| NF SY S
RESEARCH
REPORT

Institut fur Informationssysteme
AB Wissensbasierte Systeme
Technische Universitat Wien
Favoritenstrassf3e 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405
Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at
www.kr.tuwien.ac.at

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

DATA COMPLEXITY OF QUERY ANSWERING
IN EXPRESSIVEDESCRIPTIONLOGICS WITH
NOMINALS

M. Magdalena Ortiz Diego Calvanese Thomas Eiter

INFSYS RESEARCHREPORT1843-06-03
MAYy 2006

TU

WIEN

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-06-03, MY 2006

DATA COMPLEXITY OF QUERY ANSWERING IN EXPRESSIVE
DESCRIPTIONLOGICS WITHNOMINALS

M. Magdalena OrtiZ, Diego Calvanesé, and Thomas Eitér

Abstract. The formal foundations of the standard web ontology langaa@®WL-Lite and OWL-
DL, are provided by expressive Description Logics (DLssasSHZF andSHOZQ. In the
Semantic Web and other domains, ontologies are incregssegin also as a mechanism to access
and query data repositories. This novel context poses gmaticombination of challenges that
has not been addressed beforig:s(fficient expressive power of the DL to capture common data
modeling constructs;iij well established and flexible query mechanisms such a® timspired

by database technologyiji § optimization of inference techniques with respect to ddga, which
typically dominates the size of ontologies. This calls foveastigating data complexity of query
answering in expressive DLs. While the complexity of DLs hagrb studied extensively, data
complexity of query answering in expressive DLs has beenadherized only for restricted forms
of queries, and was still open for the standard query langgiagutuated from databases, such a
conjunctive queries (CQs) and unions of CQs. We tackle #sigdé and prove a tigidoNP upper
bound for the problem isHOZQ, for the case where the query does not contain transitiesrol
We thus establish that for a whole range of DLs frotd to SHOZQ, answering such CQs has
coNP-complete data complexity. We obtain our result by a néakleaux-based algorithm for
checking query entailment, inspired by work on hybrid knesige bases, but which manages the
technical challenges of simultaneous presence of invetes,rnumber restrictions (which already
lead to a DL lacking the finite model property), and nominals.

Keywords: expressive description logics, query answering, data ¢@xitp, conjunctive queries,
unions of conjunctive queries, tableaux algorithms.

IFaculty of Computer Science, Free University of Bozen-Botg, and Institute of Information Systems,
Vienna University of Technology. E-mail: magdalena.a@igtud-inf.unibz.it.

2Faculty of Computer Science, Free University of Bozen-Botg, Piazza Domenicani 3, 1-39010 Bolzano,
Italy. E-mail: calvanese@inf.unibz.it.

3Institute of Information Systems, Knowledge-Based Syst&roup, Vienna University of Technology,
FavoritenstralRe 9-11, A-1040 Vienna, Austria. E-mailer@kr.tuwien.ac.at.

Acknowledgements This work was partially supported by the Austrian Scienemds (FWF) project
P17212 and the European Commission project REWERSE (1S3-306779).

Some results in this paper appear in preliminary form in trec@edings of the 21th National Conference
on Artificial Intelligence(AAAI '06) [34] and in the Informal Proceedings of the Internationalrkghop on
Description LogicgDL 2006)[35].

Copyright(© 2006 by the authors

INFSYS RR 1843-06-03

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Thedescription logicSHZQ andSHOZQ o o v i 3
2.2 Conjunctive gueries and unions of conjunctive queries 6

3 A Tableaux Algorithm for Query Entailment 8
3.1 SHIQcompletionforests
3.2 Models of acompletionforest 13
3.3 Answering conjunctive QUENES o v i e e e 14

3.3.1 Tableauxandcanonicalmodels, 15

3.4 Answering unions of conjunctive qUeries e 22

4 Extending the Algorithm to SHOZQ 22

5 Termination and Complexity 28
5.1 Bounding the size of completion forestsandgraphs 29
5.2 Complexity of the algorithm faSHZQ 31
5.3 Complexity of the algorithm faSHOZQ 32
5.4 Datacomplexity e e e e 34
5.5 Combined complexity e 34

6 Conclusion 35

A Appendix 37

INFSYS RR 1843-06-03 1

1

Introduction

Description logics (DLs) [2] are logics specifically designed for repnéiag structured knowledge by con-
cepts (i.e., classes of objects) and roles (i.e., binary relationships betlassas). They have been initially
developed to provide a formalization of frame-based systems and semamwtarke and expressive vari-
ants of DLs were shown to be in tight correspondence with representatinalisms used in databases and
software engineering [13, 5]. More recently, DLs gained increaditemton as the formal foundation for
the standard Web ontology languages [20]. In fact, the most signifiearésentatives of such languages,
OWL-Lite and OWL-DL, are syntactic variants of two DLs of the well kno@# family, namely the DLs
SHIF(D)andSHOIN (D), respectively [22, 36]. In the Semantic Web and in other application domains
such as Enterprise Application Integration and Data Integration [31]amés provide a high-level, con-
ceptual view of the information relevant in a specific domain or managed bygamization. However, they
are increasingly seen also as a mechanism to access and query dsitariegpwhile taking into account
the constraints that are inherent in the common conceptualization.

This novel context poses an original combination of challenges unmetdydjoth in DLs/ontologies

and in related areas such as data modeling and querying in databases:

1. Onthe one hand, a DL should have sufficient expressive powaptare commaon constructs typically

used in data modeling [6]. This calls fexpressive DL§7, 4], in which a concept may denote the
complement or union of others (to capture class disjointness and covariag)involve direct and
inverse roles (to account for relationships that are traversed in bathtidins), and may contain
number restrictions (to state existence and functionality dependenciesuadatity constraints on
the participation to relationships in general). Such concepts are then ukednientional component
of a knowledge base (the TBox), which contains inclusion assertionsebataoncepts and roles,
while the extensional component (the ABox) contains assertions abouetiimership of individuals
to concepts and roles.

. On the other hand, the data underlying an ontology should be acagsisgdwell established and

flexible mechanisms such as those provided by database query langliigagoes well beyond the
traditional inference tasks involving objects that have been considaceingplemented in DL-based
systems, likenstance checkingl5, 37]. Indeed, since explicit variables are missing, DL concepts
have limited possibility for relating specific data items to each otl@wnjunctive querie$CQs),

i.e., select-project-join SQL queries, and unions of CQs (UCQs) provigeod tradeoff between
expressive power and nice computational properties, (e.g., decidalbiiontainment), and thus are
adopted as core query language in several contexts, such as datatiotef31].

. Finally, one has to take into account that data repositories can be vgeydad are usually much

larger than the intentional level used to express constraints on the dageefdie, the contribution
of the extensional level (i.e., the data) to the complexity of inference shaulsingled out, and
one must pay attention to optimizing inference techniques with respect to dataasinpposed to
the overall size of the knowledge base. In databases, this is accowntbd data complexityof
guery answering [41], where the relevant parameter is the size of tagataopposed tcombined
complexity which additionally considers the size of the query and of the schema.

Notable examples of the expressive DLs equipped with the features skistabove ar6 HZ Q, which

also allows for asserting the transitivity of certain roles, &¥07 Q, which in addition provides the ability

2 INFSYS RR 1843-06-03

to talk and assert properties about specific individuals in the TBox. Natehkse two DLs essentially
correspond to the web ontology languages OWL-Lite and OWL-DL [2],8Bich have been promoted as
standards by the World Wide Web Consortium within the Semantic Web #ffort

A distinguishing feature of the web ontology language OWL-DL, and itsesponding counterpart
SHOTZQ, is the inclusion ohominals which are concepts denoting a single individual. In their presence,
the crisp separation between TBox and ABox mentioned in item 1 above magnkddurred. Indeed, the
use of nominals allows one to generalize ABox assertions, by combining thigim whe TBox in more
complex forms than simply conjunctively. Also, nominals allow for the modeling dividuals that play
a prominent role at the conceptual level. The added expressive poreng from nominals, especially
when combined with the other features requested from expressivaiblostunately results in an increased
computational complexity of inference. Indeed, while for most expredsivs, TBox+ABox reasoning is
ExPTIME-complete [7], the addition of nominals makes the problemxREME-complete [39].

As for data complexity of DLs, [15, 37] showed that instance checkingoN P-hard already in the
rather weak DLALE, and [8] that CQ answering iSONP-hard in the yet weaker DIAL. For suitably
tailored DLs, answering UCQs over DL knowledge base is polynomial #dgtLOGSPACE) in data com-
plexity [9, 10]. In [10], the problem is studied for thl -Lite family of DLs, and two DLs are identified
for which the problem is bGSPACE, and can effectively be reduced to evaluating a UCQ (i.e., a union of
select-project-join SQL queries) over a database, using standardmalagohnology. Also, an analysis is
carried out on which additions to the DL make the problemagSrPAace-hard, PTME-hard, andcONP-
hard. The analysis essentially shows that the two identified DLs are the maxi@silenjoying so called
FOL-reducibility (and hence bGSPACE data complexity) of query answering. An further interesting con-
sequence is that seemingly minor additions to the DL (such as universaifgadion, one of the construct
considered as basic in DLs) make the problem alreadMP-hard, and hence, as shown in our work, as
hard as for the very expressive DLs that we are considering.

For expressive DLs (with the features we have mentioned above, natablge roles), TBox+ABox
reasoning has been studied extensively using a variety of techniqugisgarom reductions to reason-
ing in Propositional Dynamic Logic (PDL) [16] (see, e.g., [11, 7]) ovdiléaux [4, 26] to automata on
infinite trees [7, 40]. For many such DLs, the combined complexity of TB&a@Areasoning is Kp-
TIME-complete, includingALC QT [7, 40], DLR [11], andSHZQ [40]. However, until recently, little
attention has been explicitly devoted to data complexity in expressive DLs.X® IE upper bound for
data complexity of CQ answering iRLR follows from the results on CQ containment and view-based
qguery answering in [11, 12]. They are based on a reduction to reesonPDL, which however prevents
to single out the contribution to the complexity coming from the ABox. Similar comataas hold for the
techniques in [27], which refine and extend the ideas introduced in fddking the resulting algorithms
better suited for implementation on top of tableaux-based algorithms. In [32htaad@NP upper bound
for CQ answering inALCN'R is shown. However, this DL lacks inverse roles and is thus not suited to
capture semantic data models or UML. In [28, 30] a technique based @uetian to Disjunctive Datalog
is used forALCHZ Q. For instance checking, it provides a (tightpNP upper bound for data complexity,
since it allows to single out the ABox contribution. The result can immediatelxtsméded to tree shaped
conjunctively queries, since these admit a representation as a desdagimooncept (e.g., by making use
of the notion of tuple-graph of [11], or via rolling up [27]). Howeveristlis not the case for general CQs,
resulting in a non-tight 2EPTIME upper bound (matching also combined complexity).

In fact, the OWL family of languages provides also the ability to deal with dpéatywhich are an important feature for
applications, and whose theoretical counterpart in DLs are concretaids [3, 33].
2htt p: / / www. w3. or g/ 2001/ sw/

INFSYS RR 1843-06-03 3

Summing up, a precise characterization of data complexity for CQ answerexpnessive DLs was
still open, with a gap between@NP lower-bound and an>TIME upper bound. We close this gap,
thus simultaneously addressing the three challenges identified aboveficaigcwe make the following
contributions:

e Building on tableaux-based techniques of [32, 26], we devise a ndvielaax-based algorithm for
CQ answering oveSHZ Q knowledge bases. Technically, to show its soundness and completeness,
we have to deal both with a novel blocking condition (inspired by the one2h [t taking into
account inverse and transitive roles), and with the lack of the finite modpepty.

e This novel algorithm provides us with a characterization of data complexityC@ answering in
expressive DLs. Specifically, we show that data complexity of answ&@gwith no transitive roles
overSHZQ andSHOZQ knowledge bases is moONP, and thug€ oNP-complete for all DLs ranging
from AL to SHOZQ.

The rest of the paper is organized as follows. After the necessamitatipreliminaries in Section 2,
we present in Section 3 our algorithm for answering UCQs 67 Q knowledge bases. We then show, in
Section 4, how the algorithm can be extende8t0OZ Q. In Section 5, we discuss the resulting complexity
bounds, and in Section 6 we draw final conclusions. The proofs of thmteal lemmas are included in an
appendix.

2 Preliminaries

In this section we introduce the technical preliminaries used in the rest ofher.pSpecifically, we first
introduce syntax and semantics of the two description lo§ig © andSHOZQ, on which we base our
results, and then we define the query answering problem addresséshiotk.

2.1 The description logicsSHZQ and SHOZQ

Description logics [2] are logics specifically well-suited for the represmmt@f structured knowledge. The
basic elements of description logics a@ncepts denoting sets of objects of the domain of interest, and
roles, denoting binary relations between the instances of concepts. Arbiwanept and role expressions
(in the following simply called concepts and roles) are formed by starting &@et of concept names and
a set of role names, and applying concept and colestructors The domain of interest is then modeled
through a knowledge base, which is constituted by logical assertionsttbthiatensional level (specifying
the properties of concepts and roles), and at the extensional leeeifigpg the properties of individuals
and the relationships among individuals).

We start with the definition of roles, which is identical #§#{Z Q and forSHOZ Q.

Definition 2.1 [SHZ Q andSHOZQ roles] LetR. be a countable set oble nameswhich we denote with
P, and letR ;. be a subset oR of transitive role namesA role expressiornk (or simplyrole) is either a
role nameP € R or the inverse”~ of a role nameP. A role inclusionaxiom is an expression of the form
R C R’ whereR and R’ are roles. Arole hierarchyR is a set of role inclusion axioms.

The semantics of description logics, and specificallySétZQ and SHOZQ, is defined in terms of
first-order interpretations. AimterpretationZ = (A7, -Z) is constituted by a non-empty s&f, thedomain

4 INFSYS RR 1843-06-03

of Z, and arinterpretation function” that maps each rolg in R to a subseR? of A x AZ, such that the
following conditions are satisfied:

R = (R%)* foreach transitive rol& c R,
(R7)F = {(,0) | {0,0) € R"}

An interpretatioriZ satisfies a role inclusion axiod C R’ if RT C R7Z,
To avoid the need of treating differently (direct) and inverse roles, wednte the functiorinv as
follows:
P~, if R= Pisarole-name
Inv(R) = _
P, if R = P~ for some role namé

The relationC}; denotes the reflexive transitive closureofover a role hierarchyR U {Inv(R) C
Inv(R') | RC R' € R}. If R T} R/, then we say thaR is asub-roleof R’ andR' is asuper-roleof R
relative toR.

We need to characterize whether a role is transitive, either because @ésrame belonging tR ., or
because it is the inverse of such a role, or because the role hierarclgsitat it is both a sub-role and a
super-role of a transitive role. To this aim, we define the boolean fungtems(R, R) as follows:

true, if R e Ryorinv(R') € Ry,
Trans(R,R) = for someR’ with R C5, R'andR' C}; R
false, otherwise

Finally, a roleS is simplew.r.t. a role hierarchyr if it is neither transitive nor has transitive sub-roles, i.e.,
for no role R with Trans(R, R) we have thaf? C}, S.

In the following, wherR is clear from the context, we may omit it, and useandTrans(R) instead of
C% andTrans(R, R), respectively. For the same reason, we also may omit the specification Rf.r.t.

We introduce nows’ HZ Q andSHOZ Q concepts, and then knowledge bases.

Definition 2.2 [SHZQ andSHOZQ concepts] LelC be a countable set @oncept namedisjoint from
the sefR of role namesSHZ Q-concepts are defined inductively according to the following syntax:

c — A atomic concept
cnbD conjunction
cCubD disjunction
=D negation
VR.C universal quantification
JR.C existential quantification

>nS.C,<nS.C (qualified) number restriction

whereA denotes a concept nam@,andD denote conceptd? a role,S a simple role, and > 0 an integer.
For SHOZ Q concepts we additionally consider a ®€étof individualsto be used imominals i.e., in
concepts denoting a single object, and we augment the above syntax ithl&serfollowing one:

C — {o} nominal

An atomicSHOZQ concepts either a nominaf{o} € N or a concept nam8 < C.

INFSYS RR 1843-06-03 5

For an interpretatiod = (A, .7), we first extend the interpretation functiohto individuals inN, in
such a way that it assigns to each individoa N an element” € A under theunique name assumption
i.e., if o1 # o9, theno? # of. We then extend? to SHZQ andSHOZQ concepts by assigning to each
concept (including nominals, f@HOZ Q) a subset ofA” in such a way that the following conditions are
satisfied:

(cnbDyY = c*tnpD?
(CuD)y = ctub?
(—\C)I — AI \ CI
(VR.C)Y = {o] forall o, {0,0) € R implieso’ € C*}
(3R.C)Y = {o]| forsomed, (0,0') € R ando’ € C*}
(>nS.0)F = {o]|{d| {0,0) € ST ando € CT}| > n}

(< nS.{C’}); - ?)I}Hof | (0,0) € ST andd’ € CT}| < n)

For SHOZ Q, note that the interpretation of each nomita} is a singleton. Notice that the temominal
typically refers to concepts that have to be interpreted as singletons, whidenote{o}. However, with
some abuse of terminology, we use the term nominal also to denote the indtlivjduhich may appear
outside of concept expressions (in an ABox, see below).

In description logics, the knowledge about the domain of interest is edén@eknowledge base, which
is constituted by an intensional component, called TBox, representingaj&newledge about the domain,
and an extensional component, called ABox, representing knowledy# specific objects. Additionally,
in SHZQ andSHOIQ (as in the other description logics of tk&{ family), a role hierarchy might be
present.

Definition 2.3 [SHZ Q andSHOZ Q knowledge base] ASHZ Q or SHOZ Q) concept inclusion axions
an expression of the for@ C D for two (SHZ Q or SHOZ Q) concepts” andD. A (SHZQ orSHOIQ)
TBox or terminology.7, is a finite set of §HZ Q or SHOZ Q) concept inclusion axioms.

LetI be a set ofndividuals disjoint from the se€ of concept names and from the se®fole names.
Instead, we consider nominals as individuals, e ¢ I. An assertiony is an expression of the for(a),
P(a,b) ora % b, whereA is a concept name? is a role name and, b are individuals irl. An ABoxA is a
set of assertions.

A (SHZIQ or SHOZQ) knowledge base is a triple = (7, R, A), where7 isa (SHZIQ or SHOZQ)
terminology,R is a role hierarchy, andl is an ABox.

Without loss of expressivity, we assume that all concepfs iare innegation normal forn{fNNF), i.e.,
negation appears only in front of atomic concepts. @lbsureof a concept’, clos(C'), is the smallest set of
concept expressions containiggthat is closed under subconcepts and their negation (expressed in NNF)
Theclosure ofK is denotectlos(K') and defined as the union of albs(C') for eachC occurring inK. We
will denote byR i the roles occurring irk” and their inverses. The individuals occurringdrare denoted
14, I denotes all the individuals occurring i, andIN i denotes the nominals iR, i.e.,Ix N N. Note
that, if K is aSHZQ knowledge base, theky = I4. For aSHOZQ knowledge basé{ we have that
I4 CIgandlg\IgqC Ng.

Example 2.4 As a running example, we use tl§¢{Z Q knowledge base

Ki=({AC3P.A AC 3P—AL, {}, {A(a)})

6 INFSYS RR 1843-06-03

and theSHOZQ knowledge base

Ky = ({AC 3PLA, AT 3P {o}}, {}, {A(a)}). .

We now define the semantics of knowledge bases. To do so, the interprétmition-” is extended to
all individuals inI, again under the uniqgue name assumption.

Definition 2.5 [Model of a knowledge base] An interpretati@reatisfies an assertienif and only if:

at € AT if ais of the formA(a)
(at, bty e P if ais of the formP(a, b)
al £bF if ais of the forma & b

An interpretatiorZ satisfies an ABox4 if it satisfies every assertion id. 7 satisfies a role hierarchy if
RT C S% foreveryR C S in R. T satisfies a terminology if CZ C D? foreveryC C Din7. T isa
model of K = (7, R, A) if it satisfiesT, R and.A.

We note that no complex concepts and roles are allowed to occur in an ABowever, this is not
a limitation, since an assertidafi(a) involving a complex concept can always be replaced by an assertion
A(a) in the ABox, together with a pair of inclusion assertiohs- C' andC' C A, whereA is a new concept
name. Such a transformation is satisfiability preserving.

Finally, we observe that iISHOZ Q, due to the presence of nominals, an AB&in a knowledge base
K = (T,R,A) can beinternalizedin the TBox, obtaining a knowledge bas& = (7', R, {}) with an
empty ABox. Indeed7” is obtained froniZ” by adding, for each ABox assertienin .4 a TBox inclusion
axiom as follows:

e if ais of the formA(a), thenadd{a} C Ato77;
e if ais of the formP(a,b), then add{a} C 3P.{b} to T";
e if ais of the forma # b, then add{a} C —{b} to 7".

It is easy to see that and K’ have exactly the same models, so all reasoning services are presg8jed [

2.2 Conjunctive queries and unions of conjunctive queries

We introduce now conjunctive queries, which can be considered agicalloounterparts of select-project-
join SQL queries, and unions of conjunctive queries.

We assume thak’ has an associated set ditinguished concept namedenotedC,, which are the
concepts that can occur in queries.

Definition 2.6 [Conjunctive query] Aconjunctive queryCQ) Q over a knowledge bask is a set of atoms
of the form

{pl(?l)v AR apn(Yn)}
where eactp; in py,...,p, is either a simple role name R x or a concept name i6,; and eachy; in

Y1,...,Y, isis atuple of variables or individuals Iy matching its arity.

Note that we do not allow for transitive or super-roles of transitive rolesCQ.

INFSYS RR 1843-06-03 7

Definition 2.7 [Union of conjunctive queries] Ainion of conjunctive querie@JCQ) U over a knowledge
baseK is an expression of the for@; v - - - V @,, whereQ); is a CQ for eacl) < i < m.

To say that) is either a CQ or an UCQ, we simply say tliais aquery We denote byarsindivs(Q)
the set of variables and individuals in a qu€ly

Queries are interpreted in the standard way. For al&(an interpretatiorf is a model ofQ);, denoted
T = @, if there is a substitutiom : varsindivs(Q;) — A? such thats(a) = o’ for each individual
a € varsindivs(Q;) andZ = p(a(Y)), for eachp(Y) in Q;. ForanUCQU = Q1 V ---V Qum, Z = U is
defined ag E Q; for some0 < i < m.

For a knowledge bask and a queryy, we say that{ entails@, denotedk = @, if Z = @ for each
modelZ of K.

Example 2.8 LetC, = {A}. We consider the CQs

Q1 = {Pl(xvy)a PQ(:Evz)v A(y) }7
Q2 = { P(z,y), Py, 2) },
Qs = {PQ(xay)v PQ(yvo)}'

Note that/(; = Q. Indeed, for an arbitrary modé&lof K, we can map: to a”, y to an object connected to
a” via role P; (which by the inclusion axiom = 3P;.A exists and is an instance df), andz to an object
connected ta? via role P, (which exists by the inclusion axiomd C 3P,.—A). Also, K; ~ Q2. A model

7 of K; that is not a model o), is the one withAZ = {01, 02}, a* = 01, AT = {01}, Pf = {(01,01)},
andPZI = {(01, 02)}.

We have thatk, = @, since for an arbitrary moddl of K5, we can mapr to a”, y to an object
connected ta’ via role P, (which by the inclusion axiom C 3P;.A exists and is an instance df, and
210 of, which is connected ta” via role P, by the axiomA C 3P,.0. To see thaKks [~ @2, simply extend
the interpretatiorf given above by setting” = {02}. This extended interpretation is a modelfs§ and
not a model of),. Finally, Ko = Q3. In any modelZ of K5, o must be mapped to the only element of
o? andz can be mapped to’. Then, by the inclusion axiom C 3P;.4, o’ must be connected Vg, to
some instance ofl. The variabley; can be mapped to this object, since the axiém 3.0 ensures that it
is connected to the elementf via role P,. m

Definition 2.9 [Query Entailment] Leti be a knowledge base and @tbe a query. Thguery entailment
problem is to decide whethéf = Q.

Note that, according to Definitions 2.6 and 2.7, CQs (and hence also U@@slo free (i.e., distin-
guished) variables, so they are Boolean queries. In the traditionalad&taktting, free variables in a query
are called distinguished variables. For a qu@rthat hasr as distinguished variables, the query answering
problem overK consists on finding all the possible tuples of individuats the same arity ag such that
whenZ is substituted by’in @, it holds thatK = Q. The set of such tuplesis the answer of the query.
Query answering has an associated recognition problem: given afupéeproblem is to verify whether
belongs to the answer 6j°.

Query answering for a certain DL is in a complexity clasg, if given any knowledge basg in £ and
query @, decidingK = @ is in C; this is also calleccombined complexityThe data complexityf query
answering is the complexity of decidirfg = Q@ where@ and all of K exceptA is fixed.

3This problem is usually known as tiygiery output problem

8 INFSYS RR 1843-06-03

3 A Tableaux Algorithm for Query Entailment

In this section, we describe our method for solving the query entailmenitgondior UCQs inSHZ Q.

It is important to notice that the query entailment problem is not reducible tdiahtigy of knowledge
bases, since the negation of a query in general can not be expessaqzart of a knowledge base. For this
reason, the known algorithms for reasoning over knowledge basestdulffice. In general, a knowledge
base has an infinite number of possibly infinite models, and in principle we thaverify whether the
query is entailed in all of them. In general, we want to provide an entailmeotitim, i.e., an algorithm
for checking whether a sentenewith a particular syntax (in our case, a conjunctive query or a union
of conjunctive queries) is entailed by&HZ Q knowledge base. Our technique builds on the tableaux
algorithm for knowledge base satisfiabili§fHZ Q in [26]. Informally, the difference to that work is that
it only focuses on problems that can be reduced to checking satisfiabildyth&refore the satisfiability
algorithm only needs to ensure that if the knowledge base has some madi¢ragorithm will obtain a
model. In our case, however, this is not enough. We need to make sutbalagorithm obtains a set of
models that suffices to check query entailment. This adaption to query manguginspired by [32], yet we
deal with Description Logics that lack the finite model property.

We will first describe our method for decidirfg = @ whereQ is a CQ, and then how it is extended to
K [= U foran UCQU.

Like the algorithm in [26], we will useompletion forestsA completion forest is a relational structure
that captures sets of models of a knowledge base. Roughig, represented as a completion forgst.
Then, by applyingxpansion rulesepeatedly, new completion forests are generated. The application of the
rules is non-deterministic, and sometimes new individuals are introducedulMttese new individuals,
every model of the knowledge base is preserved in some forest thiftsrigem the expansion. Therefore
checkingK = @ is equivalent to checking whether the query is entailed in each completiestfBrthat
cannot be further expanded. Then, for each such fafeste will construct a singleeanonical model
Semantically, these canonical models suffice for answering all qu@radbounded size. Furthermore, it
is proved that entailment in the canonical model can be checked effgatigea syntactic mapping of the
variables in) to the nodes irf.

As customary with tableau-style algorithms, we give blocking conditions oruths will ensure termi-
nation of forest expansion. They are more involved than those in [26¢haserve for satisfiability checking
but not for query answering, and they involve a parametetich depends o). This parameter will be
crucial in ensuring that the canonical models of the set of forests wanaltifice to check query entailment.

3.1 SHIQ completion forests

A forest will be defined as a set of variable treesvakiable treeT" is a tree all whose nodes are variables
excepting the root, which may be an individual, and where each neae arco — w is labeled with a set
of conceptsC(v) C clos(K) and a set of role€ (v — w) C R, respectively. We denote bydes(7) the
nodes of the variable trég, by vars(7") the nodes imodes(7") which are variables, and laycs(7") the arcs
inT.

Definition 3.1 [n-tree equivalence]

For any integem > 0, then-tree of a nodev in 7', denotedI}}, is the subtree of" rooted atv that
contains all descendantsofvithin distance:. Variablesv andv’ in T aren-tree equivalent i, if 7" and
T7, are isomorphic, i.e., there is a bijectign: nodes(7}') — nodes(77}) such that:

INFSYS RR 1843-06-03 9

P v Provs P1ovs Provr P1ovg Provig

a v
T, 9 I I I I L on
Py Py Py P Py Py

O Loy O Lo O Lo O Loy O Loy O Lo
V2 V4 V6 U8 V10 V12

Figure 1: Trees and completion forests for the example knowledge base

o (v) =
e for every nodew in nodes(T))), L(w) = L((w))

e for every arc connecting two nodesandw’ in nodes(T)),

L(w—w') = L{(w) —p(w)).

Definition 3.2 [n-Witness] If variables) andv’ in T aren-tree equivalenty’ is an ancestor of in 7" and
vis notinT;, thenv' is an-witness ofv in T'. Furthermore(; tree-blocksT;' and each variable in 77
tree-blocksvariabley =1 (w) in T

Example 3.3 [cont'd] Consider the variable treB, in Figure 1, witha as root, whereC; = {A, A U
JP.A, —AUdP A ALU—A, JPLA, HPQ.ﬁA}, ands, = {—\A, —AUdP.A, -AUdP,.—A ALY —|A}
Then,v; andvs arel-tree equivalent iff;; vy is a witness ob; (but not vice versam})1 tree—blocksTlis;
andw; (resp.,vs, vq) tree-blocksus (resp. vz, vs). "

Definition 3.4 [completion forest [26]] Acompletion foresfor a knowledge bas&’ is given by a forest

of trees and an inequality relatigh, implicitly assumed to be symmetric. The forest is a set of variable
trees whose roots are the individuald jp and can be arbitrarily connected by arcs. For a completion forest
F, we denotenodes(F) the set of individuals and variables jf, andvars(F) the nodes inF which are
variables. The set of arcs i is denotechres(F). For every arw — w and roleR, if the label£(v — w)
contains some rol&’ with R’ C* R, thenw is an R-successornd aninv(R)-predecessoof v. We call

w an R-neighborof v, if w is an R-successoor anlnv(R)-predecessoof v. Theancestorrelation is the
transitive closure of the union of thie-predecessor relations for all rolés

In order to provide a method for verifying entailment of a conjunctive gdgin a knowledge bas&,
we will first associate td< an initial completion forest and then we will generate new completion forests by
applyingexpansion rulesintil no more expansions can be obtained.

Now we introduce the completion forests fgr. In them we use a set gfobal conceptgcon (K, C,) =
{-CuD|CCDeT}u{CU-C|C €y} Informally, by requiring that each individual belongs to all
global concepts, satisfaction of the TBox is enforced and, by case spligtch individual can be classified
with respect to the distinguished concepts (i.e., those appearing in queries)

We associate aimitial completion forestFx with knowledge basé as follows:

10 INFSYS RR 1843-06-03

e The nodes are the individuadsc I, andL(a) = {B | B(a) € A} Ugcon(K,Cy).
e The arca — b is present iffP(a, b) € A for some role namé, andL(a —b) = {P | P(a,b) € A}.
e a % biff a#be A

Example 3.5 In our running exampleF contains only the node which has the label(a) := {A4,
—“AUdP A, A LUdP A, AL —\A}. =

Next, before giving the expansion rules, we define a notion of blockihglwdepends on a depth
parameter > 0. This notion generalizes blocking in [26], where th@arameter is not present.

Definition 3.6 [n-blocking] For integem >0, a variable node in a completion forestF is n-blocked
if v is not a root and either directly or indirecthrblocked. Nodev is indirectly n-blocked if one of its
ancestors is-blocked orL(w — v) = () for some arav — v in F. Nodeuw is directly n-blockediff none of
its ancestors is-blocked and is a leaf of a tree-blocked-tree inF.

Note thatx is m-blocked for eachm <n if it is n-blocked. Whem > 1, thenn-blocking implies
pairwise blockingwhich is the blocking used in [26]. When=0, thenn-blocking corresponds to blocking
by equal node labels, which is a sufficient blocking condition in some DlakerthanSHZ Q.

Example 3.7 ConsiderF; with the variable tred’ from Example 3.3 and with an empty relation. F; is
1-blocked. Analogously, consider the completion fot€stthat has the variable tréB in Figure 1. InF
the# relation is also emptyF; is 2-blocked. "

Now we can give our expansion rules. Note that the application of theisutem-deterministic. Differ-
ent choices folr in the U-rule and thechooserule generate different forests. THaule and the>-rule are
calledgenerating rulessince they add new nodes to the forest. Eheule is ashrinking rule since it re-
moves a node of the foret by merging it into another. Note that our rulegayesimilar to the ones in [26].
The main differences are that “blocked” is uniformly replaced tybtocked” and thei-rule and>-rule in
[26] are slightly different, since now the labels of the nodes they genemase contairgcon (K, Cy).

In the rules we use two operations on completion forests caletk andmerge. To illustrate the use
of this operations, consider the ruferule. Suppose some nodeis labeled by the concept 25.C,
andv has three successorsg, v-, v3 all labeled withC, butvy % v3 does not hold. Then we can make
v satisfy< 2 5.C, by merging the nodes, andwvs into one. For this purpose, we userge andprune.
Intuitively, merge(y,) merges the nodg into z: the label ofy is added to the label of, all incoming
arcs tox are copied tgy, and the outgoing arcs aof to an individual node are also copiedio After the
merging,prune(y) removesy from F and, recursively, all its variables successors. Note that when ws app
merge(y, z) andz is a variable node, we do not need to copy any outgoing label, since leaniattes only
have variable nodes as successors, and these will be remoyednlky

Formally, for a completion forest andx,y € vars(F), the operatiorprune(y) yields a forest that is
obtained fromF as follows:

1. Foreach € nodes(F) successor of, removey — z fromarcs(F), and ifz € vars(F) thenprune(z).

2. Removey from nodes(F) .

INFSYS RR 1843-06-03 11

The operatiommerge(y,) yields a forest obtained frotf as follows:
1. For eachr € nodes(F) such that — y € arcs(F)
(a) if neitherx — z nor z — x are inarcs(F), then addz — = to arcs(F) and setl(z —z) =
L(z—y);
(b) if z—xisinarcs(F), thensetl(z —z) = L(z —x) U L(z—Y);
L(x—z)U{Inv(R) | R € L(z—1y)};

(c) if z — zisinarcs(F), then setl(z — z)

(d) removez — y from arcs(F).
2. For eaclr € nodes(F) \ vars(F) such thaty — z € arcs(F)

(a) if neitherx — z nor z — x are inarcs(F), then addx — z to arcs(F) and setl(x — z) =
L(y— 2);

(b) if z — zisinarcs(F), thensell(x — 2) = L(z — 2z) U L(y — 2);
(c) if z—xisinarcs(F), thensetl(z —x) = L(z—z)U{Inv(R) | R € L(y— 2)};

(d) removey — z from arcs(F).
3. Setl(z) = L(z) U L(y).
4. Addzx # z for eachz with y % z.

5. prune(y).

Definition 3.8 [Clash free completion forest] A nodein a completion foresf contains alashiff
1. for some concept, {C,-C} C L(v)

2. < nS.C. € L(v) andv hasn + 1 S-successorsy, . .., w, such thatC € L(w;) for all w; and
w; #w; € Fforall0 <i<j<n.

A completion forestF is clash freef none of its nodes contains a clash.

Definition 3.9 [n-complete completion forest] A completion foreBtis n-complete if none of the rules in
Table 1 can be applied to it (undesblocking).

We will denote a& the set of all completion forest that can be obtained from the ifiiaby applying
the expansion rules, and lyf,, (Fx) we denote the set of forestslity that aren-complete and clash free.

Example 3.10 Both 7, and.F, can be obtained fronfy by applying the expansion rules. They are both
complete and clash-free, 8 € ccfi(Fx) andF; € ccfao(Fr). "

12

INFSYS RR 1843-06-03

M-rule:

Cy N Cy € L(v), vis not indirectlyn-blocked
and{Cl, 02})¢_ ﬁ(U)
,C(U) = ,C(U) @] {Cl, CQ}

U-rule:

then
if

then

Cy U Cy € L(v), vis not indirectlyn-blocked
and{Cl, CQ} N ,C(U) =0
L(v) := L(v) U{E} for someE € {Cy,C5}

J-rule:

if

then

JR.C' € L(v), v is notn-blocked and

v has noR-neighborw with C' € £L(w)
create new node with £(v — w) := {R}
andL(w) := {C} Ugcon(K,C,)

V-rule:

VR.C € L(v), v is notindirectlyn-blocked and
there is ank-neighborw of v with C' ¢ L(w)
L(w) = L(w)U{C}

Vi -rule:

then

VR.C' € L(v), v is notindirectlyn-blocked,
there is some?’ with Trans(R’) andR’ C* R and
there is ank’-neighborw of v with VR'.C' ¢ L(w)
L(w) := L(w) U{VR'.C}

choose
rule:

if

then

<nS.C € L(v)or>nS.C e L(v),

v is not indirectlyn-blocked and

there is anS-neighborw of v with {C, NNF(=C)} N L(w) = 0
L(w) = L(w) U{E} forsomeE € {C,NNF(-C)}

>-rule:

if

then

>nS.C € L(v), v is notn-blocked and

there are nob-neighborsws, . . ., w, of v such thatC € L(w;)
andw; Zw;forl <i<j<n

create new nodes, . . ., w, with £L(v — w;) := {S},

L(w;) :={C}Ugcon(K,C,y) andw; #£ w;forl <i<j<n

<-rule:

then

<nS.C e L(v),

v is not indirectlyn-blocked,

{w | w is anS-neighbor ofv andC' € L(w)}| > n and

there areS-neighborsw, w’ of v with notw % w’,

andC € L(w) N L(w")

() if w is an individual node, themerge(w’, w)

else (i) if w’ is an individual node or an ancestor:of
thenmerge(w, w'’)

else (i) merge(w’, w)

Table 1: Expansion Rules

INFSYS RR 1843-06-03 13

3.2 Models of a completion forest

Semantically, we can interpret a completion forest in the way we interprebal&dge base. Viewing
variables in a completion forest for K as individuals, an interpretatidh = (AZ,-%) of the individual
names, concepts an roles’nis an extended interpretation &f. We thus define models of in terms

of extended models of. We will see completion forests as a representation of a set of models of the
knowledge base.

Definition 3.11 [Model of a completion forest] For a completion foreste Fy, an interpretatiory =
(AZ,.T) is a model ofF, represented |= F if Z = K and for all nodes, w € F the following hold:

o if C € L(v), them? e C*
o if R € L(v—w)then{vt, w?) € R?
o if vstwe F,them? # w?

We want to emphasize that in order to be a model of a completion forekt,fan interpretation must be
a model of K. The initial completion forest is just an alternative representation of the lkedige base, and
it has exactly the same models. When we expand the forest, we will make slamideobtain new forests
that capture a subset of the models of the knowledge base.

Lemma 3.12 An interpretationZ is a model ofF i iff Z is a model ofK'.

Proof. The if direction follows from Definition 3.11. To prove the other directionyifises to consider
an arbitrary model of K and verify that for for all nodes, b € nodes(F) the following hold:

(i) if C € L(a), thena® € CT
(i) if R € £(a— b) then(aZ,b?) € RT
(i) if @ % b € Fr, thena® # b7

By definition, the nodes itFx correspond exactly to the individuals Iy. For each such individual
a, the label ofa in Fk is given asC(a) = {B | B(a) € A} Ugcon(K,C,). SinceZ is a model ofA, if
B(a) € Athena? € B%. For any concepC € gcon(K,C,), eitherC is of the form—-D U E for some
D C EinT orC is of the formB LI =B for a concept namé. In the first caseg” € (=D U E)I must
hold becaus€ is a model of7. In the other casey’ € (B U —B)* holds for any individuab in A and
any concepi3 by the definition of interpretation. So we have thatc C7 for everyC € L(a) and item(i)
holds. The label of a pair of nodes b in Fx is given byL(a —b) = {P | P(a,b) € A}. SinceZ is a
model of A, (a?b?) € P for every P(a,b) in A, hence itentii) holds. Analogously, thet relation was
initialized with a # b for everya % b in A, so item(iii) will also hold for anyZ model of A. O

As we prove in Proposition 3.14, the union of all the models of the forestsfjf{F) captures all the
models of a knowledge bad€, independently of the value of. This result is crucial, since it allows us
to ensure that checking the forestscitf,, (F) suffices to check all models df. In order to prove this
result, we will use following lemma. It states that when applying any of the il&able 1, all models are
preserved. The proof is straightforward yet long, so it is given in thpehdix.

14 INFSYS RR 1843-06-03

Lemma 3.13 LetF be a completion forests iy, letr be arule in Table 1 and |4t be the set of completion
forests that can be obtained frafmby applyingr. Then for every such thatZ = F there is some&’ € F
and some’ that is an extension of such thatZ’ = F'.

Now we can easily prove that the union of models of the forestsfip(Fx) is exactly the set of all
models of K modulo new individuals.

Proposition 3.14 Letn > 0. For everyZ such thatZ = K, there is someF € ccf,,(Fx) and some’ that
is an extension df such thatZ’ = F.

Proof. First observe that by the definition of interpretation and by Definition 3.14 fdfrestF has a
clash, then there is 6 with 7 = K. Let F" denote the set of completion forests obtained ftbm by
n applications of the expansion rules, arfdF"™) the set there forests that are clash free. ConsidefZany
such thafZ = K. The proposition follows from the fact that while applying the propagatides;Z will be
preserved, and maybe extended, until some complete tbrastreached. This is captured in the following
claim: There is som&’ extension ofZ and someF € cf(F") with Z’ |= F. The claim can be verified by
a simple induction om. If n = 0, then eithercf(F") = {Fx} and the claim holds by Lemma 3.12, or
Fk contains a clash. In the later cagé has no models and the claim holds by antecedent failure. For the
inductive step, consider an§ € cf(F™). If Z = F, then by Lemma 3.13, there is sotheextension off
and somer’ € F**! such thatZ’ = F'. SinceZ’ has a model, thef” € cf(F"+1). O

3.3 Answering conjunctive queries

Recall, that for a knowledge bagé and a queryU, we say thatk’ = U iff for every interpretatiorZ,

7 = K impliesZ = U. Analogously, we define a semantical notion of query entailment in a completion
forest: for a completion forest and a query/, we say thatF |= U iff for every interpretatiorZ, 7 = F
impliesZ = U. We are interested in checking whethi€ri= U, but this means that entailment &Gfhas

to be verified in every model ak’. However, we know that it suffices to check entailment in each forest
F € ccf,(Fg) for anyn, since semantically, they capture all the models of the knowledge base. This is
stated in the following proposition:

Proposition 3.15 Letn > 0 be arbitrary. Thenk |= U iff F |= U for eachF € ccf,,(Fk).

Proof. The only if direction is easy. Consider arfy € F. Since any model of F is a model of K
by definition, thenX |= U impliesF |= U. The if direction can be done by contrapositionklf# U, then
there is some modél of K such thatZ # U. By Proposition 3.14, there is sorfieextension ofZ such that
7' = F for someF € ccf,(Fg). Z # U impliesZ’' ¥ U, and thusF ¥ U. O

This result is crucial for our query answering method, since it enshag¢so check query entailment we
must only considetcf,, (F), a finite set of finite structures. Now, we will see that for a suitablé = U
foranF € ccf,(Fx), we can be verified by finding a syntactical mapping of the queryntiVe will first
do it for a CQQ), and in Section 3.4 we will extend it to an UQQ

Definition 3.16 We say thaty can be mapped into a completion forést denoted? — F, if there is a
mappingu : varsindivs(Q) — nodes(F) that is the identity mapping for all individuals irarsindivs(Q)
and that satisfies the following:

INFSYS RR 1843-06-03 15

1. ForallC(x)inQ,C € L(u(x)).

2. ForallR(x,y) in Q, u(y) is anR-neighbor ofu(x).

Example 3.17 Q; — F» holds, as witnessed by the mappin@:) = a, 1(y) = v andu(z) = v;. Note
that there is no mapping @j, into > satisfying the above conditions. "

We will relate the semantical notigh = @, with the syntactical notion of mappability — @, i.e., we
will show that the query can be mapped into a forest iff every model ofdlest is a model of the query.
The only if direction is easy, if a mappingexists, therQ is satisfied in any moddl = (A%, .) of F.

Lemma 3.18 If Q — F, thenF = Q.

Proof. Since@ — F, there is a mapping : varsindivs(Q)) — nodes(F) satisfying conditions 1 and 2.
Take any arbitrary moddl = (A%, -Z) of F. By definition, it satisfies the following:

e if C € L(x),thenz? € C7
e if zis anR-neighbor ofy, then(z?, %) € RZ.
o if 2 %y c F,thenz? # y

We can define a substitutianfrom the variables and individuals irarsindivs(Q) to objects inA” as
o(r) = pu(z)*, and it satisfies (Y) € p? for all p(Y) in Q. O

The if direction is more challenging. Now the blocking conditions come into playtlag mapping will
only be feasible if: is sufficiently large. We show that providgdihas been expanded far enough, a suitable
mappingy can be constructed from some modelfafin particular, we construct for eachiasinglemodel
Ir, called thecanonical model ofF. This canonical model suffices to check entailment in the foresilfor
gueries) of bounded size. As we will see, the canonical model can be used te firawifQ is satisfied in
this model, then we can construct the mappingom it.

3.3.1 Tableaux and canonical models

In order to build the canonical model f@f, we will proceed in two steps. First, we will unravel the forest
into a tableau, and then induce a model from this tableau.

From any forestF € F € ccf,,(Fg) forn > 1, we can construct a tableau far. If F contains blocked
nodes, then its tableau will be an infinite structure. The tablBaf a forestF will correspond to the
unravelingof F. i.e. the structure obtained by considering each path to a nadeasia node of’, where
the blocked nodes act like ‘loops’. Following [26], we will give a rathemplex definition of a tableau.
Defining a model of from it will then be straightforward.

Definition 3.19 [TableaulT = (S, £, £,7) is a tableau for a knowledge bage= (A, R, 7T) iff
e Sis a non-empty set,
o L :S — 27°(K) maps each element Bito a set of concepts,

e £: Ry — 25%S maps each role to a set of pairs of elementS,iand

16 INFSYS RR 1843-06-03

e 7 :1Ix — S maps each individual occurring i to an element ir8.
Furthermore, for alk,t € S; C,C,C; € clos(K) andR, R', S € Ry, T satisfies:
(P1) ifC € L(s), then—C ¢ L(s),
(P2) if C1 M Cy € L(s), thenCy € L(s) andCy € L(s),
(P3) if C1 L Cy € L(s), thenCy € L(s) or Cy € L(s),
(P4) ifYR.C € L(s) and(s,t) € E(R), thenC € L(t),
(P5) ifJR.C' € L(s), then there is somee R such that(s, t) € £(R) andC € L(t),
(P6) ifVR.C € L(s) and(s,t) € E(R') for someR’ C* R with Trans(R') = true thenVR.C € L(t),
(P7) (s,t)y € E(R) iff (t,s) € E(Inv(R)),
(P8) if (s,t) € E(R) andR C* S then(s,t) € £(S),
(P9) if<nS.C € L(s),then|{t € S| (s,t) € £(S) andC € L(t)}| < n,
(P10) if>nS.C € L(s),then|{t € S| (s,t) € £(S) andC € L(t)}| > n,
(P11) if(s,t) € E(R)and eithek n S.C € L(s)or>nS.C € L(s),thenC € L(t)or NNF(~C) € L(t),
(P12) ifC(a) € AthenC € L(Z(a)),
(P13) ifR(a,b) € Athen(Z(a),Z(a)) € E(R),
(P14) ifa # b € AthenZ(a) # Z(a),
(P15) ifC' € gcon(K,C), thenforalls € S C € L(s).

We can easily obtain a canonical model of a knowledge base from a tdblaau

Definition 3.20 [Canonical Model of a Tableau] Léf be a tableau. Theanonical model ofl’, 7 =
(AZr I1) is defined as follows:

AT =S
for all concept named in clos(K),
Alr = {s| Aec L(s)}

for all individual names: in I,

for all role names? in R,
RIr .= £(R)®

where€(R)® theclosure of the extensiaof R underR, which is defined as:

INFSYS RR 1843-06-03 17
N .
£(R)® = (E(R)) i if Trans.(R)
E(R)Usub(E(R)®) otherwise
where(£(R))™ denotes the transitive closure &fR) and

sub(E(R)®) =] £(9)%
SC*R,P#R

Lemma 3.21 LetT be a tableau fors. The canonical model @f is a model of.

Proof. ThatZ; is a model ofR and.A can be proved exactly as in the proof of Lemma 2 in [26]. Due to

(P15), it can be easily verified thdi, is also a model of . O
EachF € ccf,(Fk) induces a tableallr, and this tableau gives usanonical modefor 7, which we

will denoteZr.

Definition 3.22 [Tableau induced by a completion forest]pathin a completion foresf is a sequence

of pairs of nodes of the formp = | 6,...,”—"] In such a path, we defingil(p) = v,, andtail’(p) = v/;
and[p | Z?*i] denotes the pathg—é, R TR Z?“] For any patlp and variablew € vars(F), if w is not
n+ n “ntl

blocked andv is an R-successor ofail(p), then[p | £] is anR-stepof p. If v’ is blocked byw andw’ is an
R-successor ofail(p), then[p | 27| is an R-step ofp.
Given a completion foresk, the sefpaths(F) is defined inductively as follows:

e If aisarootinF, [2] € paths(F).
e If p € paths(F) andq is a step op, theng € paths(F).

The tablead’r = (S, £, £,7) induced by the completion fore$t is defined as follows:

= paths(]—")
L(p) = L(tail(p))
E(R) = {(p,q) € Sx8S|qisanR-stepofp} U
{{p,q) € S x S| pis aninv(R)-step ofq} U
{{p,q) € S x S| tail(g) is an individual node and
an R-successor ofail(p) } U
{(p,q) € S x S| tail(p) is an individual node and
anlnv(R)-successor ofail(q)}
() = [2]

Note that the definition of-steps requires to be a variable node. Every path starts with a ngder
some individuak, and a node of such a form never occurs after the first position inspakth. The last two
cases in the definition &(R) are necessary in order to consider the arcs arbitrarily connectingdoelv
nodes, which are not unraveled.

Example 3.23 By unraveling#;, we obtain a model -, that has as a domain the infinite set of paths from
a to eachw;. Note that a path actually comprises a sequence of pairs of nodes, im@witness the loops
introduced by blocked variables. When a node is not blockedyplikéhe pair% is added to the path. Since

18 INFSYS RR 1843-06-03

Tj1 tree—blocksﬂ}s, every time a path reaches, which is a leaf of a blocked tree, we aggl to the path

and ‘loop’ back to the successors@f In this way, we obtain the following infinite set of paths:

P :[Q] P :[Q CARNCRY U_b]
0 als 6 a’ vy’ v3? vgl?
—[a Y1 —[@ Y1 V3 Vs U3
pl_[a’gl]’ pr [a’gl’”3755757]’
—[a Y2 —[a Y1 Y3 Us V4
pQ_[a7U2]a pB_[a’v1’v3’v5’vs]’
—[a v U_] —[2 Y1 U3 Us U3 v_5]
b3 [a7v17U37 P9 @’ v’ v3’ vs? vpd vsd)
—[a n1 U_4] :[2 v1 U3 Us U3 v_ﬁ]
2 [a’vl’v47 P1o @’ v’ v3’ vs? vr vgd?
p5: [a V1 V3 Vs a V1 V3 Vs V3 Vs U3

5ya,gjg], plll—[g7a,g7g,v—77E7;]v

This set of paths is the domain @f-. The extension of each conce@tis determined by the set al}
such thatC' occurs in the label of the last node jin For the extension of each role, we consider the
pairs (p;, p;) such that the last node j} is an R-successor of;. If R € R, its extension is transitively

expanded. Therefotg, p1, ps, - .. are inA”#1, and(po, p1), (p1,pa), (p3,ps), (ps,pr), .. are all inP 7.

Lemma 3.24 Letn > 1. EveryF € ccf,(Fk) induces a modelr of K.

Proof. First, itis proved as in [26] that every € ccf, (Fx) for n > 1 induces a tablealir for K. For
the last item of the proof of P9), note that sinces > 1, pairwise blocking is subsumed and the existence
thew predecessor can be ensuréft15) also holds due to the following facts:

e All nodesw are initialized withgcon(kK,C,) C L(v).

e The concept names gron (K, C,) are never removed from the label of a node unless the label is set
to () by the<-rule. In this case, the label of the node is never modified again.

Sincelr is a tableau foi(, it has a canonical modél- that is a model ofx. O

Now we will prove that, for a sufficiently large, if @) is entailed by the canonical model of an
complete and clash free forest, then a mapping of the variabl@siiro the forest itself can be achieved.
This reveals that, semantically, this canonical model suffices to check gn&ilment.

In this proof, the blocking parameter will be crucial. As we mentioned, it depends 6h More
specifically, it depends in what we catlaximal@-distance If the canonical model of a foregt entails@,
then there is a mapping of the variables ir) into the nodes of the tableau induced By Intuitively, the
maximal@Q-distanceis the length of the longest path between two connected nodes of the@rdefined
by the image of the query under For a maximal)-distance ofl, a d-complete completion forest will be
large enough to find a mapping whose image is isomorphig, teinceGG has no paths longer thah

We show that from any mappingof the variables and constantsgninto Z » satisfying@, a mapping:
of @ into F can be obtained. For a given forestin ccf,, (Fx) for somen, letTx = (S, £, £,7) denote its
tableau and r the canonical interpretation &f. If Zr |= @, then there is a mapping: varsindivs(Q)) — S
such that for evenR(z,y) in Q, (o(x),0(y)) € E(R’) for someR’ C* R. Consider the image af)
undero in T'=. We restrict it to the subgrapf obtained by removing each node of the foffn for some
individual a(with its corresponding incoming and outgoing edges). Note thabmprises a set of tree-
shaped components. The reason to consider only the subgraph be clear later. Informally, we want
prove that there is, in the completion graph a subgraph isomorphic to the image®@finto T'». For the

INFSYS RR 1843-06-03 19

arcs in the query graph involving nodes liKg for some individuak, the existence of an isomorphic arc in
F is trivial, since the non-tree shaped parffgf is isomorphic taF. Itis only in the tree-shaped parts’Bf
that the structure was unraveled, and the mapping of the quer{jintoay use nodes that do not explicitly
exist inF. The possibility of finding a mapping @} into F from the mapping of) into 7'+ will depend on
the size and structure of the tree-shaped components of the query image.

Definition 3.25 Let F be a forest inccf,,(Fx) (for somen) such thatZr = @. Consider a mapping
verifying the conditions in Definition 3.16. L&t denote the subgraph of the image(@fundero in T'r
obtained by removing each node of the foffhfor some individuak. For anyz, y in varsindivs(Q), if o(x)
ando(y) are nodes oz and there is a path between them, thié(, y) denotes the length of the shortest
such path. Otherwisé’ (z,y) = 0. Finally, themaximalQ-distance ofs, denotedd?,, is the maximal
d’ (z,y) for all z, y in varsindivs(Q).

Example 3.26 The canonical modélz, modelsQ;. We can consider the following substitutieno (z) =
p7, 0(y) = po ando(z) = p10. The image of); underc has no nodes of the forfi}], soG is the graph
with nodespz, pg andp;0 and arcgp; — pg and p; — p10. Moreover,d’ (z,y) = 1, d’(z,z) = 1 and
d?(y,z) = 0, sodg) = 1. .

In the following, letrg denote the number of role atoms(n Since only simple roles occur in the query,
every pair of variables:, y in varsindivs(Q) that occur in someR(z, y) € Q hasd®(z,y) = 1, and thus
gy is bounded by:y. Due to this fact, when expanding the completion forest it is sufficient tsider-
blocking as a termination condition for any> ng. Now we prove that for any suehand for any complete
and clash free.-completion forestF, if Zr = @, then there is a mapping : varsindivs(Q)) — nodes(F)
that witnesses the entailment@f

Proposition 3.27 Consider anyF € ccf,, (Fx) withn > ng, and letZ# be the canonical model of. If
Ir E Qthen@ — F.

Proof. SinceZr = Q, then there is & : varsindivs(Q) — AZ* s.t.
e ForallC(z)inQ,o(z) € C%~.
e ForallR(z,y) inQ, (o(z),0(y)) € R%7.

Since A’ = 8, o(z) ando(y) and correspond to paths jA. By the definition ofZr, the mappingr
satisfies that for alC(z) in Q, C € L(o(z)) and for all R(z,y) in Q, (o(z),0(y)) € E(R’) for some
R C*R.

We will define a new mapping : varsindivs(Q)) — nodes(F). In order to defing:, we will use again
the graph, given by the image af) undero (on the grapl’~ restricted to the roles occurring in the query),
and we will restrict it to have only the images of the variablesgars((Q) as nodes. This graph consists of
a set of tree-shaped compone@ts . .., G;. For each connected componént let nodes(G;) denote the
set of nodes of7;. We define the sdilockedLeaves((;) as the set containing each ngdef G; such that
tail(p) # tail’(p), and for every ancestof of p in G, tail(p’) = tail'(p’). The setfterblocked(G;) contains
all the nodes imodes(G;) that are descendants of some nodelatkedLeaves(G;).

Recalling the definition opaths(F), sinceF is n-blocked, it is easy to see that if a paticontains two
nodes? and-4 such that # »" andw # w’, then the distance between these two nodgsimstrictly
greater tham. Also, if p contains first a nodé that is not tree blocked and further prthere is a node;
such thatw # w’, then the distance betweérand ' is also greater than. Thus the following also hold:

20 INFSYS RR 1843-06-03

(*) If o(x) is in afterblocked(G;) for someG;, tail(o(x)) = tail' (o(x)).
If o(x) € afterblocked(G;) then, by definitiong () is a successor of (y) for somey € vars(Q)

such thatail(o(y)) # tail'(o(y)), i.e.,0(x) is of the form[p | 25, ..., 2=], with tail(p) # tail'(p).
Therefore, ifv,, # v, then the sequence of nod al",((I;)), o, 2= has alength strictly greater

thann, and thusi’ (z, y) > ng, which is a contradiction.

(**) If o(x) € nodes(G;) for someG; with afterblocked(G;) # () ando(x) ¢ afterblocked(G;), then
tail’'(o(x)) is tree-blocked byp(tail’ (o (z))).
If afterblocked(G;) # 0, then there is somg € varsindivs(Q) such thato(y) € nodes(G;) has
as a proper subpath somesuch thatail(p) = tail’(p). Sinces(z) ando(y) are in the same tree
componenty;, then eitherr (x) is an ancestor of (y) or there is some € varsindivs(@) such that
o(z) is a common ancestor of(xz) ando(y) in nodes(G;). In the first case, itail'(o(z)) was not
tree-blocked, we would have thét(z,y) > n > ng, which is a contradiction. In the second case, if
tail’(o(x)) was not tree-blocked, themil’(o(z)) would not be tree-blocked either, and thus we also
derive a contradiction sina# (z,y) > n > ng.

Therefore, we can define the mappjag varsindivs()) — nodes(F) as follows:

e For each individuak in varsindivs(Q), p(a) = tail(o(a)) = a.

e For each variable: in varsindivs(Q) such thato(z) € nodes(G;) for someG; which satisfies that
afterblocked(G;) = 0, p(x) = tail(o(z)).

e For each variable: in varsindivs(Q)) such thato(z) € nodes(G;) for someG; which satisfies that
afterblocked(G;) # (), the mapping. is given by:

(z) = tail'(o(z)) if o(x) € afterblocked(G})
)= y(tail'(o(z))) otherwise

Now we will show that it has the following properties:
1. If C € L(o(x)), thenC € L(((x))).
2. If (o(x),0(y)) € E(R'), thenu(y) is anR'-neighbor ofu(x).

The proof of 1 is trivial, sinc& (o (x)) = L(tail'(o(z))) = L(¢(tail' (o(x)))), soL(o(z)) = L(u(x)).
The proof of 2 is slightly more involved. By the definition 6f{R’) and of R'-step, if (o(x), o (y)) €
E(R') then either:

(i) tail'(o(y)) is anR’-successor ofail(o(z)) or
(i) tail'(o(x)) is anlnv(R')-successor ofail(a(y)).

Now we will prove that {) implies thatu(y) is an R'-successor ofi(x). The same proof shows that)(
implies thatu(z) is anlnv(R’)-successor ofi(y). Together, this two facts complete the proof of 2.

We will consider each connected componéfit The case whenfterblocked(G;) = 0 is trivial. In
this case, for each in varsindivs(Q) such that(z) € G, tail(o(x)) = tail'(o(z)) (in fact,o(x) does not
contain any?; with v # '), so if tail'(c(y)) is an R’-successor ofail(o(x)), thenu(y) = tail'(o(y)) is an
R’-successor ofi(z) = tail'(o(x)) = tail(o(x)). To do the proof for any=; with afterblocked(G;) # 0,
we will proceed by cases. Note that sinegy) is an R'-step ofo(z), it can not be the case thatz) is in
afterblocked(G;) ando(y) is not, thus we have the following cases:

INFSYS RR 1843-06-03 21

(a) Botho(x) ando(y) are inafterblocked(G;).
In this case we have that(z) = tail'(o(z)) and u(y) = tail'(o(y)), and by(¥), tail(c(z)) =
tail'(o(z)). If tail'(o(y)) is an R'-successor ofail(o(x)), thenu(y) = tail'(o(y)) is an R’-successor
of p(x) = tail'(o(x)) = tail(o(z)) as desired.

(b) Neithero(x) noro(y) is in afterblocked (G;).
Note that in this caseail(c(x)) = tail'(o(x)), otherwises(y) would be inafterblocked(G;). By
(**), we know thattail'(c(x)) is tree-blocked byy(tail'(o(z))) andtail’(o(y)) is tree-blocked by
Y(tail'(o(y))). Thus, iftail'(o(y)) is an R’-successor otail(o(z)) = tail'(o(x)), thenu(y) =
W(tail'(o(y))) is anR’-successor ofi(x) = 1 (tail'(o(z))) as desired.

(c) o(z) is notinafterblocked(Q), buto(y) is
In this case we have thatil(o(x)) # ta|I (o(x)) andtail(o(z)) = ¢(tail' (o(x)))(i.e., o(x) ends in
a blocked leaf), so itail'(c(y)) is an R’-successor ofail(c(x)) thenu(y) = tail'(o(y)) is an R’-
successor ofi(x) = ¥ (tail' (o (x))).

Since the mapping is the identity for all individuals and it has properties 1 and)2~ F.

Example 3.28 The graphG has only one connected component, nam@lytself. In G we have that
blockedLeaves(G) = {pr}, andafterblocked(G) = {pg, p10}. For theo given in Example 3.26, we get
the mappingu defined asyu(z) = ¥ (tail'(p7)) = vs; u(y) = tail'(pg) = vs; u(z) = tail'(p1g)) = ve. It
satisfies the conditions of Definition 3.16, so it proves that— F;. "

Summing up, to solve the conjunctive query entailment problem, it sufficeseckdior entailment
the set of complete and clash free completion forestdsfpno matter then that is used as a termination
condition. However, if we choose a suitabieblocking, checking for entailment in all the models of a
completion forest can be done through one single canonical model, and #tkieved by mapping the
query into the completion forest itself.

Theorem 3.29 Let) be a CQ andK a SHZQ knowledge basek = Q iff @ — F for every completion
forestF € ccf,(Fk), n > ng.

Proof. First we prove that i’ = Q then@ — F. Take any arbitrary* € ccf,,, (Fr). SinceK = Q,
thenF = @ (Proposition 3.15). In particular, we have tat = @, whereZr is the canonical model of
the tableau induced h¥. Thus, by Proposition 3.27) — F.

To prove the other direction, observe that frgh— F and Lemma 3.18, we have that= @ for every
F € ccfy, (Fr). Finally, by Proposition 3.155 |= Q. O

Example 3.30 K = @1, SOF; = Q1 must hold. This is witnessed by the mappimgn Example 3.28.
Note that there are longer queries, li¢ = {P;(a, z¢), Pi(xo,x1), Pi(z1,22), Pi(z2,23), Pi(x3,24)}
such thatK' = @’ holds, but the entailmerff; = Q’ cannot be verified by mappir@’ into 7 sinceF; is
1-blocked andig > 1.]

22 INFSYS RR 1843-06-03

3.4 Answering unions of conjunctive queries

The results given above can be extended straightforwardly to an UC@&s usual, we will useF = U
to denote thatF semantically entailé/ (i.e., every model ofF is a model ofU), andU — F to denote
syntactical mappability, which is defined &5 — F for some@); in U. We already know that to decide
K [U it suffices to verify whetherm = U for every F in ccf,, (Fg) for any arbitraryn > 0 (in fact,
Proposition 3.15 holds for any kind of query). It is only left to prove tuata suitablen, 7 = U can be
effectively reduced t&/ — F. For an UCQU, we will denote byn;; the maximalbg, for all Q; in U. We
can then prove the following result:

Proposition 3.31 Consider anyF € ccf,,(Fx) withn > ny. ThenF = U iff U — F.

Proof. Again, one direction is trivial. IV <— F, then by definition, there is sont@; in U such that
Q; — F, and as this implies = @, then we also have th& = U. The other direction is also quite
straightforward. For eaclk € ccf,, (Fx), withn > ny, if Zr = U, thenZx = Q; for someQ; in U. As
n > ny > ng,, by Proposition 3.27 we know that; — F and then/ — F. ThusF = U impliesU — F
as well. O

Example 3.32 By the mapping?; < F; in Example 3.17, we havé — F;. F; = Q1 impliesF, = U. =

Finally, we establish our key result: answeriRg= U for an UCQU reduces to finding a mapping of
U into everyF € ccf,(Fg) for anyn > ny.

Theorem 3.33 Let U be an UCQ andK a SHZQ knowledge baseK |= U iff U — F for everyF <
Ccfn(FK), n > ny.

Proof. As in the proof of Theorem 3.29, it follows Proposition 3.15 and Proposgiai. O

4 Extending the Algorithm to SHOZ Q

When describing the algorithm f&#HZ Q, we used completion forests to represent models. The ABox
individuals form a graph that might be arbitrarily interconnected, whicleallea cloud, and each individual

in the cloud is the root of a tree. Since the cloud has a fixed size, we carbialit some kind of forest
model property.

In SHOZQ however, this property is almost completely lost. Initially the nominals forms a cloud
of arbitrarily connected nodes. Each of this nodes is the root of a Variede, which might be blocked
representing an infinite structure. However, due to the interaction betn@®mals, inverse roles and
number restrictions, we have to consider arbitrary relational struct@tegebn some nodes that are not
named individuals. For example, consider a knowledge base containiraxitras T = 3R~ .{o} and
{o} C< 3 R.B. Ifthere was a blocked tree structure whose unraveling generatesdestaf3, they would
all have to have arkR™~ arc too possibly violating the number restriction 3 R.B. It is then necessary
to identify these nodes as individuals, and avoid their multiplication by unrayeliinus when applying
the expansion rules, we will generate not only variable nodes, but aléadnal nodes which might be
arbitrarily connected to the other individuals, and that may also be demtsnaf some variable in a tree.
Therefore, instead of completion forests, we now refer to completiorhgraph completion graphs the
initial cloud may grow, and some variable nodes may contain edges connéringo an individual in the
cloud.

INFSYS RR 1843-06-03 23

a P vy P wvo P wvs P1 v

Figure 2: Completion graph for the example knowledge base

Definition 4.1 [completion graph [23]] Acompletion graphg for a knowledge basé is a given by a
directed graph and an inequality relatigh) implicitly assumed to be symmetric. In the directed graph,
each nodev is labeled with a set of concept¥v) C clos(K) and each arw — w with a set of roles
L(v—w) C R, respectively. The nodes and arcsloéire denoted bytodes(G) andarcs(G). The set of
nodesw in nodes(G) such that{o} ¢ L(v) for each nominab € N, is denotedvars(G), these nodes are
calledvariable nodes Theindividual nodesare the nodes in the sebdes(G) \ vars(G), i.e.,{o} € L(v)

for some nominab € N 4,

The notions ofR-successor|nv(R)-predecessorRk-neighbor and ancestor are defined as usual (see
Definition 3.4). As in the algorithm fa§’HZ Q, we will associate td< an initial completion graph, and then
we will apply expansion ruleso obtain new completion graphs, until no more rules can be applied. The
initial completion graplGx associated withi' has a node for each individuah € Ik, labeled withZ(a)
={{a}} Ugcon(K,C,). The relatiors¢ is initialized asa £ b iff a # b € A.

Example 4.2 In our running exampleGx, contains two nodes;, ando with the labelsC(a) := {{a}, 4,
—AU3PLA, -~AUTP o}, AU-A}andL({o}) := {{o}, "AUIP;.A, ~ AU TP, {o}, ALU—-A}. The
relation is empty. "

Note that if K is aSHZ Q knowledge baseF is isomorphic taj -+, whereK” is obtained fromi by
internalizing the ABox in the TBox (see Section 2).

From this initialGx we will obtain new graphs by applying expansion rules. Initiglly, contains only
individual nodes which can be arbitrarily interconnected. When we dalyexpansion rules, we might
introduce new nodes. Like in th8HZ Q case, variable nodes will only be introduced in such a way, that
they will always occur in a variable tree (see Section 3.1). Howeverw®also have a rule that introduces
individual nodes which may be successors of a variable nedeu(e, see later). Informally, a branch of a
tree may end with an arc leading from a variable to an individual in the clduee temove fromg all such
arcs, we will obtain a forest of variable trees rooted at individual apded arbitrary arcs connecting these
individuals, i.e., a completion forest (see Definition 3.4). Therefore weal& about thdorest partof G.

Definition 4.3 Theforest partof a completion grapky, denotedy , is obtained fronG by removing from
arcs(G) all arcsv — w with v a variable node ana an individual node.

Example 4.4 Figure 2 shows the completion graghwherel; = {A, ~AU3P;.A, ~AU3 P, .{o}, ALI-A,
ElPl.A, ElPQ.{O}},

Lo = {{0}, A, -AU3PA, AU 3P2.{0}7 AU —|A}

Gy, the forest part ofj, is obtained by removing the arcs; — o, v2 — 0, v3 — 0, v4 — 0. The# relation is
empty in both the graph and the forest. "

“Our individual nodes correspond mominal nodesn [23], and our variable nodes tockable nodes

24 INFSYS RR 1843-06-03

Before given the expansion rules, we will discuss the blocking conditidgtes the forest part of a
completion graph, we can use the same blocking conditions as $3tAQ completion forest, given in
Definition 3.6.

Definition 4.5 [n-blocking] For an integen > 0, a variable node in a completion graply is n-blocked
if v is n-blockedin the completion foresG;. Nodew is (in)directly n-blockedin G if it is (in)directly
n-blocked inG;.

Note that, as usual, only variable nodes can be blocked. When the blamkidiitions forSHZ Q are
extended t&SHOZQ in [23], the authors impose as an additional condition that no individuad wadurs
between the blocking and the blocked tree. We do not need to state thisragoirexplicitly: any path ig
between two variable nodes that contains an individual node must contamarcy — w with v a variable
andw an individual, and thus it does not existdn.

Example 4.6 In the completion foresf;, the1-tree rooted at; tree-blocks the -tree rooted ats. Since
vy is a leaf of a tree-blocketitree, v, is 1-blocked inGy, so it is alsol-blocked in the completion gragh

To obtain the new completion graphs from the initial, we apply the rules in Table 1, plus two new
rules handling the creation and merging of nominal nodes, given in Talileeh?-rule is a generating rule,
and theo-rule a shrinking one. Note that the new rules do not require blocking.ofity difference between
the rules in Table 2 and the ones in [26] is that in diigule, the labels of the newly introduced nodes must
containgcon (K, C,).

The following strategy is used to apply the expansion rules:

1. Theo-rule is applied with highest priority.

2. Next come the<-rule ando?-rule. They are applied first to individual nodes with lower level. The
level of an individual node is 0 if £(v) N Ng # 0; itis 4 if v has a neighbor of level— 1 and it is
not of levelj for any0 < j < i. If both the<-rule ando?-rule are applicable to the same node, the
o?-rule is applied first.

3. All the remaining rules are applied with a lower priority.

We will see later that this strategy is necessary to ensure termination of thighatgo

Definition 4.7 [Clash free completion graph;complete completion graph] A completion grapleontains
aclashif some nodev € nodes(G) satisfies conditions 1 or 2 in Definition 3.8, or if there is some nominal
o € N such thao} € L(v)N L(v'") for somev, v’ € nodes(G) with v 5 v'. A completion grapl@ is clash
freeif it contains no clash. A completion graghis n-complete if none of the rules in Tables 1 and 2 can
be applied to it (unden-blocking).

We denote byG i the set of allg obtained from the initialj i by means of the expansion rules, and by
ccf,(Gg) we denote the set of graphs@y that aren-complete and clash free.

Example 4.8 Consider the completion gragh in Figure 3. BothG andG’ can be obtained frorg by
means of the expansion rules. They are both clash free completion geaphthey ard-complete and
2-complete respectively, 39 € ccf1(Gx) andg’ € ccfy(Gi). n

INFSYS RR 1843-06-03 25

o-rule: if there are, v’ in nodes(G) with notv % v and
{o} € L(v) N L(v") for someo € N
then merge(v,v’)
o?-rule: if <nS.C € L(v), vis an individual node
there is &’ in vars(G) such that’ is anS-neighbour ofv,
C € L(v") andv is a successor af;
and there is nen with 1 < m <n,<mS.C € L(v),
v hasm S-neighbourswuy, ..., w,, suchthatforall < j <i<m
w; is an individual node(' € L(w;) andw; % w;
then guessn <n, setL(v) := L(v)U <mS.C,
createm new nodesuy, . .., wy,, With £L(v— w;) := {S},
L(w;) :=={C,{0;}} Ugcon(K,C,) for someo;, € N new ingG,
andw; # w; foralll <j <i<m.

Table 2: New Expansion Rules fSftHOZ Q

a P vy Pr vo P vy P vy P vs P wg
L1

gl

Figure 3: 2-complete completion graph for the example knowledge base

Each completion grap8 in G represents a set of possibly extended model& @ the natural way:
7 = Gif 7 = K and for all nodes, w € G the three conditions given in Definition 3.11 hold, i.e., each
node corresponds to an individual in the interpretation in such a way thatdtle and arc labels, as well
as the inequality relation, are contained in the concept, role and inequalitysexis ofZ. The following
extension of Lemma 3.12 shows tliat represents all models d@f .

Lemma 4.9 An interpretationZ is a model oG iff Z is a model ofK .

Proof. The proof is similar to the one of Lemma 3.12. The if direction follows from thendtedn of
model of a completion graph. To prove the only if direction, it suffices tifyw#énat for an arbitrary model
7 of K and for all nodes, b € nodes(Gx), conditions(i) to (iii) of Lemma 3.12 hold. O

The semantical notion of query entailment in a completion graph is defined iratheahway: for a
completion graply and a query/, we say that |= U iff for every interpretatior?, Z = G impliesZ = U.

Lemma 3.13 and Proposition 3.14 can be easily extended to completion graphsefama A.1 and
Proposition A.2 in the Appendix). The union of all the models of the graphsfin(Gx) captures all the
models of a knowledge bag€, independently of the value @f. Thus we need to consider only the set of
graphscef,, (G) when verifying all models of< for query entailment.

Proposition 4.10 Letn > 0 be arbitrary. Thenk = U iff G |= U for eachg € ccf,,(Gk).

Now itis only left to prove that semantical entailment in a completion graph ceedueed to syntactical
mappability, if a suitable:-blocking is used. Mappability ap into a completion grap$, is defined exactly
as for completion forests:

26 INFSYS RR 1843-06-03

Definition 4.11 @ — G if there is a mapping: : varsindivs(Q)) — nodes(G) that is the identity mapping
for all individuals invarsindivs(Q) and that satisfies the following:

1. ForallC(x)inQ,C € L(u(x)).

2. ForallR(z,y) in Q, u(y) is an R-neighbor ofu(x).

Example 4.12 The mapping:(z) = a, u(y) = v1 andu(o) = o shows thatys — G andQs — G'. n

Clearly mappability implies entailment (see Lemma 3.18):
Lemma 4.13If Q — G, thenG = Q.

The other direction is also easy, since it follows directly from the results ii®e3.3. IfG = @ and
G € ccf,(Gg) for a suitablen, then we can obtain a canonical modeloénd obtain a mapping @p into
G from it.

In order to obtain the canonical model®fwe follow the same steps as before. The completion gfaph
is first unraveled into a tablealy;, and this tableau induces a canonical magelWe will shortly describe
how the definitions and results given in Section 3.3.1 are extend8#(t07Z O.

To obtain the canonical model of a completion gra&phg is first unraveled into a tabledl;. The
definition of SHOZ Q tableau is extended t§HOZ Q by adding to the conditions (P1) to (P15), given in
Definition 3.19, an additional one:

(P16) if{o} € L(s) N L(s") for someo € N, thens = ¢'.

This condition ensures that nominals are interpreted as singletons.

EveryG € ccf,, (G) can be unraveled into a possibly infinite a tabl&gu Since only the forest-shaped
part of G is unraveled into possibly infinite paths, the unraveling is defined in the samasvarSHZ Q.
Note that in Definition 3.22, we defingd |] to be anR-step ofp only if w is a variable, so only nodes
in vars(G) will occur after the first position in a path. The definition of the tableau indiyea completion
forest is extended to completion graphs as follows:

Definition 4.14 [Tableau induced by a completion graph] A patiis an R-stepof a pathp if ¢ is an R-
stepof p in the completion foresg;, and the sepaths(G) of paths in a completion grapls defined as
paths(G) = paths(Gf). ThetableauTy = (S, £,&,Z) induced by a completion grapf is obtained by
settingS = paths(G), and., £, 7 are defined as in Definition 3.22.

The tablealdy is already very close to a model &f. To obtain its canonical modé&l;, it suffices add
the missing transitive edges as we did with #&Z O tableau. The canonical model ofSs&{OZ Q tableau
is defined exactly as for &8HOZ Q tableau, i.e., as in Definition 3.20.

Lemma 4.15 Letn > 1. EveryG € ccf,,(Gk) induces a model of K.

Proof. First, observe that evey € ccf,, (G) for n > 1 can be unraveled into a table@y for K. In
the proof of Lemma 3.24, we already proved that euv&HtyZ QO completion forest can be unraveled into a
SHIQ tableau. The only difference betweeaZ Q completion forest and 8HOZ Q completion graph
is that there might be additional arcs connecting some variable node to aidiradin the cloud. In [23, 24]
the authors prove that each complete and clash free completion graple canaveled into a tabledl};.

INFSYS RR 1843-06-03 27

Their blocking conditions are different from ours, but sincgee blocking implies their blocking, their
proof applies to everg € ccf,,(Gg) for n > 1. Itis verified that conditions (P1) to (P14) hold, the details
are almost exactly as in the proof {6/{Z Q, but taking into account these new arcs. Additionally, to verify
that7y is indeed aSHOZ Q tableau, we must prove that (P16) also holds, which is clear sil€eomplete
and clash free. Condition (P15), which is not considered in [24], hoddswuse all nodes are initialized
with gcon(K,C,) C L(v) (see Lemma 3.24).

Finally, it only remains to verify that the canonical model inducedbys indeed a model ok'. Again
the proof is a straightforward extension of the one of Lemma 3.21. The ddiji@nal consideration is that
in Zg the nominals must be interpreted as singletons, which is ensured by con@itiéh (This is also the
way the proof of Lemma 4 in [23] extends the corresponding prooSfa O. O

Example 4.16 By unravelingG’, we obtain a modelg that has as domain the infinite set of paths from
to eachw;, since there are no paths franto any other node, i.e., the domain is:

— [2
po = [2],

— 2] :[Q v v2 v3 U_4]
Y41 [a’ b5 a’ vy’ va? vg) val

—[a u —[2 Y1 V2 V3 V4 Us
p2_[a7v1]7 pﬁ_[a’vl’vg’vg’v4’v5]

—[ea 11 v2 —[2 Y1 V2 V3 V4 Us V4
p3_[avvl)v2]v pr [a’vl’vg’vg”u4’1}5”06]

—[2”_11’_2”_3] —[Qﬂﬂ"ﬁv_élv_Sﬂv_ﬂ
b4 a’ vy v’ v yzs @’ v’ v’ v3? va’d U5’ vg® Vs

The extension of the concepts dig87¢ = {py} andA%e = {p; | i > 1}, and the extentions of the roles are
P = {(pi,pir1) | i > 1} andPy® = {{p;,po) | i > 1}. g

Now we are ready to prove that, for a sufficiently largethe canonical model of an-complete and
clash free completion graph semantically suffices to check query entailmemol hard to see that for the
SHOZQ case, a suitable lower bound feris also given by the maximal distance between any two paths
ending in variable nodes in the graph defined by the imag@ of the tableaul; (under any satisfying
mapping, which must exist sin@g; entailsq)

Given a completion grapdi in ccf,,(Gx) for somen, letTg = (S, £, £, Z) denote its tableau ari; its
canonical model. IZ; = @, then there is a mapping: varsindivs(QQ) — S such that for eveni(x, y) in
Q, (o(x),0(y)) € E(R") for someR’ C* R. Consider the image @) underc in the tableall;. Remove
from this graph every node of the forffi] for some individual node < nodes(G), with its corresponding
incoming and outgoing edges, to obtain the gr&piNote that’ comprises a set of tree-shaped components
exactly as in theSHZ Q case. On this grap&y the maximalQ-distance ofr, d7, is defined exactly as in
Section 3. Recall that?, is bounded by, the number of role atoms iQ.

Example 4.17 As we saw beforeK, = @3, thusZg = Q3. Consider the substitution(z) = pr, o(y) =

pg ando (o) = po. It defines the graph with nodes, p; andps, and arcer — pg andps — po. When we
remove from the graph the nogs (it is of the form[2] ando is an individual) with the corresponding arc
psg — po, We obtain the grapliy with two nodesp; andpg and an arg; — ps. ObviouslyG is tree shaped
anddy,, = 1. .

Now Proposition 3.27 can be extended to completion graphs as follows:

28 INFSYS RR 1843-06-03

Proposition 4.18 Consider anyg € ccf,(Gx) withn > ng, and letZg be the canonical model @f. If
Zg = Q then@Q — G.

Proof. SinceZg = @, there is a substitution : varsindivs(Q) — AZ¢ which witnesses this entailment.
As before, we can use thisto define a the mapping : varsindivs(Q)) — nodes(G). This . maps each
individual a in varsIndivs(Q) to tail(c(a)) = a. For each variable: in varsindivs(Q) such thato(z) €
nodes(G;) for someG; with afterblocked(G;) = 0, 1 mapsz to tail(o(x)); and for all other variableg is
be defined by:
tail'(o(z)) if o(x) € afterblocked(G;)
wlz) = { Y(tail(o(z))) otherwise

The mapping. is the identity for all individuals. As showed in the proof of Proposition 3iP3atisfies the
conditions 1 and 2, hendg — G holds. O

Example 4.19 The graphG has only one tree shaped component, nargeiself, andafterblocked(G) =
ps. Thusy is defined agi(z) = ¢ (tail'(p7)) = va, u(y) = tail'(ps) = vs andp(o) = tail(pg) = o. Note
that ., satisfies the necessary conditions to prove that— G'. "

With this we have finished giving a method to answer CQSHIOZ Q.

Theorem 4.20 Let @ be a CQ andK a SHOZQ knowledge baseK = Q iff Q — G for everyG <
ccfr(Gg),n > ngQ.

Proof. In Proposition 4.10 we proved thd#(= Q iff G = Q for everyG € ccf,(Gg). From
Lemma 4.13 and Proposition 4.18 we have fat Q iff Q — G for eachG € ccf,,,(Gk) (sinceg = Q
impliesZg |= @), and then the Theorem holds. O

The extension of the method to an UCQis analogous to the case 87 Q. By uniformly replacing
F by G andccf, (Fg) by ccf,,(Gx) in the statement and proof of Proposition 3.31, the result applies to any
SHOZQ knowledge basé’. From this and Proposition 4.10 we obtain the main result of this section:

Theorem 4.21 Let U be an UCQ andK a SHOZQ knowledge baseK = U iff U — G for everyG ¢
ccfr(Gg),n > ny.

Example 4.22 Let U be the UCQQ; V Q2 V Q3. SinceK, = Qs, thenK, = U. To verify this, it would
be necessary to check whetliér— G for eachg in ccf2(Gk,). In particular, sincg’ € ccfa2(Gg,), it must
be the case thdf — G’. In Example 4.19 we saw thél; — G’, thus we also have that — G'. .

5 Termination and Complexity

In this section, we consider the complexity of the query answering methodvwEdave developed in the
previous sections, and we shall prove our main result concerning theaaplexity of query answering in
SHIQ andSHOZQ.

To this end, we shall first derive a bound on the size of the completiostfoireccf,, (Fx) foraSHZQ
knowledge basd<, and then of the completion graphsddf,,(Gx) for a SHOZQ knowledge basex .
Since the forest part of &HOZ Q completion graph corresponds &3{Z QO a completion forest, we can

INFSYS RR 1843-06-03 29

treat both structures in a similar way. First we will obtain a bound on the gessiie of ann-blocked
variable tree, which applies both to the trees in a completion fdfesmtd in the forest-part of a completion
graphgG;.

We point out, however, that conjunctive query answering is intractaltferespect to combined com-
plexity already on very small completion graphs and completion forest, arai®¥en for a fixed comple-
tion graph which consists of few nodes. This is shown in the proof of tkepreposition.

Proposition 5.1 Let G be a (fixed) completion graph i@ (or a forest inF), and let@ be a given CQ.
Deciding@ — G is NP-hard.

Proof. Finding a mapping? <— G has the same query complexity as evaluating a conjunctive query
over a database (given by the ABox), which is an NP-hard problem.efiiéythis, it suffices to consider
the completion grapb..; associated to the ABox:

E(red, green) E(green, red) E(red, blue)
E(blue, red) E(green, blue) E(blue, green)

Any (directed) grapliz can be encoded as a conjunctive qu@rythe nodes irGG are the variables iy and
for each ardz, y) in G there is a literaE(z, y) in Q. Then@ can be mapped int@.,,; iff G is 3-colorable.
O

Note that when() is fixed, the test) — G can be done in time polynomial in the size@ty simple
methods, since only a polynomial number of candidate mappings needs tediedhThis will be relevant
to prove a tight upper bound in data complexity.

5.1 Bounding the size of completion forests and graphs

In what follows, for a knowledge bask, we will denote byc the cardinality ofclos(K) U C,, by r the
cardinality of R, and bym the maximum numben occurring in a concept of the formd n R.C or
> n R.C'in K. Furthermore|.A| denotes the number of assertions4n

Claim 5.2 LetT,, be the maximal number of non-isomorphidgrees in a completion forest or in the forest
part of a completion graph fd'. Then, T}, = O((2%°(c-m)*)(c¢™™)"),

Proof. There are only variable nodes in the tree-shaped part, so the labello$eeh node is a subset
of clos(K) U C, and there are at mo8t different such labels. Each successor of a node can be the root of a
tree of depth{n — 1). Considering a single rol&, if a nodev hasxz R-successors, then there is a maximum
number of(7,,—1)* (ordered) combinations of trees of degth— 1) rooted at the successorswof

There are three generating rules: theule, the>-rule and the»?-rule. Since the nodes introduced by
the o?-rule are individual nodes (they initially contain a nominal label), variabldesaare only introduced
by applying the3-rule and the>-rule. Only concepts of the formR.S or > n R.C' trigger the application
these rules, and there are at mesuch concepts. Each time one such rule it is applied, it generates at most
m variable R-successors for each role Note that if a node is identified with another by a shrinking rule,
then the rule application which led to the generatiomw @¥ill never be repeated [24], so a generating rule
can be applied to each node at mesimes. This gives a bound efm variable R-successors for each role.

The number ofR-successors of a node, might range fron? to c-m, and for each:, we have at most
(T,,—1)©™) combinations of trees of deptm — 1). So, each node can have at méstm)(7},_;)™

30 INFSYS RR 1843-06-03

combinations of trees of deptih — 1) as successors, if we consider one single role. Since for every role in
Ry at most this number of trees can be generated, there is a bodtehaf) (7, _1)(¢™)* combinations

of trees of depti{n — 1) for the successors of each node. The number of different roots ofteee is
bounded by2¢. We thus obtain as an upper bound on the number of non isomotghées

T,y = O(2°((e-m) (Ty—1) ™)),
To simplify the notation, let’s consider = 2°(c-m)" anda = c-m-r. Then we have
Ty = O(a(T-1)") = O(a 0" (T)") = O((2Tp)"")
The maximal number of trees of depilis also bounded bg€. Returning to the original notation we get
Ty, = O((2%(c-m)") (™))

O

Claim 5.3 Let 7" be a variable tree in a completion foreste Fx or in the forest parg; of a completion
graphG € Gg. The number of nodes i is bounded by

O((cmer) e empeme

Proof. The claim follows from the following properties:

i) The outdegree df" is bounded by-m-r.
As shown above, there are at mesi variableR-successors for each ralg and there are roles.

i) The depth ofT" is bounded byl = (7}, + 1)-n.
This is due to the fact that there is a maximumi@fnon-isomorphicn-trees. If there was a path of
length greater thafil;, + 1)-n to a nodev in 7', this would imply thaty occurred after a sequence of

T, + 1 non overlapping:-trees, and then one of them would have been blocked amabild not have
been generated.

iii) The number of variables iff’ is bounded by)((c-m-r)4*+1).

O

There can be one such tree rooted at each individual node. Sine&1gZ Q completion forest there is
at most one individual node for each ABox individual, then we easiladetund on the size of a completion
forest for aSHZ Q knowledge base.

Lemma 5.4 Let K be aSHZO knowledge base. The number of nodes in a completion férestl x is
bounded by

O(‘IK | -(C.m.r)1+n~(22'c-(c‘m)r)(c,m.r))

FortheSHOTQ case, we first need to derive a bound on the number of individuaknddie arguments

are essentially the same as in [23]. The bounds we derive are not thessaoeehey depend on the maximal
depth of a variable node.

INFSYS RR 1843-06-03 31

Claim 5.5 Let K be aSHOZIQ knowledge base. The number of individual nodes in a completion graph
G € Gy is bounded by

n

O(‘IK | (Cm)1+n(22c(cm)r)(cmr>)

Proof (sketch). The argument is exactly as in [23] (Proof of Lemma 6, item 4). Simply rephace
(maximal depth of a variable node) By Due to the the strategy for the rule application and the preconditions
of the o?-rule, this implies that the?-rule can only be applied to nominal nodes of level betbw his and
some counting gives a bound O |Ix |(cm)¢). For more details, we refer to [24]. O

Lemma 5.6 Let K be aSHOZQ knowledge base. The number of nodes in a completion g¥apliz i is
bounded by

O(’IK|2'(C'm'I’)2+2'”'(22'C-(c-m)r)(c'm-”))

Proof. Follows from Claims 5.3 and 5.5. O

Note that aSHOZ Q completion forest may be quadratically larger tha$?dOZ Q completion graph.

5.2 Complexity of the algorithm for SHZQ

Let K be aSHZ Q knowledge base. We will determine the complexity of deciding= @ andK = U for
a CQQ and an UCQU respectively.
By || K, Q|| we will denote the total size of (the string encoding) the knowledge Based the query
(. Note thatm is linear in|| K, Q|| if we assume unary coding of numbers in number restrictions, and
single exponential if binary coding is used. In any casé) é@nd all of K except forA is fixed, thenm is a
constant. Furthermore,andr are linear in|| K, ||, but also constant ifA|. Finally, |Ix| is linear in both.
From Lemma 5.4, we obtain the following corollaries.

Corollary 5.7 (i) If n is polynomial in|| K, Q||, then the maximum number of nodes in a completion forest
F € Fg is triple exponential in| K, Q||.

(ii) If @ and all of K except forA is fixed andn is a constant, then the maximum number of nodes in a
completion foresi¥ € F is linear in|Al.

Proposition 5.8 The expansion af i into someF € Fx terminates in time triple exponential {j¥, Q||
if n is polynomial in|| K, Q||. If @ and all of K" except forA is fixed, andh is a constant, then the expansion
of Fx into someF € Fg terminates in time polynomial ip4|.

Proof. We have given a bound on the size®fin Lemma 5.4. The proposition follows from this and a
polynomial bound on the number of times that each expansion rule can liedap@ node while expanding
the forest. The<-rule is the only shrinking rule. If this rule is not applied, then it is clear tHaitites extend
the node labels and possibly add new nodes to the forest. They are agipiies$t once for each concept
in £(v) for each node, thus their application is bounded loy If the <-rule is applied to a node, then
a neighbornw of v is merged into a neighbar’ of v. Sincew’ inherits the labels and inequalities of the
rule application that led to the generationw«of will never be repeated. Clearly, the times therule can
be applied is bounded by the branching degreg ofThus the application of all rules to a node will be
polynomially bounded also under the merging of nodes caused by-tiuée. O

32 INFSYS RR 1843-06-03

Checking whethef) — F can be done by naive methods in time single exponential in the sige l6br
anF € ccf(Fg) with M nodes and a quei® with ng, literals, the naive search space Bd$"e candidate
assignments, and each one can be polynomially checked. 3d,i# triple exponentially bounded in
||K,Q||, then alsa)M "< is triple exponentially bounded inK, Q||. On the other hand, the te§t— F
can be done in time polynomial in the sizeBfwhenq is fixed.

Therefore, we obtain the following result:

Theorem 5.9 Given aSHZ Q knowledge basé&” and a union of conjunctive queriés in which all roles
are simple, deciding whethdf = U is:

1. in co-3NEXPTIME w.r.t. combined complexity, for both unary and binary encoding of nurréser
strictions in K.

2. in co-2NEXPTIME w.r.t. combined complexity for a fixéd if number restrictions are encoded in
unary.

3. incoNP w.r.t. data complexity.

Proof. If K [~ U, then there is a completion fore$t € ccf,, (Fx) such thatU + F. If this F
is guessed non-deterministically then, by Proposition 5.8, it can be obtairtigddnriple exponential in
| K, Qi+, whereQ;- is such thatg... = ny, thus also inf| K, U||. Furthermoreg); — F can be checked by
naive methods in triple exponential time|ji’, Q;-|| and thus in| K, U || as well. Therefore, non-entailment
of U can be checked in 3NEPTIME, entailment inco-3NEXPTIME and item 1 holds.

Item 2 follows from the above arguments, modified according to the oligarthatm does not occur
in the uppermost exponent of the bound of the forest size, and thug amycf,,,, (Fx) can be obtained in
double exponential time.

As for Item 3, under data complexity/; and all components dk = (7, R, .A) except for the ABox4
are fixed, therefore; is constant. By Proposition 5.8, we know that every completion fafestccf (F k)
can be nondeterministically generated in polynomial time. Since deciding whéther is polynomial in
the size ofF, K = U isin CONP. O

We note that the tegp — F might also be done in time polynomial in the sizedoivhen(is fixed, or
when the expansion rules generate a big enough completion forest, atiith ize exponentially dominates
the size of the query. Other particular cases can be solved in polynomialdimella

For example, wherf is tree shaped (i.e., the ABox is tree shaped and there are no arcs tbagnec
variable nodes to individuals in the cloud), then the complexity of the mappimgsgmonds to evaluating a
conjunctive query over a tree-shaped database, which is known wiypeomial in the size of the database
in certain cases [18].

5.3 Complexity of the algorithm for SHOZ Q

In this section, we will discuss the data and combined complexity of decidingreatda of conjunctive
gueries and unions of conjunctive queries®KOZQ. In contrast toaSHZQ, the distinction between
extensional and intensional dataSiHOZ Q is not so clear. The presence of nominals naturally expresses
extensional information in the TBox axioms. Moreover, the ABox $ZQ knowledge base can be
expressed as new TBox axioms, and ABox+TBox reasoning is polynoméallycible to reasoning w.r.t. a
TBox only [38]. Recall that for any concept assertidfu) in the ABox, we can equivalently add to the
TBox the axiom{a} C A, and for any role assertioR(a, b) the axiom{a} C 3P.{b}.

INFSYS RR 1843-06-03 33

For determining data complexity, the TBox, RBox, and the query are fixeth dddition we would
assume thaSHOZQ ABoxes are always empty (as we did when describing the algorithm), thery qu
entailment can be done trivially in constant time. Clearly, this setting seems maipaiate.

To obtain a more interesting result, we will assume that initially an arbitsatyDZ © knowledge base
K is given. ThisK, as defined in Definition 2.3, comprises a TBox, an RBox, and an ABoxdebide
guery entailment w.r.t. to thi&’, we will replace the ABox by new TBox axioms to obtain a knowledge
baseK’ with an empty ABox as described above. The complexity bounds will thenves gy.r.t. to the
initial K, i.e., for data complexity we will consider the size of the origidahs variable.

In this section & will denote aSHOZ Q knowledge bas€é7, R, A), and K’ will denote the knowledge
base(7’, R,) obtained by expressing within 7’. We will denote byj| K, Q|| the total size of the string
encodings the knowledge basEsand the queryy, and by||K’, Q|| the size of the string encoding’ and
Q.

Because of the axioms added to express the ABox asserfidmsay be larger thafi. One axiom is
added ta7 for each assertion igl, and there will be at most one new nominalNn for each individual in
A. Hence||K’, Q|| is polynomially (in fact, linearly) bounded ink, Q||, and|I1x-| polynomially in|I].

By Lemma 5.6, we know that the maximum number of nodes in a completion grapl - is triple
exponential in|K’, Q|| if n is polynomial on|| K’, ||, and that it is polynomial (actually, quadratic)|id]|
if n is a constant. From this, together with the polynomial bound on the siz&6fQ|| and|I-|, we easily
obtain:

Corollary 5.10 (i) If n is polynomial orj| K, ||, then the maximum number of nodes in a completion graph
G € Gy is triple exponential inj| K, Q||.

(i) If @ and all of K except forA are fixed andh is a constant, then the maximum number of nodes in a
completion foresg € G- is polynomial in|.A|.

Proposition 5.11 The expansion @, into somej € G- terminates in time triple exponential jj¥, Q||
if n is polynomial on|| K, Q||. If @ and all of K except forA are fixed, andr is a constant, then the
expansion ofj. into somej € G- terminates in time polynomial ifA|.

Proof. The argument is similar to the one in the proof of Proposition 5.8 for the nodhs fiorest part
of the completion graph. Additionally, we must observe that :

1. The bound in the rule applications holds also in the presence of the mgkist rule. Again, if a
nodew is merged into a node’, thenw’ will inherits the labels and inequalities of, as well as all
its neighbors that are not variable successors (which are removadrsy). This will ensure that the
rule application that led to the generationgfwill never be repeated.

2. For each nominal nodeg theo?-rule can only be applied once for each concept of the farmS.C
in the label ofv.

Thus the number of rule applications is polynomially bounded in the numberdaisalG.

Note that, in total, the maximal number of applications of theule is |Ix|-c-(c-m)? (i.e., triple ex-
ponential in|| K, Q|| if n is polynomial on||K, Q||). The arguments are similar to those of the proof of
Claim 5.5. The bound is obtained from the one given in [23] by replacingideeémal depth\ by d. O

Theorem 5.12 Given aSHOZQ knowledge basé& and a union of conjunctive querids in which all
roles are simple, deciding whethéf = U is:

34 INFSYS RR 1843-06-03

1. in co-3NEXPTIME w.r.t. combined complexity, for both unary and binary encoding of numder
strictions in K.

2. in cO-2NEXPTIME w.r.t. combined complexity for a fixdd if number restrictions are encoded in
unary.

3. incoNP w.r.t. data complexity.

Proof (sketch). The argument is analogous to that in the proof of Theorem 5.9. By Rtmpos.11,
K [~ U can be decided in 3BNEPTIME, and in NP w.r.t. data complexity. For fixeg, unary encoding
yields an exponential drop in the size of the completion graph (and thus inuthber of rule applications
to obtain it) w.r.t. combined complexity. O

5.4 Data complexity

The upper bound for data complexity given in Theorems 5.9 and 5.12 anst-vase optimal. In [15],
coNP-hardness was proved for instance checking g\&€ knowledge bases, and recently this result has
been extended to description logics which are even less expressivel iafil0]. This allows us to state
the following main result.

Theorem 5.13 On knowledge bases in any description logic fretd to SHOZQ, answering unions of
conjunctive queries in which all roles are simplecisNP-complete w.r.t. data complexity.

This result provides an exact characterization of the data complexity @fdfGr a wide range of de-
scription logics. Note that for the most expressive &®,07 Q, the result is highly significant, since such
a logic is an extension af HOZN/, the description logic counterpart of the standard ontology language
OWL-DL [22, 36]. Itis interesting to see that once we include in the deSoripogic universal quantifica-
tion, one of the basic constructs of description logics, many more constarctse added without affecting
worst-case data complexity. Also, this result extends two prewimi$P-completeness results w.r.t. data
complexity, which are not obvious: On the one hand, in [32], the samedoaas proved for answering
UCQs overALCNR knowledge bases. Now we extend this result to a description logic includieg r
hierarchies, as well as inverse (and transitive) roles. On the othdr [80) showed acoNP-upper bound
for data complexity of query answering in the quite expressive descrifigio SHZQ, already a logic
lacking the finite model property. The result was established for atomideguenly, but can be immedi-
ately extended to tree shaped queries, since these admit a represestatatasaription logic concept (e.g.,
by making use of the notion of tuple-graph of [11], or via rolling up [2Tistead, its extension to arbitrary
conjunctive queries, which is what we have done in the present wookeg to be surprisingly involved
from a technical point of view.

5.5 Combined complexity

Theorems 5.9 and 5.12 do not provide optimal upper bounds with resptée tmmbined complexity of
query answering. The main reason is that the tableaux algorithms in [262&hdvhich we extended, are
also not worse case optimal. They are both nondeterministically double exainwhile satisfiability of a
knowledge base is an®TIME-complete problem fo6HZ Q [40] and NExpPTIME-complete foiSHOZ Q
[39]. Itis well known that often tableaux algorithms for expressive Bhsot provide optimal complexity

INFSYS RR 1843-06-03 35

upper bounds. However, they are easy to implement and amenable for epitbomsz[4]. Moreover, there
are efficient reasoners available that implement these algorithms [21, 19].

We want to point out that, in our algorithm, the witness of a blocked variable beuiss ancestor. This
restriction, however, could be eliminated, and blocking with any previoaaroence of an isomorphie-
tree could be used, without affecting the soundness and completertessatgorithm. We use the stricter
conditions for blocking in order to make them closer to the conventional mnBd tableaux, where it
is usually required that the blocking and the blocked variable are on the atime Despite the fact that
this condition actually increases the overall complexity of the algorithm, it is intbfmsgoractical reasons,
since it is consider better for implementation. If this condition is relaxed, blgckiay occur sooner and
the resulting completion graph/forest may be exponentially smaller than the @hawe described. This
exponential drop applies also to the satisfiability tableaux algorithms like in j2bJim[23]. With this
relaxed condition, we would obtain the same complexity upper bounds asdivesein [32]. In fact, the
absence of this additional condition of ‘blocking on the same path’ is the lagtason why the bounds
in [32] are exponentially lower than the ones we obtained.

Finally, from the results in [30] we know that a RETIME bound forSHZ Q can be achieved. This
bound coincides with the one given in [11] for containment of conjundajiveries oveLR. It remains
an open question whether this bound is tight. Our algorithm, even if we relaxabking conditions as
described above, would yield a non-optingal-2NEXPTIME worst-case complexity in the combined case.
As for SHOZQ, to the best of our knowledge, this is the only existing result concerningplexity of
answering conjunctive query answering, even without transitive rolgseries.

6 Conclusion

In this paper, we have studied answering conjunctive queries (C@sluion of conjunctive Queries
(UCQs) over knowledge bases in the expressive Description Logics)(®HZQ and SHOZQ, where
we have focused on the issue of data complexity, i.e., measuring the compliegitgry answering with
respect to the size of the ABox of the knowledge base while the other partixed. This setting is gain-
ing importance since DL knowledge bases are more and more used alsprfesenting data repositories,
especially in the context of the Semantic Web and in Enterprise Applicatiornrtiteg.

Generalizing a technique presented in [32] for a DL which is far lessesspre thanSHZQ and
SHOIQ, we have developed novel tableaux-based algorithms for CQ answarihgse DLs. These
algorithms manage the technical challenges caused by the simultaneouxereSmverse roles, number
restrictions, and general knowledge bases, leading to DLs which &iadabe finite model property. To
this end, we have developed suitable blocking conditions which ensure &tioniof the algorithm. They
are more involved than previous blocking conditions in [26], and paraimetkewith the depth of trees which
must be considered in blocking. Query answering itself is then accomplishadechnique which maps
the query to completion graphs, which are constructed using the tabladentdes, of bounded depth,
provided that queries have only simple roles.

The algorithms which we have developed are worst case optimal in data caty)d@d allows us to
characterize the data complexity of answering CQs and UCQs for a wide @nDLs, including very
expressive ones. Namely, for each description logic ranging fdhto SHOZ Q, both answering CQs and
UCQs having only simple roles csONP-complete w.r.t. data complexity. This closes the gap between the
known coNP lower bound and the best knownxETIME upper bound for even weaker DLs, providing a
negative answer to the open issue whether the data complexity of exprésstription logics will similarly
increase as their combined complexity.

36 INFSYS RR 1843-06-03

Some comments on our results in this paper are in order. We first point awuhenethod for query
answering can also be exploited to the problem of deciding query containngengiven two querie§);
and@q, is it true thatK' | Q. if K | @4, for each knowledge bad€? By virtue of the correspondence
between query containment and query answering [1], one can adagdgtirithms which we have presented
to decide containment of CQs, and furthermore also the containment of (@Q=h follows from easy
relationships between CQs and UCQs), for b8#Z Q andSHOZ Q. As a simple consequence, we thus
obtain that the equivalence of queriesS#ZQ andSHOZQ is decidable. This result may be exploited
for query optimization, and to the best of our knowledge is the first resuhigndirection for (union of)
conjunctive queries in expressive DLs.

Several issues remain for further work. The query languages @esidn this paper do not allow
arbitrary roles, but supposed that roles are simple. This constraingveows also adopted in [29]. To our
knowledge, only the recent [17] deals with transitive roles in CQs, btlheffiar less expressive DEH O,
which does not allow inverse roles and nominals and, differently 66 @ andSHOZQ, has the finite
model property. A natural question is whether the results in this papercetdenquery language in which
arbitrary roles may occur in queries. Currently, this is open, and to awleadge it is yet unknown whether
conjunctive query answering ifHZ Q andSHOZ Q remains decidable in this setting. It remains unclear
whether the algorithm which we have presented here can be exploiteel tlsenpresence of transitive roles
imposes difficulties in establishing a bound on the depth of completion foregth wéed to be considered
for answering a given query. It also remains to explore whether thgopeal technique can be applied to
even more expressive description logics, for example, containing ikefleransitive closure in the TBox
(in the style of PDL), or to more expressive query languages. We notggVer, that including inequality
atoms in CQs is not feasible; as follows from results in [11], answering Wi@sinequalities oveSHZ Q
knowledge bases is undecidable.

Apart from the issue of data complexity for expressive DLs, also the ogwdlcomplexity remains for
further investigation. It follows from [28] that the problem is in 2&TIME for SHZ Q. Hence, the bound
established above in Theorem 5.9 is not tight, since we build on tableauxtlahgsrthat are not optimal
in the worst case. Indeed, a more relaxed blocking condition can be whede the witness of the root
of a blocked tree need not necessarily be its ancestor. This optimizatios geldxponential drop in the
worst-case size of the forest, thus obtaining@2NEXPTIME upper bound. Note that this can also be
done in the standard tableau algorithms for satisfiability checking, but mightenconvenient from an
implementation perspective. Further optimization of the algorithms which we hagemed here may be
considered following the ideas in [14].

Finally, it remains as an interesting issue whether other techniques may ledappderive similar
results as those in this paper. For instance, whether resolution-babaijtexs as in [28, 30] or techniques
based on tree automata can be fruitfully applied. While the latter may look ciratlgpappealing, in
particular in the light of the completion forests employed by our algorithms, itiresess clear how with
respect to the data complexity the contribution of the ABox may be singled outhwias easy in the
tableaux-style algorithms which we have presented.

Acknowledgments

The authors thank lan Horrocks and Birte Glimm for many fruitful and stimudadiiscussions. They are
very grateful to them for pointing out errors in preliminary work to this gapad for helpful suggestions
for improvement.

INFSYS RR 1843-06-03 37

A Appendix

Proof of Lemma 3.13We will do the proof for each rule in Table 1.

First we will consider the deterministic, non-generating rules. There isam®y’ in F and the models
of F are exactly the models ¢f’. For the case of the-rule, there is some nodein F s.t. C1MCs € L(v).
SinceZ is a model ofF, thenv? € (C; M C2)%, and sinceZ is a model ofK, then bothw? € C¥ and
v? € CF hold. The inequality relation and all labels ji are exactly as inF, the only change is that
{C1,C3} C L(v)in F',s0T = F'.

The cases of the theé-rule and thev -rule, are similar to thel-rule. All labels of 7 are preserved
in 7. Only the label of the node to which the rule was applied is modified i, havingC' C £(w)
or YR'.C C L(w) respectively. Sincg is a model of K, v € (VR.C)? andw and R-neighbor ofv
imply 4 € C%, andv? € (VR.C)? andw and R’-neighbor ofv for some transitive sub-role @t imply
w? € (VR'.C)Z, then clearlyZ = F' in both cases.

Let us analyze the non-deterministic rules. For the case ofithde, there is some nodein F s.t.
C1 U Cy € L(v). After applying theLl-rule, we will have two forests, 5} with {C,} C L(v) in 7] and
{Cy} © L(v) in F} respectively. For ever§ such thatZ is a model ofF we havev? € (Cy L Cy)?, and
sinceZ is a model ofK, then eithen? € CT orv? € C7 hold. Ifitis the case that? € CZ, thenZ = 7,
and otherwis€ |= F}, so the claim holds.

The proof for the choose rule is trivial, since after its application we wilehi@wo forestsF;, F with
{C} € L(v) in Fjand{NNF(-C)} C L(v) in F respectively, but since trivially € (C L1 -C)? holds
for anyv, anyC and anyZ model of K, then for everyZ eitherZ = Fj orZ = F} holds.

When the<-rule is applied to a variable in F, then there is some concegtn S.C' in L(v) andv has
more tham S-neighborswy, . . ., w,, w, 1 that are labeled witll’. SinceZ = F, thenv? € (< nS.C)7,
which implies that in there are at most, . . ., 0, elements such thav”,o;) € ST ando; € CT. Thus
there arew; andw;, S-neighbors ofv and instances of’, with i # j andw; = w?. This implies that
w; % w; ¢ F, and the nodes can be merged as a result of the rule application. HenltusithedZ = 7/,
whereF is obtained from# by merging nodey; into w;.

Finally we consider the two generating rules. For the case ofithie, since the propagation rule was
applied, there is somein F such thadR.C € L£(v), which implies the existence of somec AZ with
(v%,0) € RT ando € C*. F' was obtained by adding t& a new node which we denote. Z will be
extended t@’ by settingw?’ = o, and thusl’ = F'.

The case of the>-rule is analogous to thé-rule, since in models o’ we have thatw? = o; for
1 <i < n,where{w,...,w,} are the variables added andoy, . . ., 0, denote the elements ih’ s.t.
(T, 0;) € RT ando; € C7 for the variablev in F to which the rule was applied. O

Note that this proof is very similar to the proof for soundnessS®fZ 9, given in detail in [25]. Intu-
itively, the difference is that they define a mappinfrom the forest nodes into the elements of the tableau.
Since we are doing the ‘steering’ of the algorithm directly with the model, thegratation function itself
maps nodes to elements of the domain. In the same way as the proof of sssifrone [25] is extended to
SHOIQ, this proof can be extended to the following Lemma.

Lemma A.1 LetG be a completion forests i, letr be arule in Table 1 and le&& be the set of completion
forests that can be obtained froghby applyingr. Then for evenZ such thatZ = F there is somg’ € G
and som¢’ that is an extension df such thatZ’ = G'.

Proof. For theSHZQ rules, the proof of Lemma 3.13 holds, just replédy G. For theo-rule, it is
applicable wherda} € £(v) N L(v") for some nominala} and two nodes andv’. SinceZ | F, it must

38 INFSYS RR 1843-06-03

be the case that’ = v'Z = a, thereforev can be merged into’ to obtainF’ andZ = F'. Finally, for the
o?-rule, it is only applicable te when< n S.C € L(v) and there is @’ S-neighbor ofv with C' € L(v').
If m = 1is guessed, then one new nadevill be generated iF’ with L(w) := {C, {w}} U gcon(K, C,).
Since{C} U gcon(K,C,) C L(v') andv’ is anS-neighbor ofv, we can extend to 7’ by settingw? = v/,
and therZ’ = F' holds. O

Using Lemma 4.9 and Lemma A.1 a proof of the next proposition is obtained fremrtof of Propo-
sition 3.14 (by replacing ‘forests’ by ‘graphs’ atdby G).

Proposition A.2 Letn > 0. For everyZ such thatZ |= K, there is somg € ccf,,(Gx) and some’ that
is an extension df such thatZ’ = G.

References

[1] S. Abiteboul and O. Duschka. Complexity of answering queries usiatgrialized views. IiProc.
17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Databasen®y/§DS’98)pp. 254—
265, 1998.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.tEl-8ahneider, editors he Description
Logic Handbook: Theory, Implementation and ApplicatioBambridge University Press, 2003.

[3] F. Baader and P. Hanschke. A schema for integrating concreteidindo concept languages. In
Proc. 12th Int. Joint Conf. on Atrtificial Intelligence (IJCAI'9Q1)p. 452-457, 1991.

[4] F. Baader and U. Sattler. An overview of tableau algorithms for detson logics. Studia Logica
69(1):5-40, 2001.

[5] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UMisdagramsAtrtificial Intelli-
gence 168(1-2):70-118, 2005.

[6] A. Borgida and R. J. Brachman. Conceptual modeling with descriptigitdo In Baader et al. [2],
chapter 10, pp. 349-372.

[7] D. Calvanese and G. De Giacomo. Expressive description logicBa&dler et al. [2], chapter 5, pp.
178-218.

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. RoBaitia complexity of query an-
swering in description logics. IRroc. 2005 Description Logic Workshop (DL 2006 EUR Electronic
Workshop Proceedingbi t p: / / ceur - ws. or g/ Vol - 147/, 2005.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rd3é&tiLite: Tractable description
logics for ontologies. IProc. 20th Nat. Conf. on Artificial Intelligence (AAAI 200%)p. 602-607,
2005.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. RRogzata complexity of query

answering in description logics. Froc. 10th Int. Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2006006.

[11] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidabilityuefy containment under
constraints. IrProc. 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of DataBgstems
(PODS’98) pp. 149-158, 1998.

INFSYS RR 1843-06-03 39

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering gaergng views over description
logics knowledge bases. Rroc. 17th Nat. Conf. on Artificial Intelligence (AAAI 2000p. 386—391,
2000.

[13] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-bassatesentation formalismsJ. of
Artificial Intelligence Researgi1:199-240, 1999.

[14] G. De Giacomo and F. Massacci. Combining deduction and model ictgeicko tableaux and algo-
rithms for converse-PDLInformation and Computatiqri60(1-2):117-137, 2000.

[15] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deductionconcept languages: From sub-
sumption to instance checking. of Logic and Computatiqr(4):423-452, 1994.

[16] M. J. Fischer and R. E. Ladner. Propositional dynamic logic aofileagprograms.J. of Computer and
System Scienceg$8:194-211, 1979.

[17] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answefarglescription logics with tran-
sitive roles. InProc. 2006 Description Logic Workshop (DL 2006)EUR Electronic Workshop Pro-
ceedingshtt p:// ceur-ws. org/, 2006.

[18] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries ovegedr InProc. 23rd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS pp0489—-200, 2004.

[19] V. Haarslev and R. Mller. RACER system description. Froc. Int. Joint Conf. on Automated Rea-
soning (IJCAR 2001)olume 2083 otecture Notes in Atrtificial Intelligencep. 701-705. Springer,
2001.

[20] J. Heflin and J. Hendler. A portrait of the Semantic Web in actiBEE Intelligent System46(2):54—
59, 2001.

[21] I. Horrocks. The FaCT system. In H. de Swart, editnpc. 7th Int. Conf. on Automated Reason-
ing with Analytic Tableaux and Related Methods (TABLEAUX'98)Jume 1397 ol ecture Notes in
Artificial Intelligence pp. 307-312. Springer, 1998.

[22] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. BbilQ and RDF to OWL: The making
of a web ontology languagd. of Web Semantic&(1):7—-26, 2003.

[23] I. Horrocks and U. Sattler. A tableaux decision procedureStHIOZ Q. In Proc. 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005)pp. 448—-453, 2005.

[24] I. Horrocks and U. Sattler. A tableaux decision procedureStaOZ Q. Technical report, Department
of Computer Science, University of Manchester, 2005. Availabletatp: / / ww. cs. nan. ac.
uk/ ~sattl er/ publications/shoiqg-tr. pdf.

[25] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoningefqressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov, editooc. 6th Int. Conf. on Logic for Program-
ming and Automated Reasoning (LPAR’9®)mber 1705 in Lecture Notes in Atrtificial Intelligence,
pp. 161-180. Springer, 1999.

[26] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individt@ishe description l0giSHZ Q. In
D. McAllester, editor,Proc. 17th Int. Conf. on Automated Deduction (CADE 2000jume 1831 of
Lecture Notes in Computer Scienpg. 482—-496. Springer, 2000.

40 INFSYS RR 1843-06-03

[27] I. Horrocks and S. Tessaris. A conjunctive query languagdédscription logic ABoxes. IRroc. 17th
Nat. Conf. on Artificial Intelligence (AAAI 200Q)p. 399404, 2000.

[28] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decisiomcpdures by resolution-
based calculi. IfProc. 11th Int. Conf. on Logic for Programming, Atrtificial IntelligenceddReasoning
(LPAR 2004)pp. 21-35, 2004.

[29] U. Hustadt, B. Motik, and U. Sattler. Reducir&HZ Q-description logic to disjunctive datalog
programs. InProc. 9th Int. Conf. on the Principles of Knowledge Representation aabdhing
(KR 2004) pp. 152-162, 2004.

[30] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning iry \epressive description
logics. InProc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2009p. 466—471, 2005.

[31] M. Lenzerini. Data integration: A theoretical perspective. Pimc. 21st ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS,ij0233-246, 2002.

[32] A. Y. Levy and M.-C. Rousset. Combining Horn rules and descriplogics in CARIN. Atrtificial
Intelligence 104(1-2):165-209, 1998.

[33] C. Lutz. Description logics with concrete domains: A survey. In BbBai, N.-Y. Suzuki, F. Wolter,
and M. Zakharyaschev, editor8dvances in Modal Logi¢s/olume 4. King’s College Publications,
2003.

[34] M. Ortiz de la Fuente, D. Calvanese, T. Eiter, and E. Franconi. ra€kerizing Data Complexity
for Conjunctive Query Answering in Expressive Description Logias.Ptoceedings 21th National
Conference on Artificial Intelligence (AAAI ’06), July 16-23, 2006st®a AAAI Press, 2006.

[35] M. Ortiz de la Fuente, D. Calvanese, T. Eiter, and E. Franconi. Oataplexity of Answering Unions
of Conjunctive Queries in SHIQ. IRroceedings 2006 International Workshop on Description Logics
(DL2006), The Lake District of the UK, May 30-June 1, 202806.

[36] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ogydlanguage semantics and abstract
syntax — W3C recommendation. Technical report, World Wide Web Consarkeb. 2004. Available
athttp://ww. w3. org/ TR/ ow - senmanti cs/.

[37] A. Schaerf. On the complexity of the instance checking problem icepinanguages with existential
quantification.J. of Intelligent Information Systen®:265-278, 1993.

[38] A. Schaerf. Reasoning with individuals in concept languageata and Knowledge Engineering
13(2):141-176, 1994.

[39] S. Tobies. The complexity of reasoning with cardinality restrictions raminals in expressive de-
scription logics.J. of Artificial Intelligence Resear¢hi2:199-217, 2000.

[40] S. TobiesComplexity Results and Practical Algorithms for Logics in Knowledge Reptagson PhD
thesis, LUFG Theoretical Computer Science, RWTH-Aachen, Germaay, 2

[41] M. Y. Vardi. The complexity of relational query languages. Rroc. 14th ACM SIGACT Symp. on
Theory of Computing (STOC’'82)p. 137-146, 1982.

