
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

Abtg. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTESYSTEME

A BACKJUMPING TECHNIQUE

FOR DISJUNCTIVE LOGIC

PROGRAMMING

Francesco Ricca Wolfgang Faber Nicola Leone

INFSYS RESEARCH REPORT1843-05-08

NOVEMBER 2005

INFSYS RESEARCHREPORT

INFSYS RESEARCH REPORT1843-05-08, NOVEMBER 2005

A BACKJUMPING TECHNIQUE

FOR DISJUNCTIVE LOGIC PROGRAMMING

Francesco Ricca1 Wolfgang Faber1 Nicola Leone1

Abstract. In this work we present a backjumping technique for Disjunctive Logic Program-
ming under the Stable Model Semantics (SDLP). It builds uponrelated techniques that had
originally been introduced for constraint solving, which have been adapted to propositional
satisfiability testing, and recently also to non-disjunctive logic programming under the sta-
ble model semantics (SLP) [1, 2].
We focus on backjumping without clause learning, providinga new theoretical framework
for backjumping in SDLP, elaborating on and exploiting peculiarities of the disjunctive set-
ting. We present a reason calculus and associated computations, which – compared to the
traditional approaches – reduces the information to be stored, while fully preserving the
correctness and the efficiency of the backjumping technique, handling specific aspects of
disjunction in a benign way. We implemented the proposed technique in DLV, the state-of-
the-art SDLP system.
We have conducted several experiments on hard random and structured instances in order
to assess the impact of backjumping, using DLV with and without the backjumping method
described in this paper, using as a parameter to both two different heuristic functions. Our
conclusion is that under any of the heuristic functions, DLVwith backjumping is favourable
to DLV without backjumping. DLV with backjumping performs particularly well on struc-
tured satisfiability and quantified boolean formula instances, where the search space and
execution time are effectively cut.

1Department of Mathematics, University of Calabria. 87030 Rende (CS), Italy E-mail: ricca, faber,
leone@mat.unical.it

Acknowledgements: This work was supported by the European Commission under projects IST-
2002-33570 INFOMIX and IST-2001-37004 WASP. Wolfgang Faber’s work was funded by an
APART grant of the Austrian Academy of Sciences.

A preliminary version of this paper appears in the Proceedings of 2005 Workshop of the Working
Group on ASP (ASP’05)

Copyright c© 2005 by the authors

2 INFSYS RR 1843-05-08

1 Introduction

SDLP. Disjunctive Logic Programming under the Stable Model Semantics (SDLP)1, is a novel
programming paradigm, which has been proposed in the area ofnonmonotonic reasoning and logic
programming. The idea of SDLP is to represent a given computational problem by a logic program
whose stable models correspond to solutions, and then use a solver to find such a solution [3].

The knowledge representation language of SDLP is very expressive in a precise mathematical
sense; in its general form, allowing for disjunction in ruleheads and nonmonotonic negation in
rule bodies, SDLP can representeveryproblem in the complexity classΣP

2 andΠP
2 (under brave

and cautious reasoning, respectively) [4]. Thus, SDLP is strictly more powerful than SAT-based
programming (unless some widely believed complexity assumptions do not hold), as it allows us
to solve even problems which cannot be translated to SAT in polynomial time. The high expressive
power of SDLP can be profitably exploited in AI, which often has to deal with problems of high
complexity. For instance, problems in diagnosis and planning under incomplete knowledge are
complete for the the complexity classΣP

2 or ΠP
2 [5, 6], and can be naturally encoded in SDLP

[7, 8].
As an example, consider the well-known 3COLORABILITY problem. Given a graphG =

(V, E), assign each node one of three colors (say, red, green, or blue) such that adjacent nodes
always have distinct colors. The SDLP encoding is as follows:

vertex(v). ∀v ∈ V

edge(v1, v2). ∀(v1, v2) ∈ E

col(X, red) v col(X, green) v col(X, blue)
:- vertex(X).

:- edge(X, Y), col(X, C), col(Y, C).

The first two lines introduce suitable facts, representingG, the third line states that each vertex
needs to have some color. Since stable models are minimal w.r.t. set inclusion, each vertex will be
associated to precisely one color in any stable model. The last line acts as an integrity constraint
and disallows situations in which two vertices connected byan edge are associated with the same
color. By now, several systems are available, which implement SDLP: DLV [9], GnT [10], and
recently cmodels-3 [11].

Main Issues. Most of the optimization work on related SDLP systems has focused on the effi-
cient evaluation of non-disjunctive programs (whose poweris limited to NP/co-NP), whereas the
optimization of full SDLP has been treated in fewer works (e.g., in [10, 12]).

One of the more recent proposals for enhancing the evaluation of non-disjunctive programs has
been the definition of backjumping and clause learning mechanisms. These techniques had been
successfully employed in CSP solvers [13, 14] and propositional SAT solvers [15, 16] before, and

1Often SDLP is referred to as Answer Set Programming (ASP). While ASP supports also a second (“strong”) kind
of negation, it can be simulated in SDLP. To avoid confusion,we will only use the term SDLP in this paper.

INFSYS RR 1843-05-08 3

were “ported” to non-disjunctive logic programming under the stable model semantics (SLP) in
[1, 2], resulting in the system Smodelscc.

In this paper we address two questions:
◮ How can backjumping be generalized to disjunctive programs?
◮ Is backjumping without clause learning effective?

Why Backjumping? As for an intuition about the value of backjumping, considerthe following
instance of the 3COLORABILITY problem:

a

c d

b

e

Note that vertexe is not on any edge.

edge(a, b). edge(a, c). edge(a, d).
edge(b, d). edge(c, b). edge(c, d).
vertex(a). vertex(b). vertex(c).
vertex(d). vertex(e).

Informally, an evaluation could now proceed as follows,2 as sketched in Fig. 1. First, assume
col(a, red) to hold. As a consequencecol(b, red), col(c, red), col(d, red) must be false (otherwise
the integrity constraint would be violated), whilecol(a, blue) andcol(a, green) must be false, be-
cause they occur in the only rule which can supportcol(a, red). Next, assume thatcol(e, green)
holds. No consequences are entailed in this case. Now, assume col(b, green) to hold. As a conse-
quencecol(c, green), col(d, green) must be false, in order to satisfy the integrity constraint,and
col(b, blue) must be false because it occurs in the only rule which can support col(b, green). In
turn,col(c, blue) andcol(d, blue) have to hold, as both occur in rule heads in which all other atoms
are false (and the rule body is true). This, however, causes acontradiction, because both nodes
on the edge(c, d) have the same color, and the respective integrity constraint is not satisfied. The
reason for this contradiction is the first and third choice (col(a,red)andcol(b,green), while the
second choice (col(e,green)) is not connected to it.

Now, trying the complement of the last choice,col(b, green), to be false, entailscol(b, blue) to
hold, and as a consequencecol(c, blue), col(d, blue), must be false (because of constraints), while
col(c, green), col(d, green) must hold. Again, both nodes on the edge(c, d) would get the same
color, and the respective integrity constraint is not satisfied. The reason for the contradiction is the
first and third choice, as before.

2See Section 4 for a precise description of the computation.

4 INFSYS RR 1843-05-08

col(a,red)

col(e,green)

col(b,green) not col(b,green)

jump

Figure 1: Computation tree for 3COLORABILITY example.

We have now identified an inconsistent subtree, the reasons for the inconsistency being the first
choice. Now, when going back, it does not make sense to try thecomplement of the second choice,
as eventually the same contradiction will arise:col(b, green) must become true or false at some
point, triggering the same contradictions. Therefore we can backjump to the closest reason of the
inconsistent subtree.

In sum, once the above inconsistency arises, an algorithm based on (chronological) backtrack-
ing, tries the complement of the second choice (col(e, green)), making further choices and a lot of
useless computations all leading to the inconsistencies encountered before. Backjumping, instead,
allows us to jump directly to the source of the inconsistency(col(a, red)), reducing the search
space significantly.

Contributions. Backjumping notions have first been studied for constraint solving, have been
applied successfully for SAT solving and have recently beenported to SLP in [1, 2]. In this paper
we first present a generalization of these approaches to disjunctive programs by defining areason
calculus for the DetCons function of DLV (which roughly corresponds to unit propagation in
DPLL-based SAT solvers and AtLeast/AtMost in Smodels). These reasons can then be exploited
for effective backjumping. Special attention is paid to peculiarities of the disjunctive setting. We
also describe the implementation of these techniques in theDLV system, the state-of-the-art SDLP
system. In fact, our implementation aims at reducing the information to be stored as much as
possible, while maintaining the best jumping possibilities.

Subsequently, we assess our method and implementation by anexperimentation activity. We
have tested the impact of backjumping both with and without the employment of the lookahead
(see Section 5), on random 3SAT instances,ΣP

2 -hard QBF, and some structured SAT instances.
The full picture resulting from the experiments is very positive:

• On SigmaP2-hard QBF, the Backjumping technique (BJ) reduces the number of choice

INFSYS RR 1843-05-08 5

points significantly. Such a reduction implies also relevant time-gains in the program evalu-
ation. Both the reduction of choice points and the time-gainare observed even if lookahead
is employed.

• The backjumping technique has a positive impact also on the evaluation of structured 3SAT
instances. Choice points are reduces sensibly, and a time-gain is obtained, both with and
without the lookahead.

• On random 3SAT instances, the backjumping technique bringsa reduction of the search
space (fewer choice points), if lookahead is not employed. This reduction is compensated
by the overhead brought by the reason calculus, but such an overhead does not overcome the
gain: the two versions (with/without backjumping) essentially show the same performance.
If lookahead is employed, there is no cut of the search space in this case; but the overhead in
computation-time, which is brought by the reason calculus,is negligible.

In sum, the results of the experiments let us conclude the following:

• Backjumping is preferable to the version without backjumping, independently of the heuris-
tic employed in DLV.

• Backjumping without clause learning can be effective.

• Even in cases, in which the search space is not pruned by backjumping, the overhead is
negligible.

The organization of the paper is as follows. In Section 2 we review the syntax and semantics of
SDLP, and recall some of its properties. In Section 3, the computational core of DLV is presented,
which is extended in Section 4 by a suitable backjumping method. In Section 5 we report on the
benchmarks performed to asses the impact of this backjumping method. Finally, in Section 6 we
draw out conclusions and outline future work.

2 Disjunctive Logic Programming

In this section, we provide a brief introduction to the syntax and semantics of Disjunctive Logic
Programming; for further background see [17, 18].

2.1 Syntax

A disjunctive ruler is a formula

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm.

6 INFSYS RR 1843-05-08

wherea1, · · · , an, b1, · · · , bm are atoms3 andn ≥ 0, m ≥ k ≥ 0. A literal is either an atoma or
its default negationnot a. Given a ruler, let H(r) = {a1, ..., an} denote the set of head literals,
B+(r) = {b1, ..., bk} andB−(r) = {not bk+1, ..., not bm} the set of positive and negative body
literals, resp., andB(r) = B+(r) ∪ B−(r). the set of body literals.

A rule r with B−(r) = ∅ is calledpositive; a rule withH(r) = ∅ is referred to asintegrity
constraint. If the body is empty we usually omit the:- sign.

A disjunctive logic programP is a finite set of rules;P is apositiveprogram if all rules inP
are positive (i.e.,not-free). An object (atom, rule, etc.) containing no variables is calledgroundor
propositional.

Given a literall, letnot.l = a if l = not a, otherwisenot.l = not l, and given a setL of literals,
not.L = {not.l | l ∈ L}.

For example consider the following program:

r1 : a(X) v b(X):- c(X, Y), d(Y), not e(X).
r2 : :- c(X, Y), k(Y), e(X), not b(X)
r3 : m:- n, o, a(1).
r4 : c(1, 2).

r1 is a disjunctive rule s.t.H(r1) = {a(X), b(X)}, B+(r1) = {c(X, Y), d(Y)}, andB−(r1) =
{e(X)}; r2 is a constraint s.t.B+(r2) = {c(X, Y), k(Y), e(X)}, andB−(r2) = {b(X)}; r3 is a
ground positive (non-disjunctive) rule s.t.H(r3) = {m} B+(r3) = {n, o, a(1)}, andB−(r3) = ∅;
r4 is a fact (note that:- is omitted).

2.2 Semantics

The semantics of a disjunctive logic program is given by its stable models [19], which we briefly
review in this section.

Given a programP, let theHerbrand UniverseUP be the set of all constants appearing inP
and theHerbrand BaseBP be the set of all possible ground atoms which can be constructed from
the predicate symbols appearing inP with the constants ofUP .

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible substi-
tutionsσ from the variables inr to elements ofUP . Similarly, given a programP, the ground
instantiationP of P is the set

⋃

r∈P Ground(r).
For every programP, we define its stable models using its ground instantiationP in two

steps: First we define the stable models of positive programs, then we give a reduction of general
programs to positive ones and use this reduction to define stable models of general programs.

A setL of ground literals is said to beconsistentif, for every atomℓ ∈ L, its complementary
literal not ℓ is not contained inL. An interpretationI for P is a consistent set of ground literals
over atoms inBP .4 A ground literalℓ is truew.r.t. I if ℓ ∈ I; ℓ is falsew.r.t. I if its complementary

3For simplicity, we do not consider strong negation in this paper. It can be emulated by introducing new atoms and
integrity constraints.

4We represent interpretations as sets of literals, since we have to deal with partial interpretations in the next sections.

INFSYS RR 1843-05-08 7

literal is in I; ℓ is undefinedw.r.t. I if it is neither true nor false w.r.t.I.
Let r be a ground rule inP. The head ofr is truew.r.t. I if existsa ∈ H(r) s.t. a is true w.r.t.

I (i.e., some atom inH(r) is true w.r.t. I). The body ofr is true w.r.t. I if ∀ℓ ∈ B(r), ℓ is true
w.r.t. I (i.e. all literals onB(r) are true w.r.tI). The body ofr is falsew.r.t. I if ∃ℓ ∈ B(r) s.t. ℓ
is false w.r.tI (i.e., some literal inB(r) is false w.r.t.I). The ruler is satisfied(or true) w.r.t. I if
its head is true w.r.t.I or its body is false w.r.t.I.

InterpretationI is total if, for each atomA in BP , eitherA or not.A is in I (i.e., no atom inBP

is undefined w.r.t.I). A total interpretationM is amodelfor P if, for every r ∈ P, at least one
literal in the head is true w.r.t.M whenever all literals in the body are true w.r.t.M . X is astable
modelfor a positive programP if its positive part is minimal w.r.t. set inclusion among the models
of P.

For example, consider the positive programs

P1 = {a v b v c. ; :- a.}

P2 = {a v b v c. ; :- a. ; b:- c. ; c:- b.}

The stable models ofP1 are{b, not a, not c} and{c, not a, not b}, while {b, c, not a} is the
only stable model ofP2.

The reductor Gelfond-Lifschitz transformof a general ground programP w.r.t. an interpreta-
tion X is the positive ground programPX , obtained fromP by (i) deleting all rulesr ∈ P whose
negative body is false w.r.t. X and (ii) deleting the negative body from the remaining rules.

A stable model of a general programP is a modelX of P such thatX is a stable model ofPX .
Given the (general) program

P3 = {

a v b:- c. ;

b:-not a, not c. ;

a v c:-not b.

}

and the interpretationI = {b, not a, not c}, the reductPI
3 is {a v b:- c., b.}. I is a stable model

of PI
3 , and for this reason it is also a stable model ofP3. Now considerJ = {a, not b, not c}. The

reductPJ
3 is {a v b:- c. ; a v c.} and it can be easily verified thatJ is a stable model ofPJ

3 , so it
is also a stable model ofP3.

2.3 Some SDLP Properties

Given an interpretationI for a ground programP,we say that a ground atomA is supportedin
I if there exists asupportingrule r ∈ ground(P), i.e. the body ofr is true w.r.t.I andA is the
only true atom in the head ofr. If M is a stable model of a programP, then all atoms inM are
supported [20, 21, 22].

8 INFSYS RR 1843-05-08

(b)

e d
}

-�
6 I

c

ba

�

(a)

I

c

ba

�

Figure 2:Graphs (a)DGP4
, and (b)DGP5

An important property of stable models is related to the notion of unfounded set[23, 21]. Let
I be a (partial) interpretation for a ground programP. A set X ⊆ BP of ground atoms is an
unfounded set forP w.r.t. I if, for eacha ∈ X and for each ruler ∈ P such thata ∈ H(r),
at least one of the following conditions holds: (i)B(r) ∩ not.I 6= ∅, (ii) B+(r) ∩ X 6= ∅, (iii)
(H(r) − X) ∩ I 6= ∅.

Let IP denote the set of all interpretations ofP for which the union of all unfounded sets for
P w.r.t. I is an unfounded set forP w.r.t. I as well5. GivenI ∈ IP , let GUSP(I) (the greatest
unfounded setof P w.r.t. I) denote the union of all unfounded sets forP w.r.t. I.

If M is a total interpretation for a programP. M is a stable model ofP iff not.M = GUSP(I)
[21].

With every ground programP, we associate a directed graphDGP = (N, E), called the
dependency graphof P, in which (i) each atom ofP is a node inN and (ii) there is an arc inE
directed from a nodea to a nodeb iff there is a ruler in P such thatb anda appear in the head and
positive body ofr, respectively.

The graphDGP singles out the dependencies of the head atoms of a ruler from the positive
atoms in its body.6

As an example, consider the programs

P4 = {a v b. ; c:- a. ; c:- b.}
P5 = P4 ∪ {d v e:- a. ; d:- e. ; e:- d, not b.}.

The dependency graphDGP4
of P4 is depicted in Figure 2 (a), while the dependency graph

DGP5
of P5 is depicted in Figure 2 (b).

A programP is head-cycle-free(HCF) iff there is no ruler in P such that two atoms occurring
in the head ofr are in the same cycle ofDGP [24].

Considering the previous example, the dependency graphs given in Figure 2 reveal that program
P4 is HCF and that programP5 is not HCF, as ruled v e:- a. contains in its head two atoms
belonging to the same cycle ofDGP5

.
A componentC of a dependency graphDG is a maximal subgraph ofDG such that each node

in C is reachable from any other. Thesubprogramof C consists of all rules having some atom
from C in the head. An atom is non-HCF if the subprogram of its component is non-HCF.

5While for non-disjunctive programs the union of unfounded sets is an unfounded set for all interpretations, this
does not hold for disjunctive programs (see [21]).

6Note that negative literals cause no arc inDGP .

INFSYS RR 1843-05-08 9

3 Model Generation in DLV

In this section, we briefly describe the computational process performed by the DLV system [21,
25] to compute stable models, which will be used for the experiments. Note that, other SDLP and
SLP systems like Smodels [26, 27] employ a very similar procedure.

In general, a logic programP contains variables. The computational step of an SDLP system
eliminates these variables, generating a ground instantiation ground(P) of P which is a (usually
much smaller) subset of all syntactically constructible instances of the rules ofP having precisely
the same stable models asP [28].

3.1 Main Model Generation Procedure

The nondeterministic part of the computation is performed on this simplified ground program by
the Model Generator, which is sketched below. Note that for reasons of presentation, the descrip-
tion here is quite simplified; in particular, the choice points and search trees are somewhat more
complex in the “real” implementation. However, one can find aone-to-one mapping to the simpler
formalism described here. A more detailed description can be found in [25]. Note also that the
version described here computes one stable model for simplicity, however modifying it to compute
all or n stable models is straightforward. For brevity,P refers to the simplified ground program in
the sequel. Roughly, the Model Generator produces some “candidate” stable models. Each candi-

bool MG (Interpretation& I){
if (! DetCons (I))then

return false;
if (“no atom is undefined in I”)then return IsUnfoundedFree(I);
Select an undefined atomA using a heuristic;
if (MG (I ∪ {A}) then return true ;

else returnMG (I ∪ {not A}); };

Figure 3: Computation of Stable Models

dateI is then verified by the function IsUnfoundedFree(I), which checks whetherI is a minimal
model of the programPI obtained by applying the GL-transformation w.r.t.I. This part of the
computation is also referred to asmodelor stability checker.

The interpretations handled by the Model Generator are partial interpretations. Initially, the
MG function is invoked withI set to the empty interpretation (all atoms are undefined at this
stage). If the programP has a stable model, then the function returns true and setsI to the
computed stable model; otherwise it returns false. The Model Generator is similar to the Davis-
Putnam procedure in SAT solvers. It first calls a function DetCons, which extendsI with those
literals that can be deterministically inferred. This is similar to unit propagation as employed by
SAT solvers, but exploits the peculiarities of SDLP for making further inferences (e.g., it uses the
knowledge that every stable model is a minimal model).

DetCons(I) computes the deterministic consequences of I, and will be described in more detail
in Section 3.2. If DetCons(I) does not detect any inconsistency, an atomA is selected according to

10 INFSYS RR 1843-05-08

a heuristic criterion and MG is recursively called on bothI ∪ {A} andI ∪ {not A}. The atomA

corresponds to abranching variablein SAT solvers.
The efficiency of the whole process depends on two crucial features: a good heuristic to choose

the branching variables and an efficient implementation of DetCons. Actually, the DLV system
employs by default a so calledlookaheadheuristic [29, 30] and an efficient DetCons implementa-
tion [31, 32].

In a lookahead heuristic, each possible choice literal is tentatively assumed, its consequences
are computed, and some characteristic values on the result are recorded. Based on these values,
the choice is determined. We will not describe the method here further, as it is not connected to
backjumping, and refer to [29, 30] for details.

It is worth noting that, if during the execution of the MG function a contradiction arises, or the
stable model candidate is not a minimal model, MG backtracksand modifies the last choice. This
kind of backtracking is called chronological backtracking.

In Section 4, we describe a technique in which the truth valueassignments causing a conflict
are identified and backtracking is performed “jumping” directly to a point so that at least one of
those assignments is modified. This kind of backtracking technique is called non-chronological
backtracking or backjumping.

3.2 DetCons

As previously pointed out, the role of DetCons is similar to the Boolean Constraint Propagation
(BCP, often referred to asunit propagation) procedure in Davis-Putnam SAT solvers. However,
DetCons is more complex than BCP, which is based on the simpleunit propagation inference rule,
while DetCons implements a set of inference rules. Those rules combine an extension of the Well-
founded operator for disjunctive programs with a number of techniques based on SDLP program
properties. We will not define these rules or their implementation in detail here, as they are not a
novelty of this paper, and refer to [31, 32] for their precisedefinitions and implementation.

While the full implementation of DetCons involves four truth values (apart from true, false,
and undefined, there is also “must be true”), we treat “must betrue” as true in this description for
simplicity, as they are treated in the same way with respect to backjumping. Moreover, we group
the inference rules using the same terminology as [1] for better comparability:

1. Forward Inference,

2. Kripke-Kleene Negation,

3. Contraposition for True Heads,

4. Contraposition for False Heads,

5. Well-founded Negation.

Rule 1 derives an atom as true if it occurs in the head of a rule in which all other head atoms are
false and the body is true. Rule 2 derives an atom as false if norule can support it. Rule 3 applies

INFSYS RR 1843-05-08 11

if for a true atom only one rule that can support it is left, andmakes inferences such that the rule
can support the atom, i.e. derives all other head atoms as false, atoms in the positive body as true
and atoms in the negative body as false. Rule 4 makes inferences for rules which have a false head:
If only one body literal is undefined, derive a truth value forit such that the body becomes false.
Finally, rule 5 sets all members of the greatest unfounded set to false. We note that rule 5 is only
applied on recursive HCF subprograms for complexity reasons [32].

4 Backjumping

In this section we first motivate by means of an example how a backjumping technique is supposed
to work, and then give a more formal account on how to extend the functions DetCons and MG of
DLV to accomplish this task in general.

4.1 Backjumping by Example

Consider the following program

r1 : a v b. r2 : c v d. r3 : e v f.

r4 : g :- a, e. r5 : :- g, a, e.

r6 : g :- a, f. r7 : :- g, a, f.

and suppose that the search tree is as depicted in Fig. 4.

Figure 4: Backtracking vs Backjumping.

According to this tree, we first assumea to be true, derivingb to be false (because ofr1 and
rule 3). Then we assumec to be true, derivingd to be false (because ofr2 and rule 3). Third, we

12 INFSYS RR 1843-05-08

assumee to be true and derivef to be false (because ofr3 and rule 3) andg to be true (because of
r4 and rule 1). This truth assignment violates constraintr5 (because rule 4 derivesg to be false),
yielding an inconsistency. We continue the search by inverting the last choice, that is, we assumee

to be false and we derivef to be true (because ofr3 and rule 1) andg to be true (because ofr7 and
rule 1), but obtain another inconsistency (because of constraintr7 and rule 4,g must also be false).

At this point, MG goes back to the previous choice point, in this case inverting the truth value
of c (cf. the arc labelled BK in Fig. 4).

Now it is important to note that the inconsistencies obtained are independent of the choice of
c, and only the truth value ofa ande are the “reasons” for the encountered inconsistencies. In
fact, no matter what the truth value ofc is, if a is true then any truth assignment fore will lead to
an inconsistency. Looking at Fig. 4, this means that in the whole subtree below the arc labelleda

no stable model can be found. It is therefore obvious that thechronological backtracking search
explores branches of the search tree that cannot contain a stable model, performing a lot of useless
work.

A better policy would be to go back directly to the point at which we assumeda to be true (see
the arc labelled BJ in Fig. 4). In other words, if we know the “reasons” of an inconsistency, we can
backjump directly to the closest choice that caused the inconsistent subtree.

4.2 Reasons for Literals

Until now, we used the term “reason” in an intuitive way. We will now define more formally what
such reasons are and how they can be handled.

We start by reviewing the intuition of reason of a literal (representing a truth value of the
literal’s atom). A rulea:- b, c, not d. can give rise to the following propagation: Ifb andc are
true andd is false in the current partial interpretation, thena is derived to be true (by Forward
Propagation). In this case, we say thata is true “because”b andc are true andd is false.

More generally, the reason of a derived literal consists of the reasons of those literals that entail
its truth. While for Forward Propagation it is rather clear which literals entail the derived one,
this is somewhat more intricate for other propagations. However, there is one way for a literal
to become true unconditionally, i.e. no other literals entail its truth: These are thechosenliterals
which become true by virtue of one of the recursive invocation in the last two lines of MG in
Figure 3. In this case, their only reason is their choice.

The only elementary reasons are therefore thechosenliterals; all other reasons are aggregations
of reasons of other literals. There are also cases in which literals are unconditionally true, for
example atoms occurring in facts (rules with singleton headand empty body). Since at any point
during the computation there is a unique chosen literal at any recursion level, we may identify the
reason of a chosen literal by an integer number (starting from 0) representing its recursion level.
Reasons of derived literals are then (possibly empty) collections of integers.

Each literall derived during the propagation (through DetCons) will havean associated set of
positive integersR(l) representing the reason ofl, which represent the set of choices entailingl.
Therefore, for any chosen literalc, |R(c)| = 1 holds, while for any derived (i.e., non-chosen) literal
n, |R(n)| ≥ 1 holds. For instance, ifR(l) = {1, 3, 4}, then the literals chosen at recursion levels

INFSYS RR 1843-05-08 13

1,3 and 4 entaill.

4.3 Determining Reasons for Derived Literals

In order to define more formally what reasons for derived (non-chosen) literals are — this task is
often referred to asreason calculus— we need some preliminary notions.

Given a ruler, a ”satisfying literal” is either a true head atom or a false body literal inr. Ruler

is satisfied iff it has a satisfying literal. Note that a satisfied rule can have more than one satisfying
literals. Also note that any satisfying literal is either a chosen or a derived literal, so we may
assume that its reason is known.

Let us next define an ordering≺r among satisfying literals of a given ruler, which is basically
a lexicographic order over the numerically ordered integers of the respective reasons. We first
give two technical definitions:Rk(l) denotes the reason ofl without thek greatest integers, while
MAXk(l) gives thek-th integer ofR(l) in descending order (or−1 if |R(l)| < k).

Rk(l) =

{

R(l), k = 0
Rk−1(l)\{max(Rk−1(l))}, k > 0

MAXk(l) =

{

max(Rk−1(l)), Rk−1(l) 6= ∅
−1, otherwise.

wheremax(x) is the maximum element in the setx. If s1, s2 are satisfying literals for ruler,
thens1 ≺ s2 (s1 precedess2) iff one the following conditions holds:

(i) MAX1(s1) < MAX1(s2) ∧ MAX1(s1 6= −1 ∧ MAX1(s2) 6= −1

(ii) MAX1(s1) = −1 ∧ MAX1(s2) > 0

(iii) ∃k : k > 1 : ∀x : 1 < x < k : MAXx(s1) = MAXx(s2) 6= −1 and
MAXk(s1) < MAXk(s2) ∧ MAXk(s1) 6= −1 ∧ MAXk(s2) 6= −1

(iv) ∃k : k > 1 : ∀x : 1 < x < k : MAXx(s1) = MAXx(s2) 6= −1 and
MAXk(s1) = −1 ∧ MAXk(s2) > 0

Let s1 ∼ s2 if s1 6≺ s2 ands2 6≺ s1. We writes1 � s2 iff s1 ≺ s2 or s1 ∼ s2.
Let s1, . . . , sn be satisfying literals for ruler, if si � sj for eachj = 1, ..., n thenRr = R(si)

is acancelling assignmentfor r. Note that a cancelling assignment of a ruler represents the reason
corresponding to the earliest choice causingr to be satisfied.

In the following, we describe how reasons of derived literals are computed for the respective
inference rules of DetCons with respect to a partial interpretationI. We would like to point out
that we did not introduce any novel inference rules in this work, but rather we extend existing ones
by the reason calculus.

Forward Inference
We have already discussed that case informally; if all body literals are true, all head atoms but one
(which is undefined) are false, then we infer the truth of the only undefined head atom. The reason

14 INFSYS RR 1843-05-08

for this head atom is the set consisting of the union of the reasons for all the other literals in the
rule.

More formally, given a ruler, if ∃ai ∈ H(r) such that(i) ∀b ∈ B(r) : b ∈ I, (ii) ∀a ∈ (H(r)\
{ai}) : not a ∈ I, then inferai ∈ I. We defineR(ai) as

⋃

a∈H(r)\{ai}
R(not a) ∪

⋃

l∈B(r) R(l).
For example, consider the following program:

r1 : a v b:- c, not d. r2 : c:- not d, e.

r3 : f v b. r4 : g v d. r5 : e vh.

SupposeI = {not b, c, not d, f, g, not h}, andR(f) = R(not b) = {1}, R(c) = {2, 3}, R(g) =
R(not d) = {2}, andR(e) = R(not h) = {3}. We have thata is derived to be true from ruler1

(all body literals are true and the only head atomb is false) and the reason ofa to be true is set to
R(a) = R(not b) ∪ R(c) ∪ R(not d) = {1, 2, 3}.

Kripke-Kleene Negation
In this case we derive negative information: If for some undefined atom all of the rules, in which
it occurs in the head, are satisfied w.r.t.I, then derive this atom to be false. So the reason for
the derived literal is that all of the rules, in which it occurs in the head, are satisfied w.r.t.I. As
motivated above, the reason for a rule being satisfied is its cancelling assignment. The reason of
the literal is hence the union of the respective cancelling assignments.

Given an atoma, if for each ruler such thata ∈ H(r) (i) ∃b ∈ B(r) such thatnot.b ∈ I or
(ii) ∃c ∈ H(r) such thata 6= c andc ∈ I, then infernot.a ∈ I. We defineR(a) as

⋃

r:a∈H(r) Rr,
whereRr is a cancelling assignment of ruler.

For example, consider the following subprogram:

r1 : a v b:- c, not d. r2 : b:- e, not f.

r3 : b:- g, h.

SupposeI = {a, c, d, e, f, g, not h} andR(a) = {7}, R(c) = {5}, R(d) = {6}, R(e) = {3},
R(f) = {4}, R(g) = {1}, R(not h) = {2}. The atomb is undefined and it is contained in the head
of all rules. The cancelling assignments are as follows:Rr1

= R(c) = {5}, Rr2
= R(e) = {3},

andRr3
= R(g) = {1}. DetCons then infersb to be false andR(not b) = Rr1

∪ Rr2
∪ Rr3

=
{1, 3, 5}.

Contraposition for True Heads
Here we exploit the fact that each true atom in a stable model must have at least one supporting
rule. If an atom is true and has only one supporting rule left,we infer the truth of all body literals
and the falsity of all other head atoms of that rule. Note thatrules which do not support this atom
are satisfied, so they have a cancelling assignment. The reason for all literals derived in this way
consist of the fact that a is true and that all other possibly supporting rules are satisfied, hence the
reason for the atom unified with all cancelling assignments of the other rule.

Given an atoma ∈ I and a ruler such thata ∈ H(r), if for each ruler′ 6= r such thata ∈ H(r′)
(i) ∃b′ ∈ B(r′): not.b′ ∈ I or (ii) ∃c′ ∈ H(r′): c′ 6= a ∧ c′ ∈ I, then for eachc ∈ H(r) s.t. c 6= a

andnot c 6∈ I infer not c ∈ I, and for eachb ∈ B(r) \ I infer b ∈ I. For each derived literall of
r, R(l) = R(a) ∪

⋃

r′:a∈H(r′)∧r′ 6=r Rr′ .

INFSYS RR 1843-05-08 15

For example, considering the following program

r1 : a v b:- c, not d. r2 : a v g :- f.

r3 : a:- k.

suppose thatI = {a, f, g, not k} andR(a) = {2}, R(f) = {2}, R(g) = {3}, R(not k) = {1}.
The only unsatisfied rule havinga in the head isr1 and the cancelling assignments areRr2

=
R(a) = R(f) = {2} andRr3

= R(not k) = {1}. In this case we inferc andnot d andnot b and
setR(not b) = R(c) = R(not d) = R(a) ∪ Rr2

∪ Rr3
= {1, 2}.

Contraposition for False Heads
In order to enforce satisfaction of a rule, if the head of a rule is false, and all but one (undefined)
body literals are true, we infer that the remaining undefinedliteral must be false. In this case, the
reason for the falsity of that atom is – similar to the case of Forward Propagation – the union of the
reasons for head atoms to be false and the other body literalsto be true.

Given a ruler such that(i) ∀a ∈ H(r) : not.a ∈ I, (ii) ∃l ∈ B(r) : l 6∈ I ∧ not.l 6∈ I, (iii)
∀b ∈ B(r) \ {l} : b ∈ I, then infernot.l ∈ I. We setR(l) =

⋃

a∈H(r) R(not a)∪
⋃

b∈B(r)\{l} R(b).
Consider the following program,

r1 : a v b.:- c, d. r2 : d v a v b.

r3 : e v a. r2 : :- d, b.

and suppose thatI = {not a, not b, d, e}, andR(not a) = {1}, R(not b) = R(d) = {3},
R(e) = {2}. By r1, we getnot c andR(not c) = R(not a) ∪ R(not b) ∪ R(d) = {1, 3}.

Well-founded Negation
In this case we use the result that any stable model does not contain any atom which is in some
unfounded set (w.r.t. the stable model). If we determine that some set of atoms is unfounded w.r.t.
the current interpretation, all of the atoms in this set can be derived as false. The reason for some
atom to be in an unfounded set is that all of the rules, in the head of which it occurs, are either
satisfied or contain some atom of the unfounded set in its positive body. In the former case the
reason is obviously the cancelling assignment, while in thelatter case, there is no reason other than
the presence of the unfounded set itself. So whenever there is a reason for the satisfied rules to be
satisfied, this unfounded set will exist. Therefore unsatisfied rules with unfounded positive body
do not contribute to the reason.

LetS be an HCF subprogram ofP , I be an unfounded-free interpretation, andX be the greatest
unfounded set ofS w.r.t. I. Then infer all atoms inX to be false. For each atoma ∈ X and for
each ruler with a in the head, setR(a) =

⋃

r∈S:a∈H(r) R∗
r , whereR∗

r is the cancelling assignment
of r, if r is satisfied w.r.t.I, orR∗

r = ∅ if r is not satisfied w.r.t.I (in the latter caser contains some
other element fromX).

For example, consider the following program:

r1 : a v b. r2 : a:- not c. r3 : a:- d.

r4 : d:- a. r5 : b v e. r6 : c v f.

SupposeI = {b, c, not e, not f}, R(b) = R(not e) = {1}, R(c) = R(not f) = {2}. The greatest
unfounded set isX = {a, d}, then infera andd to be false and setR(not a) = R(not d) =
R∗

r1
∪R∗

r2
∪R∗

r3
∪R∗

r4
= {1, 2}, whereR∗

r1
= R(b) = {1}, R∗

r2
= R(c) = {2} andR∗

r3
= R∗

r4
= ∅.

16 INFSYS RR 1843-05-08

4.4 Reasons for Inconsistencies

So far, we have described what reasons for literals are and how to determine them. We will now
turn to how to exploit them during the computation. As motivated before, we will use reason infor-
mation when inconsistencies occur, in order to understand what assumptions have to be changed
in order to avoid the inconsistency, and what other assumptions do not have any influence on the
inconsistency.

In DLV, we can isolate two main sources of inconsistency:

1. Deriving conflicting literals, and

2. failing stability checks.

Of these two, the second one is particular for SDLP, while thefirst one is the only source for
inconsistencies in SAT and non-disjunctive SLP.

Deriving conflicting literals means, in our setting, that DetCons determines that an atoma
and its negationnot a should both hold. In this case, the reason of the inconsistency is – rather
straightforward – the combination of the reasons fora andnot a: R(a) ∪ R(not.a). Obviously,
this inconsistency reason does not depend on the inference rules used when determining the incon-
sistency.

Reconsidering the example in Section 4.1, the reason of the first inconsistency is the union of
the reasons forg, R(g) = {0, 2}, andnot g, R(not g) = {0, 2}, which is the set{0, 2}. So only the
literals chosen at levels 0 and 2 give reason to the inconsistency, while the literal chosen at level 1
(c) is detached from the inconsistency.

As mentioned above inconsistencies from failing stabilitychecks are a peculiarity of SDLP.
This situation occurs if the function IsUnfoundedFree(I) of Figure 3 returns false. Intuitively, this
means that the current interpretation (which is guaranteedto be a model) is not stable. From [21]
we know that this interpretation is not unfounded-free, i.e. some positively interpreted atom is in
an unfounded set w.r.t. this interpretation.

This situation is similar to the well-founded negation operator described above. The difference
is that in case of a failed stability check, some unfounded atoms are already true in the interpreta-
tion, while they are normally undefined in the case of well-founded negation. Note that with the
default computation strategy employed in DLV, failed stability checks will be due to some non-
HCF subprogram, as otherwise the well-founded negation operator would have triggered before.

The reason for such an inconsistency is therefore based on anunfounded set, which has been
determined during IsUnfoundedFree(I). Given such an unfounded set, the reason for the inconsis-
tency is composed of the cancelling assignments for satisfied rules which contain unfounded atoms
in their head. As with well-founded negation, unsatisfied rules with unfounded atoms in their head
do not contribute to the reason.

Let S be a non-HCF subprogram ofP , I be an interpretation, andX be an unfounded set ofS

w.r.t. I, such thatI∩X 6= ∅. The inconsistency reason is determined as follows:
⋃

r∈S:a∈X∧a∈H(r) R∗
r ,

whereR∗
r is the cancelling assignment ofr, if r is satisfied w.r.t.I, or R∗

r = ∅ if r is not satisfied
w.r.t. I (in the latter caser contains some other element fromX).

INFSYS RR 1843-05-08 17

4.5 Using Inconsistency Reasons for Backjumping

When inside MG (cf. Figure 3) some inconsistency is detected(in DetCons or IsUnfoundedFree),
we analyze the inconsistency reason, and can go directly to the greatest level in the inconsistency
reason. Going to any level in between (if it exists) would indeed trigger the encountered incon-
sistency again and again. It is worth noticing that when an inconsistency is encountered during
DetCons, the inconsistency reason will always contain the last but one level, amounting to simple
backtracking.

The inconsistency reasons can be further exploited: Whenever a recursive invocation of MG
returns false, we know that there has been an inconsistency in this branch, and we can re-use
the inconsistency reasons determined in it for the inconsistency reason of the respective branch,
by stripping off all recursion levels which are greater thanthe current one. This is semantically
correct, as in the presence of the remaining reasons, an inconsistency will definitely occur. If at
any level, both recursive invocation return false, we know that the entire subtree is inconsistent.
The reason for this tree to be inconsistent are then the unionof the two inconsistency reasons of
the branches, minus the current level (as the inconsistencydoes not depend on the choice of the
current level). We can then continue by going directly to thegreatest level in this inconsistency
reason.

The case where these techniques allow for going directly to alevel, which is not the previous
recursion level, is frequently referred to asbackjumping, in contrast tobacktracking.

4.6 Model Generator with Backjumping

In this section we describe MGBJ (shown in Fig. 5), a modification of the MG function (as de-
scribed in section 3), which is able to perform non-chronological backtracking, as described in
Section 4.5.

It extends MG by introducing additional parameters and datastructures, in order to keep track
of reasons and to control backtracking and backjumping. In particular, two new parametersIR and
bj level are introduced, which hold the inconsistency reason of the subtree of which the current
recursion is the root, and the recursion level to backtrack or backjump to. When going forward in
recursion,bj level is also used to hold the current level.

The variablescurr level, posIR, andnegIR are local to MGBJ and used for holding the
current recursion level, and the reasons for the positive and negative recursive branch, respectively.

Initially, the MGBJ function is invoked withI set to the empty interpretation,IR set to the
empty reason, andbj level set to−1 (but it will become 0 immediately). Like the MG function, if
the programP has a stable model, then the function returns true and setsI to the computed stable
model; otherwise it returns false. Again, it is straightforward to modify this procedure in order to
obtain all or up ton stable models. Since these modification gives no additionalinsight, but rather
obfuscates the main technique, we refrain from presenting it here.

MGBJ first calls DetConsBJ, an enhanced version of the DetCons procedure. In addition to
DetCons, DetConsBJ computes the reasons of the inferred literals, as described in Section 4.3.
Moreover, if at some point an inconsistency is detected (i.e. the complement of a true literal is
inferred to be true), DetConsBJ builds the reason of this inconsistency and stores it in its new,

18 INFSYS RR 1843-05-08

bool MGBJ (Interpretation& I, Reason& IR,
int& bj level){

bj level ++;
int curr level = bj level;

if (! DetConsBJ (I, IR)
return false;

if (“no atom is undefined in I”)
if IsUnfoundedFreeBJ(I, IR);

return true ;
else

bj level = MAX (IR);
return false;

Reason posIR, negIR;

Select an undefined atomA using a heuristic;

R(A)= { curr level};
if (MGBJ(I ∪ {A}, posIR, bjlevel)

return true ;
if (bj level< curr level)

IR = posIR;
return false;

bj level = curr level;
R(not A) = { curr level};
if (MGBJ (I ∪ {not A}, negIR, bjlevel)

return true ;

if (bj level< curr level)
IR = negIR;
return false;

IR = trim(curr level, Union (posIR, negIR));
bj level = MAX (IR);
return false;

};

Figure 5: Computation of stable models with backjumping

second parameterIR before returning false. If an inconsistency is encountered, MGBJ immedi-
ately returns false and no backjumping is done. This is an optimization, because it is known that
the inconsistency reason will contain the previous recursion level. There is therefore no need to
analyze the levels.

If no undefined atom is left, MGBJ invokes IsUnfoundedFreeBJ, an enhanced version of IsUn-
foundedFree. In addition to IsUnfoundedFree, IsUnfoundedFreeBJ computes the inconsistency
reason in case of a stability checking failure, and sets the second parameterIR accordingly. If
this happens, it might be possible to backjump, and we setbj level to the maximal level of the
inconsistency reason (or 0 if it is the empty set) before returning from this instance of MGBJ. If

INFSYS RR 1843-05-08 19

the stability check succeeded, we just return true.
Otherwise, an atomA is selected according to a heuristic criterion. We set the reason ofA to

be the current recursion level and invoke MG recursively, using posIR andbj level to be filled in
case of an inconsistency. If the recursive call returned true, MGBJ just returns true as well. If it
returned false, the corresponding branch is inconsistent,posIR holds the inconsistency reason and
bj level the recursion level to backtrack or backjump to.

Now, if bj level is less than the current level, this indicates a backjump, and we return from
the procedure, setting the inconsistency reason appropriately before. If not, then we have reached
the level to go to. We set the reason fornot A, and enter the second recursive invocation, this time
usingnegIR and reusingbj level (which is reinitialized before).

As before, if the recursive call returns true, MGBJ immediately returns true also, while if it
returned false, we check whether we backjump, settingIR and immediately returning false. If
no backjump is done, this instance of MGBJ is the root of an inconsistent subtree, and we set
its inconsistency reasonIR to the union ofposIR andnegIR, deleting all integers which are
greater or equal than the current recursion level (this is done by the function trim), as described in
Section 4.5. We finally setbj level to the maximum of the obtained inconsistency reason (or 0 if
the set is empty) and return false.

The actual implementation in DLV is slightly more involved,but only due to technical details.
First of all, as mentioned above, the procedure was extendedin order to be able to compute all
stable models. We also had to deal with the additional truth value “must be true” (which is handled
like true for our purposes). Furthermore, in DLV the computation tree is not really binary, but is
rather a collapsed binary tree. There is, however a 1-to-1 correspondence between this collapsed
binary tree and the binary tree presented here. Indeed in ourimplementation, we construct a virtual
binary tree in order to keep track of the correct levels. Since we do not believe that these technical
issues give any particular insight, but are instead rather lengthy in description, we have opted to
not include them.

5 Benchmarks

In order to evaluate the backjumping technique described inSection 4, we have implemented it
as an experimental extension of the DLV system. Concerning experiments, judging from results
on SAT (e.g. in [33]), backjumping has the greatest impact onlarge, structured problem instances,
so we have studied such instances, which have been describedin [34]. Since we want our tool to
be efficient for arbitrary input, we have also considered randomly generated hard 3SAT problem
instances. These can be seen as important corner cases that the method should be able to deal
with in an efficient way. We have also experimented with randomly generated 2QBF instances,
which are characteristic for SDLP (they cannot be represented in SAT or non-disjunctive SLP
under standard complexity assumptions).

Next, we first describe the compared systems, the benchmark problems and instances and fi-
nally we report and discuss the results of the experiments.

20 INFSYS RR 1843-05-08

5.1 Compared Systems

We will now describe the systems that we have used in the experimentation. Our principal compar-
ison is of course between the DLV system without and with the backjumping technique described
in Section 4.

But there is another parameter, which is important in this respect. The choice of the heuristic
function has a strong impact on the effectiveness of the backjumping technique (noted also for SAT,
cf. [33]), and therefore we consider both systems first with aweak and then with a strong heuristic.
In particular, the weak heuristic basically amounts to a random choice strategy. The strong heuristic
employs a lookahead technique, that is, DetCons is invoked on each possible choice atom, and
some values of the result are collected. These values are then used to choose the “best” atom. For
details of this heuristic function, we refer to [29, 30]. Theimportant aspect is that inconsistencies
can be encountered during the lookahead. This is like havingmade one choice, which immediately
leads to an inconsistency. Our implementation treats this scenario as if a choice has actually been
made.

In the sequel, we will refer to systems employing the weak heuristic aswithout lookahead,
and to systems with the strong heuristic aswith lookahead. It should be noted that choices made
by the strong heuristic are less likely to lead into inconsistent branches, and so the gain by using
backjumping is more limited than with a weaker heuristic. This has already been discussed at
length in the SAT community, we again refer to [33] for an overview.

We will thus deal with the following four versions of the SDLPsystem DLV.

STDN The original DLV system without lookahead. It uses the standard implementation of
MG, DetCons, and IsUnfoundedFree, without reason computation, and employs the weak heuris-
tic.

BJN This system is DLV enhanced by the backjumping technique using MGBJ, DetConsBJ,
and IsUnfoundedFreeBJ, as described in Section 4.6, without lookahead.

STDL The original DLV system with lookahead. It uses the standardimplementation of MG,
DetCons, and IsUnfoundedFree, without reason computation, and employs the strong heuristic.
This is default setting for official DLV releases.

BJL The final system is DLV enhanced by the backjumping techniqueusing MGBJ, Det-
ConsBJ, and IsUnfoundedFreeBJ, as described in Section 4.6, this time with lookahead.

Our experiments have been performed on a 1.400 MHz Pentium 4 machine machine with 256K
of Level 2 Cache and 256MB of RAM, running SuSE Linux 9.0. The binaries were generated with
GCC 3.3.1 (shipped with the system). We have allowed at most one hour of execution time for each
instance. For those tests, where there are multiple instances per instance size, the experimentation
was stopped (for each system) at the size at which some instance exceeded this time limit.

INFSYS RR 1843-05-08 21

5.2 Benchmark Problems

Boolean Satisfiability. 3SAT is one of the best researched problems in AI and generally used
for solving many other problems by translating them to 3SAT,solving the 3SAT problem, and
transforming the solution back to the original domain:

LetΦ be a propositional formula in conjunctive normal form (CNF)Φ =
∧n

i=1(di,1∨ . . .∨di,3)
where thedi,j are classical literals over the propositional variablesx1, . . . , xm. Φ is satisfiable, iff
there exists a consistent conjunctionI of literals such thatI |= Φ.

3SAT is a classical NP-complete problem and can be easily represented in SDLP as follows:
For each propositional variablexi (1 ≤ i ≤m), we add the following rule which ensures that we
either assume that variablexi or its complementnxi true: xi vnxi. For each claused1∨. . .∨d3

in Φ we add the constraint :- not d̄1, . . . , not d̄3. whered̄i (1 ≤ i ≤ 3) is xj if di is a positive
literal xj , andnxj if di is a negative literal¬xj .

Our test in this domain include some randomly generated 3SATproblems and “structured”
instances (circuit verification benchmarks) from the the Superscalar Suite SSS.1.0 of Miroslav
Velev, cf. [34].

We have randomly generated 20 3SAT instances for each problem size by using a tool by
Selman and Kautz, which is available atftp://ftp.research.att.com/dist/ai/ . The
number of clauses for each generated instance is 4.3 times the number of propositional variables
(in order to generate hard instances). The SSS.1.0 instances, available in DIMACS format were
easily converted in an equivalent SDLP program as indicatedabove.

All input files used for the benchmarks on random instances are available on the web athttp:
//www.mat.unical.it/leone/backjumping/aicom.tar.gz , while the SSS.1.0 in-
stances can be found athttp://www.ece.cmu.edu/∼mvelev .

Quantified Boolean Formulas. To asses the impact of backjumping onΣP
2 -complete problems

we used “∃∀” Quantified Boolean Formulas (2QBF)7, which have already been used in the past for
benchmarking SDLP systems [9, 12].

The problem here is to decide whether a quantified Boolean formula (QBF)Φ = ∃X∀Y φ,
whereX andY are disjoint sets of propositional variables andφ = C1 ∨ . . . ∨ Ck is a 3DNF
formula overX∪Y , is valid. The transformation from 2QBF to disjunctive logic programming we
use here has been given in [9], based on a reduction presentedin [36]. The propositional disjunctive
logic programPφ produced by the transformation contains the following rules:

t(true). f(false).
t(X) v f(X):- exists(X).

72QBF is well-known to be aΣP

2
-complete problem see [35].

22 INFSYS RR 1843-05-08

t(Y) v f(Y) :- forall(Y).
w :- term(X, Y, Z, Na, Nb, Nc),

t(X), t(Y), t(Z), f(Na),
f(Nb), f(Nc).

t(Y) :- w, forall(Y).
f(Y) :- w, forall(Y).

:- not w.

Moreover,Pφ contains the following facts:

• exists(v), for each existential variablev ∈ X;

• forall(v), for each universal variablev ∈ Y ; and

• term(p1, p2, p3, q1, q2, q3), for each disjunctl1 ∧ l2 ∧ l3 in φ, where (i) if li is a positive atom
vi, thenpi = vi, otherwisepi= “true”, and (ii) if li is a negated atom¬vi, thenqi = vi,
otherwiseqi=“false”.

For example,term(x1, true, y4, false, y2, false), encodes the termx1 ∧ ¬y2 ∧ y4.

The 2QBF formulaΦ is valid iff PΦ has an answer set [36].
We used the benchmark instances from [9]. There, 50 hard instances per problem size were

randomly generated. Accordingly with [37, 38], each formula contains the same number of uni-
versal and existential variables (|X| = |Y |), and the number of clauses is equal to the number
of variables (|X| + |Y |). The input files used for the benchmarks are available on theweb at
http://www.dlvsystem.com/examples/tocl-dlv.zip.

5.3 Experimental Results

In this section we report the obtained results. We will first report on the case without lookahead (i.e.
using the weak heuristic), followed by the results with lookahead (i.e. using the strong heuristic).

Number of Propositional variables

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

C
h

o
ic

e
p

o
in

ts

M
a

xi
m

u
m

 N
u

m
b

e
r

o
f

C
h

o
ic

e
p

o
in

ts

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time(s)

Number of Propositional variables

1

10

100

1000

10000

100000

1000000

10000000

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Cp

1

10

100

1000

10000

100000

1000000

10000000

100000000

20 30 40 50 60 70 80 90 100 110 120 130 140 150

cp

BJN

STDN

BJN

STDN

Figure 6: Choice points on Random 3SAT instances without lookahead

INFSYS RR 1843-05-08 23

0,01

0,1

1

10

100

1000

BJN

STDN

BJN

STDN

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time(s)

0,01

0,1

1

10

100

1000

10000

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time(s)

Number of Propositional variablesNumber of Propositional variables

M
a

xi
m

u
m

 T
im

e
 (

s)

A
v

e
ra

g
e

 T
im

e
 (

s)

Figure 7: Execution Times on Random 3SAT problems without lookahead

5.3.1 Results without Lookahead

We start reporting on the random 3SAT instances. A critical internal measure is the number of
choice points, these choice points correspond to the numberof times MG or MGBJ have been
invoked. If backjumping occurs, there will be fewer choice points. One could also count the
number of backjumps, but this measure would be bogus, as obviously not only the number, but
also the length of the backjumps are important. The number ofchoice points, however, is a direct
measure of the structural savings brought about by backjumps. Fig. 6 shows the average (left)
and maximum (right) number of choice points per instance size. Note that we have employed a
logarithmic scale in all of our diagrams, as they measure concepts which grow exponentially. BJN
scales slightly better, in the final instance size (155), BJNtakes about 800000 fewer choice points
than STDN on average, while the maximum number of choice points consumed for this instance
size is almost 4 million more for STDN.

But having backjumping also incurs some overhead (most importantly, maintaining reasons),
which can obviously not be measured in terms of choice points. So in Fig. 7, we report on the
average (left) and maximum (right) execution time. We observe that the potential benefits of saved
choice points is outweighed by the overhead incurred by the reason computations, but importantly,
there is no slowdown.

Let us now turn to the structured satisfiability instances. Here, we have allowed two hours of
execution time, and report only on those instances, which have been solved by at least one of the
tested systems in the allotted time. The execution times arereported in Table 1, and choice points
are reported in Table 2. We can see that STDN was not able to solve any of these instances within
2 hours. BJN, however, could solve one instance (dlx1c), the number of explored choice points is
quite impressive (about 80 millions).

Let us next turn to the final benchmark problem, 2QBF. In Fig. 8, the average (left) and max-
imum (right) number of choice points per instance size is reported. Compared to 3SAT, we can
observe a more drastic saving with BJN with respect to STDN inchoice points for 2QBF. There are
two peculiar spikes in the graphs: Comparing the average andmaximum graph, it becomes clear

24 INFSYS RR 1843-05-08

Instance STDN BJN STDL BJL
dlx1 c >2h 5464.80s 306.33s 270.51s
dlx2 cc bug04 >2h >2h 3.57s 2.91s
dlx2 cc bug06 >2h >2h >2h 5498.96s
dlx2 cc bug07 >2h >2h 1301.40s 814.97s
dlx2 cc bug08 >2h >2h 1890.81s 854.00s

Table 1: Execution Time on solved SSS.1.0 SAT instances

Instance STDN BJN STDL BJL
dlx1 c - 79989185 221925 169774
dlx2 cc bug04 - - 167 154
dlx2 cc bug06 - - - 688145
dlx2 cc bug07 - - 177499 88965
dlx2 cc bug08 - - 295785 91394

Table 2: Choice Points on solved SSS.1.0 SAT instances

that these are due to two exceptionally hard instances occurring at sizes 44 and 56, respectively, in
which fewer backjumps than in most other instances are possible. This seems to be a peculiarity
of the distribution of the underlying instance data in combination with the weak heuristic.

1

10

100

1000

10000

100000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

CP

1

10

100

1000

10000

100000

1000000

10000000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

ChoiceP

BJN

STDN

BJN

STDN

Number of Propositional variables Number of Propositional variables

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

C
h

o
ic

e
p

o
in

ts

M
a

xi
m

u
m

 N
u

m
b

e
r

o
f

C
h

o
ic

e
p

o
in

ts

Figure 8: Choice points on random 2QBF problems without lookahead

Different to 3SAT, the reduction of the search space for BJN in 2QBF is proportionally much
higher, thus by far outweighing the overhead incurred by thereason computations, as can be ob-
served in Fig. 9, in which we report average (left) and maximum (right) execution time. We note
that BJN scales much better than STDN: While BJN could solve each instance up to size 80 within
1 hour each, this is only possible up to size 52 for STDN.

INFSYS RR 1843-05-08 25

0,01

0,1

1

10

100

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Time (s)

0,01

0,1

1

10

100

1000

10000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Time (s)

BJN

STDN

BJN

STDN

Number of Propositional variables Number of Propositional variables

A
v

e
ra

g
e

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

M
a

xi
m

u
m

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

Figure 9: Execution time on random 2QBF problems without lookahead

5.3.2 Results with Lookahead

Let us now turn to the versions with lookahead and a strong heuristics. Originally, we did not
expect too much of this combination, as one of the conclusions in similar studies for SAT seemed
to be that the combination of strong heuristics and backjumping (including clause learning) does
not have advantages in general. However, as the results in this section will show, it seems that in
our setting this combination works indeed well.

We start by examining the results on the randomly generated 3SAT instances. We found that in
this case the number of choice points is essentially equal, so backjumping does basically not have
any impact here (we omit this graph, as it shows just two overlapping lines). However, looking at
Fig. 10, where, as usual, the average time is reported in the left graph, and the maximum time in
the right one, we observe that the overhead in execution timeis very small.

BJL

STDL

BJL

STDL

A
v

e
ra

g
e

 T
im

e
 (

s)

M
a

xi
m

u
m

 T
im

e
 (

s)

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time(s)

0,01

0,1

1

10

100

1000

20 35 50 65 80 95 110125140155170185200215230245260275290305

Time(s)

0,01

0,1

1

10

100

1000

10000

20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290 305

Time(s)

Number of Propositional variables Number of Propositional variables

Figure 10: Execution time on random 3SAT problems with lookahead

Looking at the results of the structured SAT instances in Tables 1 and 2, the picture is quite
different: Already STDL can solve many more instances than STDN within 2 hours, but BJL
manages to solve one (dlx2cc bug06) within 2 hours, which no other tested system could do.
Also in the other examples, BJL is always the fastest system,sometimes more than twice as fast as

26 INFSYS RR 1843-05-08

STDL. Also the number of choice points is always drasticallylower for BJL than for STDL.
Finally, we report on the experiments with 2QBF instances. Fig. 11 shows the average (left)

and maximum (right) number of choice points per instance size. We see that also with lookahead,
the number of choice points is cut effectively by BJL with respect to STDL. Fig. 11 reports the
average (left) and maximum (right) execution time per instance size. Also here, BJL clearly has an
edge over STDL. BJL also managed to solve more instances within the allotted time than STDL.

1

10

100

1000

10000

100000

4 8 12 16 20 24 28 32 36 40 44 48 52

1

10

100

1000

10000

100000

1000000

10000000

4 8 12 16 20 24 28 32 36 40 44 48 52

BJL

STDL

BJL

STDL

Number of Propositional variables Number of Propositional variables

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

C
h

o
ic

e
p

o
in

ts

M
a

xi
m

u
m

 N
u

m
b

e
r

o
f

C
h

o
ic

e
p

o
in

ts

Figure 11: Choice Points on random 2QBF problems with lookahead

0,01

0,1

1

10

100

4 8 12 16 20 24 28 32 36 40 44 48 52

0,01

0,1

1

10

100

1000

10000

4 8 12 16 20 24 28 32 36 40 44 48 52

Time (s)

BJL

STDL

BJL

STDL

Number of Propositional variables Number of Propositional variables

A
v

e
ra

g
e

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

M
a

xi
m

u
m

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

Figure 12: Execution time on random 2QBF problems with lookahead

5.3.3 Summary

We have observed that both with and without lookahead, backjumping generally cuts the search
space effectively and consumes (often dramatically) less execution time than the systems without
backjumping. The only exception is 3SAT on random instances, where BJL has a mild overhead
in execution time. But this minimal overhead is definitely outweighed by the big advantages BJL
and BJN show on structured SAT and 2QBF instances, both with and without heuristics. A conse-
quence of these results is that backjumping without clause learning is, at least for SDLP, effective.

INFSYS RR 1843-05-08 27

6 Conclusion and Future Work

We have presented a backjumping technique for computing thestable models of disjunctive logic
programs. It is based on a reason calculus and is an elaboration of the work in [1, 2], but our work
contains some crucial novelties and improvements: Most importantly, our framework is suitable
and tailored for disjunctive programs, including novel techniques for this setting. Concerning the
reason computation, our method does not incur building an implication graph, but rather store only
sets of integers, which are more efficient to compute, and also give an easier handle on determining
the point to jump to.

We have implemented the technique in the DLV system, and haveconducted several experi-
ments with it. In total, the backjumping technique has a verypositive effect on performance in
many cases, and even in cases, in which it cannot cut the search space, its overhead is negligible.
Moreover, these improvements can be observed with either oftwo heuristic methods, which are
diametrically different from each other. So we conclude that the technique for SDLP is robust with
respect to the heuristic method, and in particular, cooperates well with a lookahead heuristic.

Our backjumping technique is very effective on structured satisfiability instances, and on ran-
domly generated hard 2QBF instances (which cannot be solvedby SAT solvers directly under
standard complexity assumptions). It shows little to no impact, but also no relevant slowdown on
randomly generated hard satisfiability instances.

For future work, we want to address the question whether clause learning can yield an addi-
tional gain w.r.t. backjumping in SDLP. Implementing clause learning in DLV is, however, not
straightforward at all, as the DLV model generator heavily relies on the assumption that the pro-
gram, on which it works, is fixed. There are several ways of overcoming this difficulty, ranging
from a redesign of the data structures to the introduction ofan additional structure which is dedi-
cated to the learned clauses.

Another possibility for future work is to study the use of ourreason calculus not only for stable
model computation, but also for software engineering tasks. In particular, it has been observed
that reasons could be profitably used for debugging SDLP programs. A program, for which some
particular stable model, which has been expected by its author, does not exist, these reasons could
be used to find the point in the program which forbids the existence of the expected stable model,
and thus the modelling bug.

Acknowledgements

This work was supported by the European Commission under projects IST-2002-33570 INFOMIX
and IST-2001-37004 WASP. Wolfgang Faber’s work was funded by an APART grant of the Aus-
trian Academy of Sciences.

References
[1] Ward, J., Schlipf, J.S.: Answer Set Programming with Clause Learning. In Lifschitz, V., Niemelä, I., eds.: Pro-

ceedings of the 7th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR-

28 INFSYS RR 1843-05-08

7). LNCS, Springer (2004) 302–313

[2] Ward, J.: Answer Set Programming with Clause Learning. PhD thesis, Ohio State University, Cincinnati, Ohio,
USA (2004)

[3] Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: Proceedings of the 16th International Conference on
Logic Programming (ICLP’99), Las Cruces, New Mexico, USA, The MIT Press (1999) 23–37

[4] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems22 (1997)
364–418

[5] Rintanen, J.: Improvements to the Evaluation of Quantified Boolean Formulae. In Dean, T., ed.: Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI) 1999, Stockholm, Sweden,
Morgan Kaufmann Publishers (1999) 1192–1197

[6] Eiter, T., Gottlob, G.: The Complexity of Logic-Based Abduction. Journal of the ACM42 (1995) 3–42

[7] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press
(2002)

[8] Leone, N., Rosati, R., Scarcello, F.: Enhancing Answer Set Planning. In Cimatti, A., Geffner, H., Giunchiglia,
E., Rintanen, J., eds.: IJCAI-01 Workshop on Planning underUncertainty and Incomplete Information. (2001)
33–42

[9] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on Computational Logic (2005) To appear. Available via
http://www.arxiv.org/ps/cs.AI/0211004.

[10] Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Disjunctions in Stable
Model Semantics. Technical Report cs.AI/0303009, arXiv.org (2003)

[11] Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In Baral, C., Greco, G., Leone, N., Terracina,
G., eds.: Proceedings of the 8th International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’05). LNCS, Springer (2005) 447–451

[12] Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by SAT Checkers. Artifi-
cial Intelligence15 (2003) 177–212

[13] Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intelligence9 (1993)
268–299

[14] Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems. Artificial Intelligence
136(2002) 147–188

[15] Bayardo, R., Schrag, R.: Using CSP Look-back Techniques to Solve Real-world SAT Instances. In: Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-97). (1997) 203–208

[16] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver.
In: Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001,
ACM (2001) 530–535

[17] Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV System. In Minker, J.,
ed.: Logic-Based Artificial Intelligence. Kluwer AcademicPublishers (2000) 79–103

[18] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation
Computing9 (1991) 365–385

[19] Przymusinski, T.C.: Stable Semantics for DisjunctivePrograms. New Generation Computing9 (1991) 401–424

INFSYS RR 1843-05-08 29

[20] Marek, W., Subrahmanian, V.: The Relationship betweenLogic Program Semantics and Non-Monotonic Rea-
soning. In: Proceedings of the 6th International Conference on Logic Programming – ICLP’89, MIT Press
(1989) 600–617

[21] Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics and Com-
putation. Information and Computation135(1997) 69–112

[22] Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. Journal of Logic Programming
19/20(1994) 73–148

[23] Van Gelder, A., Ross, K., Schlipf, J.: The Well-FoundedSemantics for General Logic Programs. Journal of the
ACM 38 (1991) 620–650

[24] Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. Annals of Mathematics
and Artificial Intelligence12 (1994) 53–87

[25] Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems. PhD thesis, Institut
für Informationssysteme, Technische Universität Wien (2002)

[26] Niemelä, I., Simons, P.: Efficient Implementation of the Well-founded and Stable Model Semantics. In Ma-
her, M.J., ed.: Proceedings of the 1996 Joint InternationalConference and Symposium on Logic Programming
(ICLP’96), Bonn, Germany, MIT Press (1996) 289–303

[27] Simons, P.: Extending and Implementing the Stable Model Semantics. PhD thesis, Helsinki University of
Technology, Finland (2000)

[28] Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques for Nonmonotonic
Reasoning. In INAP Organizing Committee, ed.: Proceedingsof the 7th International Workshop on Deductive
Databases and Logic Programming (DDLP’99), Prolog Association of Japan (1999) 135–139

[29] Faber, W., Leone, N., Pfeifer, G.: Experimenting with Heuristics for Answer Set Programming. In: Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI) 2001, Seattle, WA, USA,
Morgan Kaufmann Publishers (2001) 635–640

[30] Faber, W., Leone, N., Pfeifer, G.: Optimizing the Computation of Heuristics for Answer Set Programming
Systems. In Eiter, T., Faber, W., Truszczyński, M., eds.: Logic Programming and Nonmonotonic Reasoning
— 6th International Conference, LPNMR’01, Vienna, Austria, September 2001, Proceedings. Number 2173 in
Lecture Notes in AI (LNAI), Springer Verlag (2001) 288–301

[31] Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In Gelfond, M., Leone, N.,
Pfeifer, G., eds.: Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’99). Number 1730 in Lecture Notes in AI (LNAI), El Paso, Texas, USA, Springer Verlag
(1999) 177–191

[32] Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Answer Set Programming Systems. In:
Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR’2002). (2002) 200–209

[33] Lynce, I., Silva, J.P.M.: Building state-of-the-art sat solvers. In van Harmelen, F., ed.: Proceedings of the 15th
Eureopean Conference on Artificial Intelligence (ECAI 2002), IOS Press (2002) 166–170

[34] Velev, M.N., Bryant, R.E.: Superscalar Processor Verification Using Efficient Reductions of the Logic of Equal-
ity with Uninterpreted Functions to Propositional Logic. In: Correct Hardware Design and Verification Meth-
ods, 10th IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad Herrenalb, Germany,
September 27-29, 1999, Proceedings. Lecture Notes in Computer Science, Ithaca, NY, USA, Springer Verlag
(1999) 37–53

[35] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

[36] Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propositional Case.
Annals of Mathematics and Artificial Intelligence15 (1995) 289–323

30 INFSYS RR 1843-05-08

[37] Cadoli, M., Giovanardi, A., Schaerf, M.: ExperimentalAnalysis of the Computational Cost of Evaluating
Quantified Boolean Formulae. In: Proceedings of the 5th Congress: Advances in Artificial Intelligence of
the Italian Association for Artificial Intelligence, AI*IA97. Lecture Notes in Computer Science, Rome, Italy,
Springer Verlag (1997) 207–218

[38] Gent, I., Walsh, T.: The QSAT Phase Transition. In: Proceedings of the 16th AAAI. (1999)

