INFSYS
RESEARCH
REPORT

Institut fur Informationssysteme
Abtg. Wissensbasierte Systeme
Technische Universitat Wien
FavoritenstraBe 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax; +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

= =

FRR L OCHNC A LED

AU GOl v
EEMTRROCAEOCIE B[ ]

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTESYSTEME

A BACKJUMPING TECHNIQUE
FORDISJUNCTIVE LOGIC
PROGRAMMING

Francesco Ricca  Wolfgang Faber Nicola Leone

INFSYS RESEARCHREPORT1843-05-08
NoOVEMBER 2005

TU

TECHNISCHE UNIVERSITAT WIEN







INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-05-08, MVEMBER 2005

A BACKJUMPING TECHNIQUE
FORDISJUNCTIVELOGIC PROGRAMMING

Francesco Ricda  Wolfgang Fabér Nicola Leone

Abstract. In this work we present a backjumping technique for Disjivect ogic Program-
ming under the Stable Model Semantics (SDLP). It builds updeted techniques that had
originally been introduced for constraint solving, whicwk been adapted to propositional
satisfiability testing, and recently also to hon-disjuwetiogic programming under the sta-
ble model semantics (SLP) [1, 2].

We focus on backjumping without clause learning, providingew theoretical framework
for backjumping in SDLP, elaborating on and exploiting gdigzities of the disjunctive set-
ting. We present a reason calculus and associated congmsatvhich — compared to the
traditional approaches — reduces the information to beedtawhile fully preserving the
correctness and the efficiency of the backjumping technifaadling specific aspects of
disjunction in a benign way. We implemented the proposeldnigeie in DLV, the state-of-
the-art SDLP system.

We have conducted several experiments on hard random amduséd instances in order
to assess the impact of backjumping, using DLV with and withibe backjumping method
described in this paper, using as a parameter to both twerdiff heuristic functions. Our
conclusion is that under any of the heuristic functions, Didth backjumping is favourable
to DLV without backjumping. DLV with backjumping performsagicularly well on struc-
tured satisfiability and quantified boolean formula inseeonvhere the search space and
execution time are effectively cut.

IDepartment of Mathematics, University of Calabria. 8703nhé&e (CS), Italy E-mail: ricca, faber,
leone@mat.unical.it

Acknowledgements This work was supported by the European Commission undgegis IST-
2002-33570 INFOMIX and IST-2001-37004 WASP. Wolfgang Fabwork was funded by an
APART grant of the Austrian Academy of Sciences.

A preliminary version of this paper appears in the Procegdiof 2005 Workshop of the Working
Group on ASP (ASP’05)

Copyright(©) 2005 by the authors



2 INFSYS RR 1843-05-08

1 Introduction

SDLP. Disjunctive Logic Programming under the Stable Model Seimar{SDLPY}, is a novel
programming paradigm, which has been proposed in the areanafionotonic reasoning and logic
programming. The idea of SDLP is to represent a given contipat problem by a logic program
whose stable models correspond to solutions, and then wdees ® find such a solution [3].

The knowledge representation language of SDLP is very egp/@in a precise mathematical
sense; in its general form, allowing for disjunction in rileads and nonmonotonic negation in
rule bodies, SDLP can represeeryproblem in the complexity class? andII} (under brave
and cautious reasoning, respectively) [4]. Thus, SDLPristst more powerful than SAT-based
programming (unless some widely believed complexity aggions do not hold), as it allows us
to solve even problems which cannot be translated to SAT lynpanial time. The high expressive
power of SDLP can be profitably exploited in Al, which oftershia deal with problems of high
complexity. For instance, problems in diagnosis and plagninder incomplete knowledge are
complete for the the complexity clagd) or 11}’ [5, 6], and can be naturally encoded in SDLP
[7, 8].

As an example, consider the well-known 3COLORABILITY prein. Given a graplt: =
(V, E), assign each node one of three colors (say, red, green, ey flich that adjacent nodes
always have distinct colors. The SDLP encoding is as follows

vertex(v). YoeV
edge(vy, va). V(vi,v9) € E

col(X,red) vcol(X, green) v col (X, blue)
:- vertex(X).

- edge(X,Y), col(X,C),col(Y,C).

The first two lines introduce suitable facts, representihghe third line states that each vertex
needs to have some color. Since stable models are minimalsegtrinclusion, each vertex will be
associated to precisely one color in any stable model. Téidife acts as an integrity constraint
and disallows situations in which two vertices connecte@bgdge are associated with the same
color. By now, several systems are available, which implns®LP: DLV [9], GnT [10], and
recently cmodels-3 [11].

Main Issues. Most of the optimization work on related SDLP systems hasiged on the effi-
cient evaluation of non-disjunctive programs (whose pawdimited to NP/co-NP), whereas the
optimization of full SDLP has been treated in fewer workg (en [10, 12]).

One of the more recent proposals for enhancing the evatuatioon-disjunctive programs has
been the definition of backjumping and clause learning mn@sh@s. These techniques had been
successfully employed in CSP solvers [13, 14] and proposatiSAT solvers [15, 16] before, and

10often SDLP is referred to as Answer Set Programming (ASP)I8MSP supports also a second (“strong”) kind
of negation, it can be simulated in SDLP. To avoid confusieawill only use the term SDLP in this paper.



INFSYS RR 1843-05-08 3

were “ported” to non-disjunctive logic programming undee tstable model semantics (SLP) in
[1, 2], resulting in the system Smodgls
In this paper we address two questions:
» How can backjumping be generalized to disjunctive progfams
» Is backjumping without clause learning effective?

Why Backjumping? As for an intuition about the value of backjumping, consither following
instance of the 3ACOLORABILITY problem:

a b

C d

Note that vertex is not on any edge.

edge(a,b). edge(a, c). edge(a, d).
edge(b, d). edge(c, b). edge(c, d).
vertex(a). vertex(b). vertex(c).
vertex(d). vertex(e).

Informally, an evaluation could now proceed as folloias sketched in Fig. 1. First, assume
col(a,red) to hold. As a consequeneel(b, red), col(c, red), col(d, red) must be false (otherwise
the integrity constraint would be violated), while!(a, blue) andcol(a, green) must be false, be-
cause they occur in the only rule which can suppoita, red). Next, assume thabl(e, green)
holds. No consequences are entailed in this case. Now, assifh green) to hold. As a conse-
quencerol(c, green), col(d, green) must be false, in order to satisfy the integrity constraénid
col (b, blue) must be false because it occurs in the only rule which canatippl (b, green). In
turn, col(c, blue) andcol(d, blue) have to hold, as both occur in rule heads in which all othenato
are false (and the rule body is true). This, however, caussstadiction, because both nodes
on the edgéc, d) have the same color, and the respective integrity consisaiot satisfied. The
reason for this contradiction is the first and third choicel(@a,red)and col(b,green, while the
second choicecpl(e,green) is not connected to it.

Now, trying the complement of the last choieel(b, green), to be false, entaileol (b, blue) to
hold, and as a consequeneg(c, blue), col(d, blue), must be false (because of constraints), while
col(c, green), col(d, green) must hold. Again, both nodes on the edged) would get the same
color, and the respective integrity constraint is not §iatis The reason for the contradiction is the
first and third choice, as before.

2See Section 4 for a precise description of the computation.



4 INFSYS RR 1843-05-08

col(a,red)

col(e,green)
jump

col(b,green) not col(b,green)

g g

Figure 1: Computation tree for SCOLORABILITY example.

We have now identified an inconsistent subtree, the reasotisd inconsistency being the first
choice. Now, when going back, it does not make sense to trgdimplement of the second choice,
as eventually the same contradiction will arigei(b, green) must become true or false at some
point, triggering the same contradictions. Therefore welzackjump to the closest reason of the
inconsistent subtree.

In sum, once the above inconsistency arises, an algoritlsedban (chronological) backtrack-
ing, tries the complement of the second choieg(g, green)), making further choices and a lot of
useless computations all leading to the inconsistencieswetiered before. Backjumping, instead,
allows us to jump directly to the source of the inconsiste@ey(a, red)), reducing the search
space significantly.

Contributions. Backjumping notions have first been studied for constrashtisg, have been
applied successfully for SAT solving and have recently heamted to SLP in [1, 2]. In this paper
we first present a generalization of these approaches tndisye programs by definingraason
calculusfor the DetCons function of DLV (which roughly correspondastinit propagation in
DPLL-based SAT solvers and AtLeast/AtMost in Smodels). SEheasons can then be exploited
for effective backjumping. Special attention is paid toyderities of the disjunctive setting. We
also describe the implementation of these techniques iDthesystem, the state-of-the-art SDLP
system. In fact, our implementation aims at reducing therim&tion to be stored as much as
possible, while maintaining the best jumping possibitie

Subsequently, we assess our method and implementation &ypanimentation activity. We
have tested the impact of backjumping both with and withbaetémployment of the lookahead
(see Section 5), on random 3SAT instance$;hard QBF, and some structured SAT instances.

The full picture resulting from the experiments is very piost

e On SigmaP2-hard QBF, the Backjumping technique (BJ) rexltite number of choice



INFSYS RR 1843-05-08 5

points significantly. Such a reduction implies also relétane-gains in the program evalu-
ation. Both the reduction of choice points and the time-ga&observed even if lookahead
is employed.

e The backjumping technique has a positive impact also onvhkiation of structured 3SAT
instances. Choice points are reduces sensibly, and a tineiggobtained, both with and
without the lookahead.

e On random 3SAT instances, the backjumping technique bréngsduction of the search
space (fewer choice points), if lookahead is not employdus Teduction is compensated
by the overhead brought by the reason calculus, but sucheshead does not overcome the
gain: the two versions (with/without backjumping) essalhtishow the same performance.
If lookahead is employed, there is no cut of the search spettes case; but the overhead in
computation-time, which is brought by the reason calcutusegligible.

In sum, the results of the experiments let us conclude thevioig:

e Backjumping is preferable to the version without backjungpindependently of the heuris-
tic employed in DLV.

e Backjumping without clause learning can be effective.

e Even in cases, in which the search space is not pruned byurapkjg, the overhead is
negligible.

The organization of the paper is as follows. In Section 2 weerethe syntax and semantics of
SDLP, and recall some of its properties. In Section 3, themgdational core of DLV is presented,
which is extended in Section 4 by a suitable backjumping oekthn Section 5 we report on the
benchmarks performed to asses the impact of this backjumpethod. Finally, in Section 6 we
draw out conclusions and outline future work.

2 Disjunctive Logic Programming

In this section, we provide a brief introduction to the synésad semantics of Disjunctive Logic
Programming; for further background see [17, 18].

2.1 Syntax

A disjunctive ruler is a formula

Ay V oo+ Vay - by, by, not bpyq, -, not by,.



6 INFSYS RR 1843-05-08

wherea,, - - -, ap, b1, -, b, are atoméandn > 0, m > k > 0. A literal is either an atona or

its default negatiomot a. Given a ruler, let H(r) = {ay, ..., a, } denote the set of head literals,
Bt(r) = {by,....,bx} and B~ (r) = {not bgy1,...,not b, } the set of positive and negative body
literals, resp., an®(r) = Bt (r) U B~ (r). the set of body literals.

A rule r with B~ (r) = () is calledpositive a rule with H(r) = 0 is referred to asntegrity
constraint If the body is empty we usually omit the sign.

A disjunctive logic progran®P is a finite set of rulesp is apositiveprogram if all rules inP
are positive (i.enot-free). An object (atom, rule, etc.) containing no variatkecalledgroundor
propositional

Given aliteral, letnot.l = a if [ = not a, otherwisenot.l = not [, and given a sel of literals,
not.L = {not.l | [ € L}.

For example consider the following program:

ri:oa(X) v b(X):i- ¢(X,Y),d(Y),not e(X).

ro: - c(X,Y),k(Y),e(X),not b(X)
rg: m:- n,o,a(l).
ry: oc(1,2).

rq is a disjunctive rule s.tH (r) = {a(X),b(X)}, BT(r1) = {c(X,Y),d(Y)}, andB~(r;) =
{e(X)}; myis a constraint s.tB*(ry) = {c¢(X,Y), k(Y), e(X)}, andB (re) = {b(X)}; rzisa
ground positive (non-disjunctive) rule sk.(r3) = {m} B*(r3) = {n,0,a(1)}, andB~(r3) = 0;
r4 is a fact (note that- is omitted).

2.2 Semantics

The semantics of a disjunctive logic program is given by tiébke models [19], which we briefly
review in this section.

Given a progranP, let theHerbrand Universd/p be the set of all constants appearingFin
and theHerbrand BaseB, be the set of all possible ground atoms which can be constidrim
the predicate symbols appearinginwith the constants df/p.

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possikistsu
tutionso from the variables in- to elements of/». Similarly, given a progran®, the ground
instantiation of P is the setJ, ., Ground(r).

For every programP, we define its stable models using its ground instantiaffom two
steps: First we define the stable models of positive progrémes we give a reduction of general
programs to positive ones and use this reduction to defitdestaodels of general programs.

A set L of ground literals is said to beonsistentf, for every atom? € L, its complementary
literal not ¢ is not contained in.. An interpretation/ for P is a consistent set of ground literals
over atoms inBp.* A ground literall istruew.r.t. I'if ¢ € I; ¢ isfalsew.r.t. I if its complementary

3For simplicity, we do not consider strong negation in thipgralt can be emulated by introducing new atoms and
integrity constraints.
4We represent interpretations as sets of literals, sinceawe to deal with partial interpretations in the next seation



INFSYS RR 1843-05-08 7

literal is in I; ¢ is undefinedw.r.t. I if it is neither true nor false w.r.t.

Letr be a ground rule ifP. The head of is truew.r.t. [ if existsa € H(r) s.t. a is true w.r.t.
I (i.e., some atom i (r) is true w.r.t. ). The body ofr istruew.r.t. I if V¢ € B(r), ( is true
w.r.t. I (i.e. all literals onB(r) are true w.r.t/). The body ofr is falsew.r.t. I if 3¢ € B(r) s.t. ¢
is false w.r.t/ (i.e., some literal inB(r) is false w.r.t.I). The ruler is satisfiedor true) w.r.t. I if
its head is true w.r.tl or its body is false w.r.t/.

Interpretationy/ is total if, for each atomA in Bp, eitherA ornot.Aisin [ (i.e., no atom inBp
is undefined w.r.t.7). A total interpretationV/ is amodelfor P if, for everyr € P, at least one
literal in the head is true w.r.t/ whenever all literals in the body are true w.i\f.. X is astable
modelfor a positive progran® if its positive part is minimal w.r.t. set inclusion amongtmodels
of P.

For example, consider the positive programs

Py ={avbve. ; :-a.}
Py={avbve. ; -a. ; bi-c ; ci-b}

The stable models dP, are{b, not a,not ¢} and{c, not a,not b}, while {b, ¢, not a} is the
only stable model of;.

Thereductor Gelfond-Lifschitz transforrof a general ground prograf w.r.t. an interpreta-
tion X is the positive ground prograf™, obtained fronf? by (i) deleting all rules- € P whose
negative body is false w.r.t. X and (ii) deleting the negatidy from the remaining rules.

A stable model of a general prografis a modelX of P such thatX is a stable model gP~.

Given the (general) program

Ps=A{
avb:- c. ;
b:- not a,not c. ;
avc:- not b.

}

and the interpretatiohi = {b, not a,not c}, the reductP! is {avb:- c.,b.}. I is a stable model
of PL, and for this reason it is also a stable modePgf Now considet/ = {a, not b, not c}. The
reductPy is{avb:- c. ; avc.} and it can be easily verified thdtis a stable model oP;, so it
is also a stable model ;.

2.3 Some SDLP Properties

Given an interpretatiod for a ground progranP,we say that a ground aton is supportedn
I if there exists asupportingrule » € ground(P), i.e. the body of- is true w.r.t.] and A is the
only true atom in the head of If M is a stable model of a progra®, then all atoms in\/ are
supported [20, 21, 22].



8 INFSYS RR 1843-05-08

C

AN SN

(a) (b)

Figure 2:Graphs (a)DGp,, and (b) DG p,

e

An important property of stable models is related to thearotf unfounded sgR3, 21]. Let
I be a (partial) interpretation for a ground progrédm A set X C Bp of ground atoms is an
unfounded set fo® w.r.t. [ if, for eacha € X and for each rule- € P such thatu € H(r),
at least one of the following conditions holds: @) r) N not.I # 0, (i) BT (r) N X # 0, (iii)
(H(r)—X)N 1T #0.

Let I» denote the set of all interpretationsBffor which the union of all unfounded sets for
P w.rt. I is an unfounded set fdP w.r.t. I as welP. GivenI € I, let GUS»(I) (the greatest
unfounded seatf P w.r.t. I) denote the union of all unfounded sets fomv.r.t. I.

If M is a total interpretation for a prograf M is a stable model oP iff not.M = GUSp (1)
[21].

With every ground progran®, we associate a directed graph» = (N, E), called the
dependency grapbf P, in which (i) each atom of is a node inV and (ii) there is an arc i
directed from a node to a nod# iff there is a ruler in P such that anda appear in the head and
positive body ofr, respectively.

The graphDGp singles out the dependencies of the head atoms of a-rutan the positive
atoms in its body.

As an example, consider the programs

Py={avb. ; c:-a.; ci- b}
Ps=P,U{dve:-a. ; di-e ; e:- dnotb.}.

The dependency graphGp, of P, is depicted in Figure 2 (a), while the dependency graph
DGp, of Ps is depicted in Figure 2 (b).

A programP is head-cycle-freéHCF) iff there is no ruler in P such that two atoms occurring
in the head of- are in the same cycle @Gy [24].

Considering the previous example, the dependency grapés mi Figure 2 reveal that program
P, is HCF and that prograrf?; is not HCF, as rulelve:- a. contains in its head two atoms
belonging to the same cycle &fGp, .

A component of a dependency graph( is a maximal subgraph dPG such that each node
in C'is reachable from any other. Tlse&tbprogramof C' consists of all rules having some atom
from C'in the head. An atom is non-HCF if the subprogram of its congpdrs non-HCF.

SWhile for non-disjunctive programs the union of unfoundetsss an unfounded set for all interpretations, this
does not hold for disjunctive programs (see [21]).
6Note that negative literals cause no ardiG'».



INFSYS RR 1843-05-08 9

3 Model Generation inDLV

In this section, we briefly describe the computational pssqeerformed by the DLV system [21,
25] to compute stable models, which will be used for the expents. Note that, other SDLP and
SLP systems like Smodels [26, 27] employ a very similar pidace.

In general, a logic progra® contains variables. The computational step of an SDLP syste
eliminates these variables, generating a ground instantigr-ound(P) of P which is a (usually
much smaller) subset of all syntactically constructiblt@amces of the rules @ having precisely
the same stable modelsRq28].

3.1 Main Model Generation Procedure

The nondeterministic part of the computation is performedtas simplified ground program by
the Model Generator, which is sketched below. Note thatdasons of presentation, the descrip-
tion here is quite simplified; in particular, the choice gsiand search trees are somewhat more
complex in the “real” implementation. However, one can firmha-to-one mapping to the simpler
formalism described here. A more detailed description aafolind in [25]. Note also that the
version described here computes one stable model for sityphowever modifying it to compute
all or n stable models is straightforward. For breviBrefers to the simplified ground program in
the sequel. Roughly, the Model Generator produces somelittate” stable models. Each candi-

bool MG ( Interpretation& 1 ){
if (! DetCons (1) )then
return false;
if (“no atom is undefined in 1" Jhen return IsUnfoundedFree(l);
Select an undefined atorhusing a heuristic;
if (MG (I U{A}) then return true;
else returnMG (I U {not A}); };

Figure 3: Computation of Stable Models

date! is then verified by the function IsUnfoundedFree(l), whitlecks whether is a minimal
model of the progran®’! obtained by applying the GL-transformation w.rit. This part of the
computation is also referred to amdelor stability checker

The interpretations handled by the Model Generator aregbamterpretations. Initially, the
MG function is invoked with/ set to the empty interpretation (all atoms are undefinediat th
stage). If the progranP has a stable model, then the function returns true and/s&isthe
computed stable model; otherwise it returns false. The MG@merator is similar to the Davis-
Putnam procedure in SAT solvers. It first calls a function@ets, which extend$ with those
literals that can be deterministically inferred. This isigar to unit propagation as employed by
SAT solvers, but exploits the peculiarities of SDLP for nrakfurther inferences (e.g., it uses the
knowledge that every stable model is a minimal model).

DetCons(l) computes the deterministic consequences ofliyall be described in more detalil
in Section 3.2. If DetCons(l) does not detect any inconsistean aton! is selected according to



10 INFSYS RR 1843-05-08

a heuristic criterion and MG is recursively called on béth { A} and/ U {not A}. The atomA
corresponds to Branching variableén SAT solvers.

The efficiency of the whole process depends on two crucistifes: a good heuristic to choose
the branching variables and an efficient implementation etions. Actually, the DLV system
employs by default a so callédokaheadheuristic [29, 30] and an efficient DetCons implementa-
tion [31, 32].

In a lookahead heuristic, each possible choice literalngatesely assumed, its consequences
are computed, and some characteristic values on the resuleeorded. Based on these values,
the choice is determined. We will not describe the methoe hatther, as it is not connected to
backjumping, and refer to [29, 30] for details.

It is worth noting that, if during the execution of the MG fuion a contradiction arises, or the
stable model candidate is not a minimal model, MG backtracksmodifies the last choice. This
kind of backtracking is called chronological backtracking

In Section 4, we describe a technique in which the truth vaksggnments causing a conflict
are identified and backtracking is performed “jumping” dthg to a point so that at least one of
those assignments is modified. This kind of backtrackingrigge is called non-chronological
backtracking or backjumping.

3.2 DetCons

As previously pointed out, the role of DetCons is similarite Boolean Constraint Propagation
(BCP, often referred to asnit propagation procedure in Davis-Putnam SAT solvers. However,
DetCons is more complex than BCP, which is based on the sinmii@ropagation inference rule,
while DetCons implements a set of inference rules. Thossrebmbine an extension of the Well-
founded operator for disjunctive programs with a numbeeohhiques based on SDLP program
properties. We will not define these rules or their impleragah in detail here, as they are not a
novelty of this paper, and refer to [31, 32] for their predigdinitions and implementation.

While the full implementation of DetCons involves four tiwalues (apart from true, false,
and undefined, there is also “must be true”), we treat “mustue’ as true in this description for
simplicity, as they are treated in the same way with respebatkjumping. Moreover, we group
the inference rules using the same terminology as [1] faebebmparability:

Forward Inference,
Kripke-Kleene Negation,
Contraposition for True Heads,

Contraposition for False Heads,

o & 0 DN E

Well-founded Negation.

Rule 1 derives an atom as true if it occurs in the head of a nukéhich all other head atoms are
false and the body is true. Rule 2 derives an atom as falserifleacan support it. Rule 3 applies



INFSYS RR 1843-05-08 11

if for a true atom only one rule that can support it is left, anakes inferences such that the rule
can support the atom, i.e. derives all other head atoms ses faloms in the positive body as true
and atoms in the negative body as false. Rule 4 makes infesdacrules which have a false head:
If only one body literal is undefined, derive a truth value itssuch that the body becomes false.
Finally, rule 5 sets all members of the greatest unfoundetbdalse. We note that rule 5 is only
applied on recursive HCF subprograms for complexity rea$8a.

4 Backjumping

In this section we first motivate by means of an example howcljbmping technique is supposed
to work, and then give a more formal account on how to exteaduhctions DetCons and MG of
DLV to accomplish this task in general.

4.1 Backjumping by Example
Consider the following program

ri: avb. re: cvd. r3: evf.
ry: o gi-a,e. Ts: - g,a,e.
re: g.:-a,f. r7: i-g,a,f.

and suppose that the search tree is as depicted in Fig. 4.

Figure 4: Backtracking vs Backjumping.

According to this tree, we first assumeo be true, deriving to be false (because of and
rule 3). Then we assumeto be true, derivingl to be false (because of and rule 3). Third, we



12 INFSYS RR 1843-05-08

assumes to be true and derivé to be false (because of and rule 3) and to be true (because of
r4 and rule 1). This truth assignment violates constrainbecause rule 4 derivesto be false),
yielding an inconsistency. We continue the search by imgthe last choice, that is, we assume
to be false and we derivgto be true (because of and rule 1) and to be true (because of and
rule 1), but obtain another inconsistency (because of cainst; and rule 4g must also be false).

At this point, MG goes back to the previous choice point, is ttase inverting the truth value
of ¢ (cf. the arc labelled BK in Fig. 4).

Now it is important to note that the inconsistencies obtdiaee independent of the choice of
¢, and only the truth value af ande are the “reasons” for the encountered inconsistencies. In
fact, no matter what the truth value ofs, if a is true then any truth assignment towill lead to
an inconsistency. Looking at Fig. 4, this means that in theleskubtree below the arc labelled
no stable model can be found. It is therefore obvious thatkimenological backtracking search
explores branches of the search tree that cannot contaable shodel, performing a lot of useless
work.

A better policy would be to go back directly to the point at elhive assumed to be true (see
the arc labelled BJ in Fig. 4). In other words, if we know thedsons” of an inconsistency, we can
backjump directly to the closest choice that caused thenisistent subtree.

4.2 Reasons for Literals

Until now, we used the term “reason” in an intuitive way. Welwow define more formally what
such reasons are and how they can be handled.

We start by reviewing the intuition of reason of a literalpiresenting a truth value of the
literal’s atom). A rulea:- b, c,not d. can give rise to the following propagation: dfandc are
true andd is false in the current partial interpretation, thems derived to be true (by Forward
Propagation). In this case, we say thas true “becauseb andc are true and! is false.

More generally, the reason of a derived literal consistiefeasons of those literals that entalil
its truth. While for Forward Propagation it is rather clednigh literals entail the derived one,
this is somewhat more intricate for other propagations. éiex, there is one way for a literal
to become true unconditionally, i.e. no other literals gntsitruth: These are thehosenliterals
which become true by virtue of one of the recursive invocaiio the last two lines of MG in
Figure 3. In this case, their only reason is their choice.

The only elementary reasons are thereforectieseriterals; all other reasons are aggregations
of reasons of other literals. There are also cases in whietals are unconditionally true, for
example atoms occurring in facts (rules with singleton hexaal empty body). Since at any point
during the computation there is a unique chosen literal mrecursion level, we may identify the
reason of a chosen literal by an integer number (starting 89 representing its recursion level.
Reasons of derived literals are then (possibly empty) ctidies of integers.

Each literall derived during the propagation (through DetCons) will hameassociated set of
positive integersk(l) representing the reason bfwhich represent the set of choices entailing
Therefore, for any chosen literal| R(c)| = 1 holds, while for any derived (i.e., non-chosen) literal
n, |[R(n)| > 1 holds. For instance, ikR(l) = {1, 3,4}, then the literals chosen at recursion levels



INFSYS RR 1843-05-08 13

1,3 and 4 entail.

4.3 Determining Reasons for Derived Literals

In order to define more formally what reasons for derived {obosen) literals are — this task is
often referred to aseason calculus— we need some preliminary notions.

Given a ruler, a "satisfying literal” is either a true head atom or a falseliteral inr. Ruler
is satisfied iff it has a satisfying literal. Note that a Satid rule can have more than one satisfying
literals. Also note that any satisfying literal is either laosen or a derived literal, so we may
assume that its reason is known.

Let us next define an ordering,. among satisfying literals of a given rutewhich is basically
a lexicographic order over the numerically ordered integdrthe respective reasons. We first
give two technical definitionsR (/) denotes the reason bivithout thek greatest integers, while
M AXy (1) gives thek-th integer of R(1) in descending order (or1 if |R(1)| < k).

R(l), k=0
Bl)) = {Rk_1<l>\{mam<m_l<z>>}, 0
v - {0

wheremax(x) is the maximum element in the set If s, s, are satisfying literals for rule,
thens; < s, (s precedes,) iff one the following conditions holds:

(l) MAXl(Sl) < MAXl(SQ) N MAXl(Sl 7& —1A MAXl(SQ) 7& —1
(II) MAXl(Sl) =—1A MAXl(SQ) >0

(i) Ik:k>1:Ve:l<zx<k: MAX,(s1) = MAX,(s2) # —1 and
MAXk(Sl) < MAXk(SQ) VAN MAXk(Sl) # —1A MAXk(Sg) # —1

(iv) 3k k>1:Ve:l<oz<k: MAX,(s1) = MAX,(s2) # —1 and
MAXk(Sl) =—1A MAXk(SQ) >0

Lets; ~ sy if 51 £ sp andsy 4 s1. We writes; < s Iff 57 < 55 0rs; ~ ss.

Letsy,...,s, be satisfying literals for rule, if s; < s; for eachj = 1,...,n thenR, = R(s;)
is acancelling assignmerior . Note that a cancelling assignment of a rukepresents the reason
corresponding to the earliest choice causing be satisfied.

In the following, we describe how reasons of derived literale computed for the respective
inference rules of DetCons with respect to a partial inttigdtion/. We would like to point out
that we did not introduce any novel inference rules in thiskywbut rather we extend existing ones
by the reason calculus.

Forward Inference
We have already discussed that case informally; if all batdydls are true, all head atoms but one

(which is undefined) are false, then we infer the truth of thiy andefined head atom. The reason



14 INFSYS RR 1843-05-08

for this head atom is the set consisting of the union of theaea for all the other literals in the
rule.

More formally, given a rule, if 3a;, € H(r) such thali) Vb € B(r) : b € I, (ii) Ya € (H(r)\
{a;}) : not a € I, theninfera; € 1. We definel(a;) asU,c y()\ (o} L2100t @) U Uy gy R(D).

For example, consider the following program:

ri: avb:- c,notd. ry: ci- notd,e.
r3: fvb. ry: gvd. r5: evh.

Suppose = {not b, ¢,not d, f, g,not h}, andR(f) = R(not b) = {1}, R(c) = {2,3}, R(g) =
R(not d) = {2}, andR(e) = R(not h) = {3}. We have that is derived to be true from rule
(all body literals are true and the only head atbia false) and the reason ofto be true is set to
R(a) = R(not b) U R(c) U R(not d) = {1, 2, 3}.

Kripke-Kleene Negation
In this case we derive negative information: If for some dimsdel atom all of the rules, in which
it occurs in the head, are satisfied w.r.f.then derive this atom to be false. So the reason for
the derived literal is that all of the rules, in which it ocsun the head, are satisfied w.ilt. As
motivated above, the reason for a rule being satisfied isaitsalling assignment. The reason of
the literal is hence the union of the respective cancellsgigimments.

Given an atomu, if for each ruler such thatt € H(r) (i) 3b € B(r) such thatot.b € I or
(11) 3c € H(r) such thatu # c andc € I, then infernot.a € I. We definel(a) asl,.,cp ) Brs
whereR, is a cancelling assignment of rute

For example, consider the following subprogram:

ri: avb:- ¢c,notd. re: bi- e not f.
r3: bi- g, h.

Supposel = {a,c,d,e, f,g,not h} and R(a) = {7}, R(c) = {5}, R(d) = {6}, R(e) = {3},
R(f) ={4}, R(g) = {1}, R(not h) = {2}. The atomb is undefined and it is contained in the head
of all rules. The cancelling assignments are as follol®s: = R(c) = {5}, R,, = R(e) = {3},
andR,, = R(g) = {1}. DetCons then inferg to be false and?(not b) = R,, U R,, U R,, =
{1,3,5}.

Contraposition for True Heads
Here we exploit the fact that each true atom in a stable modset imave at least one supporting
rule. If an atom is true and has only one supporting rule Ve jnfer the truth of all body literals
and the falsity of all other head atoms of that rule. Note thkgs which do not support this atom
are satisfied, so they have a cancelling assignment. Therrdasall literals derived in this way
consist of the fact that a is true and that all other possibppsrting rules are satisfied, hence the
reason for the atom unified with all cancelling assignmehte@other rule.

Given an atoma € [ and arule- suchthat € H(r), if for each ruler’ # r such thatt € H (r')
(2) A € B(r'):not.b' € Tor (i) Ic € H(r'):  #a N € I,thenforeach € H(r)s.t.c #a
andnot ¢ ¢ I infernot ¢ € I, and for eacth € B(r) \ I inferb € I. For each derived literdlof
T, R(D = R(CL) U Ur’:aEH(r’)/\r’;ér RT"



INFSYS RR 1843-05-08 15

For example, considering the following program

ri: avbi- c,notd. ro: avg:i- f.
r3: a:- k.

suppose that = {a, f,g,not k} andR(a) = {2}, R(f) = {2}, R(g9) = {3}, R(not k) = {1}.
The only unsatisfied rule having in the head is-, and the cancelling assignments dtg =
R(a) = R(f) = {2} andR,, = R(not k) = {1}. In this case we infer andnot d andnot b and
setR(not b) = R(c) = R(not d) = R(a) U R,, U R,, = {1,2}.

Contraposition for False Heads
In order to enforce satisfaction of a rule, if the head of & figlfalse, and all but one (undefined)
body literals are true, we infer that the remaining undefilitedal must be false. In this case, the
reason for the falsity of that atom is — similar to the casemffard Propagation — the union of the
reasons for head atoms to be false and the other body literbkstrue.

Given a ruler such that(i) Ya € H(r) : not.a € I, (i) 3l € B(r) : I ¢ I Anot.l & I, (ii7)
Vb e B(r)\{l} : b € I, theninfemot.l € I. We setR(l) = U,cp () B(not a) UUye i gy £(b)-

Consider the following program,

ri: avb.i-c,d. ry: dvavb.
r3: eva. ro: :-d,b.

and suppose that = {not a,not b,d, e}, and R(not a) = {1}, R(not b) = R(d) = {3},
R(e) = {2}. By 1, we getnot c and R(not ¢) = R(not a) U R(not b) U R(d) = {1, 3}.

Well-founded Negation
In this case we use the result that any stable model does ntdinany atom which is in some
unfounded set (w.r.t. the stable model). If we determinégbane set of atoms is unfounded w.r.t.
the current interpretation, all of the atoms in this set camérived as false. The reason for some
atom to be in an unfounded set is that all of the rules, in trealef which it occurs, are either
satisfied or contain some atom of the unfounded set in itgipesiody. In the former case the
reason is obviously the cancelling assignment, while indtier case, there is no reason other than
the presence of the unfounded set itself. So whenever theregason for the satisfied rules to be
satisfied, this unfounded set will exist. Therefore un§atisrules with unfounded positive body
do not contribute to the reason.

Let S be an HCF subprogram &f, I be an unfounded-free interpretation, axide the greatest
unfounded set of w.r.t. I. Then infer all atoms inX to be false. For each atome X and for
each ruler with a in the head, seR(a) = U, cs..en( £ir WhereR; is the cancelling assignment
of r, if r is satisfied w.r.t7, or R = () if r is not satisfied w.r.tl (in the latter case contains some
other element fronX).

For example, consider the following program:

ri: avb. ro: a:-mnotc. ry: a:-d.
ry: di-a. r5: bve. rg: cvf.

Suppose = {b, ¢,not e,not f}, R(b) = R(not e¢) = {1}, R(c) = R(not f) = {2}. The greatest
unfounded set isX = {a,d}, then infera andd to be false and sek(not a) = R(not d) =
R:,UR:,UR: UR:, = {1,2},whereR* = R(b) = {1}, R}, = R(c) = {2} andR?, = R*, = 0.

T2 T3



16 INFSYS RR 1843-05-08

4.4 Reasons for Inconsistencies

So far, we have described what reasons for literals are awdddetermine them. We will now
turn to how to exploit them during the computation. As maiesbefore, we will use reason infor-
mation when inconsistencies occur, in order to understamat wssumptions have to be changed
in order to avoid the inconsistency, and what other assumgtilo not have any influence on the
inconsistency.

In DLV, we can isolate two main sources of inconsistency:

1. Deriving conflicting literals, and
2. failing stability checks.

Of these two, the second one is particular for SDLP, whilefitise one is the only source for
inconsistencies in SAT and non-disjunctive SLP.

Deriving conflicting literals means, in our setting, thattDens determines that an atam
and its negatiomot a should both hold. In this case, the reason of the incongigten rather
straightforward — the combination of the reasonsd@ndnot a: R(a) U R(not.a). Obviously,
this inconsistency reason does not depend on the inferateseused when determining the incon-
sistency.

Reconsidering the example in Section 4.1, the reason ofrgtarfconsistency is the union of
the reasons fog, R(g) = {0, 2}, andnot g, R(not g) = {0, 2}, which is the sef0, 2}. So only the
literals chosen at levels 0 and 2 give reason to the incamsigf while the literal chosen at level 1
(¢) is detached from the inconsistency.

As mentioned above inconsistencies from failing stabititgcks are a peculiarity of SDLP.
This situation occurs if the function IsUnfoundedFreefl}-aure 3 returns false. Intuitively, this
means that the current interpretation (which is guaranteée a model) is not stable. From [21]
we know that this interpretation is not unfounded-free, 3@me positively interpreted atom is in
an unfounded set w.r.t. this interpretation.

This situation is similar to the well-founded negation @ier described above. The difference
is that in case of a failed stability check, some unfoundedhatare already true in the interpreta-
tion, while they are normally undefined in the case of wellfded negation. Note that with the
default computation strategy employed in DLV, failed slibchecks will be due to some non-
HCF subprogram, as otherwise the well-founded negatiorat@ewould have triggered before.

The reason for such an inconsistency is therefore based anfannded set, which has been
determined during IsUnfoundedFree(l). Given such an umded set, the reason for the inconsis-
tency is composed of the cancelling assignments for satigfles which contain unfounded atoms
in their head. As with well-founded negation, unsatisfiddswith unfounded atoms in their head
do not contribute to the reason.

Let.S be a non-HCF subprogram &1, I be an interpretation, andl be an unfounded set 6f
w.rt. I, suchthafN.X # (). The inconsistency reason is determined as follQWss. . x noe () L2rs
whereR* is the cancelling assignment ofif r is satisfied w.r.tZ, or R: = () if r is not satisfied
w.r.t. I (in the latter case contains some other element froX).



INFSYS RR 1843-05-08 17

4.5 Using Inconsistency Reasons for Backjumping

When inside MG (cf. Figure 3) some inconsistency is dete@teBetCons or IsUnfoundedFree),

we analyze the inconsistency reason, and can go directhetgrieatest level in the inconsistency
reason. Going to any level in between (if it exists) wouldded trigger the encountered incon-
sistency again and again. It is worth noticing that when aomsistency is encountered during
DetCons, the inconsistency reason will always containasedut one level, amounting to simple
backtracking.

The inconsistency reasons can be further exploited: Whereevecursive invocation of MG
returns false, we know that there has been an inconsistentlyis branch, and we can re-use
the inconsistency reasons determined in it for the incossty reason of the respective branch,
by stripping off all recursion levels which are greater thle current one. This is semantically
correct, as in the presence of the remaining reasons, angistency will definitely occur. If at
any level, both recursive invocation return false, we knbat the entire subtree is inconsistent.
The reason for this tree to be inconsistent are then the wfitime two inconsistency reasons of
the branches, minus the current level (as the inconsisteoeyg not depend on the choice of the
current level). We can then continue by going directly to gheatest level in this inconsistency
reason.

The case where these techniques allow for going directlyléwel, which is not the previous
recursion level, is frequently referred tolaackjumpingin contrast tdoacktracking

4.6 Model Generator with Backjumping

In this section we describe MGBJ (shown in Fig. 5), a modiftcabf the MG function (as de-
scribed in section 3), which is able to perform non-chrogaal backtracking, as described in
Section 4.5.

It extends MG by introducing additional parameters and datectures, in order to keep track
of reasons and to control backtracking and backjumpingattiqular, two new parametefs: and
bj_level are introduced, which hold the inconsistency reason of tiéree of which the current
recursion is the root, and the recursion level to backtradkackjump to. When going forward in
recursionpj_level is also used to hold the current level.

The variablescurr_level, posI R, andnegl R are local to MGBJ and used for holding the
current recursion level, and the reasons for the positide@gative recursive branch, respectively.

Initially, the MGBJ function is invoked withl set to the empty interpretatiod R set to the
empty reason, anldj _level set to—1 (but it will become 0 immediately). Like the MG function, if
the progran has a stable model, then the function returns true and getthe computed stable
model; otherwise it returns false. Again, it is straightfard to modify this procedure in order to
obtain all or up to: stable models. Since these modification gives no additiosajht, but rather
obfuscates the main technique, we refrain from presentingre.

MGBJ first calls DetConsBJ, an enhanced version of the Des@oocedure. In addition to
DetCons, DetConsBJ computes the reasons of the inferexdlft as described in Section 4.3.
Moreover, if at some point an inconsistency is detected e complement of a true literal is
inferred to be true), DetConsBJ builds the reason of thisnststency and stores it in its new,



18 INFSYS RR 1843-05-08

bool MGBJ (Interpretation& I, Reason& IR,
int& bj_level ) {

bj_level ++;
int curr_level = bj level,

if (! DetConsBJ (I, IR)
return false;
if (“no atom is undefinedin 1”)
if IsUnfoundedFreeBJ(I, IR);
return true ;
else
bj_level = MAX (IR );
return false;

Reason posIR, neglR;
Select an undefined atorhusing a heuristic;

R(A)={ currlevel };

if (MGBJ(I U {A}, posIR, bilevel)
return true ;

if (bj_level < curr_level)
IR = posIR;
return false;

bj_level = currlevel;

R(not A) = { currlevel };

if (MGBJ (I U {not A}, negIR, bjlevel)
return true ;

if (bj_level < curr_level)
IR = negIR;
return false;
IR = trim( currlevel, Union ( posIR, negIR ) );
bj_level = MAX (IR );
return false;

Figure 5: Computation of stable models with backjumping

second parametdrRz before returning false. If an inconsistency is encounteké@BJ immedi-
ately returns false and no backjumping is done. This is ammigdtion, because it is known that
the inconsistency reason will contain the previous reouarsevel. There is therefore no need to
analyze the levels.

If no undefined atom is left, MGBJ invokes IsUnfoundedFreeiJenhanced version of IsUn-
foundedFree. In addition to IsUnfoundedFree, IsUnfoukdeeBJ computes the inconsistency
reason in case of a stability checking failure, and sets ¢lcersd parametefR accordingly. If
this happens, it might be possible to backjump, and weé gétvel to the maximal level of the
inconsistency reason (or O if it is the empty set) beforerrétig from this instance of MGBJ. If



INFSYS RR 1843-05-08 19

the stability check succeeded, we just return true.

Otherwise, an atom is selected according to a heuristic criterion. We set theae ofA to
be the current recursion level and invoke MG recursivelynagisos! R andbj_level to be filled in
case of an inconsistency. If the recursive call returned, tMiGBJ just returns true as well. If it
returned false, the corresponding branch is inconsigtent,R holds the inconsistency reason and
bj_level the recursion level to backtrack or backjump to.

Now, if bj_level is less than the current level, this indicates a backjumg,vea return from
the procedure, setting the inconsistency reason apptelyrizefore. If not, then we have reached
the level to go to. We set the reason foit A, and enter the second recursive invocation, this time
usingnegl R and reusingj_level (which is reinitialized before).

As before, if the recursive call returns true, MGBJ immegliateturns true also, while if it
returned false, we check whether we backjump, settiRgand immediately returning false. If
no backjump is done, this instance of MGBJ is the root of amnststent subtree, and we set
its inconsistency reasohi to the union ofposI R andnegl R, deleting all integers which are
greater or equal than the current recursion level (this reduy the function trim), as described in
Section 4.5. We finally sétj_level to the maximum of the obtained inconsistency reason (or O if
the set is empty) and return false.

The actual implementation in DLV is slightly more involvdalit only due to technical details.
First of all, as mentioned above, the procedure was extemderter to be able to compute all
stable models. We also had to deal with the additional trathe/“must be true” (which is handled
like true for our purposes). Furthermore, in DLV the compiotatree is not really binary, but is
rather a collapsed binary tree. There is, however a 1-torkespondence between this collapsed
binary tree and the binary tree presented here. Indeed implementation, we construct a virtual
binary tree in order to keep track of the correct levels. &we do not believe that these technical
issues give any particular insight, but are instead ratmggthy in description, we have opted to
not include them.

5 Benchmarks

In order to evaluate the backjumping technique describeeition 4, we have implemented it
as an experimental extension of the DLV system. Concernpgréments, judging from results
on SAT (e.g. in [33]), backjumping has the greatest impadaage, structured problem instances,
so we have studied such instances, which have been desurif#t]. Since we want our tool to
be efficient for arbitrary input, we have also consideredicanly generated hard 3SAT problem
instances. These can be seen as important corner caseseghaethod should be able to deal
with in an efficient way. We have also experimented with ranlyogenerated 2QBF instances,
which are characteristic for SDLP (they cannot be represeit SAT or non-disjunctive SLP
under standard complexity assumptions).

Next, we first describe the compared systems, the benchmalkeps and instances and fi-
nally we report and discuss the results of the experiments.



20 INFSYS RR 1843-05-08

5.1 Compared Systems

We will now describe the systems that we have used in the eRpetation. Our principal compar-
ison is of course between the DLV system without and with #ekjumping technique described
in Section 4.

But there is another parameter, which is important in thépeet. The choice of the heuristic
function has a strong impact on the effectiveness of thejbagking technique (noted also for SAT,
cf. [33]), and therefore we consider both systems first witleak and then with a strong heuristic.
In particular, the weak heuristic basically amounts to @cen choice strategy. The strong heuristic
employs a lookahead technique, that is, DetCons is invokedazh possible choice atom, and
some values of the result are collected. These values areifesl to choose the “best” atom. For
details of this heuristic function, we refer to [29, 30]. Tihgoortant aspect is that inconsistencies
can be encountered during the lookahead. This is like havide one choice, which immediately
leads to an inconsistency. Our implementation treats tt@sario as if a choice has actually been
made.

In the sequel, we will refer to systems employing the weakrisga aswithout lookahead
and to systems with the strong heuristiondth lookahead It should be noted that choices made
by the strong heuristic are less likely to lead into incaotesisbranches, and so the gain by using
backjumping is more limited than with a weaker heuristic.isThas already been discussed at
length in the SAT community, we again refer to [33] for an aiew.

We will thus deal with the following four versions of the SDislpstem DLV.

STDN The original DLV system without lookahead. It uses the staddmplementation of
MG, DetCons, and IsUnfoundedFree, without reason comipataand employs the weak heuris-
tic.

BJN This system is DLV enhanced by the backjumping techniquegus!GBJ, DetConsBJ,
and IsUnfoundedFreeBJ, as described in Section 4.6, witbhokahead.

STDL The original DLV system with lookahead. It uses the standiamementation of MG,
DetCons, and IsUnfoundedFree, without reason computagioth employs the strong heuristic.
This is default setting for official DLV releases.

BJL The final system is DLV enhanced by the backjumping technugiag MGBJ, Det-
ConsBJ, and IsUnfoundedFreeBJ, as described in Sectipthé&@ime with lookahead.

Our experiments have been performed on a 1.400 MHz Pentiuachime machine with 256K
of Level 2 Cache and 256MB of RAM, running SUSE Linux 9.0. Theabes were generated with
GCC 3.3.1 (shipped with the system). We have allowed at mashour of execution time for each
instance. For those tests, where there are multiple instgper instance size, the experimentation
was stopped (for each system) at the size at which some aestceeded this time limit.



INFSYS RR 1843-05-08 21

5.2 Benchmark Problems

Boolean Satisfiability. 3SAT is one of the best researched problems in Al and gegpeara#éd
for solving many other problems by translating them to 3S#dlying the 3SAT problem, and
transforming the solution back to the original domain:

Let® be a propositional formula in conjunctive normal form (CNF)= A" (d;1 V...V d;3)
where thel; ; are classical literals over the propositional variables . . ., x,,. ® is satisfiable, iff
there exists a consistent conjunctiowf literals such that’ = .

3SAT is a classical NP-complete problem and can be easihkgsepted in SDLP as follows:
For each propositional variable (1 < i <m), we add the following rule which ensures that we
either assume that variabtgor its complementz; true: z;vnz;. Foreach clausé V.. .Vvds
in ® we add the constraint :- notdi,...,notds. whered; (1 <i < 3)isuz; if d; is a positive
literal z;, andnz; if d; is a negative literahz;.

Our test in this domain include some randomly generated 3®Ablems and “structured”
instances (circuit verification benchmarks) from the th@e3scalar Suite SSS.1.0 of Miroslav
Velev, cf. [34].

We have randomly generated 20 3SAT instances for each pnoize by using a tool by
Selman and Kautz, which is availabldatp: / / f t p. research. att.com di st/ai/ . The
number of clauses for each generated instance is 4.3 tirmgautinber of propositional variables
(in order to generate hard instances). The SSS.1.0 instaacailable in DIMACS format were
easily converted in an equivalent SDLP program as indicalbede.

Allinput files used for the benchmarks on random instancesweailable on the web at t p:
/I www. mat . uni cal . it/ eone/ backj unpi ng/ ai com tar. gz, while the SSS.1.0 in-
stances can be foundlatt p: / / www. ece. crmu. edu/ ~nvel ev .

Quantified Boolean Formulas. To asses the impact of backjumping Bfi-complete problems
we used 3v” Quantified Boolean Formulas (2QBF Wwhich have already been used in the past for
benchmarking SDLP systems [9, 12].

The problem here is to decide whether a quantified Booleanular (QBF)® = 3XVY ¢,
where X andY are disjoint sets of propositional variables and= C; v ...V C} is a 3DNF
formula overX UY, is valid. The transformation from 2QBF to disjunctive logrogramming we
use here has been given in [9], based on a reduction presef8&]. The propositional disjunctive
logic programP,, produced by the transformation contains the followingsule

t(true). f(false).
t(X)v f(X):- exists(X).

"2QBF is well-known to be &£ -complete problem see [35].



22 INFSYS RR 1843-05-08

t(Y)v f(Y) - forall(Y).
w - term(X,Y,Z, Na, Nb, Nc),
HX), t(Y), (%), f(Na),
f(ND), f(Nc).
t(Y) - w, forall(Y).
fY) 1= w, forall(Y).

i- notw.
Moreover, P, contains the following facts:
e cxists(v), for each existential variablee X;
e forall(v), for each universal variablec Y’; and

e term(p1, pa2, P3, ¢1, 42, q3), fOr each disjunct; A ls A I3 in ¢, where (i) ifl; is a positive atom
v;, thenp; = v;, otherwisep,= “true”, and (ii) if [; is a negated atomw;, theng; = v;,
otherwisey;=" false”.

For exampleterm(xq, true, yy, false, ya, false), encodes the termy A —ya A yy.

The 2QBF formulab is valid iff P has an answer set [36].

We used the benchmark instances from [9]. There, 50 hardrioes per problem size were
randomly generated. Accordingly with [37, 38], each formnabntains the same number of uni-
versal and existential variablegX(| = |Y'|), and the number of clauses is equal to the number
of variables (X| + |Y|). The input files used for the benchmarks are available onvie at
http://ww. dl vsyst em com exanpl es/tocl -dl v. zi p.

5.3 Experimental Results

In this section we report the obtained results. We will fiegtart on the case without lookahead (i.e.
using the weak heuristic), followed by the results with lab&ad (i.e. using the strong heuristic).

10000000 100000000

2 J BIN ‘ £ BIN ‘
3 —m—STDN = || —m—ston - |
2 1000000 S 10000000 l o
] g
5 S 1000000
S 100000 s M
2 et
5 S 100000
& 10000 3 -’J
€ £ 10000
5 5
z 1000 1 z M
4 100
z S 100 =
=
10 {f 10
1 -— T —_—
O S S A S S MR SRS S I OO R R I I MRS RO IR ISRy

Number of Propositional variables Number of Propositional variables

Figure 6: Choice points on Random 3SAT instances witholkdbead



INFSYS RR 1843-05-08 23

1000 10000

1000

<2 100

100

Average Time (s)
S
Maximum Time (s)

oobessoﬁfoobs
O I R R P - S RS S

Number of Propositional variables Number of Propositional variables

Figure 7: Execution Times on Random 3SAT problems withook#inead

5.3.1 Results without Lookahead

We start reporting on the random 3SAT instances. A critinedrnal measure is the number of
choice points, these choice points correspond to the nuwfbiémes MG or MGBJ have been

invoked. If backjumping occurs, there will be fewer choiagints. One could also count the
number of backjumps, but this measure would be bogus, asaslyinot only the number, but

also the length of the backjumps are important. The numbehoice points, however, is a direct
measure of the structural savings brought about by baclgunfjig. 6 shows the average (left)
and maximum (right) number of choice points per instance.shtote that we have employed a
logarithmic scale in all of our diagrams, as they measureepis which grow exponentially. BIJN

scales slightly better, in the final instance size (155), Balés about 800000 fewer choice points
than STDN on average, while the maximum number of choicetp@ionsumed for this instance
size is almost 4 million more for STDN.

But having backjumping also incurs some overhead (most itaptly, maintaining reasons),
which can obviously not be measured in terms of choice poiStsin Fig. 7, we report on the
average (left) and maximum (right) execution time. We obséhnat the potential benefits of saved
choice points is outweighed by the overhead incurred byghsan computations, but importantly,
there is no slowdown.

Let us now turn to the structured satisfiability instancesre;lwe have allowed two hours of
execution time, and report only on those instances, whigk baen solved by at least one of the
tested systems in the allotted time. The execution timeseg@rted in Table 1, and choice points
are reported in Table 2. We can see that STDN was not able\e aal of these instances within
2 hours. BJN, however, could solve one instance (alxthe number of explored choice points is
quite impressive (about 80 millions).

Let us next turn to the final benchmark problem, 2QBF. In Figh8 average (left) and max-
imum (right) number of choice points per instance size ioreggl. Compared to 3SAT, we can
observe a more drastic saving with BJN with respect to STD&haice points for 2QBF. There are
two peculiar spikes in the graphs: Comparing the averageredmum graph, it becomes clear



24 INFSYS RR 1843-05-08
Instance STDN BJIN STDL BJL
dixlc >2h | 5464.80s|| 306.33s| 270.51s
dix2_cc_bug04 >2h >2h 3.57s 2.91s
dix2_cc_bug06 >2h >2h >2h | 5498.96s
dix2_cc_bug07 >2h >2h | 1301.40s| 814.97s
dix2_cc_bug08 >2h >2h | 1890.81s| 854.00s

Table 1: Execution Time on solved SSS.1.0 SAT instances

Instance STDN BJN || STDL BJL
dixlc - | 79989185|| 221925| 169774
dix2_cc_bug04 - - 167 154
dix2_cc_bug06 - - - | 688145
dix2_cc_bug07 - - || 177499| 88965
dix2_cc_bug08 - - || 295785| 91394

Table 2: Choice Points on solved SSS.1.0 SAT instances

that these are due to two exceptionally hard instances ooguat sizes 44 and 56, respectively, in
which fewer backjumps than in most other instances are IplessThis seems to be a peculiarity
of the distribution of the underlying instance data in conabion with the weak heuristic.

100000

BIN
—#—STDN

10000

/

Average Nupaber of Choicepoints

AL

w//(
'
4 8 12 16

Number of Propositional variables

uuuuuuuu
BIN
—#—STDN

1000000

100000

10000 +—¢-

Choice

Maximum Number of Choicepoints

Number of Propositional variables

Figure 8: Choice points on random 2QBF problems without éd@ad

Different to 3SAT, the reduction of the search space for BIRQBF is proportionally much
higher, thus by far outweighing the overhead incurred byré@son computations, as can be ob-
served in Fig. 9, in which we report average (left) and maxm(tight) execution time. We note
that BJN scales much better than STDN: While BJN could saheh énstance up to size 80 within
1 hour each, this is only possible up to size 52 for STDN.



INFSYS RR 1843-05-08 25

00000

100
BIN BIN
—=—STON —m-STDN /.
— 1000
% Y N o ;
100

Average Execution Time (
F \
Maximum Execution Time (s)
5

Number of Propositional variables Number of Propositional variables

Figure 9: Execution time on random 2QBF problems withouk&dwead

5.3.2 Results with Lookahead

Let us now turn to the versions with lookahead and a strongisteas. Originally, we did not
expect too much of this combination, as one of the conclissiosimilar studies for SAT seemed
to be that the combination of strong heuristics and backjuogfincluding clause learning) does
not have advantages in general. However, as the resultgsiseabtion will show, it seems that in
our setting this combination works indeed well.

We start by examining the results on the randomly genereé®éd 3nstances. We found that in
this case the number of choice points is essentially eqaddaskjumping does basically not have
any impact here (we omit this graph, as it shows just two eyging lines). However, looking at
Fig. 10, where, as usual, the average time is reported irethgraph, and the maximum time in
the right one, we observe that the overhead in executioniimery small.

1000

BIL BIL ‘
—m—STDL —@—STDL

100

10

Average Time (s)
Maximum Time (s)

A

Number of Propositional variables Number of Propositional variables

Figure 10: Execution time on random 3SAT problems with |dedad

Looking at the results of the structured SAT instances iné&af and 2, the picture is quite
different: Already STDL can solve many more instances thabI$ within 2 hours, but BJL
manages to solve one (dbx@_bug06) within 2 hours, which no other tested system could do.
Also in the other examples, BJL is always the fastest syssemgtimes more than twice as fast as



26 INFSYS RR 1843-05-08

STDL. Also the number of choice points is always drastichllyer for BJL than for STDL.

Finally, we report on the experiments with 2QBF instanceag. FL shows the average (left)
and maximum (right) number of choice points per instance.di¥e see that also with lookahead,
the number of choice points is cut effectively by BJL withpest to STDL. Fig. 11 reports the
average (left) and maximum (right) execution time per inséssize. Also here, BJL clearly has an
edge over STDL. BJL also managed to solve more instancegwitté allotted time than STDL.

uuuuuuuu

k BIL
~&-STDL
uuuuuuu

uuuuuu

BIL
~8-STDL /
8
/ \
0 /I/
/__/-/ - 100 —
10
././'./ 101
1 1
4 8 4

Number of Propositional variables Number of Propositional variables

g
8

Average Number of Choicepoints

Maximum Number of Choicepoints

Figure 11: Choice Points on random 2QBF problems with loekah

00000

100
BIL BIL
~@-STDL ~@-STDL
| |
1

/ /

2 3 4 /
2 /2.5/ 2 36 a0

1
4 s 12 16 2
1
.// 01 ._././'/.\{
0,01 0,01

Number of Propositional variables Number of Propositional variables

™~

Average Execution Time (s)
Maximum Execution Time (s)

Figure 12: Execution time on random 2QBF problems with |dwcd

5.3.3 Summary

We have observed that both with and without lookahead, bagijng generally cuts the search
space effectively and consumes (often dramatically) Igeswgion time than the systems without
backjumping. The only exception is 3SAT on random instanaéere BJL has a mild overhead
in execution time. But this minimal overhead is definitelyweighed by the big advantages BJL
and BJN show on structured SAT and 2QBF instances, both wdwathout heuristics. A conse-

guence of these results is that backjumping without claesening is, at least for SDLP, effective.



INFSYS RR 1843-05-08 27

6 Conclusion and Future Work

We have presented a backjumping technique for computingtttide models of disjunctive logic
programs. It is based on a reason calculus and is an elatmoadtihe work in [1, 2], but our work
contains some crucial novelties and improvements: Mosbmaptly, our framework is suitable
and tailored for disjunctive programs, including noveleigjues for this setting. Concerning the
reason computation, our method does not incur building gtication graph, but rather store only
sets of integers, which are more efficient to compute, aragile an easier handle on determining
the point to jump to.

We have implemented the technique in the DLV system, and bawducted several experi-
ments with it. In total, the backjumping technique has a y@gitive effect on performance in
many cases, and even in cases, in which it cannot cut thehssipace, its overhead is negligible.
Moreover, these improvements can be observed with eithev@heuristic methods, which are
diametrically different from each other. So we concludé tha technique for SDLP is robust with
respect to the heuristic method, and in particular, codpsnaell with a lookahead heuristic.

Our backjumping technique is very effective on structuratisfiability instances, and on ran-
domly generated hard 2QBF instances (which cannot be sdlye®AT solvers directly under
standard complexity assumptions). It shows little to noaetpbut also no relevant slowdown on
randomly generated hard satisfiability instances.

For future work, we want to address the question whetheiselé@arning can yield an addi-
tional gain w.r.t. backjumping in SDLP. Implementing clausarning in DLV is, however, not
straightforward at all, as the DLV model generator heawlyes on the assumption that the pro-
gram, on which it works, is fixed. There are several ways of@w@ing this difficulty, ranging
from a redesign of the data structures to the introducticeno&dditional structure which is dedi-
cated to the learned clauses.

Another possibility for future work is to study the use of season calculus not only for stable
model computation, but also for software engineering taskarticular, it has been observed
that reasons could be profitably used for debugging SDLPramg. A program, for which some
particular stable model, which has been expected by itoaudbes not exist, these reasons could
be used to find the point in the program which forbids the exist of the expected stable model,
and thus the modelling bug.

Acknowledgements

This work was supported by the European Commission undggsdST-2002-33570 INFOMIX
and IST-2001-37004 WASP. Wolfgang Faber’'s work was fundedrbAPART grant of the Aus-
trian Academy of Sciences.

References

[1] Ward, J., Schlipf, J.S.: Answer Set Programming withuBkLearning. In Lifschitz, V., Niemela, I., eds.: Pro-
ceedings of the 7th International Conference on Logic Rnmgning and Non-Monotonic Reasoning (LPNMR-



28

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

INFSYS RR 1843-05-08

7). LNCS, Springer (2004) 302-313

Ward, J.: Answer Set Programming with Clause LearnirfgD fhesis, Ohio State University, Cincinnati, Ohio,
USA (2004)

Lifschitz, V.: Answer Set Planning. In Schreye, D.D., €droceedings of the 16th International Conference on
Logic Programming (ICLP’99), Las Cruces, New Mexico, USAeMIT Press (1999) 23-37

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive DatagJo ACM Transactions on Database Syste2241997)
364-418

Rintanen, J.: Improvements to the Evaluation of QuaedifBoolean Formulae. In Dean, T., ed.: Proceedings
of the Sixteenth International Joint Conference on Artifidntelligence (IJCAI) 1999, Stockholm, Sweden,
Morgan Kaufmann Publishers (1999) 1192-1197

Eiter, T., Gottlob, G.: The Complexity of Logic-Based diiction. Journal of the ACM2 (1995) 3—-42

Baral, C.: Knowledge Representation, Reasoning andabative Problem Solving. Cambridge University Press
(2002)

Leone, N., Rosati, R., Scarcello, F.: Enhancing AnswetrBanning. In Cimatti, A., Geffner, H., Giunchiglia,
E., Rintanen, J., eds.: IJCAI-01 Workshop on Planning utferertainty and Incomplete Information. (2001)
33-42

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, 8erri, S., Scarcello, F.: The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on Cotigneh L ogic (2005) To appear. Available via
http://ww. arxiv. org/ps/cs. Al/0211004.

Janhunen, T., Niemela, I., Seipel, D., Simons, P.,,XbH.: Unfolding Partiality and Disjunctions in Stable
Model Semantics. Technical Report ¢s.Al/0303009, arXiy(@003)

Lierler, Y.: Disjunctive Answer Set Programming viatiS&ability. In Baral, C., Greco, G., Leone, N., Terracina,
G., eds.: Proceedings of the 8th International Conferendsgic Programming and Non-Monotonic Reasoning
(LPNMR’05). LNCS, Springer (2005) 447-451

Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunetivogic Programming Systems by SAT Checkers. Atrtifi-
cial Intelligencel5 (2003) 177-212

Prosser, P.: Hybrid Algorithms for the Constraint Stction Problem. Computational Intelligeng€1993)
268—-299

Dechter, R., Frost, D.: Backjump-based backtrackorgbnstraint satisfaction problems. Artificial Intelligee
136(2002) 147-188

Bayardo, R., Schrag, R.: Using CSP Look-back Techrsqaé&olve Real-world SAT Instances. In: Proceedings
of the 15th National Conference on Artificial Intelligen@eAl-97). (1997) 203-208

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., laS.: Chaff: Engineering an Efficient SAT Solver.
In: Proceedings of the 38th Design Automation Conferené«; R001, Las Vegas, NV, USA, June 18-22, 2001,
ACM (2001) 530-535

Eiter, T., Faber, W., Leone, N., Pfeifer, G.: DeclaratProblem-Solving Using the DLV System. In Minker, J.,
ed.: Logic-Based Atrtificial Intelligence. Kluwer Acadentablishers (2000) 79-103

Gelfond, M., Lifschitz, V.: Classical Negation in LagPrograms and Disjunctive Databases. New Generation
Computing9 (1991) 365-385

Przymusinski, T.C.: Stable Semantics for Disjuncfregrams. New Generation Computi@&(991) 401-424



INFSYS RR 1843-05-08 29

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

Marek, W., Subrahmanian, V.. The Relationship betweegic Program Semantics and Non-Monotonic Rea-
soning. In: Proceedings of the 6th International Confegeme Logic Programming — ICLP’89, MIT Press
(1989) 600-617

Leone, N., Rullo, P., Scarcello, F.: Disjunctive SebModels: Unfounded Sets, Fixpoint Semantics and Com-
putation. Information and Computatid35(1997) 69-112

Baral, C., Gelfond, M.: Logic Programming and Knowledgepresentation. Journal of Logic Programming
19/20(1994) 73-148

Van Gelder, A., Ross, K., Schlipf, J.: The Well-Foundemantics for General Logic Programs. Journal of the
ACM 38(1991) 620-650

Ben-Eliyahu, R., Dechter, R.: Propositional Semantar Disjunctive Logic Programs. Annals of Mathematics
and Atrtificial Intelligencel2 (1994) 53-87

Faber, W.: Enhancing Efficiency and Expressivenessiawer Set Programming Systems. PhD thesis, Institut
fur Informationssysteme, Technische Universitat Wi2002)

Niemela, I., Simons, P.: Efficient Implementation bétWell-founded and Stable Model Semantics. In Ma-
her, M.J., ed.: Proceedings of the 1996 Joint Internati@uaiference and Symposium on Logic Programming
(ICLP’96), Bonn, Germany, MIT Press (1996) 289-303

Simons, P.: Extending and Implementing the Stable M&@amantics. PhD thesis, Helsinki University of
Technology, Finland (2000)

Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using &xmtse Optimization Techniques for Nonmonotonic
Reasoning. In INAP Organizing Committee, ed.: Proceeduidke 7th International Workshop on Deductive
Databases and Logic Programming (DDLP’99), Prolog Assmciaf Japan (1999) 135-139

Faber, W., Leone, N., Pfeifer, G.: Experimenting witawistics for Answer Set Programming. In: Proceedings
of the Seventeenth International Joint Conference on Aidlfintelligence (IJCAI) 2001, Seattle, WA, USA,
Morgan Kaufmann Publishers (2001) 635-640

Faber, W., Leone, N., Pfeifer, G.: Optimizing the Cortgdion of Heuristics for Answer Set Programming
Systems. In Eiter, T., Faber, W., Truszczyhski, M., edsgit Programming and Nonmonotonic Reasoning
— 6th International Conference, LPNMR'01, Vienna, Aust&ptember 2001, Proceedings. Number 2173 in
Lecture Notes in Al (LNAI), Springer Verlag (2001) 288-301

Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Deio/ain DLP Computations. In Gelfond, M., Leone, N.,
Pfeifer, G., eds.: Proceedings of the 5th Internationalf@amce on Logic Programming and Nonmonotonic
Reasoning (LPNMR’99). Number 1730 in Lecture Notes in Al @llN El Paso, Texas, USA, Springer Verlag
(1999) 177-191

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Prup@perators for Answer Set Programming Systems. In:
Proceedings of the 9th International Workshop on Non-MoniatReasoning (NMR’2002). (2002) 200-209

Lynce, I, Silva, J.P.M.: Building state-of-the-adtsolvers. In van Harmelen, F., ed.: Proceedings of the 15th
Eureopean Conference on Artificial Intelligence (ECAI 2D0@S Press (2002) 166-170

Velev, M.N., Bryant, R.E.: Superscalar Processorfietion Using Efficient Reductions of the Logic of Equal-
ity with Uninterpreted Functions to Propositional Logia: ICorrect Hardware Design and Verification Meth-
ods, 10th IFIP WG 10.5 Advanced Research Working ConfereGEEARME '99, Bad Herrenalb, Germany,
September 27-29, 1999, Proceedings. Lecture Notes in Cemfuience, Ithaca, NY, USA, Springer Verlag
(1999) 37-53

Papadimitriou, C.H.: Computational Complexity. Addn-Wesley (1994)

Eiter, T., Gottlob, G.: On the Computational Cost of jDisctive Logic Programming: Propositional Case.
Annals of Mathematics and Artificial Intelligend& (1995) 289-323



30 INFSYS RR 1843-05-08

[37] Cadoli, M., Giovanardi, A., Schaerf, M.: Experimentahalysis of the Computational Cost of Evaluating
Quantified Boolean Formulae. In: Proceedings of the 5th @mssy Advances in Artificial Intelligence of
the Italian Association for Artificial Intelligence, Al*107. Lecture Notes in Computer Science, Rome, lItaly,
Springer Verlag (1997) 207-218

[38] Gent, I., Walsh, T.: The QSAT Phase Transition. In: extings of the 16th AAAI. (1999)



