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1 Introduction

During the recent decades, reasoning about probabilities has stagkd/ tan important role in artificial
intelligence. In particular, reasoning about interval restrictions foditmmal probabilities, also callecbn-
ditional constraintd38], has been a subject of extensive research efforts. Roughbynditional constraint
is of the form(¢|¢)[l, u], wheret and ¢ are events, andl, u] is a subinterval of the unit intervdl, 1].
It encodes that the conditional probabilityfgiven¢ lies in [l, u].

An important approach for handling conditional constraints is model-ttiegn@babilistic logic, which
has its origin in philosophy and logic, and whose roots can be traced badietaly Boole in 1854 [13].
There is a wide spectrum of formal languages that have been explomddel-theoretic probabilistic
logic, ranging from constraints for unconditional and conditional eventieh languages that specify linear
inequalities over events (see especially the work by Nilsson [44], Fagih 7], Dubois and Prade et al.
[14, 15], Frisch and Haddawy [19], and the author [37, 38]). Thmmecision and optimization problemsin
model-theoretic probabilistic logic are deciding satisfiability, deciding logicatequence, and computing
tight logically entailed intervals.

For example, a simple collection of conditional constraikifs may encode thstrict logical knowledge
“all eagles are birds” and “all birds have feathers” as well agpilvely probabilistic knowledgébirds fly
with a probability of at lead2.95”. This KB is satisfiable, and some logical consequences in model-theoretic
probabilistic logic fromKB are “all birds have feathers”, “birds fly with a probability of at le@$t5”, “all
eagles have feathers”, and “eagles fly with a probability betwieand 1”; in fact, these are the tightest
intervals that follow fromiKB. That is, we especially cannot conclude anything fr&ii about the ability
to fly of eagles.

A closely related research area is default reasoning from conditioalledge bases, which consist of
a collection of strict statements in classical logic and a collection of defeasilelg, also called defaults.
The former must always hold, while the latter are rules of the kind ¢, which read as “generally, i
theny.” Such rules may have exceptions, which can be handled in differgrg.wa

The literature contains several different proposals for defaultoréag from conditional knowledge
bases and extensive work on its desired properties. The core ofptogserties are the rationality postulates
of SystemP’ by Kraus, Lehmann, and Magidor [32], which constitute a sound and ledengxiom system
for several model-theoretic entailment relations under uncertainty maeasnin@orlds. They characterize
model-theoretic entailment under preferential structures, infinitesimahpiidies, possibility measures,
and world rankings. As shown by Friedman and Halpern [18], many cfethmcertainty measures on
worlds are expressible as plausibility measures. See [7, 21] for aysoirtlee above relationships.

Mainly to solve problems with irrelevant information, the notion of rational dlesis a more adventur-
ous notion of entailment was introduced by Lehmann [35]. It is equivatershtailment in Systent by
Pearl [47] and to the least specific possibility entailment by Benferhdt f]a Finally, mainly to solve
problems with property inheritance from classes to exceptional subs)ass@e more sophisticated no-
tions of entailment were proposed, including the notion of lexicographiclewat by Lehmann [36] and
Benferhat et al. [4].

For example, a conditional knowledge bdsB may encode thstrict logical knowledgéall ostriches
are birds” and thalefault logical knowledgégenerally, birds fly”, “generally, ostriches do not fly”, and
“generally, birds have wings”. Some desirable conclusions from [26] are “generally, birds fly” and
“generally, birds have wings” (which both belong t6B), “generally, ostriches have wings” (since the
set of all ostriches is a subclass of the set of all birds, and thus ostrattwaild inherit all properties of
birds), “generally, ostriches do not fly” (since properties of moresigeclasses should override inherited
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properties of less specific classes), and “generally, red birds flytdsred” is not mentioned at all ik B
and thus should be irrelevant to the ability to fly of birds).

There are several works in the literature on probabilistic foundationddtault reasoning from con-
ditional knowledge bases [1, 46, 12], on combinations of Reiter’s tieffagic with statistical inference
[34, 49], and on a rich first-order formalism for deriving degreelsadief from statistical knowledge includ-
ing default statements [3]. A series of recent papers has proposauirations of model-theoretic prob-
abilistic reasoning from conditional constraints with default reasoning ftonditional knowledge bases,
which are summarized as follows:

e The paper [43] presentgeak nonmonotonic probabilistic logioshich are extensions of probabilistic
logic by defaults as in conditional knowledge bases under Kraus eSgktempP [32], Pearl's Sys-
tem Z [47], and Lehmann’s lexicographic entailment [36]. The new formalismsveito expressing
in a uniform frameworlstrict logical knowledgendpurely probabilistic knowledgiEom probabilis-
tic logic, as well agdefault logical knowledgérom default reasoning from conditional knowledge
bases. For example, consider #tgct logical knowledgéall penguins are birds”, thdefault logical
knowledgé‘generally, birds have legs” and “generally, birds fly”, and gheely probabilistic knowl-
edge“penguins fly with a probability of at mos$t05”. Clearly, some desired conclusions are “gen-
erally, birds have legs”, “generally, birds fly”, and “penguins fly witprabability of at mos0.05,
since these sentences are explicitly stated above. Two other desirédstome are “generally, pen-
guins have legs” (since the property of having legs of birds should beriteld to the subclass of
all penguins) and “generally, red birds fly” (since being red is not maataat all and so should be
irrelevant to the ability to fly). In weak nonmonotonic probabilistic logics, we daal with all the
above sentences. In particulprpbabilistic lexicographic entailmef#3] also produces all the above
desired conclusions.

e A companion paper [41] introducerong nonmonotonic probabilistic logicahich are similar prob-
abilistic generalizations of default reasoning from conditional knowldaigges. They are, however,
quite different from the ones in [43] in that they allow for handldefault purely probabilistic knowl-
edge rather thar(strict) purely probabilistic knowledgen addition to strict logical knowledge and
default logical knowledge. For example, they allow for expressing seagetjenerally birds fly with
a probability of at leash.95” rather than “birds fly with a probability of at leagt95”. Intuitively, the
former means that being able to fly with a probability of at léas85 should apply to all birds and
all subclasses of birds, as long as this is consistent, while the latter sayseihgtable to fly with
a probability of at least.95 should only apply to all birds. This is why the formalisms in [41] are
generally much stronger than the ones in [43].

e Finally, [42] defineshonmonotonic probabilistic logics under variable-strength inheritance witr-o
riding, which are a general approach to nonmonotonic probabilistic reasomimich subsumes the
approaches in [43] and [41] as special cases. Roughly, theselifemmalso allow for handlingtrict
logical knowledge default logical knowledgeand default purely probabilistic knowledgéut the
inheritance of purely probabilistic knowledge is controlled by a strengtft, 1]. For A=0 (resp.,
A=1), these formalisms coincide with the weak (resp., strong) nhonmonotoniciofé3] (resp.,
[41]). For example, suppose that we have the default probabilistic lkenloe “generally, yellow ob-
jects are easy to see with a probability betweé&and0.9”. In nonmonotonic probabilistic reasoning
of strength0 (resp.,0.5 and 1), we then conclude “generally, yellow birds are easy to see with a
probability in[0, 1] (resp.,[0.6, 1] and[0.8,0.9])".
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To date, however, there have been no works on the computationat@spaonmonotonic probabilistic
logics under variable-strength inheritance with overriding. In partictkeate have been no implemen-
tations, neither of these unifying formalisms, nor of the special cases a@if @wed strong nonmonotonic
probabilistic logics. In this paper, | try to fill this gap. The main contributioresas follows:

¢ | recall the nonmonotonic probabilistic logics under variable-strengthii@mee with overriding pre-
sented in [42], namelyprobabilistic entailment in Systed of strengthA (or z,-entailmen}f and
probabilistic lexicographic entailment of strengih(or lex y-entailmen}. | also provide several new
examples.

e | give a precise picture of the complexity of deciding consistency of stiexignd of computing tight
entailed intervals under,- andlex-entailment. Furthermore, | present an algorithm for deciding
consistency of strength, which is based on a reduction to deciding satisfiability in model-theoretic
probabilistic logic. | also present algorithms for computing tight entailed intervader z- and
lex y-entailment, based on reductions to deciding satisfiability and computing tighallygéntailed
intervals in model-theoretic probabilistic logic.

e | describe the systemMPROBLOG, which includes a prototype implementation of the above algo-
rithms. Deciding satisfiability (resp., computing tight logically entailed intervals) idehtheoretic
probabilistic logic are reduced to deciding the solvability of a system of lineastcaints (resp.,
solving linear programs), which is done by the linear programming solvesdlipe 5.1” [9].

The rest of this paper is organized as follows. Section 2 gives somédatpreliminaries. In Section 3,
we recall the notions ofy-andlex \-entailment, and their semantic properties. Section 4 provides further
examples to illustrate the notions of- andlex y-entailment. Section 5 describes the complexity results and
the algorithms for deciding consistency of strengtAnd computing tight entailed intervals undgr and
lexy-entailment. In Section 6, we present the systemPROBLOG. Section 7 summarizes the main results
and gives an outlook on future research.

2 Preliminaries

In this section, we recall probabilistic knowledge bases and the main dsrfeeqm model-theoretic proba-
bilistic logic. Furthermore, we define the monotonic notion of logical entailmestrefigth\ € [0, 1].

2.1 Probabilistic Knowledge Bases

We now recall probabilistic knowledge bases. We start by defining logmastraints and probabilistic
formulas, which are interpreted by probability distributions over a set s§ipte worlds.

We assume a set tfasic eventsd = {p;,...,p,} with n>1. We usel and T to denotefalseand
true, respectively. We defineventsby induction as follows. Every element éfu{L, T} is an event.
If » andi are events, then alsep and (¢ A v). A conditional evenis an expression of the form|¢,
wheret) and¢ are events. Aonditional constrainhas the form(y|¢)[l, u|, wherey) and¢ are events, and
l,u €0, 1] are reals. We defingrobabilistic formulasy induction as follows. Every conditional constraint
is a probabilistic formula. I# andG are probabilistic formulas, then alsd and(F AG). We use F' V G)
and(F < G) to abbreviate-(—F' A =G) and—(—F A G), respectively, wheré andG are either two events
or two probabilistic formulas, and adopt the usual conventions to elimina¢afheses. Aogical constraint
is an event of the formp < ¢.
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A world I is a truth assignment to the basic event®ifithat is, a mappind: & — {true, false}),
which is inductively extended to all events as usual (thaf(s,) = false, I(T) = true, I(—¢) = true
iff I(¢) = false, andI(¢ A ) = true iff I(¢) = I(y)) = true). We denote bys the set of all worlds
for ®. A world I satisfiesan even, or I is amodelof ¢, denoted! = ¢, iff I(¢) = true. A probabilistic
interpretation Pr is a probability function o (that is, a mapping’r: Zg — [0, 1] such that allPr (1)
with 7 € Zg sum up to 1). Therobability of an event in Pr, denotedPr(¢), is the sum of allPr(7) such
that/ € Zg andI = ¢. For eventsp andy with Pr(¢) >0, we write Pr(i|¢) to abbreviatePr(¢ A ¢) /
Pr(¢). Thetruth of logical constraints and probabilistic formul&sin Pr, denotedPr |= F, is inductively
defined by: (i)Pr =1y < ¢ iff Pr(y A¢)= Pr(¢), (i) Pr=|¢)[l,u] iff Pr(¢)=0or Pr(y|¢)€]l,u],
(i) Pr=~Fiffnot Pr=F,and (iv)Pr = (F A G) iff Prl=F andPr |=G. We sayPr satisfiest, or Pr
is amodelof F, iff Pr = F. It satisfiesa set of logical constraints and probabilistic formufasor Pr is a
modelof F, denotedPr |= F, iff Pris a model of allF' € F. We sayF is satisfiablaff a model of F exists.
A conditional constrain€C = (¢|¢)[l, u] is alogical consequencef F, denotedF |= C, iff each model of
F is also a model of”. It is atight logical consequencef F, denotedF |=.: C, iff | = inf Pr(i|¢)
(resp.,u = sup Pr(1|¢)) subject to all model$’r of F with Pr(¢)>0. Here, we definé=1 andu =0,
when no such moddPr exists.

A probabilistic knowledge bask&B = (L, P) consists of a finite set of logical constrairitsand a finite
set of conditional constraint8. We sayKB is satisfiableiff I U P is satisfiable. A conditional constraint
C'is alogical consequencef KB, denotedkB |~ C, iff LU P|=C. Itis atight logical consequencef
KB, denotedKB |=4ign: C, iff LU P |=4gn: C. The following example illustrates the syntactic notion of a
probabilistic knowledge base.

Example 2.1 The strict logical knowledge “all penguins are birds”, the default |lddicawledge “gener-
ally, birds have legs”, and the default purely probabilistic knowledgaégally, yellow objects are easy to
see with a probability between 0.8 and 0.9”, “generally, birds fly with a fdoihibaof at least 0.9”, and “gen-
erally, penguins fly with a probability of at most 0.1” can be expressedédpithbabilistic knowledge base
KB = (L, P),whereL = {bird < penguin} andP = {(legs|bird)[1, 1], (see|yellow)[.8, .9], (fly|bird)|.9,
1], (fly|penguin)[0, .1]}.

2.2 Logical Entailment of Strength A

As a first step towardsy - andlex y-entailment in Section 3, we now define the monotonic noticlogital
entailment of strength\ € [0, 1]. It already realizes an inheritance of default purely probabilistic knowl-
edge controlled by. Intuitively, the larger the strengtk, the stronger is the inheritance of default purely
probabilistic knowledge, and thus the stronger is the notion of logical entdilofietrength) (see Exam-
ple 2.2). In the extreme case=0 (resp.,A = 1), default purely probabilistic knowledge is not inherited at
all (resp., fully inherited). But, in contrast t - andlex -entailment, logical entailment of strengthhas

no overriding mechanism, and this often produloesl inconsistencieésee Example 2.2).

In the sequel, we usé = A to abbreviate the probabilistic formuta(¢|T)[0,0] A (¢|T)[A, 1]. In-
formally, for any probabilistic interpretatiof’r that satisfiesp = A, it holds that Pr(¢) >0, if A=0,
and Pr(¢) > A, otherwise. We define the notion &fgical entailment of strength € [0, 1] (or simply
A-logical entailmeny as follows. A conditional constraint’ = (v)|¢)[l, u] is a A-logical consequencef
KB = (L, P), denotedKB |=* C, iff LUPU{¢=A}|=C. Itis atight \-logical consequencef KB,
denotedKB |=}, ., C, iff LU P U {¢3= A} [F=ign: C.

As shown by the following example, the notion ®logical entailment already realizes an inheritance
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of default purely probabilistic knowledge controlled hyIntuitively, the larger the strengtk, the stronger
are the tight\-logical consequences)|¢)|[l, ] of KB influenced by(y)'|¢')[l',v'] € P with L = ¢/ < ¢.

Example2.2 Let KB be as in Example 2.1. Some tight logical consequences of strengthong0,
0.2, 0.4, 0.6, 0.8, and1 are shown in Table 1 (less desired intervals are bold). We observe aitanbe
of default logical knowledge along subclass relationships, which is gmtgnt from\. E.g., the default
logical property of having legs is inherited from birds down to yellow birBarthermore, we observe an
inheritance of default purely probabilistic knowledge along subclastioe$hips, which depends on the
strengthA. E.g., being easy to see with a probability[ig, .9] is inherited from yellow objects down to
yellow birds, but the new intervals aje 1], [0, 1], [.5, 1], [.67, 1], [.75, 1], and[.8, .9], respectively. Finally,
for A >1/9, there are local inconsistencies related to penguins (as being able to flg pithability of at
least0.9 is inherited from birds down to penguins, and there it is inconsistent witlgkeie to fly with a
probability of at mosD.1).

Table 1: Some tighh-logical consequences.
A=0 A=02 A=04 X=06 A=08 X=1

legs|bird 1,1 [1,1] [1,1] [1,1] 1,1 [1,1]
legs|yellowAbird [1,1] [1,1] [1,1] [1,1] [1,1] [1,1]
legs|penguin [1,1] [1,0] [1,0] [1,0] 1,0] [1,0]
legs|yellowApenguin  [1,1] [1,0] [1,0] [1,0] [1,0] [1,0]
Aylbird 91 9,1 9,1 9.1 91 [.9,1]
flylyellowNbird [0,1] [.5,1]  [75,1] [.83,1] [.88,1] [.9,1]
fly|penguin [0,.1  [1,0] [1,0] [1,0] [1,0] [1,0]
flylyellowApenguin [0, 1] [1,0] [1,0] [1,0] [1,0] [1,0]
see|yellow [.8,.9] [8,9 [8.9 [8.9 [8.9 [8,.9]
see|yellowAbird [0, 1] [0, 1] [.5,1] [.67,1] [.75,1] [.8,.9]
see|yellowApenguin [0, 1] [1,0] [1,0] [1,0] [1,0] [1,0]

3 Nonmonotonic Probabilistic Logics

In this section, we recall the notions of- andlex-entailment from [42]. They are parameterized through
avaluel € [0, 1] that describes thgtrengthof the inheritance of default purely probabilistic knowledge.

3.1 Consistency of Strength A

We first describe the notion of consistency of strengttor simply A-consistency), whera € [0, 1], for
probabilistic knowledge basésB = (L, P).

A probabilistic interpretatiorPr A-verifies(resp. \-falsifieg a conditional constraint)|¢)[l, u] iff Pr
satisfies(i|¢)[l, u] (resp.,—(¢|®)[l,u]) and ¢ = A. Recall thatPr satisfies(y)|¢)[l, u] iff Pr(¢)=0 or
Pr(vy|¢) € [l,u], and thusPr A-verifies (resp.A-falsifies) (¢¥|@)[l, u] iff Pr=¢ =X and Pr(¢|¢) € [1, u)
(resp.,Pr(v|¢) € [l,u]). A set of conditional constraint® \-toleratesa conditional constraint’ under a
set of logical constraints iff L U P has a model thax-verifiesC. We sayP is underL in A-conflictwith C'
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iff no model of L U P \-verifiesC. A conditional constraint ranking on KB = (L, P) maps each element
of P to a nonnegative integer. I? # (), then we say that is A\-admissiblewith KB iff every P’ C P that
is underL in A-conflict with someC € P contains som&" such thatr (C’) <o (C); if P=1{), theno is
A-admissiblewith KB iff L is satisfiable.

We define the notion oA-consistency as follows. We say thA® is \-consistentff there exists a
conditional constraint ranking on KB that is A\-admissible withKB. Otherwise,KB is A-inconsistent
The following theorem characterizes theonsistency oK B through the existence of an ordered partition
of P.

Theorem 3.1 A probabilistic knowledge bas&B = (L, P) is A-consistent iff (i) is satisfiable and (ii) an
ordered partition(Fp, ..., P) of P exists such that each;, 0 <i <k, is the set of allC € U?:i P;j that

are \-tolerated undet by J%_; P;.

The unique ordered partitiqi®, . . ., P;) of P in Theorem 3.1 is called the -partition of KB = (L, P).
Hence,KB is A-consistent iff (i) is satisfiable and (ii) the,-partition of KB exists. The following exam-
ple shows some,-partitions and a case of)ainconsistent probabilistic knowledge base.

Example 3.2 Let KB = (L, P) be as in Example 2.1. For evek [0, 1/9], thez,-partition of KB is given
by (Py) = (P). For every\ € (1/9, 1], thez-partition of KB is given by( Py, P1) = (P \ {(fly| penguin)|0,
A1}, {(fly|penguin)[0, .1]}). Thus,KB is A-consistent, for all € [0, 1], while the probabilistic knowledge
baseKB = (L, P)= (0, {(a|b)[0,.3], (a|b)[.6,1]}) is A-inconsistent, for ali € [0, 1].

Note that the existence of a conditional constraint rankirmgn a probabilistic knowledge ba$éB that
is \-admissible withK B is also equivalent to the existence of a probability ranking thatasimissible with
KB. Here, probability rankings and theadmissibility of probability rankings with probabilistic knowledge
bases are defined as follows pfobability rankingx maps each probabilistic interpretationbnto a mem-
ber of{0,1,...} U {oc} such that:(Pr) =0 for at least one interpretatiafr. It is extended to all logical
constraints and probabilistic formulésas follows. IfF' is satisfiable, ther(F') = min {k(Pr) | Pr = F'};
otherwisex(F') = co. A probability rankingx is A-admissiblewith a probabilistic knowledge badeéB =
(L, P)iff k(—F)=ooforall F € Landk(¢ = \) <ocoands(¢ = AN (¢|)[l, u]) < k(P = AA=(|p)[L, u])
for all (¢|¢)[l, u] € P.

3.2 System Z of Strength A

We next define the notion afy-entailment, where € [0, 1], for A-consistent probabilistic knowledge bases
KB=(L,P). Itis linked to a conditional constraint ranking on KB and a probability ranking:*».
Let (P, ..., ) be thezy-partition of KB. For everyj € {0,...,k}, eachC € P; is assigned the valug
underzy. Then,x** on all probabilistic interpretationBr is defined as follows:

00 if Prt~L
HZA(PT) — 0 if Pr |:LUP
1+ max z,(C) otherwise.
CeP: PrieC

Note that the rankings, andx** are both\-admissible withKB. The ranking<** defines a preference
relation on probabilistic interpretations: For probabilistic interpretatiBnsand Pr’, we sayPr is zy-
preferableto Pr’ iff x*)(Pr)<rx*(Pr’). A model Pr of a set of logical constraints and probabilistic
formulasF is azy-minimal modebf F iff no model of F is z,-preferable taPr.
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Table 2: Some tight),-consequences.

A=0 A=02 A=04 AX=06 A=08 X=1
legs|bird 1,1 L1 L1 L1 (L1 (L]
legs|yellow A\bird [1,1] [1,1] [1,1] [1,1] [1,1] [1,1]
legs|penguin [1,1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
legs|yellowApenguin  [1,1] [0, 1] [0, 1] 0, 1] [0, 1] [0, 1]
fly|bird 9,1 [9,1]  [9,1] [9,1] [9,1] [.9,1]
flylyellowAbird 0,1  [.5,1]  [75,1] [.83,1] [.88,1] [.9,1]
fly|penguin [0,.1]  [0,.1] [0, .1] [0, .1] [0,.1] [0,.1]
flylyellowApenguin ~ [0,1]  [0,.5] [0,.25] [0,.17] [0,.13] [O,.1]
see|yellow [.8,.9] [8,9] [8,.9 [8.9 [8,.9 [8,.9
see|yellowAbird [0, 1] [0, 1] [.5,1] [.67,1] [.75,1] [.8,.9]
see|yellowApenguin [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

We are now ready to define the notion of-entailmentas follows. A conditional constraint’ =
(¢|9)[l, u] is azy-consequencef KB, denotedKB |~ “*C, iff every zy-minimal model of L U {¢ = A}
satisfiesC'. It is atight z)-consequencef KB, denotedKB |kvtZ e O, iff 1 = inf Pr(¢y|¢) (resp.,u =
sup Pr(1|¢)) subject to allzy-minimal modelsPr of LU {¢ = A}.

The following example shows that the notionzgfentailment realizes an inheritance of default logical
and default purely probabilistic properties from classes to non-excgpsobclasses, where the inheritance
of default purely probabilistic properties depends on the streagtiBut z)-entailment does not inherit
properties from classes to subclasses that are exceptional relative¢oosher property (and thus, like its
classical counterpart, shows the problenindferitance blockinyy

Example 3.3 Consider again the probabilistic knowledge b&se = (L, P) given in Example 2.1. Some
tight z)-consequences, wheke= {0,0.2,0.4,0.6, 0.8, 1}, are shown in Table 2. Observe that, in contrast to
Table 1, there are no empty intervals$,’0]”, that is, no local inconsistencies. Then, observe that the default
logical property of having legs is inherited from the class of birds dowretimy birds, independently from

A, while the default purely probabilistic property of being easy to see witlolgtility betweer).8 and0.9

is also inherited from the class of yellow objects to yellow birds, but this is obatt by X. Furthermore, for
every strength\ > 1/9, these properties are not inherited down to the exceptional classeagfips and
yellow penguins, respectively. Note that for every strengthl/9, the default logical property of having
legs is inherited down to penguins, since there is only some weak inherithdeaalt purely probabilistic
knowledge, and thus no conflict between the abilities to fly of birds andypesg

3.3 Lexicographic Entailment of Strength A

We now describe the notion &z -entailment, where\ € [0, 1], for A-consistent probabilistic knowledge
baseskB = (L, P).

We use they-partition (P, . . ., P) of KB to define a lexicographic preference relation on probabilis-
tic interpretations: For probabilistic interpretatioRs and Pr’, we sayPr is lex,-preferableto Pr’ iff
someic{0, ..., k} exists such tha{ CeP; | Pri=C}| > |[{CeP;| Pr' =C}| and|{CeP; | Pri=C}| =
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Table 3: Some tighlexy-consequences.

A=0 A=02 X=04 X=06 A=08 A=1
legs|bird [1,1] [1,1] [1,1] [1,1] [1,1] [1,1]
legs|yellowAbird [1,1] [1,1] [1,1] [1,1] [1,1] [1,1]
legs|penguin [1,1] [1,1] [1,1] [1,1] [1,1] [1,1]
legs|yellowApenguin  [1,1] [1,1] [1,1] [1,1] [1,1] [1,1]
fly|bird 9,1 [9,1  [9,1] [9,1] [9,1] [9,1]
flylyellowAbird 0,1  [5,1]  [.75,1] [.83,1] [.88,1] [.9,1]
fly|penguin [0,.1 [o,.1]  [o,.1]  [0,.1]  [0,.1] [O,.1]
fly|lyellowApenguin  [0,1]  [0,.5] [0,.25] [0,.17] [0,.13] [O,.1]
see|yellow [.8,.9] [8,.9 [8.9 [8.9 [8.9 [8,.9]
see|yellowAbird [0, 1] [0, 1] [.5,1]  [.67,1] [.75,1] [.8,.9]
see|yellow Apenguin [0, 1] [0, 1] [.5,1]  [67,1] [75,1] [.8,.9]

{CeP;| Pr'|=C}|forall i<j<k. A model Pr of a set of logical constraints and probabilistic formufas
is alexy-minimal modebf F iff no model of F is lex \-preferable taPr.

We define the notion dfex ,-entailmentas follows. A conditional constrairit = (¢|¢)[l, u| is alex-
consequencef KB, denotedk B | “"*C, iff every leay-minimal model ofL U {¢ = A} satisfie<. Itis a
tightlex \-consequencef KB, denotedk B Hv,ff;hﬁf C, iff I = inf Pr(¢|¢) (resp.,u= sup Pr(1|¢)) subject
to all lexy-minimal modelsPr of L U {¢ = A}. Note that the notion dfex y-entailment can also be defined
in terms of a unique probability ranking féfB.

The following example shows that the notion/ef: y-entailment realizes an inheritance of default prop-

erties, without showing the problem of inheritance blocking.

Example 3.4 Consider again the probabilistic knowledge b&se = (L, P) given in Example 2.1. Some
tight lexz \-consequences, whepec {0,0.2,0.4,0.6,0.8, 1}, are shown in Table 3. In particular, for every
strength\ € [0, 1], the default logical property of having legs is inherited from the classiroskio the
exceptional subclass of penguins, while the default purely probabilisijmepty of being easy to see with a
probability betweei).8 and0.9 is also inherited from the class of yellow objects to the exceptional subclass
of yellow penguins.

3.4 Semantic Properties

We finally briefly summarize some semantic properties-¢dgical, z,-, and/ex-entailment. More pre-
cisely, we describe the general nonmonotonic properties of the formalisengglationships between the
formalisms, and their probabilistic and classical special cases.

As for general nonmonotonic propertiéslogical, z-, andlex »-entailment all satisfy probabilistic ver-
sions of the postulateRight WeakeningReflexivity Left Logical EquivalengeCut, Cautious Monotonicity
andOr proposed by Kraus et al. [32], which are commonly regarded as bemigydarly desirable for any
reasonable notion of nonmonotonic entailment [42]. All three notions atssfysthe property oRational
Monotonicity[32], which describes a restricted form of monotony and allows to igner&in kinds of
irrelevant knowledge.
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I
= -------- [T T |~ Ry ————-- = R,

“ Ry is subset ofRy”

R —— » R

“R; is special case aR>”

Figure 1: Relationships between probabilistic and ordinary formalisms.

Concerning the relationships between the three formalisahsgical entailment is stronger than both
lex)- and zy-entailment. Moreoveriex \-entailment is stronger thag,-entailment. These relationships
between\-logical, z)-, andlex y-entailment are illustrated in Fig. 1, upper part. In generdggical entail-
ment is strictly stronger thakx \-entailment, which in turn is strictly stronger thagrentailment. However,
in the special case whet= T, the three notions of-logical, z-, andiex \-entailment of(v)|$)[l, u] from
A-consistent B = (L, P) all coincide. Furthermore, also whenJ P U {¢ = A} is satisfiable, the three
notions ofA-logical, z)-, andlex y-entailment of(y)|¢)[l, u] from A-consistent B = (L, P) all coincide.

Some probabilistic special cases are summarized as followsA £ay, the notion of\-logical entail-
ment from KB coincides with standard logical entailment frokiiB. For A =0 (resp.,A = 1), the notions
of z)- andlex,-entailment coincide with weak (resp., strong) probabilisticand lez-entailment intro-
duced in [43] (resp., [41]). Furthermore, far=0, the notion of\-consistency coincides with the no-
tion of g-coherence (see, e.g., [12]). As for classical speciakcageandiex-entailment of(5|«)[1, 1]
from A-consistent probabilistic knowledge bases of the fdkild = (L, P), where P = {(v;|¢;)[1, 1] |
ie{l,...,n}}, coincide with the classical notions of Pearl’s entailment in Systeand Lehmann’s lex-
icographic entailment of the defauit«— o from the default counterpart dfB. Moreover, A-logical en-
tailment of (5|«)[1, 1] from suchKB coincides with propositional logical entailment 8&= « from the
propositional counterpart B (see Fig. 1). Furthermore, the notionofconsistency for suclk'B coin-
cides with the notion of- (or alsop-) consistency for the default counterpart/6B. Finally, notice also
that for suchK B, the notion ofz-partition of KB does not depend ok

4 Further Examples

In this section, we provide some other examples. The first one deals wétbniag from statistical knowl-
edge and degrees of belief, whefe andlex-entailment show a similar behavior as reference-class rea-
soning [33, 48] in a number of uncontroversial examples, but also awvaity drawbacks of reference-class
reasoning. More precisely, they can handle complex scenarios andpavely probabilistic subjective
knowledge as input. Furthermore, conclusions are drawn in a globafrasayall the available knowledge

as a whole. See [41] for further details.

Example 4.1 Suppose the statistical knowledge “all penguins are birds”, “betweétn &8d 95% of all
birds fly”, “at most 5% of all penguins fly”, and “at least 95% of all y&llobjects are easy to see”. More-
over, assume we believe “Sam is a yellow penguin”. What do we then amelbout Sam’s property
of being easy to see? Under reference-class reasoning, which ishenergcfor dealing with statistical
knowledge and degrees of belief, we conclude “Sam is easy to see witlhhability of at least 0.95”. This
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is exactly what we obtain usiniyz:-entailment. The above statistical knowledge can be represented by
the probabilistic knowledge bagéB = (L, P), whereL = {bird < penguin} and P = {(fly|bird)].9, .95],
(fly|penguin)|0, .05], (see|yellow)[.95,1]}. It is then not difficult to verify thatXB is 1-consistent, and
that(see|yellow A penguin)[0.95, 1] is a tight conclusion froniB underlez; -entailment. Some other tight
intervals forsee|yellow A penguin from KB underi-logical, z)-, andiex ,-entailment are shown in Table 4.

Table 4: Tight intervals fogee|yellow Apenguin.
A=0 A=02 AX=04 AX=06 AX=08 X=1

tight A-logical entailment [0,1]  [1,0] [1,0] [1,0] [1,0] [1,0]
tight lexy-entailment [0,1] [75,1] [.88,1] [.92,1] [.94,1] [.95,1]
tight z)-entailment [0,1]  [0,1] [0, 1] [0, 1] [0, 1] [0, 1]

The next example is from the area of medical diagnosis [31].

Example 4.2 In a hospital, physicians have to diagnose whether patients with acute atadipaimare suf-
fering from appendicitis or not. Diagnosing appendicitis is a difficult taisicesa lot of different symptoms
(such as, for example, high temperature, a high rate of leucocytes, vondtidgvarious types of pains)
can indicate appendicitis, but often only the joint occurrence of segkthése symptoms reliably supports
the diagnosis. Here, we only consider four possible symptoms of apjitenipp), namely a high rate of
leucocytegleucahigh) and the following three different types of pain: rectal paéc_pain), pain when re-
leased pain_rel), and rebound tenderne@eb tende). Thus, our view on this area is a very simplified one.
Let our knowledge about the relationships betwapp leucahigh, and the three types of pain be expressed
by the following probabilistic knowledge ba$éB = (L, P), whereL = () and P is given as follows:

P = {(reb_tender| pain_rel)[.70,.75], (reb_tender| leucahigh)[.70, .75],
(app| rec_pain A pain.rel)[.70, .75], (app| rec_pain A reb_tendep|[.65, .70],
(app| pain_rel A reb_tenderA leucahigh)].80, .85]} .

Suppose Judy is a patient showing the symptteasa high andpain.rel. Which is the probability that
Judy has appendicitis? Which is the probability that she has appendicitis thigeshe also feels rectal
pain? Some tight intervals fapp/leucahigh A pain_rel andapp|leucahighA pain_rel A rec_painfrom KB
under\-logical, z,-, andlex y-entailment are shown in Tables 5 and 6, respectively.

Table 5: Tight intervals foappleucahigh A pain_rel.
A=0 A=02 AX=04 X=06 X=08 =1

tight A-logical entailment [0,1] [.08,.99] [.38,.93] [48,.91] [.53,.9] [.56,.9]
tight lex:y-entailment (0,1] [.08,.99] [.38,.93] [48,.91] [.53,.9] [.56,.9]
tight z-entailment [0,1] [.08,.99] [.38,.93] [48,.91] [.53,.9] [.56,.9]
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Table 6: Tight intervals foapp/leucahighApain_rel Arec_pain.

A=0 A=02 X=04 A=06 X=08 A=1
tight A-logical entailment [0,1]  [0,1]  [41,1] [.57,1] [.66,.92] [1,0]
tight lexy-entailment 0,1] [0,1]  [41,1] [57,1] [.66,.92] [.7,.75]
tight z)-entailment 0,1 [0,1]  [41,1] [57,1] [.66,.92] [0,1]

)

5 Algorithmsand Complexity

In this section, we provide algorithms for solving the main computational problemsnmonotonic prob-
abilistic logics under variable-strength inheritance with overriding, and me @ precise picture of the
complexity of these problems.

5.1 Problem Statements

The main decision and optimization problems of nonmonotonic probabilistic logaer wariable-strength
inheritance with overriding are summarized as follows:

ConsISTENCY. Given a probabilistic knowledge ba&& = (L, P) and a strength € [0, 1], decide whether
KB is A-consistent.

TIGHT s-CONSEQUENCE Given a\-consistent probabilistic knowledge ba&®& = (L, P), a conditional
eventS|«, and a strength € [0, 1], computd, u € [0, 1] such thatk B |~** (5]a)[l, u], for some fixed
semantics € {z, lex}.

For the complexity results below, we assume that the strekgtf0, 1] and all numbers in probabilistic
knowledge baseKB = (L, P) are rational.

5.2 Algorithms

Algorithm consistency in Fig. 2 decides whether a given probabilistic knowledge b&#e= (L, P) is
A-consistent for a given strengthe [0, 1]. If KB is A-consistent, then the algorithm also returns the
partition of KB. Itis a variable-strength generalization of an algorithm for decidingheence by Biazzo
etal. [11], which in turn is a probabilistic generalization of an algorithm &midinge-consistency in default
reasoning by Goldszmidt and Pearl [25]. The algorittumsistency works as follows. IfP = (), then Step 1
returns the empty partitio€), if L is satisfiable; andil, otherwise. IfP # (), then Steps 2-7 try to compute
the z)-partition (P, . .., P;) of KB, and Step 8 return&d, . . ., Py), if this succeeds; andil, otherwise.
Algorithms tight-s-consequence, wheres =z ands = lex, in Figs. 3 and 4 compute tight intervals for
a given conditional event|a underz,- andlex-entailment, respectively, and a given strength [0, 1]
from a given\-consistent probabilistic knowledge bak& = (L, P). They are variable-strength general-
izations and improvements of algorithms in [43] for computing tight entailed intewrader weak proba-
bilistic z- and lexz-entailment, and are also related to algorithms for inference in Sy&té47] and lexi-
cographic inference [8], respectively. Algorithtight-s-consequence, wheres =z (resp.,s = lex), works
as follows. If LU{«a =} is unsatisfiable, thefi, 0] is returned in Step 1. Otherwise, we use Theo-
rem 5.1 below saying that then a B (KB) C 2", s € {2),lex)}, exists such thak B |~° (B|a)[l,u]
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Algorithm consistency

Input: probabilistic knowledge bas€B = (L, P) and strength\ € [0, 1].
Output: zy-partition of KB, if KB is A\-consistentnil, otherwise.

until R=0 or D[i]=0;
if R=0thenreturn (DI[0],..., D[:]) elsereturn nil.

1. if P=0thenif L is satisfiablehen return () elsereturn nil;
2. R:=P;i:=-1;

3. repeat

4, =1+ 1;

5. D[] =={(|o)[l,u] € R| LURU{¢ = \} is satisfiabl;
6. R:=R\DJ]

7.

8.

Figure 2: Algorithmconsistency.

iff LUHU{a=\}|E=(Bla)(l,u] forall HeD:(KB). In this case, we computBs (KB) along thez,-
partition of KB by binary search in Steps 2—6 (resp., 2—14), and the requested tigivalnte Step 7
(resp., Steps 15-19). In particulaight-lex-consequence computesD? (KB) stepwise along the compo-
nentspPy, ..., Py of the z)-partition (P, . . ., P;) of KB: Keeping track of the already computed parts of
the members oD, (KB), a binary search is done for eveRy.

ForG, H C P, we sayG is zy-preferableto H iff somei € {0, ..., k} exists such thab; CG, P, £ H,
andP; C G andP; C H for all i < j < k. We sayG is lex\-preferableto H iff somei € {0,...,k} exists
such thatG N ;| > |H N P;| and|G N Pj| = |[H N P;| for all i < j < k. ForD C2F ands € {z), lex,},
we sayG is s-minimalin D iff G € D and noH € D is s-preferable ta-.

Theorem 5.1 Let KB = (L, P) be A-consistent, and lef|a be a conditional event such thatu {a = A}
is satisfiable. Let € {z), lex,}, and letD: (KB) be the set of alk-minimal elements iRH C P|LUH U
{a= A} is satisfiablg. Then,l (resp.,u) such thatKB |~ (Bla)[l, u] is given byl = min ¢ (resp.,
u = max d) subjecttol U H U {a = A} |=tignt (B|a)[c, d] and H € D, (KB).

Proof (sketch). The statement of the theorem follows from the observation that a probabiligipretation
Pris ans-minimal model ofL U {« = A} iff (i) Prisamodel ofLU{a =} and (i){F € P|Pri=F}is
ans-minimal element in the set of alf C P such thatL U H U {a = A} is satisfiable. The latter is in turn
equivalent toPr being a model of. U H U {a = A} for someH € D% (KB). O

Algorithmsconsistency, tight-z-consequence, andtight-lex-consequence are based on reductions to the
following decision and optimization problems: (i) given a probabilistic knowéedgseKB = (L, P) and
an eventy, decide whetheiKB has a modelPr such thatPr(«) > 0; and (i) given KB = (L, P) and a
conditional evenps|«, compute the tight interval fof|a. under logical entailment fronk'B. Some upper
bounds for the number of tasks (i) and (ii) to be solved in Algorithimssistency, tight-z-consequence,
andtight-lex-consequence are given byO(| P|?), O(In(|P|)), andO(2!”1), respectively. The task (i) can be
reduced to deciding whether a system of linear constraints is solvable,(ihikn be reduced to computing
the optimal values of two linear programs. These two well-known resultselsgecially [27, 20, 2]) are
summarized in the following theorem.
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Algorithm tight-z-consequence

Input: A-consistent probabilistic knowledge ba&&=(L, P), conditional event|a,
and strength\ € [0, 1]. Thez,-partition of KB is denoted by Py, . .., Py), k> —1.

Output: interval[l, u] C [0, 1] such thatXB vai;ht (Bla)[l, u).

1. if LU{a = A} is unsatisfiablehen return [1,0];

2. if LUPU{a = \} is satisfiablehen (m,n) := (k, k) else (m,n) := (-1, k—1);
3. whilem < n dobegin

4.  l:=[(m+n)/2];

5 ifLUPRU--- UPU{a= \}is satisfiablehen m := [l elsen := -1

6. end;

7. computd,u € [0,1] suchthatl U PyU - - U P, U{a = A} |Evighe (Blo) [, ul;
8. return [l, u).

Figure 3: Algorithmtight-z-consequence.

Algorithm tight-lex-consequence

Input: A-consistent probabilistic knowledge ba&&—=(L, P), conditional event|a,
and strength\ € [0, 1]. Thez,-partition of KB is denoted by Fy, ..., Py), k> —1.

Output: interval [, u] C [0, 1] such thatk B |~ “** (8]a)][l, u).

tight

1. if Lu{a = A} is unsatisfiabléhen return [1,0];

2. H:={0};

3. for j := k downto 0 do begin

4. H :={P;jUH|HecH, LUP;UHU/{«a:>\}is satisfiablé;

5.  if H'#0then H := H elsebegin

6. (m,n):= (0>|Pj|_1);

7. while m < n do begin

8. l:=[(m+n)/2],

9. H' :={GUH |G CP;, |G|=1, HeH, LUGUHU{a = \} is satisfiabl¢;
10. if ' A0 thenm :=lésen:=1-1
11. end;
12. H:={GUH |G CP;, |G|=m, HeH, LUGUHU{a = \} is satisfiablé
13.  end
14. end;

15. (I,u) := (1,0);

16. for each H € H do begin

17. compute, de(0, 1] such thatl U H U {a = A} |E=vighe (8o [c, d;
18.  (l,u) := (min(l, ¢), max(u,d))

19. end;

20. return [l, u).

Figure 4: Algorithmtight-lex-consequence.
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Theorem 5.2 Let KB = (L, P) be a probabilistic knowledge base, anddet3 be events. LeR ={I € 7y |
I=L}. Let LC denote the system of linear constraints in Fig. 5 over the variahlésc R). Then, (a)
LU P has a modelPr such thatPr(«) >0 iff LC is solvable. (b) IfL U P has a modelPr such that
Pr(a) >0, thenl (resp.,u) such thatl U P |= g (B]cv) [, u] is given by the optimal value of the following
linear program over the variableg. (r € R):

minimize (resp., maximize), .p ., yr SubjecttoLC.

ZTERJ}:ﬁw/\qﬁ —lyr + ETER,T|:1/)/\¢ (l_l) yr 20 (for all (¢|¢) [l7 u] ep 1> 0)
ZrER,rl:m/;/\d) uyr + ZTGR,T):w/\gZ) (u_l) Yr =0 (fOf all (w‘(b) [lv u] € P, u < 1)

ZréR,ﬂ:a yr=1
y >0 (forallreR)

Figure 5: System of linear constrairit€.

5.3 Complexity

We now analyze the complexity of the above decision and optimization problemrdfbriefly recall the
complexity classes that occur in our results. We assume some basic knewlsoigt the complexity classes
P and NP; see especially [22, 30, 45] for further background. EssEN' contains all decision problems
that can be solved in deterministic polynomial time with an oracleNiBr The relationship between these
complexity classes is described by the following inclusion hierarchy (noteathmclusions are currently
believed to be strict):

P C NP C PNP,

In order to classify problems that compute an output value, rather thas /A\\éeanswer, function classes
have been introduced. In particula® andFPN" are the functional analogs 8fandP™?, respectively.
The following result shows that@\sISTENCYis NP-complete.

Theorem 5.3 CONSISTENCYis NP-complete.

Proof (sketch). Hardness for NP follows from the fact that the special case of decidimgther KB is
0-consistent is NP-complete [43]. Membership in NP can be proved byispdiat guessing and verifying
a conditional constraint ranking on KB that is \-admissible withK'B can be done in nondeterministic
polynomial time. The line of argumentation for this is similar to the proof of NP-mestijgiof deciding
whetherKB is 0-consistent [43] 0

The next result shows thatHT z- andlez-CoNSEQUENCEareFPNY-complete.

Theorem 5.4 TIGHT s-CONSEQUENCE s € {z, lex}, is FPNP-complete.
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Proof (sketch). Hardness foF PN follows from the fact that the special case of computing the tight interval
for a giveng| o underzg- andlezq-entailment from a giverk B is FPNT-complete [43]. As for Membership

in FPNP | computing the tight interval fgB|o underzy - andlez y-entailment fromkKB = (L, P) can be done

in FPNP by a variant of Algorithntigh-entailment-opt in [40]. Rather than checking the existence of some
model Pr of LU P with Pr(«) >0, we check the existence of son c D: (KB) (see Section 5.2) and
some modePr of L U P’ with Pr |=a = \. The proof of this is similar to the proof &P -membership

of computing the tight interval fof|a underzy- andlexq-entailment fromkB [43]. O

6 The System NMPROBLOG

The main components of the systaimmPROBLOGare the main window, as well as one window each for (i)
checking satisfiability, (ii) checking-consistency, (iii) computing the,-partition (see Fig. 6), and (iv) com-
puting tight entailed intervals for any conditional event undidogical, z\-, lex -, andp,-entailment (see
Fig. 7), for any probabilistic knowledge ba&& = (L, P) and any strength € {i/100|i € {0,...,100}}.
Here,p)-entailmentis a probabilistic generalization of entailment in SystBrof strength\ € [0, 1], which
coincides withg-coherent entailmenfsee, e.g., [12]) for\=0. The above restriction of the available
strengths\ allows for a more comfortable use BMPROBLOG via its graphical user interface (GUI). Note
that the entailment relation and the strengtthat are actually used in a concrete application naturally de-
pend on the desired entailment behavior. They may be chosen after saimg wé8h NMPROBLOG. The
systemMNMPROBLOGIS written in C, and uses the linear programming solversitve 5.1” [9] for deciding
the solvability of systems of linear constraints and for computing the optimalvaluieear programs. Its
GUI has been built using “glade 2.6".

NMPROBLOG loads from a file with suffix “.tax” a set of statements of one of the followingrs: (i)
p=1, wherep is a nonempty string, which declareasT, (ii) p =0, wherep is a nonempty string, which
declare as_L, (iii) p <1, wherep is a nonempty string, which declargss a basic event, and (iv) > ¢,
wherey) and¢ are events (in which™, “ &”, and “#” encode—, A, andV, respectively), which encodes
that ¢ implies+. Furthermore, it then loads from a file with suffix “.prb” a set of statemehtheform
“ ¢ I u”, wherey andg are events as above, ahdndu are real numbers. Such a statement encodes the
conditional constrainty)|¢)|l, u]. Note that every basic event in the “.prb”-file and in queries (window for
computing tight entailed intervals; see Fig. 7) must be declared in the “.tax"-file

Example 6.1 Consider again the probabilistic knowledge b&3e= (L, P) of Example 2.1. The “.tax"-file
contains the statements> bird, 1 > penguin, 1 > fly, 1 > legs, 1 > see, 1 > yellow, andbird > penguin,

which declare the basic events KB and encode the logical constraints/in The “.prb”-file contains the
statementsegs bird 1.0 1.0, see yellow 0.8 0.9, fly bird 0.9 1.0, andfly penguin 0.0 0.1, which encode
the conditional constraints if?. After reading the “.tax”- and the “.prb”-fleNMPROBLOG allows the
user to open the window for computing tight consequences in Fig. 7 andripute[l, u| such that, e.g.,

KB |5 (seelyellow A bird)[1, u], whereX = 0.5, which is given byil, u] = [0.6, 1] (see Fig. 7).

Example 6.2 Fig. 8 shows the time used lWMPROBLOG on a chain ofn correlated basic events (which
produces linear optimization problems that consisR’®fvariables andtn — 3 constraints) for checking
satisfiability and\-consistency, as well as computing thepartition and tight entailed intervals undigr
logical, z)-, lex)-, andpy-entailment. Note especially that all the above reasoning tasks can be solved
few minutes, even when large linear optimization problems are generated (384 variables and 53
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" nmproblog <4> |

Compute partition:

Strength:  0.50 & = J

0: (fly|bird)[0.900000,1.000000]

0: (easytosee|yellow)[0.800000,0.900000]
0: (legs|bird)[1.000000,1.000000]

1: (fly|penguin)[0.000000,0.100000]

| Xgancelul [ Y Clear | : &I OK I

Figure 6:Window for computing the:, -partition.

‘. nmproblog <5> |2

Compute tight consequence:
Notion of entailment: Strength:
J logical entailment U z-entailment
0.50 ] J
= lex-entailment _ p-entailment
Query (conditional event): Result (tight entailed interval):
easytosee yellow & bird ‘ ‘0.600000 ‘ ‘1.000000
! ¥ Cancel ‘ .. % Clear All ‘ [ % Clear Besu!tl |. PoK “‘

Figure 7:Window for computing tight entailed intervals.

linear constraints). Note also that computing tight intervals undlegical, z)-, lex -, andpy-entailment
from KB always includes computing thg-partition of KB as a first computation step.

7 Conclusion

I have recalled nonmonotonic probabilistic logics under variable-strenigénitance with overriding, name-

ly, the notions ofz,- andlex -entailment, along with their semantic properties and some new examples. |
have given a precise picture of the complexity of decidigonsistency and of computing tight entailed
intervals under - andlexy-entailment. | have also provided algorithms for these tasks, which ard base
on reductions to the problems of deciding satisfiability and of computing tightdtgientailed intervals in
model-theoretic probabilistic logic. Hence, efficient linear optimization teclesdor reasoning in model-
theoretic probabilistic logic (such as e.g. the very powerful column géaertechniques [29, 28]) can
immediately be applied for reasoning in the presented nonmonotonic probalidgtis under variable-
strength inheritance with overriding.
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360 -
p-entailment
z- and lex-entailment -
300 | consistency and z-partition - i
satisfiability and logical entailment
240
@
o 180 r
E
120
60
O 777777777 1 = 1 |
10 1 12 13 14

number of basic events n

Figure 8:Time used byNMPROBLOGON a chain of: basic events® variables).

| have then presented the syste&imPROBLOG (available atht t p: / / www. kr . t uwi en. ac. at/
staf f/ | ukasi ew nmpr obl og. t ar. gz), which comprises a prototype implementation of the above
algorithms. The system allows for (i) checking the satisfiability of probabilistiovkedge base#B,
(i) checking theA-consistency ofK B, (iii) computing thezy-partition of KB, and (iv) computing tight
entailed intervals fronK B under any among\-logical, lex -, z)-, and py-entailment, for anystrength
Ae{i/100|ie{0,...,100}}. In particular, it thus also allows for probabilistic and default reasoniralin
the special cases oflogical,lex -, z)-, andpy-entailment (summarized in Sections 3.4 and 6).

An interesting topic of future work is to include an implementation of more effidieear optimization
techniques (such as e.g. the very powerful column generation teck@@e28]) intoNMPROBLOG, and
to explore whether there are other techniques for more efficient ortea@able inference in nonmonotonic
probabilistic logics under variable-strength inheritance with overriding, (@sing preprocessing steps along
the lines of [11] and [16]) and to include them inklMPROBLOG. Another topic of future research is
to explore whether similar forms of nonmonotonic probabilistic logics undeabia-strength inheritance
with overriding can be defined for other default reasoning formalismsh(ss e.g. the approach in [6],
which allows for dealing with explicit independence assumptions).
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