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Thomas Eiter1, Michael Fink1, Gianluigi Greco2, and Domenico Lembo3

Abstract. Information integration systems providing the user with transparent access to heteroge-
neous data sources through a unified global view of all data, have emerged as a crucial issue in
many application domains. This global view usually comprises integrity constraints which should
be satisfied by the data retrieved from the sources. However, they might be often violated, and
suitable approaches for handling such a situation are needed, taken inconsistency and incomplete-
ness of source data into account. To this end, several recent works reduce query answering in data
integration systems to non-monotonic logic programming. This branch of computational logic is
well-suited for dealing with inconsistent and incomplete information, and offers the expressiveness
which is needed to model query answering, which is in the worst case intractable. Furthermore,
advanced implementations of systems including stable model engines like DLV and Smodels for
evaluation of non-monotonic logic programs are available. Nonetheless, a naive reduction of data
integration to non-monotonic logic programs is infeasible for larger data sets, and calls for opti-
mizations. We address this issue and present several techniques of different nature which make a
non-monotonic logic programming approach effective. The first is a technique to prune a logic pro-
gram for query answering such that only the relevant rules are kept. The second is a sophisticated
technique, developed at a generic level, which aims at localizing inconsistency and “repairing” it in
a decomposition manner. Finally, we present a technique to combine non-monotonic logic program-
ming and commercial relational database engines in order to facilitate efficient query answering
from repairs computed for an inconsistent global data view. Our methods are not bound to a specific
non-monotonic logic programming system. In particular, the results on localization and decomposi-
tion are independent of a logic program approach, and may be exploited for efficient realization of
advanced data integration systems in general.
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1 Introduction

Recent developments in IT such as the expansion of the Internet and the World Wide Web, have made avail-
able a huge number of information sources, generally autonomous, heterogeneous and widely distributed.
Therefore, information integration has become a crucial challenge at the current evolutionary stage of IT
infrastructures. A data integration system aims at providing transparent access to data dispersed over many
heterogeneous information sources, and relieving the users from the burden of having to identify those
sources that store data relevant for their queries, accessing each of them separately, and combining the indi-
vidual results into the global view of the data. Informally, a data integration system I may be viewed as a
triple 〈G,S,M〉, where G is the global schema, which specifies the global elements exported to users, S is
the source schema, which describes the structure of the data sources in the system, andM is the mapping,
which establishes the relationship between the sources and the global schema. There are basically two ap-
proaches for specifying the mapping [46]: the Global-As-View (GAV) approach, which requires that a view
over the sources is associated with every element of the global schema, so that its the meaning is specified in
terms of the data residing at the sources, and the Local-As-View (LAV) approach, which conversely requires
the sources to be defined as views over the global schema. In this paper, we focus on the GAV approach,
which is generally considered sufficiently simple and effective for practical purposes. Notice, however,
that optimization techniques for query answering that we propose in the following apply also to existing
approach to consistent query answering in LAV (see e.g., [3, 14]), under simple adaptations.

Usually, the global schema G is assumed to be relational, generally enriched with integrity constraints,
denoted with Σ, issued on relation symbols. Views in the mapping M are specified over the (relational)
source schema S in a language which often amounts to a fragment of Datalog (possibly extended with
stratified negation).

Example 1.1 As a running example, we consider a data integration system I0 = 〈G0, S0, M0〉, which
provides information about soccer teams of the 2002/03 edition of the U.E.F.A. Champions League. The
global schema G0 consists of the relation predicates

player(Pcode,Pname,Pteam),

team(Tcode,Tname, Tleader), and

coach(Ccode,Cname,Cteam).

The associated constraints Σ0 specify that the keys of player , team , and coach , are the sets of attributes
{Pcode,Pteam}, {Tcode}, and {Ccode,Cteam}, respectively, and that a coach can neither be a player nor
a team leader. The source schema S0 comprises the relation symbols s1, s2, s3 and s4. Finally, the mapping
M0 is defined by the Datalog program

player(x, y, z)← s1(x, y, z, w);

team(x, y, z)← s2(x, y, z);

team(x, y, z)← s3(x, y, z);

coach(x, y, z)← s4(x, y, z),

which casts into rules the mapping views. In the program, we used global relation symbols in the left-hand
side (head) of the rules to explicitly trace the correspondence between global elements and the associated
views in the mapping. 2



2 INFSYS RR 1843-05-05

playerR:
10 Totti RM
9 Beckham MU

teamR:
RM Roma 10

MU Man. Utd. 8

RM Real Madrid 10

coachR: 7 Camacho RM

Figure 1: Global database for the football scenario as retrieved from the sources.

Since in general integrated sources are originally autonomous, their data, filtered through the mapping,
are likely not to satisfy the constraints on the global schema. This can be easily seen if we explicitly construct
a global database instance by retrieving data from the sources according to the mapping specification.

Example 1.2 Assuming that the information in the sources is given by the database D0 = { s1(10, Totti,
RM, 27), s1(9, Beckham, MU, 28), s2(RM, Roma, 10), s3(MU, Man. Utd., 8), s3(RM, Real Madrid, 10),
s4(7, Camacho, RM)}, the global database R in Fig. 1 is constructed from the retrieved data. It violates
the key constraint on team , witnessed by the facts team(RM, Roma, 10) and team(RM, Real Madrid, 10),
which coincide on Tcode but differ on Tname . 2

Therefore, when the user issues a query Q on the global schema (which is generally expressed in a
fragment of non-recursive Datalog with negation), the problem arises of establishing which are the answers
that have to be returned to Q from an inconsistent data integration system.

The standard approach to remedy to this problem is through data cleaning [13]. This approach is pro-
cedural in nature, and is based on domain-specific transformation mechanisms applied to the data retrieved
from the sources. An alternative declarative approach has been proposed in the last years in the field of con-
sistent query answering, which studies the definition (and computation) of informative answers to queries
posed to inconsistent databases (see, e.g., [2, 36, 16]). The proposals developed in this field rely on the
notion of repair as introduced in [2]: a repair of a database is a new database that satisfies the constraints
in the schema, and minimally differs from the original one. The suitability of a possible repair depends on
the underlying semantic assertions which are adopted for the database; in general, not a single but multiple
repairs might be possible. For a survey on query answering over inconsistent databases, see [11]. The above
results are not specifically tailored to the case of different consistent sources that are mutually inconsistent,
that is the case of interest in data integration. More recently, some papers (see, e.g., [12, 17, 14]) have
tackled data inconsistency in a data integration setting, where the basic idea is to apply the repairs to data
retrieved from the sources, again according to some minimality criteria.

In the last years, several approaches to formalize repair semantics by using logic programs have been
proposed both for single inconsistent databases and for data integration systems, cf. [4, 8, 12, 14, 15, 17, 36].
As for the data integration setting, the idea common to these works is to encode the constraints Σ of the
global schema G into a logic program, Π, using unstratified negation and/or disjunction (i.e., by a Datalog∨,¬

program), such that the stable models of this program yield the repairs of the global database. Answering
a user query, then amounts to cautious reasoning over the logic program Π augmented with the query, cast
into rules, and the facts retrieved from the sources.

This approach has some attractive features. An important one is that Datalog∨,¬ programs serve as
executable logical specifications of repair, and thus provide a language for expressing repair policies in a
fully declarative manner rather than in a procedural way. Furthermore, reasoning about specifications, their
properties and behavior, is much better facilitated than for procedural repair specifications, since reasoning
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about programs is one of the principal issues in logic programming, and has been abundantly studied. Fi-
nally, extensions to the Datalog∨,¬ language which allow e.g. to handle priorities and weight constraints (cf.
[48, 62]), provide a useful set of constructs for expressing also more involved criteria that repairs should
satisfy, which possibly have to be customized to a particular application scenario. Here, logic programming
specifications may serve as a useful test-bed for development, since variants of repair can be quickly realized
and experimented with.

A major drawback of the logic programming specification approach is that with current (yet still im-
proving) implementations of stable model engines, which are needed for program evaluation, such as DLV
[48] or Smodels [62], the evaluation of queries over large data sets quickly becomes infeasible because of
lacking scalability. This calls for suitable optimization methods that help in speeding up the evaluation of
queries expressed as logic programs [14].

1.1 Efficient Evaluation of Logic Programs

Datalog∨,¬ programs [26] have been introduced as a tool for knowledge representation and commonsense
reasoning, with the aim of modeling incomplete data [54, 7]. In the past years, several alternative semantics
for these programs have been proposed in the literature (see [23, 55] for comprehensive surveys). Currently,
the most widely accepted semantics is the stable model semantics proposed by Gelfond and Lifschitz [35],
which is, in fact, the one exploited in the data integration setting.

According to this semantics, Datalog∨,¬ programs may have several alternative models and capture the
complexity class ΣP

2 [26], i.e., they allow us to express, in a precise mathematical sense, every generic
class of finite relational structures that is decidable in nondeterministic polynomial time with an oracle
in NP. However, the expressiveness comes at the price of a higher computational cost in the worst case:
The principal reasoning tasks, brave reasoning and cautious reasoning, for disjunctive logic programs are
ΣP

2 -complete and ΠP
2 - complete, respectively [26]; in absence of disjunction, they are NP-complete and

co-NP-complete, respectively (cf. [22]).
In the 1990s, Datalog∨,¬ received little attention for practical application in the database community,

mainly because of its worst case complexity. However, the recent emergence of advanced data integration
scenarios which strictly demand co-NP and often even ΠP

2 data complexity (see, e.g., [17, 18, 36]), has trig-
gered interest in this language and, specifically, in the design of efficient techniques for stable model com-
putation and query answering, extending and complementing previous and ongoing research on optimizing
disjunctive Datalog engines such as DLV. In this line of research, three main streams can be identified.

• Binding propagation techniques: The goal of these techniques is to use the constants appearing in
the query to reduce the size of the instantiation by eliminating “a priori” a number of ground instances
of the rules which cannot contribute to the derivation of the query goal. The key idea is to materialize,
by suitable adornments, binding information for IDB predicates which would be propagated during a top-
down computation. These are strings of the letters b and f , denoting bound or free for each argument of
an IDB predicate. Due to its efficiency and its generality, the magic set method [6, 9] is the most-well
known method adhering to such an approach. Other focusing methods, e.g. supplementary magic sets and
other special techniques for linear and chain queries, have been proposed as well (see, e.g., [38, 64, 57]).
Numerous extensions and refinements of the magic set method exist, addressing e.g. query constraints [63],
modular stratification and well-founded semantics [58, 42], or integration into cost-based query optimization
[60], and the research on further extensions is still active. For instance, [10] and [37, 21] present magic sets
techniques for soft-stratifiable programs, and for disjunctive programs, respectively.
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• Equivalence of logic programs and optimization: Here, the objective is to “optimize” a given program
by means of local simplification rules, in the spirit of conjunctive query minimization in databases [64].
Typically, redundant literals are removed and rule bodies simplified (assuming that this speeds up rule eval-
uation), as well as redundant and unproductive rules pruned from the program. To this end, basic issues like
semantic equivalence of programs arise here. It is well-known in the database theory that already equiva-
lence of plain Horn datalog programs is undecidable [61], and the major problems for static optimization of
Datalog∨,¬ queries are decidable only for restricted fragments, cf. [40]. Recent research in non-monotonic
logic programming considers refined notions of equivalence such as uniform equivalence [59] and strong
equivalence [49], which are decidable for plain Horn datalog programs [59] and arbitrary Datalog∨,¬ pro-
grams [51]. These notions of equivalence are considered to be a useful tool for more general optimizations
than local rule simplification and pruning, such as replacing program patterns with equivalent (optimized)
rule sets from a library.

• Heuristics: Recent research is devoted to heuristics for guiding the search for a model, inspired by
preliminary similar work in the SAT community, cf. [28, 29]. For non-monotonic logic programs this issue
is more complicated, however, since the semantics of rules is more involved (intuitively, by minimality
constraints). As a matter of fact, different heuristics may result in quite different performance for model
finding on benchmark sets. Improving heuristics is a challenging issue and active research area for increasing
the performance of stable model engines.

Even though the techniques above are quite effective for the optimization of logic programs modelling
reasoning tasks mainly in AI applications, they do not warrant in general sufficient efficiency and scalability
for the usage of Datalog∨,¬ programs under the stable model semantics in real data integration scenarios.

Indeed, such techniques do not benefit of the peculiarities of the specific application domain, e.g., they
do not exploit the semantics of the logic specification to be optimized and the fact that each stable model is a
way of repairing a database instance, and do not seriously face the problems emerging in this setting, where
the actual bottleneck is the (huge) size of the source databases on which the stable models engines have to
reason for computing answers to user queries.

Moreover, these techniques have been designed for stable models engines which at the present time
result impractical for real database applications. Most of them currently miss primitives for interfacing
with database management systems (which is needed for efficiently retrieving relevant data), as well as
mechanisms for directly handling answering non-ground queries (which then must be simulated by time-
consuming multiple ground query evaluations). Only very recently, such features are available in DLV, as a
result of research activities carried out in line with the present work. However, the scalability problems are
not completely solved in stable model engines by these improvements.

In order to tackle this issue, we study the problem of efficient evaluation of logic program specifications
for querying data integration systems. We introduce practical techniques, which are specifically tailored
to optimize logic programs for querying data integration systems, thereby devising an approach which is
orthogonal to most of the optimization techniques discussed above. Our main idea is to “localize” the
inconsistency in the database to be repaired, and limit the inefficient computation in the stable model engine
to a very small fragment of the input, obtaining fast query-answering, even in a powerful data-integration
framework. Importantly, the techniques are designed in a way that can be easily accommodated in the
architecture of a data integration prototype, whose development has been carried out within the EU project
“INFOMIX: Boosting Information Integration” (IST-2001-33570) [47].
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1.2 Contributions

The main contributions of this paper are briefly summarized as follows.

(1) We present a basic formal model of data integration via logic programming specification, which
abstracts from several proposals in the literature [4, 8, 12, 14, 17, 36]. Results which are obtained on this
model may then be inherited by the respective approaches. In this model, the different components of a
logic programming specification, viz. a component for mapping the data at the source to the global relation,
an “integration” component which reconciles inconsistency and deals with incompleteness, as well as a
component for evaluating the query are explicitly articulated. These components are naturally organized in
a hierarchical manner, which can be profitably exploited by a logic programming engine for evaluation of a
logic programming specification of data integration and query answering.

(2) In order to reduce the complexity of naive query evaluation, we foster a repair localization approach,
in which irrelevant rules are discarded and the retrieved data is decomposed into two parts: facts which will
possibly be touched by a repair, called the “affected database,” and facts which for sure will be not, called
the “safe database.” The idea at the heart of this approach is to reduce the usage of the non-monotonic
logic program to the essential part for conflict resolution. This requires that some technical conditions are
met in order to make the part “affected” by a repair small (ideally, as small as possible). We develop this
localization approach at a generic database level, independent of a commitment to a particular definition of
repairs and query answering program, but based on a common setting of repair semantics: the repairs of the
(retrieved) database are characterized by the minimal (non-preferred) databases from a space of candidate
repairs with a preference order. Examples from the literature are set-inclusion based orderings [32, 2, 4, 8,
14, 16, 17, 18, 36], cardinality-based [4, 53] ordering, and weighted-based ordering [52]. More precisely, we
establish localization results for three increasingly expressive classes of constraints (where each constraint
must involve at least one database relation):

• The first class contains all constraints of the form ∀~xα(~x) ⊃ φ(~x), where α(~x) is a nonempty con-
junction of atoms on database relations and φ is a disjunction of built-in literals. These constraints are
semantically equivalent to denial constraints [19].

• The second class allows more general constraints of form ∀~xα(~x) ⊃ β(~x) ∨ φ(~x), where α(~x) and
φ(~x) are as above and β(~x) is a disjunction of atoms on database relations.

• The third class are all universal constraints in clausal form, i.e., of the form above where either α(~x)
or β(~x) is nonempty. Thus, semantically, this class captures all universal constraints.

Furthermore, we show that under mild conditions, repairs can be factorized into independent components,
which can be processed orthogonally to each other.

(3) We develop techniques for recombining the decomposed parts for query answering, which interleave
a logic programming and a relational database engine. This is driven by the fact that database engines are
geared towards efficient processing of large data sets, and thus will help to achieve scalability. To this end,
we present a marking and query rewriting technique for compiling the reasoning tasks which emerge for user
query evaluation into a relational database engine. Hence, in our overall approach, the attractive features
of a non-monotonic logic programming system can be fruitfully combined with the strengths of an efficient
relational database engine. This is substantiated with an experimental prototype implementation in which
the stable model engine DLV is coupled with the DBMS PostgreSQL.
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(4) We present a general architecture for a data integration system implementing the optimization tech-
niques. The architecture demonstrates that it is possible to implement localization approaches profitably
on top of an answer set engine. This entails a significant speed up for query answering in advanced data
integration systems.

(5) Finally, we thoroughly assess the effectiveness of our approach in a suite of experiments, which
involve both synthetic and real data. The experimental results are encouraging and show that the system
scales well even in real-world scenarios.

Our results on localization extend and generalize previous localization results which have been utilized
(sometimes tacitly) for particular repair orderings and classes of constraints, e.g., for denial constraints and
repairs which are closest to the original database measured by symmetric difference [19].

We point out that our overall contribution is twofold in nature. One the one hand it is foundational.
Our results on inconsistency management provide a unifying logic-based view of previous approaches to
query answering from inconsistent data integration systems, and shed light on the interaction of integrity
constraints and the structure of preference-based repairs. These results can be exploited for efficient im-
plementation of data integration systems in general, independent of a logic-based approach. Furthermore,
they may be fruitfully applied in the context of data exchange [30], which fosters materialization of source
data into a target global schema, enriched with integrity constraints. On the other hand of our contribution
is practical as well, aiming at an efficient implementation of the theoretical results. To this end, we have
developed innovative methods and techniques relying on existing technologies offered by stable models and
relational engines. Importantly, these techniques are not bound to a particular stable models or relational
engine, and may be customized to any of the available established systems.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 contains preliminaries on Datalog∨,¬ pro-
grams and introduces the notation for the relational data model used throughout the paper. In Section 3,
we present our generic framework for data integration and query answering, followed in Section 4 by an
emerging logic programming framework for consistent query answering. There, also several examples of
logic-programming based approaches are considered. Section 5 then presents our overall optimization ap-
proach. Specifically, it discusses three distinct steps:

(i) a pruning phase, in which we eliminate from the logic specification the rules that are not relevant for
computing answers to a user query Q;

(ii) a decomposition phase in which we localize inconsistency in the database DB to be repaired, compute
the set of facts in DB that are affected by repair (denoted ADB), and obtain the repairs of DB by actually
repairing the (smaller) database ADB; and

(iii) a recombination phase in which we suitably recombine the repairs for computing the answers to Q.

Since the overall approach is beneficial only if the recombination cost does not compensate the gain
of repair localization, we present in Section 6 some effective recombination techniques which interleave a
stable models engine and a relational DBMS. The effectiveness of the approach is assessed in Section 7 by
experiments with both synthetic and real data. Finally, in Section 8 we draw our conclusions.
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2 Preliminaries

In this section, we recall some concepts and notation that will be useful throughout this paper. In particular,
we describe the query language which we are interested in, and present the basic notions of the relational
model, on which we will construct our formal framework for modeling query answering in data integration
systems. For an exhaustive treatment and further background, we refer the reader to [1, 26, 35].

2.1 Disjunctive Datalog with Negation

A Datalog∨,¬ rule ρ is an expression of the form

s1(~v1) ∨ . . . ∨ sn(~vn)← r1(~u1), . . . , rk(~uk), not rk+1(~uk+1), . . . , not rk+m(~uk+m) (1)

where si(~vi), rj(~uj) are atoms in a relational first-order language L, i.e., si resp. rj are relation (predicate)
names and ~vi = vi,1, . . . , vi,ni

resp. ~uj = uj,1, . . . , uj,nj
are lists of variables and constants (terms) matching

the arity of si resp. rj . Here, “not” is negation as failure (or default negation) and “,” is conjunction. The
disjunction left of “←” is the head of the rule, denoted head(ρ), while the conjunction right of “←” is its
body, denoted body(ρ). Unless stated otherwise, we require that ρ is safe, i.e., each variable occurring in ρ
occurs in some positive body atom ri(~ui), 1 ≤ i ≤ k, where ri is different from a built-in relation. Such
relations, if present, may occur only in rule bodies.

A Datalog∨,¬ program P is a finite set of Datalog∨,¬ rules. Important syntactic fragments of Datalog∨,¬

with decreasing expressiveness are the class of normal programs, denoted Datalog¬, in which n = 1 for all
rules, and the class of stratified normal programs, denoted Datalog¬s , and of non-recursive programs, which
are defined as follows. Each Datalog¬ program P has an associated dependency graph, which is a directed
graph G(P) = 〈V, E〉, whose vertices V are the predicates occurring in P and where E contains an arc
r → s if r and s occur in the head respectively body of some rule ρ in P . If in some such ρ, s occurs under
negation, the arc is labeled with ’∗.’ Then, program P is stratified, if G(P) has no cycle with an arc labeled
’∗,’ and non-recursive, if G(P) is acyclic. Notice that a non-recursive Datalog program can be rewritten
in terms of a Union of Conjunctive Queries, i.e., a set of rules of the form 1 where n = 1 and m = 0, all
having the same head predicate.

If a rule ρ of form (1) has k = m = 0, then ρ is a fact and “←” is omitted. For any Datalog∨,¬ program
P and set of facts D, we denote by P[D] the program P ∪ D.

Predicate names in P are called extensional (EDB predicates) if they occur only in the body of the rules
in P , otherwise they are called intensional (IDB predicates). In other words, IDB predicates are defined by
the rules of the program, whereas EDB predicates are defined by the facts of a database (see Section 2.2).

The semantics of a programP is defined in terms of its Herbrand instantiation (or grounding) ground(P)
with respect to the language L (often, the language generated by P), which consists of all instances of rules
ρ of form (1) in P in which variables are replaced with constant symbols from L.

Let BL be the set of all ground atoms constructible from the predicate and constant symbols in L. An
interpretation for P is any subset I ⊆ BL. A ground (variable-free) atom p(~c) is true in I , if p(~c) ∈ I ,
and false in I otherwise; a ground rule ρ of form (1) is satisfied by I , if either some si(~vi) or rk+j(~uk+j),
0 < j ≤ m, is true in I , or some rj(~uj), 1 ≤ j ≤ k, is false in I . The interpretation I is a model of P , if I
satisfies all rules in ground(P).

The stable model semantics [35], which we adopt here, assigns to every “not”-free Datalog∨,¬ program
P the set MM(P) of its minimal models, where a model M of P is minimal, if no proper subset of M is a
model of P . To programs P with negation, it assigns every interpretation I such that I is a minimal model
of the Gelfond-Lifschitz reduct P w.r.t. I , which is the “not”-free program obtained from ground(P) by
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• deleting each rule having a ground literal not p(~c) in the body, such that p(~c) ∈ I;

• deleting the negative body from the remaining rules.

Any such I is called a stable model of P; the set of stable models of P is denoted by SM(P). Note
that for “not”-free programs, minimal models and stable models coincide, and that positive disjunction-free
(resp. stratified) programs have a unique stable model [35].

2.2 Data Model

We assume a countable infinite database domain U whose elements can be referenced by constants c1, c2, . . .
under the unique name assumption, i.e., different constants denote different real-world objects. A relational
schema (or simply schema)RS is a pair 〈Ψ, Σ〉, where:

• Ψ is a finite set of relation (predicate) symbols, each with an associated positive arity.

• Σ is a finite set of integrity constraints (ICs) expressed on the relation symbols in Ψ, i.e., assertions that
are intended to be satisfied by database instances. We consider here universally quantified constraints
[1], more specifically first-order sentences of the form

∀~x A1(~x1) ∧ · · · ∧Al(~xl) ⊃ B1(~y1) ∨ · · · ∨Bm(~ym) ∨ φ1(~z1) ∨ · · · ∨ φn(~zn), (2)

where l + m > 0, n ≥ 0, the Ai(~xi) and the Bj(~yj) are atoms on Ψ, the φk(~zk) are atoms or
negated atoms over built-in relations such as equality =, inequality 6= etc. (if available), ~x is a list of
all variables occurring in the formula, and the ~xi, ~yj , and ~zk are lists of variables and constants.1 The
conjunction left (resp., disjunction right) of “⊃” is the body (resp. head) of the constraint. When the
body is an empty conjunction, we omit the “⊃” symbol and simply write the head of the constraints.

Notice that (2) is a clausal normal form, in which arbitrary universal constraints on a relational schema can
be expressed. Among them are many classical constraints, such as

• functional dependencies ∀~xy1~z1y2~z2 p(~x, y1, ~z1) ∧ p(~x, y2, ~z2) ⊃ y1=y2;

• key constraints ∀~x~y~z p(~x, ~y)∧p(~x, ~z) ⊃ y1=z1, . . . , yn=zn, where ~y = y1, . . . , yn and ~z = z1, . . . , zn;

• exclusion dependencies ∀~x~y~z p1(~x, ~y) ∧ p2(~x, ~z) ⊃ ⊥, where ⊥ is the empty disjunction;

• denial constraints ∀~x1 · · · ~xn¬(P1(~x1)∧· · ·Pn(~xn)∧α(~x1, . . . , ~xn)) where α(~x1, . . . , ~xn) is a Boolean
combination of built-in atoms [19]; and,

• inclusion dependencies of the form ∀~x p1(~x) ⊃ p2(~x).

1The condition l + m > 0 excludes constraints involving only built-in relations, which are irrelevant from a schema modeling
perspective.
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Example 2.1 In our ongoing example, the global schema G0 is the database schema 〈Ψ0, Σ0〉, where Ψ0

consists of the ternary relation symbols player , team , and coach , and Σ0 can be formally defined as follows:

∀x, y, y′, z player(x, y, z) ∧ player(x, y′, z) ⊃ y=y′,
∀x, y, y′, z, z′ team(x, y, z) ∧ team(x, y′, z′) ⊃ y=y′,
∀x, y, y′, z, z′ team(x, y, z) ∧ team(x, y′, z′) ⊃ z=z′,
∀x, y, y′, z coach(x, y, z) ∧ coach(x, y′, z) ⊃ y=y′,
∀x, y, y′, z coach(x, y, z) ∧ player(x, y′, z) ⊃ ⊥,
∀x, y, y′, z coach(x, y, z) ∧ team(z, y′, x) ⊃ ⊥.

The first four rows encode the key constraints, whereas the last two rows model the two constraints
stating that, for any given team, a coach cannot be a player or a team leader (exclusion dependencies). 2

In our localization approach, we pay special attention to the following subclasses of constraints:

• Constraints with only built-in relations in the head (i.e., m = 0 in (2)). The class of these constraints,
which we denote by C0, is a clausal normal form of denial constraints. This class (semantically)
includes key constraints, functional dependencies, and exclusion dependencies, for instance.

• Constraints with non-empty body (i.e., l > 0 in 2)). We denote the class of these constraints, which
permit conditional generation of tuples in the database, by C1.

Note that C0 ⊆ C1 (since l + m > 0). We next define the semantics of a database scheme.
For any set of relation symbols Ψ as above, let F(Ψ) denote the set of all facts r(t), where r ∈ Ψ

has arity n and t = (c1, . . . , cn) ∈ Un is an n-tuple of constants from U . A database instance (or simply
database) for Ψ is any finite DB ⊆ F(Ψ). For any relation r, we denote by rDB its extension in DB, which
is the set of tuples {t | r(t) ∈ DB}. Furthermore, we denote by DB(Ψ) the set of all databases for Ψ.

For any relation schema RS = 〈Ψ, Σ〉, in abuse of notation F(RS) and DB(RS) denote F(Ψ) and
DB(Ψ), respectively. A database forRS is a database for Ψ.

A constraint σg is ground, if it is variable-free. For any ground constraint σg, we denote by facts(σg)
the set of all facts p(t) ∈ F(RS) which occur in σg, and for any set Σg of ground constraints we denote
facts(Σg) =

⋃
σg∈Σg facts(σg). For any constraint σ = ∀~x α(~x), we denote by ground(σ) the set of its

ground instances θ(α(~x)), where θ is any substitution of the variables ~x by constants from U , and for any
set of constraints Σ, ground(Σ) =

⋃
σ∈Σ ground(σ).

Given R ⊆ F(Ψ), where Ψ = {r1, . . . , rn}, R satisfies a constraint σ, denoted R |= σ, if σ is
true on the relational structure (U , rR1 , . . . , rRn , cR1 , cR2 , . . .) where cRi = ci, for all ci ∈ U (that is, each
σ′ ∈ ground(σ) evaluates to true), and violates σ otherwise; R satisfies a set of constraints Σ (or, is
consistent with Σ), denoted R |= Σ, if R |= σ for every σ ∈ Σ, and violates Σ otherwise. A database
schemaRS = 〈Ψ, Σ〉 is consistent, if there exists some database DB forRS consistent with Σ.

Finally, a query over RS is a mapping which assigns to each database D for RS a set of n-tuples over
U , where n is fixed. We consider here queries naturally expressed using Datalog∨,¬ programs, and refer to
[1] for further background about queries.

Formally, a Datalog∨,¬ query Q (over RS) is a pair 〈q,P〉 where P is a safe Datalog∨,¬ program such
that relation symbols from Ψ occur only as EDB predicates of P , and q is an IDB predicate of P . The arity
of Q is the arity of q. Given any database D forRS , the evaluation of Q over D, denoted Q[D], is

Q[D] = {(c1, . . . , cn) | q(c1, . . . , cn) ∈M for each M ∈ SM(P[D])},

where n is the arity of Q. We simply refer to Q as P when q is clear from the context.
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Example 2.2 In our ongoing example, we consider a query Q which asks for the codes of all players
and team leaders, and which is formally written as Q = 〈q,P〉 where P = {q(x) ← player(x, y, z),
q(x)← team(v, w, x)}, and has arity 1. Note that P is a union of conjunctive queries. 2

3 Data Integration and Query Answering Framework

In this section, we present an abstract framework for modeling query answering in data integration systems.
We first adopt a more formal description of data integration systems, and then we discuss how to compute
“consistent” answers for a user query to a data integration system where the global database constructed by
retrieving data from the sources might be inconsistent with respect to the integrity constraints specified on
the global schema.

3.1 Data Integration Systems

According to [46], the formalization of a data integration system I is a triple 〈G,S,M〉, where:

1. G is the global schema. We assume that G is a relational schema, i.e., G = 〈Ψ, Σ〉.

2. S is the source schema, constituted by the schemas of the various sources that are part of the data
integration system. We assume that S is a relational schema of the form S = 〈Ψ′, ∅〉, i.e., there are no
integrity constraints on the sources. Notice that the above assumption implies that data stored at the
sources are always considered locally consistent. This is a common assumption in data integration,
because sources are in general external to the integration system, which is not in charge to analyze
their consistency.

3. M is the mapping which establishes the relationship between G and S . In our framework the mapping
is given by the GAV approach, i.e., each global relation is associated with a view, i.e., a query, over
the sources. We assume that the language used to express queries in the mapping is Datalog¬s , which
allows us to generalize most of the GAV approaches proposed in the literature [46]. Therefore,M is
a set of Datalog¬s queries Q = 〈r,P〉 over S , one for each relation of G, where r is a predicate of Ψ
and P is a safe Datalog¬s program with EDB predicates from Ψ′ (cf. Example 1.1).

We call any database DB for the global schema G a global database for I, and any database D for the
source schema S a source database for I. Then, based on D, it is possible to compute a global database for
I by exploiting the mapping specification.

Definition 3.1 Given a data integration system I = 〈G,S,M〉 and a source database D for I, the retrieved
global database, ret(I,D), is the global database obtained by evaluating each query in the mapping M
over D, i.e., ret(I,D) =

⋃
{Q[D] for each Q ∈M}. 2

In our running example, for instance, the retrieved global database is the global database of Figure 1.
Notice that ret(I,D) might violate Σ, since data stored in local and autonomous sources need in general

not satisfy constraints expressed on the global schema. Hence, in case of constraint violations, we cannot
conclude that ret(I,D) is a “legal” global database for I [46]. Following a common approach in the
literature on inconsistent databases [2, 36, 16], we then define the semantics of a data integration system I
in terms of repairs of the database ret(I,D).
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3.2 Database Repairs

We first focus on the setting of a single database, and consider the relational schema RS = 〈Ψ, Σ〉, and
a (possibly inconsistent) database DB for RS . We suppose that ≤DB is a preorder (i.e., a reflexive and
transitive binary relation) on the set of all databases DB(RS), and denote by <DB the naturally induced
preference order (i.e., an irreflexive and transitive binary relation) given by R1 <DB R2, if R1 ≤DB

R2 ∧R2 6≤DB R1. We callR1 ≤DB-preferred toR2 in this case.
Then, we define the notion of repair of a database DB in terms of minimal elements of the preference

order defined above.

Definition 3.2 (Repair) Let RS = 〈Ψ, Σ〉 be a relational schema, let DB be a database for RS , and let
≤DB be a preorder on subsets of F(RS). Then, a databaseR ∈ DB(RS) is a repair for DB w.r.t. RS , if

1. R |= Σ, and

2. R is minimal w.r.t. ≤DB among such sets, i.e., there exists no database R′ ∈ DB(RS) such that
R′ |= Σ andR′ is ≤DB-preferred toR.

The set of all repairs for DB w.r.t. RS is denoted by repRS(DB). 2

WhenRS is clear from the context, the subscriptRS may be dropped.
The definition of repair given above relies on a very general notion of a preorder on databases. The

method for the evaluation of logic programs which we will present in the next sections is based on ab-
stract properties of the induced preference order, which we refer to as set inclusion proximity and disjoint
preference inheritance. The property of set inclusion proximity is as follows:

(?) For any databasesR1,R2, and DB,4(R1,DB) ⊂ 4(R2,DB) impliesR1 <DB R2,

where4(A, B) = (A \B)∪ (B \A) is symmetric set difference. Informally, it says thatR can be minimal
only if there is no way to establish consistency with Σ by touching merely a strict subset of facts compared
toR. The properties disjoint preference expansion and disjunctive split are follows:

(†) If R1 <DB1 R
′
1 and R2, DB2 are disjoint from R1, R′

1, and DB1 (i.e., (R1 ∪ R
′
1 ∪ DB1) ∩

(R2 ∪ DB2) = ∅), thenR1 ∪R2 <DB1∪DB2 R
′
1 ∪R2.

(‡) If R1 <DB R2, then for every database R it holds that either R1 ∩ R <DB∩R R2 ∩ R or
R1 \ R <DB\R R

′
1 \ R.

Loosely speaking, Property (†) says that preference must be invariant under adding new facts, while Property
(‡) says that preference must uniformly stem from disjoint “components.”

Notice that a variety of repair semantics are either defined in terms of a preorder satisfying the above
properties or can be characterized by such a preorder, including set-containment based ordering [32, 2, 4,
8, 14, 16, 19, 36, 34], cardinality-based [4, 53] ordering, weight-based ordering [52], as well as refinements
with priority levels.

The prototypical preorder ≤DB is given by R1 ≤DB R2 iff 4(R1,DB) ⊆ 4(R2,DB) [2, 4, 8, 14,
19, 36, 34]. Intuitively, each repair of DB is then obtained by properly adding and deleting facts from DB
in order to satisfy constraints in Σ, as long as we “minimize” such additions and deletions. An interesting
special case of weight-based ordering is the lexicographic preference, where R1 is preferred to R2 w.r.t.
DB if the first fact in a total ordering of F(RS) on whichR1 andR2 repair DB differently belongs toR2.

However, we point out that our method and results for query answering can also be extended to other
preference orderings under certain conditions (see Section 8).
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3.2.1 Safe constraints

An important aspect to address here is that constraints as introduced in Section 2.2 might enforce that
any set of facts R for RS = 〈Ψ, Σ〉 which satisfies Σ must be infinite, and thus the database schema is
inconsistent. A simple example is where Σ contains the constraint ∀x p(x). Semantically, this is commonly
avoided by requesting domain-independence of constraints [64], which syntactically is ensured by safety of
the constraints Σ. Safety requests that each variable occurring in the head of a constraint must also occur
in its body. If in addition to safe constraints the preference order <DB satisfies set inclusion proximity,
the existence of a repair R for DB w.r.t. RS is always guaranteed if RS is consistent. Moreover, R
involves only constants which occur in DB or the constraints. The above property is formally stated by
the following proposition, where, for any database R ⊆ F(RS), we denote by adom(R,RS) the set of
constants occurring inR and Σ.

Proposition 3.1 Let RS = 〈Ψ, Σ〉 be a relational schema such that all constraints in Σ are safe, and let
DB be a database for RS . Suppose that <DB satisfies Property (?). Then, every repair R ∈ repRS(DB)
involves only constants from adom(DB,RS), and some repair exists wheneverRS is consistent.

Proof. Let R be any database of RS consistent with Σ. Let R′ result from R be removing every fact
containing some constant c /∈ adom(DB,RS). We show that R′ |= Σ. Towards a contradiction, assume
that R′ 6|= Σ. Hence, there exists a ground instance σg of some constraint σ ∈ Σ of form A1(~c1) ∧ · · · ∧
Al(~cl) ⊃ B1(~d1) ∨ · · · ∨ Bm(~dm) ∨ φ1(~e1) ∨ · · · ∨ φn(~en) which is violated by R′, i.e., (i) A1(~c1), . . . ,
Al(~cl) ∈ R

′, (ii) B1(~d1), . . . , Bm(~dm) /∈ R′, and (iii) φ1(~e1) ∨ · · · ∨ φn(~en) is false. Since R |= σg, by
construction of R′ we have Bj(~dj) ∈ R \ R

′ for some j ∈ {1, . . . , m} and thus ~dj contains some constant
c /∈ adom(DB,RS). It follows that some variable occurring in the head of σ does not occur in the body of
σ; that is, σ is not safe, which is a contradiction.

Then, since R′ is on adom(DB,RS), and4(R′,DB) ⊂ 4(R,DB) (since R′ ⊂ R), ≤DB-minimality
of repairs and Property (?) imply that each repair R ∈ repRS(DB) must be on adom(DB,RS). Further-
more, by consistency ofRS and the fact that each sequenceR1 >DB R2 >DB · · ·Ri >DB · · · of databases
Ri on adom(DB,RS) must be finite, one such repairR must exist. 2

Notice that major classes of constraints including key constraints, functional dependencies, exclusion
dependencies, inclusion dependencies of the form ∀~xp1(~x) ⊃ p2(~x), or denial constraints fulfill safety.

We observe that finite repairs may be also ensured by unsafe constraints in which variables violating
safety are guarded by built-in relations, such as for DB = ∅ w.r.t. RS = 〈{p}, {∀x p(x) ∨ x>100}〉,
assuming that U are the natural numbers. As this example shows, repairs may in this case go beyond the
active domain. This, however, is prevented if built-ins involve only equality and inequality. We have here a
result similar to Proposition 3.1.

Proposition 3.2 Let RS = 〈Ψ, Σ〉 be a relational schema such that the constraints in Σ involve as built-in
relations (if at all) only equality and inequality. Suppose that <DB satisfies Property (?). Then, every repair
R ∈ repRS(DB) involves only constants from adom(DB,RS), and some repair exists whenever RS is
consistent.

Proof. The proof is similar to the one of Proposition 3.1. Following the argumentation there, some atom
Bj(~cj) ∈ R \ R

′ in the head of a ground instance σg of some σ ∈ Σ exists such that ~cj = cj,1, . . . , cj,nj

contains some constant cj,h /∈ adom(DB,RS) and the respective variable yj,h in the atom Bj(~yj) in σ does
not occur in the body of σ. Since all built-in literals φ1(~z1), . . . , φn(~zn) in σ are equalities and inequalities,
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there are infinitely many constants c such that for the ground instance σg
c of σ which differs from σg only

by substitution of yj,h with c, all built-in literals evaluate to false. Since σg
c and σg have the same body and

R |= σg
c it follows that R must contain a fact in which c occurs. This means that R is infinite, which is a

contradiction. 2

The above propositions are important for a logic programming encoding of repairs, since they imply
that domain closure can be applied when computing repairs. Using domain closure is customary with stable
model semantics and engines like DLV and Smodels.

3.3 Repairs of a Data Integration System

Let us now turn to the data integration setting, and provide the notion of repair in this context.

Definition 3.3 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉, and let D be a source
database for I. A global database R for I is a repair for I w.r.t. D, if R is a repair for ret(I,D) w.r.t. G.
The set of all repairs for I w.r.t. D is denoted by repI(D). 2

In the above definition we have implicitly considered the mappingM as exact, i.e., we have assumed
that the data retrieved from the sources by the mapping are exactly the data that satisfy the global schema,
provided suitable repairing operations. Other different assumptions can be adopted on the mapping (e.g.,
soundness or completeness assumptions [46]). Roughly speaking, such assumptions impose some restric-
tions or preferences on the possibility of adding or removing facts from ret(I,D) to repair constraint viola-
tions, leading to different notions of minimality (see, e.g., [17, 18, 16]).

We stress that dealing only with exact mappings is not an actual limitation for the techniques presented in
the paper; in fact, in many practical cases, the computation of the repairs under other mapping assumptions
can be modeled by means of a logic program similar to the computation of repairs under the exactness
assumption (see Section 4.2 for an example).

3.4 Queries

A query over a data integration system I = 〈G,S,M〉 is a query Q over G. We assume that Q is a
non-recursive Datalog¬ query. Note that in real integration applications, typically a language subsumed by
non-recursive Datalog¬ is adopted. Given a database D, the set of consistent answers to Q over I w.r.t. D is
the set of tuples

ans(Q, I,D) = {t | t ∈ Q[R] for eachR ∈ repI(D) }.

Informally, a tuple t is a consistent answer if it is a consequence under standard certainty semantics for each
possible repair of the database D.

Example 3.1 Recall that in our scenario, the retrieved global database ret(I0,D0) shown in Figure 1 vi-
olates the key constraint on team , witnessed by team(RM, Roma, 10) and team(RM, Real Madrid, 10).
A repair results by removing exactly one of these facts; hence, repI0

(D0) = {R1,R2}, where R1 and
R2 are as shown in Figure 2. For the query Q = 〈q,P〉, where P = {q(x) ← player(x, y, z), q(x) ←
team(v, w, x)}, we thus obtain that ans(Q, I0,D0) = {(8), (9), (10)}.

If we consider another query Q′ = 〈q′,P ′〉, with P ′ = {q′(y) ← team(x, y, z)}, we have that
ans(Q′, I0,D0) = {(Man. Utd.)}, while considering Q′′ = 〈q′′,P ′′〉, P ′′ = {q′′(x, z) ← team(x, y, z)},
we obtain that ans(Q′′, I0,D0) = {(RM, 10), (MU, 8)}. 2
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playerR1 :
10 Totti RM
9 Beckham MU

teamR1 :
RM Roma 10
MU Man. Utd. 8

coachR1 : 7 Camacho RM

playerR2 :
10 Totti RM
9 Beckham MU

teamR2 :
MU Man. Utd. 8
RM Real Madrid 10

coachR2 : 7 Camacho RM

Figure 2: Repairs of I0 w.r.t. D0.

4 Logic Programming for Consistent Query Answering

We now describe a generic logic programming framework for computing consistent answers to queries
posed to a data integration system in which inconsistency possibly raises.

4.1 Logic Programming Specification

According to several proposals in the literature [45, 12, 17, 14], we provide answers to user queries by
encoding the mapping assertions inM and the constraints in Σ by means of a Datalog program enriched
with unstratified negation or disjunction, in such a way that the stable models of this program map to the
repairs of the retrieved global database.

Definition 4.1 Let I = 〈G,S,M〉 be a data integration system where G = 〈Ψ, Σ〉. Let D be a source
database for I, and let Q = 〈q,P〉 be a non-recursive Datalog¬ query over G. Then, a logic specification
for querying I with Q is a safe Datalog∨,¬ program ΠI(Q) = ΠM ∪ΠΣ ∪ΠQ such that

1. ret(I,D) 
 SM(ΠM[D]), where ΠM is a safe Datalog¬s program,

2. repI(D) 
 SM(ΠΣ[ret(I,D)]), and

3. ans(Q, I,D) = Q′[D], where Q′ = 〈q, ΠI(Q)〉, i.e., ans(Q, I,D) = {t | q(t) ∈ M for each
M ∈ SM((ΠM ∪ΠΣ ∪ΠQ)[D])}, where ΠQ is a non-recursive safe Datalog¬ program,

and 
 denotes a polynomial-time computable correspondence between two sets. 2

Notice that for the viability of such a logic specification in practice, it is assumed that repairs are on
the active domain of the retrieved global database ret(I,D); this can be ensured by safety of constraints or
limited use of built-ins (cf. discussion in Section 3.2).

The above definition establishes a connection between the semantics of ΠI(Q) and the consistent an-
swers to a query Q posed to I (Item 3). In particular, ΠI(Q) is composed by three modules that can be
hierarchically evaluated, i.e., ΠM . ΠΣ . ΠQ [26], using Splitting Sets [50]. More precisely,

• ΠM is used for retrieving data from the sources: the retrieved global database can be derived from
its unique stable model (Item 1), provided some syntactic transformations, which typically are simple
encodings such that 
 is a linear-time computable bijection;

• ΠΣ is used for enforcing the constraints of Σ on the retrieved global database, whose repairs w.r.t. the
global schema G can be derived from the stable models of ΠΣ[ret(I,D)] (Item 2). Correspondence
between repairs and stable models is established again by a transformation 
;

• finally, ΠQ is used for encoding the logic program P in the user query Q.
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Our framework generalizes logic programming formalizations proposed in different integration settings,
such as the ones presented in [45, 12, 17, 14]. In this respect, the precise structure of the program ΠI(Q) de-
pends on the form of the mapping, the language adopted for specifying mapping views and user queries, and
the nature of constraints expressed on the global schema. We point out that, logic programming specifica-
tions proposed in the setting of a single inconsistent database [36, 4, 8] are also captured by our framework.
Indeed, a single inconsistent database can be conceived as the retrieved global database of a GAV data inte-
gration system in which the mapping is assumed exact. The logic programs for querying a single database
are of the form ΠI(Q) = ΠΣ∪ΠQ. Notice also that other logic-based approaches to data integration, based
on abductive logic programming [5] and ID-logic [56], do not fit this framework.

4.2 Examples

We now consider some approaches for consistent query answering in inconsistent database and data inte-
gration systems that rely on the use of logic programming. We provide an example of logic program for
each approach and show how it maps to the logic program specification for querying data integration systems
given in Definition 4.1. The notion of repair adopted in the papers described below relies on the prototypical,
natural preorder ≤DB, originally introduced in [2], for which R1 ≤DB R2 iff 4(R1,DB) ⊆ 4(R2,DB).
The only exception is [17]. However, for the set of integrity constraints studied in [17] and considered in
the following the adoption of a different repair semantics is of no concern. Logic programs that we devise
in this section refer to the football team scenario introduced in Example 1.1.

4.2.1 Logic programs with unstratified negation

The paper [17] addresses the repair problem in GAV data integration systems in which key constraints are
issued over the global schema, and presents a technique for consistent query answering based on the use
of Datalog¬. According to [17], given a data integration system I = 〈G,S,M〉, key constraints in G can
be encoded into a suitable Datalog¬ program PKD, whereas views in the mapping, which are expressed
as union of conjunctive queries, are casted into a Datalog program PM . Consistent answers to a union of
conjunctive queries Q over I w.r.t. a source databaseD are returned by the evaluation of the Datalog¬ query
〈q,PQ ∪ PKD ∪ PM 〉, where 〈q,PQ〉 is the Datalog encoding of the query Q.

In the following, we provide the logic program produced by the above technique for our running exam-
ple. To this aim, we exploit an extension of the algorithm of [17], provided in [39], that allows for dealing
with the exclusion dependencies specified in Example 1.1.

q(x) ← player(x, y, z)

q(x) ← team(v, w, x)

player
D

(x, y, z) ← s1(x, y, z, w)

teamD(x, y, z) ← s2(x, y, z)

teamD(x, y, z) ← s3(x, y, z)

coachD(x, y, z) ← s4(x, y, z)

player(x, y, z) ← player
D

(x, y, z) , not player(x, y, z)

player(x, y, z) ← player(x,w, z) , player
D

(x, y, z) , y 6= v

team(x, y, z) ← teamD(x, y, z) , not team(x, y, z)

team(x, y, z) ← team(x, v, w) , teamD(x, y, z) , y 6= v
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team(x, y, z) ← team(x, v, w) , teamD(x, y, z) , z 6= w

coach(x, y, z) ← coachD(x, y, z) , not coach(x, y, z)

coach(x, y, z) ← coach(x,w, z) , coachD(x, y, z) , y 6= w

player(x, y, z) ← player
D

(x, y, z) , coach(x,w, z)

coach(x, y, z) ← coachD(x, y, z) , team(z, w, x)

coach(x, y, z) ← coachD(x, y, z) , player(x,w, z)

team(x, y, z) ← teamD(x, y, z) , coach(z, w, x)

In the above program, PQ is constituted by the first two rules; PM comprises the rules ranging from
the 3rd to the 6th, PKD the rules ranging from the 7th to the 15th, whereas the last four rules, which we
denote by PED, encode exclusion dependencies. Informally, for each global relation r, the above program
contains (i) a relation rD that represents rret(I,D); (ii) a relation r that represents a subset of rret(I,D) that
is consistent with the key constraints and the exclusion dependencies for r; (iii) an auxiliary relation r. It is
easy to see that the above program constitutes the logic specification ΠI0(Q) = ΠM0 ∪ ΠΣ0 ∪ ΠQ, where
ΠM0 = PM , ΠΣ = PKD ∪ PED, and ΠQ = PQ.

We point out that in [17], together with key constraints, also (existentially quantified) inclusion depen-
dencies in the global schema G are considered. In this respect, a query reformulation technique is given
that, on the basis of inclusion dependencies on G, rewrites the user query Q into a new union of conjunctive
queries QID, again expressed over the global schema, in a way such that the consistent answers to Q over
I w.r.t. a source database D coincide with consistent answers to QID over I ′ w.r.t. D, where I ′ is obtained
from I by dropping the inclusion dependencies of G. In other words, after computing QID, it is possible to
proceed as if inclusion dependencies were not specified on the global schema, i.e., by providing the logic
specification for querying I ′ with QID described above. Hence, after the first reformulation, the problem of
computing consistent answers in the above setting and our problem coincide.

4.2.2 Logic programs with exceptions

A specification of database repairs for consistent query answering in inconsistent databases exploiting logic
programs with exceptions (LPEs) is presented in [4]. We recall that this sort of programs, firstly intro-
duced by [44], contains both default rules, i.e., classic clauses with classic negation in the body literals, and
exception rules, i.e., clauses with negative heads whose conclusion overrides conclusions of default ones.
Actually, [4] presents an extension of LPEs for accommodating both negative defaults and extended dis-
junctive exceptions whose semantics is given in terms of e-answer sets, and shows how these models are, in
fact, in correspondence with standard stable models of a suitable standard disjunctive logic program.

In more detail, the transformation in [4] associates to each relation p in the database schema a new
relation p′ corresponding to its repaired version, and defines ΠΣ to contain three set of rules: (i) trigger-
ing exceptions, (ii) stabilizing exceptions, and (iii) persistence defaults. Let us, for instance, consider our
running example. Then, triggering exception rules are as follows.

¬ player ′(x, y, z) ∨ ¬ player ′(x, y1, z) ← player(x, y, z), player(x, y1, z), y 6= y1.

¬ team ′(x, y, z) ∨ ¬ team ′(x, y1, z1) ← team(x, y, z), team(x, y1, z1), y 6= y1

¬ team ′(x, y, z) ∨ ¬ team ′(x, y1, z1) ← team(x, y, z), team(x, y1, z1), z 6= z1

¬ coach ′(x, y, z) ∨ ¬ coach ′(x, y1, z) ← coach(x, y, z), coach(x, y1, z), y 6= y1

¬ coach ′(x, y, z) ∨ ¬ player ′(x, y1, z) ← coach(x, y, z), player(x, y1, z)
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¬ coach ′(x, y, z) ∨ ¬ team ′(z, y1, x) ← coach(x, y, z), team(z, y1, x)

The above rules represent a suitable rewriting of the integrity constraints that encodes the basic way of
repairing each inconsistency. For example, a conflict on a key is resolved by deleting one of the tuples that
cause the conflict, i.e., by not including this tuple in the extension of the corresponding primed predicate.
Notice that, in the case of (universally quantified) inclusion dependencies, it is possible to have repairs by
adding tuples. For instance, the constraint p(x, y) ⊃ q(x, y) would be repaired with the rule

¬ p′(x, y) ∨ q′(x, y)← p(x, y),not q(x, y).

Stabilizing exception rules and persistence defaults have been introduced for technical reasons. Indeed, rules
of the former kind state that each integrity constraint must be eventually satisfied in the repair while rules of
the latter kind impose that by default each relation p′ contains the facts in p.

Given the rewriting ΠΣ, the user query can be simply issued over the primed relations, i.e., the program
ΠQ is easily obtained by substituting in the user query (suitably expressed in Datalog) each predicate p with
its repaired version p′. Notice that the framework proposed in [4] can be easily adapted to deal with GAV
data integration systems with exact mappings: basically, it is sufficient to add the Datalog specification of
the GAV mapping to ΠΣ ∪ΠQ.

4.2.3 Annotated Logic

The paper [8] proposes to specify database repairs by means of disjunctive normal programs under the sta-
ble model semantics. To this aim, suitable annotations are used in an extra argument introduced in each
(non built-in) predicate of the logic program, for marking the operations of insertion and deletion of tuples
required in the repair process. The idea of annotating predicates has been inspired by the Annotated Predi-
cate Calculus [43], a non-classical logic in which inconsistencies may be accommodated without trivializing
reasoning. The values used in [8] for the annotations are:

• td and fd, which indicate whether, before the repair, a given tuple is in the database or not, respec-
tively;

• ta and fa, which represent advisory values that indicate how to resolve possible conflicts, i.e., a tuple
annotated with ta (resp. fa) has to be inserted (resp. deleted) in the database;

• t
∗ and f

∗, which indicate whether a given tuple is in the repaired database or not, respectively.

For instance, the annotated logic program used for solving the conflicts on the key of the relation player in
our running example is as follows:

player(x, y, z, t∗) ← player(x, y, z, td)

player(x, y, z, t∗) ← player(x, y, z, ta)

player(x, y, z, f∗) ← not player(x, y, z, td)

player(x, y, z, f∗) ← player(x, y, z, fa)

player(x, y, z, fa) ∨ player(x, y1, z, fa) ← player(x, y, z, t∗), player(x, y1, z, t∗), y 6= y1.

Furthermore, each fact in the original database is assumed to be annotated by td.
Intuitively, the last rule says that when the key of the relation player is violated (body of the rule), the

database instance has to be repaired according to one of the two alternatives shown in the head. Possible
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interaction between different constraints are then taken into account by the other rules, which force the repair
process to continue and stabilize in a state in which all the integrity constraints hold. Indeed, annotations t

∗

and f
∗ can feed back rules of the last kind, until consistency is restored. This should be evident if we consider

also a constraint of the form coach(x, y, z) ⊃ player(x, y, z) (we disregard exclusion dependencies of our
running example for a while). This constraint is repaired with the rule

coach(x, y, z, fa) ∨ player(x, y, z, ta)← coach(x, y, z, t∗), player(x, y, z, f∗),

besides the rules for the predicate coach that compute facts with annotations t
∗ (resp. f

∗) from facts
annotated by td or ta (resp. fd or fa).

The program ΠQ is then computed by reformulating the original query according to the annotations: in
our running example, we have

q(x)← player(x, y, z, ta) ∨ (player(x, y, z, td) ∧ ¬player(x, y, z, fa))
q(x)← team(v, w, x, ta) ∨ (team(v, w, x, td) ∧ ¬team(v, w, x, fa)).

The above rewriting is proposed in [8] for the setting of a single database but can be straightforwardly
extended to work in GAV data integration systems. An interesting, more complex generalization to the LAV
setting appears instead in [14, 15]. Since in LAV each source relation is associated with a query over the
global schema, an exact specification of which data of the sources fit the global schema is actually missing.
In general, given a source database, several different ways of populating the global schema according to the
mapping may exist. Hence, not a single but multiple retrieved global databases have be taken into account
for repairing. According to [14, 15], the repairs are defined as those consistent global databases which have
a minimal (under set inclusion) symmetric difference to one of the minimal (again, under set inclusion)
retrieved global databases. In other words, each such retrieved global database is repaired by adopting the
classic preorder of [2]. These repairs can be obtained from the stable models of a suitable disjunctive logic
program, which comprises rules for the encoding of integrity constraints constructed as in [8], and specific
rules for computing the minimal retrieved global databases.

5 Optimization of Query Answering

The source of complexity in evaluating the program ΠI(Q) defined in the above section actually lies in the
conflict resolution module ΠΣ. Indeed, whereas both ΠM, which is in general a Datalog¬s program, and
ΠQ, which is in general a non-recursive Datalog¬ program, can be evaluated in polynomial time with respect
to underlying databases (data complexity) [22], ΠΣ is in general a Datalog∨,¬ program [36], whose evalu-
ation data complexity is at the second level of the polynomial hierarchy [22]. Furthermore, also evaluating
programs with lower complexity over large data sets by means of stable models solvers, quickly becomes
infeasible. This calls for suitable optimization methods speeding up the evaluation (as recently stated in
[14]).

Concentrating on the most relevant and computational expensive aspects of the optimization, we focus
here on ΠΣ, assuming that ret(I,D) is already computed, and devise intelligent techniques for the evalua-
tion of ΠQ, which has to be performed over each repair of the retrieved global database.

Roughly speaking, in our approach we first localize in the retrieved global database ret(I,D) the facts
that are not “affected” (formally specified in Section 5.2) by any violation. Then, we obtain the repairs
of ret(I,D) by computing the repairs of the affected facts, and by then adding to each such repair the
unaffected facts. Finally, we suitably recombine the repairs of ret(I,D) to provide consistent answers to
user queries.
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Notice that computing the repairs of the set of affected facts means in practice evaluating the program ΠΣ

only over this set, rather than on the whole retrieved global database, as needed when directly computing
the repairs of ret(I,D) in the evaluation of the program ΠI(Q) over the source database D (Item 2 in
Definition 4.1). Since, in general, the size of the set of the affected facts is much smaller than the size of the
retrieved global database, this way of proceeding is significantly faster than the naive evaluation of ΠI(Q).
For this to work, we assume that the preference orders <DB satisfy the properties (?), (†), and (‡) from
Section 3.

In a nutshell, our overall optimization approach comprises the following steps:

Relevance Pruning: We first eliminate from ΠI(Q) the rules that are not relevant for computing answers
to a user query Q. This can be done by means of a static syntactic analysis of the program ΠI(Q),
and it is not a crucial aspect of our technique.

Decomposition: We localize inconsistency in the retrieved global database, and single out facts that are
affected by repair, and facts that are not. Finally, we compute repairs of the set of affected facts, and
from them we obtain repairs of the retrieved global database, by incorporating non affected facts.

Recombination: We suitably recombine the repairs of the retrieved global database for computing the
answers to Q.

In the rest of this section, we describe in detail the above steps.

5.1 Relevance Pruning

In this step, we localize the portion of ret(I,D) that is needed to answer the query Q, thus avoiding to
retrieve from the sources tuples that do not contribute to answering the query; moreover, we also select the
rules of ΠI(Q) that are necessary for handling constraint violations in such a portion of the retrieved global
database, thus disregarding non relevant rules.

It is worthwhile noting that the relevance pruning phase relies on principles that are quite close to those
exploited by the magic-set technique [6, 9]. Indeed, this phase is aimed at singling out a (small) portion of
the logic specification which suffices for evaluating a given user query, by identifying predicates and rules
which are relevant for answering user queries. Actually, in the magic-set technique the notion of relevance
has been “syntactically” defined on the basis of some structural properties of the programs at hand, in order
to have a kind of general optimization strategy. Conversely, in our approach the notion of relevance will be
“semantically” defined on the basis of the integrity constraints issued over the global schema, thereby taking
advantage of the specific application domain.

Relevance pruning is carried out by preliminarily singling out the relation predicates that are relevant
for answering a given user query.

Definition 5.1 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉, and Q a query over I.
Then, the set of relevant relation symbols w.r.t. Q is the smallest set of relation symbols r in Ψ such that

(a) r is a predicate in the body of the rules of Q, or

(b) r is involved in a dependency in Σ with a relation s relevant w.r.t. Q. 2

We denote by retr(I,D, Q) the subset of ret(I,D) that contains only the extension of relations that are
relevant w.r.t. Q, i.e., ret r(I,D, Q) = {r(t) ∈ ret(I,D) | r is relevant w.r.t. Q}.
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Example 5.1 Consider again the query Q = 〈q,P〉 in Example 2.2, where

P = {q(x)← player(x, y, z), q(x)← team(v, w, x)}.

Then, the relations player and team are relevant due to condition (a), whereas relation coach is relevant
due to condition (b), witnessed by the constraints (dropping quantifiers) coach(x, y, z)∧player(x′, y′, z) ⊃
x6=x′ and coach(x, y, z) ∧ team(z, y′, x′) ⊃ x6=x′. Hence, in this case ret r(I0,D0, Q) = ret(I0,D0). 2

Armed with the above notions, we next define which is the portion of ΠI(Q) that can be considered
relevant for computing consistent answers to Q w.r.t. D.

Definition 5.2 Given a data integration system I, and a logic program specification ΠI(Q) for I, we say
that a rule ρ in ΠI(Q) is relevant w.r.t. Q, if ρ contains a literal expressed in terms of a relation symbol
r that is relevant w.r.t. Q, or predicates occurring in ρ occur also in a rule ρ′ that is relevant w.r.t. Q. We
denote by ΠIr(Q) the set of rules in ΠI(Q) that are relevant w.r.t. Q. 2

Obviously, the above definitions are well-founded if evaluating ΠIr(Q) over retr(I,D, Q) is sufficient
to compute consistent answers to Q over I w.r.t. D. However, the soundness of the relevance pruning phase
strongly depends on the particular structure of the logic specification ΠI(Q) = ΠM ∪ ΠΣ ∪ ΠQ used for
querying I. And, in fact, posed Q = 〈q,P〉, for most of the logic specification in the literature, it is not
difficult to prove that

ans(Q, I,D) 
 {t | q(t) ∈M for each M ∈ SM((ΠQ ∪ΠΣ)r[retr(I,D, Q)])}

where (ΠQ ∪ ΠΣ)r indicates the relevant portion of ΠQ ∪ ΠΣ. To this aim, we first recall that, by Defini-
tion 4.1,

ans(Q, I,D) 
 {t | q(t) ∈M for each M ∈ SM((ΠQ ∪ΠΣ)[ret(I,D)])}.

Hence, in order to establish soundness of relevance pruning, it is sufficient to show that the following two
properties hold:

R1 ∀M ∈ SM((ΠQ ∪ΠΣ)r[retr(I,D, Q)]), ∃M ′ ∈ SM((ΠQ ∪ΠΣ)[ret(I,D)]) such that M |q = M ′|q

R2 ∀M ′ ∈ SM((ΠQ ∪ΠΣ)[ret(I,D)]), ∃M ∈ SM((ΠQ ∪ΠΣ)r[retr(I,D, Q)]) such that M |q = M ′|q

where S|p = {p(t) ∈ S} for any set of facts S and predicate p.
Consider the programs P = (ΠQ ∪ ΠΣ)[ret(I,D)] and Pr = (ΠQ ∪ ΠΣ)r[retr(I,D, Q)]), and notice

that Pr ⊆ P . Then, let Pnr result from P by deleting all rules in Pr. For most of the logic specifications in
the literature, e.g., for those considered in the previous section, it is easy to see that by construction, (i) Pnr

is a Splitting Set [50] for P and (ii) SM(P) 6= ∅. Then, both parts Pr and Pnr have stable models and in
fact SM(P) =

⋃
{SM(Pnr ∪M) | M ∈ SM(Pr)}. Then, properties R1 and R2 are straightforward from

the fact that the predicate q is defined in the module Pr.
Armed with this result, we implement the relevance pruning step by computing the program ΠIr(Q)

and retr(I,D, Q). Notice that the cost of this step is dominated by the effort required for computing the
relation symbols that are relevant w.r.t Q and does not require any database scan. Indeed, to this aim we
need to apply Definition 5.1, whose cost is quadratic in the size of the schema.

In the following, we implicitly consider ret r(I,D, Q) and ΠIr(Q). Nonetheless, to keep things simple,
we do not use the subscript r, and simply refer to ret(I,D) and ΠI(Q).
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(=ret(I,D))
DB

ADB

SDB

C∗
DB

CDB

Conflict set CDB : facts occurring in ground(Σ) violated in DB.
Conflict closure C∗

DB : syntactic conflict propagation by Σ

SDB = DB \ CDB
∗ is the safe database for DB.

A∗
DB = DB ∩ CDB

∗ is the affected database for DB.

Figure 3: Decomposition for database repair

We conclude this section by pointing out that the solution we have provided can be extended and opti-
mized in several directions. Firstly, the notion of relevance may be refined such that arbitrary logic specifi-
cations of repairs can be handled, assuming that repairs exist, cf. [24]. Secondly, the pruning step strongly
depends on the user query and the form of constraints on the global schema, and proper solutions for par-
ticular and significant classes of queries and constraints might be adopted. For instance, the case in which
only key constraints are specified on the relations involved in the query can be basically faced by computing
only the extension of the EDB predicates occurring in the query Q. However, since pruning techniques are
not the main focus of the paper, we have introduced a general technique which can be eventually improved
by exploiting some additional knowledge on the type of constraints issued over the global schema.

5.2 Decomposition

In this section, we investigate how to localize inconsistency in the retrieved global database, i.e., compute
the set of facts that will be possibly touched by repair, called affected database, and how to obtain all repairs
of the retrieved global database from the repairs of the affected database. We start with some concepts for a
single database, which are illustrated in Figure 3.

Let DB be a database for a relational schema RS = 〈Ψ, Σ〉. Then, the conflict set for DB w.r.t. RS
is the set of facts CRS

DB = {p(t) | ∃σg ∈ ground(Σ), p(t) ∈ facts(σg), DB 6|= σg}, i.e., CRS
DB is the set of

facts occurring in the ground instances of Σ which are violated by DB. In the following, if clear from the
context, we shall drop the superscriptRS .

Example 5.2 In our ongoing example, letDB = ret(I0,D0). Then, the conflict set consists of the facts that
violate the key constraints on team , i.e., CDB = {team(RM, Roma, 10), team(RM, Real Madrid, 10)}. 2

Figure 3 shows that the conflict set may contain both facts of the database DB (as in Example 5.2)
and facts of F(RS) that do not belong to DB. For example, let DB = {p(a)}, and let RS contain the
dependency ∀xp(x) ⊃ q(x). Then, we have that CDB = {p(a), q(a)}.

Notice that, in general, the notion of conflict set is not sufficient to localize inconsistency in a database
instance. Actually, we must take also care of those facts of F(RS) that “indirectly” take part to constraint
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violations. To this aim, we introduce the notion of constraint-bounded facts: two facts p(t), p′(t′) in F(RS)
are constraint-bounded in RS , if there exists some σg ∈ ground(Σ) such that all constants occurring in
facts(σg) are from adom(DB,RS), and {p(t), p′(t′)} ⊆ facts(σg). (Note that by assumed safety of
constraints and the results of Section 3.2.1, we only need to consider adom(DB,RS).) Then, we provide
the following definition.

Definition 5.3 (Conflict closure; safe and affected database) LetRS=〈Ψ, Σ〉 be a relational schema and
DB a database for RS . Then, the conflict closure for DB, denoted by CRS

DB
∗, is the least set C ⊇ CRS

DB

which contains every fact p(t) constraint-bounded in RS with some fact p′(t′) ∈ C. Moreover, we call
SRS
DB

∗
= DB \ CRS

DB
∗ and ARS

DB
∗

= DB ∩ CRS
DB

∗ the safe database and the affected database for DB,
respectively. 2

As shown in Figure 5.2, CRS
DB

∗ may add to CRS
DB both facts in DB or outside DB. Assume for instance

that RS in the example above contains also the constraint ∀xq(x) ⊃ s(x). Then, we have that CRS
DB

∗
=

CDB ∪ {s(a)}. Notice, however, that CRS
DB and CRS

DB
∗ would have been the same even if s(a) was in DB. In

the following, we drop the superscriptRS from CRS
DB

∗, SRS
DB

∗ and ARS
DB

∗ ifRS is clear from the context.
Intuitively, C∗DB contains facts belonging to CDB, which therefore cause inconsistency, and facts which

possibly must be touched by repair in turn to avoid new inconsistency with Σ caused by previous repairing
actions. A∗

DB is the portion of C∗DB contained in DB, whereas S∗DB is the portion of DB that contains facts
not involved in constraint violations and that for sure will not be touched by repair.

Example 5.3 The facts team(RM, Roma, 10) and team(RM, Real Madrid, 10) are trivially in C∗DB, since
they are in CDB. Moreover, among other facts, C∗DB contains, for example, coach(7, Camacho, RM) and
player(10, Totti, RM), where the former is constraint-bounded, e.g., with team(RM, Roma, 10) due to
the ground constraint coach(7, Camacho, RM) ∧ team(team(RM, Roma, 10) ⊃ 7 6=10, and the latter is
constraint-bounded with coach(7, Camacho, RM) due to the ground constraint coach(7, Camacho, RM)∧
player(10, Totti, RM) ⊃ 76=10. Then, it is easy to see that, in this case,

A∗
DB = {team(RM, Roma, 10), team(RM, Real Madrid, 10),

coach(7, Camacho, RM), player(10, Totti, RM)}, and

S∗DB = {player(9, Beckham, MU)}.

Notice that, in this example, ADB
∗ contains facts as coach(7, Camacho, RM) and player(10, Totti, RM)}

that actually do not occur in any ground constraint which is violated by the facts in C∗DB. Even if this
might seem counterintuitive, at the end of this section we will show that, for the kind of integrity constraints
specified on the database schema, in this case (and in many other practical cases) there is no need to take into
account such facts in order to repair the database, and that we can focus simply on CDB. However, in general
it is necessary to resort to the computation of C∗DB which may contain also facts apparently not “dangerous”,
but which indirectly participate in constraint violations since are (iteratively) constraint-bounded with some
facts which cause a conflict. 2

Since in practice the size of A∗
DB is expected to be much smaller than the size of DB, the idea of our

approach is to focus the computation of the repairs to A∗
DB only, and then computing the repairs of DB

by adding the safe database S∗DB to each such repair. As we will see, this can be efficiently done in many
practical cases.

Before presenting the results that formally allow us to pursue our strategy, we need some preliminary
technical results. Consider the following two subsets of all ground constraints:
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(i) Σa
DB = {σg ∈ ground(Σ) | facts(σg) ∩ C∗DB 6= ∅} consists of all the ground constraints in which at

least one fact from C∗DB occurs;

(ii) Σs
DB = {σg ∈ ground(Σ) | facts(σg) 6⊆ C∗DB} consists of all the ground constraints in which at least

one fact occurs which is not in C∗DB.

We first show that Σa
DB and Σs

DB form a partitioning of ground(Σ).

Proposition 5.1 (Separation) Let DB be a database for a relational schemaRS = 〈Ψ, Σ〉. Then,

1. facts(Σa
DB) ⊆ C∗DB;

2. facts(Σs
DB) ∩ C∗DB = ∅;

3. Σa
DB ∩ Σs

DB = ∅ and Σa
DB ∪ Σs

DB = ground(Σ).

Proof.

1. By definition of Σa
DB, σg ∈ Σa

DB contains at least one fact p(t) from C∗DB; any other fact in σg is
constraint-bounded inRS with p(t), and hence it also must be in C∗DB.

2. Assume by contradiction that some σg ∈ Σs
DB with facts(σg)∩ C∗DB 6= ∅ exists. Then, Definition 5.3

implies facts(σg) ⊆ C∗DB, which contradicts σg ∈ Σs
DB.

3. Part 3 is straightforward from Part 1 and Part 2. 2

The separation property allows us to shed light on the structure of repairs:

Proposition 5.2 (Safe database) Let DB be a database for a relational schema RS = 〈Ψ, Σ〉. Then, for
each repairR ∈ repRS(DB), it holds that S∗DB = R \ C∗DB.

Proof. Towards a contradiction, suppose that there exists a repair R ∈ repRS(DB) such that R \ C∗DB 6=
S∗DB. Let R′ = (R ∩ C∗DB) ∪ (DB \ C∗DB). Consider any σg ∈ ground(Σ). By Proposition 5.1, either (i)
σg ∈ Σa

DB or (ii) σg ∈ Σs
DB. Moreover, since R |= σg, it follows that in case (i) R′ |= σg. Similarly, since

S∗DB |= σg in case (ii) R′ |= σg. Thus, R′ |= Σ. However, R′ differs from R only in the tuples which
are are not in C∗DB, and thus 4(R′,DB) ⊂ 4(R,DB). From Property (?), it follows R′ <DB R. This
contradictsR ∈ repRS(DB). 2

Prior to the main result of this section, we establish the following lemma:

Lemma 5.3 Let DB be a database for a relational schema RS = 〈Ψ, Σ〉, and let RSa
DB = 〈Ψ, Σa

DB〉.
Then, for each S ⊆ S∗DB, the following holds:

1. for eachR ∈ repRS(A∗
DB ∪ S), (R∩ C∗DB) ∈ repRSa

DB
(A∗

DB);

2. for each Ra ∈ repRSa

DB
(A∗

DB) there exists a set of facts S ′ ⊆ F(RS) \ C∗DB, such that (Ra ∪ S
′) ∈

repRS(A∗
DB ∪ S).

Proof.
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1. Let R ∈ repRS(A∗
DB ∪ S), and let Ra = R ∩ C∗DB. Since R |= Σ, Proposition 5.1 implies that

Ra |= Σa
DB, while R \ Ra |= Σs

DB. Assume Ra /∈ repRSa

DB
(A∗

DB). Then, there exists some R′
a ∈

repRSa

DB
(A∗

DB) such that R′
a <A∗

DB
Ra. Since R′

a |= Σa
DB and R \ Ra |= Σs

DB, we have that R′
a ∪

(R \ Ra) |= Σ. Since CRS
DB

∗ = CRSa

DB

DB

∗
and SRSa

DB

ADB

∗
= ∅, by Proposition 5.2 we have R′

a ⊆ C
RS
DB

∗. By
Property (†), it then follows that R′

a ∪ (R \ Ra) <A∗
DB

∪S Ra ∪ (R \ Ra) = R. This contradicts that
R ∈ repRS(A∗

DB ∪ S).

2. Let Ra ∈ repRSa

DB
(A∗

DB). We show that there exists some Ras ∈ repRS(A∗
DB ∪ S) of form Ras =

Ra∪S
′ such thatRas∩A

∗
DB = Ra. Indeed, consider an arbitrary repair S ′ ∈ repRSs

DB
(S) whereRSs

DB =

〈Ψ, Σs
DB〉. By Proposition 5.2, the safe part SRSs

DB

S

∗
of S w.r.t. RSs

DB satisfies SRSs

DB

S

∗
= S ′ \ C

RSs

DB

S

∗
.

Since SRSs

DB

S

∗
⊆ S and clearly CRS

DB
∗ is disjoint from CRSs

DB

S

∗
, we conclude that S ′ ∩ C∗DB = ∅. Using

Proposition 5.1, we can therefore see thatRa ∪ S
′ |= Σ.

If Ra ∪ S
′ /∈ repRS(A∗

DB ∪ S), then there must exist some R′ consistent with Σ such that R′ <A∗
DB

∪S

Ra ∪ S
′. We can writeR′ = R′

a ∪R
′
s, whereR′

a = R′ ∩ C∗DB andR′
s = Ras \ C

∗
DB. By Proposition 5.2,

Ra ⊆ C
∗
DB. From Property (‡) for R = C∗DB, it thus follows that either R′

a <A∗
DB
Ra or R′

s <S S
′.

Furthermore, by Proposition 5.1, R′
a |= Σa

DB and R′
s |= Σs

DB. However, this contradicts that both Ra ∈
repRSa

DB
(A∗

DB) and S ′ ∈ repRSs

DB
(S) hold. This proves Ra ∪ S

′ ∈ repRS(A∗
DB ∪ S). 2

Armed with the above concepts and results, we now turn to a data integration setting I in which we
have to repair the retrieved global database ret(I,D). The following theorem shows that its repairs can be
computed by looking only at A∗

ret(I,D).

Theorem 5.4 (Main) Let I = 〈G,S,M〉 be a data integration system, and let D be a source database for
I. Then,

1. for every R ∈ repI(D), there exists some R′ ∈ repG(A∗
ret(I,D)) such that R = R′ ∩ C∗

ret(I,D) ∪
S∗

ret(I,D);

2. for every R′ ∈ repG(A∗
ret(I,D)), there exists some R ∈ repI(D) such that R = R′ ∩ C∗

ret(I,D) ∪
S∗

ret(I,D).

Proof.

1. Recall that ret(I,D) = S∗
ret(I,D)∪A

∗
ret(I,D) and that repI(D) coincides with repG(ret(I,D)). Thus,

by applying first Item 1 of Lemma 5.3 for S = S∗
ret(I,D) and then Item 2 for S = ∅, we obtain that for

every R ∈ repI(D), there exists some R′ ∈ repG(A∗
ret(I,D)) of form R′ = (R ∩ C∗

ret(I,D)) ∪ S
′, where

S ′ ∩ C∗
ret(I,D) = ∅. Hence, R′ ∩ C∗

ret(I,D) = R ∩ C∗
ret(I,D). By Proposition 5.2, every R∈repI(D) is of

formR=(R∩ C∗
ret(I,D)) ∪ S

∗
ret(I,D). Therefore,R=(R′ ∩ C∗

ret(I,D)) ∪ S
∗
ret(I,D).

2. Similarly, applying first Item 1 of Lemma 5.3 for S = ∅ and then Item 2 for S = S∗
ret(I,D), we obtain

that for everyR′ ∈ repG(A∗
ret(I,D)), there exists someR ∈ repI(D) such thatR = (R′ ∩ C∗

ret(I,D))∪ S
′,

where S ′ ∩ C∗
ret(I,D) = ∅. Furthermore, Proposition 5.2 implies S ′ = S∗

ret(I,D). This concludes the
proof. 2
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As a consequence, for computing the repairs of the retrieved global database, we can exploit the program
ΠΣ that is part of the logic specification for querying I with a query Q (Definition 4.1), and proceed as
follows:

(1) evaluate the program ΠΣ on A∗
ret(I,D), and use the correspondence

repG(A∗
ret(I,D)) 
 SM(ΠΣ[A∗

ret(I,D)])

to obtain the repairs of A∗
ret(I,D);

(2) intersect each repair obtained with C∗
ret(I,D); and

(3) take for each such set the union with S∗
ret(I,D).

A drawback of this approach is that in Step (1), many facts outside C∗
ret(I,D) might be included in a

repair of A∗
ret(I,D), which are stripped off subsequently in Step (2). Consider, for example, a global schema

G containing the constraint p(a), which forces every database instance for G to contain the fact p(a), and
the database DB = {p(a)} for G. In this case C∗DB = CDB = A∗

DB = ∅ and S∗DB = DB. However,
repG(A∗

DB) = {{p(a)}} and {p(a)} ∩ C∗DB = ∅.

5.2.1 Constraints C1

As we show in the following, the above problem does not hold as soon as we consider only integrity con-
straints that belong to the class C1, which has been introduced in Section 2.2. Notice that this implies that
a constraint does not unconditionally enforce the inclusion of a fact in every database instance. Therefore,
C1 is the class which contains all constraints that are usually issued on a database schema.

Proposition 5.5 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉 such that Σ ⊆ C1,
and let D be a source database for I. Then, each repairR′ of A∗

ret(I,D) w.r.t. G satisfiesR′ ⊆ C∗
ret(I,D).

Proof. By Item 1 of Lemma 5.3, each R ∈ repG(A∗
ret(I,D)) gives rise to a repair R′ = R ∩ C∗

ret(I,D)

of A∗
ret(I,D) w.r.t. RSa

DB = 〈Ψ, Σa
DB〉. By Item 2 of Lemma 5.3, R′ in turn gives rise to a repair R′′ ∈

repG(A∗
ret(I,D)) of the formR′ ∪S ′ such that S ′ ∩ C∗

ret(I,D) = ∅. In fact, by of Lemma 5.3, S ′ is any repair
of S = ∅ w.r.t. 〈Ψ, Σs

DB〉. Since each constraint in Σs
DB has a nonempty body, it follows by the Property (?)

that S ′ = ∅. Hence R′′ = R ∩ C∗
ret(I,D) is a repair of A∗

ret(I,D) w.r.t. G. Now if R 6⊆ C∗
ret(I,D) would hold,

then 4(R′′,A∗
ret(I,D)) ⊂ 4(R,A∗

ret(I,D)) would hold, which by Property (?) implies R′′ <ret(I,D) R.
This is a contradiction. 2

The proposition above allows us to exploit Theorem 5.4 in a constructive way for many significant
classes of constraints, for which it implies a bijection between the repairs of the retrieved global database,
ret(I,D), and the repairs of its affected part A∗

ret(I,D) w.r.t. G.

Corollary 5.6 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉 such that Σ ⊆ C1.
Then, for every source database D for I, there exists a bijection µ : repI(D)→ repG(A∗

ret(I,D)), such that
for everyR ∈ repI(D),R = µ(R)∪S∗

ret(I,D).

Proof. By Theorem 5.4, we know that:

1. ∀R ∈ repI(D), ∃R′ ∈ repG(A∗
ret(I,D)) such thatR = R′ ∩ C∗

ret(I,D) ∪ S
∗
ret(I,D);
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2. ∀R′ ∈ repG(A∗
ret(I,D)), ∃R ∈ repI(D) such thatR = R′ ∩ C∗

ret(I,D) ∪ S
∗
ret(I,D).

The result follows by applying Proposition 5.5, and noting thatR′ ∩ C∗
ret(I,D) = R′. 2

According to this result, repairs of the retrieved global database can be computed by avoiding step (2)
of the procedure given above. Notice however that C∗

ret(I,D) has to be computed to single out bothA∗
ret(I,D)

and S∗
ret(I,D).

5.2.2 Constraints C0

We next consider the more restrictive class C0, where constraints have only built-in relations in the head.
Notably, the repairs of data integration systems with integrity constraints belonging to this class can be
computed by focusing on the immediate conflicts in the database, without the need of computing the conflict
closure set, which may be in general onerous. We will formally prove these properties in the rest of this
section, starting by the following proposition.

Proposition 5.7 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉 such that Σ ⊆ C0.
Then, for every source database D for I,

1. Cret(I,D) ⊆ ret(I,D);

2. each R ∈ repG(A∗
ret(I,D)) satisfies A∗

ret(I,D) \ Cret(I,D) ⊆ R ⊆ A
∗
ret(I,D) and 4(R,A∗

ret(I,D)) ⊆
Cret(I,D);

3. eachR ∈ repG(A∗
ret(I,D)) satisfiesR∩ Cret(I,D) ∈ repG(Cret(I,D));

4. eachR ∈ repG(Cret(I,D)) satisfiesR∪ (A∗
ret(I,D) \ Cret(I,D)) ∈ repG(A∗

ret(I,D)).

Proof.

1. By definition, Cret(I,D) is the set of ground facts occurring in the ground instances of constraints in Σ

that are violated in ret(I,D). Since each of them is of the form
∧l

i=1 Ai(~ci) ⊃
∨n

k=1 φk(~dk), they might
be violated only if all the body facts belong to ret(I,D). That is, Cret(I,D) ⊆ ret(I,D).

2. Let R ∈ repG(A∗
ret(I,D)). That R ⊆ A∗

ret(I,D) follows from Item 1: Since each σ ∈ Σ is of the
form (2) with m = 0 and l > 0, “repairs” of ground constraints delete only tuples. Indeed, suppose that
R 6⊆ A∗

ret(I,D) and consider R′ = R ∩ A∗
ret(I,D). Then, R′ |= Σ as well, and by Property (?) we would

arrive at a contradiction. Thus, we concludeR ⊆ A∗
ret(I,D).

We next show that 4(R,A∗
ret(I,D)) ⊆ Cret(I,D). Assume towards a contradiction that this does not hold.

Since R ⊆ A∗
ret(I,D), this implies that there exists some p(t) ∈ A∗

ret(I,D) \ R such that p(t) /∈ Cret(I,D).

By minimality ofR, p(t) occurs in the body of at least one constraint in ground(Σ) of the form
∧l

i=1 ai ⊃∨n
k=1 φk. No such constraint, however, is violated inA∗

ret(I,D). Hence,R∪{p(t)} |= Σ, which by Property
(?) implies that R /∈ repG(A∗

ret(I,D)); this is a contradiction. Therefore, 4(R,A∗
ret(I,D)) ⊆ Cret(I,D)

holds. From this andR ⊆ A∗
ret(I,D) it follows that A∗

ret(I,D) \ Cret(I,D) ⊆ R.

3. Consider R ∈ repG(A∗
ret(I,D)). Towards a contradiction, suppose R ∩ Cret(I,D) /∈ repG(Cret(I,D)).

Then,some R′ ∈ repG(Cret(I,D)) exists such that R′ <Cret(I,D)
R. Since all constraints have only built-

ins in their heads, R′ ⊆ Cret(I,D). But then (R \ Cret(I,D)) ∪ R
′ <A∗

ret(I,D)
R contradicts that R ∈

repG(A∗
ret(I,D)).
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4. For everyR′ ∈ rep(Cret(I,D)) w.r.t. G, it holds thatR = (A∗
ret(I,D) \ Cret(I,D))∪R

′ |= Σ. By Item 2
and Property (?), it thus follows that no R′′ ∈ repG(A∗

ret(I,D)) exists such that R′′ <A∗
ret(I,D)

R. Hence,
R ∈ repG(A∗

ret(I,D)). 2

We are now ready to prove that, under constraints belonging to the class C0, repI(D) can be obtained
by simply computing the repairs of the conflicting facts, Cret(I,D), in place of A∗

ret(I,D), thus avoiding the
construction of C∗

ret(I,D).

Theorem 5.8 Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉 such that Σ ⊆ C0. Then,
for each source database D for I, there exists a bijection ν : repI(D) → repG(Cret(I,D)), such that for
eachR ∈ repI(D),R = ν(R)∪(ret(I,D) \ Cret(I,D)).

Proof. By Corollary 5.6, we have a bijection µ : repI(D) → repG(A∗
ret(I,D)) such that the repairs of I

w.r.t. D are given by µ(R)∪S∗
ret(I,D), for allR ∈ repG(A∗

ret(I,D)). Items 1 and 3 of Proposition 5.7 and the
fact that each repairR ∈ repG(Cret(I,D)) satisfiesR ⊆ Cret(I,D) (apply Proposition 5.7 forDB = Cret(I,D)),
imply that all repairs ofA∗

ret(I,D) are given by (A∗
ret(I,D)\Cret(I,D))∪R, whereR ∈ rep(Cret(I,D)). Hence,

the mapping ν : repI(D)→ repG(Cret(I,D)) given by ν(R) = µ(R) ∩ Cret(I,D) is a bijection such that

R = µ(R) ∪ S∗ret(I,D)

= ν(R) ∪ (A∗
ret(I,D) \ Cret(I,D)) ∪ S

∗
ret(I,D)

= ν(R) ∪ ((ret(I,D) ∩ C∗ret(I,D)) \ Cret(I,D)) ∪ (ret(I,D) \ C∗ret(I,D))

= ν(R) ∪ (ret(I,D) \ Cret(I,D)) 2

As a consequence, for computing the repairs of the retrieved global database in the above setting, we
can proceed as follows:

(1) evaluate the program ΠΣ on Cret(I,D), in order to obtain repairs of Cret(I,D); and

(2) take for each such repair the union with ret(I,D) \ Cret(I,D).

We finally point out that, since Cret(I,D) ⊆ ret(I,D), the computation of the set Cret(I,D) can efficiently
be carried out by means of suitable SQL statements.

Example 5.4 Recall that Cret(I0,D0) = {team(RM, Roma, 10), team(RM, Real Madrid, 10)} (see Exam-
ple 5.2). The two repairs of Cret(I0,D0) are R′′

1 = {team(RM, Roma, 10)} and R′′
2 = {team(RM,

Real Madrid, 10)}.
According to Theorem 5.8, these two repairs are sufficient for computing the repair of the retrieved

global database ret(I0,D0). Indeed, noticing that ret(I0,D0) \ Cret(I0,D0) = {coach(7, Camacho, RM),
player(10, Totti, RM), player(9, Beckham, MU)}, it is easy to see thatR1 = R′′

1∪ret(I0,D0)\Cret(I0,D0)

and R2 = R′′
2 ∪ ret(I0,D0) \ Cret(I0,D0), where R1 and R2 are the only two repairs of ret(I0,D0), as

evidenced in Example 3.1. 2

5.2.3 Factorization

The above decomposition approach can be further refined by factorizing repairs into independent compo-
nents, whose orthogonal combinations yield all repairs. This may be achieved by partitioning the affected
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part A∗
ret(I,D) of the retrieved global database ret(I,D) for source database D w.r.t. I = 〈G,S,M〉 suit-

ably into disjoint subparts A∗
ret(I,D)

(1), . . . , A∗
ret(I,D)

(m), such that the repairs of A∗
ret(I,D) w.r.t. the global

schema G are obtained by combining the repairs of A∗
ret(I,D)

(1), . . . , A∗
ret(I,D)

(m) w.r.t. G in all possi-
ble ways. Thus, intuitively independent constraint violations (e.g., different violations of a key constraint)
may be independently repaired and combined. Furthermore, factorization leads to an exponential saving in
storing repairs in such a case.

We describe here such a partitioning for I = 〈G,S,M〉 where the constraints in G = 〈Ψ, Σ〉 have
nonempty bodies. Let us call a partitioning C1 . . . , Cm ⊆ C

∗
ret(I,D) of C∗

ret(I,D) repair-compliant, if every
pair of facts p(t), p′(t′) which are constraint-bounded in G belongs to the same component Ci. Then, we
can factorize repairing A∗

ret(I,D) into repairing the disjoint parts of A∗
ret(I,D) on C1, . . . , Cm. Intuitively, all

repairs of A∗
ret(I,D)

(i) = A∗
ret(I,D) ∩ Ci are confined to Ci, and by the abstract properties (?), (†), and (‡) of

the preference ordering, they can be orthogonally combined with the repairs of all other partsA∗
ret(I,D)∩Cj .

More formally, the following result can be shown with similar arguments as in the proofs of Lemma 5.3
and Theorem 5.4.

Theorem 5.9 (Factorization) Let I = 〈G,S,M〉 be a data integration system, where G = 〈Ψ, Σ〉 and
Σ ⊆ C1 and let D be a source database for I. Suppose that C1 . . . , Cm is a repair-compliant partitioning
of C∗

ret(I,D). Then,

repI(D) = {S∗ret(I,D) ∪R1 ∪ · · · ∪ Rm | Ri ∈ repG(A∗
ret(I,D) ∩ Ci), 1 ≤ i ≤ m}.

For the more restrictive yet practically important class C0 a similar factorization result holds with repair-
compliant partitioning C1, . . . , Cm of Cret(I,D) in place of the larger C∗

ret(I,D).
A repair-compliant partitioning C1 . . . , Cm of C∗

ret(I,D) (resp., Cret(I,D)) can be efficiently computed,
using techniques for computing the connected components of a graph. Note that Ci is a union of connected
components of the graph with nodes in C∗

ret(I,D) (resp., Cret(I,D)) and edges between each pair of facts which
are constraint-bounded in G.

5.3 Recombination

Let us now turn to the evaluation of a user query Q issued over a data integration system I , i.e., to com-
puting its consistent answers w.r.t. a source database D for I. According to the definition given in Section
3.1, a tuple t is a consistent answer to Q if t is in the answer to Q on any repair of the retrieved global
database ret(I,D). Then, in principle, we need to compute each such repair. To this aim, we can resort to
repairing the set A∗

ret(I,D), as established in the decomposition step. The following theorem indicates how
to recombine the repairs of A∗

ret(I,D) with S∗
ret(I,D) in order to provide consistent answers to Q.

Theorem 5.10 Let I = 〈G,S,M〉 be a data integration system, let D be a source database for I, and let
Q be a query over G. Then,

ans(Q, I,D) =
⋂

R′∈repG(A∗
ret(I,D)

)

Q[(R′ ∩ C∗
ret(I,D)) ∪ S

∗
ret(I,D)] (3)

Proof. Recall that, by definition, ans(Q, I,D) = {t | t∈Q[R] for eachR∈ repI(D)}=
⋂

R∈ repI(D) Q[R].
Then, the thesis follows by applying Theorem 5.4, stating that ∀R ∈ repI(D), ∃R′ ∈ repG(A∗

ret(I,D)) such
thatR = R′ ∩ C∗

ret(I,D) ∪ S
∗
ret(I,D). 2
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Note that the number of repairs of A∗
ret(I,D) is in general exponential in the number of violated con-

straints, and hence efficient computation of the intersection in (3) requires some intelligent strategy. Clearly,
the overall approach is beneficial only if the recombination cost does not compensate the gain of repair
localization. In the next section, we present an efficient technique for the recombination step.

6 Repair Compilation

In this section, we describe some practical recombination strategies, for effectively exploiting currently
available answer set solvers, such as DLV or Smodels, in order to efficiently query data integration systems.
Then, based on such strategies, we devise a general architecture (showed in Figure 6) that properly inter-
leaves the computational power of answer set solvers (for reasoning on the portion of data that really needs
to be repaired) and the scalability of database systems (for implementing the recombination step in a way
which circumvents the evaluation of the query Q on each repair of ret(I,D) separately). The architecture
shows that our approach can be profitably implemented on the top of any available answer set engine thereby
significantly speeding up query answering in data integration systems.

For the sake of simplicity, we deal here with constraints from the class C0. In this case, according to The-
orem 5.8, there exists a bijection between repI(D) and repG(Cret(I,D)), and for each R ∈ repG(Cret(I,D))
we have (by Proposition 5.7) that R ⊆ Cret(I,D) ⊆ ret(I,D). In other words, equation 3 in Theorem 5.10
can be rewritten to

ans(Q, I,D) =
⋂

R∈repG(Cret(I,D))

Q[R∪ (ret(I,D) \ Cret(I,D))].

We point out that our recombination technique also applies in the presence of constraints of general form.
In such a case, the source of complexity lies in the computation of C∗

ret(I,D).
For ease of exposition, in the following we denote with Sret(I,D) the set ret(I,D) \ Cret(I,D) and with

Aret(I,D) the set ret(I,D) \ Sret(I,D). Since, for constraints of class C0, Sret(I,D) and Aret(I,D) play the
same role that S∗

ret(I,D) and A∗
ret(I,D) play for general integrity constraints, we simply refer to them as

the safe and the affected portion of ret(I,D) respectively. Notice also that Aret(I,D) = Cret(I,D), hence,
equation 3 in Theorem 5.10 can be further rewritten to

ans(Q, I,D) =
⋂

R∈repG(Aret(I,D))

Q[R∪ Sret(I,D)].

6.1 Marking the Retrieved Global Database

The basic idea of our approach is to encode all repairs of the retrieved global database into a single database
over which the query can be evaluated by means of standard database techniques. More precisely, for each
global relation predicate s, we construct a new relation predicate sm by adding the auxiliary attribute mark
to the attributes in s. Values for the mark attribute are strings of bits, each assuming either the value 0 or 1.
To each tuple t ∈ sret(I,D), we associate a mark ′b1 . . . b′n such that, for every i ∈ {1, . . . , n}, bi = 1 if t
belongs to the i-th repair Ri ∈ repG(Aret(I,D)) = {R1, . . . ,Rn}, bi = 0 otherwise (indexing the repairs
is easy, e.g. using the order in which the deductive database system computes them). The resulting tuple
is stored in the corresponding relation predicate sm. The extension of all such sm constitutes the marked
database, denoted byMret(I,D). Note that the facts in Sret(I,D) (the bulk of data) can be marked without any
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playerm
Mret(I0,D0) :

10 Totti RM ′11′

9 Beckham MU ′11′ teamm
Mret(I0,D0) :

RM Roma 10 ′10′

MU Man. Utd. 8 ′11′

RM Real Madrid 10 ′01′

coachm
Mret(I0,D0) : 7 Camacho RM ′11′

Figure 4: The retrieved global database of our running example after marking.

preprocessing, as they belong to every repair Ri; hence, their mark is ′11 . . . 1′. For our running example,
the marked database derived from the repairs in Figure 2 is shown in Figure 4.

6.2 Query Reformulation

We now show how a non-recursive Datalog¬ query Q over a data integration system I can be reformulated
into an SQL query whose evaluation over the marked database obtained from ret(I,D) returns the consistent
answers to Q w.r.t. D. Let r : h(~x)← B(~x) be a safe rule of form

p0(~x0)← p1(~x1), ..., pl(~xl), not pl+1(~xl+1), ..., not pl+k(~xl+k)
2. (4)

Let ti,j denote the j-th term in pi(~xi) = pi(ti,1, . . . , ti,ki
), where 0 ≤ i ≤ l + k and 1 ≤ j ≤ ki. We

associate with r a normalized rule r′ obtained from it as follows:

1. Replace each ti,j by a new variable yi,j .

2. if ti,j is a constant c, then add the equality atom yi,j = c to the body;

3. if ti,j is a variable x, then add the equality atom yi,j = yi′,j′ to the body, where ti′,j′ is the first
occurrence of x in the body of r (from left to right), except for i = i′ and j = j′. (Note that safety of
r guarantees 0 ≤ i′ ≤ l.)

In query reformulation, we furthermore use the following functions ANDBIT, INVBIT, and SUMBIT

(which can be easily defined in a relational DBMS):

• ANDBIT is a binary function that takes as its input two bit strings ′a1 . . . a′n and ′b1 . . . b′n and returns
′c1 . . . c′n, where ci = ai ∧ bi is the Boolean “and,” i = 1, . . . , n;

• INVBIT is a unary function that takes as its input a bit string ′a1 . . . a′n and returns ′c1 . . . c′n, where
ci = ¬ai is the Boolean complement, i = 1, . . . , n;

• SUMBIT is an aggregate function such that given m strings of form ′bi,1 . . . b′i,n, i = 1, . . . , m, it
returns ′c1 . . . c′n, where cj = b1,j ∨ . . . ∨ bm,j is the Boolean “or,” j = 1, . . . , n.

Let Q = 〈q,P〉 be a query of arity n, where P consists of normalized rules r : h(~x′) ← B(~y′), e(~z),
where e(~z) are all the equality atoms introduced in normalization. Let ai, 1 ≤ i ≤ n, be pairwise distinct
identifiers for the attributes of a predicate of arity n. Then, each r is translated into the following SQL
statement SQLr (notice that, in the statements below, each relation symbol pi occurring in r is transformed
in the corresponding marked symbol pim):
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SELECT pi′m.aj′ AS aj (for each atom y0,j = yi′,j′ in e(~z))
c AS aj , (for each atom y0,j = c in e(~z))
(p1m.mark ANDBIT . . . ANDBIT plm.mark ANDBIT INVBIT(n pl+1m.mark) ANDBIT
. . . ANDBIT INVBIT(n pl+km.mark)) AS mark

FROM p1m, . . . , plm, SQLr,l+1, . . . , SQLr,l+k

WHERE pim.aj=pi′m.aj′ , (for each atom yi,j = yi′,j′ in e(~z), 0 < i ≤ l)
pim.aj=c, (for each atom yi,j = c in e(~z), 0 < i ≤ l)
n pim.aj=pi′m.aj′ , (for each atom yi,j = yi′,j′ in e(~z), l < i)
n pim.aj=c (for each atom yi,j = c in e(~z), l < i).

where each SQLr,h, l < h ≤ l + k, is a subquery of form:
( SELECT ∗ FROM phm

UNION

SELECT pi′m.aj′ AS ah, (for each atom yh,j = yi′,j′ in e(~z))
c AS ah, (for each atom yh,j = c in e(~z))
′0 . . . 0′ AS mark

FROM p1m, . . . , plm

WHERE pim.aj=pi′m.aj′ , (for each atom yi,j = yi′,j′ in e(~z), 0 < i ≤ l)
pim.aj=c, (for each atom yi,j = c in e(~z), 0 < i ≤ l)
ROW(a1, . . . , aki

) NOT IN (SELECT a1, . . . , aki
FROM pim)

) AS n phm.

Roughly speaking, in the statement SQLr, the ANDBIT operator allows us to obtain the mark ′b1, . . . , b
′
n

of each tuple t computed for the relation predicate h, according to rule r. More precisely, for i ∈ {1, . . . , n},
bi = 1 if t is in the repairRi ∈ repG(Cret(I,D)), bi = 0 otherwise.

For each negative literal not phm(~yh), the marks must be inverted, where missing tuples (which do not
belong to any repair, and thus would be marked ′0 . . . 0′) must be taken into account. To this aim, SQLr,h

singles out the tuples returned by the positive body of the rule r, projects them on the attributes that are in
join with the attributes in phm, and returns, with mark ′0 . . . 0′, those of such tuples that do not occur in phm

(taking then the union with the tuples in phm itself). The operator INVBIT guarantees that, for each such
tuple, the mark returned by SQLr is the one computed in the positive part of the query (in these cases indeed
the negative body is satisfied in any repair). Notice that safety of the rule r ensures that the two queries in
SQLr,h have the same arity.

All rules, r1, . . . , r`, defining the same predicate h of arity n, are collected into a view by the SQL
statement SQLh:

CREATE VIEW hm(a1, . . . , an,mark) AS

SELECT a1, . . . , an, SUMBIT(mark)
FROM (SQLr1

UNION . . . UNION SQLr`
)

GROUP BY a1, . . . an.
Finally, the answers to the query Q = 〈q,P〉 are obtained through the statement SQLQ:

SELECT a1, . . . an FROM qm WHERE mark =′ 1 . . . 1′,

where qm is the view predicate defined by the statement SQLq.
The above statement computes the query answers by considering only the facts that evaluate to true in

all repairs. Omitting a proof, we state the following correctness result.

Proposition 6.1 Let I = 〈G,S,M〉 be a data integration system ,D a source database for I, and Q a query
over G. Then,ans(Q, I,D) is the set of tuples computed by SQLQ on the marked databaseMret(I,D).
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Example 6.1 The query in our running query has two rules, viz.

r1 : q(x)← player(x, y, z) and r2 : q(x)← team(v, w, x).

Their normalized versions are:
r′1 : q(y0,1)← player(y1,1, y1,2, y1,3), y0,1 = y1,1;
r′2 : q(y0,1)← team(y1,1, y1,2, y1,3), y0,1 = y1,3.

Thus, they translate into corresponding SQL statements SQLr1 and SQLr2 :
SELECT playerm .Pcode AS a1 ,

playerm .mark AS mark ,
FROM playerm ;

SELECT teamm .Tleader AS a1 ,
teamm .mark AS mark ,

FROM teamm ;

Finally, a view for the query predicate q and the final query SQLQ are expressed as:

CREATE VIEW qm(a1 , mark) AS

SELECT a1 , SUMBIT(mark)
FROM (SQLr1

UNION SQLr2
)

GROUP BY a1 ;

SELECT a1FROM qm WHERE mark =′ 11′;

It is easy to see that the answers consist of the codes 8, 9, 10. 2

Example 6.2 Let us now consider a query Q = 〈q,P〉 asking for players that are not team leaders. Here P
contains again two rules, of which one defines an auxiliary predicate leader:

r1 : q(x)← player(x, y, z), not leader(x);
r2 : leader(x)← team(v, w, x).

The use of negation is reflected in SQLr′1
(let r′1, r′2 be the normalized versions of r1, r2):

SELECT playerm .Pcode AS a1 ,
(playerm .mark ANDBIT INVBIT(n leaderm .mark)) AS mark ,

FROM playerm ,
(SELECT playerm .Pcode AS a1 , ′00′ AS mark

FROM playerm WHERE ROW(playerm .Pcode) NOT IN (SELECT a1 FROM leaderm)
UNION SELECT ∗ FROM leaderm) AS n leaderm

WHERE n leaderm .a1 = playerm .Pcode;

Whereas the use of an auxiliary predicate causes the creation of two views: one for each intensional predi-
cate. The respective SQL statements SQLq and SQLleader, resemble the statement SQLq of the previous
example, however, each of them just depends on a single SQL query (SQLr′1

and SQLr′2
, respectively).

Moreover, it is easy to see that SQLr′2
and SQLQ equal the corresponding queries in the previous example.

Hence, as is easily retraced, the answer to query Q consists of the code 9, as expected. 2

Clearly, the SQL statements SQLr, SQLh, and SQLQ can by optimized (which will be done by the
DBMS anyway), and we do not consider optimization here. We remark that the final query, SQLQ, could be
as well integrated into the view definition, SQLq, for the query predicate q. By keeping the query definition
SQLQ separate, however, other query semantics can easily be expressed; e.g., possibilistic query semantics,
which selects those tuples which are computed by the query with respect to at least one repair, is obtained by
replacing the condition in the WHERE clause by mark 6= ′0 . . . 0′. We finally remark that the reformulation
technique is amenable to other semantics of negation in queries as well. In particular, if negation is evaluated
over all repairs, this can also be accomplished with slight modifications.
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(a) (b)

Figure 5: Additional space for marking w.r.t. the size of the global database ret(I,D)

6.3 Scaling the Technique

Since the number of repairs is exponential in the number of violated constraints, the marking string can be of
considerable length. For instance, 10 constraint violations, involving two facts each, give rise to 210 repairs,
and hence 1 Kbit is needed for marking each tuple.

Figure 5.(a) shows the additional space needed in our running example, depending on the size of the
retrieved global database, ret(I,D), for different numbers of constraint violations (assuming each violation
has two conflicting facts). Notice, for instance, that a relatively small retrieved global database of 100,000
facts requires almost 12,5 MB additional space, most of it for marking the safe part.

Even if this may seem a serious limitation to the applicability of our technique, we next show that
the space needed for marking the inconsistent database can be easily reduced in a considerable way. To
this aim, we refine our technique in a way such that only the affected part of the retrieved global database
needs actually to be marked. More specifically, to each global relation symbol r we associate two predicate
symbols rsafe and raff , which are intended to store the tuples that occur in the safe and the affected portion of
rret(I,D), respectively. Also, we construct the database instanceA′

ret(I,D) by replacing each relation symbol
r in Aret(I,D) with raff , and the database instance S ′

ret(I,D)by replacing each relation symbol r in Sret(I,D)

with rsafe , i.e., we have that r
A′

ret(I,D)

aff = {t | r(t) ∈ Aret(I,D)} and r
S′

ret(I,D)

safe = {t | r(t) ∈ Sret(I,D)}.
Then, given a query Q = 〈q,P〉 over I = 〈G,S,M〉, where G = 〈Ψ, Σ〉, and P is assumed normalized, we
proceed as follows:

– for each rule r : h(~x)← B(~x) of form (4) belonging to P , we replace each atom pj(~xj) of its positive
body, i.e., 1 ≤ j ≤ l, by paff j

(~xj) ∨ psafej
(~xj);

– we rewrite the resulting rule body into disjunctive normal form B1(~x) ∨ · · · ∨Bn(~x);

– we replace in Bi(~x) each negative literal not pj(~xj) with a global relation pj ∈ Ψ by the literals
not paff j

( ~xj), not psafej
(~xj), and let B′

i(~x) be the result;

– we replace r with the rules ri : h(~x)← B′
i(~x), for 1 ≤ i ≤ n;
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– in the SQL statement SQLri
for ri, replace every psafej m

by psafej
, and psafej

.mark by ′1 . . . 1′.

It is easy to see, that the SQL reformulation of the query Q refined as described above can be evaluated
over the database MA′

ret(I,D)
∪ S ′

ret(I,D). In other words, the reformulated query can be evaluated on a
database instance in which only affected tuples have been marked.

Notice that the above rewriting is exponential in the size of Q (more precisely, in the number of atoms).
However, as commonly agreed in the database community, the overhead in query complexity usually pays
off the advantage gained in data complexity.

With this approach, the additional space depends only on the size of Aret(I,D) but not on the size of
Sret(I,D). Figure 5.(b) shows the additional space for marking Aret(I,D) depending on the number of vio-
lations. For example, for 10 constraint violations involving two tuples each, the required marking space is
2*10*210 bits = 2.5 KB, independently on the size of ret(I,D). Furthermore, by allotting 5 MB (=2*20*220

bits) marking space, the technique may scale up to 20 constraint violations, involving two tuples each. The
improvements w.r.t. to the naive implementation should be evident. However, for a large number of violated
constraints, say 800, the technique becomes infeasible.

There are various possibilities to further increase scalability of the marking approach. Some of them are
discussed in the following.

Sliced marking. Within a given reasonable marking space, any number n of violations can be handled by
evaluating the query Q incrementally over a sequence of partially marked databases Mi

ret(I,D), 1 ≤ i ≤

dn/me, which contain the marks of m repairs at a time, i.e., each relation r inMi
ret(I,D) is marked with the

bits ′bm(i−1)+1 · · · b
′
m∗i, which are a small portion of the full marking ′b1 · · · b

′
n. Furthermore, we recall that

by relevance pruning, the number of conflicts which actually need to be considered to answer a particular
query Q might be drastically smaller than the total number of conflicts in the global database.

Factorization. Splitting up repairs by factorization as in Section 5.2.3 can help to drastically reduce the
marking space. For the above example of 20 violated constraints, only a few bytes of marking space is
needed for the 10 components A(1)

ret(I,D), . . .A(10)
ret(I,D). in total.

The marking strategy can be extended to support dynamic combination of the marked databasesM(1)
ret(I,D),

. . . , M(m)
ret(I,D), which store the set of repairs of A(1)

ret(I,D), . . .A(m)
ret(I,D). To this end, the mark strings

′b1 . . . b′n of tuples t in any relation r in M(i)
ret(I,D) must be “exploded” in order to correctly reflect the

membership of r(t) in a combined repair. For example, if t1 and t2 are tuples in repairs of components
rep(A

(1)
ret(I,D)) = {R1,1, R1,2}, and rep(A

(2)
ret(I,D)) = {R2,j | 1 ≤ j ≤ 4} with markers ′10′ and ′1001′,

respectively, then their exploded markers for the combined repairs may be ′1111000′ and ′10011001′, cor-
responding to lexicographic enumeration of rep(A

(1)
ret(I,D))× rep(A

(2)
ret(I,D)). We omit further details.

In combination with sliced marking, very large sets of repairs can be stored and recombined within man-
ageable resources. We note that the marked databasesM(i)

ret(I,D) can be computed in parallel. Furthermore,
in order to speed up online query answering, marked databases for a factorization of all conflicts in the
retrieved global database ret(I,D) can be precomputed at design time or after updates (if infrequent), and
for query evaluation those marked databases accessed which are relevant to a query.

Core computations. For positive queries Q, the number of groups of repairs that need to be considered
can be reduced in some cases by first computing a core of the query result by applying Q on the safe part
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Figure 6: System Architecture.

Sret(I,D) of the retrieved database, and stop the evaluation whenever the current query result after evaluation
ofMi

ret(I,D) coincides with this core (this can be efficiently checked on the database using COUNT DISTINCT
directives). Similar techniques for bounding query results from above and below have been discussed in [19],
and for certain classes of queries this can lead to significant savings.

6.4 General Architecture

The general architecture supporting our repair compilation technique is shown in Figure 6. Its kernel is
constituted by the Query Evaluator, which implements both the marking and the recombination step.

The functionalities of the components in the architecture are as follows.

• Pruner: It takes the user query Q and the specification of the data integration systems I, and produces
an equivalent specification (w.r.t. Q) in which relations and constraints not relevant for answering the query
are stripped off.

• Logic Translator: It takes the specification of I relevant for Q returned by the Pruner, and produces the
logic program ΠI(Q) = ΠM∪ΠΣ∪ΠQ. ΠI(Q) is subsequently processed by the Conflict Isolator module,
which takes ΠM as input, the Stable Models Engine, which considers ΠΣ, and the Query Reformulator,
whose input is ΠQ.

• Constraint Violation Isolator: It is responsible of processing the program ΠM by accessing the in-
dividual sources to compute the retrieved global database ret(I,D). Specifically, this module produces a
set of SQL views corresponding to the (GAV) mapping in I, which can be directly evaluated by a DBMS.
Notice that, in the actual implementation of the module, SQL views are not aimed at simply materializing
ret(I,D), but they produce A′

ret(I,D) and S ′
ret(I,D), i.e., the safe and the affected databases in which each

relation symbol r is replaced with raff or rsafe , respectively.

• Stable Models Engine: It takes the “affected” relations (constituting the database A′
ret(I,D)) and com-

putes the set of repairs repG(A′
ret(I,D)) by exploiting the program ΠΣ.

• Marker: It wraps the output of the Stable Models Engine and produces the statements needed for
storing the marked relations.
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• DB Interface: It is responsible for the interfacing between the Stable Models Engine and the DBMS.
Specifically, it executes the statements needed for storing the marked relations in order to implement the
technique described in Section 6.3.

• Query Reformulator: It takes the user query and transforms it in a suitable set of SQL statements that
can be executed directly over the DBMS.

• Query Executor: It is responsible for the execution of the reformulated query.

• DBMS: It is a Database Management System which stores data wrapped (not showed) from the sources
and the marked databaseMA′

ret(I,D)
∪S ′

ret(I,D) over which the SQL reformulation of the query Q has to be
evaluated.

An interesting aspect of this architecture is that the isolation of the conflicts and the marking of the
relations can be often pre-computed without affecting run-time execution costs. Indeed, given a data inte-
gration system I, if the pruning module is bypassed, then all the relations are considered relevant as far as
the query is concerned, and all the conflicting tuples in the retrieved global database are marked. Obviously,
one can also use a finer control on the pruning, e.g., by choosing a set of relations that are relevant for a
given workload of queries.

It should be clear that computing the repairs for the whole data integration system is a quite expensive
activity. However, as mentioned above it may be done at design-time and after updates (assuming that
the latter are infrequent), such that the run-time performance greatly improves. In fact, in order to answer
a query, it is then sufficient to rewrite it in terms of suitable SQL statements over the marked database,
accessing only those components of a factorization which are relevant for query answering as determined by
the relevance analysis. Then, compared to naive evaluation by means of an answer set engine, the execution
time is negligible.

7 Experimental Results

In this section, we present experimental results for evaluating the effectiveness of our approach. The ex-
periments show the benefits of the techniques proposed in the paper (and in particular of exploiting DBMS
technology) over implementations of data integration systems completely relying on stable model engines.

7.1 Compared Methods, Benchmark Problems, and Data

In order to evaluate the impact of our technique, we assessed the time needed for query answering when the
DLV system computes repairs of the affected part of the retrieved global database only, plus the time required
for the recombination of the results in the PostgreSQL relational DBMS, which allows for a convenient
encoding of the ANDBIT, INVBIT and SUMBIT operators. This approach to query answering is compared
with the standard approach in which the DLV system is used to evaluate a logic encoding of both the data
integration system and the query over the whole retrieved global database. Specifically, we report results
for the case where the repair encoding is the one discussed in Section 4.2.1; similar performances have been
observed by using the other encodings discussed in the paper.

For the comparison, we consider the following benchmark problems:

• In a first set of experiments, we investigate the advantages of our approach, by considering some
synthetic data sets and two data integration systems with very simple integrity constraints (namely, one key
and one exclusion dependency, respectively) on the global schemas. The results are useful for evidencing
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Figure 7: Stable model computation time in DLV system w.r.t. number of conflicts. (a) One Key. (b) One
exclusion dependency.

the potential gain that can be achieved by exploiting “localization” approaches, even in those situations that
involve very simple logic programs for computing consistent answers.

• Then, we turn to our running example and present some results on randomly generated data. As a fur-
ther example, we encoded the classical graph 3-coloring problem, which is well-known to be NP-complete,
into querying a data integration system and we show how the performance solutions scales with the size of
the graph.

• Finally, we consider a real-life application scenario and show how our techniques may efficiently sup-
port data integration in practical applications.

All the experiments have been carried out on a 1.6GHz Pentium IV processor with 512MB memory.

7.2 Testing the Impact of Localization

We built two data integration systems Ik and Ie, such that the global schema of Ik contains one predicate
p only, having an attribute as a key, and the global schema of Ie contains two predicates p and q on which
an exclusion dependency is issued. Notice that such type of constraints often occur in database design; in
particular, exclusion dependencies are typical for database schemes from ER-models and other conceptual
data modeling languages, and are widely used in applications in which the global schema is given by an
ontology.

Then, we generate some random data in the source databasesDk andDe, respectively, by tuning the size
of the safe part (i.e., |Sret(Ik,Dk)| and |Sret(Ie,De)|) and the number of conflicts. In more detail, we assume
that each constraint violation involves two facts so that the size of the affected part (i.e., |Aret(Ik,Dk)| and
|Aret(Ie,De)|, respectively) is two times the number of these violations.

In Figure 7, we report the time needed in the DLV system for computing the stable models of the logic
program associated to these data integration systems w.r.t. the number of conflicts, for different sizes of the
global database (where the sizes of the safe parts are printed). This first set of experiments is particularly
relevant, since the cost of computing all the stable models is a reasonable lower-bound for the cost of
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Figure 8: Execution time in DLV system w.r.t. size of the safe part, for different numbers of attributes in
relation. (a) One key. (b) One exclusion dependency.

computing the consistent query answers, given that most of the state-of-art answer set engines provide
support for “Boolean” query answering, i.e., for deciding whether a given ground fact is entailed in any/all
models, but not for computing non-ground queries.

First, we notice that the behavior of DLV is essentially independent from these two types of constraints
and scales exponentially in the number of conflicts. Because of this performance degradation, query an-
swering appears to be feasible only for very few conflicts. The main reason for this inefficiency is that the
time for computing the stable models strictly depends on the number of the models which we deal with
and on their sizes. Then, it suffices to notice that for each conflict added on the global schema we get two
different ways for repairing the global database; therefore, given that the size of each repair is about the
size of the retrieved global database, the number of processed tuples is generally exponential in the size
of the retrieved global database and the approach turns out to be unviable in real scenarios. Note that for
a small affected part of the global database (up to log size), in the decomposition approach its repairs can
be computed in polynomial time w.r.t. the size of the whole global database (and is generally feasible for
constraints from C0).

The results of Figure 7 stimulated the development of techniques for computing consistent answers even
to non-ground queries in stable models engines. Moreover, our preliminary investigations evidenced that
answer set engines result quite unpractical for data base applications since they do not offer primitives for
interfacing with databases, e.g., for importing and exporting relations or views. And, in fact, in our first
experiments it was necessary to write wrappers (e.g., DB Interface module) that interface the output of the
answer set engines and provides I/O functionalities.

Currently, the DLV system provides instead some interfacing modules to automatically access a rela-
tional DBMS by means of standard ODBC calls, and more importantly, provides support for non-ground
queries akin to our techniques.

Still, the need for instantiating the logic program for consistent query answering over large data sets
makes the use of these systems unfeasible in practice. Indeed, in a second set of experiments, we tested the
scaling of DLV in answering non-ground queries. Figure 8 reports the results for evaluating in DLV some
non-ground queries on the two scenarios presented above.
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Figure 9: Football Team. (a) Execution time in DLV system w.r.t. size of the affected part. (b) Comparison
with the optimization method.

Interestingly, the support for non-ground queries appears to be quite powerful, since the system scales
well in the size of the input database for a fixed number of conflicts. However, the performances are not
suited for real database applications. In fact, for 15.000 tuples it requires more than 200 seconds for com-
puting answers. Moreover, it is easy to see that the curves rapidly increase if the number of attributes (arities
of the relations) grows. This behavior does not correspond to intrinsic complexity of the problem instances,
which can be formally proven to be solvable in polynomial time. And, in fact, a careful analysis of the ex-
ecution time showed that most of the time spent by DLV is for instantiating the logic program for querying
the data integration systems.

Our overall approach to optimization of logic programs evaluation tries to face the above problem.
Indeed, the localization of the computation can dramatically reduce the size of the program to be instantiated
in DLV and, hence, the time needed for the execution.

7.3 Football Teams and 3Coloring

For our running example, we built a synthetic data set DFT , such that tuples retrieved from the sources in
coach and team satisfy the key constraints issued on such relation symbols, while retrieved tuples in player

violate the corresponding key constraint. Each violation consists of two facts that coincide on the attribute
Pcode but differ on the attributes Pname or Pteam; note that these facts constitute Aret(I0,DFT ).

For our experiments, we consider the query Q = 〈q,P〉 where P = {q(x) ← player(x, y, z); q(x) ←
team(v, w, x)}, and we first measure the execution time of the program ΠI0(q), given in Section 4.2.1, in
DLV depending on |Aret(I0,DFT )| where |Sret(I0,DFT )| is fixed to the values(i) 0, (ii) 4000, and (iii) 8000,
respectively. We stress here that timing for the DLV system refers to query answering over non-ground
queries. Thus, the results reported in Figure 9.(a) provide an evidence of the fact that (provided this new
functionality) the DLV system scales well w.r.t. the size of the affected part. Still the ‘huge’ size of the
safe part appears to be the most limiting factor for an efficient implementation. Indeed, only 8000 facts (in
absence of conflict) would require more than 35 second for consistent query answering.
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Figure 10: 3Coloring. (a) Execution time in DLV w.r.t. number of nodes (i.e., conflicts). (b) Comparison
with the optimization method.

The degradation of the performances at the varying of the size of the retrieved global database are further
stressed in Figure 9.(b), which shows a comparison (in log-scale) between the consistent query answering
by a single DLV program and the optimization approach proposed in this paper. As for the optimization
approach, timing includes the cost of computing repairs of the affected database only, plus marking and
evaluating the associated SQL query over marked relations. Interestingly, for a fixed number of violations
(10 in the figure) the growth of the running time of our optimization method under a varying database size
is negligible.

In fact, DLV is able to compute all the models and store them in few milliseconds. This is because each
repair consists of about 10 tuples only (this is the size of the affected part), and therefore generating up to
210 repairs of such a size can be efficiently handled by the system. Eventually, computing and storing all the
models was assessed to be feasible within 1 second, for scenarios having up to 214 repairs.

Similarly, the time for query evaluation in PostgreSQL itself is negligible. And, in fact, a major share
(∼ 20 seconds) is used for marking the repairs and storing them in PostgreSQL, and for rewriting the query.
In this respect, our implementation is very prototypical and far from being efficient, because it was just
aimed at showing the viability of the focusing approach. We believe that the direct implementation of the
marking approach into the architecture of the DLV system (so that DLV can directly compute and store the
marked relations) may lead to significant advantages.

In conclusion, for small databases (up to 5000 facts), consistent query answering by straight evaluation
in DLV may be considered viable; nonetheless, for larger databases, the asymptotic behavior shows that our
approach outperforms a naive implementation.

As a further example, we encoded the classical NP-complete graph 3-coloring problem into a consistent
query answering problem over a data integration system I1=〈G1,S1,M1〉. The global schema G1 contains
the relations edge(Node,Node) and colored(Node,Color), where the attribute Node is established to be the
key for colored .

For a global database DB, we fixed a number of nodes and generated facts in edge producing a graph;
moreover, for each node i, we generated three facts: colored(i, red), colored(i, blue), colored(i, yellow).
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Figure 11: Timing of query evaluation in the INFOMIX Demo Scenario.

Clearly DB is inconsistent with the key constraint on the relation colored , and each node creates three
conflicts. It is easy to see that only one of the three facts involved in each constraint violation can be
maintained in each repair of DB.

Now, consider the query q ← edge(x, y), colored(x, C), colored(y, C). As easily seen, it evaluates to
true on DB iff there is no legal 3-coloring for the graph in DB.

Figure 10.(a) reports the execution time in DLV for different values of the size of the affected part, while
Figure 10.(b) reports the comparison with our approach. Again, the advantage of the localization technique
is evident when the size of the database increases.

7.4 Demo Scenario

We finally present some experiments which we have carried out on the demonstration scenario of the IN-
FOMIX project on advanced information integration, supported by the IST programme of European Com-
mission (IST-2001-33570). This scenario refers to the information system of the University “La Sapienza”
in Rome. The global schema consists of 14 global relations with 29 integrity constraints, while the source
schema includes 29 relations (in 3 legacy databases) and 12 web wrappers (generating relational data) for
more than 24MB of data regarding students, professors and exams in any faculty of the University. On this
schema, some typical queries with peculiar characteristics are formulated, which model different use cases.
A detailed description of the scenario is given in [41].

In Figure 11, for each query Q the number of global relations involved in Q, the number of sources
required to be accessed for answering Q, and the size of the retrieved global database which is relevant for
Q are shown. The evaluation times reported are those under our optimization approach.

It can be easily seen that the database sizes are far larger than the ones used for some preliminary
tests. Consequently, naive query evaluation in DLV (even with the support for non-ground queries) would
take three orders of magnitude longer, and is thus far from feasibility. However, in this application we
experienced that rather few constraint violations (up to a dozen) occurred in the part relevant for query
answering (especially, after data cleaning is performed; clearly, the number of constraint violations in the
whole retrieved global database is much higher). Handling the associated affected database in DLV and
processing the rewritten query over the DBMS system is feasible in few seconds.
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8 Discussion and Conclusion

In this paper, we have presented methods and techniques to optimize query answering in advanced data
integration systems which deal with possibly inconsistent or incomplete data, based on non-monotonic logic
programming. To this end, we set up a formal framework for data integration and query answering which
accommodated several proposals for repairs semantics, including [32, 2, 4, 8, 14, 16, 36, 19, 53, 52, 34],
and have considered at a generic level logic-programming specifications for it which are hierarchically
composed of different modules. We then have developed optimization methods and techniques of three
kinds: methods genuine to logic programming (detection of rules relevant to query answering), methods for
the problem in the framework as such (localization and decomposition), and a technique for combining a
logic programming and a relational database engine. In fact, the latter combination technique is not limited
to logic programming engines and might be exploited for other hybrid system approaches as well.

We point out here that our methods and results can be extended in different directions.

• Firstly, the localization method and results can be extended to repair semantics based on preference
orderings which do not satisfy the properties (?), (†), and (‡) in Section 3.2 as well. For example, Chomicki
and Marcinkowski [18] consider repairs in which a smallest (in terms of inclusion) set of tuples is deleted
from the database but no tuples are added. For such repairs, Proposition 5.2, Lemma 5.3, and the main result
on localization (Theorem 5.4) can be established similarly.

Furthermore, answering a positive query Q = 〈q,P〉 (i.e., the program P does not contain negation) on all
repairs with respect to some preorder is equivalent to answering it only on those repairsRwhich are minimal
under set-inclusion, i.e., do not contain any other repairR′ properly. Therefore, even if a preorder≤DB fails
to satisfy (?), (†), and (‡), it may be possible to characterize the set-inclusion minimal repairs w.r.t. ≤DB as
repairs under a different ordering≤′

DB which satisfies these properties. A particular example is the preorder
of loosely sound semantics [16, 17], which is given by R1 vDB R2 if and only if R1 ∩ DB ⊇ R2 ∩ DB.
This orderding clearly violates Property (?). We can use here the related preorder R1 v

′
DB R2 defined by

R1 vDB R2 ∧ (R1 ∩DB = R2 ∩DB ⇒ R1\DB ⊆ R2\DB), for instance.

• Secondly, the method and results can also be extended to certain data integration systems which do not
match the basic framework in this paper. For example, [45, 17] address the repair problem in GAV systems
with existentially quantified inclusion dependencies and key constraints on the global schema. In these
papers, techniques for suitably reformulating user queries in order to eliminate inclusion dependencies are
presented, which leads to a rewriting that can be evaluated on the global schema taking only key constraints
into account. We point out that, provided such a reformulation, the logic specifications proposed in [45, 17]
fit our framework.

• Furthermore, the logic formalization of LAV systems proposed in [12, 14] might be captured by our
logic framework under suitable adaptations. Actually, given a source extension, several different ways of
populating the global schema according to a LAV mapping may exist, and the notion of repair has to take
into account a set of such global database instances. Nonetheless, like in our GAV framework, the repairs
are computed in [12, 14] from the stable models of a suitable logic program, as well as in [15].

• Finally, notice that our marking approach makes it possible to materialize a kind of condensed repre-
sentation for the repairs of a data integration system (as discussed in Section 6.4), over which consistent
query answering is possible by means of a suitable query rewriting process. This is particularly useful when
the focus is on data materialization rather than on query answering, as it happens in the context of Data Ex-
change (cf. [30, 31]). In Data Exchange, the notion of the core of a relational structure has been proved to
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be the most appropriate choice for materialization, and mechanisms to compute the core have been provided
for the case when constraints over the target schema consist of tuple-generating and equality-generating de-
pendencies and when source-to-target dependencies are formalized in the GLAV approach, a generalization
of both LAV and GAV, [31]. In this respect, the marked database described in the present paper represents
a viable way to materialization when universal constraints are issued over the target schema, and when
source-to-target dependencies are formalized in the GAV approach.

At present, to our knowledge there are only prototype implementations of data integration (or database)
systems which fit the semantic repair framework available. The most noticeable among them are the IN-
FOMIX system [47], Hippo [20, 19], and ConQuer [33].

The INFOMIX system [47] has been developed as a proof of concept prototype for an advanced data
integration system based on computational logic technology, and in particular on non-monotonic logic pro-
gramming. The technical results of this paper have been driven by the research for optimization methods to
make such an approach computationally feasible, and found their way in different form into the prototype.
Noticeably, the INFOMIX system is not the implementation of all results in this paper.Indeed, the system
exploits the Relevance Pruning step for pruning the rules that are not relevant for computing answers, but
then it consider a novel variant of magic sets tailored for data integration [27] rather than our localization
approach. Importantly, the magic sets technique is orthogonal to the methods presented there and can be
profitably coupled with them. Indeed, magic sets are mainly aimed at reducing the set of facts on which
the engine has to work by eventually “pushing” constants from the query into the rules, but they do not
distinguish between safe and affected facts (thus, if no constant can be pushed, then magic sets will work on
the whole set of retrieved data). An interleaved usage of both techniques deserves further investigation.

The Hippo system [19, 20] has been designed for answering SJUD queries (i.e., definable in relational
algebra without projection) under denial constraints from a possibly inconsistent relation, using a repair
semantics which deletes a smallest (under set inclusion) set of tuples to restore consistency (i.e., no tuples
are added). The repairs are computed by the use of algorithms on a conflict hypergraph which is built
from constraint violations. Query answering in Hippo is guaranteed in polynomial time (measured in data
complexity). The system incorporates techniques for sound and complete approximations of the query
result to reduce the number of candidate tuples for which membership in the result is checked, as well as
techniques for reducing the effort in testing such membership.

ConQuer [33] is a system for computing consistent answers from large inconsistent databases, under
a repair semantics relying on symmetric set difference-based ordering. In the line of a previous work of
some of the ConQuer authors [34], the focus in this system is on tractable cases of the consistent query
answering problem, which can be solved by suitably reformulating user queries into SQL, whereas solutions
for intractable (more general) instances of the problem are not provided. In particular, ConQuer considers
database schemas on which only key dependencies are allowed, and user queries which belong to a subset of
the class of conjunctive queries, possibly enriched with aggregates. ConQuer is showed to be very efficient
in providing consistent answers over large databases with many inconsistent tuples (some of the experiments
in [33] involve a database with an affected portion ranging up to the 50 per cent of the whole database). The
technique presented in [34] has been recently extended in [39] to deal with also exclusion dependencies
issued on a database schema.

We point out that the optimization strategies developed here are orthogonal to those provided in the
Hippo and the ConQuer systems, which are geared towards highly efficient query answering for specific,
polynomial-time classes of queries. Our results, instead, aim at supporting more general, highly expressive
classes of queries, including also queries intractable under worst case complexity. For instance, out of the 7
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queries of the INFOMIX demo scenario described in Section 7.4, only one can be expressed in Hippo, while
ConQuer is not applicable for the specific (complex) constraint setting.

Several issues remain for further work. Our experiments and related ones on the INFOMIX prototype
provide some evidence for the effectiveness of the techniques presented in this paper. Given that the classes
of queries expressions that can be handled by Hippo and ConQuer can be recognized efficiently, the results
of [19, 34] and ours may be fruitfully combined in a system which facilitates scalable data integration.

Another issue concerns an extension of our techniques to more expressive classes of queries. To enable
benefits from the usage of a relational database engine in query answering, the query class must be handled
by the relational DBMS; therefore, recursive queries with stratified negation (at most) can be accomodated
in this way, under further restrictions dependent on the support of the SQL99 standard by a DBMS.

Furthermore, benchmarking of inconsistent data integration (cf. also [19]) needs more attention. While
currently, integration scenarios –both synthetic and realistic ones– are created by different researchers on an
ad hoc basis, it would be useful to have an acknowledged repository of benchmark scenarios for testing and
evaluating implemented data integration systems. In particular, meaningful generation of inconsistencies is
an interesting issue here.

Finally, it would be interesting to see to what extent a framework similar to ours can be established for
more general data integration systems, such as GLAV systems.
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