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Abstract. Reasoning from the minimal models of a theory, as fostered by circumscription, is in the
area of Artificial Intelligence an important method to formalize common sense reasoning. However,
as it appears, minimal models may be too strong to capture the intuitive semantics of a knowledge
base, aiming intuitively at an exclusive interpretation of disjunctions (if feasible). In this paper, we
consider an approach which is more lenient and also admits non-minimal models, such that inclusive
interpretation of disjunction also may be possible in cases where minimal model reasoning adopts an
exclusive interpretation. Nonetheless, in the spirit of minimization, the approach aims at including
only positive information that is necessary. This is achieved by closing the set of admissible models
of a theory under minimal upper bounds in the set of models of the theory, which we refer to
as curbing. We demonstrate this method on some examples, and investigate its semantical and
computational properties. We establish that curbing is an expressive reasoning method, since the
main reasoning tasks are shown to be PSPACE-complete. On the other hand, we also present cases
of lower complexity, and in particular cases in which the complexity is located, just as for ordinary
minimal model reasoning, at the second level of the Polynomial Hierarchy, or even below.
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Figure 1: Possible outcome of throwing coins on a chessboard, circumscribing the coin locations

1 Introduction

In Artificial Intelligence, Occam’s Razor (“entia non sunt multiplicanda praeter necessitatem”) is widely
used to model human problem solving. In the area of knowledge representation and reasoning, this prin-
ciple is underlying circumscription [24, 28, 29], which is one of the most well-known approaches to non-
monotonic reasoning. Circumscription aims at minimizing the positive information contained in a logical
theory T that constitutes a knowledge base. To this end, it selects the minimal models of T under a pref-
erence relation ≤ on the set of all models of T , according to which a model M is better (or as good) as a
model M ′ if each elementary fact which is true in M is also true in M ′. For example, if T consists of the
three formulas p→ q, r → q, and p, then there are two models, of T on the atoms p, q, and r: One in which
all three atoms are true, and another one in which p and q are true and r is false; circumscription selects
from these two models the second one (in which r is false), since it is smaller than the first one. The theory
of circumscription is far developed, and several variants exist; we refer to [18, 25] for an introduction.

As noted by various authors [9, 11, 33, 34, 35, 36], reasoning under minimal models runs into problems
in connection with disjunctive information. The minimality principle of circumscription often enforces the
exclusive interpretation of a disjunction a ∨ b by adopting the models in which either a or b is true but not
both. There are many situations in which an inclusive interpretation is desired and seems more natural. For
example, consider the following scenario due to Raymond Reiter.

Example 1 Suppose a coin is thrown into an area which is divided into a black and a white field. Circum-
scription applied to the propositional theory

T0 = { lies on black ∨ lies on white }

excludes the model in which lies on black and lies on white1 hold, i.e., that the coin falls into both fields,
and yields that the coin is either in the black or in the white field, according to the two minimal models in
which lies on black is true and lies on white is false respectively lies on black is false and lies on white

is true. This is certainly not satisfactory. An extension of this example is even more impressive. Imagine a
handful of coins thrown onto a chessboard; given that the propositions cij represent for coin c that it lies on
field f , where f ∈ {a1, a2, . . . , a8, b1, . . . , h8}, the location of c is described by the disjunction

loc c = c lies on a1 ∨ c lies on a2 ∨ · · · ∨ c lies on h8 .

Applying circumscription to the conjunction T0 = loc c1 ∧ · · · ∧ loc ck of the coin locations, we obtain that
each coin ci lies on exactly one field, and thus does not touch both a black and a white field (cf. Figure 1). 2
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None of the well-known variants of circumscription [18, 25] seems to handle inclusive disjunction of
positive information suitably in general. In order to redress this problem and to provide a way for handling
inclusive disjunctions of positive information properly, we propose the curbing method, introduced in [17],
which is a generalization of circumscription for handling inclusive disjunctions of positive information at the
semantic level. This method fosters the notion of a curb model of a theory, which is roughly speaking either
a minimal model of the theory T , or a model of T which is a minimal upper bound of a set of smaller curb
models in the partially ordered set of models of T under the ordering ≤. The use of minimal upper bounds
is guided by the minimization principle; note that least upper bounds, which would be more natural, do not
always exist. In the example from above, curbing selects besides the two minimal models also the model
where both lies on black and lies on white1 are true. While in this and the chessboard example, curbing
selects all models of the theory, this is not the case in general (see e.g. the further examples in Section 2.1).1

The contributions of this paper are briefly summarized as follows.

(1) We formalize curbing for (possibly infinite) propositional theories on a given set of atoms A. Note
that the propositional setting plays an important role in many knowledge representation applications, since
knowledge base formalizations used in practice are often propositional in nature; indeed, in AI applications,
frequently first-order predicate logic is used for knowledge representation which considers a fixed, finite
domain of discourse. To this end, domain closure axioms are used, often in combination with unique name
axioms for individuals. This is essentially a propositional setting, to which the predicate formalization
can be easily reduced. This also holds for certain first-order settings with infinite domains, eg. in logic
programming (under customary Herbrand semantics) cf. [1, 27, 12, 30], which by definition are reduced to
the propositional case. Thus, the propositional setting is important for applications.

(2) We provide purely semantic and constructive characterizations of curb models, in a customary min-
imization setting where only a part P of the atoms A is minimized and a further part Z is floating (i.e.,
projected from the ordering ≤), while all other atoms are considered to be fixed. Furthermore, we analyze
the relationship to circumscription and provide for finite theories a syntactic characterization of the theories
for which curbing and circumscription coincide.

(3) We consider restricted notions of curbing, by limiting the iterations for taking minimal upper bounds
and/or the number of models for which a minimal upper bound is formed. These restrictions can be viewed
as semantic and computational approximations of an idealized reasoner, who closes her set of accepted
models under minimal upper bounds. As we show, for certain classes of theories still the full set of curb
models is obtained under these restrictions, which proves useful for reasoning algorithms.

(4) We study the class of theories for which collections of curb models always have a least (unique
minimal) upper bound, which we call LUB theories, as well as the more general class of Weak LUB theories,
in which each curb model is the least upper bound of some set of curb models. Both classes have interesting
properties; for example, they require only a bounded number of steps to obtain all curb models by iteratively
taking minimal upper bounds.

(5) Finally, we investigate computational aspects of curbing. We first give a simple algorithm for comput-
ing the curb models of a given finite theory. This algorithm uses polynomial space in the size of the output,
which might have exponential size. By using this algorithm, curb inference (i.e., truth in all curb models)

1Note that in the chessboard example, no information about the size of the coins resp. the board is given, and axioms for
contiguous occupation of fields are missing. However, it is arguably reasonable that such domain-specific knowledge must be
provided for a domain-independent method to work well.
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can be decided in exponential space and time. However, we given an algorithm for curb model checking
which runs in quadratic space, which implies that also logical inference is decidable in quadratic space. On
the other hand, we show that both problems are PSPACE-complete, and that they are PSPACE-hard even in
case of global curbing, i.e., when curbing is applied to all atoms. Furthermore, we single out cases of lower
complexity (under common hypotheses in complexity theory), in particular cases where curbing is feasible
with complexity in ΠP

2 , which is the complexity of circumscription [14], or even lower complexity. We also
discuss how curbing can be polynomially reduced to circumscription in these cases.

The PSPACE-completeness results, whose proofs are nontrivial, strongly indicate that curbing is from
the point of computational expressiveness a much more powerful reasoning method than circumscription
in general. In particular, they imply that curb model checking and curb inference are not solvable in poly-
nomial time using a circumscriptive theorem prover in general (which, however, by our results is feasible
under restrictions). On the other hand, a curb reasoning engine may be based on a quantified Boolean for-
mula (QBF) solver (see http://www.qbflib.org/solvers.html and [20] for a recent evaluation
report), to which model checking and inference can be reduced in polynomial time.

Since its introduction in [17], the curbing method has been used and studied by other authors. For in-
stance, Scarcello, Leone, and Palopoli [38], provide a fixpoint semantics for propositional (Boolean) curb-
ing and derive complexity results for curbing the class of dual Horn-quadratic theories, i.e., clausal theories
where each clause contains at most two literals and at least one positive literal. In the present paper, we
sharpen some of these results. Liberatore [22, 23] bases a belief update operator on a restricted version of
curbing.

The rest of this paper is organized as follows. In the next section, we give some preliminaries and con-
sider further examples that motivate reasoning under minimal upper bounds. After that, we give in Section 3
a formal definition of curbing and consider some properties, viz. different characterizations, behavior with
respect to disjunctions, and relationship to circumscription. The subsequent Section 4 is devoted to restricted
notions of curbing. After that, we consider classes of theories in Section 5 for which the set of curb models
has a particular structure. Section 6 then considers computation and complexity of curbing. Related work is
discussed in Section 7, and the final Section 8 concludes the paper.

2 Preliminaries and Examples

We assume a (possibly infinite) set of propositional atoms A. In this paper, A will often be denumerable,
i.e., finite or countably infinite (A = {pi | i = 0, 1, . . .}); in general, we assume that A is indexed by some
ordinal η such that A = {pα | α ∈ η} (i.e., A is enumerated by some well-ordering). A theory is any
finite or infinite set of propositional formulas on A, which are built using the usual Boolean connectives,
including constants > (truth) and ⊥ (falsity).

An interpretation (or model) M is an assignment M : A → {0, 1} of truth values 0 (false) or 1 (true)
to all atoms, which extends to formulas as usual. We identify M also with the set of atoms p ∈ A such that
M(p) = 1. The restriction of a model M to a set of atoms A′ ⊆ A is denoted by M [A′]. Furthermore, for
any propositional formula ϕ and model M , we denote by ϕ[M ] resp. ϕ[M [V ′]] the result of replacing in ϕ
every p ∈ A resp. p ∈ A′ by > if M(p) = 1 and by ⊥ if M(p) = 0.

An interpretation M satisfies a formula ϕ (is a model of ϕ), denoted M |= ϕ, if M(ϕ) = 1, and M
satisfies a theory T (is a model of T ), denoted M |= T , if M |= ϕ for each ϕ ∈ T ; we denote by mod(ϕ)
(resp., mod(T )) the set of all models of ϕ (resp. T ).
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We call a pair (P ;Z) of subsets P,Z ⊆ A such that P ∩ Z = ∅ a minimization setting; informally, the
atoms in P are to be minimized in parallel while those Z in may vary and all other atoms are fixed. We
denote by ≤P ;Z the respective preference relation on the set models for A. That is,M ≤P ;Z M ′ (M is more
or equally preferable to M ′) iff M [P ] ⊆ M ′[P ] and M [Q] = M ′[Q], where Q = A \ P ∪ Z. As usual,
M <P ;Z M ′ stands forM ≤P ;Z M ′∧M 6≤P ;Z M , and we write M =P ;Z M ′ forM ≤P ;Z M ′∧M ≤P ;Z

M ′. We refer to the special case where P =A and Z = ∅ as global minimization and omit P ;Z in subscripts
etc.

The circumscription of a theory T with respect to a minimization setting P ;Z is semantically given by
the set of its P ;Z-minimal models, denoted mmodP ;Z(T ), where a modelM in any set of models M ⊆ 2A

is P ;Z-minimal, if there is no model M ′ ∈ M such that M ′ <P ;Z M . We remind that P ;Z minimization
has been introduced in order to facilitate the conclusion of new positive evidence, which can not be drawn
under global minimization, as shown in the following example.

Example 2 The theory T = {b, b∧¬ab→ f} on A = {b, ab, f} has in the minimization setting P = {ab}
and Z = {f} the single P ;Z-minimal model M1 = {b, f}. Therefore, we can conclude f from the
circumscription of T w.r.t. P ;Z. On the other hand, the global minimal models of T are M1 and M2 = {b,
ab}, and this conclusion is not possible; note that M1 <P ;Z M2. 2

For any finite T , its circumscription under P ;Z is expressed by the set of formulas

{¬p | p ∈ P \ PT } ∪ {Circ(ϕ;PT ;ZT )},

where PT and ZT are the atoms from P respectively Z occurring in T , and QT are all other atoms in T ;
ϕ = ϕ(PT ;QT ;ZT ) is the conjunction of all formulas in T ; and Circ(ϕ;PT ;ZT ) is the quantified Boolean
formula (QBF)

Circ(ϕ;PT ;ZT ) = ϕ(PT ;QT ;ZT ) ∧ ∀P ′
TZ

′
T ((ϕ[P ′

T ;Z ′
T ] ∧ P ′

T ≤ PT ) → PT ≤ P ′
T ).

Here P ′
T and Z ′

T are sets of fresh atoms (not occurring in ϕ) in 1-1 correspondence to P and Z, respectively,
and PT ≤ P ′

T (resp., P ′
T ≤ PT ) denotes the formula

∧

p∈PT
(p → p′) resp.

∧

p∈PT
(p′ → p). By elimi-

nating quantifiers ∃, ∀ as usual, Circ(ϕ;PT ;ZT ) can be rewritten to an equivalent propositional formula.
That is, replace subformulas ∀xϕ(x, y1, . . . , yk) with ϕ(⊥, y1, . . . , yk)∧ϕ(>, y1, . . . , yk) and subformulas
∃xϕ(x, y1, . . . , yk) with ϕ(⊥, y1, . . . , yk) ∨ ϕ(>, y1, . . . , yk), respectively.

2.1 Curb models

Let us first describe two further scenarios in which non-minimal models are desirable.

Example 3 Suppose Alice is in a room with a painting, which she hangs on the wall if she has a hammer and
a nail. It is known that Alice has a hammer or a nail, and possibly both. This scenario is represented by the
theory T1 in Figure 2. The desired models are {h}, {n}, and {h, n, p}, which are encircled. Circumscribing
T1 under global minimization yields the two minimal models {h} and {n} (see Figure 2). Since p is false in
all minimal models, circumscription tells us that Alice does not hang the painting up. Furthermore, it tells
us that Alice has either a hammer or a nail, but not both. On the other hand, the model {h, n, p}, which
intuitively corresponds to the inclusive interpretation of the disjunction h ∨ n, seems plausible. Therefore,
one may expect that the conclusion of Alice not hanging the paper up is not drawn, and similarly not that
Alice holds only one item. 2
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T1 = {h ∨ n, (h ∧ n) → p}

{p}

{h, n, p}

{n}

{h, p}{h, n}

∅

{n, p}

{h}

Figure 2: The hammer-nail-painting example

Example 4 Suppose you have invited some friends to a party. You know for certain that one of Alice, Bob,
and Chris will come, but you don’t know whether Doug will come. You know in addition the following
habits of your friends. If Alice and Bob go to a party, then Chris or Doug will also come; if Bob and Chris
go, then Alice or Doug will go. Furthermore, if Alice and Chris go, then Bob will also go. This is represented
by the theory T2 in Figure 3. Now what can you say about who will come to the party? Consider the models

T2 = { a ∨ b ∨ c,

(a ∧ b) → (c ∨ d),

(b ∧ c) → (a ∨ d),

(a ∧ c) → b }

tg

t

t

gt gt

gt tg gt

gt

t
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Z

Z
Z

Z
Z

#
#

#
#

##
b

b
b

b
bb
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"
"

""

aaaaaaaaaaaa

�
�
�
�����

S
S

{a, b, c, d}

{c}{b}{a}

{b, d}

{a, d}

{c, d}

{b, c, d}{a, b, d}{a, b, c}

Figure 3: The party example

of T2 in Figure 3. Circumscription under global minimization yields the minimal models {a}, {b}, and {c},
which interpret the clause a∨ b∨ c exclusively in the sense that it is minimally satisfied. However, there are
other plausible models. For example, {a, b, c}. This model embodies an inclusive interpretation of a and b
within a ∨ b ∨ c; it is also minimal in this respect. The model {a, b, d} is another model with this property.
Similarly, {b, c, d} is a minimal model for an inclusive interpretation of b and c. The models {a, d}, {b, d},
and {c, d} seem not plausible, however, since a scenario in which Doug and only one of Alice, Bob or Chris
are present does not seem well-supported. 2

In the light of these examples, the question arises how minimization can be extended to work more
satisfactorily. Obviously, also non-minimal models must be allowed, even if such models may contain
positive information that is not contained in any minimal model, as shown by Example 3. On the other
hand, the fruitful principle of minimality should not be abandoned by adopting models that are intuitively
not concise. Such a situation is given when the theory at hand has a single minimal model. Adhering to
minimality, there seems to be no reason for adopting non-minimal models in this case, since there is no
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ambiguity in which values the atoms to be minimized should be assigned. The situation is different if there
is more than one minimal model. Each of these models represents a possible way to minimize positive
information coherently. Here, an inclusive account of opposite positive information in different minimal
models M1 and M2, which is given by their symmetric difference, is not considered, since any model M
which includes both M1 and M2 is rejected under minimization.

Extending the circumscription approach, the Curbing method aims at giving an inclusive account of
positive information at the semantic level, based on well-understood mathematical concepts. The basic idea
is to adopt for minimal models M1,M2 any model M which includes both M1 and M2, but is a minimal
such model; in other words, M is a minimal upper bound (mub) for M1 and M2. Intuitively, adopting M
semantically accounts for disjunction, which must be present in the theory (otherwise, a single minimal
model would exist); we defer a discussion of this issue to Section 3.1.

For illustration, in Example 3 {h, n, p} is a mub for {h} and {n} in the models of T1 (notice that {h, n}
is not a model of T1), and in Example 4, {a, b, c} is a mub for {a} and {b} in the models of T2; the model
{a, b, d} is another one, so several mubs can exist. In order to capture general inclusive interpretations, mubs
of arbitrary families of minimal models of the theory T at hand are adopted.

It appears that in general not all “intuitive” models are obtainable as mubs of families of minimal models.
The intuitive model {a, b, c, d} in Example 2 shows this. It is, however, a mub of the “good” models {a}
and {b, c, d} (as well as of {a, b, c} and {a, b, d}). This suggests that not only mubs of families of minimal
models, but mubs of any family of intuitive models should also be selected.

The curbing approach to generalize model minimization is thus the following: adopt the least set of
models of a theory which contains all circumscriptive (i.e., minimal) models and which is closed under
including mubs. This approach yields in Examples 3 and 4 the sets of “intuitive” models, which are encircled
in Figs. 2 and 3. The closedness property is a natural idealization in lack of further information about which
minimal upper bounds should be adopted in a particular situation, and all adopted models are considered to
be en par. As for inferencing, closedness is sound in that no conclusions are accepted which would not be
drawn in the actual situation. Different rationales for discriminating between models when taking minimal
upper bounds can be imagined, and then closedness under mubs might be abandoned (cf. Section 4). To
consider the least closed set of models which is closed under mubs is guided by the principle to discard any
model of the theory which is not “foundedly” (in terms of mubs) included, and thus to obtain at a smallest
set of models and arrive in this way at a largest set of conclusions.

3 Formal Definition of Curbing

We formally define the concept of a curb model as follows. First we define the notion of a minimal upper
bound of a set of models, and then property that a set of models is closed under minimal upper bounds.

Definition 3.1 Let M0 ⊆ 2A be a set of models on atoms A and let (P ;Z) be a minimization setting. A
model M ∈ M0 is a P ;Z-upper bound of a set of models M ⊆ 2A with respect to M0, if N ≤P ;Z M for
every N ∈ M. Moreover, such an M is a P ;Z-minimal upper bound (mub) of M w.r.t. M0, if there exists
no P ;Z-upper bound N of M w.r.t. M0 such that N <P ;Z M . The set of all P ;Z-upper bounds (resp.,
P ;Z-mubs) of M w.r.t. M0 is denoted by ubM0

P ;Z(M) (resp., mubM0

P ;Z(M)).

A set of models M is closed under P ;Z-mubs with respect to M0, if mubM0

P ;Z(N ) ⊆ M holds for every
N ⊆ M.

6



If M0 = mod(T ) for some theory T , we simply write T in place of mod(T ). Clearly, mod(T ) is closed
under P ;Z-mubs with respect to T for any P ;Z. Furthermore, every set of models of T which is closed
under P ;Z-mubs with respect to T must contain mmodP ;Z(T ). Indeed, the P ;Z-mubs of the empty set
M = ∅ w.r.t. T are just the ≤P ;Z-minimal models of T .

We thus define the curb models of a theory T as follows.

Definition 3.2 For any theory T and minimization setting P ;Z, the set of P ;Z-curb models of T , denoted
by cmodP ;Z(T ), is the least set of models of T which is closed under P ;Z-mubs w.r.t. T .

Notice that curb models are well-defined only if a unique smallest closed set exists. The latter is immediate
from the fact that the family of all sets M ⊆ mod(T ) which are closed under P ;Z-mubs w.r.t. T is
intersection-closed (i.e., if M and N belong to it, then also M∩N belongs to it).

Revisiting Example 1, the set cmod(T0) coincides with mod(T0). (In the case of global minimization
(P = A, Z = ∅), we omit subscripts P ;Z as usual.) In Examples 3 and 4, the sets cmod(T1) and cmod(T2)
for T1 respectively T2 are given by the models encircled in Figures 2 and 3, respectively.

Curb models may be alternatively described as follows.

Proposition 3.1 A model M is a P ;Z-curb model of T iff M belongs to every set M ⊆ mod(T ) which is
closed under P ;Z-mubs w.r.t. T .

An easy recursive characterization of curb-models is the following. For any T and model M , let us
denote by cmod<M

P ;Z (T ) = {M ′ ∈ cmodP ;Z(T ) | M ′ <P ;Z M} the set of all curb models of T which are
smaller than M .

Proposition 3.2 A model M is a P ;Z-curb model of T iff M ∈ mubT
P ;Z(cmod<M

P ;Z (T )).

Alternatively, we can characterize curb-models in terms of inductive definability. For this purpose, we
define the notion of α-curb model for ordinals α ≥ 0.

Definition 3.3 Let T be a theory and let P ;Z be a minimization setting. Then, for every M ∈ mod(T ) and
ordinal α ≥ 0, M is an α-curb model of T w.r.t. P ;Z (for short, an α-curbP ;Z model of T ), if

• M ∈ mmodP ;Z(T ), if α = 0,

• M ∈ mubT
P ;Z(M) for some M ⊆ mod(T ), such that each M ∈ M is a β-curbP ;Z model of T for

some β < α.

The rank of M w.r.t. (P ;Z), denoted rankT
P ;Z(M), is the least such α.

As shown in [17], the concept of α-curb model provides a constructive means to obtain the set of curb
models, since each curb model is constructible from curb models of lower rank. Notice that an inductive
construction based on Proposition 3.2 does not work, since M ′ <P ;Z M does not imply rankT

P ;Z(M ′) <

rankT
P ;Z(M), as shown by the following example.

Example 5 Consider the theory T = {a ∨ b ∨ c} whose models are shown in Figure 4.
Here, all models are global curb models, and the model {a, b, c} has rank 1 (as it is the mub of the

minimal models {a}, {b}, and {c}) as well as any of the smaller models {a, b}, {a, c}, and {b, c}. 2
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{c}{b}{a}

{a, b} {b, c}
{a, c}

{a, b, c}

Figure 4: Set of curb models whose ranks are not strictly decreasing along chains

Therefore, the equation rankT
P ;Z(M) = sup{rankT

P ;Z(M ′) + 1 |M ′ ∈ cmod<M
P ;Z (T )} does not hold in

general. However, we obtain M also as a mub of all smaller models M ′ <P ;Z such that rankT
P ;Z(M ′) <

rankT
P ;Z(M), which gives the following result.

Theorem 3.3 Let T be a theory on A and let P ;Z be a minimization setting. Then, M ∈ cmodP ;Z(T ) if
and only if M is an α-curbP ;Z model of T for some ordinal α. Furthermore,

rankT
P ;Z(M) = sup{rankT

P ;Z(M ′) + 1 |M ′ ∈ cmod<M
P ;Z (T ), rankT

P ;Z(M ′) < rankT
P ;Z(M)}, (1)

and |rankT
P ;Z(M)| ≤ |A| (in particular, |rankT

P ;Z(M)| ≤ ℵ0 if A is denumerable).

Proof. We show this result, differently as in [17], exploiting well-known results in fixpoint theory.
Define the operator ΛT : 22A → 22A on the domain 22A of sets of interpretations for A by

ΛT (M) =
⋃

N⊆M

mubT
P ;Z(N ).

Clearly, ΛT is a monotone operator, and thus by the well-known Knaster-Tarski Lemma, ΛT has a least
fixpoint, lfp(ΛT ). It is given by the first element Sγ in the sequence Sα, α ≥ 0, defined by S0 = ∅,
Sα+1 = ΛT (Sα) for successor ordinals α + 1 and Sα =

⋃

β<α Sβ for limit ordinals α > 0, such that Sγ

is a fixpoint of ΛT . Since the fixpoints of ΛT are those sets of models of T closed under P ;Z-mubs w.r.t.
T , it follows that Sγ = cmodP ;Z(T ). By construction, each model M ∈ Sα is a α-curbP ;Z model of T ,
and if α is the smallest ordinal with this property, then rankT

P ;Z(M) = α− 1 if α is a successor ordinal and
rankT

P ;Z(M) = α otherwise. Therefore, rankT
P ;Z(M) must satisfy equation (1). Finally, an easy induction

yields that |rankT
P ;Z(M)| ≤ |M |. 2

3.1 Inclusive interpretation of disjunctive clauses

Curbing as introduced above aims at selecting more models than circumscription in case of multiple minimal
models. Syntactically, this means that the theory T at hand must entail some disjunctive clause γ of the form
a ∨ b ∨ δ, where a and b are distinct atoms and δ is a (possibly empty) clause, such that none of a and b
can be removed from it. Furthermore, there exist minimal models Ma and Mb of T in which γ is satisfied
only by virtue of a respectively b. Unless enforced by other formulas in T , no minimal model M of T will
satisfy both a and b, that is, give an inclusive account of the disjunction of a and b, and ¬a ∨ ¬b holds in all
minimal models. This is the case in Examples 1, 3, and 4, for instance. While circumscription fosters there
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exclusive interpretations of the clauses loc c, h ∨ n, and a ∨ b ∨ c, respectively, curbing lends itself also for
an inclusive interpretation.

On the other hand, an important note is that neither circumscription will effect always an exclusive
interpretation of positive disjunctions, nor that curbing always supports also an inclusive interpretation,
even if this would be possible. This is shown by the following two examples.

Example 6 Consider the theory T = {p∨ q, p∨ r, q ∨ r} on A = {p, q, r}. Then T has the three minimal
models {p, q}, {p, r}, and {q, r}, and none of the three clauses in T is interpreted exclusively in all of them.
Notice, however, that inclusive interpretation is made in each minimal model as little as needed, and two
out of three clauses are interpreted exclusively. Curbing also selects the non-minimal model {p, q, r} which
reflects the simultaneous inclusive interpretation of all clauses in T .

Example 7 Consider the theory T = {p∨ q, p∨ r, ¬(p∧ q ∧ r)} on A = {p, q, r}. Its minimal models are
M1 = {q} and M2 = {p, r}, which are also its curb models. Thus like circumscription, curbing interprets
the positive clauses in T exclusively. However, since T has also the models {p, q} and {p, r}, both clauses
might be interpreted inclusively. Informally, the behavior of curbing is explained by the fact that a joint
account of the positive information opposite in M1 and M2 is not possible, and that, by the principle of
minimality, models {p, q} and {p, r} are arguably not concise.

The above examples, to which further ones might be added, show that at the syntactic level, the behavior
of circumscription and curbing with respect to exclusive and inclusive interpretation of clauses has to be
considered with care. To this end, the notions of “exclusive” and “inclusive” interpretation would have
to be made formally precise. In order to deal with representation matters, a canonical form of syntactic
representation, such as in terms of prime implicates of a theory, may be in order here to surpass syntax
matters. Note that in all examples given above, the clauses in the theories are prime implicates. We do
not pursue this issue in further depth here, however, as we do not attempt to give a formal definition of
inclusive interpretation of disjunction. Rather, the intent is to present a method which deals with disjunctive
information on a model-theoretic basis, based on well-established mathematical principles, and as a feature
admits intuitively inclusive interpretations of disjunctive clauses sometimes (but does not strictly enforce
them). We defer further discussion of the interpretation of disjunction and the role of syntax to Section 7.

3.2 Reasoning under curbing

Like under circumscription, inference under curbing may be defined by truth in all curb models. That is,
a formula F is a consequence of a theory T under curbing with respect to a minimization setting P ;Z, if
cmodP ;Z(T ) |= F , i.e., M |= F for each M ∈ cmodP ;Z(T ).

Since all minimal models are curb models, the following proposition is immediate.

Proposition 3.4 For every (P ;Z), T |= F only if cmodP ;Z(T ) |= F only if mmodP ;Z(T ) |= F .

That is, curbing is complete with respect to inference in classical logic, but does not yield more conse-
quences than circumscription. This, however, is coherent with the view that circumscription should desirably
be “softened” in some cases, and drawing conclusions that rule out inclusive alternatives is prevented. Look-
ing back at our examples, in Example 3, this would be the conclusion that Alice does not hang the painting
up, since mmodP ;Z(T1) |= ¬p while cmodP ;Z(T1) 6|= ¬p; in Example 4, circumscription infers that Doug
stays at home, since mmodP ;Z(T2) |= ¬d while cmodP ;Z(T2) 6|= ¬d.
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Drawing these conclusions under circumscription can also be prevented by choosing appropriate mini-
mization settings. Indeed, we obtain the set of “intuitive” models in Example 3 for P={p} and Z = ∅ (i.e.,
fix h and n), and in Example 4 for P = {d} and Z = ∅ (i.e., fix a, b, and c). While in these cases, one
might argue that such a minimization setting is intuitive for circumscription, this seems not to be the case
for preventing the circumscriptive conclusion in Example 4 that exactly one person is going to the party, for
instance; all persons being equal, any minimization setting which treats the persons differently seems to be
questionable. Then, applying circumscription is only meaningful for global minimization, since otherwise it
(knowingly) coincides with classical logic. Similar considerations apply in Example 1 to the circumscriptive
conclusion that each coin is located in exactly one field.

As concerns the inference of positive information, curbing behaves like circumscription, which as well-
known in the folklore does not infer new positive information on minimized atoms. More precisely,

Proposition 3.5 Let T be a theory and let P ;Z be a minimization setting. Then for any formula F built
with connectives ∨, ∧, and ¬ such that each atom from P occurs only under an even number of negations
and no atom from Z occurs in F , it holds that T |= F iff cmodP ;Z(T ) |= F iff mmodP ;Z(T ) |= F .

Proof. The formula F can be rewritten to a disjunctive normal form DNF D1 ∨ · · ·Dn in which each
disjunct Di has only positive literals over P . Thus, M |= F and M ≤P ;Z M ′ implies M ′ |= F . Since
for every M ′ ∈ mod(T ) there exists some M ∈ mmodP ;Z(T ) such that M ≤P ;Z M ′, we have that
mmodP ;Z(T ) |= F implies T |= F . The result thus follows by Proposition 3.4. 2

As the above examples show, capturing the (global) curb models under a suitable minimization setting
in circumscription is more a technical engineering task than an intuitive process. Furthermore, we point here
to Theorem 6.7 in Section 6, which shows that the set of curb models of a theory T can not be represented
by polynomial-size formulas under arbitrary circumscription in general (and thus in particular, not by just
picking the right minimization setting for T ) under standard complexity hypotheses.

On the other hand, a projection setting such as (P ;Z) minimization for curbing is needed for capturing
the set of models under circumscription. This is shown by Example 2, where the theory T has the two
(global) minimal models M1 = {b, f} and M2 = {b, ab} of which only M1 should be selected.

3.3 Coincidence of Curbing and Circumscription

A natural question is when circumscription and curbing coincide. Clearly, this is the case when taking
minimal upper bounds is infeasible. This might be due to the following basic reasons: (1) the theory might
have a single minimal model (if it has any model); (2) taking upper bounds is infeasible. By standard
arguments, the latter is tantamount to the nonexistence of minimal upper bounds, which follows from an
easy proposition.

Proposition 3.6 Let T be a theory and let (P ;Z) be a minimization setting. For every M ⊆ mod(T ),
ubT

P ;Z(M) 6= ∅ implies mubT
P ;Z(M) 6= ∅.

Proof. Indeed, if ubT
P ;Z(M) is nonempty, construct a (global) minimal model of the theory

T ′ = T ∪
⋃

M∈M

M [P ] ∪QM ∪ {¬q | q ∈ A \ (P ∪ Z ∪QM)},

where QM =
⋂

M∈M M [Q] and Q = A \ (P ∪ Z), using a (well-ordered) enumeration η =
x0, x1, . . . , xα, . . ., α ≥ 0, of A in which all atoms of P occur before those of Z. Starting from α = 0,
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we assign each atom xα the value 0, if the partial truth assignment to all xβ , β < α, is extendible to some
model of T ′ in which xα = 0, and the value 1 otherwise; in this way, a minimal model N of T ′ is obtained,
which satisfies N ∈ mubT

P ;Z(M), and thus mubT
P ;Z(M) 6= ∅. 2

Condition (1) yields the following easy result; recall that every Horn theory T , i.e., set of clauses L1 ∨
· · · ∨ Lk, k ≥ 1, such that at most one of the literals Li is a positive atom, has a least model.

Proposition 3.7 Suppose T is a Horn theory. Then, cmodP ;Z(T ) = mmodP ;Z(T ) for any minimization
setting P ;Z.

In particular, this means that curbing of Horn logic programs is tantamount to circumscribing them.
The condition (2) is enforced, for instance, by the syntactic condition of blocking in a disjunctive normal

form (DNF), which is as follows. As usual, a term is any satisfiable conjunction of literalsD = L1∧· · ·∧Lk,
k ≥ 0, which we also identify with the set {L1, . . . , Lk} of its literals. For any set of atoms A, we denote
by PosA(D) (resp., NegA(D)) the set of atoms p ∈ A which occur positively (resp., negatively) in D.
Two terms D and D′ are blocking with respect to A, if both PosA(D) ∩ NegA(D′) 6= ∅ and NegA(D) ∩
PosA(D′) 6= ∅ holds. A DNF D1 ∨ D2 ∨ · · · ∨ Dn is blocking with respect to A, if each pair of distinct
terms Di and Dj in it is blocking w.r.t. A. For example, the DNF F = (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ ¬d) is
blocking with respect to P = {a, b}, but not with respect to P = {a, c}.

Proposition 3.8 For any theory T and minimization setting P ;Z, cmodP ;Z(T ) = mmodP ;Z(T ) if T has
some blocking DNF representation w.r.t. P .

Proof. Towards a contradiction, assume that M /∈ mmodP ;Z(T ) is a P ;Z-mub of M ⊆ mmodP ;Z(T )
such that |M| ≥ 2. Then M must satisfy some disjunct Dj in any DNF F = D1∨· · ·∨Dn for T . Consider
any M ′ ∈ M. We note the following easy lemma.

Lemma 3.9 Suppose F = D1∨· · ·∨Dn is a DNF for a theory T , and let (P ;Z) be any minimization setting.
Then, for every M ∈ mmodP ;Z(T ), there exists some Di in D such that M |= Di and M [P ] = PosP (Di).

Let for M ′ be Di as in the lemma. Since |M| ≥ 2, we have M ′ <P ;Z M , and thus M [P ] \M [P ′] 6= ∅.
Moreover, since M ′[P ] = PosP (Di), also M ′[P ] \M [P ] 6= ∅ holds if F is blocking w.r.t. P . However,
this contradicts M ′ <P ;Z M . 2

Thus, for the DNF F from above, circumscription and curbing in any minimization setting (P ;Z) such
that P = {a, b} coincide. However, while sufficient, the condition of Proposition 3.8 is not necessary. This
is shown by the following example.

Example 8 Consider the theory T = {D1 ∨ D2 ∨ D3} where D1 = a ∧ b ∧ ¬d, D2 = b ∧ ¬c, and
D3 = ¬a ∧ ¬b ∧ c ∧ d. Its global minimal models are M1 = {b} and M2 = {c, d}, for which no upper
bound w.r.t. T exists; hence, cmod(T ) = mmod(T ). On the other hand, there is no blocking DNF for T
w.r.t. P = {a, b, c, d}. 2

A weakened form of blocking is suitable for a syntactical characterization of finitely representable the-
ories for which curbing and circumscription coincides. Denote for any term D and set of atoms A by
D[A] its projection to A, i.e., the maximal subterm of D with literals on A. We call terms D1, . . . , Dn

A-satisfiable, if D1[A] ∪ · · · ∪ Dn[A] contains no pair of opposite literals. Recall that a hitting set of a
family S = {S1, . . . , Sm} of sets Si is any subset H ⊆

⋃

i Si which has nonempty intersection with each
Si, i = 1, . . . ,m.
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Theorem 3.10 Let T be any theory on A which is representable by some DNF F = D1 ∨ · · · ∨ Dn. Let
(P ;Z) be any minimization setting, and let Q = A \ (P ∪ Z). Then, cmodP ;Z(T ) = mmodP ;Z(T ) if
and only if for every pair Di1 , Di2 of Q-satisfiable terms in F such that PosP (Di1) 6⊆ PosP (Di2) 6⊆
PosP (Di1) (i.e., PosP (Di1) and PosP (Di2) are incomparable), the following two conditions hold:

(i) Either Di1 and Di2 are blocking w.r.t. P , or the family Si1,i2 = { Di3 [Q] \ (Di1 ∪ Di2) | Di3 in
F , Di1 , Di2 , Di3 are Q-satisfiable and PosP (Di3) ⊆ PosP (Di1) ∩ PosP (Di2)} has no satisfiable
hitting set;

(ii) For every term Di3 in F such that PosP (Di1) ∪ PosP (Di2) ⊆ PosP (Di3) and Di1 , Di2 , Di3 are
Q-satisfiable, the family Si1,i2,i3 = { Di4 [Q] \ (Di1 ∪ Di2 ∪ Di3) | Di4 in F , Di1 , . . . , Di4 are
Q-satisfiable and PosP (Di4) ⊆ PosP (Di1) ∩ PosP (Di2)} has no satisfiable hitting set;

The proof of Theorem 3.10 is given in Appendix A. Informally, Condition (i) enforces blocking for
terms Di1 and Di2 which represent minimal models, such that no upper bound of them is a model of any
of the two terms. Condition (ii) takes explicit upper bounds by other terms into account. We remark that
testing the satisfiable hitting set condition on Si1,i2 and Si1,i2,i3 is coNP-complete in general; however, such
a complex test is justified by the fact that, as easily seen, deciding whether cmodP ;Z(F ) = mmodP ;Z(F )
for a given DNF F is coNP-complete in general.

If Q = ∅ (no atoms are fixed), the conditions amount to the following ones, which can be checked in
polynomial time:

(i) Either Di1 and Di2 are blocking w.r.t. P , or there is some term Di3 in F such that Di1 , Di2 , Di3 are
Q-satisfiable and PosP (Di3) ⊆ PosP (Di1) ∩ PosP (Di2);

(ii) For every term Di3 in F such that PosP (Di1) ∪ PosP (Di2) ⊆ PosP (Di3) and Di1 , Di2 , Di3 are
Q-satisfiable, there exists a term Di4 in F such that Di1 , . . . , Di4 are Q-satisfiable and PosP (Di4) ⊆
PosP (Di1) ∩ PosP (Di2)}.

Note that in Example 8 the (unordered) pairs D1, D3 and D2, D3 are those incomparable under global
minimization. In both cases, the terms are blocking, and thus condition (i) holds. Condition (ii) is vacuously
satisfied since the remaining term in the DNF does not match the hypothesis. Thus, global curbing and
circumscription for T coincide.

The following example illustrates that restricting the test to terms Di1 , Di2 in F with minimal positive
part on P (as one might think) is not possible, and that the hitting set part of Condition (i) is needed.

Example 9 Consider the theory T = {D1∨D2∨D3∨D4} whereD1 = a∧¬b∧c∧¬d,D2 = ¬a∧b∧c∧¬d,
D3 = d ∧ e, and D4 = ¬c ∧ d under global minimization. Then, D1, D2, and D4 are the terms with
minimal positive part, and the pairs (D1, D2), (D1, D4), and (D2, D4) are blocking. Hence, Condition (i) is
satisfied and Condition (ii) is vacuously true. However, cmod(T ) 6= mmod(T ), since the minimal models
M1 = {a, c} and M2 = {b, c} have the mub M = {a, b, c, d, e} in T . Note that D1 and D3 violate
Condition (i), since they are not blocking and F has no negative term.

4 Restricted Curbing

In the previous section, we have introduced the set of curb models as the set of models which an idealized
reasoner should adopt under the principle to take minimal upper bounds of models into account, without
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further discrimination of the models. In this section, we consider two restricted notions of curbing. The first
puts a bound on the number of iterations which can be made on including, starting from the minimal models,
minimal upper bounds of models. This may be interpreted as reasoning with limited resources; in another
view, it may be seen as reasoning with a bounded horizon of plausibility. The second restriction constrains
taking minimal upper bounds of sets with a bounded number of models. Intuitively, this corresponds to
limiting the basic reasoning capability of the agent itself (but not the resources).

As shown below, these two restrictions have different effects on the expressiveness of the formalism.
Both can be seen as sound approximations of the curb models, which in the limit (under a growing number
of iterations resp. cardinality of sets of models for taking mubs) coincide with the curb models.

4.1 Bounded iteration depth

The first restriction limits iterated inclusion of minimal upper bounds. Informally, we choose only the
models that are α-good for some ordinal α such that |α| ≤ |δ|, where the ordinal δ is a limit on the depth in
building minimal upper bounds.

Definition 4.1 For any theory T and minimization setting P ;Z, the set of δ-depth curb models of T w.r.t.
P ;Z is given by δ-cmodP ;Z(T ) = {M ∈ cmodP ;Z(T ) | rankT

P ;Z(M) ≤ δ}.

Example 10 For example, {h} and {n} in Example 3 are both 0-curb models of T1, while {h, n, p} is
1-curb but not 0-curb. Thus, the curb models of T1 coincide with its 1-curb models. In Example 4,
{a, b, c, d} is a 2-curb model of T2 but not a 1-curb-model; in fact, 1-cmod(T2) clips from the curb models
of T2 just this model. 2

In certain cases, bounding the depth for building curb models does not lead to a loss of curb models. We
shall encounter this in Section 5.

4.2 Bounded mub width

Another attempt is to limit the cardinality of model sets from which minimal upper bounds are formed.
Intuitively, this corresponds to limiting the number of inclusively interpreted disjuncts.

Definition 4.2 For any cardinal κ ≥ 0, a set of models M ⊆ mod(T ) of a theory T is κ
P ;Z-closed w.r.t. T ,

if mubT
P ;Z(N ) ⊆ M for every N ⊆ M such that |N | ≤ κ; curbκ

P ;Z is the relative notion of curbP ;Z model
of T .

Clearly, curb0
P ;Z and curb1

P ;Z are equivalent to circumscription. For κ ≥ 2, we obtain the following
result.

Theorem 4.1 Let T and P ;Z such that no infinite increasing chain M0 <P ;Z M1 <P ;Z . . . of models
Mi ∈ cmodP ;Z(T ), i ≥ 0, exists. Then, for every κ ≥ 2, curbP ;Z(T ) = curbκ

P ;Z(T ).

Proof. We show this by induction on the level `(M) ≥ 0 of M ∈ cmodP ;Z(T ), which is defined by

`(M) =

{

0, if M ∈ mmodP ;Z(T ),
1 + minM ′∈max(cmod

<M
P ;Z

(T )) `(M
′), otherwise.

Notice that in absence of increasing infinite chains, `(M) is well-defined and finite.
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Figure 5: The infinite tower

The base case `(M)=0 is trivial. Consider then the case `(M)> 0, and let M = cmod<M
P ;Z (T ). By

Proposition 3.2, M ∈ mubT
P ;Z(M). If M = ∅, the statement trivially holds. Otherwise, let M ′ ∈ M be

maximal w.r.t. ≤P ;Z ; since all chains in cmodP ;Z(T ) are finite, such an M ′ must exist. Let M ′′ ∈ M such
that M ′′ 6≤P ;Z M ′. Also such an M ′′ must exist; otherwise, we would have M /∈ mubT

P ;Z(M). By the
maximality of M ′, M ∈ mubT

P ;Z({M ′,M ′′}). Since `(M ′), `(M ′′) < `(M), by the induction hypothesis
M ′,M ′′ ∈ curb2

P ;Z(T ). Hence, M ∈ curb2
P ;Z(T ) ⊆ curbκ

P ;Z(T ). Conversely, M ∈ curbκ
P ;Z(T ) clearly

implies M ∈ curbP ;Z(T ). This proves the result. 2

Theorem 4.1 implies a dichotomy result on the expressivity of κ-bounded disjuncts: Either we get only
the minimal models (for κ = 0, 1) or all curb models. Note that the hypothesis of the theorem trivially holds
if P is finite, and it also holds if T is finite.

Note that even in the case where P is finite, Theorem 4.1 is not an immediate consequence of The-
orem 3.3. A simple inductive argument on the rank of curb-models does not work, as can be seen from
Example 5: for κ = 2, the curb model {a, b, c}, whose rank is 1, is obtained as a 2-mub only of curb models
M and M ′ of which at least one has also rank 1.

Theorem 4.1 fails if infinite chains of curb models occur, as shown by the following example.

Example 11 Let A = {xi | i = 0, 1, 2, . . .} and consider the following theory T :

T = { x0 ∨ x1,
(x2i ∧ x2i+1) → (x2i+2 ∨ x2i+3),
(x2i ↔ ¬x2i+1) → ¬xj , i ≥ 0, j > 2i+ 1 }

The models of T are A and all models {x0, x1, . . . , x2i} and {x0, x1, . . . , x2i−1, x2i+1}, for i ≥ 0, which
under global minimization are ordered as shown in Figure 5. Each model of T is a curb model; however,
the model A is not a mub of any finite family of smaller (curb) models of T . 2

As for iterating mubs, the power of finite disjunctions of models is limited to what can be obtained in a
finite (but unbounded) number of steps:
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Proposition 4.2 Let κ be finite. Then, curbκ
P ;Z(T ) = ω-curbκ

P ;Z(T ).

Proof. To show this result, we consider the variant ΛT,κ of the operator ΛT in the proof of Theorem 3.3
which results by adding the condition “|N | ≤ κ” on N . Also ΛT,κ is a monotone operator and, moreover,
finitizable, i.e., ΛT,κ(M) =

⋃

M′⊆M:|M′|<ℵ0
ΛT,κ(M′). Hence the least fixpoint of ΛT,κ is given by

an element Sγ of the sequence Sα, α ≥ 0, for ΛT,κ analogous to the one for ΛT,κ such that γ ≤ ω.
Consequently, every model M ∈ cmodκ

P ;Z(T ) is a ω-curbκ
P ;Z model of T . 2

Thus, in case of a denumerable set of atoms A, each curbκ model of T can be finitely constructed by
taking mubs of bounded width, and all curb model of T are obtainable in this way if there is no infinitely
increasing chain of curb models. In order to effectively prune the set of curb-models, some further constraint
is needed, for example, an additional bound on the iteration depth. In Example 4, under the simultaneous
bounds κ = 2 and δ = 1 on width and depth, respectively, the model {a, b, c} is no longer obtainable.

5 Least Upper Bounds

In general, a set of curb models does not have a unique minimal upper bound in the models of a theory. In
this section, we first investigate the case where this property holds. We then consider a generalization in
which not all minimal upper bounds are unique, but all curb models can be reconstructed from lubs.

5.1 LUB Property

We start with the following definition.

Definition 5.1 Given a minimization setting (P ;Z), a model M is a P ;Z-least upper bound (lub) of a set
of models M w.r.t. a theory T , if M =P ;Z M ′ holds for each N ′ ∈ mubT

P ;Z(M).
A theory T has the P ;Z-LUB property, if every nonempty M ⊆ cmodP ;Z(T ) such that mubT

P ;Z(M) 6= ∅
has a P ;Z-lub w.r.t. T .

Our first aim is to provide a characterization of LUB theories. In fact, a simple criterion exists provided
that only finite disjunctions are needed to construct all curb models of a theory T , i.e., every curbP ;Z model
of T is a P ;Z-mub of some finite set M ⊆ curbP ;Z(T ) with respect to T . Let us call any such theory with
this property P ;Z-mub-compact. We note the following simple lemma.

Lemma 5.1 Let, for i ∈ {1, 2} be Mi ∈ mubT
P ;Z(Mi), where ∅ ⊂ M1 ⊆ M2 ⊆ cmodP ;Z(T ). If M1 is a

P ;Z-lub of M1 w.r.t. T , then M1 ≤P ;Z M2.

Theorem 5.2 Let T be a P ;Z-mub-compact theory. Then T has the P ;Z-LUB property iff every
{M1,M2} ⊆ cmodP ;Z(T ) such that mubT

P ;Z({M1,M2}) 6= ∅ has a P ;Z-lub w.r.t. T .

Proof. For the if direction, we show by induction on finite cardinality κ ≥ 0 that every set M ⊆
cmodP ;Z(T ) such that |M| ≤ κ and mubT

P ;Z(M) 6= ∅ has a P ;Z-lub w.r.t. T . For κ ≤ 2, this holds by
the hypothesis. For κ > 2, let M ∈ M be maximal under ≤P ;Z . By the induction hypothesis, M\ {M}
has a P ;Z-lub M ′ w.r.t. T . Let N ∈ mubT

P ;Z(M) be arbitrary. By Lemma 5.1 M ′ ≤P ;Z N . Again by the
hypothesis, the set {M,M ′} has a P ;Z-lub M ′′ w.r.t. T . Since M,M ′ ≤P ;Z N , it follows M ′′ ≤P ;Z N .
Since M ′′ ∈ ubT

P ;Z(M), minimality of N implies M ′′ =P ;Z N . This means that N is a P ;Z-lub of M
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w.r.t. T , which concludes the induction. From the P ;Z-mub-compactness of T and Lemma 5.1, we now
easily obtain that T has the P ;Z-LUB-property. The only if direction is trivial. 2

The theory T in Example 5 illustrates this theorem (recall that all models are global curb models): Each
pair of models has a lub, and indeed each nonempty set of models has a lub, thus P satisfies the LUB
property. This remains true if fresh atoms were added both to the top model and arbitrarily to the models in
the middle layer in Figure 4.

An important consequence of this theorem is that in case of finite theories, the LUB property is tanta-
mount to the property that each pair of different curb models has a lub. This means that the LUB property is
invariant to bounding the width of mubs.

The following result is an easy corollary of Theorems 4.1 and 5.2.

Corollary 5.3 Let T be a theory. Suppose that mod(T ) forms an upper semi-lattice with respect to ≤P ;Z

and that no infinite chain M0 <P ;Z M1 <P ;Z . . . of models Mi ∈ cmodP ;Z(T ), i ≥ 0, exists. Then T has
the P ;Z-LUB property, and cmodP ;Z(T ) = 1-cmodP ;Z(T ).

We now consider the number of steps which are needed to construct all curb models of a theory which
satisfies the LUB property. Surprisingly, no iteration is needed in this case.

Theorem 5.4 Suppose that theory T has the P ;Z-LUB property. Then, curbP ;Z(T ) = 1-curbP ;Z(T ).

Proof. We show by induction on rankT
P ;Z(M) ≥ 0 that every model M ∈ cmodP ;Z(T ) is a 1-curb

model of T . For rankT
P ;Z(M) ≤ 1, this is obvious. Consider thus rankT

P ;Z(M) > 1. Then, by Theorem 3.3
M ∈ mubT

P ;Z(M) for M = {M ′ ∈ cmod<M
P ;Z (T ) | rankT

P ;Z(M ′) < rankT
P ;Z(M)}. Let Mm = M ∩

mmodP ;Z(T ) be the set of all P ;Z-minimal models of T in M.
If Mm = ∅, then M ∈mmodP ;Z(T ) and the statement holds. Otherwise, Mm has the P ;Z-lub Mm

w.r.t. T . By the induction hypothesis, for each M ′ ∈M we have M ′ ∈ mubTP ;Z(MM ′) for some MM ′ ⊆
mmodP ;Z(T ) (MM ′ = ∅ ifM ′ ∈ mmodP ;Z(T )). Since T has the LUB property and clearly MM ′ ⊆ Mm,
by Lemma 5.1 M ′ ≤P ;Z Mm for each M ′ ∈ M. Thus Mm ∈ ubT

P ;Z(M); since M is a P ;Z-lub of M
w.r.t. T , we have M ≤P ;Z Mm. On the other hand, since Mm ⊆ M and Mm is a lug of Mm w.r.t. T ,
Lemma 5.1 implies thatMm ≤P ;Z M . It followsMm =P ;Z M . ThusM ∈ 1-curbP ;Z(T ) and the statement
holds. 2

An immediate corollary is that LUB theories do not require iteration on taking minimal upper bounds.
As a consequence, reasoning does not become more difficult than under circumscription in the worst case
(see Section 6).

Corollary 5.5 If a theory T satisfies the P ;Z-LUB property, then cmodP ;Z(T ) = 1-cmodP ;Z(T ).

Examples of LUB theories

Examples of theories which enjoy the LUB property are all dual-Horn theories, which are clausal theories
in which each clause contains at most one negative literal, or positive theories (which contain only positive
formulas, i.e., formulas built with connectives ∨, ∧, and ¬ such that each atom occurs only under an even
number of negations). In both cases, the set of models of a theory T is closed under union, and hence,
trivially T satisfies the LUB property in any minimization setting P ;Z.
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Notice that closedness of mod(T ) under unions was shown in [38] for quadratic dual-Horn theories,
where a theory is quadratic (or Krom), if it contains only clauses of size at most 2. The authors used this
lemma to establish that Curb Model Checking for quadratic dual-Horn theories is in ΣP

2 .
The LUB property holds in fact for more general classes of theories, even in presence of fixed and

floating atoms. Consider the following property of a clausal theory T with respect to a minimization setting
P ;Z, which we refer to as P ;Z-NegOrDual-Horn:

(*) For every clause γ ∈ T , if γ contains some positive literal on P , then γ contains at most one negative
literal on P and no literal on Z.

For example, T = {p1 ∨ p2 ∨ ¬p3 ∨ q, ¬p1 ∨ ¬p2 ∨ z, ¬p3 ∨ ¬q ∨ ¬z} is P ;Z-NegOrDual-Horn for
P = {p1, p2, p3} and Z = {z}. Then, we have the following result.

Theorem 5.6 Let T be a P ;Z-NegOrDual-Horn theory. Then T has the P ;Z-LUB property.

Proof. We show the following: For every N ∈ ubT
P ;Z(M) such that M ⊆ mod(T ) and |M| ≥ 2,

M :=
(

⋃

M ′∈MM ′[A \ Z]
)

∪N [Z]

is a model of T . Consider any clause γ ∈ T . If N |= L for some literal L ∈ γ such that either L is from
A \ P or L is from P and negative, then by definition of M clearly M |= L and hence M |= γ. Suppose
that none of the two cases applies and, hence, N |= L holds for some positive literal L from P such that
L ∈ γ. Condition (*) then implies that γ must not contain a literal on Z. Consider any model M ′ ∈ M. If
M ′ |= L′, L′ ∈ γ for some positive literal L′ from P , then M |= L′ and thus M |= γ. If no such model M ′

exists, then γ must contain a negative literal L′′ from P such that M ′ |= L′′ for every M ′ ∈ M. It follows
M |= L′′ and hence M |= γ. Since γ was arbitrary, this shows that M |= T , which proves the result. 2

We observe that the P ;Z-NegOrDual-Horn property applies e.g. under global minimization to clausal
theories in which each clause is either positive or negative, and thus describes a class of formulas for which
the satisfiability problem is NP-complete.

An easy corollary of Theorem 5.6 is the following:

Corollary 5.7 Any quadratic theory T in which no clause contains a positive literal on P and a literal on
Z fulfills the P ;Z-LUB property.

The above condition trivially holds if Z = ∅. We remark that it can be similarly be shown that each
quadratic theory fulfills the LUB property w.r.t. P ;Z if all clauses containing literals on Z are Horn.

5.2 Weak LUB Property

The LUB property defined above requires that every nonempty family of curb models of a theory has a lub
if some mub exists. This property is quite strong. One possibility to relax it is to abandon the requirement
that each set of curb models has a lub, but to retain that each curb model can be obtained as a lub of some
family of smaller curb models. This motivates the following definition.

Definition 5.2 A theory T has the weak P ;Z-least upper bound (Weak P ;Z-LUB) property, if every model
M ∈ cmodP ;Z(T ) \ mmodP ;Z(T ) is the P ;Z-lub of some set M ⊆ cmodP ;Z(T ) w.r.t. T .
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Notice that the LUB property implies the Weak LUB property, but not vice versa. This is shown by the
following example.

Example 12 Suppose a theory T on A = {a, b, c, d} has the models shown in Figure 6. All models are

{b, c, d}{a, b, c}

{d}{c}{b}{a}

Figure 6: The Weak LUB property does not imply the LUB property

curb models under global minimization, and M1 = {a, b, c}, M2 = {b, c, d} are the lubs of the sets {{a},
{b}, {c}} and {{b}, {c}, {d}}, respectively. However, the curb models {b} and {c} do not have a lub; thus,
the theory satisfies the Weak LUB property but not the LUB property. 2

Intuitively, if a theory satisfies the Weak LUB property, then any model M in a set of curb models M
can be replaced by a set of curb models M′ whose lub is M , without affecting the mubs of the family, i.e.,
M has the same mubs as M\ {M} ∪M′. By repeating this replacement, M can be turned into a set M∗

of minimal models which has the same mubs as M. This is actually the case, provided that the set of curb
models has the following property.

Definition 5.3 The set cmodP ;Z(T ) is well-founded, if for every decreasing chain M0 ≥P ;Z M1 ≥P ;Z

· · · ≥P ;Z Mα ≥P ;Z · · · of P ;Z-curb models has a smallest element, i.e., there exists some index α such
that Mβ =P,Z Mα for each β ≥ α.

Notice that in the context of minimal model reasoning, theories were sometimes called well-founded if
every model M of a theory T includes a minimal model of T [25], which is different.

As shown by the following example, the set of curb models of a theory is not necessarily well-founded,

Example 13 Consider the following theory T on A = {pi, ni | i = 1, 2, . . .}:

T = { n1 ∨ p1,
pi → pi+1, ¬ni → ¬ni+1,
(ni ∧ ¬ni+1) → (¬pi ∧ pi+1), i ≥ 1 }

Informally, A contains an atom for each non-zero integer, where pi stands for the positive integer i and ni

for the negative integer −i. Every model of T describes a set of integers, where an integer belongs to the set
if its corresponding atom has value 1 in the model. The sets captured by T are as follows (see Figure 7): The
integers except 0 (given by model M0); all negative integers (model N ); all integers except some interval
[0, 1, 2, . . . , i], i ≥ 1 (model Mi); and all positive integers but where the interval [1, k], k ≥ 0, is replaced
by the interval [−k,−1] (model Nk; in particular, N0 = {p1, p2, p3, . . .}).

As easily checked, the minimal models of T under global minimization are N and all Nk, k ≥ 0.
Furthermore, all models of T are curb models: Indeed, every other model Mi, i ≥ 0, is a mub of the models
N and Ni (in fact, their union; see Figure 7). Clearly, M0 > M1 > · · · forms an infinite decreasing chain
of curb models. This chain has no smallest element, and hence cmodP ;Z(T ) is not well-founded. 2
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.

.
.

N = {n1, n2, n3, . . .}N1 = {n1, p2, p3, p4, . . .}N0 = {p1, p2, p3, . . .}
· · ·

N2 = {n1, n2, p3, p4 . . .}

M1 = A \ {p1}

M0 = A

M2 = A \ {p1, p2}

Figure 7: A family of curb models which is not well-founded (A = {pi, ni | i = 1, 2, . . .})

Theorem 5.8 Let T be a theory which fulfills the Weak P ;Z-LUB property. If cmodP ;Z(T ) is well-founded,
then every M ∈ cmodP ;Z(T ) \ mmodP ;Z(T ) is the P ;Z-lub of some M ⊆ mmodP ;Z(T ).

Proof. Let B ⊆ cmodP ;Z(T ) \ mmodP ;Z(T ) be the set of non-minimal P ;Z-curb models of T which
are not the P ;Z-lub of some M ⊆ mmodP ;Z(T ). Towards a contradiction, assume that B 6= ∅. Since
cmodP ;Z(T ) is well-founded, B must have a minimal element M . (To obtain such an M , construct a in B
a maximal decreasing chain M0 >P ;Z M1 >P ;Z · · · and take the smallest element from this chain, which
must exist.) Since T has the Weak P ;Z-LUB property, M is the P ;Z-lub of some set M ⊆ cmodP ;Z(T ).
The minimality of M and the Weak P ;Z-LUB property of T imply that every N ∈ M is the P ;Z-lub of
some set MN ⊆ mmodP ;Z(T ). We show that M is the P ;Z-lub of M′ =

⋃

N∈MMN w.r.t. T . Clearly,
M ∈ ubT

P ;Z(M′). Assume then that M is not minimal, i.e., there exists some M ′ ∈ ubT
P ;Z(M′) such

that M ′ <P,Z M . Since each N ∈ M is a P ;Z-lub of MN w.r.t. T , M ′ ∈ ubT
P ;Z(M). However, this

contradicts M ∈ mubT
P ;Z(M). It follows that M is minimal, i.e., M ∈ mubT

P ;Z(M′).
On the other hand, every M ′ ∈ ubT

P ;Z(M′) must satisfy M ≤P ;Z M ′. Therefore, M is a P ;Z-lub of M′

w.r.t. T . Since M′ ⊆ mmodP ;Z(T ), by definition M /∈ B. This is a (global) contradiction, which proves
the result. 2

Like LUB theories, also Weak LUB theories do not require iteration on taking minimal upper bounds.

Corollary 5.9 Suppose that a theory T satisfies the Weak P ;Z-LUB property. Then cmodP ;Z(T ) = 1-
cmodP ;Z(T ).

The converse of Theorem 5.8 (if a theory has the Weak LUB property and every non-minimal curb
model is the lub of some set of minimal models, then the set of curb models of T is well-founded) is not
true. This is shown by Example 13, in which T has even the LUB property. Furthermore, Theorem 5.8 fails
in general if the set of curb models is not well-founded. This is shown by the following example.

Example 14 Reconsider Example 13, and add to A two fresh atoms a and b. Define the theory T ′ by

T ′ = T ∪ {¬(a ∧ b), a ∨ b ∨ (pi ↔ ¬ni), ¬ni → (¬a ∧ ¬b) | i ≥ 0}.

Then T ′ has the models N , N ∪ {a}, N ∪ {b}, Ni, Mi ∪ {a}, and Mi ∪ {b}, for all i ≥ 0, where N ,
Ni and Mi are as in Example 13. All models of T ′ except N ∪ {a} and N ∪ {b} are curb models under
global minimization, and each of them is the lub of some set of curb models. Indeed, N and all Ni, i ≥ 0
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are minimal models; each Mi ∪ {a}, i ≥ 0, is the lub of {Ni,Mi+1 ∪ {a}}, while Mi ∪ {b} is the lub of
{Ni,Mi+1 ∪ {b}}. Thus, each model of T is a 1-curb model, even under 2-bounded mubs. However, none
of the models Mi ∪ {a} and Mi ∪ {b} is the lub of a set of minimal models. 2

A suggestive attempt to strengthen the Weak LUB property is to use ordinals. We say that the curb
models of a theory T have the inductive Weak LUB property, if every non-minimal model M of T is the
P ;Z-lub of a family of models M ⊆ cmodP ;Z(T ) such that rankT

P ;Z(N) < rankT
P ;Z(M), for every

N ∈ M. Notice that the set of curb models in Example 13 has the inductive Weak LUB property (which,
as a consequence, does not imply well-foundedness). However, the following result is an easy consequence
of our results from above.

Theorem 5.10 Let T be theory such that cmodP ;Z(T ) is well-founded. Then, T has the inductive Weak
LUB property if and only if T has the Weak LUB property.

Thus, inductive constructibility is implicit in presence of a well-founded set of curb models.

6 Computation and Complexity

In this section, we consider computational issues for curbing applied to finite theories. We first present a
simple algorithm for computing the curb models and then address the computational complexity of curbing.

Algorithm CURB MODELS in Table 1 computes the set of all curb models of a given theory T with
respect to a minimization setting P ;Z. They are computed bottom up, exploiting Proposition 3.2. In a
naive implementation, the models M ∈ mod(T ) of cardinality i can be enumerated on line (3) by cycling
through all models M of this cardinality and testing M |= T ; more efficient generation is possible using an
algorithm which generates all models of T of size i; note that arbitrary models may be constrained to this size
by using auxiliary atoms and clauses “counting” the model size, and thus a general algorithm for generating
all models of a theory may be employed. For an efficient implementation of the test on line (4), on line (5)
links from M to the models in max{M ′ ∈ M | M ′ <P ;Z M} (which coincides with max(cmod<M

P ;Z (T )))
may be installed; then, proceeding downwards from i = |M |−1, these links may be employed to recursively
eliminate with any model N <P ;Z M also all models N ′ ≤P ;Z N from the search space.

It is easy to see that even a naive implementation of the algorithm in Table 1 is feasible to run within
space polynomial in the size of T and M. Therefore, we note the following result.

Proposition 6.1 Algorithm CURB MODELS(T ;P ;Z) correctly computes cmodP ;Z(T ) within space poly-
nomial in the size of T , A, and |cmodP ;Z(T )|.

We now turn to the complexity of curbing. We consider the following decision problems, which are
major issues for reasoning procedures:

• Curb Model Checking: Given a finite theory T on a finite set A of atoms, a model M ⊆ A, and
disjoint sets P,Z ⊆ A, decide whether M ∈ cmodP ;Z(T ), i.e., whether M is a curbP ;Z model of T .

• Curb Inference: Given a finite theory T on a finite set A of atoms, disjoint sets P,Z ⊆ A, and a
Boolean formula F , decide whether cmodP,Z(T ) |= F , i.e., M |= F for each M ∈ cmodP ;Z(T ).

We recall that model checking for circumscription is coNP complete [5] and inferencing under circum-
scription is ΠP

2 -complete [14]. The class ΠP
2 is the class co-ΣP

2 , where ΣP
2 = NPNP contains all decision
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Algorithm CURB MODELS(T, P, Z) : set of models;

Input: Finite propositional theory T on a finite set of atoms A,
sets P,Z ⊆ A such that P ∩ Z = ∅.

Output: Set cmodP ;Z(T ) of all P ;Z-curb models of T ”.

(1) if M := ∅;
(2) for i := 0 to |P | do
(3) for each M ∈ mod(T ) such that |M | = i do
(4) if |max{M ′ ∈ M |M ′ <P ;Z M}| 6= 1 then
(5) M := M∪ {M}
(6) return M;

Table 1: Algorithm for computing the curb models of a theory

problems solvable in polynomial time by a nondeterministic Turing machine with an NP oracle. It holds
that NP ∪ coNP ⊆ ΣP

2 ⊆ PH ⊆ PSPACE, where PH =
⋃

k≥0=ΣP
k

is the Polynomial Hierarchy, and each
of the inclusions is widely believed to be strict. For a background on complexity theory, we refer to [32].

The two problems Curb Model Checking and Curb Inference can be easily solved using Algorithm
CURB MODELS, by first generating the curb models and then deciding the problem at hand. However, even
with some obvious optimizations (compute not all models but stop as soon as the problem can be decided)
this method is not efficient, since it uses exponential space in the size of the problem input in general. Also
algorithms based on minimal model reasoning, such as in terms of reduction to circumscription as discussed
in Section 6.3, require exponential space under standard complexity hypotheses (cf. Theorem 6.7 and the
subsequent discussion). A more careful analysis of the problems in Section 6.1 below reveals that they are
actually solving in polynomial space.

In this section, we shall prove that Curb Model Checking and Curb Inference are PSPACE-complete.
Note that it was conjectured in [38, 22] that curbing has higher complexity than circumscription. This
is intuitively supported by a result of Bodenstorfer [4] stating that in an explicitly given set of models,
witnessing that some particular model is a curb model may involve an exponential number of smaller curb
models. That is, any “proof” that a model has the curb property, given by a proper family of curb models,
may have non-polynomial size in general. On the other hand, this “proof” can be recursively generated in
polynomial space, and thus Curb Model Checking is feasible in polynomial space.

Despite the comparatively high complexity of curbing in the general case, we shall single out several
cases in which the complexity is lower, including cases in which the complexity is in NP respectively coNP,
or even tractable. In the course of this, we improve previous complexity results in [38].

6.1 PSPACE membership

In order to make the intuition more precise that the curb property of a model might refer to a large number
of smaller curb models, let us introduce the following concept.

Definition 6.1 Given a set of models M ⊆ 2A and a minimization setting (P ;Z), a P ;Z-support of a
model M ∈ M with respect to M is any subset S ⊆ M such that (i) M ∈ S and (ii) for every N ∈ S ,
N ∈ mubMP ;Z(S ′) for some S ′ ⊆ S \ {N}.
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S ∪ {a, a′} S ∪ {a′, b′}S ∪ {a, b}

S ∪ {a, a′, b, b′}

{X ∪ {a′} | X ∈ (F \ {S})}{X ∪ {a} | X ∈ (F \ {S})}

S ∪ {a, a′, b′}S ∪ {a, a′, b}

Figure 8: Cloning a family F with unique maximal model S

Note that every global minimal model M of a theory T (M = mod(T )) has the support {M} w.r.t. M,
and that all models in any support are curb models of T . Furthermore, every curb model of T has some
support w.r.t. T .

Bodenstorfer [4] has defined a family Fn, n ≥ 0, of sets of models on an set of O(n) atoms, such that
Fn contains exponentially many models (in n), and Fn itself is the only support of the unique maximal
model Mn of Fn. Informally, F0 = {{a0}}, and the family Fn is constructed inductively by cloning Fn−1

and adding some sets which ensure that the maximal model needs all models for a proof of being a curb
model (see Figure 8). It may thus seem that Curb Model Checking and Curb Inference require exponential
space. A straightforward algorithm for Curb Model Checking is a variant of Algorithm CURB MODELS

which tries to generate a support for the model M bottom up starting from the smallest models. This is
clearly exponential in both time and space.

However, Algorithm CURB CHECK in Table 2 shows that Curb Model Checking is feasible in polyno-
mial space.

Theorem 6.2 Curb Model Checking can be solved in quadratic space, more precisely, in space
O(|A|(|M |+|T |)).

Proof. The correctness of Algorithm CURB CHECK follows from Theorem 4.1, which implies that we
need only to consider minimal upper bounds of pairs of curbP ;Z models. Concerning the running time,
CURB CHECK is straightforward to implement such that its body uses only space O(|M |+|A|), which is
linear in the size of the input. Furthermore, it is easily shown by induction that the recursion depth is
bounded by |P |. Consequently, the algorithm runs in space O(|P |(|M |+|A|)). 2

Algorithm INFER in Table 3 then solves Curb Inference, and we obtain the following corollary to Theo-
rem 6.2.

Corollary 6.3 Curb Inference is in PSPACE (in fact, feasible in space O(|P |(|M |+|A|)+|F |)).

6.2 PSPACE hardness

It turns out that the PSPACE upper bound for Curb Model Checking and Curb Inference is in fact tight,
since as we show in this section the problem is also PSPACE-hard. Since the proof is technically involved,
we give here a sketch of the main idea.

We take Bodenstorfer’s construction as a starting point, since it gives us a method to construct instances
where curb models provably have supports of non-polynomial size – any PSPACE-hard instances of Curbing
Model Checking must have this property, since otherwise the instance can be solved by a guess and check
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Algorithm CURB CHECK(M,T, P, Z) : boolean;

Input: Truth assignment M , finite propositional theory T on a finite set
of atoms A, sets P,Z ⊆ A such that P ∩ Z = ∅.

Output: “true” iff M ∈ cmodP ;Z(T ).

(1) if M 6|= T then return false;
(2) minimal := true;
(3) for each M1 <P ;Z M do
(4) if M1 |= T then minimal := false;
(5) if minimal then return true;
(6) for each models M1, M2 such that M1,M2 <P ;ZM ,
(7) M1 6≤P ;ZM2, and M2 6≤P ;ZM1 do
(8) if CURB CHECK(M1, T, P, Z)∧ CURB CHECK(M2, T, P, Z) then
(9) begin mub := true;
(10) for each M3 such that M1,M2 <P ;Z M3 <P ;Z M do
(11) if CURB CHECK(M3, T, P, Z) then mub := false;
(12) if mub then return true;
(13) end;
(14) return false;

Table 2: Algorithm for testing the curb model property

Algorithm INFER(T, F, P, Z) : boolean;
Input: Finite propositional theory T and propositional formula F on finite set

of atoms A, sets P,Z ⊆ A such that P ∩ Z = ∅.
Output: “true” iff cmodP,Z(T ) |= F .

(1) for each M do
(2) if CURB CHECK(M,T, P, Z) ∧ (M 6|= F ) then return false;
(3) return true;

Table 3: Algorithm for Curb Inference

algorithm with complexity in ΣP
2 . Extending this construction, we show then how the canonical PSPACE-

complete problem of evaluating a given quantified Boolean formula (QBF) F = QnanQn−1an−1 · · ·Q1a1E
can be reduced to Curb Model Checking in polynomial time. Roughly, Bodenstorfer’s construction is ex-
tended in a way such that the possible value assignments to an atom ai are modeled by cloning, and the
evaluation of the quantifierQi is encoded by further auxiliary atoms. The unique largest model of the theory
constructed will then be a curb model precisely if F evaluates to true. A slight extension of the construction
shows PSPACE-hardness of Curb Inference.

6.2.1 Describing the exponential support family Fn

We describe Bodenstorfer’s family Fn by a Boolean formula ϕn, such that Fn = mod(ϕn). The letters
we use are An = {ai, a

′
i, bi, b

′
i | 1 ≤ i ≤ n} ∪ {a0}. We define the formula ϕn inductively, where we set
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Figure 9: The set of models mod(ϕ2)

ϕ0 = a0, M0 = {a0}, µ0 = a0 and for n > 0:

ϕn = (µn−1 ∧ γn) ∨ (¬µn−1 ∧ ϕn−1 ∧ (an ↔ ¬a′n) ∧ ¬bn ∧ ¬b′n)

where

γn = (an ∧ bn ∧ ¬a′n ∧ ¬b′n) ∨ (an ∧ a′n ∧ ¬bn ∧ ¬b′n) ∨ (a′n ∧ b′n ∧ ¬an ∧ ¬bn)

∨ (an ∧ bn ∧ a′n ∧ ¬b′n) ∨ (a′n ∧ b′n ∧ an ∧ ¬bn) ∨ (an ∧ bn ∧ a′n ∧ b′n);

Mn = Mn−1 ∪ {an, a
′
n, bn, b

′
n};

µn =
∧

p∈Mn

p.

Note that the left disjunct of ϕn gives rise to six models, which extend Mn−1 by the following sets of
atoms:

An,1 = {an, bn}, An,0 = {a′n, b
′
n}, Bn = {an, a

′
n}, Cn,1 = {an, a

′
n, bn}, Cn,0 = {an, a

′
n, b

′
n}, and

Dn = {an, a
′
n, bn, b

′
n}.

Informally, An,1 (resp., An,0) represents the assignment of 1 (resp., 0) to an. The right disjunct of ϕn

generates recursively assignments to the other atoms an−1, . . . , a1, such that certain minimal models of ϕn

under global minimization represent assignments to the atoms a1, . . . , an (see Figure 9).
Note that Mn = Mn−1 ∪Dn (i.e., all atoms are 1) is, as easily seen, the unique maximal model of the

formula ϕn. The set mod(ϕn) of models of ϕn over An, defines the family Fn as described in [4]. Thus,
each model M ∈ mod(ϕn) is a curb model under global minimization, and each support of Mn must have
exponential size.

6.2.2 Evaluating a QBF on mod(ϕn)

We now show that a QBF
F = QnanQn−1an−1 · · ·Q1a1E,
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M ∪ Ci,1

. . . . . .

. . .

. . . . . .

M ∪ Ci,0

M ∪ BiM ∪ Ai,0

layer i + 1

layer i

layer i − 1

M ∪ Ai,1

. . . . . .

M ∪ Di ∪ Ai+1,0 M ∪ Di ∪ Bn+1 M ∪ Di ∪ Ai+1,1

Figure 10: Layers in mod(ϕn)

where each Qi ∈ {∀, ∃} and E is a Boolean formula on atoms a1, . . . , an, can be “evaluated” on the family
mod(ϕn) of curb models under global minimization.

Roughly, the idea is as follows: mod(ϕn) can be layered into n overlapping layers of models, where
each layer i contains the models recursively generated by the left disjunct of the formula ϕi. In each layer
we have three levels of models. Neighbored layers i and i− 1 overlap such that the bottom level of i is the
top level of i − 1 (see Figure 10). The minimal models in mod(ϕn) are the bottom models of layer 1, and
can be considered as the top model of an artificial layer 0. Similarly, the maximal model Mn in mod(ϕn)
can be viewed as a bottom model of an artificial layer n+ 1.

In order to “evaluate” the QBF F , we will obtain a formula ψ(F ) from F by adding conjunctively a
set of formulas Γ(F ) to ϕn. Thus ψ(F ) = ϕn ∧ Γ(F ). The formulas in Γ will be chosen such that the
overall structure of the set of curb models of ψ(F ) does not differ from the one of the set of models of ϕn.
In particular, each model M of ϕn will correspond to some curb model f(M) of ψ(F ) which augments M
by certain atoms that describe the truth status of subformulas of F .

By adjoining Γ(F ) to ϕn, we “adorn” the models in mod(ϕn) with additional atoms which help us in
evaluating the formula F along the layers. At a layer i in mod(ϕn), we have fixed an assignment to the
atoms ai+1, . . . , an already, where aj is 1 if aj occurs in the model, and aj is 0 if a′j occurs in the model, for
all j ≥ i+ 1 (there are some ill-defined assignments in top elements of layer i, in which both ai+1 and a′i+1

occur; these assignments will be ignored). Then, at two sets at the bottom of the layer i which correspond to
the possible extensions of the assignment to ai+1, . . . , an by setting ai either 1 (effected by the setAi,1) or to
0 (by Ai,0), we “evaluate” the formula Qi−1ai−1 · · ·Q1a1E(ai, ai+1, . . . , an) where the atoms ai, . . . , an

are fixed to the assignment. If that formula evaluates to 1, then if ai is 1, an atom vi is included (resp.,
if ai is 0 am atom v′i) at this bottom element. The quantifier Qi is then evaluated by including in the top
element “above” the two bottom sets an atom ti if, in case of Qi = ∃, either vi or v′i occurs in one of the
two bottom elements, and in case of Qi = ∀, vi and v′i occur in the bottom elements. The top element is
itself a bottom element at the next layer i + 1, and the atom ti is used there to see whether the formula
Qiai · · ·Q1a1E(ai+1, . . . , an) evaluates to 1.

In what follows, we formalize this intuition. We introduce a set of new atoms A′
n = {vi, v

′
i, ti | 1 ≤ i ≤
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n} ∪ {t0}.
The following formulas are convenient for our purpose:

assi = ai ↔ ¬a′i,
λi = (¬bi+1 ∨ ¬b′i+1) ∧ (ai+1 ∧ a

′
i+1 → ¬bi+1 ∧ ¬b′i+1), 1 ≤ i ≤ n;

Λ1 = λ1,
Λj = λj ∧ ¬λj−1, 2 ≤ j ≤ n.

Informally, assi tells whether the model considered assigns ai legally a truth value. The formula λi says
that the model is at layer i or below. The formula Λi says that the model is at layer i. The models at the
bottom of layer i which are of interest to us are those in which assi is 1; all other models of the entire layer
violate assi.

At layer i ≥ 1, we evaluate the formula using the following formulas:

Λi ∧ assi ∧ ti−1 ∧ ai → vi, Λi ∧ assi ∧ ti−1 ∧ a
′
i → v′i.

For i = 1, we add

E → t0,

which under curbing evaluates the quantifier-free part after assigning all atoms. Depending on the quantifier
Qi, we add a clause as follows:

• If Qi = ∃, then we add
Λi ∧ (vi ∨ v

′
i) → ti;

• if Qi = ∀, then we add
Λi ∧ vi ∧ v

′
i → ti.

For “garbage collection” of the new atoms used at lower layers, we use a formula trapi which adds all
vj , v

′
j , t

′
j of lower layers to all elements of layer i which correspond to an illegal assignment to ai:

trapi = Λi ∧ ¬assi → t0 ∧
i−1
∧

j=1

vj ∧ v
′
j ∧ tj .

Informally, models corresponding to different extensions of an assignment will always have a mub which is
upper bounded by the bottom model at layer i which is an illegal assignment.

Let Γi be the conjunction of all formulas introduced for layer i, where 1 ≤ i ≤ n, and let Γ(F ) =
∧n

i=1 Γi. Then we define
ψ(F ) = ϕn ∧ Γ(F ).

Note that ψ(F ) has a single maximal model MF , given by MF = Mn ∪ {vi, v
′
i, ti | 1 ≤ i ≤ n} (i.e., all

atoms have value 1).
Let us call a model M ∈ mod(ψ(F )) an assignment model, if either M [An] = Mn, or (b) M |=

Λi ∧ assi, i.e., either M extends the maximal model of ϕn or M is at the bottom of layer i and assigns
ai a unique truth value. In case (a), we view M at the bottom of an artificial layer n + 1. M represents a
(partial) assignment σM to ai,. . . ,an defined by σM (aj) = 1 if aj ∈ M and σM (aj) = 0 if a′j ∈ M , for all
j = i, . . . , n.

We establish the following lemma.
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Figure 11: Evaluating F = ∀a2∃a1(a2 → a1): Extending M to f(M) = M ∪X (X shown)

Lemma 6.4 For each model M ∈ mod(ϕn), there exists a curb model f(M) of mod(ψ(F )), such that:

1. f(M)[An] = M (i.e., f(M) coincides with M on the atoms of ϕn);

2. if M is an assignment model at layer i ∈ {1, . . . , n+ 1}, then f(M) contains ti−1 iff the formula

Fi = Qi−1ai−1Qi−2a2 · · ·Q1a1E(a1, . . . , ai−1, σM (ai), . . . , σM (an))

is true;

3. If M is at layer i ∈ {1, . . . , n} but not an assignment model, then

f(M) =

{

M ∪ A′
i−1, if M =Mn−1 ∪Bn,

f(Mn−1 ∪An,k)∪ f(Mn−1 ∪Bn), if M =Mn−1 ∪Cn,k, k∈{0, 1};

4. f(Mn) is the single maximal curb model of ψ(F ), and if Qn = ∀, then tn ∈ f(Mn) iff f(Mn) =
An ∪ A′

n.

An example of the construction of f(·) for the formula F = ∀a2∃a1(a2 → a1) is shown in Figure 11.

Proof. We first note that each model M ′ of ψ(F ) is of the form M ∪ S, where M ∈ mod(ϕn) and
S ⊆ A′

n, and each M ∈ mod(ϕn) gives rise to at least one such M ′ (just add A′
n to M ).

We prove the lemma showing by induction on n ≥ 0 how to construct such a correspondence f(M).
The base case n = 0 (in which F contains no atoms and is either ⊥ or >) is easy: mod(ϕ0) = {{a0}}

and, if F = > , then mod(ψ(F )) = {{a0, t0}} and f({a0}) = {a0, t0}, and if F = ⊥, then mod(ψ(F )) =
{{a0}, {a0, t0}} and f({a0}) = {a0}.

Consider the case n > 1 and suppose the statement holds for n − 1. Let M ∈ mod(ϕn). We consider
two cases.

(1) M |= λn−1 and M 6|= an ∧ a′n. Then, M |= an ↔ ¬a′n, and either M is an assignment model
at the bottom of layer n (in this case, M satisfies the left disjunct of ϕn) or some model not at layer n
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(in this case, M satisfies the right disjunct of M ). In any case, N = M \ {an, a
′
n, bn, b

′
n} is a model of

ϕn−1. By the induction hypothesis, it follows that for N we have a curb model f̂(N) of ψ(F ′), where
F ′ = Qn−1an−1 · · ·Q1a1E

′ and E′ = E[an/>] if an ∈ M and E′ = E[an/⊥] if a′n ∈ M (i.e., an /∈ M ),
such that f̂(N) fulfills the items in the lemma. We define f(M) as follows. If N ⊂ Mn−1, then f(M) :=
M ∪ f̂(N); otherwise, if N = Mn−1, then f(M) = M ∪ f(N) ∪ SM , where

SM =



























∅, if ti−1 /∈ f̂(N);

{vn, tn}, if ti−1 ∈ f̂(N), Qn = ∃, and ai ∈M ;

{v′n, tn}, if ti−1 ∈ f̂(N), Qn = ∃, and a′i ∈M ;

{vn}, if ti−1 ∈ f̂(N), Qn = ∀, and ai ∈M ;

{v′n}, if ti−1 ∈ f̂(N), Qn = ∀, and a′i ∈M.

As easily checked, f(M) is a model of ψ(F ). Furthermore, f(M) is either a minimal model of ψ(F ) (if
n = 1), or the mub of curb models f(M1) and f(M2) such that M1,M2 ∈ mod(ϕn−1), M1,M2 ⊂M , and
M is a mub of M1,M2 w.r.t. ϕn−1. (If not, then f̂(N) were not a mub of f̂(N1), f̂(N2) w.r.t. ψ(F ′), which
is a contradiction.) We can see that f(M) fulfills the items 1-3 in the lemma.

(2) M 6|= λn−1 or M |= ana
′
n, i.e., M is at layer n but not an assignment model at its bottom. We

consider the following possible cases for M :
(2.1) M = Mn−1 ∪ Bn: If n = 1, then M is a minimal model of ϕn, and f(M) = M ∪ {t0} is

a minimal model of ψ(F ), thus f(M) is a curb model of ψ(F ); otherwise (i.e., n > 2), M is a mub of
any arbitrary models M1, M2 ∈ mod(ϕn) such that M1 contains an and M2 contains a′n, respectively, and
Mi \ {an, a

′
n, bn, b

′
n} ⊂ Mn−1, for i ∈ {1, 2}. Since, by construction, f̂(Mi) ⊆ Mn−1 ∪ A′

n−1 =: f(M),
this set is an upper bound of f(M1) and f(M2) w.r.t. ψ(F ); from formula trapn−1 it follows that f(M) is
a mub of f(M1),f(M2). Thus, f(M) is a curb model of ψ(F ).

(2.2) M = Mn−1 ∪ Cn,k, k ∈ {0, 1}: As easily checked, f(M) = f(Mn−1 ∪An,k) ∪ f(Mn−1 ∪Bn)
(=Mn−1 ∪ Bn ∪ SMn−1∪An,k

) is a model of ψ(F ). Since, as already shown, both f(Mn−1 ∪An,k) and
f(Mn−1 ∪Bn) are curb models of ψ(F ), clearly f(M) is a mub of them and thus a curb model of ψ(F ).

(2.3) M = Mn: We define

f(M) = f(Mn−1 ∪ Cn,0) ∪ f(Mn−1 ∪ Cn,1) ∪

{

{tn}, if Qn = ∀ and vn, v
′
n ∈ X;

∅, otherwise.

Observe that f(M) = Mn∪A′
n−1∪X , whereX ⊆ {vn, v

′
n, tn}. Then, as easily checked, f(M) is a model

of ψ(F ). Clearly, f(M) is a mub of f(Mn−1 ∪ Cn,0) and f(Mn−1 ∪ Cn,1), and thus, f(M) is a curb model
of ψ(F ).

We now show that f(M) in (2.1)–(2.3) satisfies items 1-3 in the lemma. Obviously, this is true for (2.1)
and (2.2). For the case (2.3), from the definitions of f(·) in (1) and (2.1)–(2.2) it follows that tn ∈ f(M)
if and only if tn−1 ∈ f(Mn−1 ∪An,k) holds for for some k ∈ {0, 1} if Qn = ∃ and for both k ∈ {0, 1} if
Qn = ∀. By the induction hypothesis, tn−1 ∈ f(Mn−1 ∪An,k) is true iff the QBF Qn−1an−1 · · ·Q1a1E

′,
where E′ = E[an/>] if k = 1 and E ′ = E[an/⊥] if k = 0, evaluates to 1. Thus, tn ∈ f(M) iff the QBF
F evaluates to 1. Hence, f(M) satisfies items 1-3 of the lemma.

As for property 4, Furthermore, in the case where Qn = ∀, we have by definition of f(M) that tn ∈
f(M) iff f(M) = Mn ∪ A′

n−1 ∪ {vn, v
′
n, tn} = An ∪ A′

n.
Finally, it remains to show that f(Mn) is the unique maximal curb model of ψ(F ). As easily seen, every

finite Boolean theory which has a single maximal model has a single maximal curb model; thus ψ(F ) has
a single maximal curb model M ′. From the induction hypothesis, it follows that Mk = f(Mn−1 ∪An,k)
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is the unique maximal curb model M ′
k of ψ(F ) such that M ′[An] ⊆ Mn−1 ∪ An,k, for k ∈ {0, 1}. Since

M2 = f(Mn−1Bn) is the unique maximal curb model N of ψ(F ) such that N [An] ⊆ Mn−1 ∪ Bn, we
conclude from the structure of layer n (where mubs are in fact lubs), that M ′ is a mub of M0,M1,M2.
Since, by construction, f(M) is an upper bound of M1,M2,M3, it follows M ′ = f(M).

This proves that the claimed statement holds for n, and completes the induction. 2

We thus obtain the following result.

Theorem 6.5 1. Given a finite theory T and a model M of T , deciding whether M ∈ cmod(T ) is
PSPACE-hard.

2. Given a finite theory T and an atom p, deciding whether cmod(T ) |= ¬p is PSPACE-hard.

Proof. By items 2 and 4 in Lemma 6.4, M = An ∪ A′
n is a curb model of ψ(F ) for a QBF F =

∀anQn−1an−1 · · ·Q1a1E iff F evaluates to 1. Furthermore, F evaluates to 0 iff no curb model of ψ(F )
contains tn, i.e., cmod(ψ(F )) |= ¬tn. Deciding whether a given QBF of this form evaluates to 1 (resp. 0) is
a well-known PSPACE-complete problem, and ψ(F ) is easily constructed in polynomial time from F . This
proves the result. 2

Combined with the PSPACE-membership results of Theorem 6.2 and Corollary 6.3, we arrive at the
main result of this section.

Theorem 6.6 1. Curb Model Checking is PSPACE-complete, and the problem remains PSPACE-hard
even under global minimization.

2. Curb Inference is PSPACE-complete, and remains PSPACE-hard even for single literal inference
under global minimization.

This result contrasts with the already mentioned complexity of circumscription, for which model check-
ing is coNP complete [5] and inference is ΠP

2 complete [14]. There similarly ΠP
2 -hardness holds for in-

ference of a single negative literal under global minimization. We remark that in this setting, for both curb
and circumscription inference of a positive literal L from a theory T is equivalent to classical consequence
of L from T , and thus is a coNP-complete problem. This is an immediate consequence of Proposition 3.5.
From Theorem 6.6, we can further conclude that we can not represent the curb models of a theory T by
the classical models or the minimal models of any other theory T ′, possibly under a different minimization
setting, which is not exponentially larger. In fact, this holds for any representation of the curb models which
has polynomial overhead. More precisely,

Theorem 6.7 There exists no representationR(cmodP ;Z(T )) of cmodP ;Z(T ) which has size polynomial in
the size of T and |A| in any formalism which permits model checking within PH, i.e., givenR(cmod P ;Z(T ))
and an interpretation M , decide whether M ∈ cmodP ;Z(T ), unless PSPACE = PH.

Proof. Indeed, if such a representation R(cmodP ;Z(T )) would exist, then Curb Model Checking would
be in PH, since we could guess R(cmodP ;Z(T )) in polynomial time and verify the guess and that M is
represented by R(cmodP ;Z(T )) using an oracle in PH as follows. By hypothesis, deciding whether M
is represented by the guess R′ is feasible with a ΣP

k oracle, for some k ≥ 2. To verify the guess R′ for
R(cmodP ;Z(T )), it is sufficient to check that the set of models represented by R′ (i) includes only models
of T , (ii) includes all P ;Z-minimal models of T , (iii) is closed under 2-mubs w.r.t. T , and (iv) violates
(ii), or (iii) if any model represented by R′ is discarded. Each of (i), (ii), and (iii) is decidable with a ΣP

k+1
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oracle, and hence condition (iv) is decidable with a ΣP
k+2 oracle. Therefore, deciding M ∈ cmodP ;Z(T ) is

feasible in ΣP
k+3 ⊆ PH. From Theorem 6.6, PSPACE =PH follows. 2

Particular examples of knowledge representation formalisms which permit model checking in PH are
classical logic, circumscription, and nested circumscriptive theories with nesting depth bounded by a con-
stant [26, 7]. A similar result can be shown for representing the curb inferences of a theory T in terms
of the inferences from a “theory” T ′ in another formalism. Indeed, Curb Model Checking under global
minimization can be easily expressed in terms of Curb Inference. Therefore, any theory T ′ whose theorems
on A represent precisely the curb inferences of T under global minimization must in essence represent the
curb models of T . Thus, informally curbing can be exponentially more concise than these formalisms, and
in particular any reduction to circumscription as the one described in the next subsection, is expected to
be exponential. For further issues concerning succinct representation, we refer the reader to [6, 10] and
references therein.

6.3 Bounded depth

We now consider the complexity of the variant of curbing in which mubs are only taken up to bounded
depth. The following lemma about recognizing mubs is useful.

Lemma 6.8 Given a theory T , models M and M1, . . . ,Mn, n ≥ 0, and a minimization setting (P ;Z),
deciding whether M ∈ mubT

P ;Z({M1, . . . ,Mn}) is in coNP.

Proof. Indeed, just test whether M ∈ mod(T ) and no M ′ ∈ mod(T ) exists such that M ′[Q] = M [Q],
where Q = A \ (P ∪ Z), and (M0[P ] \

⋃m
i=1Mi[P ]) ⊆M ′[P ] ⊂M [P ] holds. 2

Theorem 6.9 The δ-bounded version of Curb Model Checking (resp., Curb Inference), i.e. deciding whether
M ∈ cmod δ

P ;Z(T ) (resp., cmod δ
P ;Z(T ) |= F ), where δ is a finite constant, is ΣP

2 -complete (resp., ΠP
2 -

complete). Hardness holds even for global minimization and δ = 1 (resp., δ = 0).

Proof. If M ∈ cmod δ
P ;Z(T ) holds, then M has a polynomial size P ;Z-support SM w.r.t. T . Indeed,

M ∈ δ-curbP ;Z(T ) implies that M ∈ mubT
P ;Z(M) for some M = {M1, . . . ,Mk} ⊆ cmod δ−1

P ;Z(T ) such
that k ≤ |M [P ]|. By a recursive argument and the fact that δ is constant, it follows that M has some
P ;Z-support SM w.r.t. T containing O(|M [P ]|δ) models.

To show M ∈ cmod δ
P ;Z(T ), we can exploit Lemma 6.8 and guess a polynomial size P ;Z-support SM

for M w.r.t. T such that chains under ≤P ;Z in SM have length bounded by δ + 1, and verify its correctness
in polynomial time with an NP oracle (check for every M ′ ∈ SM that M ′ |= T and that M ′ is a P ;Z-mub
of {M ′′ ∈ SM | M ′′ <P ;Z M ′} w.r.t. T ; testing boundedness of chains is easy). Therefore, Curb Model
Checking is in ΣP

2 .
The hardness under the claimed restriction is immediately obtained from the proof of Theorem 5 in [15]:

There, in essence a Boolean formula ϕ on atoms A = X ∪X ′ ∪ Y ∪ {w} is constructed, where X ′ = {x′i |
xi ∈ X} is a copy of X , for which it is ΣP

2 -complete to decide whether ϕ has some global minimal model
M such that M |= w. This ϕ has the properties that (1) for each S ⊆ X , ϕ has some global minimal model
M such that M [X] = S, (2) each global minimal model M satisfies M [X ′] = {x′i | xi ∈ X \M}, (3) for
each model M ∈ mod(ϕ), M |= w implies M |= Y , and (4) the maximal interpretation M = A is a model
of T .
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Therefore, M = A is a 1-curb model for T = {ϕ} iff ϕ has some (globally) minimal model containing
w; this proves ΣP

2 -hardness of Curb Model Checking, even if δ = 1. Note that for δ = 0, the problem amounts
to model checking for propositional circumscription, which is coNP complete [5].

From the result on Curb Model Checking, it follows that deciding whether some M ∈ cmod δ
P ;Z(T ))

exists such that M 6|= F is in NPNP = ΣP
2 . Hence, Curb Inference is in ΠP

2 . The ΠP
2 -hardness for δ = 0,

which coincides with circumscription, was shown in [14, 15]. We remark that the construction used in
the proof there can be easily generalized to show ΠP

2 -hardness for arbitrary finite constant δ ≥ 0, e.g. by
incorporating the structure of a finite version of the theory in Example 11. 2

Thus, the inference problem for curbing under a number of iterations bounded by a constant has the same
degree of complexity as circumscription in general. In fact, from the proof of Theorem 6.9, we can extract
an easy reduction of computing the δ-curbk

P ;Z models of a finite theory T to minimal model computation.
Let, for i = 1, . . . , k, be P (i) and Z(i) a copy of P respectively Z, and let

T ′ = T ∪
k

⋃

i=1

{ϕ(P (i);Q;Z(i)) | ϕ(P ;Q;Z) ∈ T} ∪ {p(i) → p | p ∈ P}.

Then, for the minimization setting (P ′;Z ′) where P ′ = P ∪P (1)∪· · ·∪P (k) and Z ′ = Z∪Z(1)∪· · ·∪Z(k),
the following is easy to see.

Proposition 6.10 For any theory T and minimization setting (P ;Z), {M [A] | M ∈ 1-curbk
P ′;Z′(T ′)} =

1-curbk
P ;Z(T ), i.e., the 1-curbk

P ;Z-models of T are the projection of the 1-curbk
P ′;Z′ models of T ′ to A.

In particular, for k = |P |, this yields the set of all 1-curb models of T . By applying the same construction
iteratively to T ′, we obtain all δ-curbk-models of T as the projection of the (Pδ,k;Zδ,k)-minimal models of
some theory Tδ,k to A (where T1,k = T ′). In particular, for δ= |P | and k= 2, we obtain all P ;Z-curb
model of T . The construction is exponential in general (as implied by Theorem 6.7), but polynomial if δ is
bounded by a constant.

Thus, computing all curb models within bounded depth can be polynomially mapped to computing the
minimal models of a propositional theory. For this, algorithms such as [31, 3, 2] or recent tools based
on mappings to disjunctive logic programming [13, 19, 37, 21, 40] might be exploited. Similarly, Curb
Inference can be polynomially reduced to a circumscriptive theorem prover.

6.4 LUB and Weak LUB theories

From Theorems 5.8 and 6.9, we immediately get the following complexity results.

Theorem 6.11 For theories T which have the Weak P ;Z-LUB property, Curb Model Checking is in ΣP
2

and Curb Inference is in ΠP
2 .

Since the LUB Propery implies the Weak LUB Property, we thus obtain:

Corollary 6.12 For theories T satisfying the P ;Z-LUB property, Curb Model Checking is in ΣP
2 and Curb

Inference is in ΠP
2 .

For P ;Z-NegOrDual-Horn theories, we obtain by exploiting Theorem 5.6 and Corollary 5.5 the follow-
ing result.
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Theorem 6.13 Curb Model Checking is NP-complete and Curb Inference is coNP-complete if the input
theory T is P ;Z-NegOrDual-Horn. The NP-hardness resp. coNP-hardness holds even under global mini-
mization.

Proof. The proof of Theorem 5.6 implies that M is a P ;Z-curb model of T iff (1) M |= T and (2)
for each atom p ∈ M [P ], there exists some Mp ∈ mmodP ;Z(T ) such that Mp ≤P ;Z M and Mp |= p.
Since no clause in T which contains a positive literal on P contains a literal on Z, this is equivalent to (1′)
M |= T and, assuming this holds, (2′) for each atom p ∈ M [P ], there exists some Mp ∈ mmod(T ′) such
that Mp |= p, where T ′ on atoms P is obtained from T as follows: (i) remove all negative clauses and all
clauses which contain some literal on Z or some literal L on Q such that M |= L, (ii) remove all literals on
Q from the remaining clauses, and (iii) add ¬p for each p ∈ P \M [P ]. Informally, these formulas effect
that every atom p ∈ P such that M(p) = 0 is fixed to ⊥. As easily seen, mod(T ′) corresponds 1-1 with the
models {M ′[P ] |M ′ ∈ mod(T ),M ′ ≤P ;Z M}.

The theory T ′ is dual Horn, i.e., each clause contains at most one negative literal. Hence, the satisfiability
problem for T ′ and minimal model checking, i.e., testing M ∈ mmod(T ′), is possible in polynomial time,
cf. [5]. Consequently, for every p ∈ M [p] some Mp ∈ mmod(T ′) such that Mp |= p can be guessed and
verified in polynomial time. It follows that deciding M ∈ cmodP ;Z(T ) is in NP.

The NP-hardness follows from the construction in the proof of coNP-hardness of circumscriptive literal
inference from a dual Horn theory in [8, Theorem 11]. There, for any CNF ϕ on atoms X = {x1, . . . , xn}
a dual Horn theory T on atoms A = {xi, yi, zi | 1 ≤ i ≤ n} is constructed such that T has some (globally)
minimal model containing xn iff ϕ is satisfiable. These minimal models correspond 1-1 to the models of ϕ,
such that M ∈ mod(ϕ) corresponds to the minimal model M ∪ {yi | 1 ≤ i ≤ n,M 6|= xi} ∪ {z1, . . . , zn}
of T . Without loss of generality, ϕ has the property that M |= ϕ implies that X \M |= ϕ. Since T has by
Theorem 5.6 and Corollary 5.5 the LUB property, A ∈ cmod(T ) iff A ∈ 1-cmod(T ), i.e., the mub of some
set M ⊆ mmod(T ). Since by the proof of Theorem 5.6, mod(T ) is closed under unions, by the property
of ϕ equivalently some M ∈ mmod(T ) exists such that M |= xn. This proves NP-hardness, even under
global minimization.

The NP membership of Curb Model Checking implies that Curb Inference is in coNP. The coNP-
hardness, even under global minimization, follows from Theorem 6.14 below. 2

In particular, we can apply this result to quadratic theories T such that no clause in T contains a positive
literal on P and a literal on Z; this improves the respective result in [38]. In fact, for these theories, we have
the following result.

Theorem 6.14 For quadratic theories T in which no clause has a positive literal on P and a literal on Z,
Curb Model Checking is polynomial and Curb Inference is coNP-complete. Hardness for coNP holds even
under global minimization.

Proof. For quadratic T of this form, the theory T ′ in the proof of Theorem 6.13 is quadratic. The guess
for Mp ∈ mmod(T ′) such that Mp |= p can be eliminated, since as a consequence of [8, Theorem 20],
deciding whether such an Mp exists is feasible in polynomial time. Hence, Curb Model Checking is poly-
nomial.
The coNP-membership of Curb Inference for quadratic T of this form follows from Theorem 6.13. The
coNP-hardness is shown by a reduction from the unsatisfiability problem. Given a CNF ϕ =

∧m
i=1 γi on

atoms X = {x1, . . . , xn}, construct a theory T = {xi ∨x
′
i, ¬xi ∨¬x′i, | 1 ≤ i ≤ n} ∪ {¬.L∨ yj | L ∈ γj ,

1 ≤ j ≤ m}, where x′1, . . . , x
′
n and y1, . . . , ym are fresh atoms and ¬.L is the opposite of literal L (viewing

γj as set of literals). The minimal models of T ′ naturally correspond 1-1 to the assignments for X , where

32



for M ∈ mmod(T ) we have M(yj) = 0 iff M [X] |= ¬γj . Thus, mmod(T ) |= F for F = ¬y1 ∨ · · · ∨ ¬ym

iff ϕ is unsatisfiable. Since ubT (M) = ∅ for each M ⊆ mmod(T ) such that |M| ≥ 2, it follows that
cmod(T ) |= F iff ϕ is unsatisfiable. This proves the result. 2

Notice that by the virtue of Corollaries 5.5 and 5.9, by Proposition 6.10 we have a polynomial time
transformation of computing the P ;Z-curb models of a LUB or Weak LUB theory T into computing the
projection of the P ′;Z ′-minimal models of a theory T ′, and furthermore a polynomial time transforma-
tion of Curb Inference into circumscriptive inference. In particular, since T ′ is quadratic whenever T has
this property, circumscriptive inference algorithms for quadratic theories (cf. [8]) might be employed for
quadratic theories as in Theorem 6.14.

7 Related Work

We have considered an approach to relax the minimal model model approach of circumscription [24, 25], by
adding minimal upper bounds of models in the set of models of a theory. At the syntactic level, this amounts
to admitting, but not enforcing, inclusive interpretation of positive disjunctions in certain situations. In this
way, conclusions about negative information as drawn under circumscription may be prevented.

The issue of inclusive interpretation of disjunction has been investigated in the areas of deductive
databases and logic programming by a number of different authors, cf. [9, 11, 34, 33, 35, 36]. There,
formulas are often restricted to clauses of particular form which are interpreted as rules. The semantics
of theories (“programs”), which are collections of rules over a first-order predicate language, is commonly
defined in terms of Herbrand models and reduces to the propositional case studied in this paper.

A general observation on the works quoted above, and on many others in the fields, is that the seman-
tics of theories depends (as well-known), on the syntactical form of representation. Two theories T and T ′

that are equivalent in classical logic might have different semantics, even for theories as simple as a single
clause. We emphasize that this is not an flaw, but a desired feature: the form of clauses is associated with
a particular intuitive meaning which the semantics aim to capture. Therefore, also the notion of inclusive
interpretation of disjunction (at the syntax level) should somehow depend on this meaning. Curbing, in-
stead, adopts like circumscription a purely model-theoretic view (in terms of classical logic) and is thus
independent of syntactical representation. Any two logically equivalent theories have the same curb models.
Therefore, unsurprisingly curbing and the semantics for inclusive disjunction in [9, 11, 34, 33, 35, 36] be-
have differently. Thus, if a particular meaning is associated with the syntax of statements, then the curbing
approach presented here may like circumscription be inappropriate for respective knowledge bases. Both
curbing and circumscription are geared towards reducing the set of models of a classical theory under some
reasoning rationale, rather than capturing the semantics of a particular language. In the sequel, we briefly
discuss the above formalisms and their relation to curbing.

The Disjunctive Database Rule (DDR) [34] has been proposed to allow cautious derivation of negative
literals from a disjunctive deductive database, which is given by a set of formulas similar to the theories
T1 and T2 in the Examples 3 and 4. In spirit, DDR strives for a maximally inclusive interpretation of
disjunction that is founded by rule application, by replacing disjunctive rules a → b ∨ c by a → b and
a → c, and considering the unique minimal model of the resulting theory. Accordingly, in T1 and T2 DDR
does not infer negative literals, and thus coincides with curbing in this case. However, DDR is basically
different from curbing. It is not aimed at models in between the minimal models and the maximal model.
Furthermore, DDR is syntax dependent. E.g., for T = {a ∨ b, a}, DDR infers no negative information,
while for the logically equivalent theory T ′ = {a, b→ b}, it infers ¬b.
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A more sophisticated approach that allows also to deal with negative clauses was introduced in [35, 9]
by the concepts of “Possible Models Semantics” (PMS) and “Possible Worlds Semantics” (PWS), which
turned out to be equivalent. Like DDR, it replaces disjunctive rules a → b ∨ c by non-disjunctive rules, but
considers, in separate cases, the addition of any nonempty subset of the split rules {a → b, a → c} and
selects the minimal models. The emerging “possible models” coincide with the sustained models of a theory
defined in [11], which uses a level mapping on the atoms to foster derivability from facts. The PMS has also
been generalized to cover Negation by Failure [36]. As opposed to DDR, PMS, PWS, and sustained models
are interested in possible positive information, and thus select also models in between minimal and maximal
inclusive interpretation of disjunction. In Example 3, PMS coincides with curbing, i.e., the possible models
(equivalently, sustained models) and the curb models are the same. However, if the clause h∨n∨p is added
to T1, which is subsumed by the clause h ∨ n and thus has no effect on the models, PMS selects all models,
while curbing selets the same models as before. For Example 4, we have a similar picture. Hence, PWS,
PMS, and sustained models are all syntax-dependent and basically different from our method.

Another approach to treat disjunction inclusively is the extension of the well-founded semantics [39] to
the weak well-founded semantics (WWF) for disjunctive logic programs in [33]. In case of negation-free
programs, this semantics coincides with the DDR [33], which implies syntax-dependency of WWF. Hence,
also WWF is quite different from curbing. For many further semantics of deductive databases, similar
observations can be made.

In the circumscription literature, several variants of circumscription have been introduced. A form of
nested circumscription has been introduced in [26, 7], which informally allows to build hierarchical theories
whose minimal models are defined in an inductive manner. In the propositional case, the formalism has like
curbing PSPACE-complexity [7], but its expressiveness appears to be different; we refer to [7] for a more
detailed comparison.

8 Conclusion

In this paper, we have considered an approach to reasoning from propositional theories which is more
lenient to inclusive interpretation of disjunctive information than minimal model reasoning as fostered by
circumscription [24, 28, 29, 25], which has important applications in Artificial Intelligence. The curbing
approach “softens” circumscription by adding minimal upper bounds of models to the accepted models, and
thus inhibits (sometimes) unintuitive conclusions while keeping the minimization principle. Different from
related approaches in deductive databases and non-monotonic logic programming, where syntax of theories
plays a prominent role, curbing operates like circumscription at the semantical level of classical logic. It
is thus a mathematical tool for reasoning under minimal models together with minimal upper bounds of
models, which may be exploited to reduce the set of models of classical theories under some reasoning
rationale.

Furthermore, we have presented restricted notions of curbing, by bounding the number of iterative dis-
junction steps and the number of models participating in a disjunction, respectively, and we studied structural
properties of the set of models which effect bounded iteration. Finally, we studied the computational com-
plexity of curbing, showing that the main reasoning tasks are PSPACE-complete in general but have lower
complexity in restricted cases.

In the present paper, we have focused on reasoning under minimal upper bounds in propositional logic.
In the seminal paper [17], curbing has been considered in the setting of predicate logic, where a theory
consists of a finite set of first-order sentences (tantamount, a single first-order sentence ϕ). In this setting,
curbing is naturally formalized by a sentence of third-order predicate logic, given that the definition of the
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set of curb models of a first-order sentence ϕ involves sets of sets of models. However, in [17] it was also
shown that curbing can be formalized in second-order logic (assuming the standard ZFC framework, i.e.,
Zermelo-Fraenkel Set Theory with the Axiom of Choice). More precisely, [17] shows how to construct,
given a first-order sentence ϕ(P ;Z) and lists P and Z of predicate constants, where the predicates in P are
minimized while those in Z are floating and all other predicates are fixed, a sentence Curb(ϕ(P,Z);P,Z)
of second-order predicate logic, such that its models are precisely the P ;Z-curb models of ϕ(P,Z). Most
of the semantic results discussed in the present paper can be reformulated for the first-order case, while the
treatment gets more complicated; we refer to [17] for more details.

Several issues remain for future work. On the semantical side, one issue is studying the structure of
the set of curb models more in detail, and to single out interesting conditions under which curbing can be
simplified. The results on the collapse of curbing and circumscription, as well as the LUB and Weak LUB
properties are steps in this direction.

Another issue is to investigate the relationship of curbing to other non-monotonic reasoning formalisms
in more detail. Here, extending the results on the relationship between curbing and vriants of circumscrip-
tion such as nested circumscription [7, 26], which are also independent of syntax, would be interesting.
Furthermore, exploring the relationship between curbing and syntax-based approaches which foster inclu-
sive interpretation of disjunction, e.g. [9, 11, 34, 33, 35, 36] more deeply remains for further work. Here,
it would be interesting to determine meaningful classes of theories on which curbing and such approaches
behave equivalently, or to provide embeddings with possibly extended alphabets.

On the computational side, an natural issue is a comprehensive study of the computational properties of
curbing, in which similar as for circumscription [5, 8] the computational complexity of important syntactic
classes of Boolean theories is determined. Closely related to this are efficient algorithms and implementa-
tion. In particular, an efficient implementation of curbing on top of QBF solvers would be interesting, as
well as the efficient usage of circumscription algorithms.
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A Proof of Theorem 3.10

Proof. For the only-if part, suppose towards a contradiction that cmodP ;Z(T ) = mmodP ;Z(T ) but either
condition (i) or (ii) fails for some terms Di1 and Di2 in F .

In case (i), this means that Di1 and Di2 are not blocking w.r.t. P and there is a satisfiable hitting set H
of Si1,i2 . This means that there is no term term Di3 in F such that PosP (Di3) ⊆ PosP (Di1)∩PosP (Di2)
and Di3 |= Di1 [Q] ∪ Di2 [Q] ∪ ¬.H , where ¬.H = {¬p | p ∈ H} ∪ {p | ¬p ∈ H} denotes the set of
literals opposite to those in H . This implies that there exist incomparable M1,M2 ∈ mmodP ;Z(T ) such
thatM1[Q] = M2[Q], and for j ∈ {1, 2}, we haveMj |= Di1 [Q]∪Di2 [Q]∪¬.H andMj [P ] ⊆ PosP (Dij ).
Without loss of generality, suppose that PosP (Di1) ∩ NegP (Di2) = ∅; this is feasible since Di1 and Di2

are not blocking w.r.t. P . Then, the model M = PosP (D2) ∪M1[P ] ∪M2[Q ∪ Z] satisfies Di2 , and thus
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M ∈ ubT
P ;Z({M1,M2}). By Proposition 3.6, it follows that mubT

P ;Z({M1,M2}) \ mmodP ;Z(T ) 6= ∅, and
thus cmodP ;Z(T ) 6= mmodP ;Z(T ). This is a contradiction, which proves case (i).

In case (ii), we have some term Di3 in F such that (a) PosP (Di1) ∪ PosP (Di2) ⊆ PosP (Di3) and
Di1 , Di2 , Di3 are Q-satisfiable, and (b) Si1,i2,i3 has a satisfiable hitting set H (⊆ (Q ∪ ¬.Q) \ (Di1 ∪
Di2 ∪ Di3)). By condition (a), there exist models M1, M2, and M3 of T , such that for j ∈ {1, 2, 3},
Mj |= Dij and Mj [P ] = PosP (Dij ), and M3 ∈ ubT

P ;Z({M1,M2}). Condition (b) implies that there
is no term Di4 in F such that Di1 , . . . , Di4 are Q-satisfiable, PosP (Di4) ⊆ PosP (Di1) ∩ PosP (Di2),
and Di4 ∪ Di1 [Q] ∪ Di2 [Q] ∪ Di3 [Q] ∪ ¬.H is satisfiable. Thus we may assume that Mj |= Di1 [Q] ∪
Di2 [Q]∪Di3 [Q]∪¬.H for j ∈ {1, 2, 3} and that noM ∈ mod(T ) satisfiesM ≤P ;Z M1 andM ≤P ;Z M2.
Hence there exist incomparable N1, N2 ∈ mmodP ;Z(T ) such that N1 ≤P ;Z M1, and N2 ≤P ;Z M2. Since
M3 ∈ ubT

P ;Z({N1, N2}), similar as above by applying Proposition 3.6 we arrive at a contradiction.
For the if part, consider any DNF for T which verifies the above conditions, and suppose towards

a contradiction that cmodP ;Z(T ) 6= mmodP ;Z(T ). Then, there exists some M /∈ mmodP ;Z(T ) and
M ⊆ mmodP ;Z(T ) such that M ∈ mubT

P ;Z(M). Hence, there are incomparable models M1,M2 ∈ M

such that M ∈ ubT
P ;Z({M1,M2}) (and thus M [Q] = M1[Q] = M2[Q]). By Lemma 3.9, for every

j ∈ {1, 2} there is a term Dij in F such that Mj |= Dij and Mj [P ] = PosP (Dij ). Therefore, Di1 , Di2 are
Q-satisfiable and PosP (Di1), PosP (Di2) are incomparable. Since M ∈ mod(T ), there must exist some
term Dk in F such that M |= Dk. Condition (ii) for Di1 , Di2 implies that there is no term Dk in F such
that PosP (Dk) ⊇ PosP (Di1) ∪ PosP (Di2) and M |= Dk. Indeed, suppose such a term Dk would exist.
By P ;Z-minimality of M1 and M2, there is no term Di4 in F such that M [Q] |= Di4 [Q] and PosP (Di4) ⊆
PosP (Di1) ∩ PosP (Di2). Hence, Si1,i2,k would have the satisfiable hitting set H = (Q \M) ∪ ¬.M [Q];
this would contradict that Condition (ii) is satisfied by Di1 and Di2 .

From P ;Z-minimality of M1 and M2, it thus follows that M |= Dk for some term Dk in F such that,
for some j ∈ {1, 2}, PosP (Dk) and PosP (Dij ) are incomparable and Dk, Dij are not blocking w.r.t. P .
By Condition (i) for Di′1

= Dk and Di′2
= Dij , the family Si′1,i′2

has no satisfiable hitting set. Thus in
particular, H = (Q \ M) ∪ ¬.M [Q] is not a hitting set of Si′1,i′2

, i.e., there exists some set Sl ∈ Si′1,i′2
such that H ∩ Sl = ∅. This implies that there exists some term Dl in F such that M [Q] |= Dl[Q] and
PosP (Dl) ⊂ PosP (Dij ). Hence, there exists some model N <P ;Z Mj such that N |= Dl and thus
N |= T . However, this means that Mj /∈ mmodP ;Z(T ), which is a contradiction. 2
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