y for
some (X ′ ∩A) = X implies that (X ′ ∩Atm(P )) |= P Y = P YP . Moreover, XP ⊂ YP , otherwise we end
up in a contradiction by the fact that then (X ′′, X ′′) ∈ UEA(P ) = UEA(Q) for some (X ′′ ∩ A) = XP ,
implying (X,Y ) ∈ SEA(Q), since (Y, Y ) ∈ UEA(Q) = UEA(P ) holds. Since YP is finite, there exists
a set ZP , XP ⊆ ZP ⊂ YP , such that (ZP , YP ) ∈ UEA(P ). Now, let Z = A ∩ (ZP ∪ (Y \ YP )). Then
X ⊆ Z ⊂ Y holds by construction. Furthermore (Z, Y ) ∈ UEA(P ), since Y \ Z = YP \ ZP , P Y = P YP ,
and (ZP , YP ) ∈ UEA(P ). By our assumption (Z, Y ) ∈ UEA(Q) follows. Contradiction.
Case (2): We show the existence of a set Z , X ⊆ Z ⊂ Y , such that (Z, Y ) ∈ UE A(Q). If (X,Y ) ∈
UEA(Q), or one of A, Y is finite, this is trivial. So let (X,Y ) 6∈ UE(Q), and both Y and A infinite. If
(X,Y ) 6∈ UEA(Q), ((Y ∩A)\X) ⊆ Atm(P ) must hold; otherwise we end up in a contradiction by taking
any atom a ∈ (Y ∩ A) \ X . (Consider Z = (Y ∩ A) \ {a}. Then X ⊆ Z ⊂ Y holds by construction
and since (Y, Y ) ∈ UEA(P ) = UEA(Q), as well as some Z ′ with (Z ′ ∩ A) = Z models PZ

′

= P Y

we get (Z, Y ) ∈ SEA(P ), a contradiction). Now, since Atm(P ) is finite, this means that (Y ∩ A) \ X is
finite, i.e., there cannot exist an infinite chain of SE -models (X,Y ) = (X0, Y ), (X1, Y ), . . . , (Xi, Y ), . . .,
such that Xi ⊂ Xj ⊂ (Y ∩ A), for i < j, and (Xi, Y ) ∈ SEA(Q). Thus, there exists a maximal model
(Z, Y ) ∈ UEA(Q). By our assumption (Z, Y ) ∈ UEA(P ) follows. Contradiction. Thus, Theorem 8 (ii)
holds as well, proving P ≡Au Q in Case (b). 2

Example 12 Recall our example programs Q and Q′ from above. Via the first row in the table (i.e., for
A = {a, b, c}, yielding the respective SE-models), it is easily checked by Proposition 3 that Q and Q ′ are
uniformly equivalent. In fact, the SE-model (∅, abc) of Q′ is not a UE-model of Q′, due to the presence of
the SE-model (a, abc), or alternatively because of (b, abc). Note that Q ≡u Q′ implies Q ≡Au Q

′ for any A.
Inspecting the remaining rows in the table, it can be seen that for any A, the sets of A-UE-models of Q and
Q′ are equal, as expected.

We conclude this section, with remarking that we do not have a directly corresponding result to Theo-
rem 5 for relativized uniform equivalence (see also next subsection). A generalization of Proposition 5 is
possible, however. The proof is in the Appendix.

Theorem 11 Let P and Q be DLPs, and A a set of atoms. Then,
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(a) P ≡Au Q implies UEA(P ) ⊆ SEA(Q) and UEA(Q) ⊆ SEA(P );

(b) UEA(P ) ⊆ SEA(Q) and UEA(Q) ⊆ SEA(P ) implies P ≡Au Q, whenever at least one of P , Q, or
A is finite.

4.3 Properties of Relativized Equivalences

This section collects a number of properties of A-SE-models and A-UE-models, respectively. Note that
there are situations where A-SE-models and A-UE-models are the same concepts.

Proposition 8 For any program P , and a set of atoms A with card (A) < 2, SE A(P ) = UEA(P ) holds.

Corollary 4 For programs P ,Q and a set of atoms A with card (A) < 2, P ≡As Q iff P ≡Au Q.

The following results are only given in terms of A-SE-models; the impact of the results on properties of
A-UE-models is in most cases obvious, and thus not explicitly mentioned.

First, we are able to generalize Proposition 2 to relativized SE-models.

Lemma 6 An interpretation Y is an answer set of a program P iff (Y, Y ) ∈ SE A(P ) and, for each X ⊂ Y ,
(X,Y ) 6∈ SEA(P ).

One drawback of A-SE-models is that they are not closed under program composition. Formally,
SEA(P ∪ Q) = SEA(P ) ∩ SEA(Q) does not hold in general; however, it holds whenever A contains
all atoms occurring in P or Q. However, the fact that, in general, SEA(P ∪Q) 6= SEA(P ) ∩ SEA(Q), is
not a surprise, since for A = ∅, A-SE-models capture answer sets; and if this closure property would hold,
answer set semantics would be monotonic.

Proposition 9 For programs P , Q, and a set of atoms A, we have the following relations:

(i) (Y, Y ) ∈ SEA(P ) ∩ SEA(Q) implies (Y, Y ) ∈ SEA(P ∪Q);

(ii) for X ⊂ Y , (X,Y ) ∈ SEA(P ∪ Q) implies (X,Y ) ∈ SEA(R), whenever (Y, Y ) ∈ SEA(R), for
R ∈ {P,Q};

(iii) the converse directions of (i) and (ii) do not hold in general.

Proof. ad (i): Suppose (Y, Y ) /∈ SEA(P ∪Q); then either (a) Y 6|= P ∪Q; or (b) there exists a Y ′ ⊂ Y
with (Y ′ ∩ A) = (Y ∩ A), such that Y ′ |= (P ∪ Q)Y . If Y 6|= P ∪ Q, then either Y 6|= P or Y 6|= Q.
Consequently, (Y, Y ) /∈ SEA(P ) or (Y, Y ) /∈ SEA(Q). So, suppose Y |= P ∪ Q and (b) holds. Then
neither, (Y, Y ) ∈ SEA(P ) nor (Y, Y ) ∈ SEA(Q).

ad (ii): Let R ∈ {P,Q}. Suppose (Y, Y ) ∈ SEA(R) and (X,Y ) /∈ SEA(R). The latter implies that no
X ′ ⊂ Y with (X ′∩A) = (X∩A), satisfies X′ |= P Y . Consequently, no such X ′ satisfies X′ |= (P ∪Q)Y ,
and thus (X,Y ) /∈ SEA(P ∪Q).

ad (iii): Take the following example programs. Consider programs over V = {a, b, c} containing rules
R = { ← not a; ← not b; ← not c}. Note that SE(R) = {(X,V ) | X ⊆ V }. Let

Pa = R ∪ {a←; b← c; c← b};

Pb = R ∪ {b←; a← c; c← a};

Pc = R ∪ {c←; a← b; b← a}.
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Then, the SE-models of Pv are given by (v, abc) and (abc, abc), for v ∈ V .
Set now, for instance, A = {c}. Then, we have SEA(Pa) = SEA(Pb) = {(∅, abc), (abc, abc)}, while

SEA(Pc) = ∅. However, SEA(Pa ∪ Pb) = SEA(Pa ∪ Pc) = SEA(Pb ∪ Pc) = {(abc, abc)}. This shows
that for both, (i) and (ii) in Proposition 9, the converse direction does not hold. 2

The above result crucially influences the behavior of relativized consequence operators, i.e., generaliza-
tions of |=e as introduced in Definitions 3 and 6, respectively, to the relativized notions of equivalence.

To check rule redundancy in the context of relatived strong equivalence, we give the following result.

Definition 10 A rule, r, is an A-relativized SE-consequence of a program P , denoted P |=A
s r, if (X,Y ) ∈

SEA({r}), for all (X,Y ) ∈ SEA(P ).

Lemma 7 For any set of atomsA, program P , and rule r with (B+(r)∪H(r)) ⊆ A, it holds that if P |=A
s r

then P ∪ {r} ≡As P .

Proof. We show SEA(P ∪ {r}) = SEA(P ), given P |=A
s r.

“⊆”: Let (X,Y ) ∈ SEA(P ∪ {r}). We show (X,Y ) ∈ SEA(P ). First let X = Y . Then, Y |= P ∪ {r}
and, for each Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ 6|= (P ∪ r)Y . Since Atm(rY ) ⊆ A, for each such
Y ′, Y ′ |= rY , and therefore, Y ′ 6|= P Y . Consequently, (Y, Y ) ∈ SEA(P ). So suppose, X ⊂ Y . Then,
(Y, Y ) ∈ SEA(P ∪ {r}). We already know that then (Y, Y ) ∈ SEA(P ). We apply Proposition 9, and get
(X,Y ) ∈ SEA(P ).
“⊇”: Let (X,Y ) ∈ SEA(P ). Then, (Y, Y ) ∈ SEA(P ) and by assumption (Y, Y ) ∈ SEA({r}). By
Proposition 9, we get (Y, Y ) ∈ SEA(P ∪ {r}). Moreover, from (X,Y ) ∈ SEA(P ) and P |=A

s r, we get
(X,Y ) ∈ SEA({r}). Hence, there exist X ′,X ′′ with (X ′∩A) = (X ′′∩A) = (X ∩A) such that X ′ |= P Y

and X ′′ |= rY . By assumption Atm(rY ) ⊆ A. Since X ′ and X ′′ agree on A, we get X ′ |= rY ; and thus
X ′ |= (P ∪ r)Y . Consequently, (X,Y ) ∈ SEA(P ∪ {r}). 2

The result similarly applies to the notion of UE-consequence relative to A, i.e., the restriction (H(r) ∪
B+(r)) ⊆ A is also necessary in that case. However (as in Proposition 4), the result has to be slightly
rephrased for A-UE-models in order to handle the case of infinite programs properly.

In general, checking rule-redundancy with respect to relativized equivalences is a more involved task;
we leave it for further study.

5 Restricted Classes of Programs

So far, we discussed several forms of equivalence for propositional programs, in general. This section
is devoted to two prominent subclasses of disjunctive logic programs, namely positive and head-cycle free
programs. Notice that these classes include the Horn logic programs and the disjunction-free logic programs,
respectively.

5.1 Positive Programs

While for programs with negation, strong equivalence and uniform equivalence are different, the notions
coincide for positive programs, also in the relativized cases. We start with some technical results.

Lemma 8 Let P be a program, and A, X ⊂ Y be sets of atoms. We have the following relations:
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1. If (Y, Y ) ∈ SEA(P ) and (X,X) ∈ SEA(P ), then ((X ∩A), Y ) ∈ SEA(P ).

2. If (X,Y ) ∈ SEA(P ), then (Y, Y ) ∈ SEA(P ) and, whenever P is positive, there exists an X ′ ⊆ Y
with (X ′ ∩A) = X , such that (X ′, X ′) ∈ SEA(P ).

Proof. (1) First, observe that (X ∩ A) ⊂ (Y ∩ A) holds. Otherwise, we get from X |= P X , X |= P Y

(since P Y ⊆ PX , whenever X ⊆ Y ), and thus (Y, Y ) /∈ SEA(P ), by definition. Moreover, since X |= PY

and (Y, Y ) ∈ SEA(P ), we derive ((X ∩A), Y ) ∈ SEA(P ).
(2) Let (X,Y ) ∈ SEA(P ). Then, (Y, Y ) ∈ SEA(P ) is an immediate consequence of the definition of

A-SE-models. From (X,Y ) ∈ SEA(P ) we get that there exists an X ′ ⊆ Y with (X ′ ∩ A) = X , such
that X ′ |= P Y . Take X ′ as the minimal interpretation satisfying this condition. For positive P , we have
PX

′

= P Y = P and we get X ′ |= PX
′

= P . Moreover, since we chose X ′ minimal, there does not exist
an X ′′ ⊂ X ′ with (X ′′ ∩A) = (X ′ ∩A), such that X ′′ |= PX

′

= P . Hence, (X ′, X ′) ∈ SEA(P ). 2

In other words, the set of all A-SE-models of a positive program P is determined by its total A-SE-
models. An important consequence of this result is the following.

Proposition 10 Let P , Q be programs, P be positive, and suppose the total A-SE-models of P and Q
coincide. Then, SEA(P ) ⊆ SEA(Q).

Proof. Towards a contradiction, assume there exists an A-SE-interpretation satisfying (X,Y ) ∈ SE A(P )
and (X,Y ) /∈ SEA(Q). Since P is positive, by Lemma 8 we get that there exists some X ′ ⊆ Y with
(X ′ ∩ A) = X , such that (X ′, X ′) ∈ SEA(P ). By assumption, the total A-SE-models coincide, and
thus we have (X ′, X ′) ∈ SEA(Q). Moreover, since (X,Y ) ∈ SEA(P ), we get (Y, Y ) ∈ SEA(P ) and
furthermore (Y, Y ) ∈ SEA(Q). Hence, (X ′, X ′) ∈ SEA(Q) and (Y, Y ) ∈ SEA(Q). By Lemma 8, we get
that ((X ′ ∩A), Y ) = (X,Y ) is A-SE-model of Q, which is in contradiction to our assumption. 2

From this result, we get that deciding relativized strong and uniform equivalence of positive programs
collapses to checking whether total A-SE-models coincide.

Theorem 12 Let P and Q be positive DLPs, and A a set of atoms. The following propositions are equiva-
lent:

(i) P ≡As Q;

(ii) P ≡Au Q;

(iii) (Y, Y ) ∈ SEA(P ) iff (Y, Y ) ∈ SEA(Q), for each interpretation Y .

Proof. (i) implies (ii) by definition; (ii) implies (iii) by Theorem 10. We show (iii) implies (i). Applying
Proposition 10 in case of two positive programs immediately yields that (iii) implies SE A(P ) = SEA(Q).
Hence, P ≡As Q. 2

Therefore, RSE and RUE are the same concepts for positive programs; we thus sometimes write gener-
ically ≡e for ≡s and ≡u.

An important consequence of this result, is that A-UE-models (and thus UE-models) are capable to deal
with infinite programs as well, provided they are positive.

Corollary 5 Let A be a (possibly infinite) set of atoms, and P , Q (possibly infinite) positive program. Then,
P ≡Au Q holds iff UEA(P ) = UEA(Q).
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Proof. The only-if direction has already been obtained in Theorem 10. For the if direction, note that
UEA(P ) = UEA(Q) implies (iii) from Theorem 12, and since P and Q are positive we derive P ≡Au Q
immediately from that Theorem. 2

Concerning strong equivalence and uniform equivalence, Lemma 8 generalizes some well known obser-
vations for positive programs.

Proposition 11 For any positive program P , and sets of atoms X ⊆ Y , (X,Y ) ∈ SE (P ) iff (X,X) ∈
SE (P ) and (Y, Y ) ∈ SE (P ).

In other words, the set of all SE-models of a program P is determined by its total SE-models (i.e., by
the classical models of P ). As known and easy to see from main results [37, 56, 57], on the class of positive
programs classical and strong equivalence coincide. Using Theorem 12, we can extend this result:

Theorem 13 For positive programs P ,Q, P ≡e Q (e ∈ {s, u}) iff P andQ have the same classical models.

Note that Sagiv [52] showed that uniform equivalence of DATALOG programs Π and Π ′ coincides with
equivalence of Π′ and Π over Herbrand models; this implies the above result for definite Horn programs.
Maher [43] showed a generalization of Sagiv’s result for definite Horn logic programs with function sym-
bols. Furthermore, Maher also pointed out that for DATALOG programs, this result has been independently
established by Cosmadakis and Kanellakis [10].

Example 13 Consider the positive programs P = {a ∨ b ← a; b ← a} and Q = {b ← a}. Clearly,
P |= Q since Q ⊂ P , but also Q |= P holds (note that b← a is a subclause of a ∨ b← a). Hence, P and
Q are uniformly equivalent, and even strongly equivalent (which is also easily verified).

Example 14 Consider the positive programs P = {a ∨ b; c ← a; c ← b} and Q = {a ∨ b; c}. Their
classical models are {a, c}, {b, c}, and {a, b, c}. Hence, P and Q are uniformly equivalent, and even
strongly equivalent (due to Theorem 12).

Concerning the relativized notions, a result corresponding directly to Theorem 13 is not achievable.
However, this is not surprising, otherwise we would have that in case of empty A, P ≡As Q (or P ≡Au Q)
collapses to classical equivalence. This, of course, cannot be the case since for positive programs, P ≡ Q
denotes the equivalence of the minimal classical models of P and Q, rather than classical equivalence.

Thus, while for strong and uniform equivalence total models (Y, Y ) for a positive program P coincide
with the classical models Y of P , the relativized variants capture a more specific relation, viz. minimal
models. We therefore define as follows.

Definition 11 AnA-minimal model of a program P is a classical model Y of P , such that, for each Y ′ ⊂ Y
with (Y ′ ∩A) = (Y ∩A), Y ′ is not a classical model of P .

Then, we can generalize Theorem 13 in the following manner:

Theorem 14 Let P and Q be positive DLPs, and A a set of atoms. Then, P ≡Ae Q (e ∈ {s, u}) iff P and Q
have the same A-minimal models.
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Proof. By Theorem 12 it is sufficient to show that the total A-SE-models of a program P equal its A-
minimal models. This relation holds for positive programs, since P Y = P for any positive program P
and any interpretation Y . In this case the conditions for (Y, Y ) ∈ SEA(P ) are the same as for Y being
A-minimal for P . 2

Note that for A = ∅ the theorem states that P ≡Ae Q iff the minimal classical models of P and Q
coincide, reflecting the minimal model semantics of positive programs. On the other hand, for A = U , the
theorem states that P ≡Ae Q iff all classical models of P and Q coincide, as stated above.

5.2 Head-cycle free programs

The class of head-cycle free programs generalizes the class of normal logic programs by permitting a re-
stricted form of disjunction. Still, it is capable of expressing nondeterminism such as, e.g., a guess for the
value of an atom a, which does not occur in the head of any other rule. For a definition of head-cycle free-
ness, we refer to Section 2. As shown by Ben-Eliyahu and Dechter [4], each head-cycle free program can
be rewritten to an ordinary equivalent normal program, which is obtained by shifting atoms from the head
to the body.

More formally, let us define the following notations.

Definition 12 For any rule r, let

r→ =

{

{a← B+(r),not (B−(r) ∪ (H(r) \ {a})) | a ∈ H(r)} if H(r) 6= ∅,
{r} otherwise

For any DLP P , let P→r = (P \ {r}) ∪ r→; and P→ =
⋃

r∈P r
→.

It is well-known that for any head-cycle free program P , it holds that P ≡ P→ (cf. [4]). This result can
be strengthened to uniform equivalence as well as to its relativized forms.

Theorem 15 For any head-cycle free program P , and any set of atoms A, it holds that P ≡Au P
→.

Proof. For any set of facts F ⊆ A, it holds that (P ∪F )→ = P→∪F and that this program is head-cycle
free iff P is head-cycle free. Thus, P ∪ F ≡ (P ∪ F )→ ≡ P→ ∪ F . Hence, P ≡Au P

→. 2

We emphasize that a similar result for strong equivalence fails, as shown by the canonical counterexam-
ple in Example 1. Moreover, the program P = {a ∨ b ← .} is not strongly equivalent to any NLP. Thus,
we can not conclude without further consideration that a simple disjunctive “guessing clause” like the one
in P (such that a and b do not occur in other rule heads) can be replaced in a more complex program by
the unstratified clauses a ← not b and b ← not a (the addition of a further constraint ← a, b is required).
However, we can conclude this under uniform equivalence taking standard program splitting results into
account [39, 22].

The following result provides a characterization of arbitrary programs which are relativized strongly
equivalent to their shift variant. A more detailed discussion of eliminating disjunction under different notions
of equivalences was recently published in [19].

First, we state a simple technical result.

Lemma 9 For any rule r, SE(r) ⊆ SE(r→).
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Proof. Indirect. Suppose (X,Y ) ∈ SE(r) and (X,Y ) /∈ SE (r→). Then, Y |= r and either Y ∩B−(r) 6=
∅, X 6|= B+(r), or X ∩ H(r) 6= ∅. By classical logic, Y |= r iff Y |= r→. By assumption (X,Y ) /∈
SE (r→), there exists a rule in r→ with a as the only atom in its head, such that a /∈ X , Y ∩ B−(r) = ∅,
X |= B+(r), and Y ∩ (H(r) \ {a}) = ∅. Hence, from the above conditions for (X,Y ) ∈ SE(r), only
X ∩ H(r) 6= ∅ applies. Then, some b from H(r) is contained in X . If a = b we get a contradiction to
a /∈ X; otherwise we get a contradiction to Y ∩ (H(r) \ {a}) = ∅, since Y ⊇ X and thus b ∈ Y . 2

Next, we define the following set, which characterizes the exact difference between r and r→ in terms
of SE-models.

Definition 13 For any rule r, define

Sr = {(X,Y ) | X ⊆ Y, X |= B+(r), Y ∩B−(r) = ∅, card (H(r) ∩ Y ) ≥ 2, H(r) ∩X = ∅}.

Proposition 12 For any disjunctive rule r, SE (r→) \ SE (r) = Sr.

A proof for this result can be found in [19]. Hence, together with Lemma 9, we get that, for any
disjunctive rule r, Sr characterizes exactly the difference between r and r→ in terms of SE-models.

Theorem 16 Let P be a program, and r ∈ P . Then, P ≡As P
→
r iff for each SE-model (X,Y ) ∈ SE (P→r )∩

Sr, exists a X ′ ⊂ Y , with X ′ 6= X and (X ′ ∩A) = (X ∩A), such that (X ′, Y ) ∈ SE (P ).

Proof. Suppose P 6≡As P→r . First, assume there exists an A-SE-interpretation (Z, Y ) ∈ SEA(P ) such
that (Z, Y ) 6∈ SEA(P→r ). By definition of A-SE-models, Lemma 9 and the fact that Y |= P iff Y |= P→r ,
we get that Z = Y . Since (Y, Y ) 6∈ SEA(P→r ) but Y |= P→r , there exists an X such that (X,Y ) is SE-
model of P→r . Moreover, by Proposition 12, (X,Y ) ∈ Sr. On the other hand, from (Y, Y ) ∈ SEA(P ), we
get that, for each X ′ ⊂ Y with (X ′ ∩ A) = (Y ∩ A) = (X ∩ A), (X ′, Y ) is not SE-model of P . Second,
assume there exists an A-SE-interpretation (Z, Y ) ∈ SEA(P→r ), such that (Z, Y ) 6∈ SEA(P ). One can
verify that using Lemma 9 this implies Z ⊂ Y . Hence, there exists some X ⊆ Y with (X ∩A) = (Z ∩A)
such that (X,Y ) is SE-model of P→ but no X ′ with (X ′ ∩ A) = (X ∩ A) is SE-model of P . Moreover,
(X,Y ) ∈ Sr. This shows the claim. The converse direction is by exactly the same arguments. 2

As an immediate consequence of this result, we obtain the following characterization for general strong
equivalence.

Corollary 6 Let P be any DLP. Then, P ≡s P→ if and only if for every disjunctive rule r ∈ P it holds that
P→ has no SE-model (X,Y ) ∈ Sr (i.e., SE (P→) ∩ Sr = ∅).

Example 15 Reconsider P = {a ∨ b ←}. Then P→ = {a ← not b, b ← not a} has the SE-model
(∅, ab) which satisfies the conditions for Sa∨b←. Note that also the extended program P ′ = {a ∨ b←, a←
b, b← a} is not strongly equivalent to its shifted program P ′→. Indeed, (∅, ab) is also an SE-model of P ′→.
Furthermore, P ′ is also not uniformly equivalent to P ′→, since (∅, ab) is moreover a UE-model of P ′→, but
P ′ has the single SE-model (and thus UE-model) (ab, ab).

We already have seen that shifting is possible if the disjunction is made exclusive with an additional
constraint (see also Example 2).
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Example 16 Let P be a program containing the two rules r = a ∨ b ← and r ′ =← a, b. The rule r′

guarantees that no SE-model (X,Y ) of P or of P→r with {a, b} ⊆ Y exists. But then, Sr does not contain
an element from SE(P→r ), and we get by Corollary 6, P ≡s P→r .

So far, we have presented a general semantic criterion for deciding whether shifting is invariant un-
der ≡As . We close this section, with a syntactic criterion generalizing the concept of head-cycle freeness.

Definition 14 For a set of atoms A, a rule r is A-head-cycle free (A-HCF) in a program P , iff the depen-
dency graph of P augmented with the clique over A, does not contain a cycle going through two atoms from
H(r). A program is A-HCF, iff all its rules are A-HCF.

In other words, the considered augmented graph of P as used in the definition is given by the pair
(A ∪Atm(P ), E) with

E =
⋃

r∈P

{(p, q) | p ∈ B+(r), q ∈ H(r), p 6= q} ∪ {(p, q), (q, p) | p, q ∈ A, p 6= q}

and obviously coincides with the (ordinary) dependency graph of the program P ∪ R, where R is the set
of all unary rules over A. Recall that following Corollary 3, unary rules characterize relativized strong
equivalence sufficiently. From this observation, the forthcoming results follow in a straight-forward manner.

Theorem 17 For any program P , r ∈ P , and a set of atoms A, P ≡As P
→
r , whenever r is A-HCF in P .

Note that if r is A-HCF in P , then r is HCF in P ∪R, where R is the set of unary rules over A. In turn,
r then is HCF in all programs P ∪ R′, with R′ ⊆ R. Thus, P ∪ R′ ≡ P→r ∪ R

′ holds for all R′ by known
results. Consequently, P ≡As P

→
r .

Corollary 7 For any program P , and a set of atoms A, P ≡As P
→ holds, whenever P is A-HCF.

6 Computational Complexity

In this section, we address the computational complexity of checking various notions of equivalence for
logic programs. We start with uniform equivalence also taking the associated consequence operator into
account. Then, we generalize these results and consider the complexity of relativized equivalence. Finally,
we consider bounded relativization, i.e., the problem of deciding P ≡Ae Q (e ∈ {s, u}), such that the number
of atoms missing in A is bounded by a constant k, denoted P k≡Ae Q. For all three groups of problems we
provide a fine-grained picture of their complexity by taking different classes of programs into account.

Recall that ΠP
2 = coNPNP is the class of problems such that the complementary problem is nondeter-

ministically decidable in polynomial time with the help of an NP oracle, i.e., in ΣP
2 = NPNP. As well,

the class DP consists of all problems expressible as the conjunction of a problem in NP and a problem in
coNP. Moreover, any problem in DP can be solved with a fixed number of NP-oracle calls, and is thus
intuitively easier than a problem complete for ∆P

2 .
Our results are summarized in Table 2. More precisely, the table shows the complexity of the considered

problems P ≡As Q and P ≡Au Q in the general case; as well as in the bounded case (P k≡As Q and P k≡Au
Q). Moreover, we explicitly list the problem of uniform equivalence, P ≡u Q. Depending on the program
classes P and Q belong to, the corresponding entry shows the complexity (in terms of a completness result)
for all five equivalence problems with respect to these classes. In fact, the table has to be read as follows.
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P ≡As Q / P ≡Au Q /

P k≡As Q / P k≡Au Q / P ≡u Q DLP positive HCF normal Horn

Horn ΠP
2 coNP coNP coNP coNP

coNP coNP coNP coNP P

normal ΠP
2 ΠP

2 ΠP
2 /coNP coNP

coNP coNP coNP coNP

HCF ΠP
2 ΠP

2 ΠP
2 /coNP

coNP coNP coNP

positive ΠP
2 ΠP

2

coNP/ΠP
2 /ΠP

2 coNP

DLP ΠP
2

coNP/ΠP
2 /ΠP

2

Table 2: Complexity of Equivalence Checking in Terms of Completeness Results.

For instance, the complexity of equivalence checking for DLPs in general is given by the entry in the last
line and the first column of Table 2. The entry’s first line refers to the problems P ≡As Q and P ≡Au Q
(which are both ΠP

2 -complete), and the entry’s second line refers to the problems P k≡As Q, P k≡Au Q, and
P ≡u Q, respectively. The latter two show ΠP

2 -completenes while P k≡As Q is coNP-complete. As another
example, the complexity of deciding equivalence of a head-cycle free program and a normal program is
reported by the entry in the second line of the third column.

We now highlight the most interesting entries of Table 2.

• (Unrelativized) uniform equivalence is harder than (unrelativized) strong equivalence; and this result
carries over to the case of bounded relativization. This difference in complexity is only obtained if
both programs involved contain head-cycles and at least one of them contains default negation.

• For the case of relativization, uniform equivalence is in some cases easier to decide than relativized
strong equivalence. This effect occurs only, if both programs are head-cycle free, whereby one of
them may be normal (but not Horn).

• Another interesting case amounts if two Horn programs are involved. Hereby, relativized equivalence
is harder than in the bounded case, but it is also harder than ordinary equivalence (see Theorem 33 in
Section 6.2 below). In each other case, relativization is never harder than ordinary equivalence.

• Finally, we list those cases where bounded relativizations decreases the complexity: As already men-
tioned for both RSE and RUE, this holds for comparing Horn programs. Additionally, in the case of
RSE, there is a proper decrease whenever one program is disjunctive and the other is not Horn, or
P contains negation as well as head-cycles and Q is Horn. In the latter situation, we also observe
a descrease in the case of RUE. Additionaly, such a decrease for RUE is present, if P is normal or
HCF and Q is disjunctive and contains headcycles, or if two positive DLPs containing headcycles are
compared.
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A-SE-models A-UE-models UE-models

A bounded general card (A) = 1 A = ∅ general A bounded

DLP/positive in P DP DP coNP DP coNP coNP

HCF in P NP P P P P P

normal/Horn in P P P P P P P

Table 3: Complexity of Model Checking.

Some of the effects can be explained by inspecting the underlying decision problem of model checking.
For a set of atoms A, the problem of A-SE-model checking (resp. A-UE-model checking) is defined as
follows: Given sets of atoms X , Y , and a program P , decide whether (X,Y ) ∈ SE A(P ) (resp. (X,Y ) ∈
UEA(P )). We compactly summarize our results on A-SE-model checking, resp. A-UE-model checking, in
Table 3. This table has to be read as follows. The lines determine the class of programs dealed with and
the columns refer to model checking problems in different settings. From left to right we have: (i) bounded
A-SE-model checking of a program P , i.e., it is assumed that Atm(P )\A contains a fixed number of atoms;
(ii) the general A-SE-model checking problem; (iii) the special case of card (A) = 1, where A-SE-model
checking and A-UE-model checking coincide; (iv) the special case of card (A) = 0, where both A-SE-
model checking and A-UE-model checking coincide with answer set checking; (v) the general A-UE-model
checking problem; (vi) bounded A-UE-model checking (analogously to bounded A-SE-model checking);
and finally, we explicitly list the results for (vii) UE-model checking. All results from Table 3 are proven in
detail in the subsequent sections, as well. All entries except the ones in the first column are completeness
results. Some interesting observations, which also intuitively explain the different results for ≡As and ≡Au
include: (1) A-SE-model checking is easier than A-UE-model checking in the case of DLPs and bounded
A; Roughly spoken, in this case the additional test for maximality in A-UE-model checking is responsible
for the higher complexity; (2) for the case of head-cycle free programs, A-SE-model checking is harder than
A-UE-model checking, viz. NP-complete. This result is a consequence of Theorem 16, which guarantees
that in terms of uniform equivalence, shifted HCF (and thus normal) programs can be employed; recall that
this simplification is not possible in the context of strong equivalence.

Towards showing all results in detail, we introduce the following notions used throughout this section.
We often reduce propositional formulas to logic programs using, for a set of propositional atoms V , an
additional set of atoms V̄ = {v̄ | v ∈ V } within the programs to refer to negative literals. Consequently,
we associate to each interpretation I ⊆ V , an extended interpretation σV (I) = I ∪ {v̄ | v ∈ V \ I},
usually dropping subscript V if clear from the context. The classical models of a formula φ are denoted
by Mφ. Furthermore, we have a mapping (·)∗ defined as v∗ = v, (¬v)∗ = v̄, and (φ ◦ ψ)∗ = φ∗ ◦ ψ∗,
with v an atom, φ and ψ formulas, and ◦ ∈ {∨,∧}. A further mapping (·) is defined as v = v̄, ¬v = v,
φ ∨ ψ = φ ∧ ψ, and (φ ∧ ψ) = φ ∨ ψ. To use these mappings in logic programs, we denote rules also by
a1 ∨ . . . ∨ al ← al+1 ∧ . . . ∧ am ∧ not am+1 ∧ . . . ∧ not an.

Finally, we define, for a set of atoms Y ⊆ U , the following sets of Horn rules.

Y U
⊆ = {← y | y ∈ U \ Y }

Y U
⊂ = Y U

⊆ ∪ {← y1, . . . , yn}

Y U
= = Y U

⊆ ∪ Y

Sometimes we do not write the superscript U which refers to the universe. We assume that, unless stated
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P ≡u Q DLP positive HCF normal Horn

Horn coNP coNP coNP coNP P

normal coNP coNP coNP coNP

HCF coNP coNP coNP

positive ΠP
2 coNP

DLP ΠP
2

Table 4: Complexity of Uniform Equivalence in Terms of Completeness Results.

otherwise, U refers all the atoms occurring in the programs under consideration.

6.1 Complexity of Uniform Equivalence

In this section, we address the computational complexity of uniform equivalence. While our main interest
is with the problem of deciding uniform equivalence of two given programs, we also consider the related
problems of UE-model checking and UE-consequence. Our complexity results for deciding uniform equiv-
alence of two given programs are collected from Table 2 into Table 4, for the matter of presentation. The
table has to be read as Table 2. Note that in general, uniform equivalence is complete for class ΠP

2 , and
therefore more complex than deciding strong equivalence, which is in coNP [47, 40, 57]. Thus, the more
liberal notion of uniform equivalence comes at higher computational cost in general. However, for important
classes of programs, it has the same complexity as strong equivalence.

In what follows, we prove all the results in Table 4. Towards these results, we start with the problem of
UE-model checking. Let ‖α‖ denote the size of an object α.

Theorem 18 Given a pair of sets (X,Y ) and a program P , the problem of deciding whether (X,Y ) ∈
UE(P ) is (i) coNP-complete in general, and (ii) feasible in polynomial time with respect to ‖P‖+ ‖X‖+
‖Y ‖, if P is head-cycle free. Hardness in Case (i) holds even for positive programs.

Proof. Testing Y |= P and X |= P Y , i.e., (X,Y ) ∈ SE (P ), for given interpretations X , Y , is possible
in polynomial time. If X ⊂ Y it remains to check that no X ′, X ′ |= P Y , exists such that X ⊂ X ′ ⊂ Y .
This can be done via checking

P Y ∪X ∪ Y⊂ |= X=. (1)

In fact, each model, X ′, of P Y ∪ X ∪ Y⊂ gives a non-total SE-model (X ′, Y ) of P with X ⊆ X ′ ⊂ Y .
On the other hand, the only model of X= is X itself. Hence, (1) holds iff no X ′ with X ⊂ X ′ ⊂ Y exists
such that (X ′, Y ) ∈ SE(P ), i.e., iff (X,Y ) ∈ UE(P ). In general, deciding (1) is in coNP witnessed by the
membership part of (i).

If P is normal then the involved programs in (1) are Horn and, since classical consequence can be
decided in polynomial time for Horn programs, the overall check proceeds in polynomial time. Finally, if
P is head-cycle free, then also P Y is. Moreover, by Theorem 15 we have P ≡u P→. Hence, in this case,
(1) holds iff (P→)Y ∪X ∪ Y⊂ |= X=. Since P→ is normal, the latter test can be done in polynomial time
(with respect to ‖P‖+ ‖X‖ + ‖Y ‖). This shows (ii).
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It remains to show coNP-hardness of UE-model checking for positive programs. We show this by
a reduction from tautology checking. Let F =

∨m
k=1Dk be a propositional formula in DNF containing

literals over atoms X = {x1, . . . , xn}, and consider the following program P :

P = { xi ∨ x̄i← xj . xi ∨ x̄i← x̄j. | 1 ≤ i 6= j ≤ n }∪

{ xi← xj , x̄j . x̄i← xj, x̄j . | 1 ≤ i 6= j ≤ n }∪

{ xi← D∗k. x̄i← D∗k. | 1 ≤ k ≤ m, 1 ≤ i ≤ n },

where D∗k results from Dk by replacing literals ¬xi by x̄i.
Since P is positive, the SE-models of P are determined by its classical models, which are given by ∅,

X ∪ X̄ , and σ(I), for each interpretation I ⊆ X making F false. Hence, (∅, X ∪ X̄) is an SE-model of P
and (∅, X ∪ X̄) ∈ UE(P ) iff F is a tautology. This proves coNP-hardness. 2

In fact, also those UE-model checking problems which are feasible in polynomial time, are hard for the
class P.

Theorem 19 Given a pair of sets (X,Y ) and a head-cycle free program P , the problem of deciding whether
(X,Y ) ∈ UE(P ) is P-complete. Hardness holds, even if P is definite Horn.

Proof. Membership has already been shown in Theorem 18. We show hardness via a reduction from the
P-complete problem HORNSAT to UE-model checking for Horn programs. Hence, let φ = φf ∧ φr ∧ φc
a Horn formula over atoms V , where φf = a1 ∧ · · · ∧ an; φr =

∧m
i=1(bi,1 ∧ · · · ∧ bi,ki

→ bi); and
φc =

∧l
i=1 ¬(ci,1∧· · ·∧ci,ki

). Wlog suppose n ≥ 1 (otherwise φ would be trivially satisfiable by the empty
interpretation). Let u,w be new atoms, and take the program

P = {ai ← u | 1 ≤ i ≤ n} ∪

{bi ← bi,1, . . . , bi,ki
| 1 ≤ i ≤ m} ∪

{w ← ci,1, . . . , ci,ki
| 1 ≤ i ≤ l} ∪

{u← v; v ← w | v ∈ V } ∪ {u← w}.

We show that φ is unsatisfiable iff (∅, V ∪ {u,w}) is UE-model of P . Note that both ∅ and V ∪ {u,w} are
classical models of P for any φ. Since P is positive, it is sufficient to show that φ is satisfiable iff a model
M of P exists, such that ∅ ⊂M ⊂ (V ∪ {u,w}).

Suppose φ is satisfiable, and M is a model of φ; then it is easily checked that M ∪ {u} is a model of P .
So suppose φ is unsatisfiable, and towards a contradiction let some M with ∅ ⊂ M ⊂ (V ∪ {u,w}) be a
model of P . From the rules {v ← w | v ∈ V } ∪ {u ← w}, we get w /∈ M . Hence, the constraints φc are
true under M . Since M is not empty, either u ∈ M or some v ∈ V is in M . However, the latter implies
that u ∈ M as well (by rules {u ← v | v ∈ V }). Recall that φf is not empty by assumption, hence all ai’s
from φf are in M . Then, it is easy to see that M \ {u} satisfies φ, which contradicts our assumption that φ
is unsatisfiable. 2

We now consider the problem of our main interest, namely deciding uniform equivalence. By the previ-
ous theorem, the following upper bound on the complexity of this problem is obtained.

Lemma 10 Given two DLPs P and Q, deciding whether P ≡u Q is in the class ΠP
2 .
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Proof. To show that two DLPs P and Q are not uniformly equivalent, we can by Theorem 3 guess an SE-
model (X,Y ) such that (X,Y ) is an UE-model of exactly one of the programs P and Q. By Theorem 18,
the guess for (X,Y ) can be verified in polynomial time with the help of an NP oracle. This proves ΠP2 -
membership of P ≡u Q. 2

This upper bound has a complementary lower bound proved in the following result.

Theorem 20 Given two DLPs P and Q, deciding whether P ≡u Q is ΠP
2 -complete. Hardness holds even

if one of the programs is positive.

Proof. Membership in ΠP
2 has already been established in Lemma 10. To show ΠP

2 -hardness, we provide
a polynomial reduction of evaluating a quantified Boolean formula (QBF) from a fragment which is known
ΠP

2 -complete to deciding uniform equivalence of two DLPs P and Q.
Consider a QBF 2,∀ of form F = ∀X∃Y φ with φ =

∧i=m
i=1 Ci, where each Ci is a disjunction of

literals over the boolean variables in X ∪ Y . Deciding whether a given such F is true is well known to be
ΠP

2 -complete.
For the moment, let us assume that X = ∅, i.e., the QBF amounts to a SAT-instance F over Y . More

precisely, in what follows we reduce the satisfiability problem of the quantifier-free formula φ to the problem
of deciding uniform equivalence of two programs P and Q. Afterwards, we take the entire QBF F into
account.

Let a and b be fresh atoms and define

P = {y ∨ ȳ ←| y ∈ Y } ∪ (2)

{b← y, ȳ; y ← b; ȳ ← b | y ∈ Y } ∪ (3)

{b← Ci | 1 ≤ i ≤ m} ∪ (4)

{a←}. (5)

Note that P is positive. The second program is defined as follows:

Q = {y ∨ ȳ ← z | y ∈ Y ; z ∈ Y ∪ Ȳ ∪ {a}} ∪ (6)

{b← y, ȳ; y ← b; ȳ ← b | y ∈ Y } ∪ (7)

{b← Ci | 1 ≤ i ≤ m} ∪ (8)

{a← b; a← not b; a← not a}. (9)

The only differences between the two programs P and Q are located in the rules (2) compared to (6) as well
as (5) compared to (9). Note that (9) also contains default negation.

Let us first compute the SE-models of P . Since P is positive it is sufficient to consider classical models.
Let A = Y ∪ Ȳ ∪ {a, b}. First, A is clearly a classical model of P , and so is σ(I) ∪ {a}, for each classical
model I ∈ Mφ. In fact, these are the only models of P . This can be seen as follows. By rules (2), at
least one y or ȳ must be contained in a model, for each y ∈ Y . By (3), if both y and ȳ are contained in
a candidate-model for some y ∈ Y or b is contained in the candidate, then the candidate is spoiled up to
Y ∪ Ȳ ∪ {b}. Hence the classical models of (2–3) are given by {σ(I) | I ⊆ Y } and Y ∪ Ȳ ∪ {b}. Now, (4)
eliminates those candidates which make φ false by “lifting” them to Y ∪ Ȳ ∪ {b}. By (5) we finally have to
add a to the remaining candidates.

Hence, the SE-models of P are given by

{(σ(I) ∪ {a}, σ(I) ∪ {a}) | I ∈Mφ} ∪ {(σ(I) ∪ {a},A) | I ∈Mφ} ∪ (A,A).
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Obviously, each SE-model of P is also UE-model of P .
We now analyze Q. First observe that the classical models of P and Q coincide. This is due the

fact that (5) is classically equivalent to (9) and thus classically derives a, making (6) and (2) do the same
job in this context. However, since Q is not positive we have to consider the respective reducts of Q to
compute the SE-models. We start with SE-models of the form (X,A). In fact, (X,A) ∈ SE(Q) iff
X ∈ {∅,A} ∪ {σ(I) | I ∈ Mφ} ∪ {σ(I) ∪ {a} | I ∈ Mφ}. The remaining SE-models of Q are all total
and, as for P , given by {(σ(I) ∪ {a}, σ(I) ∪ {a}) | I ∈Mφ}.

Hence, the set of all SE-models of Q is

{(σ(I) ∪ {a}, σ(I) ∪ {a}) | I ∈Mφ} ∪ {(σ(I) ∪ {a},A) | I ∈Mφ} ∪ (A,A) ∪

{(σ(I),A) | I ∈Mφ} ∪ (∅,A);

having additional SE-models compared to P , namely (∅,A) and {(σ(I),A) | I ∈Mφ}. Note however, that
the latter SE-models never are UE-models of Q, since clearly σ(I) ⊂ (σ(I) ∪ {a}), for all I ∈Mφ.

Thus, if Mφ is not empty, the UE-models of P and Q coincide; otherwise there is a single non-total
UE-model of Q, namely (∅,A). Note that the latter is not UE-model of Q in the case Mφ 6= ∅ since, for
each I ∈ Mφ, σ(I) 6= ∅. Consequently, the UE-models of P and Q coincide iff Mφ is not empty, i.e., iff φ
is satisfiable.

So far we have shown how to construct programs P and Q, such that uniform equivalence encodes SAT.
To complete the reduction for the QBF, we now also take X into account.

We add in both P and Q the set of rules

{x ∨ x̄←; ← x, x̄ | x ∈ X}

where the x̄’s are fresh atoms. The set A remains as before, i.e., without any atom of the form x or x̄.
This has the following effects. First the classical models of both P and Q are now given by σX∪Y (I) ∪

{a}, for each I ∈Mφ, and (σX∪Y (J)∪A) = (σX(J)∪A), for each J ⊆ X . Therefore, the SE-models of
P are given by

{(σX∪Y (I) ∪ {a}, σX∪Y (I) ∪ {a}) | I ∈Mφ} ∪ (10)

{(σX∪Y (I) ∪ {a}, σX (I) ∪A) | I ∈Mφ} ∪ (11)

{(σX(J) ∪A, σX(J) ∪A) | J ⊆ X}. (12)

Again, each SE-model of P is also UE-model of P . For Q the argumentation from above is used analo-
gously. In particular, for each J ⊆ X , we get an additional SE-model {(σX(J), σX (J) ∪A)} for Q. Thus,
the UE-models of P and Q coincide iff, none of these additional SE-models {(σX(J), σX(J) ∪ A)} of Q
is an UE-model of Q, as well. This is the case iff, for each J ⊆ X , there exists a truth assignment to Y
making φ true, i.e., iff the QBF ∀X∃Y φ is true.

Since P and Q are obviously constructible in polynomial time, our result follows. 2

For the construction of P and Q in above proof we used—for matters of presentation—two additional
atoms a and b. However, one can resign on b; by replacing rules (3) and (4) in both programs by {y ←
C; ȳ ← C i | y ∈ Y ; 1 ≤ i ≤ m}; and additionally rules (9) in Q by {a ← C; ā ← C i | 1 ≤
i ≤ m} ∪ {← not a}. Hence, already a single occurrence of default negation in one of the compared
programs makes the problem harder. Note that equivalence of two positive disjunctive programs is among
the coNP-problems discussed in the following.
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Theorem 21 Let P and Q be positive DLPs. Then, deciding whether P ≡u Q is coNP- complete, where
coNP-hardness holds even if one of the programs is Horn.

Proof. By Theorem 12, uniform equivalence and strong equivalence are the same concepts for positive
programs. Since strong equivalence is in coNP in general, the membership part of the theorem follows
immediately.

We show coNP-hardness for a positive DLP P and a Horn program Q by a reduction from UNSAT.
Given a propositional formula in CNF F =

∧m
i=1Ci over atoms X , let

P = {C∗i ∨ a← | 1 ≤ i ≤ m} ∪ {← x, x̄ | x ∈ X}; and

Q = {a←} ∪ {← x, x̄ | x ∈ X}.

By Theorem 13, P ≡u Q iff P and Q have the same classical models. The latter holds iff each model of P
contains the atom a. But then, F is unsatisfiable. 2

We now turn to head-cycle free programs.

Theorem 22 Let P and Q be DLPs, and P head-cycle free. Then, deciding P ≡u Q is coNP- complete,
where coNP-hardness holds even if P is normal and Q is Horn.

Proof. For the membership part, by Theorem 5, P ≡u Q iff P |=u Q and Q |=u P . Both tasks are in
coNP (see Theorem 24 below). Since the class coNP is closed under conjunction, it follows that deciding
P ≡u Q is in coNP.

To show coNP-hardness consider the programs from the proof of Theorem 21. Indeed, P is HCF and,
therefore, P ≡u P→ by Theorem 15. Using the same argumentation as above, yields P→ ≡u Q iff F is
unsatisfiable. This shows the coNP-hardness result for comparing normal and Horn programs. 2

Note that Sagiv showed [52] that deciding P ≡u Q for given definite Horn programs P and Q is
polynomial, which easily follows from his result that the property of uniform containment (whether the
least model of P ∪ R is always a subset of Q ∪ R) can be decided in polynomial time. As pointed out by
Maher [43], Buntine [5] has like Sagiv provided an algorithm for deciding uniform containment.

Sagiv’s result clearly generalizes to arbitrary Horn programs, since by Theorem 13, deciding P ≡u Q
reduces to checking classical equivalence of Horn theories, which is known to be P-complete.

Corollary 8 Deciding uniform equivalence of Horn programs is P-complete.

This concludes our analysis on the complexity of checking uniform equivalence. Our results cover
all possible combinations of the classes of programs considered, i.e., DLPs, positive programs, normal
programs, head-cycle free programs, as well as Horn programs, as already highlighted in Table 4.

Finally, we complement the results on uniform equivalence and UE-model checking with addressing the
complexity of UE-consequence. The proofs of these results can be found in the Appendix.

Theorem 23 Given a DLP P and a rule r, deciding P |=u r is (i) ΠP
2 -complete in general, (ii) coNP-

complete if P is either positive or head-cycle free, and (iii) polynomial if P is Horn.

Theorem 24 Let P , Q be DLPs. Then, P |=u Q is coNP-complete, whenever one of the programs is
head-cycle free. coNP-hardness holds, even if P is normal and Q is Horn.
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P ≡As Q / P ≡Au Q DLP positive HCF normal Horn

Horn ΠP
2 coNP coNP coNP coNP

normal ΠP
2 ΠP

2 ΠP
2 /coNP coNP

HCF ΠP
2 ΠP

2 ΠP
2 /coNP

positive ΠP
2 ΠP

2

DLP ΠP
2

Table 5: Complexity of Relativized Equivalences in Terms of Completeness Results.

6.2 Complexity of Relativized Equivalence

We now generalize the complexity results to relativized forms of equivalence. In particular, we inves-
tigate the complexity of A-SE/UE-model checking as well as of the equivalence problems ≡As and ≡Au ,
respectively. Like in the previous section, we also consider different classes of programs. Our results are
summarized in Table 5 for both RSE and RUE at a glance by just highlighting where the complexity differs.
Note that the only differences between RSE and RUE stem from the entries ΠP

2 /coNP in the column for
head-cycle free programs. Here we have that in the cases HCF/HCF and HCF/normal, checking ≡As is in
general harder for RSE than for RUE. Another issue to mention is that already for uniform equivalence,
the concept of relativization make things more difficult. One just needs to compare the first two columns
of Tables 4 and 5, respectively. Even worse for strong equivalence, which is in coNP in its unrelativized
version and now jumps up to ΠP

2 -completeness in several cases. Finally, also the comparison of two Horn
programs becomes intractable, viz. coNP-complete, compared to the polynomial-time result in the cases of
unrelativized strong and uniform equivalence.

To summarize, RSE and RUE (i) are harder to decide than in their unrelativized versions in several cases,
and (ii) both are generally of the same complexity except head-cycle free programs are involved. Note that
Observation (ii), on the one hand, contrasts the current view that notions of strong equivalence have milder
complexity than notions like uniform equivalence. On the other hand, the intuition behind this gap becomes
apparent if one takes into account that for HCF programs P , P ≡Au P

→ holds, while P ≡As P
→ does not.

For an even more fine-grained picture, note that problems associated with equivalence tests relative to
an atom set A call for further distinctions between several cases concerning the concrete instance A. We
identify the following ones:

• card (A) = 0: In this case, both A-SE and A-UE-model checking collapse to answer set checking;
correspondingly, RSE and RUE collapse to ordinary equivalence;

• card (A) < 2: By Proposition 8 and Corollary 4, A-SE-models and A-UE-models coincide, and thus,
RSE and RUE are the same concepts.

Our results for≡Ae , e ∈ {s, u}, given in the following, consider arbitrary fixedA unless stated otherwise.
Moreover, we consider that A contains only atoms which also occur in the programs under consideration.
In some cases the hardness-part of the complexity results is obtained only if card (A) > k for some constant
k. We shall make these cases explicit.

Another special case for A is to consider bounded relativization. This denotes the class of problems
where the cardinality of (V \A) is less or equal than a fixed constant k, with V being the atoms occurring in
the two programs compared. Note that this concepts contains strong and uniform equivalence, respectively,
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as special cases, i.e., if (V \ A) = ∅. We deal with bounded relativization explicitly in the subsequent
section.

Towards deriving the results from Table 5, we first consider model checking problems. Formally, for a
set of atoms A, the problem of A-SE-model checking (resp. A-UE-model checking) is defined as follows:
Given sets of atoms X , Y , and a program P , decide whether (X,Y ) ∈ SE A(P ) (resp. (X,Y ) ∈ UEA(P )).
We start with the following tractable cases.

Theorem 25 Given a pair of sets (X,Y ), a set of atoms A, and a program P , the problem of deciding
whether (X,Y ) ∈ SEA(P ) (resp. (X,Y ) ∈ UEA(P )) is feasible in polynomial time with respect to ‖P‖+
‖X‖ + ‖Y ‖, whenever P is normal (resp. whenever P is HCF).

Proof. We start with the test whether (X,Y ) is A-SE-model of a normal program P . Note that P Y is
Horn, and that Y is a model of P Y iff Y is a model of P . Consider the following algorithm

1. Check whether Y is a model of P Y .

2. Check whether PY = P Y ∪ (Y ∩A) ∪ Y⊂ is unsatisfiable.

3. If X ⊂ Y , check whether PX = P Y ∪ (X ∩A) ∪ {← x | x ∈ (A \X)} ∪ Y⊆ is satisfiable.

Note that each step is feasible in polynomial time, especially since both PX and PY are Horn. Hence, it
remains to proof that above algorithm holds, exactly if (X,Y ) is A-SE-model of P . This is seen as follows:
each step exactly coincides with one of the conditions of checking whether (X,Y ) is an A-SE-model, i.e.,
(1) Y |= P ; (2) for all Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A), Y ′ 6|= P Y ; and (3) X ⊂ Y implies existence of a
X ′ ⊆ Y with (X ′ ∩A) = X , such that X ′ |= P Y .

For the result on A-UE-model checking we use a similar argumentation. First suppose that P is normal
and consider the algorithm from above but replacing the second step by

2a. Check whether P Y ∪ (X ∩A) ∪ Y⊂ |= (X ∩A) ∪ {← x | x ∈ (A \X)}.

The desired algorithm then corresponds to the respective conditions for A-UE-model checking following
Proposition 7. To be more specific, the models of PY ∪ (X∩A)∪Y⊂ are those X ′ with (X ∩A) ⊆ X ′ ⊂ Y
such that X ′ |= P Y . The set of models of the right-hand side is given by {Z | (Z ∩ A) = (X ∩ A)}.
Hence, the test in [2a.] is violated iff there exists an X ′ with (X ∩ A) ⊂ (X ′ ∩ A) and X ′ ⊂ Y such
that X ′ |= P Y , i.e., iff (X,Y ) /∈ UEA(P ). Moreover, for HCF programs, P→ is A-UE-equivalent to
P , following Theorem 15, i.e., the A-UE-models for P and P→ coincide. Applying P→ to the presented
procedure thus shows that A-UE-model checking is feasible in polynomial time also for HCF programs. 2

Without a formal proof, we mention that these tractable model checking problems are complete for the
class P. Indeed, one can re-use the argumentation from the proof of Theorem 19 and take, for instance,
A = {u}. Then, (∅, V ∪ {u,w}) ∈ SEA(P ) = UEA(P ) iff the encoded Horn formula is satisfiable. Note
that P-hardness holds also for answer set checking (i.e., A = ∅) by the straightforward observation that a
Horn program P has an answer set iff P is satisfiable.

Next, we consider the case of A-SE-model checking for head-cycle free programs. Recall that for
card (A) < 2, A-SE-model checking coincides with A-UE-model checking, and thus in these cases A-
SE-model checking is feasible in polynomial time, as well. However, in general, A-SE-model checking is
harder than A-UE-model checking for head-cycle free programs.
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Theorem 26 Let (X,Y ) be a pair of interpretations, and P a head-cycle free program. Deciding whether
(X,Y ) ∈ SEA(P ) is NP-complete. Hardness holds for any fixed A with card (A) ≥ 2.

Proof. For the membership result we argue as follows. First we check whether (Y, Y ) ∈ SE A(P ). Note
that (Y, Y ) ∈ SEA(P ) iff (Y, Y ) ∈ UEA(P ). By Theorem 25 the latter test is feasible in polynomial time.
It remains to check whether there exists a X ′ ⊆ Y with (X ′ ∩A) = X , such that X ′ |= P Y . This task is in
NP, and therefore, the entire test is in NP.

For the corresponding NP-hardness, consider the problem of checking satisfiability of a formula ψ =
∧m
j=1Cj in CNF given over a set of atoms V . This problem is NP-complete. We reduce it to A-SE-model

checking for a HCF program. Consider the following program with additional atoms a1, a2, V̄ = {v̄ | v ∈
V }, and let A = {a1, a2}.

P = {v ∨ v̄ ←| v ∈ V } (13)

{v ← a1; v̄ ← a1 | v ∈ V } (14)

{a2 ← Cj | 1 ≤ j ≤ m} (15)

{a2 ← v, v̄ | v ∈ V }. (16)

Note that P is HCF. Let Y = V ∪ V̄ ∪ A. We show that (∅, Y ) ∈ SEA(P ) iff ψ is satisfiable. It is clear
that Y |= P and no Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A) satisfies Y′ |= P Y = P due to Rules (14). This
shows (Y, Y ) ∈ SEA(P ). Now, (∅, Y ) ∈ SEA(P ) iff there exists a X ⊆ (V ∪ V̄ ) such that X |= P Y = P .
Suppose X |= P . Since a2 /∈ X , X must represent a consistent guess due to Rules (13) and (16). Moreover,
X has to represent a model of ψ due to Rules (15). Finally, X |= (14) holds by trivial means, i.e., since
a1 /∈ X . The converse direction is by analogous arguments. Hence, (∅, Y ) ∈ SE A(P ) iff there exists a
model of ψ, i.e., iff ψ is satisfiable.

This shows hardness for card (A) = 2. To obtain coNP-hardness for any A with k = card (A) > 2
and, such that all a ∈ A are also occurring in the program, consider P as above augmented by rules
{ai+1 ← ai | 2 ≤ i < k} and A = {ai | 1 ≤ i ≤ k}. By analogous arguments as above, one can show that
then (∅, (V ∪ V̄ ∪A)) ∈ SEA(P ) iff ψ is satisfiable. 2

The next result concerns A-SE-model checking andA-UE-model checking of disjunctive logic programs
in general and positive DLPs. For A = ∅, these tasks coincide with answer set checking which is known
to be coNP-complete (see, for instance, [21]). Already a single element in A yields a mild increase of
complexity.

Theorem 27 Let (X,Y ) be a pair of interpretations, and P a DLP. Deciding whether (X,Y ) ∈ SE A(P )
(resp. (X,Y ) ∈ UEA(P )) is DP -complete. Hardness holds for any fixed A with card (A) ≥ 1 even for
positive programs.

Proof. We first showDP -membership. By Definition 8, a pair of interpretations (X,Y ) is anA-SE-model
of P iff (1) (X,Y ) is a valid A-SE-interpretation; (2) Y |= P ; (3) for all Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A),
Y ′ 6|= P Y ; and (4) X ⊂ Y implies existence of a X ′ ⊆ Y with (X ′ ∩ A) = X , such that X ′ |= P Y

holds. Obviously, (1) and (2) can be verified in polynomial time. The complementary problem of (3) can
be verified by a guess for Y′ and a derivability check. As well, (4) can be verified by a guess for X′ and a
derivability check. Hence, (3) is in coNP and (4) is in NP, which shows DP -membership. Similar in the
case of A-UE-models. By Proposition 7, (X,Y ) ∈ UEA(P ) iff (1) (X,Y ) is a valid A-SE-interpretation;
(2) Y |= P ; (3) for each X ′′ ⊂ Y with (X ∩A) ⊂ (X ′′ ∩ A) or X ′′ = (Y ∩A), X ′′ 6|= P Y holds; and (4)
X ⊂ Y implies that there exists a X ′ ⊆ Y with (X ′ ∩A) = X , such that X ′ |= P Y . Similar as before one
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can verify that the first two conditions are feasible in polynomial time, whereas checking (3) is a coNP-test,
and checking (4) a NP-test.

For the matching lower bound, we consider the case card (A) = 1. Therefore, DP -hardness of both
A-SE-model checking and A-UE-model checking are captured at once. We consider the problem of jointly
checking whether

(a) a formula φ =
∨n
i=1Di in DNF is a tautology; and

(b) a formula ψ =
∧m
j=1Cj in CNF is satisfiable.

This problem is DP -complete, even if both formulas are given over the same set of atoms V . Consider the
following positive program

P = {v ∨ v̄ ←| v ∈ V } (17)

{v ← a1, D
∗
i ; v̄ ← a1, D

∗
i | v ∈ V, 1 ≤ i ≤ n} (18)

{a1 ← Cj | 1 ≤ j ≤ m} (19)

{a1 ← v, v̄ | v ∈ V }; (20)

where a1 is a fresh atom. Let Y = {a1} ∪ V ∪ V̄ and A = {a1}. We show that (∅, Y ) is A-SE-model of
P iff (a) and (b) jointly hold. Since P is positive, we can argue via classical models (over Y ). Rules (17)
have classical models {X | σ(I) ⊆ X ⊆ Y, I ⊆ V }. By (18) this set splits into S = {X | σ(I) ⊆ X ⊆
(Y \ {a1})} and T = {σ(I) ∪ {a1} | I /∈Mφ} ∪ {Y }. By (20), S reduces to {σ(I) | I ⊆ V }, and by (19)
only those elements σ(I) survive with I ∈Mψ . To summarize, the models of P are given by

{σ(I) | I ⊆ V, I ∈Mψ} ∪ {σ(I) ∪ {a1} | I ⊆ V, I /∈Mφ} ∪ {Y }.

From this the A-SE-models are easily obtained. We want to check whether (∅, Y ) ∈ SE A(P ). We have
Y |= P . Further we have that no Y ′ ⊂ Y with a1 ∈ Y

′ exists such that Y ′ |= P = P Y iff there exists no
I ⊆ V making φ false, i.e., iff φ is a tautology. Finally, to show that (∅, Y ) ∈ SE A(P ), there has to exist an
X ⊆ (V ∪ V̄ ), such that X |= P = P Y . This holds exactly if ψ is satisfiable. Since P is always polynomial
in size of φ plus ψ, we derive DP -hardness.

This shows the claim for card (A) = 1. For card (A) > 1, we apply a similar technique as in the proof
of Theorem 26. However, since we deal here with both A-SE-models and A-UE-models we have to be a bit
more strict. Let k = card (A) > 1. We add to P the following rules {ai+1 ← ai; ai ← ai+1 | 1 ≤ i < k}
and set A = {ai | 1 ≤ i ≤ k}. One can show that then, for Y = A ∪ V ∪ V̄ , (∅, Y ) ∈ SEA(P ) iff
(∅, Y ) ∈ UEA(P ) iff (a) and (b) jointly hold. 2

With these results for model checking at hand, we obtain numerous complexity results for deciding
relativized equivalence.

Theorem 28 For programs P , Q, a set of atoms A, and e ∈ {s, u}, P ≡Ae Q is in ΠP
2 .

Proof. We guess an A-SE-interpretation (X,Y ). Then, by virtue of Theorem 27, we can verify that
(X,Y ) is A-SE-model (resp. A-UE-model) of exactly one of the programs P , Q in polynomial time with
four calls to an NP-oracle (since the two model-checking tasks are in DP ). Hence, the complementary
problem of deciding relativized equivalence is in ΣP

2 . This shows ΠP
2 -membership. 2
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Theorem 29 Let P , Q be DLPs, A a set of atoms, and e ∈ {s, u}. Then, P ≡Ae Q is ΠP
2 -complete.

ΠP
2 -hardness holds even if Q is Horn.

Proof. Membership is already shown in Theorem 28.
For the hardness part, we reduce the ΣP

2 -complete problem of deciding truth of a QBF ∃X∀Y φ with
φ =

∨n
i=1Di a DNF to the complementary problem P 6≡As Q. We define

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y } ∪

{a← D∗i | 1 ≤ i ≤ n} ∪

{← not a};

and take Q = {⊥}. Note that {⊥} has no A-SE-model, for any A. It thus remains to show that P has an
A-SE-model iff the QBF ∃X∀Y φ is true.

P has an answer set (i.e., an ∅-SE-model) iff ∃X∀Y φ is true (see the ΣP
2 -hardness proof for the program

consistency problem in [21]). From this we get that ordinary equivalence is ΠP
2 -hard. This shows the claim

for card (A) = 0. For A of arbitrary cardinality k it is sufficient to add “dummy” rules ai ← ai, for each
1 ≤ i ≤ k, to P . These rules do not have any effect on our argumentation. Whence, for any fixed A, ≡As
and ≡Au are ΠP

2 -hard as well. 2

A slight modification (see Appendix for details) of this proof gives us the following result.

Theorem 30 Let P be a positive program, A a set of atoms, and e ∈ {s, u}. Then, deciding whether
P ≡Ae Q is ΠP

2 -complete, where ΠP
2 -hardness holds even if Q is either positive or normal.

For head-cycle free programs, RSE and RUE have different complexities. We first consider RSE.

Theorem 31 Let P and Q be head-cycle free programs, and A be a set of atoms. Then, deciding whether
P ≡As Q is ΠP

2 -complete, where ΠP
2 -hardness holds even if Q is normal, and fixed A with card (A) ≥ 2.

Proof. As before, we reduce the problem of deciding truth of a QBF of the form ∃X∀Y φ, with φ a DNF,
to the complementary problem of P ≡As Q using for P a head-cycle free program and for Q a normal
program. We use similar building blocks as in the proofs of the previous results, but the argumentation is
more complex here. We need a further new atom b, and define

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; y ← a; ȳ ← a | y ∈ Y } ∪

{b← D∗i | 1 ≤ i ≤ n} ∪

{b← y, ȳ | y ∈ Y } ∪ {b← a}.

Note that P is head-cycle free. For the matter of presentation, suppose first X = ∅. We show that φ is valid
iff P 6≡As P→ holds, for A = {a, b}. Afterwards, we generalize the claim to arbitrary X and show that
P 6≡As P

→ iff ∃X∀Y φ is true holds, for any A of the form {a, b} ⊆ A ⊆ (X ∪ X̄ ∪ {a, b}).
Let us first compute the A-SE-models of P under the assumption that X = ∅. Since P is positive, this

is best accomplished by first considering the classical models of P . These are given as follows:

(a) σ(I) for each I ⊆ Y making φ false;
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(b) σ(I) ∪ {b} for each I ⊆ Y ;

(c) all M satisfying (σ(I) ∪ {b}) ⊂M ⊆ (Y ∪ Ȳ ∪ {b}) for some I ⊆ Y ; and

(d) A = Y ∪ Ȳ ∪ {a, b}.

Note that (a), (b), and (d) become total A-SE-models of P ; while the elements in (c) do not. In fact, for each
element M in (c) there exists a corresponding element M ′ from (b), such that M ′ ⊂ M and (M ′ ∩ A) =
(M ∩ A) = {b}. It remains to consider non-total A-SE-models of P , by combining the elements from (a),
(c), (d). If there exists an element in (a) (i.e., φ is not valid), then we get (∅, σ(I)∪{b}) ∈ SE A(P ), for each
I ⊆ V ; as well we then have also (∅,A) ∈ SEA(P ). Combining (b) and (c), yields ({b},A) ∈ SEA(P ).
Hence,

SEA(P ) = {(σ(I), σ(I)) | I ⊆ V : φ is false under I} ∪

{(σ(I) ∪ {b}, σ(I) ∪ {b}) | I ⊆ V } ∪

{(∅, σ(I) ∪ {b}) | I ⊆ V , if φ is not valid} ∪

{(∅,A) | if φ is not valid} ∪

{({b},A), (A,A)}.

For P→ we get a (possibly) additional A-SE-model, viz. (∅,A), since (∅,A) ∈ SE (P→) holds in any case,
also if φ is valid. Hence, the A-SE-models of P and P→ coincide iff φ is not valid.

The extension to X 6= ∅ and deciding truth of QBF ∃X∀Y φ via the complementary problem ≡As
is similar to the argumentation in the proof of Theorem 20. In particular, we then can use any A with
{a, b} ⊆ A ⊆ (X ∪ X̄ ∪ {a, b}). Recall that deciding ∃X∀Y φ is ΣP

2 -complete, and thus we get that
P ≡As Q is ΠP

2 -hard for P a HCF program, Q normal. 2

This concludes the collection of problems which are located at the second level of the polynomial hier-
archy. Note that in the hardness part of the proof of Theorem 31, we used at least two elements in A. In
fact, for HCF programs and card (A) ≤ 1 the complexity is different. Since for card (A) ≤ 1, ≡As and ≡Au
are the same concepts, this special case is implicitly considered in the next theorem. Another issue is to
decide P ≡As Q if both P and Q are A-HCF as introduced in Definition 14. In this case, we can employ
P→ ≡As Q→, and thus the complexity coincides with the complexity of ≡As for normal programs. This is
also part of the next theorem.

Theorem 32 Deciding P ≡Ae Q is coNP-complete in the following settings:

(i) e ∈ {s, u}, P positive, Q Horn;

(ii) e = s, P head-cycle free and Q Horn;

(iii) e ∈ {s, u}, P and Q normal;

(iv) e = u, P and Q head-cycle free.

coNP-hardness of P ≡Ae Q (e ∈ {s, u}) holds even if P is normal or positive and Q is Horn.

Proof. We start with the coNP-membership results. The cases (iii) and (iv) follow immediately from
Theorem 25, since A-SE/UE-model checking for the programs involved is feasible in polynomial time. The
more complicated cases (i) and (ii) are addressed in the Appendix.
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It remains to show the coNP-hardness part of the theorem. We use UNSAT of a formula F =
∧n
i=1Ci

in CNF over atoms X . Take

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪ {← C i | 1 ≤ i ≤ n}

Note that this program is positive and HCF. The program has a classical model iff F is satisfiable, i.e., iff
it is not equivalent to the Horn program Q = {⊥}. In other words, SE A(P ) 6= ∅ (or, resp. UEA(P ) 6= ∅)
iff φ is satisfiable. Note that A can thus be of any form. Since the rules ← x, x̄ are present in P , we have
P ≡As P→. This proves coNP-hardness also for the case where one program is normal and the other is
Horn. 2

A final case remains open, namely checking relativized equivalence of Horn programs. Unfortunately,
this task is coNP-complete. However, whenever the cardinality of A is fixed by a constant the problem gets
tractable. This is in contrast to the hardness results proved so far, which even hold in the case where card (A)
is fixed. The proof of the theorem is given in the Appendix.

Theorem 33 Deciding P ≡Ae Q, for e ∈ {s, u}, is coNP-complete for Horn programs P , Q. Hardness
holds whenever card (A) is not fixed by a constant, and even for definite Horn programs.

Whenever the cardinality of A is bounded, we can decide this problem in polynomial time.

Theorem 34 Let P , Q be Horn programs and A be a set of atoms such that card (A) ≤ k with a fixed
constant k. Then, deciding P ≡Ae Q is feasible in polynomial time with respect to ‖P‖+ ‖Q‖+ k.

Proof. It is sufficient to show the claim for e = u. By explicitly checking whether (P ∪ S) ≡ (Q ∪ S)
holds for any S ⊆ A. we obtain a polynomial-time algorithm, since checking ordinary equivalence of Horn
programs is polynomial and we need at most 2k such checks. 2

6.3 Complexity of Bounded Relativization

In this section, we pay attention to the special case of tests ≡As and ≡Au where the number of atoms from the
considered programs missing in A, is bounded by some constant k (in symbols P k≡As Q, and resp., P k≡Au
Q). Hence, the respective problem classes apply to programs P , Q, only if card (Atm(P ∪Q) \ A) ≤ k.
Apparently, this class of problems contains strong and uniform equivalence in its unrelativized versions
(k = 0). The complexity results are summarized in Table 6. In particular, we get that in the case of RSE all
entries (except Horn/Horn) reduce to coNP-completeness. This generalizes results on strong equivalence.
Previous work reported some of these results but not in form of this exhaustive list.

In what follows, we first give the respective results for model checking, and then we prove the entries in
Table 6.

Lemma 11 For a program P , and a set of atoms A, such that card (Atm(P ) \ A) ≤ k, with k a fixed
constant, A-SE-model checking is feasible in polynomial time with respect to to ‖P‖+ k.

Proof. By the conditions in Definition 8, deciding (X,Y ) ∈ SEA(P ) can be done as follows: (i) checking
Y |= P ; (ii) checking whether for all Y ′ ⊂ Y with (Y ′∩A) = (Y ∩A), Y 6|= P Y holds; and (iii) if X ⊂ Y ,
checking existence of a X ′ ⊆ Y with (X ′ ∩ A) = X , such that X ′ |= P Y holds. Test (i) can be done in
polynomial time; test (ii) is a conjunction of at most 2k−1 independent polynomial tests (for each such Y ′),
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P k≡As Q / P k≡Au Q DLP positive HCF normal Horn

Horn coNP coNP coNP coNP P

normal coNP coNP coNP coNP

HCF coNP coNP coNP

positive coNP/ΠP
2 coNP

DLP coNP/ΠP
2

Table 6: Complexity of Equivalences with Bounded Relativization in Terms of Completeness Results.

while (iii) is a disjunction of at most 2k polynomial tests (for each X ′). Since we have fixed k the entire test
is feasible in polynomial time. 2

Compared to the model checking problems discussed so far, the polynomial-time decidable problems of
A-SE-model checking in the bounded case do not belong to the class of P-complete problems, but are easier.
This is best illustrated by SE-model checking, which obviously reduces to two (ordinary) independent model
checking tests; which in turn are in ALOGTIME [6] (see also [3, 29]). For bounded A-SE-model checking
the situation is basically the same, since it is sufficient to employ a fixed number of independent model
checking tests.

Concerning UE-model checking we already established some P-hardness results in Theorem 19 which
generalize to the relativized case for arbitrary bound A. In general, for A-UE-model checking the decrease
of complexity is in certain cases only moderate compared to the corresponding decrease in the case of
A-SE-model checking.

Lemma 12 For a program P and a set of atoms A, such that card (Atm(P ) \ A) ≤ k, with k a fixed
constant, A-UE-model checking is coNP-complete. Hardness holds even for positive programs.

Proof. We show NP-membership for the complementary problem, i.e., checking whether a given pair
(X,Y ) is not in UEA(P ). We first check whether (X,Y ) is A-SE-model of P . This can be done in
polynomial time, by Lemma 11. If this is not the case we are done; otherwise, we guess an X ′ with
X ⊂ X ′ ⊂ (Y ∩ A) and check whether (X ′, Y ) is A-SE-model of P . This guess for (X ′, Y ) can be
verified in polynomial time using an NP oracle. Therefore, the entire problem is in NP. The correctness of
the procedure is given by its direct reflection of Definition 9. This yields coNP-membership for bounded
A-UE-model checking.

Hardness is obtained via the case card (Atm(P ) \ A) = 0, i.e., ordinary UE-model checking and the
respective result in Theorem 18. 2

Theorem 35 For programs P , Q and a set of atoms A, such that card (Atm(P ∪Q) \ A) ≤ k with k a
fixed constant, P ≡As Q is coNP-complete. Hardness holds provided P and Q are not Horn.

Proof. By Lemma 11, A-SE-model checking is feasible in polynomial time in the bounded case. Hence,
coNP-membership for P ≡As Q is an immediate consequence. The hardness result is easily obtained by the
hardness part from Theorem 32. 2

For RUE some cases remain on the second level, however. This is not a surprise, since as we have seen
in Theorem 20, (unrelativized) uniform equivalence is ΠP

2 -complete in general.
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Theorem 36 For programs P , Q and a set of atoms A, such that card (Atm(P ∪Q) \ A) ≤ k with k a
fixed constant, P ≡Au Q is ΠP

2 -complete. ΠP
2 -hardness holds even if one of the programs is positive.

Proof. Membership is obtained by the fact that A-UE-model checking withA bounded is coNP-complete
(see Lemma 12). Hardness comes from the ΠP

2 -hardness of uniform equivalence. 2

For all other cases, RUE for bounded A is in coNP.

Theorem 37 For programs P ,Q and a set of atoms A, such that card (Atm(P ∪Q)\A) ≤ k with k a fixed
constant, P ≡Au Q is coNP-complete, if either (i) both programs are positive; or (ii) at least one program is
head-cycle free. Hardness holds, even if P is normal or positive and Q is Horn.

Proof. We start with coNP-membership. For (i) this is an immediate consequence of the fact that for
positive programs, RSE and RUE are the same concepts and since RSE is coNP-complete as shown in
Theorem 35.

For (ii) we argue as follows. Consider P is HCF. By Theorem 11 it is sufficient to check (a) UEA(P ) ⊆
SEA(Q) and (b) UEA(Q) ⊆ SEA(P ). We show that both tasks are in coNP. ad (a): For the comple-
mentary problem we guess a pair (X,Y ) and check whether (X,Y ) ∈ UEA(P ) and (X,Y ) /∈ SEA(Q).
Both checks are already shown to be feasible in polynomial time. ad (b): We consider the complementary
problem and show that this reduces to the disjunction of two NP problems. First, we consider total A-SE-
interpretations. By guessing Y and check whether (Y, Y ) ∈ SEA(Q) and (Y, Y ) /∈ SEA(P ), we get obtain
NP-membership. If this holds, we secondly we consider non-total A-SE-interpretations. We claim that
existence of a (X,Y ) ∈ SEA(Q), such that, for each X ⊆ X ′ ⊂ (Y ∩A), (X ′, Y ) /∈ UEA(P→), implies
UEA(Q) 6⊆ SEA(P ). This can be seen as follows. Given X , Y , suppose no X ⊆ X ′ ⊂ (Y ∩ A) satisfies
(X ′, Y ) ∈ UEA(P→). Then, no such (X ′, Y ) is A-UE-model of the original P (by Theorem 15). By
definition, no such (X′, Y ) is A-SE-model of P . On the other hand, either (X,Y ) ∈ UEA(Q) or for some
such X ′, (X ′, Y ) ∈ UEA(Q). Hence, UEA(Q) 6⊆ SEA(P ). Therefore, we guess a pair (X,Y ) and check
(X,Y ) ∈ SEA(Q) and whether T = (P→)Y ∪X ∪ Y⊂ is unsatisfiable. Both can be done in polynomial
time. It remains to show that T is unsatisfiable iff, for each X ⊆ X′ ⊂ (Y ∩ A), (X ′, Y ) /∈ UEA(P→).
Suppose T is satisfiable and let X′ be a maximal interpretation making T true. Then (X ′ ∩A) ⊂ (Y ∩ A)
holds, since (Y, Y ) ∈ UEA(P ) (and thus (Y, Y ) ∈ SEA(P→)) by assumption that the total A-SE-models
of P and Q coincide. But then ((X ′ ∩ A), Y ) ∈ UEA(P→), since X ′ is a maximal model of T . On the
other hand, if T is unsatisfiable, no (X′, Y ) with X ⊆ X ′ ⊂ (Y ∩ A) can be A-SE-model of P , and thus
no such (X ′, Y ) is A-UE-model of P and thus of P→. This gives membership for NP. Since NP is closed
under disjunction, the entire complementary problem is shown to be in NP.

The matching lower bound is obtained from the hardness result in Theorem 32. 2

One final case remains to be considered.

Theorem 38 Let P , Q be Horn programs and let A be a set of atoms such that card (Atm(P ∪Q)\A) ≤ k
with a fixed constant k. Then, deciding P ≡Ae Q is feasible in polynomial time with respect to ‖P‖+‖Q‖+k.

Proof. We use the following characterization which can be derived from Theorem 14: For positive pro-
grams P , Q, P ≡Ae Q holds, iff, for each model Y of P , there exists a X ⊆ Y with (X ∩ A) = (Y ∩ A)
being model of Q; and vice versa. This can be done as follows. We show one direction, i.e., whether, for
each interpretation Y , Y |= P implies X |= Q for some X ⊆ Y , such that (X ∩ A) = (Y ∩ A). Let
V = (Atm(P ∪Q) \A). We test, for every U ⊆ V and each W ⊆ U , whether

P ′V ∪ (UV
= )′ ∪ (W V

= ) |= Q; (21)



INFSYS RR 1843-05-01 43

where P ′ results from P by replacing each v ∈ V occurring in P by v ′ and (UV
= )′ is the set {v′ | v ∈ UV

= }
with UV

= as defined in the beginning of the section. Observe that both sides in the derivability test (21) are
Horn programs.

P ′V ∪(UV
= )′ has a model R∪S ′ iff there exists aR ⊆ A and a S ′ ⊆ V ′ such that R∪S ′ is a model of P ′V ,

i.e., iffR∪S is a model of P . Then, we check whether for one W ⊆ U ,R∪W is model of Q. This matches
the test whether for each model R∪S of P , there exists aR∪W with ((R∪W )∩A) = ((R∪S)∩A) = R,
such that R ∪ W models Q, i.e., the property to be tested. This yields O(2k × 2k) = O(2k+1) Horn-
derivability tests. The same procedure is done the other direction, i.e., exchanging P and Q. Whenever k
is fixed, this gives us a polynomial time algorithm. (More efficient algorithms may be given, but we do not
focus on this here.) 2

7 Language Variations

In this section, we briefly address how our results apply to variations of the language of logic programs.
First, we consider modifications within the case of propositional programs, and then discuss the general
DATALOG case.

7.1 Extensions in the Propositional Case

Adding Classical Negation. Our results easily carry over to extended logic programs, i.e., programs
where classical (also called strong) negation is allowed as well. If the inconsistent answer set is disregarded,
i.e., an inconsistent program has no models, then, as usual, the extension can be semantically captured by
representing strongly negated atoms ¬A by a positive atom A′ and adding constraints ← A,A′, for every
atom A, to any program.

However, if in the extended setting the inconsistent answer set is taken into account, then the given
definitions have to be slightly modified such that the characterizations of uniform equivalence capture the
extended case properly. The same holds true for the characterization of strong equivalence by SE-models as
illustrated by the following example. Note that the redefinition of ≡u and ≡s is straightforward.

Let LitA = {A,¬A | A ∈ A} denote the (inconsistent) set of all literals using strong negation over A.
Note that an extended DLP P has an inconsistent answer set iff LitA is an answer set of it; moreover, it is
in the latter case the only answer set of P . Call any DLP P contradiction-free, if LitA is not an answer set
of it, and contradictory otherwise.

Example 17 Consider the extended logic programs P = {a ∨ b ← ; ¬a ← a; ¬b ← b} and Q = {a ←
not b; b ← not a; ¬a ← a; ¬b ← b}. They both have no SE-model; hence, by the criterion of Prop. 1,
P ≡s Q would hold, which implies P ≡u Q and P ≡ Q. However, P has the inconsistent answer set LitA,
while Q has no answer set. Thus formally, P and Q are not even equivalent if LitA is admitted as answer
set.

Since [56, 37, 57] made no distinction between no answer set and inconsistent answer set, in [17] we
adapted the definition of SE-models accordingly and got more general characterizations in terms of so-called
SEE-models for extended programs. Many results easily carry over to the extended case: E.g., for positive
programs, uniform and strong equivalence coincide also in this case and, as a consequence of previous
complexity results, checking P ≡u Q (resp. P ≡s Q) for extended logic programs, P and Q, is ΠP

2 -hard
(resp. coNP-hard).
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However, not all properties do carry over. As Example 17 reveals, in general a head-cycle free extended
DLP P is no longer equivalent, and hence not uniformly equivalent, to its shift variant P← (see [17] for a
characterization of head-cycle and contradiction free programs for which this equivalence holds).

We expect a similar picture for relativized equivalences of extended logic programs but adapting corre-
sponding proofs is still subject of future work.

Disallowing Constraints. Sometimes, it is desirable to consider constraints just as abbreviations, in order
to have core programs which are definite, i.e., without constraints. The most direct approach is to replace
each constraint ← B by w ← B,not w; where w is a designated atom not occurring in the original pro-
gram. Obviously, this does not influence ordinary equivalence tests, but for notions as uniform and strong
equivalence some more care is required. Take the strongly equivalent programs P = {a ← not a} and
Q = {← not a}. By above rewriting Q becomes Q′ = {w ← not a,not w}. Then, (·, w) /∈ SE (P ) but
(·, w) ∈ SE (Q′). Hence, this rewriting is not sensitive under strong equivalence. However, if we disallow w
to appear in possible extensions, i.e., employing ≡As instead of ≡s we can circumvent this problem. Simply
take A = U \ {w} where U is the universe of atoms. Observe that this employs bounded relativization,
and in the light of Theorem 35 this workaround does not result in a more complex problem. For uniform
equivalence the methodology can be applied in the same manner.

However, this approach requires (unstratified) negation. If we want to get rid off constraints for compar-
ing positive programs, an alternative method is to use a designated (spoiled) answer set to indicate that the
original program had no answer set. The idea is to replace each constraint ← B by w ← B, where w is a
designated atom as above; additionally we add the collection of rules v ← w for each atom v of the universe
to both programs (even if no constraint is present). This rewriting retains any equivalence notion, even if w
is allowed to occur in the extensions.

The problem of comparing, say, a positive program P (with constraints) and a normal program Q is
more subtle, if we require to replace the constraints in P by positive rules themselves. We leave this for
further study, but refer to some results in [20], which suggest that these settings may not be solved in an easy
manner. To wit, [20] reports that the complexity for some problems of the form “Given a program P from
class C; does there exist a program Q from class C ′, such that P ≡e Q?” differs with respect to allowing
constraints.

Using Nested Expressions. Programs with nested expressions [38] (also called nested logic programs)
extend DLPs in such a way that arbitrarily nested formulas, formed from literals using negation as failure,
conjunction, and disjunction, constitute the heads and bodies of rules. Our characterizations for uniform
equivalence are well suited for this class as was shown in [49]. Since the proofs of our main results are
generic in the use of reducts, we expect that all results (including relativized notions of equivalence) can
be carried over to nested logic programs without any problems. Note however, that the concrete definitions
for subclasses (positive, normal, etc.) have to be extended in the context of nested logic programs (see [42]
for such an extension of head-cycle free programs). It remains for further work to apply our results to such
classes.

7.2 DATALOG programs

The results in the previous sections on propositional logic programs provide an extensive basis for study-
ing equivalences of DATALOG programs if, as usual, their semantics is given in terms of propositional
programs. Basic notions and concepts for strong and uniform equivalence such as SE-models, UE-models,
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and the respective notions of consequence generalize naturally to this setting, using Herbrand interpretations
over a relational alphabet and a set of constants in the usual way (see [13]). Furthermore, fundamental results
can be lifted to DATALOG programs by reduction to the propositional case. In particular, the elementary
characterizations P ≡e Q iff Me(P ) = Me(Q) iff P |=e Q and Q |=e P carry over to the DATALOG
setting for e ∈ {s, u} and Ms(·) = SE (·), respectively Mu(·) = UE(·) (see also [13]). However, a detailed
analysis of the DATALOG case including relativized notions of equivalence is subject of ongoing work.

Nevertheless, let us conclude this section with some remarks on the complexity of programs with vari-
ables. For such programs, in case of a given finite Herbrand universe the complexity of equivalence checking,
resp. model checking, increases by an exponential. Intuitively, this is explained by the exponential size of
a Herbrand interpretation, i.e., the ground instance of a program over the universe. Note that [40] reported
(without proof) that checking strong equivalence for programs in this setting is in coNP, and thus would
have the same complexity as in the propositional case; however, for arbitrary programs, this is not correct.
Unsurprisingly, over infinite domains, in the light of the results in [53, 27], decidability of equivalence and
inference problems for DATALOG programs is no longer guaranteed. While strong equivalence and SE-
inference remain decidable (more precisely complete for co-NEXPTIME), this is not the case for uniform
equivalence (respectively inference) in general. For positive programs, however, the two notions coincide
and are decidable (more precisely complete for co-NEXPTIME); see [13] for details. It remains as an issue
for future work to explore the decidability versus undecidability frontier for classes of DATALOG programs,
possibly under restrictions as in [27, 9].

8 Conclusion and Further Work

In this paper, we have extended the research about equivalence of nonmonotonic logic programs under
answer set semantics, in order to simplify parts (or modules) of a program, without analyzing the entire
program. Such local simplifications call for alternative notions of equivalence, since a simple comparison
of the answer sets does not provide information whether a program part can be replaced by its simplifi-
cation. To wit, by the non-monotonicity of the answer set semantics, two (ordinary) equivalent (parts of)
programs may lead to different answer sets if they are used in the same global program R. Alternative no-
tions of equivalence thus require that the answer sets of the two programs coincide under different R: strong
equivalence [37], for instance, requires that the compared programs are equivalent under any extension R.

In this paper, we have considered further notions of equivalence, in which the actual form of R is
syntactically constrained:

• Uniform equivalence of logic programs, which has been considered earlier for DATALOG and general
Horn logic programs [52, 43]. Under answer set semantics uniform equivalence can be exploited for
optimization of components in a logic program which is modularly structured.

• Relativized notions of both uniform and strong equivalence restrict the alphabet of the extensions.
This allows to specify which atoms may occur in the extensions, and which do not. This notion of
equivalence for answer set semantics was originally suggested by Lin in [40] but not further investi-
gated. In practice, relativization is a natural concept, since it allows to specify internal atoms, which
only occur in the compared program parts, but it is guaranteed that they do not occur anywhere else.

We have provided semantical characterizations of all these notions of equivalence by adopting the con-
cept of SE-models [56] (equivalently, HT-models [37]), which capture the essence of a program with respect
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to strong equivalence. Furthermore, we have thoroughly analyzed the complexity of equivalence checking
and related problems for the general case and several important fragments. This collection of results gives
a valuable theoretical underpinning for advanced methods of program optimization and for enhanced ASP
application development, as well as a potential basis for the development of ASP debugging tools.

Several issues remain for further work. One issue is a characterization of uniform equivalence in terms
of “models” for arbitrary programs in the infinite case; as we have shown, no subset of SE-models serves
this purpose. In particular, a notion of models which correspond to the UE-models in the case where the
latter capture uniform equivalence would be interesting.

We focused here on the propositional case, to which general programs with variables reduce, and we
just briefly mentioned a possible extension to a DATALOG setting [13]. Here, undecidability of uniform
equivalence arises if negation may be present in programs. A thorough study of cases under which uniform
equivalence and the other notions of equivalence are decidable is needed, along with complexity charac-
terizations. Given that in addition to the syntactic conditions on propositional programs considered here,
further ones involving predicates might be taken into account (cf. [9, 27]), quite a number of different cases
remains to be analyzed.

Finally, an important issue is to explore the usage of uniform equivalence and relativized equivalence
in program replacement and rewriting, and to develop optimization methods and tools for Answer Set Pro-
gramming; a first step in this direction, picking up some of the results of this paper, has been made in [20].
However, much more remains to be done.
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A Proofs

A.1 Proof of Lemma 5

For the only-if direction, suppose P ≡Au Q. If (Y, Y ) is neither A-SE-model of P , nor of Q, then (X,Y ) is
not an A-SE-model of any of the programs P and Q. Without loss of generality, assume (Y, Y ) ∈ SE A(P )
and (Y, Y ) /∈ SEA(Q). Let F = (Y ∩ A). We have the following situation by definition of A-SE-models.
First, from (Y, Y ) ∈ SEA(P ), we get Y |= P . Hence, Y |= P ∪ F . Second, (Y, Y ) ∈ SEA(P ) implies
that for each Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ 6|= P Y . Hence, for each such Y ′, Y ′ 6|= (P ∪ F )Y .
Finally, for each X ⊂ Y with (X ∩ A) ⊂ (Y ∩ A), X 6|= F and thus X 6|= P Y ∪ F . To summarize,
we arrive at Y ∈ AS(P ∪ F ). On the other hand, Y 6∈ AS(Q ∪ F ). This can be seen as follows. By
(Y, Y ) 6∈ SEA(Q), either Y 6|= Q or there exists an Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A), such that Y ′ |= QY .
But then, Y ′ |= (Q ∪ F )Y . Hence, this contradicts our assumption P ≡Au Q, since F is a set of facts over
A. Item (i) must hold.

To show (ii), assume first that (X,Y ) is an A-SE-model of P but not of Q. In view of (i), it is clear
that X ⊂ Y must hold. Moreover, X ⊆ A. Suppose now that for every set X ′, X ⊂ X ′ ⊂ Y , it holds
that (X ′, Y ) is not an A-SE-model of Q. Then, since no subset of X models QY ∪ X , (Y, Y ) is the only
A-SE-model of Q ∪X of form (·, Y ). Thus, Y ∈ AS(Q ∪X) in this case, while Y 6∈ AS(P ∪X). This
is seen as follows: Since (X,Y ) ∈ SEA(P ), there exists an X ′ ⊆ Y with (X ′ ∩ A) = (X ∩ A), such that
X ′ |= P Y . Moreover, X ′ |= (P ∪X)Y . Thus, Y /∈ AS(P ∪X). This contradicts P ≡Au Q, since X ⊆ A.
Thus, it follows that for some M such that X ⊂M ⊂ Y , (M,Y ) is an A-SE-model of Q. The argument in
the case where (X,Y ) is an SE-model of Q but not of P is analogous. This proves item (ii).

For the if direction, assume that (i) and (ii) hold for every A-SE-interpretation (X,Y ) which is an A-
SE-model of exactly one of P andQ. Suppose that there exist sets of atoms F ⊆ A and Z , such that w.l.o.g.,
Z ∈ AS(P ∪ F ), but Z /∈ AS(Q ∪ F ). Since Z ∈ AS(P ∪ F ), we have that F ⊆ Z , Z |= P , and, for
each Z ′ ⊂ Z with (Z ′ ∩ A) = (Z ∩ A), Z ′ 6|= PZ . Consequently, (Z,Z) is an A-SE-model of P . Since
Z 6∈ AS(Q ∪ F ), either Z 6|= (Q ∪ F ), or there exists a Z ′ ⊂ Z such that Z ′ |= (Q ∪ F )Z .

Let us first assume Z 6|= (Q ∪ F ). However, since F ⊆ Z , we get Z 6|= Q. We immediately get
(Z,Z) /∈ SEA(Q), i.e., (Z,Z) violates (i). It follows that Z |= (Q ∪ F ) must hold, and that there must
exist a Z ′ ⊂ Z such that Z ′ |= (Q ∪ F )Z = QZ ∪ F . We have two cases: If (Z ′ ∩ A) = (Z ∩ A), then,
by definition of A-SE-models, (Z,Z) /∈ SEA(Q), as well. Hence, the following relations hold Z |= Q;
for each Z ′ with (Z ′ ∩ A) = (Z ∩ A), Z ′ 6|= QZ , and there exists an Z ′′ with (Z ′′ ∩ A) ⊂ (Z ∩ A), such
that Z ′′ |= QZ . We immediately get that ((Z ′′ ∩ A), Z) ∈ SEA(Q). But (Z ′′, Z) /∈ SEA(P ). To see the
latter, note that F ⊆ Z must hold. So, if ((Z ′′ ∩A), Z) were an A-SE-model of P , then it would also be an
A-SE-model of P ∪ F , contradicting the assumption that Z ∈ AS(P ∪ F ). Again we get an A-SE-model,
((Z ′′ ∩ A), Z), of exactly one of the programs, Q in this case. Hence, according to (ii), there exists an
A-SE-model (M,Z) of P , Z ′′ ⊂ M ⊂ Z . However, because of F ⊆ Z , it follows that (M,Z) is also an
A-SE-model of P ∪ F , contradicting our assumption that Z ∈ AS(P ∪ F ).
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This proves that, given (i) and (ii) for every A-SE-model (X,Y ) such that (X,Y ) is an A-SE-model of
exactly one of P and Q, no sets of atoms F ⊆ A and Z exists such that Z is an answer set of exactly one of
P ∪ F and Q ∪ F . That is, P ≡Au Q holds. 2

A.2 Proof of Theorem 11

For (a), by Theorem 10, P ≡Au Q implies UEA(P ) = UEA(Q). Each A-UE-model of a program is, by
definition, an A-SE-model of that program. We immediately get UEA(P ) = UEA(Q) ⊆ SEA(Q) and
UEA(Q) = UEA(P ) ⊆ SEA(P ).

For (b), suppose P 6≡Au Q, and either P , Q, or A is finite. By Theorem 10 we have UEA(P ) 6= UE(Q).
Wlog, assume interpretations X , Y , such that (X,Y ) ∈ UEA(P ) and (X,Y ) 6∈ UEA(Q). We have two
cases: If (X,Y ) /∈ SEA(Q), we are done, since then UEA(P ) ⊆ SEA(Q) cannot hold. If (X,Y ) ∈
SEA(Q), this implies existence of an X ′ with X ⊂ X ′ ⊂ Y , such that (X ′, Y ) ∈ UEA(Q). However,
since (X,Y ) ∈ UEA(P ), for each such X ′, (X ′, Y ) /∈ SEA(P ). Hence, UEA(Q) ⊆ SEA(P ) cannot
hold. 2

A.3 Proof of Theorem 23

The complementary problem, P 6|=u r, is in ΣP
2 for general P and in NP for head-cycle free P , since a guess

for a UE-model (X,Y ) of P which violates r can, by Theorem 18 be verified with a call to a NP-oracle
resp. in polynomial time. In case of a positive P , by Theorem 6, P |=u r iff P |= r, which is in coNP for
general P and polynomial for Horn P .

The ΠP
2 -hardness part for (i) is easily obtained from the reduction proving the ΠP

2 -hardness part of
Theorem 20. For the program Q constructed there, it holds Q |=u a← if and only if none of the SE-models
{(σX(J), σX (J) ∪ A)} of Q is an UE-model of Q as well, i.e., if and only if P ≡u Q holds, which is
ΠP

2 -hard to decide.
The coNP-hardness in case of (ii) follows easily from the reduction which proves the coNP-hardness

part of Theorem 21: the positive program P constructed there satisfies, by Theorem 21, P |=u a← if and
only if P ≡u Q holds, which is equivalent to unsatisfiability of the CNF F there. Since P is HCF we can, as
in the proof of Theorem 22, again use P→ and Theorem 15 in order to show coNP-hardness for head-cycle
free (non-positive) programs. 2

A.4 Proof of Theorem 24

First consider P is HCF. Then, coNP-membership of P |=u Q is an immediate consequence of the result
in Theorem 23 by testing P |=u r, for each r ∈ Q. Since the class coNP is closed under conjunction,
coNP-membership for P |=u Q follows.

Next, suppose Q is HCF. We first show the claim for normal Q, using the complementary problem
P 6|=u Q. By inspecting the characterizations of uniform equivalence, P 6|=u Q iff (i) P 6|= Q, or (ii) there
exists an SE-model (X,Y ) of P , such that no (X ′, Y ) with X ⊆ X ′ ⊂ Y is SE-model of Q. Test (i) is
obviously in NP. For containment in NP of Test (ii), we argue as follows: We guess a pair (X,Y ) and check
in polynomial time whether it is SE-model of P . In order to check that no (X ′, Y ) with X ⊆ X ′ ⊂ Y is
SE-model of Q we test unsatisfiability of the program QY ∪X ∪Y⊂, which is Horn, whenever Q is normal.
Therefore, this test is is feasible in polynomial time. Hence, P |=u Q is in coNP for normal Q. Recall that
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for a HCF program Q, we have Q ≡u Q→. This implies that P 6|=u Q
→ iff P 6|=u Q. Therefore, the claim

holds for HCF programs as well.
We proceed with the matching lower bound. Let P and Q as in the proof of Theorem 21, then P→ is

normal, Q is Horn, and P |=u Q iff P→ |=u Q iff P→ |=u a← , which is coNP-hard. 2

A.5 Proof of Theorem 30

Membership is due to Theorem 28.
The hardness part is by a similar construction as above, i.e., consider a QBF of the form ∃X∀Y φ with

φ =
∨n
i=1Di a DNF. We take here the following programs, viz.

P = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y } ∪

{a← D∗i | 1 ≤ i ≤ n}

which is the same program as above, but without← not a, and thus positive. For the second program take

Q = {x ∨ x̄←; ← x, x̄ | x ∈ X} ∪

{y ∨ ȳ ←; ← y, ȳ | y ∈ Y } ∪

{← D∗i | 1 ≤ i ≤ n} ∪

{← a}.

We start computing the SE-models of the two programs. Let, for any J ⊆ X ,

M [J ] = σX(J) ∪ Y ∪ Ȳ ∪ {a},

and suppose A ⊆ X ∪ X̄ . The set of classical models of P is given by {M [J ] | J ⊆ X} and σ(J ∪ I), for
each I ⊆ Y , such that φ is false under J ∪ I . Thus, we get:

SE (P ) = {(σ(J ∪ I), σ(J ∪ I)), (σ(J ∪ I),M [J ]) | J ⊆ X, I ⊆ Y : J ∪ I 6|= φ} ∪

{(M [J ],M [J ]) | J ⊆ X};

SE(Q) = {(σ(J ∪ I), σ(J ∪ I)) | J ⊆ X, I ⊆ Y : J ∪ I 6|= φ}.

First, each pair (σ(J ∪ I), σ(J ∪ I)) ∈ SE (P ) is A-SE-model of both, P and Q. Second, P possesses
additional A-SE-models, if there exists at least one J ⊆ X with (M [J ],M [J ]) ∈ SE A(P ). This is the
case, if no I ⊆ Y makes φ false under J ∪ I , i.e., if the QBF ∃X∀Y φ is true. This shows ΣP

2 -hardness of
deciding P 6≡As Q with P and Q positive. Consequently, P ≡As Q under this setting is ΠP

2 -hard. Note that
since the argumentation holds also for card (A) < 2, we captured both ≡As and ≡Au .

It remains to show ΠP
2 -hardness for P ≡Ae Q, for the case where P is positive and Q is normal, e ∈

{s, u}. As a consequence of Corollary 6 (see also Example 16), for a disjunctive rule r = v ∨ w ←,
Q ≡As Q

→
r holds for any A ,whenever← v, w ∈ Q. Hence, we can shift each disjunctive rule in Q and get

Q ≡As Q
→. This shows ΠP

2 -hardness for P ≡As Q, for the case where P is positive and Q is normal. Again,
we immediately get the respective result for P ≡Au Q, since the argumentation holds also for card (A) < 2.

2
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A.6 Proof of Theorem 32

It remains to show coNP-membership for two cases, viz. (i) P ≡Ae Q with P positive and Q Horn; and
P ≡As Q with P HCF and Q Horn. Therefore, we first show the following additional result:

Lemma 13 For positive programs P , Q, and a set of atoms A, P ≡Ae Q holds iff (i) each A-minimal model
of P is a classical model of Q; and (ii) for each interpretation Y , Y |= Q implies existence of a Y ′ ⊆ Y
with (Y ′ ∩A) = (Y ∩A), such that Y ′ |= P .

Proof. For the only-if direction, first suppose (i) does not hold. It is easily seen, that then the A-minimal
models cannot coincide, and thus P 6≡Ae Q. So suppose (ii) does not hold; i.e., there exists an interpretation
Y , such that Y |= Q but no Y ′ ⊆ Y with (Y ′ ∩ A) = (Y ∩ A) is a model of P . Again, the A-minimal
models of P and Q cannot coincide.

For the if direction, suppose P 6≡Ae Q. First let Y be A-minimal for P but not for Q. If Y 6|= Q we
are done, since (i) is violated. Otherwise, there exists a Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A) which is a
model of Q but not a classical model of P ; (ii) is violated. Second, suppose there exists an Y which is
A-minimal for Q but not for P . If, each Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A) does not model P , (ii) is
violated. Otherwise, if there exists a Y ′ ⊂ Y with (Y ′ ∩A) = (Y ∩A) and Y ′ |= P , then there exists a Y ′′

with (Y ′′ ∩A) = (Y ∩A), which is A-minimal for P but not a classical model of Q; whence (i) is violated.
2

We proceed by proving (i) and (ii).

(i): Since both P and Q are positive, e = s and e = u are the same concepts. coNP-membership is obtained
by applying Theorem 13. In fact, this result suggests the following algorithm:

1. Check whether each A-minimal model of Q is model of P ;

2. Check whether, for each model Y of P , there exists a Y ′ ⊆ Y with (Y ′ ∩A) = Y being model of Q.

We show that, for both steps, the complementary problem is in NP. For Step 1, we guess a Y and check
whether it is A-minimal for Q but not a classical model of P . The latter test is feasible in polynomial
time. The former reduces to test unsatisfiability of the Horn theory Q ∪ (Y ∩ A) ∪ Y⊂. For the second
step the argumentation is similar. Again, we guess an interpretation Y , check whether it is a model of P ,
and additionally, whether all Y ′ ⊆ Y with Y ′ ∩ A = Y are not model of Q. The latter reduces to test
unsatisfiability of the Horn program Q ∪ (Y ∩A) ∪ Y⊆.

(ii) In this setting, coNP-membership is obtained by the following algorithm:

1. Check whether the total A-SE-models of P and Q coincide;

2. Check whether, for each X ⊂ Y , (X,Y ) ∈ SEA(P ) implies (X,Y ) ∈ SEA(Q).

The correctness of this procedure is a consequence of Proposition 10, i.e., that SE A(Q) ⊆ SEA(P ) holds
for positive Q, whenever the total A-SE-models of P and Q coincide. Since Q is Horn and thus positive,
it is sufficient to check SEA(P ) ⊆ SEA(Q) which is accomplished by Step 2, indeed. The first step is
clearly in coNP, since for total A-SE-interpretations, A-SE-model checking and A-UE-model checking is
the same task. By Theorem 25, A-UE-model checking is polynomial for HCF programs. For the second
step, we show NP-membership for the complementary task. We guess some X ′ and Y , and test whether
(Y, Y ) ∈ SEA(P ), X ′ |= P Y , and ((X ′ ∩A), Y ) /∈ SEA(Q). All tests are feasible in polynomial time and
imply that (X,Y ) ∈ SEA(P ) but (X,Y ) 6∈ SEA(Q), with X = (X ′ ∩A). 2
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A.7 Proof of Theorem 33

Membership has already been obtained in Theorem 32. For the hardness-part we reduce UNSAT to P ≡Ae Q,
where P and Q are Horn. The case of definite programs is discussed below.3 Hence, let F =

∧n
i=1 ci,1 ∨

· · · ∨ ci,ni
be given over atoms V and consider G = {g1, . . . , gn} as new atoms. Define

P = {← v, v̄ | v ∈ V } ∪ {gi ← c∗i,j | 1 ≤ i ≤ n; 1 ≤ j ≤ ni};

and let A = V ∪ V̄ . Then, F is unsatisfiable iff

P ≡Ae (P ∪ {← g1, . . . , gn})

with e ∈ {s, u}. We show the claim for e = s. Recall that RSE and RUE are the same for Horn programs.
For the only-if direction suppose F is unsatisfiable. Then, there does not exist an interpretation I ⊆ V , such
that σ(I) ∪ G is A-minimal for P . To wit, there exists at least a G′ ⊆ G such that σ(I) ∪ G′ is model of
P as well. It is easily verified that under these conditions, P ≡Ae P ∪ {← g1, . . . , gn} holds. On the other
hand, if F is satisfiable, there exists an interpretation I ⊆ V such that σ(I) ∪G is an A-minimal model of
P . However, σ(I) ∪G is not a model of P ∪ {← g1, . . . , gn}. This proves the claim.

We show that coNP-hardness holds also for definite programs. Therefore, we introduce further atoms
a, b and change P to

P = {a← v, v̄ | v ∈ V } ∪ {gi ← c∗i,j | 1 ≤ i ≤ n; 1 ≤ j ≤ ni} ∪ {u← a | u ∈ A}

where A = {b} ∪ V ∪ V̄ ∪G. Then, F is unsatisfiable iff

P ≡Ae P ∪ {b← g1, . . . , gn}

with A = {a, b} ∪ V ∪ V̄ . The correctness of the claim is by analogous arguments as above. 2

3Our proof closely follows concepts used in [8] to establish coNP-hardness results for closed world reasoning over Horn
theories.


