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Abstract. Recent research on answer set programming (ASP) systems, has mainly focused
on solving ��� problems more efficiently. Yet, disjunctive logic programs allow for express-
ing every problem in the complexity classes � �� and � �� . These classes are widely believed
to be strictly larger than �	� , and several important AI problems, like conformant and con-
ditional planning, diagnosis and more are located in these classes.
In this paper we focus on improving the evaluation of � �� / � �� -hard ASP programs. To this
end, we define a new heuristic 
��� and describe its implemention in the (disjunctive) ASP
system DLV. The definition of 
 �� is geared towards the peculiarites of hard programs,
while it maintains the benign behaviour of the well-assessed heuristic of DLV for ��� prob-
lems.
We have conducted extensive experiments with the new heuristic. 
��� significantly outper-
forms the previous heuristic of DLV on hard 2QBF problems. We also compare the DLV
system (with 
 �� ) to the QBF solvers which performed best in the QBF evaluation of 2004.
The results of the comparison indicate that ASP systems currently seem to be the best choice
for solving � �� / � �� -complete problems.
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1 Introduction

Answer Set Programming (ASP) is a novel programming paradigm, which has been recently pro-
posed in the area of nonmonotonic reasoning and logic programming. The idea of answer set
programming is to represent a given computational problem by a logic program whose answer
sets correspond to solutions, and then use an answer set solver to find such a solution [20]. The
knowledge representation language of ASP is very expressive in a precise mathematical sense; in
its general form, allowing for disjunction in rule heads and nonmonotonic negation in rule bodies,
ASP can represent every problem in the complexity class �

��
and �

��
(under brave and cautious

reasoning, respectively) [8]. Thus, ASP is strictly more powerful than SAT-based programming,
as it allows us to solve problems which cannot be translated to SAT in polynomial time. The high
expressive power of ASP can be profitably exploited in AI, which often has to deal with problems
of high complexity. For instance, problems in diagnosis and planning under incomplete knowledge
are complete for the complexity class �

��
or �

��
[23, 7], and can be encoded in ASP [1, 16].

Most of the optimization work on ASP systems has focused on the efficient evaluation of
non-disjunctive programs (whose power is limited to ��� /co-NP), whereas the optimization of
full (disjunctive) ASP programs has been treated in fewer works (e.g., in [13, 14]). In particular,
we are not aware of any work concerning heuristics for �

��
/ �
��

-hard ASP programs, which is
fundamentally important for the efficiency of an ASP system.

In this paper, we address the following two questions:� Can the heuristics of ASP systems be refined to deal more efficiently with �
��

/ �
��

-hard ASP
programs?� On hard �

��
/ �
��

problems, can ASP systems compete with other AI systems, like QBF solvers?

We define a new heuristic � �� for the (disjunctive) ASP system DLV. The new heuristic aims
at improving the evaluation of �

��
/ �
��

-hard ASP programs, but it is designed to maintain the benign
behaviour of the well-assessed heuristic of DLV on ��� problems like 3SAT and Blocks-World,
on which it proved to be very effective [10]. We experimentally compare � �� against the DLV
heuristic on hard 2QBF instances, generated following recent works presented in the literature that
describe transition phase results for QBFs [5, 12]. � �� significantly outperforms the heuristic of
DLV on 2QBF.

To check the competitiveness of ASP w.r.t. QBF solvers on hard problems, we carry out an
experimental comparison of the DLV system (with the new heuristic � �� ) with four prominent
QBF solvers, which performed best at the 2004 QBF evaluation[22]: SSolve, Semprop, Quantor,
yQuaffle. The results of the comparison, performed on instances used in the QBF competition and
on a set of randomly generated instances for the Strategic Companies problem, indicate that ASP
systems currently perform better than QBF systems on �

��
/ �
��

-hard problems.

It is worthwhile noting that, besides DLV [15], there are many other efficient ASP systems,
including GnT [13], Smodels [24], ASSAT [21], and Cmodels [19]. We did not experiment our
heuristics with these systems, because they are either limited to NP/co-NP (e.g., Smodels, ASSAT)
or employ another system as a black-box (e.g., GnT, Cmodels).
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2 Answer Set Programming Language

2.1 ASP Programs

A (disjunctive) rule � is a formula

�����������	�
�������������������������������� ����!"���������������#� �%$'&
where �����������(�%���)�����������������%$ are atoms and *,+
- ��. +0/1+
- . The disjunction �2�3�4�����5�6���
is the head of � , while the conjunction ���7�������(�������8����������!"�����������8���#�9�%$ is the body, ����������������� the
positive body, and ���#�:�7��!"�7�������(�8���#� �%$ the negative body of � .

An (ASP) program ; is a finite set of rules. An object (atom, rule, etc.) is called ground or
propositional, if it contains no variables.

2.2 Answer Sets

Given a program ; , let the Herbrand Universe <>= be the set of all constants appearing in ; and
the Herbrand Base ?@= be the set of all possible ground atoms which can be constructed from the
predicate symbols appearing in ; with the constants of <A= .

Given a rule � , BC��DFE�*HGJIK��L denotes the set of rules obtained by applying all possible substi-
tutions M from the variables in � to elements of <>= . Similarly, given a program ; , the ground
instantiation BC��DFE�*HGJIN;OL of ; is the set PRQTS = BC��DFE�*HGJIK��L .

A set U of ground literals is said to be consistent if, for every atom VXWYU , its complementary
literal ���#� V is not contained in U . An interpretation Z for ; is a consistent set of ground literals
over atoms in ?'= .A ground literal V is true w.r.t. Z if V[W\Z ; V is false w.r.t. Z if its complementary
literal is in Z ; V is undefined w.r.t. Z if it is neither true nor false w.r.t. Z . Interpretation Z is total if,
for each atom ] in ?'= , either ] or ���#� ] is in Z (i.e., no atom in ?@= is undefined w.r.t. Z ). A total
interpretation ^ is a model for ; if, for every �_W`BC�#D�E�*HGJIa;XL , at least one literal in the head is
true w.r.t. ^ whenever all literals in the body are true w.r.t. ^ . b is an answer set for a positive
program ; if it is minimal w.r.t. set inclusion among the models of ; .

Example 1 For the program ; �dcfe��g�h�3�_i�&��j��g�2&lk , e����8���#�9�2�8�����9i�k and e�iF�8���������m�J������k are
the answer sets. For the program ; � cfe��n�o�A�oi�&��jp�@�2&��3����niF&��3iF��g��&qk , e�����iF�8�������2k is the only
answer set.

The reduct or Gelfond-Lifschitz transform of a general ground program ; w.r.t. an interpreta-
tion b is the positive ground program ;9r , obtained from ; by (i) deleting all rules �RWs; whose
negative body is false w.r.t. X and (ii) deleting the negative body from the remaining rules.

An answer set of a general program ; is a model b of ; such that b is an answer set of
BC��DFE�*HGJIN;OL r .

Example 2 Given the (general) program ;ut cfe��v�w����giF&��3����u�����9���m�J���9i�&��>�v�wiF��u�����O��&lk and
Z cxe��F�m�J���9�2�8���#��i�k , the reduct ;Oyt is e��d�O����Ci�&q����&qk . Z is an answer set of ;Oyt , and for this reason
it is also an answer set of ;vt .
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Given an interpretation Z for a ground program ; ,we say that a ground atom ] is supported in
Z if there exists a supporting rule ��W��)�#DFEJ* GJIN;OL such that the body of � is true w.r.t. Z and ] is
the only true atom in the head of � .
Proposition 3 [17] If ^ is an answer set of a program ; , then all atoms in ^ are supported.

3 Answer Set Computation

In this section, we describe the main steps of the computational process performed by ASP systems.
We will refer particularly to the computational engine of the DLV system, which will be used for
the experiments, but also other ASP systems, like Smodels, employ a similar procedure.

An answer set program ; in general contains variables. The first step of a computation of
an ASP system eliminates these variables, generating a ground instantiation �)�#DFEJ* GJIN;OL of ; .1

The hard part of the computation is then performed on this ground ASP program generated by the
instantiator.

Function ModelGenerator(I: Interpretation): Boolean;
begin

I := DetCons(I);
if I = � then return False; (* inconsistency *)
if no atom is undefined in I then return IsAnswerSet(I);
Select an undefined ground atom � according to a heuristic;
if ModelGenerator( �����	��
 ) then return True;
else return ModelGenerator( �������������
 );

end;

Figure 1: Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is sketched in Fig-
ure 1. Roughly, the Model Generator produces some “candidate” answer sets. The stability of
each of them is subsequently verified by the function IsAnswerSet(I), which verifies whether the
given “candidate” Z is a minimal model of the program BC�#D�E�*HGJIa;XL y obtained by applying the
GL-transformation w.r.t. Z . IsAnswerSet(I) returns True if the computation should be stopped and
False otherwise.

The ModelGenerator function is first called with parameter Z set to the empty interpretation.If
the program ; has an answer set, then the function returns True setting Z to the computed answer
set; otherwise it returns False. The Model Generator is similar to the Davis-Putnam procedure
employed by SAT solvers. It first calls a function DetCons(), which returns the extension of Z with
the literals that can be deterministically inferred (or the set of all literals � upon inconsistency).
This function is similar to a unit propagation procedure employed by SAT solvers, but exploits
the peculiarities of ASP for making further inferences (e.g., it exploits the knowledge that every
answer set is a minimal model). If DetCons does not detect any inconsistency, an atom ] is selected
according to a heuristic criterion and ModelGenerator is called on Z�� e ] k and on Z�� e����#� ] k .
The atom ] plays the role of a branching variable of a SAT solver. And indeed, like for SAT

1Note that ���������! #"%$'& is usually a subset of ()�����#�! �"*$'& .
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solvers, the selection of a “good” atom ] is crucial for the performance of an ASP system. In the
next section, we describe a number of heuristic criteria for the selection of such branching atoms.

Remark 1 On hard ASP programs (programs which are not Head Cycle Free (HCF) [2]), a very
large part of the computation-time may be consumed by function isAnswerSet(I), since it performs
a co-NP-complete task if the program is non-HCF.

4 Heuristics

Throughout this section, we assume that a ground ASP program ; and an interpretation Z have
been fixed. Here, we describe the two heuristic criteria that will be compared in Section 5. We
consider “dynamic heuristics” (the ASP equivalent of UP heuristics for SAT2), that is, branching
rules where the heuristic value of a literal � depends on the result of taking � true and computing
its consequences. Given a literal � , �����(I��9L will denote the interpretation resulting from the appli-
cation of DetCons (see previous section) on Z � e � k ; without loss of generality, we assume that
�����(I���L is consistent, otherwise � is automatically set to false and the heuristic is not evaluated on
� at all.

The Heuristic of DLV ( �	��
 ). The heuristic employed by the DLV system was proposed in [10],
where it was shown to be very effective on relevant problems like 3Satisfiability, Hamilthonian
Path, Blocks World, and Strategic Companies.

A peculiar property of answer sets is supportedness: For each true atom ] of an answer set Z ,
there exists a rule � of the program such that the body of � is true w.r.t. Z and ] is the only true atom
in the head of � . Since an ASP system must eventually converge to a supported interpretation, ASP
systems try to keep the interpretations “as much supported as possible” during the intermediate
steps of the computation. To this end, the DLV system counts the number of UnsupportedTrue
(UT) atoms, i.e., atoms which are true in the current interpretation but still miss a supporting rule
(further details on UTs can be found in [9] where they are called MBTs). For instance, the rule�� * D��� implies that � must be true in every answer set of the program; but it does not give a
“support” for � . Thus, in the DLV system � is taken true to satisfy the rule, and it is added to
the set of UnsupportedTrue; it will be removed from this set once a supporting rule for � will be
found (e.g., � � ����gi is a supporting rule for � in the interpretation Z c e � �8���#������i�k ). Given a
literal � , let <��9I��9L be the number of UT atoms in �����(I��9L . Moreover, let <�� � I��9L and <�� t�I���L be
the number of UT atoms occurring, respectively, in the heads of exactly 2 and 3 unsatisfied rules
w.r.t. �����(I���L . The heuristic �	��
 of DLV considers <��9I���L , <�� � I���L and <��"t�I���L in a prioritized
way, to favor atoms yielding interpretations with fewer <����5<�� � �5<�� t atoms (which should more
likely lead to a supported model). If all UT counters are equal, then the heuristic considers the
total number � � �(I��9L of rules which are satisfied w.r.t. �����(I���L .

The heuristic �	��
 is “balanced”, that is, the heuristic values of an atom � depends on both the
effect of taking � and ���#� � .

2The UP heuristic for SAT adds for each variable x a unit clause x and -x, respectively, and makes two independent
unit propagations. The choice is then based on information thus obtained.
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For an atom � , let <����KI���L c <��9I���L � <��9I ����� ��L , <����� I��9L c <�� � I���L � <�� � I ����� ��L ,
<����t I���L c <��"t�I���L � <��"t�I ���#� ��L , and, finally, � � ���NI��9L c � � �(I��9L � � � �(I ���#� ��L . Given two
atoms ] and ? , ]����	��
R? holds if:

1. <����KIN]nL� <����KIK?XL , or

2. <����KIN]nL c <����KIK?XL and <����� IK]gL� <����� IK?XL , or

3. <�� � IN]nL c <�� � IK?XL , <�� �� IK]nL c <�� �� I ?OL and <�� �t IK]nL�� <�� �t I ?XL , or

4. <�� � IN]nL c <�� � IK?XL , <�� �� IK]nL c <�� �� I ?OL , <�� �t IN]nL c <�� �t I ?XL and � � � � IK]gL�� � � � � I ?XL .
A ���	��
 -maximum atom ] is selected by the heuristic � ��
 of DLV; ] is taken positive or

negative, by comparing the values of <��9IN]nL , <�� � IK]nL , <�� t�IN]nL , and � � �(IN]nL , with <��9I ����� ]gL ,
<�� � I ����� ]gL , <��"t�I ����� ]gL , and � � �(I �J��� ]nL , respectively, as above.

Example 4 Consider program ;�� c e��X� �j� i�&�� G � � ���J&��C��u�������9&�����p�'�2&����9�� G &��h�O�
�)p���9&�� � ���������&��up� G ����&��u��g�2����&lk , and let the current interpretation Z c e��[k ; atom � is UT.� and G are the ���	��
 -maxima, as only assuming their truth can eliminate the UT � . Indeed, any
other choice would be poor.

The New Heuristic ( � �� ). The unsupported true atoms are, in a sense, the hardest constraints
occurring in an ASP program. Indeed, as pointed out above, an unsupported true atom � is in-
tuitively like a unary constraint ��u����� � , which must be satisfied. By minimizing the UT atoms
and maximizing the satisfied rules, the heuristic � ��
 tries to drive the DLV computation toward
a supported model (i.e., all rules are satisfied and no UT exists). Intuitively, supported models
have good chances to be answer sets (while unsupported models are guaranteed to be not answer
sets), and, for simple classes of programs (e.g., tight stratified disjunctive programs) the supported
models are precisely the answer sets. If the program is not tight and stratified, then supported
models are not guaranteed to be answer sets; but answer-set checking can be done efficiently if the
program is HCF [2].

For hard ASP programs (i.e., non-HCF programs – they express �
��

-complete problems under
brave reasoning), supported models are often not answer sets. Answer-set checking is computa-
tionally expensive (co-NP-complete), and may consume a large portion of the resources needed
for computing an answer set.

The heuristic � �� , described next, tries to drive the computation toward supported models
having higher chances to be answer sets, reducing the overall number of the expensive answer-
set checks. Models having a “higher degree of supportedness” are preferred, where the degree of
supportedness is the average number of supporting rules for the true atoms (note that this number
is higher than one, on supported models). Intuitively, if all true atoms have many supporting rules
in a model ^ , then the elimination of an atom from the model would violate many rules, and it
becomes less likely to find a subset of ^ which is a model of ;�� , in order to disprove that ^ is
an answer set.

We next formalize this intuition to define the new heuristic � �� . Given a literal � , let �'��E	�5I���L
be the number of true non-HCF atoms in �����(I��9L , and let �AE����! gE#"���$5I��9L be the number of all
supporting rules for non-HCF atoms w.r.t. �����(I��9L . Intuitively, the heuristic maximizes the “degree
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of supportedness” of the interpretation, intended as the ratio between the number of supporting
rules and the number of true atoms. Also in this case, the heuristic is “balanced”, it takes into
account both the atom and its complement.

Moreover, it is defined as a refinement of the heuristic � ��
 (i.e., ] ���	��
R? � ] �������[? ). In
this way, � �� keeps the same nice behaviour as the well-assessed � ��
 on ��� problems like 3SAT
and Blocks-World, where � ��
 proved to be very effective [10]; while, as we will see in Section 5
it sensibly improves on �	��
 on hard 2QBF problems ( �

��
-complete). Given two atoms ] and ? ,

]��������n? holds if:

1. ]����	�	
R? , or

2. ?����� ��
X] and 	 �vIK]gL�
	 �vI ?OL
where 	 �vI���L c �3E����  gE#" ��$ I��9L � I �u��E	�5I���L ��� L � �3E����  gE#" ��$ I ���#� ��L � I �u�#E	�5I ����� �9L �� L .

The heuristic selects a � ����� -maximum atom ] ; ] is taken positive or negative, by comparing
the degree of supportedness of ] and �J��� ] .
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Figure 2: Running Times on Random QBF problems

Example 5 Reconsider Example 4 with the interpretation being Z c e��[k . We get �����(I � L ce��9�%���%�F�m�J�������8�����9iFk and �����(I G L c e��9� G �%���%�F�m�J��� ���m�J���9i��m�J��� � �8����� � k We get 	 �uI � L c�� � � ,
since ��� � ; �9� ��� � and � � ��� � are supporting rules for the three true non-HCF atoms
�9�%���%� . On the other hand, 	 �vI G L c�� � � , since ��� G is an additional supporting rule for the
same three true non-HCF atoms �����2��� . Therefore � � �����nG holds. Indeed, G is a better choice than� , as it leads immediately to an answer set. � would require at least another choice, and choosing
� or � would cause a failing model check.

5 Comparing � <�� vs � 	 � : Experiments

The proposed heuristic aims at improving the performance of DLV on hard ( �
��

-complete) ASP
programs. While there are many experimental works benchmarking ASP systems on ��� -complete
problems, less is available for �

��
-complete problems. We resort to 2QBF, the canonical problem,

and one of the few �
��

-hard problems for which some transition phase results are known [5, 12].
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The problem here is to decide whether a quantified Boolean formula (QBF) � c�� b������ ,
where b and � are disjoint sets of propositional variables and � c
	n� ��&�&�&���	 � is a 3DNF
formula over b ��� , is valid. The transformation from 2QBF to disjunctive logic programming is
based on a reduction used in [6]. The propositional disjunctive logic program ;� produced by the
transformation requires ���nI�� b�� � � ����L ��� predicates (with one dedicated predicate � ).

Our benchmark instances were generated following recent works presented in the literature
that describe transition phase results for QBFs [5, 12], see [15], for a thorough discussion. In
all generated instances, the number of � -variables in any formula is the same as the number of � -
variables (that is, � b�� c ����� ) and each disjunct contains at least two universal variables. Moreover,
the number of clauses is I8I�� b�� � � ����L ��� L���� � .

DLV Quantor Semprop yQuaffle SSolve��� ���"!
32 (100%) 10 (31%) 17 (53%) 21 (67%) 22 (69%)��#%$'&(�*)

108 (100%) 14 (13%) 96 (89%) 55 (51%) 103 (95%)+-,/.0.
2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)12#%$436587 
 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)+ �*!9#%:

143 (100%) 27 (19%) 116 (81%) 79 (55%) 128 (90%)

Table 1: Number (and percentage) of instances solved within the allowed time.

Experiments were performed on a PentiumIV 1500 MHz machine with 256MB RAM running
SuSe Linux 9.0. Time measurements have been done using the time command shipped with SuSe
Linux 9.0.

We generated 100 random QBF instances for each problem size. The results of our experiments
are displayed in Fig. 2 (the horizontal axis depicts � b�� � ���6� ). For each instance, we allowed a
maximum time of 7200 seconds (two hours). The line of a system stops whenever some problem
instance was not solved within this time limit. On the vertical axis, we report, respectively, the
average and the maximum running time in seconds over the 100 instances of the respective size, in
logarithmic scale.

It is evident that the new heuristic � �� outperforms the heuristic � ��
 in these experiments.
Heuristic � ��
 stopped at size 56; while heuristic � �� solved all instances up to size 92. To solve
an instance of size 56, �	��
 took 3455.85s; while � �� required at most 5.13s and 0.12s on average
for instances of this size. Heuristic � ��
 could not solve a 60-variables instance within 2 hours of
cpu time; while � �� took at most 12.41s and 0.64s on average for solving them.

6 ASP vs QBF Solvers

One may wonder whether ASP systems are competitive with other systems on �
��

/ �
��

-hard prob-
lems. Currently it seems that QBF solvers are the most prominent (and efficient) non-ASP-systems
capable of this task. These systems can also solve harder problems.

In order to answer this question, we carry out an experimental comparison of DLV (with � �� )
with QBF solvers which performed best at the 2004 QBF evaluation [22]: SSolve [11] (in the
version used at the 2004 QBF evaluation), Semprop [18] (version v01.06.04), Quantor [3] (version
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1.3pre1), and yQuaffle [25] (version 093004). We use two different sets of benchmarks, which we
describe in the following sections.

6.1 QBF Evaluation

The first group of benchmarks constitute the �
��

- and �
��

-complete QBF instances of the 2004 QBF
evaluation, which we obtained from the qbflib web site [22]. These instances are of four different
kinds: Narizzano-robot, hard random-instances, Letz-tree, and Pan-Kph, see [22] for details. In
total, our suite contains 143 2QBF instances: 2 Letz-tree, 32 Narizzano-robot, 1 Pan-Kph, and 108
random instances. For DLV we used a standard propositional encoding as described in Sec. 5,
while for the QBF systems we used the qDimacs format.

The experiments were performed on the same machine as those of Sec. 5. For each instance,
we have allowed a maximum running time of 1800 seconds (30 minutes). Again, we have limited
the process size to 256MB to avoid swapping.

Table 1 displays, for each system, the number and percentage of instances which have been
solved under the resource limitations. Summarizing, DLV could solve all instances (

� - -�� ) and
is therefore clearly the best among the compared systems. Among the QBF solvers, SSolve and
Semprop could solve ��-�� and � � � of the instances, respectively, and thus performed significantly
better than both yQuaffle ( ����� ) and Quantor (

� ��� ). It should be noted that practically all of the
unsolved instances for Quantor are due to excessive memory consumption, while for the other
systems they are due to time-outs. Indeed, we have analyzed the runs of Quantor on some of
its unsolved instances: Within the first minute of CPU time (several minutes real-time due to
swapping), it had typically allocated around 500MB, and after two minutes (around half an hour in
real time) more than 700MB, still growing. We then aborted the test to avoid a machine lock-up.

SSolve Semprop Quantor yQuaffle
# solved 128 116 27 79

solver avg 43,86s 68,18s 4,74s 55,24s
DLV avg 38,95s 43,50s 10,94s 49,05s

Table 2: Average time on instances solved by QBF solvers.

While SSolve and Semprop did significantly better on the random instances than on the ”Narizzano-
robot”instances, the situation is inverse for Quantor and yQuaffle.

Also when comparing the average runtime between DLV and each QBF solver (on the in-
stances solved by the respective system), DLV usually has an edge, as Table 2 shows. The average
runtime of DLV is larger only when compared to Quantor; but given that this comparison is based
only on

� ��� of all instances, this is not significant.

6.2 Strategic Companies

The second group of benchmarks is made up of randomly generated instances for the Strategic
Companies problem, as defined in [4]. We use the same DLV program and generation method as
in [15].



10 INFSYS RR 1843-05-09

0 50 100 150
10−2

10−1

100

101

102

103

104

Number of Companies

A
ve

ra
ge

 E
xe

cu
tio

n 
T

im
e 

[s
]

Ssolve

Semprop

Quantor

DLV

0 50 100 150
10−2

10−1

100

101

102

103

104

Number of Companies

M
ax

im
um

 E
xe

cu
tio

n 
T

im
e 

[s
]

Ssolve
Semprop

DLV
Quantor

Figure 3: Average (left) and maximum (right) timings for Strategic Companies

Here, we generated tests as in [15] with 20 instances each size for . companies ( ��� . �
�#- - ), �#. products, 10 uniform randomly chosen i D�*	� � ��� relations per company (up to four con-
trolling companies), and uniform randomly chosen �2�#D�G ��� relations (up to four producers per
product). The problem is deciding whether two fixed companies (

�
and � , w.l.o.g.) are strategic.

For the QBF solvers we have produced the following formula: � i#����&�&�&(��i��x � i � � ��&�&�&���i �� 
I8IKZ����	�OL�
 I  ��  � L�� i�� � i � L where Z stands for I i � � 
 i�� L� &�&�& � I i �� 
 i�� L , ��� for� I8I i � ��� i�� L�� &�&�& �1I i ���� i�� L8L ,  for � $��� � ITI������ S�� � i"! L#
 i � L$��� ��%� � I'&�( � S�) � i*! L ( + � contains
the controlling companies of i

�
, while 	,! contains the companies producing good - .  � is defined

analogous to  on the primed variables.
Unfortunately this formula is not in CNF, as required by the qDimacs format. In order to

avoid a substantial blowup of the formula by a trivial normalization, we have used the tool qst
of the traquasto suite [26], which transforms a formula into qDimacs by introducing additional
“label variables” to avoid exponential formula growth. However, these additional variables are
existentially quantified at the inner level and thus would turn the formula above into a 3QBF. To
avoid this, we consider the negated formula � i�����&�&�&��%i7�X � i � � ��&�&�&���i ��  � ITINZ.�/���9L
 I  ��  � L0�i�� � i � L , that is a 2QBF.

In the same experimental setting as before, we obtained the results of Fig. 3.3 It is evident that
DLV scales significantly better than the QBF solvers (note that the vertical axis is logarithmic),
and can solve all instances of up to 175 companies, while the QBF solvers fail to solve instances
of 40 companies.

7 Conclusion

In this paper, we have presented a new heuristic method for ASP systems, which is geared towards
hard problems on the second level of the polynomial hierarchy. We have implemented this method
in the state-of-the-art system DLV, and showed that it is beneficial for the performance of the
system.

3yQuaffle is excluded, as some input files failed abnormally.
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To our knowledge, this is the first work dealing with heuristics dedicated for �
��

/ �
��

-hard ASP
programs. Previous optimization techniques for this segment have been concerned with the model
checking portion, which is important for this class of problems. In our work, we attack the problem
earlier, in the model generation phase, and can therefore cut on the model checks. Importantly, this
heuristics has been incorporated in a way such that the benign behavior on ��� /co-NP programs
w.r.t. the previous heuristic of DLV is maintained.

We experimentally verified that the new heuristic significantly improves the DLV system per-
formance on randomly generated hard 2QBF instances, reducing the average execution time, en-
larging the maximum solvable size of these problems for a fixed time limit.

We also carried out an experimental comparison of DLV (with the heuristic described in
this paper) with the best QBF solvers of the 2004 QBF evaluation [22]: SSolve [11], Semprop
[18], Quantor [3], and yQuaffle [25]. This comparison was done on benchmark instances of
the 2004 QBF evaluation, and Strategic Companies. In both cases, DLV could outperform the
QBF solvers, often significantly. We therefore conclude that ASP systems are currently the
best choice for solving �

��
/ �
��

-complete problems. All benchmark data is available at http:
//www.dlvsystem.com/examples/tests-sigma2-2005.tar.gz.
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