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Abstract. In previous work, I have introduced nonmonotonic probabilistic logics under variable-
strength inheritance with overriding. They are formalismsfor probabilistic reasoning from sets of
strict logical, default logical, and default probabilistic sentences, which are parameterized through a
valueλ∈ [0, 1] that describes the strength of the inheritance of default probabilistic knowledge. In
this paper, I continue this line of research. I give a precisepicture of the complexity of deciding con-
sistency of strengthλ and of computing tight consequences of strengthλ. I also present algorithms
for these tasks, which are based on reductions to the standard problems of deciding satisfiability and
of computing tight logical consequences in model-theoretic probabilistic logic. Finally, I describe
the systemNMPROBLOG, which includes a prototype implementation of these algorithms.
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1 Introduction

During the recent decades, reasoning about probabilities has started toplay an important role in artificial
intelligence. In particular, reasoning about interval restrictions for conditional probabilities, also calledcon-
ditional constraints[38], has been a subject of extensive research efforts. Roughly,a conditional constraint
is of the form(ψ|φ)[l, u], whereψ andφ are events, and[l, u] is a subinterval of the unit interval[0, 1].
It encodes that the conditional probability ofψ givenφ lies in [l, u].

An important approach for handling conditional constraints is model-theoretic probabilistic logic, which
has its origin in philosophy and logic, and whose roots can be traced back toalready Boole in 1854 [13].
There is a wide spectrum of formal languages that have been explored inmodel-theoretic probabilistic
logic, ranging from constraints for unconditional and conditional eventsto rich languages that specify linear
inequalities over events (see especially the work by Nilsson [44], Fagin etal. [17], Dubois and Prade et al.
[14, 15], Frisch and Haddawy [19], and the author [37, 38]). The main decision and optimization problems in
model-theoretic probabilistic logic are deciding satisfiability, deciding logical consequence, and computing
tight logically entailed intervals.

For example, a simple collection of conditional constraintsKB may encode thestrict logical knowledge
“all eagles are birds” and “all birds have feathers” as well as thepurely probabilistic knowledge“birds fly
with a probability of at least0.95”. This KB is satisfiable, and some logical consequences in model-theoretic
probabilistic logic fromKB are “all birds have feathers”, “birds fly with a probability of at least0.95”, “all
eagles have feathers”, and “eagles fly with a probability between0 and1”; in fact, these are the tightest
intervals that follow fromKB . That is, we especially cannot conclude anything fromKB about the ability
to fly of eagles.

A closely related research area is default reasoning from conditional knowledge bases, which consist of
a collection of strict statements in classical logic and a collection of defeasible rules, also called defaults.
The former must always hold, while the latter are rules of the kindψ←φ, which read as “generally, ifφ
thenψ.” Such rules may have exceptions, which can be handled in different ways.

The literature contains several different proposals for default reasoning from conditional knowledge
bases and extensive work on its desired properties. The core of theseproperties are the rationality postulates
of SystemP by Kraus, Lehmann, and Magidor [32], which constitute a sound and complete axiom system
for several model-theoretic entailment relations under uncertainty measures on worlds. They characterize
model-theoretic entailment under preferential structures, infinitesimal probabilities, possibility measures,
and world rankings. As shown by Friedman and Halpern [18], many of these uncertainty measures on
worlds are expressible as plausibility measures. See [7, 21] for a survey of the above relationships.

Mainly to solve problems with irrelevant information, the notion of rational closure as a more adventur-
ous notion of entailment was introduced by Lehmann [35]. It is equivalentto entailment in SystemZ by
Pearl [47] and to the least specific possibility entailment by Benferhat et al. [5]. Finally, mainly to solve
problems with property inheritance from classes to exceptional subclasses, some more sophisticated no-
tions of entailment were proposed, including the notion of lexicographic entailment by Lehmann [36] and
Benferhat et al. [4].

For example, a conditional knowledge baseKB may encode thestrict logical knowledge“all ostriches
are birds” and thedefault logical knowledge“generally, birds fly”, “generally, ostriches do not fly”, and
“generally, birds have wings”. Some desirable conclusions fromKB [26] are “generally, birds fly” and
“generally, birds have wings” (which both belong toKB ), “generally, ostriches have wings” (since the
set of all ostriches is a subclass of the set of all birds, and thus ostriches should inherit all properties of
birds), “generally, ostriches do not fly” (since properties of more specific classes should override inherited
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properties of less specific classes), and “generally, red birds fly” (since “red” is not mentioned at all inKB

and thus should be irrelevant to the ability to fly of birds).
There are several works in the literature on probabilistic foundations fordefault reasoning from con-

ditional knowledge bases [1, 46, 12], on combinations of Reiter’s default logic with statistical inference
[34, 49], and on a rich first-order formalism for deriving degrees ofbelief from statistical knowledge includ-
ing default statements [3]. A series of recent papers has proposed combinations of model-theoretic prob-
abilistic reasoning from conditional constraints with default reasoning from conditional knowledge bases,
which are summarized as follows:

• The paper [43] presentsweak nonmonotonic probabilistic logics, which are extensions of probabilistic
logic by defaults as in conditional knowledge bases under Kraus et al.’sSystemP [32], Pearl’s Sys-
temZ [47], and Lehmann’s lexicographic entailment [36]. The new formalisms allow for expressing
in a uniform frameworkstrict logical knowledgeandpurely probabilistic knowledgefrom probabilis-
tic logic, as well asdefault logical knowledgefrom default reasoning from conditional knowledge
bases. For example, consider thestrict logical knowledge“all penguins are birds”, thedefault logical
knowledge“generally, birds have legs” and “generally, birds fly”, and thepurely probabilistic knowl-
edge“penguins fly with a probability of at most0.05”. Clearly, some desired conclusions are “gen-
erally, birds have legs”, “generally, birds fly”, and “penguins fly with aprobability of at most0.05”,
since these sentences are explicitly stated above. Two other desired conclusions are “generally, pen-
guins have legs” (since the property of having legs of birds should be inherited to the subclass of
all penguins) and “generally, red birds fly” (since being red is not mentioned at all and so should be
irrelevant to the ability to fly). In weak nonmonotonic probabilistic logics, we can deal with all the
above sentences. In particular,probabilistic lexicographic entailment[43] also produces all the above
desired conclusions.

• A companion paper [41] introducesstrong nonmonotonic probabilistic logics, which are similar prob-
abilistic generalizations of default reasoning from conditional knowledgebases. They are, however,
quite different from the ones in [43] in that they allow for handlingdefault purely probabilistic knowl-
edge, rather than(strict) purely probabilistic knowledge, in addition to strict logical knowledge and
default logical knowledge. For example, they allow for expressing sentences “generally, birds fly with
a probability of at least0.95” rather than “birds fly with a probability of at least0.95”. Intuitively, the
former means that being able to fly with a probability of at least0.95 should apply to all birds and
all subclasses of birds, as long as this is consistent, while the latter says thatbeing able to fly with
a probability of at least0.95 should only apply to all birds. This is why the formalisms in [41] are
generally much stronger than the ones in [43].

• Finally, [42] definesnonmonotonic probabilistic logics under variable-strength inheritance with over-
riding, which are a general approach to nonmonotonic probabilistic reasoning,which subsumes the
approaches in [43] and [41] as special cases. Roughly, these formalisms also allow for handlingstrict
logical knowledge, default logical knowledge, anddefault purely probabilistic knowledge, but the
inheritance of purely probabilistic knowledge is controlled by a strengthλ∈[0, 1]. Forλ= 0 (resp.,
λ=1), these formalisms coincide with the weak (resp., strong) nonmonotonic onesin [43] (resp.,
[41]). For example, suppose that we have the default probabilistic knowledge “generally, yellow ob-
jects are easy to see with a probability between0.8 and0.9”. In nonmonotonic probabilistic reasoning
of strength0 (resp.,0.5 and1), we then conclude “generally, yellow birds are easy to see with a
probability in[0, 1] (resp.,[0.6, 1] and[0.8, 0.9])”.
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To date, however, there have been no works on the computational aspects of nonmonotonic probabilistic
logics under variable-strength inheritance with overriding. In particular,there have been no implemen-
tations, neither of these unifying formalisms, nor of the special cases of weak and strong nonmonotonic
probabilistic logics. In this paper, I try to fill this gap. The main contributions are as follows:

• I recall the nonmonotonic probabilistic logics under variable-strength inheritance with overriding pre-
sented in [42], namely,probabilistic entailment in SystemZ of strengthλ (or zλ-entailment) and
probabilistic lexicographic entailment of strengthλ (or lexλ-entailment). I also provide several new
examples.

• I give a precise picture of the complexity of deciding consistency of strengthλ and of computing tight
entailed intervals underzλ- and lexλ-entailment. Furthermore, I present an algorithm for deciding
consistency of strengthλ, which is based on a reduction to deciding satisfiability in model-theoretic
probabilistic logic. I also present algorithms for computing tight entailed intervals underzλ- and
lexλ-entailment, based on reductions to deciding satisfiability and computing tight logically entailed
intervals in model-theoretic probabilistic logic.

• I describe the systemNMPROBLOG, which includes a prototype implementation of the above algo-
rithms. Deciding satisfiability (resp., computing tight logically entailed intervals) in model-theoretic
probabilistic logic are reduced to deciding the solvability of a system of linear constraints (resp.,
solving linear programs), which is done by the linear programming solver “lpsolve 5.1” [9].

The rest of this paper is organized as follows. Section 2 gives some technical preliminaries. In Section 3,
we recall the notions ofzλ-andlexλ-entailment, and their semantic properties. Section 4 provides further
examples to illustrate the notions ofzλ- andlexλ-entailment. Section 5 describes the complexity results and
the algorithms for deciding consistency of strengthλ and computing tight entailed intervals underzλ- and
lexλ-entailment. In Section 6, we present the systemNMPROBLOG. Section 7 summarizes the main results
and gives an outlook on future research.

2 Preliminaries

In this section, we recall probabilistic knowledge bases and the main concepts from model-theoretic proba-
bilistic logic. Furthermore, we define the monotonic notion of logical entailment ofstrengthλ∈ [0, 1].

2.1 Probabilistic Knowledge Bases

We now recall probabilistic knowledge bases. We start by defining logicalconstraints and probabilistic
formulas, which are interpreted by probability distributions over a set of possible worlds.

We assume a set ofbasic eventsΦ= {p1, . . . , pn} with n> 1. We use⊥ and⊤ to denotefalseand
true, respectively. We defineeventsby induction as follows. Every element ofΦ∪{⊥,⊤} is an event.
If φ andψ are events, then also¬φ and(φ ∧ ψ). A conditional eventis an expression of the formψ|φ,
whereψ andφ are events. Aconditional constrainthas the form(ψ|φ)[l, u], whereψ andφ are events, and
l, u∈ [0, 1] are reals. We defineprobabilistic formulasby induction as follows. Every conditional constraint
is a probabilistic formula. IfF andG are probabilistic formulas, then also¬F and(F ∧G). We use(F ∨G)
and(F ⇐G) to abbreviate¬(¬F ∧¬G) and¬(¬F ∧G), respectively, whereF andG are either two events
or two probabilistic formulas, and adopt the usual conventions to eliminate parentheses. Alogical constraint
is an event of the formψ⇐φ.
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A world I is a truth assignment to the basic events inΦ (that is, a mappingI : Φ → {true, false}),
which is inductively extended to all events as usual (that is,I(⊥) = false, I(⊤) = true, I(¬φ) = true

iff I(φ) = false, andI(φ ∧ ψ) = true iff I(φ) = I(ψ) = true). We denote byIΦ the set of all worlds
for Φ. A world I satisfiesan eventφ, or I is amodelof φ, denotedI |=φ, iff I(φ) = true. A probabilistic
interpretationPr is a probability function onIΦ (that is, a mappingPr : IΦ → [0, 1] such that allPr(I)
with I ∈IΦ sum up to 1). Theprobabilityof an eventφ in Pr , denotedPr(φ), is the sum of allPr(I) such
that I ∈IΦ andI |=φ. For eventsφ andψ with Pr(φ)> 0, we writePr(ψ|φ) to abbreviatePr(ψ ∧ φ) /
Pr(φ). Thetruth of logical constraints and probabilistic formulasF in Pr , denotedPr |=F , is inductively
defined by: (i)Pr |=ψ⇐φ iff Pr(ψ ∧φ)=Pr(φ), (ii) Pr |=(ψ|φ)[l, u] iff Pr(φ)= 0 or Pr(ψ|φ)∈ [l, u],
(iii) Pr |=¬F iff not Pr |=F , and (iv)Pr |=(F ∧G) iff Pr |=F andPr |=G. We sayPr satisfiesF , orPr

is amodelof F , iff Pr |=F . It satisfiesa set of logical constraints and probabilistic formulasF , or Pr is a
modelof F , denotedPr |=F , iff Pr is a model of allF ∈F . We sayF is satisfiableiff a model ofF exists.
A conditional constraintC = (ψ|φ)[l, u] is a logical consequenceof F , denotedF ||=C, iff each model of
F is also a model ofC. It is a tight logical consequenceof F , denotedF ||=tight C, iff l= inf Pr(ψ|φ)
(resp.,u = supPr(ψ|φ)) subject to all modelsPr of F with Pr(φ)> 0. Here, we definel= 1 andu= 0,
when no such modelPr exists.

A probabilistic knowledge baseKB = (L,P ) consists of a finite set of logical constraintsL and a finite
set of conditional constraintsP . We sayKB is satisfiableiff L∪P is satisfiable. A conditional constraint
C is a logical consequenceof KB , denotedKB ||=C, iff L∪P ||=C. It is a tight logical consequenceof
KB , denotedKB ||=tight C, iff L∪P ||=tight C. The following example illustrates the syntactic notion of a
probabilistic knowledge base.

Example 2.1 The strict logical knowledge “all penguins are birds”, the default logical knowledge “gener-
ally, birds have legs”, and the default purely probabilistic knowledge “generally, yellow objects are easy to
see with a probability between 0.8 and 0.9”, “generally, birds fly with a probability of at least 0.9”, and “gen-
erally, penguins fly with a probability of at most 0.1” can be expressed by the probabilistic knowledge base
KB = (L,P ), whereL = {bird⇐ penguin} andP = {(legs|bird)[1, 1], (see|yellow)[.8, .9], (fly |bird)[.9,
1], (fly |penguin)[0, .1]}.

2.2 Logical Entailment of Strength λ

As a first step towardszλ- andlexλ-entailment in Section 3, we now define the monotonic notion oflogical
entailment of strengthλ∈ [0, 1]. It already realizes an inheritance of default purely probabilistic knowl-
edge controlled byλ. Intuitively, the larger the strengthλ, the stronger is the inheritance of default purely
probabilistic knowledge, and thus the stronger is the notion of logical entailment of strengthλ (see Exam-
ple 2.2). In the extreme caseλ= 0 (resp.,λ= 1), default purely probabilistic knowledge is not inherited at
all (resp., fully inherited). But, in contrast tozλ- andlexλ-entailment, logical entailment of strengthλ has
no overriding mechanism, and this often produceslocal inconsistencies(see Example 2.2).

In the sequel, we useφ<λ to abbreviate the probabilistic formula¬(φ|⊤)[0, 0] ∧ (φ|⊤)[λ, 1]. In-
formally, for any probabilistic interpretationPr that satisfiesφ<λ, it holds thatPr(φ)> 0, if λ= 0,
and Pr(φ)>λ, otherwise. We define the notion oflogical entailment of strengthλ∈ [0, 1] (or simply
λ-logical entailment) as follows. A conditional constraintC = (ψ|φ)[l, u] is a λ-logical consequenceof
KB = (L,P ), denotedKB ||=λC, iff L∪P ∪{φ<λ} ||=C. It is a tight λ-logical consequenceof KB ,
denotedKB ||=λ

tight C, iff L ∪ P ∪ {φ<λ} ||=tight C.
As shown by the following example, the notion ofλ-logical entailment already realizes an inheritance
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of default purely probabilistic knowledge controlled byλ. Intuitively, the larger the strengthλ, the stronger
are the tightλ-logical consequences(ψ|φ)[l, u] of KB influenced by(ψ′|φ′)[l′, u′]∈P with L |= φ′⇐φ.

Example 2.2 Let KB be as in Example 2.1. Some tight logical consequences of strengthλ among0,
0.2, 0.4, 0.6, 0.8, and1 are shown in Table 1 (less desired intervals are bold). We observe an inheritance
of default logical knowledge along subclass relationships, which is independent fromλ. E.g., the default
logical property of having legs is inherited from birds down to yellow birds.Furthermore, we observe an
inheritance of default purely probabilistic knowledge along subclass relationships, which depends on the
strengthλ. E.g., being easy to see with a probability in[.8, .9] is inherited from yellow objects down to
yellow birds, but the new intervals are[0, 1], [0, 1], [.5, 1], [.67, 1], [.75, 1], and[.8, .9], respectively. Finally,
for λ> 1/9, there are local inconsistencies related to penguins (as being able to fly witha probability of at
least0.9 is inherited from birds down to penguins, and there it is inconsistent with being able to fly with a
probability of at most0.1).

Table 1: Some tightλ-logical consequences.

λ= 0 λ=0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1

legs|bird [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|yellow∧bird [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|penguin [1, 1] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]
legs|yellow∧penguin [1, 1] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]

fly |bird [.9, 1] [.9, 1] [.9, 1] [.9, 1] [.9, 1] [.9, 1]
fly |yellow∧bird [0, 1] [.5, 1] [.75, 1] [.83, 1] [.88, 1] [.9, 1]
fly |penguin [0, .1] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]
fly |yellow∧penguin [0, 1] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]

see|yellow [.8, .9] [.8, .9] [.8, .9] [.8, .9] [.8, .9] [.8, .9]
see|yellow∧bird [0, 1] [0, 1] [.5, 1] [.67, 1] [.75, 1] [.8, .9]
see|yellow∧penguin [0, 1] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]

3 Nonmonotonic Probabilistic Logics

In this section, we recall the notions ofzλ- andlexλ-entailment from [42]. They are parameterized through
a valueλ∈ [0, 1] that describes thestrengthof the inheritance of default purely probabilistic knowledge.

3.1 Consistency of Strength λ

We first describe the notion of consistency of strengthλ (or simply λ-consistency), whereλ∈ [0, 1], for
probabilistic knowledge basesKB = (L,P ).

A probabilistic interpretationPr λ-verifies(resp.,λ-falsifies) a conditional constraint(ψ|φ)[l, u] iff Pr

satisfies(ψ|φ)[l, u] (resp.,¬(ψ|φ)[l, u]) andφ<λ. Recall thatPr satisfies(ψ|φ)[l, u] iff Pr(φ)= 0 or
Pr(ψ|φ)∈ [l, u], and thusPr λ-verifies (resp.,λ-falsifies)(ψ|φ)[l, u] iff Pr |=φ<λ andPr(ψ|φ)∈ [l, u]
(resp.,Pr(ψ|φ) 6∈ [l, u]). A set of conditional constraintsP λ-toleratesa conditional constraintC under a
set of logical constraintsL iff L∪P has a model thatλ-verifiesC. We sayP is underL in λ-conflictwith C
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iff no model ofL∪P λ-verifiesC. A conditional constraint rankingσ onKB = (L,P ) maps each element
of P to a nonnegative integer. IfP 6= ∅, then we say thatσ is λ-admissiblewith KB iff every P ′⊆P that
is underL in λ-conflict with someC ∈P contains someC ′ such thatσ(C ′)<σ(C); if P = ∅, thenσ is
λ-admissiblewith KB iff L is satisfiable.

We define the notion ofλ-consistency as follows. We say thatKB is λ-consistentiff there exists a
conditional constraint rankingσ on KB that isλ-admissible withKB . Otherwise,KB is λ-inconsistent.
The following theorem characterizes theλ-consistency ofKB through the existence of an ordered partition
of P .

Theorem 3.1 A probabilistic knowledge baseKB =(L,P ) is λ-consistent iff (i)L is satisfiable and (ii) an
ordered partition(P0, . . . , Pk) of P exists such that eachPi, 0 6 i6 k, is the set of allC ∈

⋃k
j=i Pj that

areλ-tolerated underL by
⋃k
j=i Pj .

The unique ordered partition(P0, . . . , Pk) ofP in Theorem 3.1 is called thezλ-partitionof KB =(L,P ).
Hence,KB is λ-consistent iff (i)L is satisfiable and (ii) thezλ-partition ofKB exists. The following exam-
ple shows somezλ-partitions and a case of aλ-inconsistent probabilistic knowledge base.

Example 3.2 LetKB = (L,P ) be as in Example 2.1. For everyλ∈ [0, 1/9], thezλ-partition ofKB is given
by (P0)= (P ). For everyλ∈ (1/9, 1], thezλ-partition ofKB is given by(P0, P1)= (P \{(fly |penguin)[0,
.1]}, {(fly |penguin)[0, .1]}). Thus,KB is λ-consistent, for allλ∈ [0, 1], while the probabilistic knowledge
baseKB = (L,P )= (∅, {(a|b)[0, .3], (a|b)[.6, 1]}) is λ-inconsistent, for allλ∈ [0, 1].

Note that the existence of a conditional constraint rankingσ on a probabilistic knowledge baseKB that
isλ-admissible withKB is also equivalent to the existence of a probability ranking that isλ-admissible with
KB . Here, probability rankings and theλ-admissibility of probability rankings with probabilistic knowledge
bases are defined as follows. Aprobability rankingκmaps each probabilistic interpretation onIΦ to a mem-
ber of{0, 1, . . .} ∪ {∞} such thatκ(Pr)= 0 for at least one interpretationPr . It is extended to all logical
constraints and probabilistic formulasF as follows. IfF is satisfiable, thenκ(F )= min {κ(Pr) |Pr |=F};
otherwise,κ(F )=∞. A probability rankingκ is λ-admissiblewith a probabilistic knowledge baseKB =
(L,P ) iff κ(¬F )=∞ for allF ∈L andκ(φ<λ)<∞ andκ(φ<λ∧ (ψ|φ)[l, u])<κ(φ<λ∧¬(ψ|φ)[l, u])
for all (ψ|φ)[l, u]∈P .

3.2 System Z of Strength λ

We next define the notion ofzλ-entailment, whereλ∈ [0, 1], for λ-consistent probabilistic knowledge bases
KB = (L,P ). It is linked to a conditional constraint rankingzλ on KB and a probability rankingκzλ .
Let (P0, . . . , Pk) be thezλ-partition ofKB . For everyj ∈{0, . . . , k}, eachC ∈Pj is assigned the valuej
underzλ. Then,κzλ on all probabilistic interpretationsPr is defined as follows:

κzλ(Pr) =






∞ if Pr 6|= L

0 if Pr |= L ∪ P
1 + max

C∈P : Pr 6|=C
zλ(C) otherwise.

Note that the rankingszλ andκzλ are bothλ-admissible withKB . The rankingκzλ defines a preference
relation on probabilistic interpretations: For probabilistic interpretationsPr and Pr ′, we sayPr is zλ-
preferableto Pr ′ iff κzλ(Pr)<κzλ(Pr ′). A model Pr of a set of logical constraints and probabilistic
formulasF is azλ-minimal modelof F iff no model ofF is zλ-preferable toPr .
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Table 2: Some tightzλ-consequences.

λ= 0 λ=0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1

legs|bird [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|yellow∧bird [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|penguin [1, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
legs|yellow∧penguin [1, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

fly |bird [.9, 1] [.9, 1] [.9, 1] [.9, 1] [.9, 1] [.9, 1]
fly |yellow∧bird [0, 1] [.5, 1] [.75, 1] [.83, 1] [.88, 1] [.9, 1]
fly |penguin [0, .1] [0, .1] [0, .1] [0, .1] [0, .1] [0, .1]
fly |yellow∧penguin [0, 1] [0, .5] [0, .25] [0, .17] [0, .13] [0, .1]

see|yellow [.8, .9] [.8, .9] [.8, .9] [.8, .9] [.8, .9] [.8, .9]
see|yellow∧bird [0, 1] [0, 1] [.5, 1] [.67, 1] [.75, 1] [.8, .9]
see|yellow∧penguin [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

We are now ready to define the notion ofzλ-entailmentas follows. A conditional constraintC =
(ψ|φ)[l, u] is a zλ-consequenceof KB , denotedKB ‖∼ zλC, iff every zλ-minimal model ofL∪{φ<λ}
satisfiesC. It is a tight zλ-consequenceof KB , denotedKB ‖∼ zλ

tight C, iff l = inf Pr(ψ|φ) (resp.,u =
supPr(ψ|φ)) subject to allzλ-minimal modelsPr of L∪{φ<λ}.

The following example shows that the notion ofzλ-entailment realizes an inheritance of default logical
and default purely probabilistic properties from classes to non-exceptional subclasses, where the inheritance
of default purely probabilistic properties depends on the strengthλ. But zλ-entailment does not inherit
properties from classes to subclasses that are exceptional relative to some other property (and thus, like its
classical counterpart, shows the problem ofinheritance blocking).

Example 3.3 Consider again the probabilistic knowledge baseKB = (L,P ) given in Example 2.1. Some
tight zλ-consequences, whereλ∈{0, 0.2, 0.4, 0.6, 0.8, 1}, are shown in Table 2. Observe that, in contrast to
Table 1, there are no empty intervals “[1, 0]”, that is, no local inconsistencies. Then, observe that the default
logical property of having legs is inherited from the class of birds down to yellow birds, independently from
λ, while the default purely probabilistic property of being easy to see with a probability between0.8 and0.9
is also inherited from the class of yellow objects to yellow birds, but this is controlled byλ. Furthermore, for
every strengthλ> 1/9, these properties are not inherited down to the exceptional classes of penguins and
yellow penguins, respectively. Note that for every strengthλ6 1/9, the default logical property of having
legs is inherited down to penguins, since there is only some weak inheritance of default purely probabilistic
knowledge, and thus no conflict between the abilities to fly of birds and penguins.

3.3 Lexicographic Entailment of Strength λ

We now describe the notion oflexλ-entailment, whereλ∈ [0, 1], for λ-consistent probabilistic knowledge
basesKB = (L,P ).

We use thezλ-partition(P0, . . . , Pk) of KB to define a lexicographic preference relation on probabilis-
tic interpretations: For probabilistic interpretationsPr andPr ′, we sayPr is lexλ-preferableto Pr ′ iff
somei∈{0, . . . , k} exists such that|{C∈Pi | Pr |=C}| > |{C∈Pi |Pr ′ |=C}| and|{C∈Pj |Pr |=C}| =
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Table 3: Some tightlexλ-consequences.

λ= 0 λ= 0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1

legs|bird [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|yellow∧bird [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|penguin [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
legs|yellow∧penguin [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]

fly |bird [.9, 1] [.9, 1] [.9, 1] [.9, 1] [.9, 1] [.9, 1]
fly |yellow∧bird [0, 1] [.5, 1] [.75, 1] [.83, 1] [.88, 1] [.9, 1]
fly |penguin [0, .1] [0, .1] [0, .1] [0, .1] [0, .1] [0, .1]
fly |yellow∧penguin [0, 1] [0, .5] [0, .25] [0, .17] [0, .13] [0, .1]

see|yellow [.8, .9] [.8, .9] [.8, .9] [.8, .9] [.8, .9] [.8, .9]
see|yellow∧bird [0, 1] [0, 1] [.5, 1] [.67, 1] [.75, 1] [.8, .9]
see|yellow∧penguin [0, 1] [0, 1] [.5, 1] [.67, 1] [.75, 1] [.8, .9]

|{C∈Pj |Pr ′ |=C}| for all i<j6k. A modelPr of a set of logical constraints and probabilistic formulasF
is alexλ-minimal modelof F iff no model ofF is lexλ-preferable toPr .

We define the notion oflexλ-entailmentas follows. A conditional constraintC = (ψ|φ)[l, u] is a lexλ-
consequenceof KB , denotedKB ‖∼ lexλC, iff every lexλ-minimal model ofL∪{φ<λ} satisfiesC. It is a
tight lexλ-consequenceof KB , denotedKB ‖∼ lexλ

tight C, iff l= inf Pr(ψ|φ) (resp.,u= supPr(ψ|φ)) subject
to all lexλ-minimal modelsPr of L∪{φ<λ}. Note that the notion oflexλ-entailment can also be defined
in terms of a unique probability ranking forKB .

The following example shows that the notion oflexλ-entailment realizes an inheritance of default prop-
erties, without showing the problem of inheritance blocking.

Example 3.4 Consider again the probabilistic knowledge baseKB = (L,P ) given in Example 2.1. Some
tight lexλ-consequences, whereλ∈{0, 0.2, 0.4, 0.6, 0.8, 1}, are shown in Table 3. In particular, for every
strengthλ∈ [0, 1], the default logical property of having legs is inherited from the class of birds to the
exceptional subclass of penguins, while the default purely probabilistic property of being easy to see with a
probability between0.8 and0.9 is also inherited from the class of yellow objects to the exceptional subclass
of yellow penguins.

3.4 Semantic Properties

We finally briefly summarize some semantic properties ofλ-logical, zλ-, andlexλ-entailment. More pre-
cisely, we describe the general nonmonotonic properties of the formalisms,the relationships between the
formalisms, and their probabilistic and classical special cases.

As for general nonmonotonic properties,λ-logical,zλ-, andlexλ-entailment all satisfy probabilistic ver-
sions of the postulatesRight Weakening, Reflexivity, Left Logical Equivalence, Cut, Cautious Monotonicity,
andOr proposed by Kraus et al. [32], which are commonly regarded as being particularly desirable for any
reasonable notion of nonmonotonic entailment [42]. All three notions also satisfy the property ofRational
Monotonicity[32], which describes a restricted form of monotony and allows to ignore certain kinds of
irrelevant knowledge.
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R1 R2

R2R1

||= ‖∼ zλ‖∼ lexλ

|∼ lex |∼ z|=
“R1 is special case ofR2”

“R1 is subset ofR2”

Figure 1: Relationships between probabilistic and ordinary formalisms.

Concerning the relationships between the three formalisms,λ-logical entailment is stronger than both
lexλ- andzλ-entailment. Moreover,lexλ-entailment is stronger thanzλ-entailment. These relationships
betweenλ-logical,zλ-, andlexλ-entailment are illustrated in Fig. 1, upper part. In general,λ-logical entail-
ment is strictly stronger thanlexλ-entailment, which in turn is strictly stronger thanzλ-entailment. However,
in the special case whenφ=⊤, the three notions ofλ-logical,zλ-, andlexλ-entailment of(ψ|φ)[l, u] from
λ-consistentKB = (L,P ) all coincide. Furthermore, also whenL∪P ∪{φ<λ} is satisfiable, the three
notions ofλ-logical,zλ-, andlexλ-entailment of(ψ|φ)[l, u] from λ-consistentKB =(L,P ) all coincide.

Some probabilistic special cases are summarized as follows. Forλ=0, the notion ofλ-logical entail-
ment fromKB coincides with standard logical entailment fromKB . Forλ= 0 (resp.,λ= 1), the notions
of zλ- and lexλ-entailment coincide with weak (resp., strong) probabilisticz- and lex -entailment intro-
duced in [43] (resp., [41]). Furthermore, forλ= 0, the notion ofλ-consistency coincides with the no-
tion of g-coherence (see, e.g., [12]). As for classical special cases, zλ- andlexλ-entailment of(β|α)[1, 1]
from λ-consistent probabilistic knowledge bases of the formKB = (L,P ), whereP = {(ψi|φi)[1, 1] |
i∈{1, . . . , n}}, coincide with the classical notions of Pearl’s entailment in SystemZ and Lehmann’s lex-
icographic entailment of the defaultβ←α from the default counterpart ofKB . Moreover,λ-logical en-
tailment of(β|α)[1, 1] from suchKB coincides with propositional logical entailment ofβ⇐α from the
propositional counterpart ofKB (see Fig. 1). Furthermore, the notion ofλ-consistency for suchKB coin-
cides with the notion ofε- (or alsop-) consistency for the default counterpart ofKB . Finally, notice also
that for suchKB , the notion ofzλ-partition ofKB does not depend onλ.

4 Further Examples

In this section, we provide some other examples. The first one deals with reasoning from statistical knowl-
edge and degrees of belief, wherez1- and lex 1-entailment show a similar behavior as reference-class rea-
soning [33, 48] in a number of uncontroversial examples, but also avoidmany drawbacks of reference-class
reasoning. More precisely, they can handle complex scenarios and even purely probabilistic subjective
knowledge as input. Furthermore, conclusions are drawn in a global wayfrom all the available knowledge
as a whole. See [41] for further details.

Example 4.1 Suppose the statistical knowledge “all penguins are birds”, “between 90% and 95% of all
birds fly”, “at most 5% of all penguins fly”, and “at least 95% of all yellow objects are easy to see”. More-
over, assume we believe “Sam is a yellow penguin”. What do we then conclude about Sam’s property
of being easy to see? Under reference-class reasoning, which is a machinery for dealing with statistical
knowledge and degrees of belief, we conclude “Sam is easy to see with a probability of at least 0.95”. This
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is exactly what we obtain usinglex 1-entailment. The above statistical knowledge can be represented by
the probabilistic knowledge baseKB = (L,P ), whereL= {bird⇐ penguin} andP = {(fly |bird)[.9, .95],
(fly |penguin)[0, .05], (see|yellow)[.95, 1]}. It is then not difficult to verify thatKB is 1-consistent, and
that(see|yellow ∧ penguin)[0.95, 1] is a tight conclusion fromKB underlex 1-entailment. Some other tight
intervals forsee|yellow ∧ penguin fromKB underλ-logical,zλ-, andlexλ-entailment are shown in Table 4.

Table 4: Tight intervals forsee|yellow∧penguin.

λ= 0 λ= 0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1

tight λ-logical entailment [0, 1] [1, 0] [1, 0] [1, 0] [1, 0] [1, 0]
tight lexλ-entailment [0, 1] [.75, 1] [.88, 1] [.92, 1] [.94, 1] [.95, 1]
tight zλ-entailment [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

The next example is from the area of medical diagnosis [31].

Example 4.2 In a hospital, physicians have to diagnose whether patients with acute abdominal pain are suf-
fering from appendicitis or not. Diagnosing appendicitis is a difficult task, since a lot of different symptoms
(such as, for example, high temperature, a high rate of leucocytes, vomiting, and various types of pains)
can indicate appendicitis, but often only the joint occurrence of severalof these symptoms reliably supports
the diagnosis. Here, we only consider four possible symptoms of appendicitis (app), namely a high rate of
leucocytes(leucohigh) and the following three different types of pain: rectal pain(rec pain), pain when re-
leased(pain rel), and rebound tenderness(reb tender). Thus, our view on this area is a very simplified one.
Let our knowledge about the relationships betweenapp, leucohigh, and the three types of pain be expressed
by the following probabilistic knowledge baseKB = (L,P ), whereL= ∅ andP is given as follows:

P = {(reb tender|pain rel)[.70, .75], (reb tender| leucohigh)[.70, .75],

(app| rec pain∧ pain rel)[.70, .75], (app| rec pain∧ reb tender)[.65, .70],

(app|pain rel ∧ reb tender∧ leucohigh)[.80, .85]} .

Suppose Judy is a patient showing the symptomsleucohigh andpain rel. Which is the probability that
Judy has appendicitis? Which is the probability that she has appendicitis given that she also feels rectal
pain? Some tight intervals forapp|leucohigh∧pain rel andapp|leucohigh∧pain rel∧ rec pain from KB

underλ-logical,zλ-, andlexλ-entailment are shown in Tables 5 and 6, respectively.

Table 5: Tight intervals forapp|leucohigh∧pain rel.

λ= 0 λ= 0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1

tight λ-logical entailment [0, 1] [.08, .99] [.38, .93] [.48, .91] [.53, .9] [.56, .9]
tight lexλ-entailment [0, 1] [.08, .99] [.38, .93] [.48, .91] [.53, .9] [.56, .9]
tight zλ-entailment [0, 1] [.08, .99] [.38, .93] [.48, .91] [.53, .9] [.56, .9]
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Table 6: Tight intervals forapp|leucohigh∧pain rel∧rec pain.

λ= 0 λ= 0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1

tight λ-logical entailment [0, 1] [0, 1] [.41, 1] [.57, 1] [.66, .92] [1, 0]
tight lexλ-entailment [0, 1] [0, 1] [.41, 1] [.57, 1] [.66, .92] [.7, .75]
tight zλ-entailment [0, 1] [0, 1] [.41, 1] [.57, 1] [.66, .92] [0, 1]

5 Algorithms and Complexity

In this section, we provide algorithms for solving the main computational problemsin nonmonotonic prob-
abilistic logics under variable-strength inheritance with overriding, and we give a precise picture of the
complexity of these problems.

5.1 Problem Statements

The main decision and optimization problems of nonmonotonic probabilistic logics under variable-strength
inheritance with overriding are summarized as follows:

CONSISTENCY: Given a probabilistic knowledge baseKB = (L,P ) and a strengthλ∈ [0, 1], decide whether
KB is λ-consistent.

TIGHT s-CONSEQUENCE: Given aλ-consistent probabilistic knowledge baseKB = (L,P ), a conditional
eventβ|α, and a strengthλ∈ [0, 1], computel, u ∈ [0, 1] such thatKB ‖∼sλ(β|α)[l, u], for some fixed
semanticss∈{z, lex}.

For the complexity results below, we assume that the strengthλ∈ [0, 1] and all numbers in probabilistic
knowledge basesKB =(L,P ) are rational.

5.2 Algorithms

Algorithm consistency in Fig. 2 decides whether a given probabilistic knowledge baseKB =(L,P ) is
λ-consistent for a given strengthλ∈ [0, 1]. If KB is λ-consistent, then the algorithm also returns thezλ-
partition ofKB . It is a variable-strength generalization of an algorithm for deciding g-coherence by Biazzo
et al. [11], which in turn is a probabilistic generalization of an algorithm for decidingε-consistency in default
reasoning by Goldszmidt and Pearl [25]. The algorithmconsistency works as follows. IfP = ∅, then Step 1
returns the empty partition(), if L is satisfiable; andnil, otherwise. IfP 6= ∅, then Steps 2-7 try to compute
thezλ-partition(P0, . . . , Pk) of KB , and Step 8 returns(P0, . . . , Pk), if this succeeds; andnil, otherwise.

Algorithms tight-s-consequence, wheres= z ands= lex, in Figs. 3 and 4 compute tight intervals for
a given conditional eventβ|α underzλ- and lexλ-entailment, respectively, and a given strengthλ∈ [0, 1]
from a givenλ-consistent probabilistic knowledge baseKB = (L,P ). They are variable-strength general-
izations and improvements of algorithms in [43] for computing tight entailed intervals under weak proba-
bilistic z- and lex -entailment, and are also related to algorithms for inference in SystemZ [47] and lexi-
cographic inference [8], respectively. Algorithmtight-s-consequence, wheres= z (resp.,s= lex), works
as follows. IfL∪{α<λ} is unsatisfiable, then[1, 0] is returned in Step 1. Otherwise, we use Theo-
rem 5.1 below saying that then a setDsα(KB)⊆ 2P , s∈{zλ, lexλ}, exists such thatKB ‖∼s (β|α)[l, u]
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Algorithm consistency

Input: probabilistic knowledge baseKB = (L,P ) and strengthλ∈ [0, 1].
Output: zλ-partition ofKB , if KB is λ-consistent;nil, otherwise.

1. if P = ∅ then if L is satisfiablethen return () else return nil;
2. R := P ; i := −1;
3. repeat
4. i := i+ 1;
5. D[i] := {(ψ|φ)[l, u]∈R | L∪R∪{φ<λ} is satisfiable};
6. R := R \D[i]
7. until R= ∅ or D[i] = ∅;
8. if R= ∅ then return (D[0], . . . , D[i]) else return nil.

Figure 2: Algorithmconsistency.

iff L∪H ∪{α<λ} ||=(β|α)[l, u] for all H ∈Dsα(KB). In this case, we computeDsα(KB) along thezλ-
partition of KB by binary search in Steps 2–6 (resp., 2–14), and the requested tight interval in Step 7
(resp., Steps 15–19). In particular,tight-lex-consequence computesDsα(KB) stepwise along the compo-
nentsPk, . . . , P0 of thezλ-partition (P0, . . . , Pk) of KB : Keeping track of the already computed parts of
the members ofDsα(KB), a binary search is done for everyPi.

ForG,H ⊆P , we sayG is zλ-preferabletoH iff somei∈{0, . . . , k} exists such thatPi⊆G, Pi 6⊆H,
andPj ⊆ G andPj ⊆H for all i< j6 k. We sayG is lexλ-preferabletoH iff somei∈{0, . . . , k} exists
such that|G ∩ Pi| > |H ∩ Pi| and|G ∩ Pj | = |H ∩ Pj | for all i< j6 k. ForD⊆ 2P ands∈{zλ, lexλ},
we sayG is s-minimal in D iff G∈D and noH ∈D is s-preferable toG.

Theorem 5.1 Let KB = (L,P ) beλ-consistent, and letβ|α be a conditional event such thatL∪{α<λ}
is satisfiable. Lets∈{zλ, lexλ}, and letDsα(KB) be the set of alls-minimal elements in{H ⊆P |L∪H ∪
{α<λ} is satisfiable}. Then,l (resp.,u) such thatKB ‖∼stight (β|α)[l, u] is given byl= min c (resp.,
u= max d) subject toL ∪H ∪ {α<λ} ||=tight (β|α)[c, d] andH ∈Dsα(KB).

Proof (sketch). The statement of the theorem follows from the observation that a probabilisticinterpretation
Pr is ans-minimal model ofL∪{α<λ} iff (i) Pr is a model ofL∪{α<λ} and (ii){F ∈P |Pr |=F} is
ans-minimal element in the set of allH ⊆P such thatL∪H ∪{α<λ} is satisfiable. The latter is in turn
equivalent toPr being a model ofL∪H ∪{α<λ} for someH ∈Dsα(KB). 2

Algorithmsconsistency, tight-z-consequence, andtight-lex-consequence are based on reductions to the
following decision and optimization problems: (i) given a probabilistic knowledge baseKB = (L,P ) and
an eventα, decide whetherKB has a modelPr such thatPr(α)> 0; and (ii) givenKB = (L,P ) and a
conditional eventβ|α, compute the tight interval forβ|α under logical entailment fromKB . Some upper
bounds for the number of tasks (i) and (ii) to be solved in Algorithmsconsistency, tight-z-consequence,
andtight-lex-consequence are given byO(|P |2),O(ln(|P |)), andO(2|P |), respectively. The task (i) can be
reduced to deciding whether a system of linear constraints is solvable, while(ii) can be reduced to computing
the optimal values of two linear programs. These two well-known results (seeespecially [27, 20, 2]) are
summarized in the following theorem.
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Algorithm tight-z-consequence

Input: λ-consistent probabilistic knowledge baseKB=(L,P ), conditional eventβ|α,
and strengthλ∈ [0, 1]. Thezλ-partition ofKB is denoted by(P0, . . . , Pk), k>−1.

Output: interval[l, u]⊆ [0, 1] such thatKB ‖∼ zλ

tight (β|α)[l, u].

1. if L∪{α<λ} is unsatisfiablethen return [1, 0];
2. if L∪P ∪{α<λ} is satisfiablethen (m,n) := (k, k) else (m,n) := (−1, k−1);
3. while m<n do begin
4. l := ⌈(m+ n) / 2⌉;
5. if L∪P0 ∪ · · · ∪Pl ∪{α<λ} is satisfiablethen m := l else n := l−1
6. end;
7. computel, u∈ [0, 1] such thatL∪P0 ∪ · · · ∪Pm ∪{α<λ} ||=tight(β|α)[l, u];
8. return [l, u].

Figure 3: Algorithmtight-z-consequence.

Algorithm tight-lex-consequence

Input: λ-consistent probabilistic knowledge baseKB=(L,P ), conditional eventβ|α,
and strengthλ∈ [0, 1]. Thezλ-partition ofKB is denoted by(P0, . . . , Pk), k>−1.

Output: interval[l, u]⊆ [0, 1] such thatKB ‖∼ lexλ

tight (β|α)[l, u].

1. if L∪{α<λ} is unsatisfiablethen return [1, 0];
2. H := {∅};
3. for j := k downto 0 do begin
4. H′ := {Pj ∪H |H ∈H, L∪Pj ∪H ∪{α<λ} is satisfiable};
5. ifH′ 6= ∅ thenH := H′ else begin
6. (m,n) := (0, |Pj |−1);
7. while m<n do begin
8. l := ⌈(m+ n) / 2⌉;
9. H′ := {G∪H |G⊆Pj , |G|= l, H ∈H, L∪G∪H∪{α<λ} is satisfiable};

10. ifH′ 6= ∅ then m := l else n := l−1
11. end;
12. H := {G∪H |G⊆Pj , |G|=m, H ∈H, L∪G∪H∪{α<λ} is satisfiable}
13. end
14. end;
15. (l, u) := (1, 0);
16. for each H ∈H do begin
17. computec, d∈[0, 1] such thatL∪H ∪{α<λ} ||=tight(β|α)[c, d];
18. (l, u) := (min(l, c),max(u, d))
19. end;
20. return [l, u].

Figure 4: Algorithmtight-lex-consequence.
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Theorem 5.2 LetKB = (L,P ) be a probabilistic knowledge base, and letα, β be events. LetR= {I ∈IΦ |
I |=L}. Let LC denote the system of linear constraints in Fig. 5 over the variablesyr (r∈R). Then, (a)
L∪P has a modelPr such thatPr(α)> 0 iff LC is solvable. (b) IfL∪P has a modelPr such that
Pr(α)> 0, thenl (resp.,u) such thatL∪P ||=tight (β|α)[l, u] is given by the optimal value of the following
linear program over the variablesyr (r∈R):

minimize (resp., maximize)
∑

r∈R, r|=β∧α yr subject to LC .

∑
r∈R, r|=¬ψ∧φ −l yr +

∑
r∈R, r|=ψ∧φ (1−l) yr > 0 (for all (ψ|φ)[l, u]∈P, l > 0)∑

r∈R, r|=¬ψ∧φ u yr +
∑

r∈R, r|=ψ∧φ (u−1) yr > 0 (for all (ψ|φ)[l, u]∈P, u< 1)∑
r∈R, r|=α yr = 1

yr > 0 (for all r∈R)

Figure 5: System of linear constraintsLC.

5.3 Complexity

We now analyze the complexity of the above decision and optimization problems. We first briefly recall the
complexity classes that occur in our results. We assume some basic knowledge about the complexity classes
P and NP; see especially [22, 30, 45] for further background. The classPNP contains all decision problems
that can be solved in deterministic polynomial time with an oracle forNP. The relationship between these
complexity classes is described by the following inclusion hierarchy (note that all inclusions are currently
believed to be strict):

P ⊆ NP ⊆ PNP .

In order to classify problems that compute an output value, rather than a Yes / No-answer, function classes
have been introduced. In particular,FP andFPNP are the functional analogs ofP andPNP, respectively.

The following result shows that CONSISTENCYis NP-complete.

Theorem 5.3 CONSISTENCYis NP-complete.

Proof (sketch). Hardness for NP follows from the fact that the special case of decidingwhetherKB is
0-consistent is NP-complete [43]. Membership in NP can be proved by showing that guessing and verifying
a conditional constraint rankingσ on KB that isλ-admissible withKB can be done in nondeterministic
polynomial time. The line of argumentation for this is similar to the proof of NP-membership of deciding
whetherKB is 0-consistent [43].2

The next result shows that TIGHT z- andlex -CONSEQUENCEareFPNP-complete.

Theorem 5.4 TIGHT s-CONSEQUENCE, s∈{z, lex}, is FPNP-complete.



INFSYS RR 1843-05-03 15

Proof (sketch). Hardness forFPNP follows from the fact that the special case of computing the tight interval
for a givenβ|α underz0- andlex 0-entailment from a givenKB is FPNP-complete [43]. As for Membership
in FPNP, computing the tight interval forβ|α underzλ- andlexλ-entailment fromKB = (L,P ) can be done
in FPNP by a variant of Algorithmtigh-entailment-opt in [40]. Rather than checking the existence of some
modelPr of L∪P with Pr(α)> 0, we check the existence of someP ′ ∈Dsα(KB) (see Section 5.2) and
some modelPr of L∪P ′ with Pr |=α<λ. The proof of this is similar to the proof ofFPNP-membership
of computing the tight interval forβ|α underz0- andlex 0-entailment fromKB [43]. 2

6 The System NMPROBLOG

The main components of the systemNMPROBLOGare the main window, as well as one window each for (i)
checking satisfiability, (ii) checkingλ-consistency, (iii) computing thezλ-partition (see Fig. 6), and (iv) com-
puting tight entailed intervals for any conditional event underλ-logical, zλ-, lexλ-, andpλ-entailment (see
Fig. 7), for any probabilistic knowledge baseKB = (L,P ) and any strengthλ ∈ {i/100 | i∈{0, . . . , 100}}.
Here,pλ-entailmentis a probabilistic generalization of entailment in SystemP of strengthλ∈ [0, 1], which
coincides withg-coherent entailment(see, e.g., [12]) forλ= 0. The above restriction of the available
strengthsλ allows for a more comfortable use ofNMPROBLOGvia its graphical user interface (GUI). Note
that the entailment relation and the strengthλ that are actually used in a concrete application naturally de-
pend on the desired entailment behavior. They may be chosen after some testing with NMPROBLOG. The
systemNMPROBLOG is written in C, and uses the linear programming solver “lpsolve 5.1” [9] for deciding
the solvability of systems of linear constraints and for computing the optimal values of linear programs. Its
GUI has been built using “glade 2.6”.

NMPROBLOG loads from a file with suffix “.tax” a set of statements of one of the following forms: (i)
p= 1, wherep is a nonempty string, which declaresp as⊤, (ii) p=0, wherep is a nonempty string, which
declaresp as⊥, (iii) p< 1, wherep is a nonempty string, which declaresp as a basic event, and (iv)ψ>φ,
whereψ andφ are events (in which “̂”, “ &”, and “#” encode¬, ∧, and∨, respectively), which encodes
thatφ impliesψ. Furthermore, it then loads from a file with suffix “.prb” a set of statements of the form
“ψ φ l u”, whereψ andφ are events as above, andl andu are real numbers. Such a statement encodes the
conditional constraint(ψ|φ)[l, u]. Note that every basic event in the “.prb”-file and in queries (window for
computing tight entailed intervals; see Fig. 7) must be declared in the “.tax”-file.

Example 6.1 Consider again the probabilistic knowledge baseKB = (L,P ) of Example 2.1. The “.tax”-file
contains the statements1> bird , 1> penguin, 1>fly , 1> legs, 1> see, 1> yellow , andbird > penguin,
which declare the basic events inKB and encode the logical constraints inL. The “.prb”-file contains the
statementslegs bird 1.0 1.0, see yellow 0.8 0.9, fly bird 0.9 1.0, andfly penguin 0.0 0.1, which encode
the conditional constraints inP . After reading the “.tax”- and the “.prb”-file,NMPROBLOG allows the
user to open the window for computing tight consequences in Fig. 7 and to compute[l, u] such that, e.g.,
KB ‖∼ lexλ

tight (see|yellow ∧ bird)[l, u], whereλ= 0.5, which is given by[l, u] = [0.6, 1] (see Fig. 7).

Example 6.2 Fig. 8 shows the time used byNMPROBLOG on a chain ofn correlated basic events (which
produces linear optimization problems that consist of2n variables and4n− 3 constraints) for checking
satisfiability andλ-consistency, as well as computing thezλ-partition and tight entailed intervals underλ-
logical, zλ-, lexλ-, andpλ-entailment. Note especially that all the above reasoning tasks can be solvedin
few minutes, even when large linear optimization problems are generated (up to16384 variables and 53
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Figure 6:Window for computing thezλ-partition.

Figure 7:Window for computing tight entailed intervals.

linear constraints). Note also that computing tight intervals underλ-logical, zλ-, lexλ-, andpλ-entailment
from KB always includes computing thezλ-partition ofKB as a first computation step.

7 Conclusion

I have recalled nonmonotonic probabilistic logics under variable-strength inheritance with overriding, name-
ly, the notions ofzλ- andlexλ-entailment, along with their semantic properties and some new examples. I
have given a precise picture of the complexity of decidingλ-consistency and of computing tight entailed
intervals underzλ- andlexλ-entailment. I have also provided algorithms for these tasks, which are based
on reductions to the problems of deciding satisfiability and of computing tight logically entailed intervals in
model-theoretic probabilistic logic. Hence, efficient linear optimization techniques for reasoning in model-
theoretic probabilistic logic (such as e.g. the very powerful column generation techniques [29, 28]) can
immediately be applied for reasoning in the presented nonmonotonic probabilisticlogics under variable-
strength inheritance with overriding.
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Figure 8:Time used byNMPROBLOGon a chain ofn basic events (2n variables).

I have then presented the systemNMPROBLOG (available athttp://www.kr.tuwien.ac.at/
staff/lukasiew/nmproblog.tar.gz), which comprises a prototype implementation of the above
algorithms. The system allows for (i) checking the satisfiability of probabilistic knowledge basesKB ,
(ii) checking theλ-consistency ofKB , (iii) computing thezλ-partition of KB , and (iv) computing tight
entailed intervals fromKB under any amongλ-logical, lexλ-, zλ-, andpλ-entailment, for anystrength
λ∈{i/100 | i∈{0, . . . , 100}}. In particular, it thus also allows for probabilistic and default reasoning inall
the special cases ofλ-logical, lexλ-, zλ-, andpλ-entailment (summarized in Sections 3.4 and 6).

An interesting topic of future work is to include an implementation of more efficientlinear optimization
techniques (such as e.g. the very powerful column generation techniques [29, 28]) intoNMPROBLOG, and
to explore whether there are other techniques for more efficient or eventractable inference in nonmonotonic
probabilistic logics under variable-strength inheritance with overriding (e.g., using preprocessing steps along
the lines of [11] and [16]) and to include them intoNMPROBLOG. Another topic of future research is
to explore whether similar forms of nonmonotonic probabilistic logics under variable-strength inheritance
with overriding can be defined for other default reasoning formalisms (such as e.g. the approach in [6],
which allows for dealing with explicit independence assumptions).
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