
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

GAME-THEORETIC GOLOG UNDER

PARTIAL OBSERVABILITY

ALBERTO FINZI THOMAS LUKASIEWICZ

INFSYS RESEARCH REPORT 1843-05-02

DECEMBER 2006





INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-05-02, DECEMBER 2006

GAME-THEORETIC GOLOG UNDER PARTIAL OBSERVABILITY

DECEMBER 27, 2006

Alberto Finzi2 1 Thomas Lukasiewicz1 2

Abstract. In this paper, we present the agent programming language POGTGolog (Partially Ob-

servable Game-Theoretic Golog), which integrates explicit agent programming in Golog with game-

theoretic multi-agent planning in partially observable stochastic games. In this framework, we as-

sume one team of cooperative agents acting under partial observability, where the agents may also

have different initial belief states and not necessarily the same rewards. POGTGolog allows for

specifying a partial control program in a high-level logical language, which is then completed by an

interpreter in an optimal way. To this end, we define a formal semantics of POGTGolog programs in

terms of Nash equilibria, and we then specify a POGTGolog interpreter that computes one of these

Nash equilibria.

1Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, I-00198 Rome,

Italy; e-mail: {finzi, lukasiewicz}@dis.uniroma1.it.
2Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;

e-mail: lukasiewicz@kr.tuwien.ac.at.

Acknowledgements: This paper is a significantly extended and revised version of a paper that has appeared

in Proceedings KI-2006 [15]. Preliminary results of this paper have also appeared in Proceedings GTDT-

2005 [13] and Proceedings AAMAS-2005 [14].

This work was partially supported by the Austrian Science Fund (FWF) under project P18146-N04 and by

a Heisenberg Professorship of the German Research Foundation (DFG).

Copyright c© 2007 by the authors



INFSYS RR 1843-05-02 I

Contents

1 Introduction 1

2 Preliminaries 3

2.1 The Situation Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Golog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Normal Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Partially Observable Stochastic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Partially Observable GTGolog (POGTGolog) 6

3.1 Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Belief States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Syntax of POGTGolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Policies and Nash Equilibria of POGTGolog . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 A POGTGolog Interpreter 18

4.1 Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Optimality and Faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Example 19

6 Related Work 23

7 Conclusion 25



INFSYS RR 1843-05-02 1

1 Introduction

During the recent years, the development of controllers for autonomous agents has become increasingly im-

portant in Artificial Intelligence (AI). One way of designing such controllers is the programming approach,

where a control program is specified through a language based on high-level actions as primitives. An-

other way is the planning approach, where goals or reward functions are specified, and the agent is given

a planning ability to achieve a goal or to maximize a reward function. An integration of both approaches

has recently been proposed through the seminal language DTGolog [5], which integrates explicit agent pro-

gramming in Golog [41] with decision-theoretic planning in (fully observable) Markov decision processes

(MDPs) [38]. It allows for partially specifying a control program in a high-level language as well as for

optimally filling in missing details through decision-theoretic planning. It can thus be seen as a decision-

theoretic extension to Golog, where choices left to the agent are made by maximizing expected utility. From

a different perspective, it can also be seen as a formalism that gives advice to a decision-theoretic planner,

since it naturally constrains the search space by providing fragments of control knowledge (that is, partially

specified control programs).

The agent programming language DTGolog has several other nice features, since it is closely related to

first-order extensions of decision-theoretic planning (see especially [4, 49, 22]), which allow for (i) com-

pactly representing decision-theoretic planning problems without explicitly referring to atomic states and

state transitions, (ii) exploiting such compact representations for efficiently solving large-scale problems,

and (iii) nice properties such as modularity (parts of the specification can be easily added, removed, or

modified) and elaboration tolerance (solutions can be easily reused for similar problems with few or no

extra cost).

However, DTGolog is designed only for the single-agent framework. That is, the model of the world

essentially consists of a single agent that we control by a DTGolog program and the environment summa-

rized in “nature”. But there are many applications where we encounter multiple agents, which may compete

against each other, or which may also cooperate with each other. For example, in robotic soccer, we have

two competing teams of agents, where each team consists of cooperating agents. Here, the optimal actions

of one agent generally depend on the actions of all the other (“enemy” and “friend”) agents. In particular,

there is a bidirected dependence between the actions of two different agents, which generally makes it in-

appropriate to model enemies and friends of the agent that we control simply as a part of “nature”. As an

example for an important cooperative domain, in robotic rescue, mobile agents may be used in the emer-

gency area to acquire new detailed information (such as the locations of injured people in the emergency

area) or to perform certain rescue operations. In general, acquiring information as well as performing rescue

operations involves several and different rescue elements (agents and/or teams of agents), which cannot ef-

fectively handle the rescue situation on their own. Only the cooperative work among all the rescue elements

may solve it. Since most of the rescue tasks involve a certain level of risk for humans (depending on the type

of rescue situation), mobile agents can play a major role in rescue situations, especially teams of cooperative

heterogeneous mobile agents.

This is the motivation behind GTGolog [11], which is a generalization of DTGolog that integrates

agent programming in Golog with game-theoretic multi-agent planning in (fully observable) stochastic

games [33], also called Markov games [45, 27]. The following example shows a program in GTGolog.

Example 1.1 (Rugby Domain) Consider a rugby player a1, who is deciding his next n> 0 moves and

wants to cooperate with a team mate a2. He has to deliberate about if and when it is worth to pass the ball.



2 INFSYS RR 1843-05-02

His options can be encoded by the following GTGolog program:

proc step(n)
if (haveBall(a1)∧n> 0) then

πx (πy (choice(a1 :moveTo(x) | passTo(a2)) ‖
choice(a2 :moveTo(y) | receive(a1))));

step(n−1)
end.

This program encodes that while agent a1 is the ball owner and n> 0, the two agents a1 and a2 perform

a parallel action choice in which a1 (resp., a2) can either go somewhere or pass (resp., receive) the ball.

Here, the preconditions and effects of the actions are to be formally specified in a suitable action theory.

Given this high-level program and the action theory for a1 and a2, the program interpreter then fills in the

best moves for a1 and a2, reasoning about all the possible interactions between the two agents.

However, another crucial aspect of real-world environments is that they are typically only partially

observable, due to noisy and inaccurate sensors, or because some relevant parts of the environment simply

cannot be sensed. For example, in the robotic rescue domain, every agent has generally only a very partial

view on the environment and the other agents. But both DT- and GTGolog assume full observability, and

have not been generalized to the partially observable case so far.

In this paper, we try to fill this gap. We present the agent programming language POGTGolog, which

extends GTGolog and thus also DTGolog by partial observability. The main contributions of this paper can

be summarized as follows:

• We present the agent programming language POGTGolog, which integrates explicit agent program-

ming in Golog with game-theoretic multi-agent planning in partially observable stochastic games.

POGTGolog allows for modeling one team of cooperative agents under partial observability, where

the agents may also have different initial belief states and not necessarily the same rewards (and thus in

some sense the team does not necessarily have to be homogeneous). We assume a system of multiple

agents with free communication (as in [42, 39]).

• POGTGolog allows for specifying a partial control program in a high-level language, which is then

completed in an optimal way. To this end, we associate with every POGTGolog program a set of

(finite-horizon) policies, which are possible (finite-horizon) instantiations of the program where miss-

ing details are filled in. We then define a semantics of a POGTGolog program in terms of Nash

equilibria, which are optimal policies (that is, optimal instantiations) of the program.

• We define a POGTGolog interpreter and show that it associates with each POGTGolog program one

of its Nash equilibria. We also prove that POGTGolog programs faithfully extend partially observable

stochastic games. Furthermore, we illustrate the usefulness of the POGTGolog approach along several

examples.

The rest of this paper is organized as follows. In Section 2, we recall the basic concepts of the situ-

ation calculus, Golog, normal form games, and partially observable stochastic games. Section 3 defines

the domain theory, syntax, and semantics of POGTGolog programs. In Section 4, we formally specify a

POGTGolog interpreter and provide especially an optimality result for the interpreter. Section 5 illustrates

the overall framework through another example. In Section 6, we discuss related work. Finally, Section 7

summarizes our main results and gives an outlook on future research. Notice that detailed proofs of all

results are given in Appendix A.



INFSYS RR 1843-05-02 3

2 Preliminaries

In this section, we first recall the main concepts of the situation calculus (in its standard and concurrent ver-

sion) and of the agent programming language Golog; for further details and background see especially [41].

We then recall the basics of normal form games and partially observable stochastic games.

2.1 The Situation Calculus

The situation calculus [31, 41] is a first-order language for representing dynamically changing worlds. Its

main ingredients are actions, situations, and fluents. An action is a first-order term of the form a(u1, . . . , un),
where the function symbol a is its name and the ui’s are its arguments. All changes to the world are the

result of actions. A situation is a first-order term encoding a sequence of actions. It is either a constant

symbol or of the form do(a, s), where do is a distinguished binary function symbol, a is an action, and s is a

situation. The constant symbol S0 is the initial situation and represents the empty sequence, while do(a, s)
encodes the sequence obtained from executing a after the sequence of s. We write Poss(a, s), where Poss

is a distinguished binary predicate symbol, to denote that it is possible to execute the action a in the situation

s. A (relational) fluent represents a world or agent property that may change when executing an action. It

is a predicate symbol whose most right argument is a situation. A situation calculus formula is uniform in

a situation s iff (i) it does not mention the predicates Poss and < (which denotes the proper subsequence

relationship on situations), (ii) it does not quantify over situation variables, (iii) it does not mention equality

on situations, and (iv) every situation in the situation argument of a fluent coincides with s [41].

Example 2.1 (Rugby Domain cont’d) The action moveTo(r, x, y) may stand for moving the agent r to

the position (x, y), while the situation do(moveTo(r, 1, 2), do(moveTo(r, 3, 4),S0 )) stands for executing

moveTo(r, 1, 2) after the execution of moveTo(r, 3, 4) in the initial situation S0 . The (relational) fluent

at(r, x, y, s) may express that the agent r is at the position (x, y) in the situation s.

In the situation calculus, a dynamic domain is represented by a basic action theory AT = (Σ,Duna ,
DS0

,Dssa ,Dap), where:

• Σ is the set of (domain-independent) foundational axioms for situations [41].

• Duna is the set of unique names axioms for actions, which express that different actions are interpreted

in a different way (that is, any two actions with different names or different arguments have a different

meaning).

• DS0
is a set of first-order formulas that are uniform in S0 , which describe the initial state of the

domain (represented by S0 ).

• Dssa is the set of successor state axioms [40, 41]. For each fluent F (x, s), it contains an axiom of the

form F (x, do(a, s))≡ΦF (x, a, s), where ΦF (x, a, s) is a formula uniform in s with free variables

among x, a, s. These axioms specify the truth of the fluent F in the next situation do(a, s) in terms

of the current situation s, and are a solution to the frame problem (for deterministic actions).

• Dap is the set of action precondition axioms. For each action a, it contains an axiom of the form

Poss(a(x), s) ≡ Π(x, s), where Π is a formula uniform in s with free variables among x, s. This

axiom characterizes the preconditions of a.



4 INFSYS RR 1843-05-02

Example 2.2 (Rugby Domain cont’d) The formula at(r, 1, 2,S0 )∧at(r′, 3, 4,S0 ) inDS0
may express that

the agents r and r′ are initially at the positions (1, 2) and (3, 4), respectively. The axiom at(r, x, y, do(a,
s))≡ a=moveTo(r, x, y)∨ (at(r, x, y, s)∧¬∃x′, y′ (a=moveTo(r, x′, y′))) inDssa may express that the

agent r is at the position (x, y) in the situation do(a, s) iff either r moves to (x, y) in the situation s, or

r is already at the position (x, y) and does not move away in s. The axiom Poss(moveTo(r, x, y), s) ≡
¬∃r′ at(r′, x, y, s) in Dap may express that it is possible to move the agent r to (x, y) in s iff no agent r′ is

at (x, y) in s.

In this paper, we use the concurrent version of the situation calculus [41], which is an extension of the

above standard situation calculus by concurrent actions. A concurrent action c is a set of standard actions,

which are concurrently executed when c is executed. A situation is then a sequence of concurrent actions of

the form do(cm, . . . , do(c0 ,S0 )), where do(c, s) states that all the simple actions a in c are executed at the

same time in the situation s.

In order to encode concurrent actions, some slight modifications to standard basic action theories are

necessary. In particular, the successor state axioms in Dssa are now defined relative to concurrent actions.

Furthermore, the action preconditions in Dap are extended by further axioms expressing (i) that a singleton

concurrent action c= {a} is executable if its standard action a is executable, (ii) that if a concurrent action

is executable, then it is nonempty and all its standard actions are executable, and (iii) preconditions for

concurrent actions. Note that precondition axioms for standard actions are in general not sufficient, since

two standard actions may each be executable, but their concurrent execution may not be permitted. This

precondition interaction problem [41] (see also [36] for a discussion) requires some domain-dependent

extra precondition axioms.

Example 2.3 (Rugby Domain cont’d) The axiom at(r, x, y, do(a, s)) ≡ a=moveTo(r, x, y) ∨ (at(r, x,
y, s) ∧ ¬∃x′, y′ (a=moveTo(r, x′, y′))) in Dssa in the standard situation calculus is replaced by the ax-

iom at(r, x, y, do(c, s)) ≡ moveTo(r, x, y)∈ c ∨ (at(r, x, y, s) ∧ ¬∃x′, y′(moveTo(r, x′, y′)∈ c)) in the

concurrent one.

2.2 Golog

Golog is an agent programming language that is based on the situation calculus. It allows for constructing

complex actions (also called programs) from (standard or concurrent) primitive actions that are defined in

a basic action theory AT , where standard (and not so standard) Algol-like control constructs can be used.

Programs p in Golog have one of the following forms (where c is a (standard or concurrent) primitive action,

φ is a condition, which is obtained from a situation calculus formula that is uniform in s by suppressing the

situation argument, p, p1, p2, . . . , pn are programs, P1, . . . , Pn are procedure names, and x,x1, . . . ,xn are

arguments):

(1) Primitive action: c. Do c.

(2) Test action: φ?. Test the truth of φ in the current situation.

(3) Sequence: [p1; p2]. Do p1 followed by p2.

(4) Nondeterministic choice of two programs: (p1 | p2). Do either p1 or p2.

(5) Nondeterministic choice of program argument: πx (p(x)). Do any p(x).



INFSYS RR 1843-05-02 5

(6) Nondeterministic iteration: p⋆. Do p zero or more times.

(7) Conditional: if φ then p1 else p2. If φ is true in the current situation, then do p1 else do p2.

(8) While-loop: while φ do p. While φ is true in the current situation, do p.

(9) Procedures: proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end ; p.

Example 2.4 (Rugby Domain cont’d) The Golog program while ¬at(r, 1, 2) do πx, y (moveTo(r, x, y))
stands for “while the agent r is not at the position (1, 2), move r to a nondeterministically chosen posi-

tion (x, y)”.

Golog has a declarative formal semantics in the situation calculus. Given a Golog program p, its exe-

cution is represented by a situation calculus formula Do(p, s, s′), which encodes that the situation s′ can be

reached by executing p in the situation s.

2.3 Normal Form Games

Normal form games from classical game theory [47] describe the possible actions of n> 2 agents and

the rewards that the agents receive when they simultaneously execute one action each. A normal form

game G= (I, (Ai)i∈I , (Ri)i∈I) consists of a set of agents I = {1, . . . , n} with n> 2, a nonempty finite set

of actions Ai for each agent i∈ I , and a reward function Ri : A→R for each i∈ I , which associates with

every joint action a∈A=×i∈IAi a reward Ri(a) to agent i. If n=2, then G is a two-player normal form

game (or matrix game). If also R1 =−R2, then G is a zero-sum matrix game; we then often omit R2 and

abbreviate R1 by R.

The behavior of the agents in a normal form game is expressed through the notions of pure and mixed

strategies, which specify which of its actions an agent should execute and which of its actions an agent

should execute with which probability, respectively. A pure strategy for agent i∈ I is any action ai ∈Ai. A

pure strategy profile is any joint action a∈A. If the agents play a, then the reward to agent i∈ I is given by

Ri(a). A mixed strategy for agent i∈ I is any probability distribution πi over its set of actions Ai. A mixed

strategy profile π= (πi)i∈I consists of a mixed strategy πi for each agent i∈ I . If the agents play π, then

the expected reward to agent i∈ I , denoted E[Ri(a) |π] (or Ri(π)), is
∑

a=(aj)j∈I∈ARi(a) ·Πj∈Iπj(aj).

Towards optimal behavior of the agents in a normal form game, we are especially interested in mixed

strategy profiles π (called Nash equilibria) where no agent has the incentive to deviate from its part, once the

other agents play their parts. Formally, given a normal form game G= (I, (Ai)i∈I , (Ri)i∈I), a mixed strat-

egy profile π= (πi)i∈I is a Nash equilibrium ofG iff for every agent i∈ I , it holds thatRi(π←π′i)6Ri(π)
for every mixed strategy π′i, where π←π′i is obtained from π by replacing πi by π′i. Every normal form

game G has at least one Nash equilibrium among its mixed (but not necessarily pure) strategy profiles, and

many have multiple Nash equilibria. In the two-player case, they can be computed by linear complementary

programming and linear programming in the general and the zero-sum case, respectively. A Nash selec-

tion function f associates with every normal form game G a unique Nash equilibrium f(G). The expected

reward to agent i∈ I under f(G) is denoted by vi
f (G).

Example 2.5 (two-finger Morra) In two-finger Morra, two players E and O simultaneously show one or

two fingers. Let f be the total numbers of fingers shown. If f is odd, then O gets f dollars from E, and

if f is even, then E gets f dollars from O. A pure strategy for player E (or O) is to show two fingers,



6 INFSYS RR 1843-05-02

and a mixed strategy for E (or O) is to show one finger with the probability 7/12 and two fingers with the

probability 5/12. The mixed strategy profile where each player shows one finger resp. two fingers with the

probability 7/12 resp. 5/12 is a Nash equilibrium.

2.4 Partially Observable Stochastic Games

Partially observable stochastic games [33] generalize normal form games, partially observable Markov de-

cision processes (POMDPs) [34], and decentralized POMDPs (Dec-POMDPs) [35, 21, 32]. A partially ob-

servable stochastic game consists of a set of states S, a normal form game for each state s∈S, a set of joint

observations of the agents O, and a transition function that associates with every state s∈S and joint action

of the agents a∈A a probability distribution on all combinations of next states s′ ∈S and joint observations

o∈O. Formally, a partially observable stochastic game (POSG) G= (I, S, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I)
consists of a set of agents I = {1, . . . , n}, n> 2, a nonempty finite set of states S, two nonempty finite sets

of actions Ai and observations Oi for each i∈ I , a transition function P : S×A→PD(S×O), which as-

sociates with every state s∈S and joint action a∈A=×i∈IAi a probability distribution over S×O, where

O=×i∈IOi, and a reward function Ri : S×A→R for each i∈ I , which associates with every state s∈S
and joint action a∈A a reward Ri(s, a) to agent i.

Since the actual state s∈S of the POSG G is not fully observable, every agent i∈ I has a belief state

bi that associates with every state s∈S the belief of agent i about s being the actual state. A belief state

b= (bi)i∈I of G consists of a probability function bi over S for each agent i∈ I . The POSG G then defines

probabilistic transitions between belief states as follows. The new belief state ba,o = (ba,o
i )i∈I after executing

the joint action a∈A in b= (bi)i∈I and jointly observing o∈O is given by ba,o
i (s′) =

∑
s∈S P (s′, o | s, a) ·

bi(s) / Pb(b
a,o
i | bi, a), where Pb(b

a,o
i | bi, a) =

∑
s′∈S

∑
s∈SP (s′,o|s,a)·bi(s) is the probability of observing

o after executing a in bi.

The notions of finite-horizon pure (resp., mixed) policies and their rewards (resp., expected rewards) can

now be defined as usual using the above probabilistic transitions between belief states. Informally, given a

finite horizon H > 0, a pure (resp., mixed) time-dependent policy associates with every belief state b of G
and number of steps to go h∈{0, . . . , H} a pure (resp., mixed) normal form game strategy.

Finally, the notion of a finite-horizon Nash equilibrium for a POSGG is then defined as follows. A policy

π is a Nash equilibrium of G under a belief state b iff for every agent i∈ I , it holds that Gi(H, b, π←π′i) 6

Gi(H, b, π) for all policies π′i, where Gi(H, b, α) denotes the H-step reward to agent i∈ I under an initial

belief state b= (bi)i∈I and the policy α. A policy π is a Nash equilibrium of G iff it is a Nash equilibrium

of G under every belief state b.

3 Partially Observable GTGolog (POGTGolog)

In this section, we present the agent programming language POGTGolog, which is a generalization of

GTGolog [11] that allows for partial observability. We first define the domain theory and belief states of

POGTGolog. We then introduce the syntax and the semantics of POGTGolog programs.

We focus on the case of one team of cooperative agents acting under partial observability, where the

agents may also have different initial belief states and not necessarily the same rewards. That is, the agents

are collaborative in the sense that they belong to the same team, but they may also have to solve conflicts

of opinions about the state of the world (expressed through different initial beliefs) and its significance

(expressed through different rewards). Like in [42, 39], we assume free communication between the agents,

which means that the agents can communicate without cost, and thus we can assume that (i) each agent is



INFSYS RR 1843-05-02 7

aware about the initial local belief state of every other agent, and (ii) after each action execution, each agent

can observe the actions of the other agents and receives their local observations.

3.1 Domain Theory

POGTGolog programs are interpreted relative to a domain theory, which extends a basic action theory

by stochastic actions and reward/utility functions. In addition to a basic action theory AT , a domain theory

DT = (AT , ST ,OT ) consists of a stochastic theory ST and an optimization theory OT , which are defined

below.

We assume a team I = {1, . . . , n} of n> 2 cooperative agents 1, . . . , n. The nonempty finite set of

primitive actions A is partitioned into nonempty sets of primitive actions A1, . . . , An of agents 1, . . . , n,

respectively. A single-agent action of agent i∈ I (resp., multi-agent action) is any concurrent action overAi

(resp., A). Every multi-agent action c is associated with a nonempty finite set of multi-agent observations

Oc =×i∈I Oc,i, where every Oc,i is a nonempty finite set of pairwise exclusive and exhaustive conditions

(called single-agent observations) of agent i∈ I .

Example 3.1 (Rugby Domain cont’d) Let I = {1, 2}. Then, the concurrent actions {moveTo(1, 1, 2)}⊆A1

and {moveTo(2, 2, 3)}⊆A2 are single-agent actions of agents 1 and 2, respectively, and thus also multi-

agent actions, while the concurrent action {moveTo(1, 1, 2),moveTo(2, 2, 3)} is a multi-agent action.

A stochastic theory ST is a set of axioms that define stochastic actions. We represent stochastic actions

through a finite set of deterministic actions, as usual [18, 5]. When a stochastic action is executed, then

with a certain probability, “nature” executes exactly one of its deterministic actions and produces exactly

one possible observation. We use the predicate stochastic(c, s, n, o, µ) to encode that when executing the

stochastic action c in the situation s, “nature” chooses the deterministic action n producing the observation

o∈Oc with the probability µ. Here, for every stochastic action c and situation s, the set of all (n, o, µ)
such that stochastic(c, s, n, o, µ) is a probability function on the set of all deterministic components n and

observations o∈Oc of c in s. We also use the notation prob(c, s, n, o) to denote the probability µ such

that stochastic(c, s, n, o, µ). We assume that c and all its nature choices n have the same preconditions.

A stochastic action c is then indirectly represented by providing a successor state axiom for every asso-

ciated nature choice n. The stochastic action c is executable in a situation s with the observation o∈Oc,

denoted Poss(co, s), iff prob(c, s, n, o)> 0 for some n.

Example 3.2 (Rugby Domain cont’d) The stochastic action moveS (α, x, y), which (i) is observed as being

either successful or a failure, and (ii) moves the agent α to either the position (x, y) or the position (x, y+1),
can be encoded as follows:

stochastic(moveS (α, x, y), s, n, o, µ)
def
= ∃y′(n = moveTo(α, x, y′)∧

(o = obs(success) ∧ (y′ = y + 1 ∧ µ = 0.5 ∨ y′ = y ∧ µ = 0.3)∨
o = obs(failure) ∧ y′ = y + 1 ∧ µ = 0.2)) .

The precondition and successor state axioms of moveS (α, x, y) are then specified through the precondition

and successor state axioms of moveTo(α, x, y′).

The optimization theory OT specifies a reward function, a utility function, and some Nash selection

functions. The reward function associates with each situation s and multi-agent action a, a reward to each

agent i∈ I , denoted reward(i, a, s). Note that the reward function for stochastic actions is defined through



8 INFSYS RR 1843-05-02

a1

a2

o’s a’s

G
O
A
L

G
O
A
L

o1

o2

Figure 1: Rugby Domain: Two teams {a1,a2} and {o1,o2}.

a reward function for their deterministic components. The utility function utility maps every pair consisting

of a reward v and a probability value pr (that is, a real from the unit interval [0, 1]) to a real-valued util-

ity utility(v, pr). We assume that utility(v, 1)= v and utility(v, 0)= 0 for all rewards v. Informally, the

utility function suitably mediates between the rewards of the agents and the failure of actions due to unsat-

isfied preconditions: differently from actions in decision-theoretic planning, the actions here may fail due

to unsatisfied preconditions. Thus, the usefulness of an action/program does not only depend on its reward,

but also on the probability that it is executable. Similarly to all arithmetic operations, utility functions are

pre-interpreted (that is, rigid) and thus not explicitly axiomatized in the domain theory.

Example 3.3 (Rugby Domain cont’d) The reward function reward(1, {moveTo(1, x, y)}, s)= y may en-

code that the reward to agent 1 when moving to (x, y) in the situation s is given by y. An example of a

utility function is utility(v, pr)= v · pr .

The following example describes a more detailed domain theory for the Rugby Domain, which is in-

spired by the soccer domain in [27].

Example 3.4 (Rugby Domain cont’d) The rugby field (see Fig. 1) is a 4× 7 grid of 28 squares, and it

includes two designated areas representing two goals. We assume a team of two agents a = {a1,a2} against

a (static) team of two agents o = {o1,o2}, where a1 and o1 are the captains of a and o , respectively. Each

agent occupies a square and is able to do one of the following actions on each turn: N , S, E, W , stand ,

passTo(α), and receive(α) (move up, move down, move right, move left, no move, pass the ball to α, and

receive the ball from α, respectively). The ball is represented by a circle and also occupies a square. An

agent is a ball owner iff it occupies the same square as the ball. The ball follows the moves of the ball owner,

and we have a goal when the ball owner steps into the adversary goal. An agent can also pass the ball to

another agent of the same team, but this is possible only if the receiving agent is not closer to the opposing

end of the field than the ball, otherwise an offside fault is called by the referee, and the ball possession goes

to the captain of the opposing team. When the ball owner goes into the square occupied by another agent, if

the other agent stands, then the ball possession changes. Thus, a good defensive maneuver is to stand where

the ball owner wants to go.

We define the domain theory DT =(AT ,ST ,OT ) as follows. The basic action theory AT defines the

deterministic action move(α,m) (encoding that agent α executes m), where α∈a ∪o , m∈{N,S,E,W,
stand , passTo(α′), receive(α′)}, and α′ is a team mate of α, and the fluents at(α, x, y, s) (encoding that

agent α is at position (x, y) in situation s) and haveBall(α, s) (encoding that agent α has the ball in situation



INFSYS RR 1843-05-02 9

s). They are defined by the following successor state axioms:

at(α, x, y, do(c, s)) ≡ ∃x′, y′ (at(α, x′, y′, s) ∧ ∃m (move(α,m)∈ c∧
((m= stand ∨m= receive ∨ ∃β (m= passTo(β))) ∧ x=x′ ∧ y= y′)∨
(m=N ∧ x=x′ ∧ y= y′+1) ∨ (m=S ∧ x=x′ ∧ y= y′−1)∨
(m=E ∧ x=x′+1 ∧ y= y′) ∨ (m=W ∧ x=x′−1 ∧ y= y′))) ;

haveBall(α, do(c, s)) ≡ ∃β (haveBall(β, s)∧
(α = β ∧ ¬∃β′(cngBall(β′, c, s) ∨ rcvBall(β′, c, s)))∨
(α 6= β ∧ (cngBall(α, c, s) ∨ rcvBall(α, c, s)))) .

Here, cngBall(α, c, s) is true iff the ball possession changes to α after an action c in s (in the case of an

adversary block), that is,

cngBall(α, c, s)
def
= ∃β, x, y (β 6=α ∧ ¬sameTeam(α, β) ∧ haveBall(β, s)∧

at(β, x, y, do(c, s)) ∧ at(α, x, y, s) ∧move(α, stand)∈ c) .

The predicate rcvBall(α, c, s) is true iff agent α receives the ball from the ball owner or because of an

offside ball passage, that is,

rcvBall(α, c, s)
def
= ∃β, α′ (β 6=α ∧ haveBall(β, s)∧

move(β, passTo(α′))∈ c ∧ ((move(α′, receive(β))∧
¬offside(β, α′, s) ∧ α′ = α) ∨ (¬move(α′, receive(β))∈ c∨
offside(β, α′, s)) ∧ ¬sameTeam(α, α′) ∧ captain(α))) .

Here, offside(β, α, s) is true iff the players α and β are team-mates, and α is closer to the goal of the

adversary team than β. The deterministic actions move(α,m) are associated with precondition axioms by:

Poss(move(α,m), s) ≡ ¬∃x, y (at(α, x, y, s)∧
((y = 4 ∧m = N) ∨ (y = 1 ∧m = S)∨
(x = 6 ∧m = E) ∨ (x = 0 ∧m = W )))∨
∃β(m = passTo(β) ∧ haveBall(α, s))∨
∃β(m = receive(β) ∧ haveBall(β, s)) .

As for the stochastic theory ST , we assume the stochastic action moveS (α,m), which represents agent

α’s attempt in doing m∈{N,S,E,W, stand , passTo(β), receive(β)}. It can either succeed, and then the

deterministic action move(α,m) is executed, or it can fail, and then the deterministic action move(α, stand)
(that is, no change) is executed. Furthermore, after each execution of moveS (α,m), agent α can observe

the presence of a team mate α′ in the direction of the movement, given that agent α′ is visible, that is, not

covered by another agent:

stochastic({moveS (α,m)}, s, {a}, {obs(β, out)}, µ)
def
=

∃µ1, µ2 ((a=move(α,m) ∧ (out = success ∧ µ1 = 0.8∨
out = failure ∧ µ1 = 0.1) ∨ a=move(α, stand)∧
(out = success ∧ µ1 = 0.01 ∨ out = failure ∧ µ1 = 0.09))∧

(visible(α, β, a, s)∧µ2 = 0.7∨ visible(α,nil , a, s)∧µ2 =0.1∨
¬visible(α,nil , a, s)∧µ2 = 0.2) ∧ µ=µ1·µ2) ;

stochastic({moveS (α,m),moveS (α′,m′)}, s, {aα, aα′}, {oα, oα′}, µ)
def
=

∃µ1, µ2 (stochastic({moveS (α,m)}, s, {aα}, {oα}, µ1) ∧
stochastic({moveS (α′,m′)}, s, {aα′}, {oα′}, µ2) ∧ µ = µ1 · µ2) .



10 INFSYS RR 1843-05-02

Here, visible(α, α′, a, s) is true if α can observe α′ after the execution of a in s. The stochastic ac-

tion moveS (α,m) is associated with the observations obs(β, out), where β ∈{α′,nil} and r∈{success,
failure}. That is, after the execution of the action move(α,m), agent α can observe both whether its team

mate α′ is present or not (first argument) and the success or failure of the action (second argument). Note

that we assume that obs(α′, out) has the probability zero, if α′ is not visible. Notice also that in the last

axiom, we assume the independence of the observations.

As for the optimization theory OT , the reward function for the agents is defined by:

reward(α, c, s)= r
def
= ∃α′(goal(α′, do(c, s))∧ (α′=α ∧ r=M ∨

sameTeam(α, α′) ∧ r=M ′ ∨ ¬sameTeam(α′, α) ∧ r=−M))∨
¬∃α′ (goal(α′, do(c, s)) ∧ evalTeamPos(α, c, r, s)) .

Here, the reward of agent α is very high (that is, M stands for a “big” integer) if α itself scores a goal,

and a bit lower (that is, M ′<M ) if the goal is scored by a team-mate. Otherwise, the reward depends on

evalTeamPos(α, c, r, s), that is, the position of its team relative to the adversary team as well as the ball

possession. Here, the predicate goal(α, s) is defined as follows:

goal(α, s)
def
= ∃x, y(haveBall(α, s) ∧ at(α, x, y, s) ∧ posGoal(α, x, y)) ,

where posGoal(α, x, y) is true iff (x, y) are the goal coordinates of the adversary team of α. The predicate

evalTeamPos(c, r, s) is defined as follows:

evalTeamPos(α, c, r, s)
def
= ∃α′, r′((haveBall(α′, do(c, s)) ∧ evalPos(α′, r′, s)∧

(sameTeam(α, α′) ∧ r = r′ ∨ ¬sameTeam(α′, α) ∧ r = − r′)) .

Informally, the value r in evalTeamPos(α, c, r, s) depends on the ball owner position evalPos(α, r, s)
relative to the goal, the team-mates, and the adversary team.

3.2 Belief States

We now introduce belief states along with the executability of actions in belief states and the semantics of

actions in terms of transitions between belief states. We also describe how the initial belief state of the

agents can be encoded.

A belief state (over situations) has the form b= (bi)i∈I , where every bi is a finite set of pairs (s, µ)
consisting of a situation s and a real µ∈ (0, 1] such that all µ sum up to 1. Informally, every bi represents

the belief of agent i∈ I expressed as a probability distribution over ordinary situations. The probability of

a formula φ(s) that is uniform in s in the belief state b= (bi)i∈I , denoted φ(b), is the probability vector

pr = (pr i)i∈I , where every pr i with i∈ I is the sum of all µ such that φ(s) is true and (s, µ)∈ bi. Similarly,

reward(c, b) denotes the vector r=(ri)i∈I , where every ri with i∈ I is the sum of all reward(i, c, s) ·µ
such that (s, µ)∈ bi.

Example 3.5 (Rugby Domain cont’d) Consider the following scenario relative to the domain theory of

Example 3.4 (see Fig. 2). We focus on controlling the members of the team a , which cooperate to score a

goal against the (static) team o . The captain a1 of a has a complete view of the situation, and its belief state

ba1
coincides with the state shown in Fig. 2, upper part: There is only the situation s1 with the probability

1 such that at(a1, 2, 1, s1), at(a2, 2, 4, s1), at(o2, 1, 1, s1), at(o1, 5, 2, s1), and haveBall(a1, s1) are all



INFSYS RR 1843-05-02 11

a2

a1a1

a2

a1

o’s

o’s a’s

a’s

G
O
A
L

G
O
A
L

G
O
A
L

G
O
A
L

o1

o2

o2

o2

o1

Figure 2: Rugby Domain: Belief states of a1 and a2, respectively.

true. That is, the captain o1 of o is very close to the goal of a . From the perspective of a1, its team can

score a goal as follows: a1 can pass to a2, which has a paved way towards the goal. Unfortunately, a1 has

to cooperate with a2, whose vision of the situation is more confused (see Fig. 2, lower part): From a2’s

point of view (that is, belief state ba2
), o2 could be at either (a) (1, 1) or (b) (1, 2), and a1 could be at

either (c) (2, 1) or (d) (3, 1). Hence, a2’s belief state ba2
consists of four possible states with, for example,

the following probability distribution: {(sa,c, 0.5), (sa,d, 0.3), (sb,c, 0.1), (sb,d, 0.1)}.

A deterministic action c is executable in a belief state b= (bi)i∈I iff Poss(c, b)> 0 (that is, c is exe-

cutable in a situation s such that (s, µ)∈ bi for some i∈ I). A stochastic action c is executable in a belief

state b= (bi)i∈I producing the observation o∈Oc iff Poss(co, b)> 0 (that is, c is executable in a situation

s such that (s, µ)∈ bi for some i∈ I and prob(c, s, n, o)> 0 for some n).

Given a deterministic action c and a belief state b = (bi)i∈I , the successor belief state after executing c
in b, denoted do(c, b), is the belief state b ′ =(b ′i)i∈I , where

b ′i = {(do(c, s), µ/Poss(c, b)) | (s, µ)∈ bi,Poss(c, s)}

for every i∈ I . Given a stochastic action c, an observation o∈Oc, and a belief state b = (bi)i∈I , the succes-

sor belief state after executing c in b and observing o, denoted do(co, b), is the belief state b ′ = (b ′i)i∈I , where

b ′i is obtained from all pairs (do(n, s), µ ·µ′) such that (s, µ)∈ bi, Poss(c, s), and µ′ = prob(c, s, n, o)> 0
by normalizing the probabilities to sum up to 1. The probability of making the observation o∈Oc after the

execution of the stochastic action c in b = (bi)i∈I , denoted prob(c, b, o), is the vector pr = (pr i)i∈I , where

every probability pr i with i∈ I is the sum of all µ · µ′ such that (s, µ)∈ bi and µ′ = prob(c, s, n, o)> 0.

Example 3.6 (Rugby Domain cont’d) The successor belief state after executing the stochastic action c =
{moveS (a1,m), moveS (a2,m)} in the belief state b = ({(S0, 1)}, {(S0, 1)}) and jointly observing the

failure resp. success of the action of agent a1 resp. a2 (that is, obsa1
(failure) resp. obsa2

(success)) is given

by the following b ′ =(b ′
a1
, b ′

a2
) (where ci,j = ci ∪ c

′
j with c0 = {moveTo(a1, stand)}, c1 = {moveTo(a1,



12 INFSYS RR 1843-05-02

m)}, c′0 = {moveTo(a2, stand)}, and c′1 = {moveTo(a2,m)}, and the probabilities follow from the stochas-

tic theory ST in Example 3.4):

b
′

a1
= b

′

a2
= {(do(c0,0, S0),

0.09
0.1+0.09 ·

0.01
0.8+0.01), (do(c1,0, S0),

0.1
0.1+0.09 ·

0.01
0.8+0.01),

(do(c0,1, S0),
0.09

0.1+0.09 ·
0.8

0.8+0.01), (do(c1,1, S0),
0.1

0.1+0.09 ·
0.8

0.8+0.01)} .

We next describe how the initial belief state of the agents can be encoded. Let b = (bi)i∈I be an initial

belief state with bi = {(si,j , µi,j) | j ∈{1, . . . , ni}} for all i∈ I . For every i∈ I and j ∈{1, . . . , ni}, we

assume a deterministic action gi,j , which performs a transition from S0 into the situation si,j . For every

i∈ I , we then generate bi by a stochastic action gi, which has every gi,j (along with the probability µi,j)

such that j ∈{1, . . . , ni} as a deterministic component, and we generate b by the multi-agent stochastic

action g= {gi | i∈ I}. Since the deterministic actions gi,j generate only the possible situations si,j in the

initial belief state, we assume the precondition axiom Poss(gi,j , s) ≡ s=S0. We also want that the other

deterministic actions are only executable after S0. Hence, for each primitive action, the precondition axiom

Poss(a, s)≡Ψ(a, s) is slightly rewritten as Poss(a, s)≡Ψ(a, s)∧ s 6=S0. Finally, instead of usingDS0
to

specify the initial situation S0, we use it to describe each of the possible situations in the initial belief state.

Example 3.7 (Rugby Domain cont’d) Consider again the belief state b= (ba1
, ba2

) described in Exam-

ple 3.4, which is given by ba1
= {(s1, 1)} and ba2

= {(sa,c, 0.5), (sa,d, 0.3), (sb,c, 0.1), (sb,d, 0.1)}. In order

to encode ba2
, we use the deterministic actions g2;a,c, g2;a,d, g2;b,c, and g2;b,d to generate all possible situa-

tions in ba2
:

sa,c = do(g2;a,c, S0), sa,d = do(g2;a,d, S0),
sb,c = do(g2;b,c, S0), sb,d = do(g2;b,d, S0) ,

and we use the stochastic action g2 to associate them with their probabilities in ba2
:

stochastic({g2}, s, {a}, {o}, µ)
def
=

a = g2;a,c ∧ µ = 0.5 ∨ a = g2;a,d ∧ µ = 0.3 ∨
a = g2;b,c ∧ µ = 0.1 ∨ a = g2;b,d ∧ µ = 0.1 .

Assuming a similar stochastic action g1 for ba1
(associated with a unique deterministic action g1,1 such that

s1 = do(g1,1, S0)), the belief state b= (ba1
, ba2

) is generated by executing the multi-agent stochastic action

g= {g1, g2} in S0:

stochastic({g1, g2}, s, {a, b}, {o1, o2}, µ)
def
=

∃µ1, µ2(stochastic({g1}, s, {a}, {o1}, µ1)∧
stochastic({g2}, s, {b}, {o2}, µ2) ∧ µ=µ1 × µ2).

Notice that the properties of the possible situations in a belief state can be defined as usual. For example,

the properties of the ones in ba2
can be defined by:

at(a1, 2, 1, sa,c) ∧ at(o2, 1, 1, sa,c), at(a1, 3, 1, sa,d) ∧ at(o2, 1, 1, sa,d),
at(a1, 2, 1, sb,c) ∧ at(o2, 1, 2, sb,c), at(a1, 3, 1, sb,d) ∧ at(o2, 1, 2, sb,d) .



INFSYS RR 1843-05-02 13

3.3 Syntax of POGTGolog

In the sequel, let DT be a domain theory. We define POGTGolog by induction as follows. A program p
in POGTGolog has one of the following forms (where α is a multi-agent action or the empty action nop

(which is always executable and does not change the state of the world), φ is a condition, p, p1, p2, . . . , pn

are programs without procedure declarations, P1, . . . , Pn are procedure names, x,x1, . . . ,xn are argu-

ments, τ = {τ1, τ2, . . . , τn} is a nonempty finite set of ground terms, ai,1, . . . , ai,ni
are single-agent actions

of agent i∈ I , and J ⊆ I with |J |> 2):

1. Deterministic or stochastic action: α. Do α.

2. Nondeterministic action choice of agent i∈ I: choice(i : ai,1| · · · |ai,ni
).

Do an optimal action (for agent i∈ I) among ai,1, . . . , ai,ni
.

3. Nondeterministic joint action choice: ‖j∈Jchoice(j : aj,1| · · · |j : aj,nj
).

Do any action ‖j∈Jaj,ij with an optimal probability π= Πj∈Jπj,ij .

4. Test action: φ?. Test the truth of φ in the current situation.

5. Action sequence: [p1; p2]. Do p1 followed by p2.

6. Nondeterministic choice of two programs: (p1 | p2). Do p1 or p2.

7. Nondeterministic choice of program argument: π[x : τ ] (p(x)). Do any p(τi).

8. Nondeterministic iteration: p⋆. Do p zero or more times.

9. Conditional: if φ then p1 else p2.

10. While-loop: while φ do p.

11. Procedures: proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end ; p.

Hence, compared to Golog, we now also have multi-agent actions and stochastic actions (instead of only

primitive resp. deterministic actions). Furthermore, we now additionally have different kinds of nondeter-

ministic action choices for the agents in (2) and (3), where one or any subset of the agents in I can choose

among a finite set of single-agent actions. The formal semantics of (2) and (3) is defined in such a way

that an optimal action is chosen for the agents (see Section 3.4). As usual, the sequence operator “;” is

associative (that is, [[p1; p2]; p3] and [p1; [p2; p3]] have the same meaning), and we often use “p1; p2” to

abbreviate “[p1; p2]”.

Example 3.8 (Rugby Domain cont’d) Consider again the scenario (and its belief states ba1
and ba2

) of

Example 3.5 relative to the domain theory of Example 3.4 (see Fig. 2). Both agents a1 and a2 have to

decide when (and if) it is worth to pass the ball, considering that if a1 tries to pass while a2 is in offside

(for example, in sa,d or sb,d), then the ball goes to the captain o1 of the adversary team o , which is in a very

good position to score a goal. The subsequent POGTGolog program, denoted schema , represents a way of

acting of a1 and a2 in this scenario, where a1 and a2 have two possible chances to coordinate themselves



14 INFSYS RR 1843-05-02

to pass the ball; thereafter, both of them have to run towards the goal (with or without the ball):

proc schema()
choice(a1 : moveS (a1, E) |moveS (a1, stand) |moveS (a1, passTo(a2))) ‖

choice(a2 : moveS (a2, S) |moveS (a2, E) |moveS (a2, receive(a1)));
choice(a1 : moveS (a1, E) |moveS (a1, stand) |moveS (a1, passTo(a2))) ‖

choice(a2 : moveS (a2, E) |moveS (a2, receive(a1)));
{moveS (a1, E),moveS (a2, E)};
{moveS (a1, E),moveS (a2, E)}
end.

3.4 Policies and Nash Equilibria of POGTGolog

We now define the formal semantics of POGTGolog programs p relative to a domain theory DT in terms

of Nash equilibria of p, which are optimal finite-horizon policies of p. We first associate with every POGT-

Golog program p, belief state b, and horizon H > 0, a set of H-step policies π along with their expected

utility Ui to every agent i∈ I . We then define the notion of an H-step Nash equilibrium to characterize

a subset of optimal such policies, which is the natural semantics of a POGTGolog program relative to a

domain theory.

Intuitively, given a horizon H > 0, an H-step policy π of a POGTGolog program p in a belief state b
relative to a domain theory DT is obtained from the H-horizon part of p by replacing every single-agent

choice by a single action, and every multi-agent choice by a collection of probability distributions, one over

the actions of each agent. Every suchH-step policy π is associated with an expectedH-step reward to i∈ I ,

an H-step success probability (which is the probability that π is executable in b), and an expected H-step

utility to i∈ I (which is computed from the expected H-step reward and the H-step success probability

using the utility function).

Formally, for every POGTGolog program p, the nil -terminated variant of p, denoted p̂, is inductively

defined by p̂= [p1; p̂2], if p= [p1; p2], and p̂= [p;nil ], otherwise. Given a POGTGolog program p relative

to a domain theory DT , a horizon H > 0, and a start belief state b, we say that π is an H-step policy

of p in b relative to DT with expected H-step reward vi, H-step success probability pr i, and expected H-

step utility Ui(H, b, π)= utility(vi, pri) to agent i∈ I iff DT |=G(p̂, b,H, π, (vi)i∈I , (pr i)i∈I), where the

macroG(p̂, b, h, π, v, pr), for every number of steps to go h∈{0, . . . , H}, is defined by induction as follows

(p̂, b, and h are the input values of G, while π, v= (vi)i∈I , and pr = (pr i)i∈I are the output values of G):

• Null program or zero horizon:

If p̂=nil or h= 0, then:

G(p̂, b, h, π, v, pr)
def
= π=nil ∧ v =0∧ pr =1 .

Intuitively, p ends when it is null or at the horizon end.

• Deterministic first program action (resp., stochastic first program action with observation): If p̂ =
[c ; p′], where c is a deterministic action (resp., stochastic action with observation), and h> 0, then:

G([c ; p′], b, h, π, v, pr)
def
=

(Poss(c, b)=0 ∧ π= stop ∧ v =0∧ pr =1) ∨
(Poss(c, b)>0 ∧ ∃π′, v′, pr ′ (G(p′, do(c, b), h−1, π′, v′, pr ′) ∧
π= c ;π′ ∧ v= v′ + reward(c, b) ∧ pr = pr ′ · Poss(c, b)) .



INFSYS RR 1843-05-02 15

Here, (si)i∈I op (ti)i∈I = (si op ti)i∈I for op ∈ {+, · }. Informally, suppose that p̂= [c ; p′], where

c is a deterministic action (resp., stochastic action with observation). If c is not executable in the

belief state b, then p has only the policy π= stop along with the expected reward v=0 and the

success probability pr =0. Here, stop is a zero-cost action, which takes the agents to an absorbing

state, where they stop the execution of the policy and wait for further instructions. Otherwise, the

optimal execution of [c ; p′] in the belief state b depends on that one of p′ in do(c, b). Observe that c
is executable in b with the probability Poss(c, b), which affects the overall success probability pr.

• Stochastic first program action (choice of nature):

If p̂= [c ; p′], where c is a stochastic action, and h> 0, then:

G([c ; p′], b, h, π, v, pr)
def
=

∃l, π1, . . . , πl, v1, . . . , vl, pr1, . . . , pr l (
∧l

q=1G([coq ; p
′], b, h, coq ;πq,

vq, pr q) ∧ π= c ; for q= 1 to l do if oq then πq ∧

v=
∑l

q=1 vq · prob(c, b, oq) ∧ pr =
∑l

q=1 pr q · prob(c, b, oq)) .

Here, o1, . . . , ol are the possible observations. The generated policy consists of c and a conditional

plan in which every such observation oq is considered.

• Nondeterministic first program action (choice of agent i∈ I):

If p̂= [choice(i : a1| · · · |an) ; p′] and h> 0, then:

G([choice(i : a1| · · · |an) ; p′], b, h, π, v, pr)
def
=

∃π1, . . . , πn, v1, . . . , vn, pr1, . . . , prn, k (
∧n

q=1G([aq ; p′], b, h, aq ;πq,

vq, pr q) ∧ k∈{1, . . . , n} ∧ π= ak ; for q= 1 to n do if ψq then πq ∧

v= vk ∧ pr = prk) .

Informally, every policy π of p consists of any action ak and one policy πq of p′ for every possible

action aq. The expected reward and the success probability of π are given by the expected reward vq

and the success probability pr q of πq. For the other agents to observe which action among a1, . . . , an

was actually executed by agent i, we use a cascade of if-then-else statements with conditions ψq.

• Nondeterministic first program action (joint choice of the agents in J):

If p̂= [ ‖j∈Jchoice(j : aj,1| · · · |aj,nj
) ; p′] and h> 0, then:

G([ ‖j∈Jchoice(j : aj,1| · · · |aj,nj
); p′], b, h, π, v, pr)

def
=

∃πa (a∈A), va (a∈A), pra (a∈A), πj (j ∈J) (
∧

a∈AG([
⋃

j∈J aj ; p
′],

b, h,
⋃

j∈J aj ;πa, va, pra) ∧
∧

j∈J(πj ∈PD({aj,1, . . . , aj,nj
})) ∧

π= Πj∈Jπj ; for each a∈A do if φa then πa ∧
v=

∑
a∈A va ·Πj∈Jπj(aj) ∧ pr =

∑
a∈A pra ·Πj∈Jπj(aj)) .

Here, A=×j∈J {aj,1, . . . , aj,nj
}. We denote by PD(S) the set of all probability distributions over

S, and (Πj∈Jπj)(a)= Πj∈Jπj(aj) for all a=(aj)j∈J . Informally, every policy π of p consists of

one probability distribution πj over {aj,1, . . . , aj,nj
} for every agent j ∈ J , and one policy πa of p′

for every possible joint action a∈A. The expected reward and the success probability of π are given

by the expected reward and the expected success probability of the policies πa. Here, πj specifies the



16 INFSYS RR 1843-05-02

probabilities with which agent j ∈J should execute the actions {aj,1, . . . , aj,nj
}. Hence, assuming the

usual probabilistic independence between the distributions πj with j ∈J in stochastic games, every

possible joint action a is executed with the probability (Πj∈Jπj)(a). Note that the conditions φa with

a∈A are to observe what the agents have actually executed.

• Test action:

If p̂= [φ? ; p′] and h> 0, then:

G([φ? ; p′], b, h, π, v, pr)
def
= (φ[b] =0 ∧ π= stop ∧ v =0∧ pr =0) ∨

∃pr ′(φ[b]>0 ∧G(p′, b, h, π, v, pr ′) ∧ pr = pr ′ · φ[b]) .

Informally, let p̂= [φ? ; p′]. If φ is false in b, then p has only the policy π= stop, the expected reward

v=0, and the success probability pr =0. Otherwise, π is a policy of p with the expected reward

v and success probability pr ′ · φ[b] iff π is a policy of p′ with the expected reward v and success

probability pr ′.

• Nondeterministic choice of two programs:

If p̂= [(p1 | p2); p
′] and h> 0, then:

G([(p1 | p2); p
′], b, h, π, v, pr)

def
=

∃π1, π2, v1, v2, pr1, pr2, k (
∧

q∈{1,2}G([pq; p
′], b, h, πq, vq, pr q) ∧

k∈{1, 2} ∧ π=πk ∧ v= vk ∧ pr = prk) .

• Conditional:

If p̂= [if φ then p1 else p2; p
′] and h> 0, then:

G([if φ then p1 else p2; p
′], b, h, π, v, pr)

def
=

G([([φ?; p1] | [¬φ?; p2]); p
′], b, h, π, v, pr) .

This case is reduced to test action and nondeterministic choice of two programs.

• While-loop:

If p̂= [while φ do p; p′] and h> 0, then:

G([while φ do p; p′], b, h, π, v, pr)
def
= G([[φ?; p]⋆;¬φ?], b, h, π, v, pr) .

This case is reduced to test action and nondeterministic iteration.

• Nondeterministic choice of program argument:

If p̂= [π[x : τ ](p(x)); p′], where τ = {τ1, τ2, . . . , τn}, and h> 0, then:

G([π[x : τ ](p(x)); p′], b, h, π, v, pr)
def
=

G([(· · · (p(τ1)|p(τ2))| · · · |p(τn)); p′], b, h, π, v, pr) .

This case is reduced to nondeterministic choice of two programs.



INFSYS RR 1843-05-02 17

• Nondeterministic iteration:

If p̂= [p⋆; p′] and h> 0, then:

G([p⋆; p′], b, h, π, v, pr)
def
=

G([[proc nit (nop | [p ;nit ]) end;nit ]; p′], b, h, π, v, pr) .

This case is reduced to procedures and nondeterministic choice of two programs.

• Procedures: We consider the two cases of (1) handling procedure declarations and (2) handling proce-

dure calls. To this end, we slightly extend the first argument ofG by a store for procedure declarations,

which can be safely ignored in all the above constructs of POGTGolog.

(1) If p̂= [proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end ; p]〈〉 and h> 0, then:

G([proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end ; p]〈〉, b, h, π, v, pr)
def
=

G([p]〈proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end〉, b, h, π, v, pr) .

We store the procedure declarations at the end of the first argument of G.

(2) If p̂= [Pi(xi); p
′]〈d〉 and h> 0, then:

G([Pi(xi); p
′]〈d〉, b, h, π, v, pr)

def
= G([pd(Pi(xi)); p

′]〈d〉, b, h, π, v, pr) .

We replace a procedure call Pi(xi) by its code pd(Pi(xi)) from d.

We are now ready to define the notion of an H-step Nash equilibrium as follows. An H-step policy π of

a POGTGolog program p in a belief state b relative to DT is an H-step Nash equilibrium of p in b relative

to DT iff, for every agent i∈ I , it holds that Ui(H, b, π
′)6Ui(H, b, π) for all H-step policies π′ of p in b

relative to DT obtained from π by modifying only actions of agent i.

Example 3.9 (Rugby Domain cont’d) Consider again the scenario (and its belief states ba1
and ba2

) of

Example 3.5 relative to the domain theory of Example 3.4 (see Fig. 2). Assuming the horizon H = 4, a

4-step policy π of the POGTGolog program schema of Example 3.8 is given by:

DT |=G([schema;nil ], (ba1
, ba2

), 4, π, (v1, v2), (pr1, pr2)).

For agent a1, an optimal way of acting is to pass the ball as soon as possible, which can be encoded

by the (pure) 4-step policy πa1
= c ; π1

a1
, where c= {moveS (a1, passTo(a2)),moveS (a2, receive(a1))},

and π1
a1

is an optimal 3-step policy of schema ′ in the belief state (do(c, ba1
), do(c, ba2

)). Here, schema ′ is

obtained from schema by removing the first nondeterministic joint action choice. The policy π1
a1

gives to

agent a2 three moveS (a2, E) attempts to achieve the touch-line. From the standpoint of a2, instead, it is

worth to do a moveS (a2, S) to observe if agent a1 is aligned, trying to minimize the likelihood of a wrong

passage. In this case, a1 has to delay the passage waiting for the move of a2. The resulting (pure) 4-step

policy πa2
is more favorable to a2’s belief state:

πa2
= c ; if obs(a1, success) then π1,o1

a2

else if obs(a1, failure) then π1,o2

a2

else if obs(nil , success) then π2,o3

a2

else if obs(nil , failure) then π2,o4

a2
,



18 INFSYS RR 1843-05-02

where c= {moveS (a1, S),moveS (a2, stand)} and πk,oi
a2

is an optimal 3-step policy of schema ′, when

observing oi after executing c in (ba1
, ba2

). Given this conflict of opinions, an optimal compromise for both

a1 and a2 is a Nash equilibrium.

4 A POGTGolog Interpreter

In this section, we first define an interpreter for POGTGolog programs, and we then provide some optimality

and faithfulness results for the interpreter.

4.1 Formal Specification

We now define an interpreter for POGTGolog programs p relative to a domain theory DT by specifying the

macro OptG(p̂, b, H, π, v, pr), which takes as input the nil -terminated variant p̂ of a POGTGolog program

p, a belief state b = (bi)i∈I , and a finite horizon H > 0, and which computes as output an optimal H-step

policy π (one among all the H-step Nash equilibria of p in b; see Theorem 4.1) and the vectors v= (vi)i∈I

and pr = (pr i)i∈I , where each vi is the expected H-step reward of π in b to i, each pr i ∈ [0, 1] is the H-step

success probability of π in b for i, and utility(vi, pr i) is the expectedH-step utility of π in b to i. Informally,

the macroG of Section 3.4 defines all the legalH-step policies of a POGTGolog program p, while the macro

OptG defines an optimal such legal one. Therefore, we define the macro OptG(p̂, b, h, π, v, pr) in nearly

the same way as the macro G(p̂, b, h, π, v, pr) in Section 3.4, except for the following modifications:

• Nondeterministic first program action (choice of agent i∈ I): The definition of OptG is obtained from

the one of G by replacing the condition “k∈{1, . . . , n}” by the condition “k= argmax q∈{1,...,n} util -

ity(vq,i, pr q,i)”, where vq = (vq,i)i∈I and pr q = (pr q,i)i∈I . Informally, given the possible actions

a1, . . . , an for agent i∈ I , we select an optimal one for i, that is, one with greatest utility(vq,i, pr q,i).

• Nondeterministic first program action (joint choice of the agents in J): The definition of OptG is

obtained from the one of G by replacing “
∧

j∈J(πj ∈ PD({aj,1, . . . , aj,nj
}))” by “(πj)j∈J = select-

Nash({utility(va, pra)|J | a∈A})”, where utility((si)i∈I , (ti)i∈I)= (utility(si, ti))i∈I , and s|J is

the restriction of s to J , for s= (si)i∈I and J ⊆ I . Informally, we compute a local Nash equilibrium

(πj)j∈J from a normal form game using the Nash selection function selectNash. Note that we assume

that all agents have the same Nash selection functions, and thus they automatically select a common

unique Nash equilibrium.

• Nondeterministic choice of two programs: The definition of OptG is obtained from the one of G
by replacing “k∈{1, 2}” by “k= argmaxq∈{1,2} utility(vq,j , pr q,j)”. Informally, given two possible

programs p1 and p2, we select an optimal one for agent j, that is, one with greatest utility(vq,j , pr q,j).

4.2 Optimality and Faithfulness

The following theorem shows the important result that the macro OptG is optimal in the sense that, for

every horizon H > 0, among the set of all H-step policies π of a POGTGolog program p relative to a

domain theory DT in a belief state b, it computes an H-step Nash equilibrium and its expected H-step

utility.

Theorem 4.1 Let DT = (AT ,ST ,OT ) be a domain theory, and let p be a POGTGolog program relative

to DT . Let b be a belief state, let H > 0 be a horizon, and let DT |=OptG(p̂, b,H, π, v, pr). Then, π is



INFSYS RR 1843-05-02 19

an H-step Nash equilibrium of p in b relative to DT , and utility(vi, pr i) is its expected H-step utility to

agent i∈ I .

The following theorem shows that POGTGolog programs faithfully extend POSGs, that is, in the spe-

cial case where they syntactically model POSGs, they are also semantically interpreted as POSGs. Thus,

POGTGolog programs have a nice semantic behavior in such special cases. Formally, the theorem says that

given any H > 0, every POSG can be encoded as a program p in POGTGolog such that OptG specifies one

of its H-step Nash equilibria and its expected H-step reward.

Theorem 4.2 Let G= (I, Z, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) be a POSG, and let H > 0 be a horizon. Then,

there exists a domain theory DT = (AT ,ST ,OT ), and a set of POGTGolog programs {ph |h∈{0, . . . ,
H}} relative to DT such that σ= (σi)i∈I is an H-step Nash equilibrium of G, where every (σi(b, h))i∈I =
(πi)i∈I is given by DT |=OptG(p̂h, Bb, h+1,Πi∈Iπi ;π

′, v, pr), for every belief state b of G and every

h∈{0, . . . , H}, with Bb being a belief state of DT associated with b. Furthermore, the expected H-step

reward of σ in b to agent i∈ I is given by utility(vi, pri), where DT |=OptG(p̂H , Bb, H+1, π, v, pr), for

every belief state b of G.

5 Example

In this section, we provide an extended example to illustrate the overall framework at work. This example

is inspired by the stratagus domain in [28].

Example 5.1 (Stratagus Domain) The stratagus field consists of 9× 9 positions (see Fig. 3). We assume a

team of two agents a = {a1,a2}, which occupy one position each. The stratagus field has designated areas

representing two gold-mines, one forest, and one base for each agent (see Fig. 3). The two agents can move

one step in one of the directions N, S, E, and W, or remain stationary. Each of the two agents can also pick

up one unit of wood (resp., gold) at the forest (resp., gold-mines), and drop these resources at the base. We

assume that if a1 and a2 are in the same location, then they cannot pick up anything. Each action of the two

agents can fail, resulting in a stationary move. Any carried object drops when the two agents collide. After

each step, the agents a1 and a2 receive the rewards ra1
and ra2

, respectively, where rk for k∈{a1,a2} is

0, 1, and 2 when k brings nothing, one unit of wood, and one unit of gold to its base, respectively.

We define the domain theory DT = (AT ,ST ,OT ) as follows. As for the basic action theory AT ,

we assume the deterministic actions move(α,m) (agent α performs m among N , S, E, W , and stand ),

pickUp(α, o) (agent α picks up the object o), and drop(α, o) (agent α drops the object o), as well as the

relational fluents at(q, x, y, s) (agent or object q is at the position (x, y) in the situation s), and holds(α, o, s)
(agent α holds the object o in the situation s), which are defined through the following successor state

axioms:

at(q, x, y, do(c, s)) ≡ agent(q) ∧ (at(q, x, y, s) ∧move(q, stand) ∈ c∨
∃x′, y′(at(q, x′, y′, s) ∧ ∃m(move(α,m) ∈ c ∧ φ(x, y, x′, y′,m))))∨
object(q) ∧ (at(q, x, y, s) ∧ ¬∃α(pickUp(α, q) ∈ c)∨
∃α((drop(α, q) ∈ c ∨ collision(c, s)) ∧ at(α, x, y, s) ∧ holds(α, q, s))) ;

holds(α, o, do(c, s)) ≡ holds(α, o, s) ∧ drop(α, o) 6∈ c∧
¬collision(c, s) ∨ pickUp(α, o) ∈ c.



20 INFSYS RR 1843-05-02

a1

a2 a2

a1

wood wood

a
’s

b
ase

a
’s

b
ase

gold g?

gold

gold g?

gold

Figure 3: Stratagus Domain: Initial belief states of a1 and a2, respectively.

Here, φ(x, y, x′, y′,m) is true iff the coordinates change from the position (x′, y′) to the position (x, y) due

to m∈{N,S,E,W, stand}, that is,

φ(x, y, x′, y′,m)
def
= (m 6∈ {N,S,E,W} ∧ x=x′ ∧ y= y′) ∨

(m=N ∧ x=x′ ∧ y= y′+1) ∨ (m=S ∧ x=x′ ∧ y= y′−1) ∨
(m=E ∧ x=x′+1 ∧ y= y′) ∨ (m=W ∧ x=x′−1 ∧ y= y′) ,

and collision(c, s) encodes that executing the action c in the situation s causes a collision between the

agents a1 and a2 in the situation do(c, s), that is,

collision(c, s)
def
= ∃α, β, x, y (α 6=β ∧

∃x′, y′(at(α, x′, y′, s) ∧ ∃m (move(α,m)∈ c ∧ φ(x, y, x′, y′,m)))∧
∃x′′, y′′(at(β, x′′, y′′, s) ∧ ∃m (move(β,m)∈ c ∧ φ(x, y, x′′, y′′,m)))∧

(x′ 6= x ∨ y′ 6= y ∨ x′′ 6= x ∨ y′′ 6= y)) .

That is, we have a collision between two agents iff (i) at least one them moves, and (ii) they are in the same

location thereafter. The deterministic actions move(α,m), drop(α, o), and pickUp(α, o) have the following

precondition axioms:

Poss(move(α,m), s) ≡ ¬∃x, y (at(α, x, y, s) ∧ ((y = 9 ∧m = N) ∨
(y = 1 ∧m = S) ∨ (x = 9 ∧m = E) ∨ (x = 1 ∧m = W ))) ;

Poss(drop(α, o), s) ≡ holds(α, o, s) ;
Poss(pickUp(α, o), s) ≡ ¬∃x holds(α, x, s)∧∃x, y(at(α, x, y, s)∧ at(o, x, y, s)) .

Here, the first axiom forbids α to go out of the 9 × 9 game-field, while the second axiom states that α can

only drop the object o if α is holding o, and the third axiom permits α to pick up o if α is at same location

and not holding anything else.

As for the stochastic theory ST , we assume the stochastic actions moveS (α,m), pickUpS (α, o), and

dropS (α, o), which are specified below. Each execution of such an action c is followed by an observation



INFSYS RR 1843-05-02 21

among obsα(success) and obsα(failure). Intuitively, α can observe if the execution of α was successful

or not.

stochastic({moveS (α,m)}, s, {a}, {o}, µ)
def
= o= obsα(success)∧

(a=move(α,m) ∧ µ= 0.54 ∨ a=move(α, stand) ∧ µ= 0.36)∨
o= obsα(failure) ∧ a=move(α, stand) ∧ µ= 0.1 ;

stochastic({pickUpS (α, o)}, s, {a}, {o}, µ)
def
= o= obsα(success)∧

(a= pickUp(α, o) ∧ µ= 0.72 ∨ a=move(α, stand) ∧ µ= 0.18)∨
o= obsα(failure) ∧ a=move(α, stand) ∧ µ= 0.1 ;

stochastic({dropS (α, o)}, s, {a}, {o}, µ)
def
= o= obsα(success)∧

(a= drop(α, o) ∧ µ= 0.81 ∨ a=move(α, stand) ∧ µ= 0.09)∨
o= obsα(failure) ∧ a=move(α, stand) ∧ µ= 0.1 .

Observe that the observation obsα(failure) is reliable, that is, if agent α observes obsα(failure), then its

executed action was not successful with the probability 1. Multi-agent stochastic actions are defined as

follows (assuming independence):

stochastic({moveS (α,m),moveS (α′,m′)}, s, {aα, aα′}, {oα, oα′}, µ)
def
=

∃µ1, µ2(stochastic({moveS (α,m)}, s, {aα}, {oα}, µ1) ∧
stochastic({moveS (α′,m′)}, s, {aα′}, {oα′}, µ2) ∧ µ=µ1 · µ2) .

As for the optimization theory OT , we use the product as the utility function utility . Furthermore, we define

the reward function for agent α as follows:

reward(α, c, s)= r
def
= ∃rα, rβ(rewardAct(α, c, s)= rα ∧

rewardAct(β, c, s)= rβ ∧ α 6=β ∧ r= rα + 0.5 · rβ) .

Here, rewardAct(α, c, s) is defined as follows:

rewardAct(α, c, s)= r
def
= ∃o, x, y (at(α, x, y, s) ∧ holding(α, o, s)∧

¬collision(c, s) ∧ base(α, x, y) ∧ drop(α, o) ∈ c ∧ (gold(o) ∧ r= 2∨
wood(o) ∧ r=1)) ∨ ¬∃o, x, y (at(α, x, y, s) ∧ holding(α, o, s)∧
¬collision(c, s) ∧ base(α, x, y) ∧ drop(α, o) ∈ c) ∧ r= 0 .

Note that the reward to agent α is higher if α itself can drop an object to the base. Thus, even though there

is a joint interest in bringing objects to the base, each agent prefers to be the one who achieves the goal.

Consider the scenario shown in Fig. 3, where the two agents a1 and a2 are looking for a unit of gold g,

and they are trying to bring it to their base. Suppose that the initial belief state of agent a1 (resp., a2) is as

in Fig. 3, left (resp., right) side. In particular, agent a1 (resp., a2) initially believes that the unit of gold g is

at either (6, 4) or (7, 4) (resp., (7, 3) or (7, 4)). Formally, let the belief state of agent a1 (resp., a2) be given

by ba1
= {(s6,4, 0.2), (s7,4, 0.8)} (resp., ba2

= {(s7,3, 0.4), (s7,4, 0.6)}), where every included si,j denotes

one of the three possible situations shown in Fig. 3, and at(g, i, j, si,j) is true. How should the two agents

a1 and a2 now act in such an initial situation? Both agents believe that the unit of gold g could be in their

position or in the position (7, 4). Thus, the probability of finding the unit of gold g in the position (7, 4)
is higher, but if both agents decide to go there, then they could block each other’s pick-up actions, since



22 INFSYS RR 1843-05-02

joint pick-up actions in the same position are not allowed. However, once one of the two agents a1 and a2

has caught the unit of gold g, it should go to its base and drop it. The following POGTGolog program,

denoted schema , encodes a possible way of acting of a1 and a2 in this scenario:

proc schema(n)
pickOrGo(n);
π a , o (holding(a , o)? ; carryToBase(a))
end.

In this program, each agent tries to pick up an object, solving a “pick up or go” dilemma when they aim at

picking up the same object (through pickOrGo). Once an object is gathered, the agent has to find a way to

bring it to the base (through carryToBase). The procedure pickOrGo(n) is defined as follows:

proc pickOrGo(n)
if n> 0 ∧ ¬∃α, o (holding(α, o)) then [
π d1, p2, o1, o2 ((direction(p1) ∧ direction(p2) ∧ object(o1) ∧ object(o2))? ;

choice(a1 : moveS (a1, d1) |moveS (a1, stand) | pickUpS (a1, o1)) ‖
choice(a2 : moveS (a2, d2) |moveS (a2, stand) | pickUpS (a2, o2)));

pickOrGo(n−1)]
end.

The following procedure carryToBase(a) describes a partially specified behavior where the agent a is

trying to move to its base to drop down an object:

proc carryToBase(a)
choice(a : moveS (a , N) |moveS (a , S) |moveS (a , E) |moveS (a ,W ));
if atBase then πx (dropS (a , x))

else carryToBase(a)
end.

Informally, in the program schema , the agents a1 and a2 first have to decide whether to move towards

the most probable gold location, or to remain in their position, or to try to pick up the gold (through

the pickOrGo procedure). We assume that they can try this maximally n times. Once a joint action of

pickOrGo is executed, if one of the two agents a1 and a2 holds the gold, then it can start to move towards

the base (through the carryToBase procedure).

The agent behavior is partially specified by the procedure schema(n), which is fully instantiated by

the program interpreter given the current belief states of the two agents. Given the context in Fig. 3, we

now focus on the possible instances of schema(2), that is, the agents can spend two attempts to pick up the

object. From a1’s point of view (Fig. 3, left side), a good policy πa1
of schema(2) may be to start with the

joint action c= {pickUpS (a1, g),moveS (a2, stand)}, and then to act depending on a1’s observation:

πa1
= c ; if obsa1

(success) ∧ obsa2
(success) then π1

a1

else if obsa1
(success) ∧ obsa2

(failure) then π2
a1

else if obsa1
(failure) ∧ obsa2

(success) then π3
a1

else if obsa1
(failure) ∧ obsa2

(failure) then π4
a1
.

Indeed, acting in this way, a1 could try to get its gold and then bring it to the base, avoiding a collision with

a2. On the other hand, from a2’s point of view (Fig. 3, right side), a good policy πa2
of schema may be to



INFSYS RR 1843-05-02 23

start with the joint action c= {moveS (a1, E), pickUpS (a2, g)}. In fact, in this way, both a1 and a2 could

try to pick up some gold and then move towards the base. However, the situation here is very complex.

Indeed, each action could fail, and each failure determines a different context. The complete policy is

generated by the POGTGolog interpreter. Assuming the horizon H =5, an optimal 5-step joint policy π is

given by DT |=OptG([schema(2);nil ], (ba1
, ba2

), 5, π, (v1, v2), (pr1, pr2)). Since both a1 and a2 know

each others initial belief states, and they are both endowed with the same POGTGolog program schema ,

the interpreter of each of them independently produces the same joint 5-step policy. The obtained policy

is a pure strategy that starts with the joint action c= {moveS (a1, stand),moveS (a2, N)}. Indeed, since

agent a2 is closer to the base, and the moveS action is not reliable, from the perspectives of a1 and a2,

an optimal joint strategy is to keep a1 idle, letting a2 try to pick up some gold from (7, 4). That is, the

produced policy is the following:

π= c ; if obsa2
(success) then [

{moveS (a1, stand), pickUpS (a2, g)};
if obsa2

(success) then [
{moveS (a1, stand),moveS (a2, E)};
if obsa2

(success) then [
{moveS (a1, stand),moveS (a2, E)};
if obsa2

(success) then

{moveS (a1, stand), dropS (a2, g)}
else if obsa2

(failure) then π1 ]
else if obsa2

(failure) then π2 ]
else if obsa2

(failure) then π3 ]
else if obsa2

(failure) then π4 .

Here, every πn is a sequence of n joint idle actions, that is, πn = {moveS (a1, stand),moveS (a2, stand)} ;
πn−1. The rewards of the obtained strategy π are 0.146 and 0.186 for a1 and a2, respectively. Note that

there are two other Nash equilibria of schema(2): A pure strategy π1, which starts with c= {moveS (a1,
E),moveS (a2, stand)}, and a mixed strategy π2, which starts with πa1

· πa2
, where πa1

= {(moveS (a1,
stand), 0.4), (moveS (a1, E), 0.6)} and πa2

= {(moveS (a2, N), 0.52), (moveS (a2, stand), 0.48)} (both

of them associated with a lower reward for both agents). The Nash equilibrium selected by the agents

depends on the Nash selection function embedded in the POGTGolog interpreter.

6 Related Work

In the situation calculus literature, we can find other frameworks for reasoning about actions in multi-agent

contexts. In [44], the authors provide a situation calculus based framework suitable for reasoning about

multi-agent beliefs, abilities, and multi-agent communicative actions. Here, the agents’ mental states are

explicitly represented deploying a possible world semantics and introducing accessibility relations between

situations (following [43]). In this setting, a Golog-based agent programming language is proposed for the

specification and verification of complex multi-agent systems. In contrast, our main concern here is to use

a relational representation inspired by partially observable stochastic games and functional abstractions for

policy synthesis. Given this aim, our treatment of beliefs is different from the one in [44, 43, 1]. In this

paper, we are not interested in explicit representation of beliefs as modalities for reasoning about mental

states of the agents. Instead, we use belief states for state abstraction, that is, belief states are outside the

object language as a set of state formulas generalizing the belief states in POSGs.



24 INFSYS RR 1843-05-02

More closely related to our framework are recent extensions of DTGolog [6, 10, 9] to the multi-agent

setting. In [6], Lakemeyer and his group present ICPGolog, a multi-agent Golog framework for team play-

ing. ICPGolog integrates different features like concurrency, exogenous actions, continuous change, and

the possibility to project into the future. The framework is used in the robotic soccer domain. Here, multi-

agent coordination is achieved without communication by assuming that the world models of the agents do

not differ too much. Differently from POGTGolog, the setting is fully observable and no game-theoretic

mechanism is used.

Another closely related work is Poole’s independent choice logic (ICL) [37], which is a representation

and reasoning formalism for single- and multi-agent systems that is based on acyclic logic programs under

different “choices”. Poole’s ICL can be used as a formalism for logically encoding games in extensive and

normal form. Differently from POGTGolog, Poole’s ICL aims more at representing games and general-

ized strategies, while the problem of policy synthesis is not addressed. Furthermore, partially observable

stochastic games are also not treated.

In [30], high-level agent programming in the FLUX framework is considered in a multi-agent setting,

modeling communicative actions among the agents. Here, the agents can reason about the other agents’

knowledge and communication skills. Also in this case, the specification is based on modalities, while

decision- and game-theoretic problems are not treated. Logic-based multi-agent programming is also inves-

tigated in the BDI framework, where the main focus is the specification and formal verification [3, 2] of BDI

systems using BDI logical languages [48, 23].

Several authors have investigated graphical representations of games [25, 26, 46], where each player’s

reward function depends on a subset of players described in a graph structure, which exploit the locality of

the interactions to obtain compact models and efficient algorithms. Here, an n-player normal form game

is explicitly described by an undirected graph on n vertices, representing the n players, and a set of n
matrices, each representing a local subgame (involving only some of the players). In our system, the in-

teraction structure is explicitly encoded, both in the action theory and in POGTGolog procedures. Hence,

local dependencies among the players are also available. The multi-agent influence diagrams [46] permit

a structured and compact representation of extensive form games, involving time and information, using

graphical models. Like in [37], the framework extends influence diagrams and Bayesian networks to the

multi-agent setting. However, the focus of these works is very different from ours. In fact, their main con-

cern is computational, and the structured representation is used to reduce the computational cost of finding

equilibria. Instead, we propose an agent programming language suitable for multi-agent settings, integrating

declarative and procedural features.

Other related works deal with multi-agent decision-theoretic planning in extensions of MDPs [35, 39, 21,

7]. In particular, decentralized POMDPs (Dec-POMDPs) [35, 21] have been explored, which are multi-agent

POMDPs where the dynamic system is controlled by multiple distributed agents with common payoff, each

with possibly different information about the current state of the world. Another approach to multi-agent

POMDPs are communicative multi-agent team decision problems [39], which allow to subsume and analyze

many existing models of multi-agent cooperative systems. Interestingly, both logic-based and decision-

theoretic approaches can be embedded and assessed in this framework. The free communication model is

also defined and analyzed in [39]. Closely related are Dec-POMDPs with communication [21], which allow

for studying the tradeoff between the cost and the value of the information acquired in the communication

process and its influence on the joint utility of the agents. Dec-POMDPs with free communication are

investigated in [42], where a free communication model is used at planning time to simplify the policy

generation, while the problem of communication cost and limited resources is handled at the execution

time. Differently from our free communication model, the agents in [39, 42] have a unique reward function.



INFSYS RR 1843-05-02 25

Identical payoff stochastic games [35] represent cooperative games by restricting each agent of the game to

a single payoff representing the team reward. An algorithm that approximates POSGs as a series of smaller

Bayesian games is proposed in [7]. Interactive POMDPs [20] are a control paradigm that complements

and generalizes the traditional (Nash) equilibrium approach. Like in our work, the main focus is on policy

synthesis for agent control, but [20] addresses directly the synthesis problem in the space of states, while

we focus on the representational problem aiming at providing a tool for specifying abstract domains and

suitable for balancing the tradeoff between procedural programming and planning.

From the representational perspective, further related works focus on relational and first-order extensions

of MDPs [4, 49, 29, 19], multi-agent MDPs [22], and Markov games [12]. In all these works, partial

observability is not addressed.

7 Conclusion

We have presented the agent programming language POGTGolog, which combines explicit agent program-

ming in Golog with game-theoretic multi-agent planning in partially observable stochastic games. It allows

for modeling one team of cooperative agents under partial observability, where the agents may also have dif-

ferent initial belief states and not necessarily the same rewards. POGTGolog allows to encode partial control

programs in a high-level logical language, which are then completed by an interpreter in an optimal way.

We have defined a formal semantics of POGTGolog programs in terms of Nash equilibria, and specified a

POGTGolog interpreter that computes one of these Nash equilibria. We have also shown that POGTGolog

programs faithfully extend partially observable stochastic games. We have illustrated the usefulness of this

approach along several examples.

An interesting topic of future research is to generalize POGTGolog in the direction of weakening the

free communication assumption. In particular, we are currently exploring mechanisms for implicit commu-

nication between the agents [8]. Alternatively, one may also allow for explicit communication between the

agents (for example, along the lines of [39, 21]) assuming a cost associated with communication actions.

Another direction of future research is to generalize POGTGolog to two competing teams of cooperative

agents under partially observability.

Appendix A: Proofs for Section 4

Proof of Theorem 4.1. Let DT = (AT ,ST ,OT ) be a domain theory, let p be a POGTGolog program rela-

tive to DT , let b be a belief state, and letH > 0 be a horizon. Observe first that DT |=OptG(p̂, b,H, π, v, pr)
implies DT |=G(p̂, b,H, π, v, pr). Hence, if DT |=OptG(p̂, b,H, π, v, pr), then π is a H-step policy of p
in b relative to DT , and utility(vi, pr i) is its expected H-step utility to agent i∈ I . Thus, it only remains to

prove the following statement: (⋆) if DT |=OptG(p̂, b,H, π, v, pr), then π is an H-step Nash equilibrium

of p in b relative to DT . We give a proof by induction on the structure of OptG .

Basis: The statement (⋆) trivially holds for the null program and zero horizon cases. Indeed, in these cases,

OptG generates only the policy π=nil .

Induction: For every program construct that involves no action choice of one of the two agents, the statement

(⋆) holds by the induction hypothesis. We now prove the statement (⋆) for the remaining constructs:

(1) Nondeterministic action choice of agent i: Let p̂= [choice(i : a1| · · · |an) ; p′], and let π be the H-

step policy associated with p via OptG . By the induction hypothesis, for every k∈{1, . . . , n}, it holds



26 INFSYS RR 1843-05-02

that DT |=OptG([ak; p
′], b,H, ak;πk, vk, prk) implies that the policy ak;πk is an H-step Nash equilib-

rium of the program [ak; p
′] in b. By construction, π is the policy with the maximal expected H-step

utility among the ak;πk’s. Hence, any different action selection ak would not be better for i, that is,

Ui(H, b, aq;πq)6Ui(H, b, π) for all q ∈{1, . . . , n}. That is, any first action deviation from π would not

better for the agent i. Moreover, since each ak;πk is an H-step Nash equilibrium of [ak; p
′] in b, also any

following deviation from π would not be better for i. In summary, this shows that Ui(H, b, π
′)6Ui(H, b, π)

for every H-step policy π′ of p in b relative to DT obtained from π by modifying only actions of agent i.
Also for any agent j 6= i, any unilateral deviation π′ from π cannot be better. In fact, since j is not involved

in the first action choice, j can deviate from π only after i’s selection of ak;πk, but this would not be better

for j by the induction hypothesis. Hence, Uj(H, b, π
′)6Uj(H, b, π) for every H-step policy π′ of p in b

relative to DT obtained from π by modifying only actions of agent j.

(2) Nondeterministic joint action choice: Let p̂= [ ‖j∈Jchoice(j : aj,1| · · · |aj,nj
); p′], and let π be the H-

step policy that is associated with p via OptG . By the induction hypothesis, DT |=OptG([
⋃

j∈J aj ; p
′],

b, H,
⋃

j∈J aj ;πa, va, pra) implies that each
⋃

j∈J aj ;πa is an H-step Nash equilibrium of [
⋃

j∈J aj ; p
′]

in b. We now prove that π is an H-step Nash equilibrium of p in b. Observe first that, by construction, π
is of the form Πj∈Jπj ;π

′, where (πj)j∈J is a Nash equilibrium (computed via the Nash selection function

selectNash) of the matrix game consisting of all ra = utility(va, pra)|J such that a∈A. Thus, if agent j
deviates from πj with π′j , it would not do better, that is, Uj(H, b, π

′)6Uj(H, b, π), where π′ is obtained

from π by replacing πj by π′j . That is, any first action deviation from π would not be better for agent j.
Moreover, by the induction hypothesis, also any following deviation from π′ would not be better for j. In

summary, this shows that Uj(H, b, π
′)6Uj(H, b, π) for every H-step policy π′ of p in b relative to DT that

is obtained from π by modifying only actions of agent j.

(3) Nondeterministic choice of two programs: The line of argumentation is similar to the one in the case of

nondeterministic action choice of agent i above. 2

Proof of Theorem 4.2. Suppose that G= (I, Z, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) is a partially observable

stochastic game. Without loss of generality, let the Ai’s be pairwise disjoint. We now construct a domain

theory DT =(AT ,ST ,OT ), a set of situation constants {Sz | z ∈Z}, a function g mapping any belief state

b of G into the belief state Bb of DT , and a set of POGTGolog programs {ph |h∈{0, . . . , H}} relative

to DT such that σ= (σi)i∈I is an H-step Nash equilibrium of G, where every σi(b, h)=πi, i∈ I , is given

by DT |= OptG(p̂h, Bb, h+ 1, Πi∈Iπi;π
′, v, pr), for all b and h∈{0, . . . , H}, and the expected H-step

reward of σ in b to agent i is given by utility(vi, pr i), where DT |=OptG(p̂H , Bb, H +1, π, v, pr).
The basic action theory AT comprises a situation constant Sz for every state z ∈Z and a fluent state(z, s)

that associates with every situation s a state z ∈Z such that state(z, Sz) for all z ∈Z. Here, every state

z ∈Z is represented by a constant, and different states are interpreted in a different way. Informally, the

set of all situations is given by the set of all situations that are reachable from the situations Sz with z ∈Z
(and thus we neglect the situation S0), and Z partitions the set of all situations into equivalence classes

(one for each z ∈Z) via the fluent state(z, s). Given the situation constants Sz and the fluent state(z, Sz),
we map any belief state b= (bi)i∈I of G to a belief state Bb = (g(bi))i∈I through the function g such that

every (z, µ)∈ bi is mapped to (Sz, µ)∈ g(bi). The basic action theory AT also comprises a deterministic

action na,z for every joint action a∈A=×i∈I Ai and z ∈Z, which performs a transition into the situation

Sz , that is, state(z, do(na,z, s)) for all states z ∈Z and situations s. The actions na,z are executable in every

situation s, that is, Poss(na,z, s)≡⊤ for all states z ∈Z and situations s.
The stochastic theory ST comprises the stochastic action {ai | i∈ I} for every joint action a∈A along

with all axioms stochastic({ai | i∈ I}, s, {na,z′}, o, P (z′, o|z, a)) such that (i) z, z′ ∈Z, (ii) s is a situation



INFSYS RR 1843-05-02 27

that satisfies state(z, s) and that contains at most H + 1 actions, and (iii) o∈O=×i∈I Oi. Informally, the

stochastic theory ST represents the transition probabilities encoded in P .

The optimization theory OT comprises all axioms reward(i, {na,z′}, s)=Ri(a, z) such that (i) i∈ I ,

(ii) a∈A, (iii) z, z′ ∈Z, and (iv) s is a situation that satisfies state(z, s) with at most H +1 actions. Let

f = selectNash be a Nash selection function for normal form games M = (I, (Ai)i∈I , (Si)i∈I), and let the

expected reward to agent i∈ I under the Nash equilibrium f(M) be denoted by vi
f (M).

Finally, every POGTGolog program ph is a sequence of h+1 nondeterministic joint action choices of

the form ‖i∈Ichoice(i : ai,1| · · · |ai,ni
), where ai,1, . . . , ai,ni

are all the singleton subsets of Ai (representing

all the actions in Ai) for all i∈ I .

Observe first that pr = 1 for every success probability pr computed in OptG for such programs ph

(since the preconditions of all actions are always satisfied). Since utility(v, pr)= v · pr , it then follows

that utility(v, pr)= v for every expected reward v and success probability pr computed in OptG for the

programs ph.

We now prove the statement of the theorem by induction on the horizon H > 0. For every belief state

b= (bi)i∈I of G and every h∈{0, . . . , H}, let the normal form game G[b, h] = (I, (Ai)i∈I , (Qi[b, h])i∈I)
be defined by (Qi[b, h])i∈I(a)= va, where DT |=OptG([{ai | i∈ I}; p̂

h−1], Bb, h+1, πa, va, pra). By in-

duction on the horizon H > 0, we now prove that for all i∈ I:

(⋆) (i) Qi[b, 0](a)=Ri(bi, a) for every belief state b of G, and

(ii) Qi[b, h](a)=Ri(bi, a)+
∑

o∈O v
i
f (G[(ba,o

i )i∈I , h−1]) ·Pb(b
a,o
i |bi, a) for every belief state b of G

and h∈{1, . . . , H}.

This then implies that (vi
f (G[b, h]))i∈I = v and f(G[b, h])= (πi)i∈I are given by DT |=OptG(p̂h, Bb,

h+1,Πi∈Iπi;π
′, v, pr), for every b and every h∈{0, . . . , H}. Furthermore, by finite-horizon value iter-

ation [24], the mixed policy σ= (σi)i∈I that is defined by (σi(b, h))i∈I = f(G[b, h]), for every b and every

h∈{0, . . . , H}, is a H-step Nash equilibrium of G, and it holds that Gi(H, b, σ)= vi
f (G[b,H]) for every

i∈ I . This then proves the theorem. Hence, it only remains to show by induction on the horizon H > 0 that

the statement (⋆) holds, which is done as follows:

Basis: Let H = 0, and thus we only have to consider the case h= 0. Let DT |= OptG([ã;nil ], Bb, 1, πa, va,
pra), with ã= {ai | i∈ I}. Using the definition of OptG for the case of stochastic first program action

ã, we then obtain va =
∑

o∈O va,o · prob(ã, Bb, o), with DT |= OptG([ão ;nil ], Bb, 1, ão ;πa,o, va,o,
pra,o). Using the definition of OptG for the case of stochastic first program action with observation, we

then obtain va,o = v′a,o + reward(ão, Bb) = 0 + (Ri(bi, a))i∈I . It thus follows that va = (Ri(bi, a))i∈I ·∑
o∈O prob(ã, Bb, o)= (Ri(bi, a))i∈I .

Induction: Let H > 0. By the induction hypothesis, it holds that (i) Qi[b, 0](a) = Ri(bi, a) for every be-

lief state b reachable from b0, and (ii) Qi[b, h](a)=Ri(bi, a) +
∑

o∈O v
i
f (G[(ba,o

i )i∈I , h−1]) ·Pb(b
a,o
i |bi, a)

for every belief state b reachable from b0 and every h∈{1, . . . , H − 1}. Furthermore, as argued above,

(vi
f (G[b, h]))i∈I = v and f(G[b, h])= (πi)i∈I are given by DT |=OptG(p̂h, Bb, h+1,Πi∈Iπi;π

′, v, pr) for

every b that is reachable from b0, and every h∈{0, . . . , H − 1}. Suppose now that DT |= OptG([ã ; p̂h−1],
Bb, h+ 1, πa, va, pra), with ã= {ai | i∈ I}. Using the definition of OptG for the case of stochastic first

program action ã, we then obtain that va =
∑

o∈O va,o · prob(ã, Bb, o), where prob(ã, Bb, o)= (Pb(b
a,o
i |bi,

a))i∈I , and every va,o is given by DT |=OptG([ão ; p̂h−1], Bb, h+ 1, ão ;πa,o, va,o, pra,o). Using the defi-

nition of OptG for the case of stochastic first program action with observation, we then obtain va,o = v′a,o +
reward(ão, Bb) = v′a,o +(Ri(bi, a))i∈I . By the induction hypothesis, we have that v′a,o = (vi

f (G[(ba,o
i )i∈I ,

h−1]))i∈I . We thus conclude that va,i =Ri(bi, a) +
∑

o∈O v
i
f (G[(ba,o

i )i∈I , h−1]) · Pb(b
a,o
i |bi, a). 2



28 INFSYS RR 1843-05-02

References

[1] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors in the

situation calculus. Artif. Intell., 111(1–2):171–208, 1999.

[2] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model checking rational agents. IEEE

Intelligent Systems, 19(5):46–52, 2004.

[3] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent programs by model

checking. Autonomous Agents and Multi-Agent Systems, 12(2):239–256, 2006.

[4] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs. In Pro-

ceedings IJCAI-2001, pp. 690–700. Morgan Kaufmann, 2001.

[5] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent program-

ming in the situation calculus. In Proceedings AAAI-2000, pp. 355–362. AAAI Press/MIT Press, 2000.

[6] F. Dylla, A. Ferrein, and G. Lakemeyer. Specifying multirobot coordination in ICPGolog – From

simulation towards real robots. In Proceedings AOS-2003, 2003.

[7] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions for partially

observable stochastic games with common payoffs. In Proceedings AAMAS-2004, pp. 136–143. IEEE

Computer Society, 2004.

[8] A. Farinelli, A. Finzi, and T. Lukasiewicz. Team programming in Golog under partial observability. In

Proceedings IJCAI-2007. 2007. In press.

[9] A. Ferrein, C. Fritz, and G. Lakemeyer. On-line decision-theoretic Golog for unpredictable domains.

In Proceedings KI-2004, volume 3238 of LNCS/LNAI, pp. 322–336. Springer, 2004.

[10] A. Ferrein, C. Fritz, and G. Lakemeyer. Using Golog for deliberation and team coordination in robotic

soccer. Künstliche Intelligenz, 1:24–43, 2005.

[11] A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog. In Proceedings ECAI-

2004, pp. 23–27. IOS Press, 2004.

[12] A. Finzi and T. Lukasiewicz. Relational Markov games. In Proceedings JELIA-2004, volume 3229 of

LNCS/LNAI, pp. 320–333. Springer, 2004.

[13] A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog under partial observability

In Proceedings GTDT-2005, 2005.

[14] A. Finzi and T. Lukasiewicz. Game-theoretic Golog under partial observability. In Proceedings

AAMAS-2005, pp. 1301–1302. ACM Press, 2005.

[15] A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog under partial observability.

In Proceedings KI-2006, volume 4314 of LNCS/LNAI, pp. 113–127. Springer, 2007.

[16] A. Finzi and T. Lukasiewicz. Adaptive multi-agent programming in GTGolog. In Proceedings ECAI-

2006, pp. 753–754. IOS Press, 2006.



INFSYS RR 1843-05-02 29

[17] A. Finzi and T. Lukasiewicz. Adaptive multi-agent programming in GTGolog. In Proceedings KI-

2006, volume 4314 of LNCS/LNAI, pp. 389–403. Springer, 2007.

[18] A. Finzi and F. Pirri. Combining probabilities, failures and safety in robot control. In Proceedings

IJCAI-2001, pp. 1331–1336. Morgan Kaufmann, 2001.

[19] N. H. Gardiol and L. Pack Kaelbling. Envelope-based planning in relational MDPs. In Proceedings

NIPS-2003. MIT Press, 2003.

[20] P. J. Gmytrasiewicz and P. Doshi. Interactive POMDPs: Properties and preliminary results. In Proc.

AAMAS-2004, pp. 1374–1375. IEEE Computer Society, 2004.

[21] C. V. Goldman and S. Zilberstein. Optimizing information exchange in cooperative multi-agent sys-

tems. In Proceedings AAMAS-2003, pp. 137–144. ACM Press, 2003.

[22] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments in

relational MDPs. In Proceedings IJCAI-2003, pp. 1003–1010. Morgan Kaufmann, 2003.

[23] A. Herzig and N. Troquard. Knowing how to play: Uniform choices in logics of agency. In Proceedings

AAMAS-2006, pp. 209–216. ACM Press, 2006.

[24] M. Kearns, Y. Mansour, and S. Singh. Fast planning in stochastic games. In Proceedings UAI-2000,

pp. 309–316. Morgan Kaufmann, 2000.

[25] M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical models for game theory. In Proceedings

UAI-2001, pp. 253–260. Morgan Kaufmann, 2001.

[26] P. La Mura. Game networks. In Proceedings UAI-2000, pp. 335–342. Morgan Kaufmann, 2000.

[27] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Proceedings

ICML-1994, pp. 157–163. Morgan Kaufmann, 1994.

[28] B. Marthi, S. J. Russell, D. Latham, and C. Guestrin. Concurrent hierarchical reinforcement learning.

In Proceedings IJCAI-2005, pp. 779–785. 2005.

[29] M. Martin and H. Geffner. Learning generalized policies from planning examples using concept lan-

guages. Appl. Intell., 20(1):9–19, 2004.

[30] Y. Martin, I. Narasamdya, and M. Thielscher. Knowledge of other agents and communicative actions

in the fluent calculus. In Proceedings KR-2004, pp. 623–633. AAAI Press, 2004.

[31] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial Intelli-

gence. In Machine Intelligence, volume 4, pp. 463–502. 1969.

[32] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming decentralized POMDPs:

Towards efficient policy computation for multiagent settings. In Proceedings IJCAI-2003, pp. 705–

711. Morgan Kaufmann, 2003.

[33] G. Owen. Game Theory: Second Edition. Academic Press, 1982.

[34] L. Pack Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable

stochastic domains. Artif. Intell., 101(1–2):99–134, 1998.



30 INFSYS RR 1843-05-02

[35] L. Peshkin, K.-E. Kim, N. Meuleau, and L. Pack Kaelbling. Learning to cooperate via policy search.

In Proceedings UAI-2000, pp. 489–496. Morgan Kaufmann, 2000.

[36] J. Pinto. Integrating discrete and continuous change in a logical framework. Computational Intelli-

gence, 14(1):39–88, 1998.

[37] D. Poole. The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell.,

94(1–2):7–56, 1997.

[38] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

1994.

[39] D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: Analyzing

teamwork theories and models. J. Artif. Intell. Res., 16:389–423, 2002.

[40] R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a complete-

ness result for goal regression. In Artificial Intelligence and Mathematical Theory of Computation:

Papers in Honor of John McCarthy, pp. 359–380. Academic Press, 1991.

[41] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical

Systems. MIT Press, 2001.

[42] M. Roth, R. Simmons, and M. Veloso. Reasoning about joint beliefs for execution-time communication

decisions. In Proceedings AAMAS-2005, pp. 786–793. 2005.

[43] R. B. Scherl and H. J. Levesque. The frame problem and knowledge-producing actions. In Proceedings

AAAI-1993, pp. 689–697. AAAI Press/MIT Press, 1993.

[44] S. Shapiro, Y. Lesperance, and H. J. Levesque. The cognitive agents specification language and ver-

ification environment for multiagent systems. In Proceedings AAMAS-2002, pp. 19–26. ACM Press,

2002.

[45] J. van der Wal. Stochastic Dynamic Programming, volume 139 of Mathematical Centre Tracts. Morgan

Kaufmann, 1981.

[46] D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. In Proceedings AAAI-

2002, pp. 345–351. AAAI Press, 2002.

[47] J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior. Princeton

University Press, 1947.

[48] M. Wooldridge. Reasoning about rational agents. MIT Press, Cambridge, MA, 2001.

[49] S. W. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order MDPs. In Proceedings

UAI-2002, pp. 568–576. Morgan Kaufmann, 2002.


