
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

DATA COMPLEXITY OF QUERY ANSWERING

IN EXPRESSIVEDESCRIPTIONLOGICS WITH

NOMINALS

M. Magdalena Ortiz Diego Calvanese Thomas Eiter

INFSYS RESEARCHREPORT1843-06-03

MAY 2006

INFSYS RESEARCHREPORT

INFSYS RESEARCHREPORT1843-06-03, MAY 2006

DATA COMPLEXITY OF QUERY ANSWERING IN EXPRESSIVE

DESCRIPTIONLOGICS WITH NOMINALS

M. Magdalena Ortiz,1 Diego Calvanese,2 and Thomas Eiter3

Abstract. The formal foundations of the standard web ontology languages, OWL-Lite and OWL-
DL, are provided by expressive Description Logics (DLs), such asSHIF andSHOIQ. In the
Semantic Web and other domains, ontologies are increasingly seen also as a mechanism to access
and query data repositories. This novel context poses an original combination of challenges that
has not been addressed before: (i) sufficient expressive power of the DL to capture common data
modeling constructs; (ii) well established and flexible query mechanisms such as those inspired
by database technology; (iii) optimization of inference techniques with respect to datasize, which
typically dominates the size of ontologies. This calls for investigating data complexity of query
answering in expressive DLs. While the complexity of DLs has been studied extensively, data
complexity of query answering in expressive DLs has been characterized only for restricted forms
of queries, and was still open for the standard query languages mutuated from databases, such a
conjunctive queries (CQs) and unions of CQs. We tackle this issue and prove a tightCONP upper
bound for the problem inSHOIQ, for the case where the query does not contain transitive roles.
We thus establish that for a whole range of DLs fromAL to SHOIQ, answering such CQs has
CONP-complete data complexity. We obtain our result by a noveltableaux-based algorithm for
checking query entailment, inspired by work on hybrid knowledge bases, but which manages the
technical challenges of simultaneous presence of inverse roles, number restrictions (which already
lead to a DL lacking the finite model property), and nominals.

Keywords: expressive description logics, query answering, data complexity, conjunctive queries,
unions of conjunctive queries, tableaux algorithms.

1Faculty of Computer Science, Free University of Bozen-Bolzano, and Institute of Information Systems,
Vienna University of Technology. E-mail: magdalena.ortiz@stud-inf.unibz.it.

2Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39010 Bolzano,
Italy. E-mail: calvanese@inf.unibz.it.

3Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail: eiter@kr.tuwien.ac.at.

Acknowledgements: This work was partially supported by the Austrian Science Funds (FWF) project
P17212 and the European Commission project REWERSE (IST-2003-506779).

Some results in this paper appear in preliminary form in the Proceedings of the 21th National Conference
on Artificial Intelligence(AAAI ’06) [34] and in the Informal Proceedings of the International Workshop on
Description Logics(DL 2006)[35].

Copyright c© 2006 by the authors

INFSYS RR 1843-06-03 I

Contents

1 Introduction 1

2 Preliminaries 3
2.1 The description logicsSHIQ andSHOIQ . 3
2.2 Conjunctive queries and unions of conjunctive queries 6

3 A Tableaux Algorithm for Query Entailment 8
3.1 SHIQ completion forests . 8
3.2 Models of a completion forest 13
3.3 Answering conjunctive queries 14

3.3.1 Tableaux and canonical models .. . 15
3.4 Answering unions of conjunctive queries 22

4 Extending the Algorithm to SHOIQ 22

5 Termination and Complexity 28
5.1 Bounding the size of completion forests and graphs 29
5.2 Complexity of the algorithm forSHIQ . 31
5.3 Complexity of the algorithm forSHOIQ . 32
5.4 Data complexity .. 34
5.5 Combined complexity .. 34

6 Conclusion 35

A Appendix 37

INFSYS RR 1843-06-03 1

1 Introduction

Description logics (DLs) [2] are logics specifically designed for representing structured knowledge by con-
cepts (i.e., classes of objects) and roles (i.e., binary relationships betweenclasses). They have been initially
developed to provide a formalization of frame-based systems and semantic networks, and expressive vari-
ants of DLs were shown to be in tight correspondence with representationformalisms used in databases and
software engineering [13, 5]. More recently, DLs gained increasing attention as the formal foundation for
the standard Web ontology languages [20]. In fact, the most significant representatives of such languages,
OWL-Lite and OWL-DL, are syntactic variants of two DLs of the well knownSH family, namely the DLs
SHIF(D) andSHOIN (D), respectively [22, 36]. In the Semantic Web and in other application domains
such as Enterprise Application Integration and Data Integration [31], ontologies provide a high-level, con-
ceptual view of the information relevant in a specific domain or managed by anorganization. However, they
are increasingly seen also as a mechanism to access and query data repositories, while taking into account
the constraints that are inherent in the common conceptualization.

This novel context poses an original combination of challenges unmet before, both in DLs/ontologies
and in related areas such as data modeling and querying in databases:

1. On the one hand, a DL should have sufficient expressive power to capture common constructs typically
used in data modeling [6]. This calls forexpressive DLs[7, 4], in which a concept may denote the
complement or union of others (to capture class disjointness and covering), may involve direct and
inverse roles (to account for relationships that are traversed in both directions), and may contain
number restrictions (to state existence and functionality dependencies and cardinality constraints on
the participation to relationships in general). Such concepts are then used inthe intentional component
of a knowledge base (the TBox), which contains inclusion assertions between concepts and roles,
while the extensional component (the ABox) contains assertions about themembership of individuals
to concepts and roles.

2. On the other hand, the data underlying an ontology should be accessedusing well established and
flexible mechanisms such as those provided by database query languages. This goes well beyond the
traditional inference tasks involving objects that have been considered and implemented in DL-based
systems, likeinstance checking[15, 37]. Indeed, since explicit variables are missing, DL concepts
have limited possibility for relating specific data items to each other.Conjunctive queries(CQs),
i.e., select-project-join SQL queries, and unions of CQs (UCQs) provide agood tradeoff between
expressive power and nice computational properties, (e.g., decidability of containment), and thus are
adopted as core query language in several contexts, such as data integration [31].

3. Finally, one has to take into account that data repositories can be very large and are usually much
larger than the intentional level used to express constraints on the data. Therefore, the contribution
of the extensional level (i.e., the data) to the complexity of inference should be singled out, and
one must pay attention to optimizing inference techniques with respect to data size, as opposed to
the overall size of the knowledge base. In databases, this is accounted for by data complexityof
query answering [41], where the relevant parameter is the size of the data, as opposed tocombined
complexity, which additionally considers the size of the query and of the schema.

Notable examples of the expressive DLs equipped with the features discussed above areSHIQ, which
also allows for asserting the transitivity of certain roles, andSHOIQ, which in addition provides the ability

2 INFSYS RR 1843-06-03

to talk and assert properties about specific individuals in the TBox. Note that these two DLs essentially1

correspond to the web ontology languages OWL-Lite and OWL-DL [22, 36], which have been promoted as
standards by the World Wide Web Consortium within the Semantic Web effort2.

A distinguishing feature of the web ontology language OWL-DL, and its corresponding counterpart
SHOIQ, is the inclusion ofnominals, which are concepts denoting a single individual. In their presence,
the crisp separation between TBox and ABox mentioned in item 1 above may become blurred. Indeed, the
use of nominals allows one to generalize ABox assertions, by combining them within the TBox in more
complex forms than simply conjunctively. Also, nominals allow for the modeling of individuals that play
a prominent role at the conceptual level. The added expressive powercoming from nominals, especially
when combined with the other features requested from expressive DLs,unfortunately results in an increased
computational complexity of inference. Indeed, while for most expressive DLs, TBox+ABox reasoning is
EXPTIME-complete [7], the addition of nominals makes the problem NEXPTIME-complete [39].

As for data complexity of DLs, [15, 37] showed that instance checking isCONP-hard already in the
rather weak DLALE , and [8] that CQ answering isCONP-hard in the yet weaker DLAL. For suitably
tailored DLs, answering UCQs over DL knowledge base is polynomial (actually LOGSPACE) in data com-
plexity [9, 10]. In [10], the problem is studied for theDL-Lite family of DLs, and two DLs are identified
for which the problem is LOGSPACE, and can effectively be reduced to evaluating a UCQ (i.e., a union of
select-project-join SQL queries) over a database, using standard relational technology. Also, an analysis is
carried out on which additions to the DL make the problem NLOGSPACE-hard, PTIME-hard, andCONP-
hard. The analysis essentially shows that the two identified DLs are the maximalones enjoying so called
FOL-reducibility (and hence LOGSPACE data complexity) of query answering. An further interesting con-
sequence is that seemingly minor additions to the DL (such as universal quantification, one of the construct
considered as basic in DLs) make the problem alreadyCONP-hard, and hence, as shown in our work, as
hard as for the very expressive DLs that we are considering.

For expressive DLs (with the features we have mentioned above, notablyinverse roles), TBox+ABox
reasoning has been studied extensively using a variety of techniques ranging from reductions to reason-
ing in Propositional Dynamic Logic (PDL) [16] (see, e.g., [11, 7]) over tableaux [4, 26] to automata on
infinite trees [7, 40]. For many such DLs, the combined complexity of TBox+ABox reasoning is EXP-
TIME-complete, includingALCQI [7, 40], DLR [11], andSHIQ [40]. However, until recently, little
attention has been explicitly devoted to data complexity in expressive DLs. An EXPTIME upper bound for
data complexity of CQ answering inDLR follows from the results on CQ containment and view-based
query answering in [11, 12]. They are based on a reduction to reasoning in PDL, which however prevents
to single out the contribution to the complexity coming from the ABox. Similar considerations hold for the
techniques in [27], which refine and extend the ideas introduced in [11],making the resulting algorithms
better suited for implementation on top of tableaux-based algorithms. In [32] a tight CONP upper bound
for CQ answering inALCNR is shown. However, this DL lacks inverse roles and is thus not suited to
capture semantic data models or UML. In [28, 30] a technique based on a reduction to Disjunctive Datalog
is used forALCHIQ. For instance checking, it provides a (tight)CONP upper bound for data complexity,
since it allows to single out the ABox contribution. The result can immediately be extended to tree shaped
conjunctively queries, since these admit a representation as a descriptionlogic concept (e.g., by making use
of the notion of tuple-graph of [11], or via rolling up [27]). However, this is not the case for general CQs,
resulting in a non-tight 2EXPTIME upper bound (matching also combined complexity).

1In fact, the OWL family of languages provides also the ability to deal with datatypes, which are an important feature for
applications, and whose theoretical counterpart in DLs are concrete domains [3, 33].

2http://www.w3.org/2001/sw/

INFSYS RR 1843-06-03 3

Summing up, a precise characterization of data complexity for CQ answering inexpressive DLs was
still open, with a gap between aCONP lower-bound and an EXPTIME upper bound. We close this gap,
thus simultaneously addressing the three challenges identified above. Specifically, we make the following
contributions:

• Building on tableaux-based techniques of [32, 26], we devise a novel tableaux-based algorithm for
CQ answering overSHIQ knowledge bases. Technically, to show its soundness and completeness,
we have to deal both with a novel blocking condition (inspired by the one in [32], but taking into
account inverse and transitive roles), and with the lack of the finite model property.

• This novel algorithm provides us with a characterization of data complexity for CQ answering in
expressive DLs. Specifically, we show that data complexity of answeringCQs with no transitive roles
overSHIQ andSHOIQ knowledge bases is inCONP, and thusCONP-complete for all DLs ranging
fromAL to SHOIQ.

The rest of the paper is organized as follows. After the necessary technical preliminaries in Section 2,
we present in Section 3 our algorithm for answering UCQs overSHIQ knowledge bases. We then show, in
Section 4, how the algorithm can be extended toSHOIQ. In Section 5, we discuss the resulting complexity
bounds, and in Section 6 we draw final conclusions. The proofs of two technical lemmas are included in an
appendix.

2 Preliminaries

In this section we introduce the technical preliminaries used in the rest of the paper. Specifically, we first
introduce syntax and semantics of the two description logicsSHIQ andSHOIQ, on which we base our
results, and then we define the query answering problem addressed in this work.

2.1 The description logicsSHIQ and SHOIQ

Description logics [2] are logics specifically well-suited for the representation of structured knowledge. The
basic elements of description logics areconcepts, denoting sets of objects of the domain of interest, and
roles, denoting binary relations between the instances of concepts. Arbitrary concept and role expressions
(in the following simply called concepts and roles) are formed by starting froma set of concept names and
a set of role names, and applying concept and roleconstructors. The domain of interest is then modeled
through a knowledge base, which is constituted by logical assertions both at the intensional level (specifying
the properties of concepts and roles), and at the extensional level (specifying the properties of individuals
and the relationships among individuals).

We start with the definition of roles, which is identical forSHIQ and forSHOIQ.

Definition 2.1 [SHIQ andSHOIQ roles] LetR be a countable set ofrole names, which we denote with
P , and letR+ be a subset ofR of transitive role names. A role expressionR (or simply role) is either a
role nameP ∈ R or the inverseP− of a role nameP . A role inclusionaxiom is an expression of the form
R ⊑ R′ whereR andR′ are roles. Arole hierarchyR is a set of role inclusion axioms.

The semantics of description logics, and specifically ofSHIQ andSHOIQ, is defined in terms of
first-order interpretations. AninterpretationI = (∆I , ·I) is constituted by a non-empty set∆I , thedomain

4 INFSYS RR 1843-06-03

of I, and aninterpretation function·I that maps each roleR in R to a subsetRI of ∆I ×∆I , such that the
following conditions are satisfied:

RI = (RI)+ for each transitive roleR ∈ R+

(R−)I = {〈o′, o〉 | 〈o, o′〉 ∈ RI}

An interpretationI satisfies a role inclusion axiomR ⊑ R′ if RI ⊆ R′I .
To avoid the need of treating differently (direct) and inverse roles, we introduce the functionInv as

follows:

Inv(R) =

{

P−, if R = P is a role-name

P, if R = P− for some role nameP

The relation⊑∗
R denotes the reflexive transitive closure of⊑ over a role hierarchyR ∪ {Inv(R) ⊑

Inv(R′) | R ⊑ R′ ∈ R}. If R ⊑∗
R R′, then we say thatR is asub-roleof R′ andR′ is asuper-roleof R

relative toR.
We need to characterize whether a role is transitive, either because it is a role name belonging toR+, or

because it is the inverse of such a role, or because the role hierarchy implies that it is both a sub-role and a
super-role of a transitive role. To this aim, we define the boolean functionTrans(R,R) as follows:

Trans(R,R) =











true, if R′ ∈ R+ or Inv(R′) ∈ R+,

for someR′ with R ⊑∗
R R′ andR′ ⊑∗

R R

false, otherwise

Finally, a roleS is simplew.r.t. a role hierarchyR if it is neither transitive nor has transitive sub-roles, i.e.,
for no roleR with Trans(R,R) we have thatR ⊑∗

R S.
In the following, whenR is clear from the context, we may omit it, and use⊑∗ andTrans(R) instead of

⊑∗
R andTrans(R,R), respectively. For the same reason, we also may omit the specification “w.r.t.R”.

We introduce nowSHIQ andSHOIQ concepts, and then knowledge bases.

Definition 2.2 [SHIQ andSHOIQ concepts] LetC be a countable set ofconcept names, disjoint from
the setR of role names.SHIQ-concepts are defined inductively according to the following syntax:

C −→ A atomic concept
C ⊓D conjunction
C ⊔D disjunction
¬D negation
∀R.C universal quantification
∃R.C existential quantification
≥ nS.C,≤ nS.C (qualified) number restriction

whereA denotes a concept name,C andD denote concepts,R a role,S a simple role, andn ≥ 0 an integer.
For SHOIQ concepts we additionally consider a setN of individualsto be used innominals, i.e., in

concepts denoting a single object, and we augment the above syntax rules with the following one:

C −→ {o} nominal

An atomicSHOIQ conceptis either a nominal{o} ∈ N or a concept nameB ∈ C.

INFSYS RR 1843-06-03 5

For an interpretationI = (∆I , ·I), we first extend the interpretation function·I to individuals inN, in
such a way that it assigns to each individualo ∈ N an elementoI ∈ ∆I under theunique name assumption,
i.e., if o1 6= o2, thenoI1 6= oI2 . We then extend·I to SHIQ andSHOIQ concepts by assigning to each
concept (including nominals, forSHOIQ) a subset of∆I in such a way that the following conditions are
satisfied:

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(¬C)I = ∆I \ CI

(∀R.C)I = {o | for all o′, 〈o, o′〉 ∈ RI implieso′ ∈ CI}
(∃R.C)I = {o | for someo′, 〈o, o′〉 ∈ RI ando′ ∈ CI}

(≥ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI ando′ ∈ CI}| ≥ n}
(≤ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI ando′ ∈ CI}| ≤ n}

{o}I = {oI}

ForSHOIQ, note that the interpretation of each nominal{o} is a singleton. Notice that the termnominal
typically refers to concepts that have to be interpreted as singletons, whichwe denote{o}. However, with
some abuse of terminology, we use the term nominal also to denote the individual o, which may appear
outside of concept expressions (in an ABox, see below).

In description logics, the knowledge about the domain of interest is encoded in a knowledge base, which
is constituted by an intensional component, called TBox, representing general knowledge about the domain,
and an extensional component, called ABox, representing knowledge about specific objects. Additionally,
in SHIQ andSHOIQ (as in the other description logics of theSH family), a role hierarchy might be
present.

Definition 2.3 [SHIQ andSHOIQ knowledge base] A (SHIQ orSHOIQ) concept inclusion axiomis
an expression of the formC ⊑ D for two (SHIQ orSHOIQ) conceptsC andD. A (SHIQ orSHOIQ)
TBox, or terminology,T , is a finite set of (SHIQ or SHOIQ) concept inclusion axioms.

Let I be a set ofindividuals, disjoint from the setC of concept names and from the set ofR role names.
Instead, we consider nominals as individuals, i.e.,N ⊆ I. An assertionα is an expression of the formA(a),
P (a, b) or a 6≈ b, whereA is a concept name,P is a role name anda, b are individuals inI. An ABoxA is a
set of assertions.

A (SHIQ orSHOIQ) knowledge base is a tripleK = 〈T ,R,A〉, whereT is a (SHIQ orSHOIQ)
terminology,R is a role hierarchy, andA is an ABox.

Without loss of expressivity, we assume that all concepts inK are innegation normal form(NNF), i.e.,
negation appears only in front of atomic concepts. Theclosureof a conceptC, clos(C), is the smallest set of
concept expressions containingC that is closed under subconcepts and their negation (expressed in NNF).
Theclosure ofK is denotedclos(K) and defined as the union of allclos(C) for eachC occurring inK. We
will denote byRK the roles occurring inK and their inverses. The individuals occurring inA are denoted
IA, IK denotes all the individuals occurring inK, andNK denotes the nominals inK, i.e.,IK ∩ N. Note
that, if K is aSHIQ knowledge base, thenIK = IA. For aSHOIQ knowledge baseK we have that
IA ⊆ IK andIK \ IA ⊆ NK .

Example 2.4 As a running example, we use theSHIQ knowledge base

K1 = 〈{A ⊑ ∃P1.A, A ⊑ ∃P2.¬A}, {}, {A(a)}〉

6 INFSYS RR 1843-06-03

and theSHOIQ knowledge base

K2 = 〈{A ⊑ ∃P1.A, A ⊑ ∃P2.{o}}, {}, {A(a)}〉.

We now define the semantics of knowledge bases. To do so, the interpretation function·I is extended to
all individuals inI, again under the unique name assumption.

Definition 2.5 [Model of a knowledge base] An interpretationI satisfies an assertionα if and only if:

aI ∈ AI if α is of the formA(a)
〈aI , bI〉 ∈ P I if α is of the formP (a, b)

aI 6= bI if α is of the forma 6≈ b

An interpretationI satisfies an ABoxA if it satisfies every assertion inA. I satisfies a role hierarchyR if
RI ⊆ SI for everyR ⊑ S in R. I satisfies a terminologyT if CI ⊆ DI for everyC ⊑ D in T . I is a
model ofK = 〈T ,R,A〉 if it satisfiesT , R andA.

We note that no complex concepts and roles are allowed to occur in an ABox.However, this is not
a limitation, since an assertionC(a) involving a complex concept can always be replaced by an assertion
A(a) in the ABox, together with a pair of inclusion assertionsA ⊑ C andC ⊑ A, whereA is a new concept
name. Such a transformation is satisfiability preserving.

Finally, we observe that inSHOIQ, due to the presence of nominals, an ABoxA in a knowledge base
K = 〈T ,R,A〉 can beinternalizedin the TBox, obtaining a knowledge baseK ′ = 〈T ′,R, {}〉 with an
empty ABox. Indeed,T ′ is obtained fromT by adding, for each ABox assertionα in A a TBox inclusion
axiom as follows:

• if α is of the formA(a), then add{a} ⊑ A to T ′;

• if α is of the formP (a, b), then add{a} ⊑ ∃P .{b} to T ′;

• if α is of the forma 6≈ b, then add{a} ⊑ ¬{b} to T ′.

It is easy to see thatK andK ′ have exactly the same models, so all reasoning services are preserved [38].

2.2 Conjunctive queries and unions of conjunctive queries

We introduce now conjunctive queries, which can be considered as the logical counterparts of select-project-
join SQL queries, and unions of conjunctive queries.

We assume thatK has an associated set ofdistinguished concept names, denotedCq, which are the
concepts that can occur in queries.

Definition 2.6 [Conjunctive query] Aconjunctive query(CQ)Q over a knowledge baseK is a set of atoms
of the form

{p1(Y1), . . . , pn(Yn)}

where eachpi in p1, . . . , pn is either a simple role name inRK or a concept name inCq; and eachYi in
Y1, . . . , Yn is is a tuple of variables or individuals inIK matching its arity.

Note that we do not allow for transitive or super-roles of transitive rolesin a CQ.

INFSYS RR 1843-06-03 7

Definition 2.7 [Union of conjunctive queries] Aunion of conjunctive queries(UCQ)U over a knowledge
baseK is an expression of the formQ1 ∨ · · · ∨Qm whereQi is a CQ for each0 ≤ i ≤ m.

To say thatQ is either a CQ or an UCQ, we simply say thatQ is aquery. We denote byvarsIndivs(Q)
the set of variables and individuals in a queryQ.

Queries are interpreted in the standard way. For a CQQi, an interpretationI is a model ofQi, denoted
I |= Qi, if there is a substitutionσ : varsIndivs(Qi) → ∆I such thatσ(a) = aI for each individual
a ∈ varsIndivs(Qi) andI |= p(σ(Y)), for eachp(Y) in Qi. For an UCQU = Q1 ∨ · · · ∨ Qm, I |= U is
defined asI |= Qi for some0 ≤ i ≤ m.

For a knowledge baseK and a queryQ, we say thatK entailsQ, denotedK |= Q, if I |= Q for each
modelI of K.

Example 2.8 Let Cq = {A}. We consider the CQs

Q1 = { P1(x, y), P2(x, z), A(y) },

Q2 = { P2(x, y), P2(y, z) },

Q3 = { P2(x, y), P2(y, o)}.

Note thatK1 |= Q1. Indeed, for an arbitrary modelI ofK1, we can mapx toaI , y to an object connected to
aI via roleP1 (which by the inclusion axiomA ⊑ ∃P1.A exists and is an instance ofA), andz to an object
connected toaI via roleP2 (which exists by the inclusion axiomA ⊑ ∃P2.¬A). Also,K1 6|= Q2. A model
I of K1 that is not a model ofQ2 is the one with∆I = {o1, o2}, aI = o1, AI = {o1}, P I

1 = {(o1, o1)},
andP I

2 = {(o1, o2)}.
We have thatK2 |= Q1, since for an arbitrary modelI of K2, we can mapx to aI , y to an object

connected toaI via roleP1 (which by the inclusion axiomA ⊑ ∃P1.A exists and is an instance ofA), and
z to oI , which is connected toaI via roleP2 by the axiomA ⊑ ∃P2.o. To see thatK2 6|= Q2, simply extend
the interpretationI given above by settingoI = {o2}. This extended interpretation is a model ofK2 and
not a model ofQ2. Finally,K2 |= Q3. In any modelI of K2, o must be mapped to the only element of
oI andx can be mapped toaI . Then, by the inclusion axiomA ⊑ ∃P1.A, aI must be connected viaP1 to
some instance ofA. The variabley can be mapped to this object, since the axiomA ⊑ ∃P2.o ensures that it
is connected to the element ofoI via roleP2.

Definition 2.9 [Query Entailment] LetK be a knowledge base and letQ be a query. Thequery entailment
problem is to decide whetherK |= Q.

Note that, according to Definitions 2.6 and 2.7, CQs (and hence also UCQs) have no free (i.e., distin-
guished) variables, so they are Boolean queries. In the traditional database setting, free variables in a query
are called distinguished variables. For a queryQ that has~x as distinguished variables, the query answering
problem overK consists on finding all the possible tuples of individuals~t of the same arity as~x such that
when~x is substituted by~t in Q, it holds thatK |= Q. The set of such tuples~t is the answer of the query.
Query answering has an associated recognition problem: given a tuple~t, the problem is to verify whether~t
belongs to the answer ofQ3.

Query answering for a certain DLL is in a complexity classC, if given any knowledge baseK in L and
queryQ, decidingK |= Q is in C; this is also calledcombined complexity. Thedata complexityof query
answering is the complexity of decidingK |= Q whereQ and all ofK exceptA is fixed.

3This problem is usually known as thequery output problem.

8 INFSYS RR 1843-06-03

3 A Tableaux Algorithm for Query Entailment

In this section, we describe our method for solving the query entailment problem for UCQs inSHIQ.
It is important to notice that the query entailment problem is not reducible to satisfiability of knowledge

bases, since the negation of a query in general can not be expressedas a part of a knowledge base. For this
reason, the known algorithms for reasoning over knowledge bases do not suffice. In general, a knowledge
base has an infinite number of possibly infinite models, and in principle we haveto verify whether the
query is entailed in all of them. In general, we want to provide an entailment algorithm, i.e., an algorithm
for checking whether a sentenceQ with a particular syntax (in our case, a conjunctive query or a union
of conjunctive queries) is entailed by aSHIQ knowledge base. Our technique builds on the tableaux
algorithm for knowledge base satisfiabilitySHIQ in [26]. Informally, the difference to that work is that
it only focuses on problems that can be reduced to checking satisfiability, and therefore the satisfiability
algorithm only needs to ensure that if the knowledge base has some model then the algorithm will obtain a
model. In our case, however, this is not enough. We need to make sure that the algorithm obtains a set of
models that suffices to check query entailment. This adaption to query answering is inspired by [32], yet we
deal with Description Logics that lack the finite model property.

We will first describe our method for decidingK |= Q whereQ is a CQ, and then how it is extended to
K |= U for an UCQU .

Like the algorithm in [26], we will usecompletion forests. A completion forest is a relational structure
that captures sets of models of a knowledge base. Roughly,K is represented as a completion forestFK .
Then, by applyingexpansion rulesrepeatedly, new completion forests are generated. The application of the
rules is non-deterministic, and sometimes new individuals are introduced. Modulo these new individuals,
every model of the knowledge base is preserved in some forest that results from the expansion. Therefore
checkingK |= Q is equivalent to checking whether the query is entailed in each completion forestF that
cannot be further expanded. Then, for each such forestF we will construct a singlecanonical model.
Semantically, these canonical models suffice for answering all queriesQ of bounded size. Furthermore, it
is proved that entailment in the canonical model can be checked effectively via a syntactic mapping of the
variables inQ to the nodes inF .

As customary with tableau-style algorithms, we give blocking conditions on the rules will ensure termi-
nation of forest expansion. They are more involved than those in [26], which serve for satisfiability checking
but not for query answering, and they involve a parametern which depends onQ. This parameter will be
crucial in ensuring that the canonical models of the set of forests we obtain suffice to check query entailment.

3.1 SHIQ completion forests

A forest will be defined as a set of variable trees. Avariable treeT is a tree all whose nodes are variables
excepting the root, which may be an individual, and where each nodev and arcv→w is labeled with a set
of conceptsL(v) ⊆ clos(K) and a set of rolesL(v→w) ⊆ RK , respectively. We denote bynodes(T) the
nodes of the variable treeT , by vars(T) the nodes innodes(T) which are variables, and byarcs(T) the arcs
in T .

Definition 3.1 [n-tree equivalence]
For any integern ≥ 0, then-tree of a nodev in T , denotedTn

v , is the subtree ofT rooted atv that
contains all descendants ofv within distancen. Variablesv andv′ in T aren-tree equivalent inT , if Tn

v and
Tn

v′ are isomorphic, i.e., there is a bijectionψ : nodes(Tn
v) → nodes(Tn

v′) such that:

INFSYS RR 1843-06-03 9

a

P2P2P2P2

v1

L1 L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2
v2 v4 v6 v8

P1P1P1 P1

T1

a

P2P2P2P2

v1

L1 L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2
v2 v4 v6 v8

P1P1P1 P1

L1 L1

P1 P1

P2 P2

L2 L2
v10 v12

v9 v11

T2

Figure 1: Trees and completion forests for the example knowledge base

• ψ(v) = v′

• for every nodew in nodes(Tn
v), L(w) = L(ψ(w))

• for every arc connecting two nodesw andw′ in nodes(Tn
v),

L(w→w′) = L(ψ(w)→ψ(w′)).

Definition 3.2 [n-Witness] If variablesv andv′ in T aren-tree equivalent,v′ is an ancestor ofv in T and
v is not inTn

v′ , thenv′ is an-witness ofv in T . Furthermore,Tn
v′ tree-blocksTn

v and each variablew in Tn
v′

tree-blocksvariableψ−1(w) in Tn
v .

Example 3.3 [cont’d] Consider the variable treeT1 in Figure 1, witha as root, whereL1 = {A, ¬A ⊔
∃P1.A, ¬A⊔∃P2.¬A, A⊔¬A, ∃P1.A, ∃P2.¬A}, andL2 = {¬A, ¬A⊔∃P1.A, ¬A⊔∃P2.¬A, A⊔¬A}.
Then,v1 andv5 are1-tree equivalent inT1; v1 is a witness ofv5 (but not vice versa);T1

1
v1

tree-blocksT1
1
v5

;
andv1 (resp.,v3, v4) tree-blocksv5 (resp.,v7, v8).

Definition 3.4 [completion forest [26]] Acompletion forestfor a knowledge baseK is given by a forest
of trees and an inequality relation6≈, implicitly assumed to be symmetric. The forest is a set of variable
trees whose roots are the individuals inIK and can be arbitrarily connected by arcs. For a completion forest
F , we denotenodes(F) the set of individuals and variables inF , andvars(F) the nodes inF which are
variables. The set of arcs inF is denotedarcs(F). For every arcv→w and roleR, if the labelL(v→w)
contains some roleR′ with R′ ⊑∗ R, thenw is anR-successorand anInv(R)-predecessorof v. We call
w anR-neighborof v, if w is anR-successoror anInv(R)-predecessorof v. Theancestorrelation is the
transitive closure of the union of theR-predecessor relations for all rolesR.

In order to provide a method for verifying entailment of a conjunctive query Q in a knowledge baseK,
we will first associate toK an initial completion forest and then we will generate new completion forests by
applyingexpansion rulesuntil no more expansions can be obtained.

Now we introduce the completion forests forK. In them we use a set ofglobal conceptsgcon(K, Cq) =
{¬C ⊔D | C ⊑ D ∈ T }∪{C ⊔¬C | C ∈ Cq}. Informally, by requiring that each individual belongs to all
global concepts, satisfaction of the TBox is enforced and, by case splitting, each individual can be classified
with respect to the distinguished concepts (i.e., those appearing in queries).

We associate aninitial completion forestFK with knowledge baseK as follows:

10 INFSYS RR 1843-06-03

• The nodes are the individualsa ∈ IK , andL(a) = {B | B(a) ∈ A} ∪ gcon(K, Cq).

• The arca→ b is present iffP (a, b) ∈ A for some role nameP , andL(a→ b) = {P | P (a, b) ∈ A}.

• a 6≈ b iff a 6= b ∈ A.

Example 3.5 In our running example,FK contains only the nodea which has the labelL(a) := {A,
¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.¬A, A ⊔ ¬A}.

Next, before giving the expansion rules, we define a notion of blocking which depends on a depth
parametern ≥ 0. This notion generalizes blocking in [26], where then parameter is not present.

Definition 3.6 [n-blocking] For integern≥ 0, a variable nodev in a completion forestF is n-blocked,
if v is not a root and either directly or indirectlyn-blocked. Nodev is indirectly n-blocked, if one of its
ancestors isn-blocked orL(w→ v)= ∅ for some arcw→ v in F . Nodev is directlyn-blockediff none of
its ancestors isn-blocked andv is a leaf of a tree-blockedn-tree inF .

Note thatx is m-blocked for eachm≤n if it is n-blocked. Whenn ≥ 1, thenn-blocking implies
pairwise blocking, which is the blocking used in [26]. Whenn=0, thenn-blocking corresponds to blocking
by equal node labels, which is a sufficient blocking condition in some DLs weaker thanSHIQ.

Example 3.7 ConsiderF1 with the variable treeT1 from Example 3.3 and with an empty6≈ relation.F1 is
1-blocked. Analogously, consider the completion forestF2 that has the variable treeT2 in Figure 1. InF2

the 6≈ relation is also empty.F2 is 2-blocked.

Now we can give our expansion rules. Note that the application of the rulesis non-deterministic. Differ-
ent choices forE in the⊔-rule and thechoose-rule generate different forests. The∃-rule and the≥-rule are
calledgenerating rulessince they add new nodes to the forest. The≤-rule is ashrinking rule, since it re-
moves a node of the foret by merging it into another. Note that our rules arevery similar to the ones in [26].
The main differences are that “blocked” is uniformly replaced by “n-blocked” and the∃-rule and≥-rule in
[26] are slightly different, since now the labels of the nodes they generatemust containgcon(K, Cq).

In the rules we use two operations on completion forests calledprune andmerge. To illustrate the use
of this operations, consider the rule≤-rule. Suppose some nodev is labeled by the concept≤ 2S.C,
andv has three successorsv1, v2, v3 all labeled withC, but v2 6≈ v3 does not hold. Then we can make
v satisfy≤ 2S.C, by merging the nodesv2 andv3 into one. For this purpose, we usemerge andprune.
Intuitively, merge(y, x) merges the nodey into x: the label ofy is added to the label ofx, all incoming
arcs tox are copied toy, and the outgoing arcs ofx to an individual node are also copied toy. After the
merging,prune(y) removesy fromF and, recursively, all its variables successors. Note that when we apply
merge(y, x) andx is a variable node, we do not need to copy any outgoing label, since variable nodes only
have variable nodes as successors, and these will be removed byprune.

Formally, for a completion forestF andx, y ∈ vars(F), the operationprune(y) yields a forest that is
obtained fromF as follows:

1. For eachz ∈ nodes(F) successor ofy, removey→ z fromarcs(F), and ifz ∈ vars(F) thenprune(z).

2. Removey from nodes(F) .

INFSYS RR 1843-06-03 11

The operationmerge(y, x) yields a forest obtained fromF as follows:

1. For eachz ∈ nodes(F) such thatz→ y ∈ arcs(F)

(a) if neitherx→ z nor z→x are in arcs(F), then addz→x to arcs(F) and setL(z→x) =
L(z→ y);

(b) if z→x is in arcs(F), then setL(z→x) = L(z→x) ∪ L(z→ y);

(c) if x→ z is in arcs(F), then setL(x→ z) = L(x→ z) ∪ {Inv(R) | R ∈ L(z→ y)};

(d) removez→ y from arcs(F).

2. For eachz ∈ nodes(F) \ vars(F) such thaty→ z ∈ arcs(F)

(a) if neitherx→ z nor z→x are in arcs(F), then addx→ z to arcs(F) and setL(x→ z) =
L(y→ z);

(b) if x→ z is in arcs(F), then setL(x→ z) = L(x→ z) ∪ L(y→ z);

(c) if z→x is in arcs(F), then setL(z→x) = L(z→x) ∪ {Inv(R) | R ∈ L(y→ z)};

(d) removey→ z from arcs(F).

3. SetL(x) = L(x) ∪ L(y).

4. Addx 6≈ z for eachz with y 6≈ z.

5. prune(y).

Definition 3.8 [Clash free completion forest] A nodev in a completion forestF contains aclashiff

1. for some conceptC, {C,¬C} ⊆ L(v)

2. ≤ nS.C. ∈ L(v) andv hasn + 1 S-successorsw0, . . . , wn such thatC ∈ L(wi) for all wi and
wi 6≈ wj ∈ F for all 0 ≤ i � j ≤ n.

A completion forestF is clash freeif none of its nodes contains a clash.

Definition 3.9 [n-complete completion forest] A completion forestF is n-complete if none of the rules in
Table 1 can be applied to it (undern-blocking).

We will denote asFK the set of all completion forest that can be obtained from the initialFK by applying
the expansion rules, and byccfn(FK) we denote the set of forests inFK that aren-complete and clash free.

Example 3.10 BothF1 andF2 can be obtained fromFK by applying the expansion rules. They are both
complete and clash-free, soF1 ∈ ccf1(FK) andF2 ∈ ccf2(FK).

12 INFSYS RR 1843-06-03

⊓-rule: if C1 ⊓ C2 ∈ L(v), v is not indirectlyn-blocked
and{C1, C2} * L(v)

then L(v) := L(v) ∪ {C1, C2}
⊔-rule: if C1 ⊔ C2 ∈ L(v), v is not indirectlyn-blocked

and{C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {E} for someE ∈ {C1, C2}

∃-rule: if ∃R.C ∈ L(v), v is notn-blocked and
v has noR-neighborw with C ∈ L(w)

then create new nodew with L(v→w) := {R}
andL(w) := {C} ∪ gcon(K, Cq)

∀-rule: if ∀R.C ∈ L(v), v is not indirectlyn-blocked and
there is anR-neighborw of v with C /∈ L(w)

then L(w) := L(w) ∪ {C}
∀+-rule: if ∀R.C ∈ L(v), v is not indirectlyn-blocked,

there is someR′ with Trans(R′) andR′ ⊑∗ R and
there is anR′-neighborw of v with ∀R′.C /∈ L(w)

then L(w) := L(w) ∪ {∀R′.C}
choose- if ≤ nS.C ∈ L(v) or≥ nS.C ∈ L(v),
rule: v is not indirectlyn-blocked and

there is anS-neighborw of v with {C,NNF (¬C)} ∩ L(w) = ∅
then L(w) := L(w) ∪ {E} for someE ∈ {C,NNF (¬C)}

≥-rule: if ≥ nS.C ∈ L(v), v is notn-blocked and
there are notS-neighborsw1, . . . , wn of v such thatC ∈ L(wi)
andwi 6≈ wj for 1 ≤ i < j ≤ n

then create new nodesw1, . . . , wn with L(v→wi) := {S},
L(wi) := {C} ∪ gcon(K, Cq) andwi 6≈ wj for 1 ≤ i < j ≤ n

≤-rule: if ≤ nS.C ∈ L(v),
v is not indirectlyn-blocked,
|{w | w is anS-neighbor ofv andC ∈ L(w)}| > n and
there areS-neighborsw, w′ of v with notw 6≈ w′,
andC ∈ L(w) ∩ L(w′)

then (i) if w is an individual node, thenmerge(w′, w)
else (ii) if w′ is an individual node or an ancestor ofw,

thenmerge(w,w′)
else (iii) merge(w′, w)

Table 1: Expansion Rules

INFSYS RR 1843-06-03 13

3.2 Models of a completion forest

Semantically, we can interpret a completion forest in the way we interpret a knowledge base. Viewing
variables in a completion forestF for K as individuals, an interpretationI = (∆I , ·I) of the individual
names, concepts an roles inF is an extended interpretation ofK. We thus define models ofF in terms
of extended models ofK. We will see completion forests as a representation of a set of models of the
knowledge base.

Definition 3.11 [Model of a completion forest] For a completion forestF ∈ FK , an interpretationI =
(∆I , ·I) is a model ofF , representedI |= F if I |= K and for all nodesv, w ∈ F the following hold:

• if C ∈ L(v), thenvI ∈ CI

• if R ∈ L(v→w) then〈vI , wI〉 ∈ RI

• if v 6≈ w ∈ F , thenvI 6= wI

We want to emphasize that in order to be a model of a completion forest forK, an interpretation must be
a model ofK. The initial completion forest is just an alternative representation of the knowledge base, and
it has exactly the same models. When we expand the forest, we will make choices and obtain new forests
that capture a subset of the models of the knowledge base.

Lemma 3.12 An interpretationI is a model ofFK iff I is a model ofK.

Proof. The if direction follows from Definition 3.11. To prove the other direction, it suffices to consider
an arbitrary modelI of K and verify that for for all nodesa, b ∈ nodes(FK) the following hold:

(i) if C ∈ L(a), thenaI ∈ CI

(ii) if R ∈ L(a→ b) then〈aI , bI〉 ∈ RI

(iii) if a 6≈ b ∈ FK , thenaI 6= bI

By definition, the nodes inFK correspond exactly to the individuals inIK . For each such individual
a, the label ofa in FK is given asL(a) = {B | B(a) ∈ A} ∪ gcon(K, Cq). SinceI is a model ofA, if
B(a) ∈ A thenaI ∈ BI . For any conceptC ∈ gcon(K, Cq), eitherC is of the form¬D ⊔ E for some
D ⊑ E in T or C is of the formB ⊔ ¬B for a concept nameB. In the first case,aI ∈ (¬D ⊔ E)I must
hold becauseI is a model ofT . In the other case,oI ∈ (B ⊔ ¬B)I holds for any individualo in ∆I and
any conceptB by the definition of interpretation. So we have thataI ∈ CI for everyC ∈ L(a) and item(i)
holds. The label of a pair of nodesa, b in FK is given byL(a→ b) = {P | P (a, b) ∈ A}. SinceI is a
model ofA, 〈aIbI〉 ∈ P I for everyP (a, b) in A, hence item(ii) holds. Analogously, the6≈ relation was
initialized witha 6= b for everya 6≈ b in A, so item(iii) will also hold for anyI model ofA.

As we prove in Proposition 3.14, the union of all the models of the forests inccfn(FK) captures all the
models of a knowledge baseK, independently of the value ofn. This result is crucial, since it allows us
to ensure that checking the forests inccfn(FK) suffices to check all models ofK. In order to prove this
result, we will use following lemma. It states that when applying any of the rulesin Table 1, all models are
preserved. The proof is straightforward yet long, so it is given in the Appendix.

14 INFSYS RR 1843-06-03

Lemma 3.13 LetF be a completion forests inFK , letr be a rule in Table 1 and letF be the set of completion
forests that can be obtained fromF by applyingr. Then for everyI such thatI |= F there is someF ′ ∈ F

and someI ′ that is an extension ofI such thatI ′ |= F ′.

Now we can easily prove that the union of models of the forests inccfn(FK) is exactly the set of all
models ofK modulo new individuals.

Proposition 3.14 Letn ≥ 0. For everyI such thatI |= K, there is someF ∈ ccfn(FK) and someI ′ that
is an extension ofI such thatI ′ |= F .

Proof. First observe that by the definition of interpretation and by Definition 3.11, ifa forestF has a
clash, then there is noI with I |= K. Let Fn denote the set of completion forests obtained fromFK by
n applications of the expansion rules, andcf(Fn) the set there forests that are clash free. Consider anyI
such thatI |= K. The proposition follows from the fact that while applying the propagation rules,I will be
preserved, and maybe extended, until some complete forestFc is reached. This is captured in the following
claim: There is someI ′ extension ofI and someF ∈ cf(Fn) with I ′ |= F . The claim can be verified by
a simple induction onn. If n = 0, then eithercf(Fn) = {FK} and the claim holds by Lemma 3.12, or
FK contains a clash. In the later case,K has no models and the claim holds by antecedent failure. For the
inductive step, consider anyF ∈ cf(Fn). If I |= F , then by Lemma 3.13, there is someI ′ extension ofI
and someF ′ ∈ F

n+1 such thatI ′ |= F ′. SinceF ′ has a model, thenF ′ ∈ cf(Fn+1).

3.3 Answering conjunctive queries

Recall, that for a knowledge baseK and a queryU , we say thatK |= U iff for every interpretationI,
I |= K impliesI |= U . Analogously, we define a semantical notion of query entailment in a completion
forest: for a completion forestF and a queryU , we say thatF |= U iff for every interpretationI, I |= F
impliesI |= U . We are interested in checking whetherK |= U , but this means that entailment ofU has
to be verified in every model ofK. However, we know that it suffices to check entailment in each forest
F ∈ ccfn(FK) for anyn, since semantically, they capture all the models of the knowledge base. This is
stated in the following proposition:

Proposition 3.15 Letn ≥ 0 be arbitrary. ThenK |= U iff F |= U for eachF ∈ ccfn(FK).

Proof. The only if direction is easy. Consider anyF ∈ FK . Since any modelI of F is a model ofK
by definition, thenK |= U impliesF |= U . The if direction can be done by contraposition. IfK 2 U , then
there is some modelI of K such thatI 2 U . By Proposition 3.14, there is someI ′ extension ofI such that
I ′ |= F for someF ∈ ccfn(FK). I 2 U impliesI ′ 2 U , and thusF 2 U .

This result is crucial for our query answering method, since it ensuresthat to check query entailment we
must only considerccfn(FK), a finite set of finite structures. Now, we will see that for a suitablen, F |= U
for anF ∈ ccfn(FK), we can be verified by finding a syntactical mapping of the query intoF . We will first
do it for a CQQ, and in Section 3.4 we will extend it to an UCQU .

Definition 3.16 We say thatQ can be mapped into a completion forestF , denotedQ →֒F , if there is a
mappingµ : varsIndivs(Q) → nodes(F) that is the identity mapping for all individuals invarsIndivs(Q)
and that satisfies the following:

INFSYS RR 1843-06-03 15

1. For allC(x) in Q, C ∈ L(µ(x)).

2. For allR(x, y) in Q, µ(y) is anR-neighbor ofµ(x).

Example 3.17Q1 →֒F2 holds, as witnessed by the mappingµ(x) = a, µ(y) = v2 andµ(z) = v1. Note
that there is no mapping ofQ2 intoF2 satisfying the above conditions.

We will relate the semantical notionF |= Q, with the syntactical notion of mappabilityF →֒Q, i.e., we
will show that the query can be mapped into a forest iff every model of the forest is a model of the query.
The only if direction is easy, if a mappingµ exists, thenQ is satisfied in any modelI = (∆I , ·I) of F .

Lemma 3.18 If Q →֒F , thenF |= Q.

Proof. SinceQ →֒F , there is a mappingµ : varsIndivs(Q) → nodes(F) satisfying conditions 1 and 2.
Take any arbitrary modelI = (∆I , ·I) of F . By definition, it satisfies the following:

• if C ∈ L(x), thenxI ∈ CI

• if x is anR-neighbor ofy, then〈xI , yI〉 ∈ RI .

• if x 6≈ y ∈ F , thenxI 6= yI

We can define a substitutionσ from the variables and individuals invarsIndivs(Q) to objects in∆I as
σ(x) = µ(x)I , and it satisfiesσ(Y) ∈ pI for all p(Y) in Q.

The if direction is more challenging. Now the blocking conditions come into play and the mapping will
only be feasible ifn is sufficiently large. We show that providedF has been expanded far enough, a suitable
mappingµ can be constructed from some model ofF . In particular, we construct for eachF asinglemodel
IF , called thecanonical model ofF . This canonical model suffices to check entailment in the forest forall
queriesQ of bounded size. As we will see, the canonical model can be used to prove that ifQ is satisfied in
this model, then we can construct the mappingµ from it.

3.3.1 Tableaux and canonical models

In order to build the canonical model forF , we will proceed in two steps. First, we will unravel the forest
into a tableau, and then induce a model from this tableau.

From any forestF ∈ F ∈ ccfn(FK) for n ≥ 1, we can construct a tableau forK. If F contains blocked
nodes, then its tableau will be an infinite structure. The tableauT of a forestF will correspond to the
unravelingof F . i.e. the structure obtained by considering each path to a node inF as a node ofT , where
the blocked nodes act like ‘loops’. Following [26], we will give a rather complex definition of a tableau.
Defining a model ofK from it will then be straightforward.

Definition 3.19 [Tableau]T = 〈S,L, E , I〉 is a tableau for a knowledge baseK = 〈A,R, T 〉 iff

• S is a non-empty set,

• L : S → 2clos(K) maps each element inS to a set of concepts,

• E : RK → 2S×S maps each role to a set of pairs of elements inS, and

16 INFSYS RR 1843-06-03

• I : IK → S maps each individual occurring inA to an element inS.

Furthermore, for alls, t ∈ S; C,C1, C2 ∈ clos(K) andR,R′, S ∈ RK , T satisfies:

(P1) ifC ∈ L(s), then¬C /∈ L(s),

(P2) ifC1 ⊓ C2 ∈ L(s), thenC1 ∈ L(s) andC2 ∈ L(s),

(P3) ifC1 ⊔ C2 ∈ L(s), thenC1 ∈ L(s) orC2 ∈ L(s),

(P4) if ∀R.C ∈ L(s) and〈s, t〉 ∈ E(R), thenC ∈ L(t),

(P5) if ∃R.C ∈ L(s), then there is somet ∈ R such that〈s, t〉 ∈ E(R) andC ∈ L(t),

(P6) if ∀R.C ∈ L(s) and〈s, t〉 ∈ E(R′) for someR′ ⊑∗ R with Trans(R′) = true then∀R.C ∈ L(t),

(P7) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)),

(P8) if 〈s, t〉 ∈ E(R) andR ⊑∗ S then〈s, t〉 ∈ E(S),

(P9) if≤ nS.C ∈ L(s), then|{t ∈ S | 〈s, t〉 ∈ E(S) andC ∈ L(t)}| ≤ n,

(P10) if≥ nS.C ∈ L(s), then|{t ∈ S | 〈s, t〉 ∈ E(S) andC ∈ L(t)}| ≥ n,

(P11) if〈s, t〉 ∈ E(R) and either≤ nS.C ∈ L(s) or≥ nS.C ∈ L(s), thenC ∈ L(t) orNNF (¬C) ∈ L(t),

(P12) ifC(a) ∈ A thenC ∈ L(I(a)),

(P13) ifR(a, b) ∈ A then〈I(a), I(a)〉 ∈ E(R),

(P14) ifa 6= b ∈ A thenI(a) 6= I(a),

(P15) ifC ∈ gcon(K, C), then for alls ∈ S C ∈ L(s).

We can easily obtain a canonical model of a knowledge base from a tableaufor it.

Definition 3.20 [Canonical Model of a Tableau] LetT be a tableau. Thecanonical model ofT , IT =
(∆IT , ·IT) is defined as follows:

∆IT := S

for all concept namesA in clos(K),

AIT := {s | A ∈ L(s)}

for all individual namesa in IK ,

aI := a

for all role namesR in R,

RIT := E(R)⊕

whereE(R)⊕ theclosure of the extensionof R underR, which is defined as:

INFSYS RR 1843-06-03 17

E(R)⊕ :=

{

(E(R))+ if Trans(R)
E(R) ∪ sub(E(R)⊕) otherwise

where(E(R))+ denotes the transitive closure ofE(R) and

sub(E(R)⊕) =
⋃

S⊑∗R,P 6=R

E(S)⊕.

Lemma 3.21 LetT be a tableau forK. The canonical model ofT is a model ofK.

Proof. ThatIT is a model ofR andA can be proved exactly as in the proof of Lemma 2 in [26]. Due to
(P15), it can be easily verified thatIT is also a model ofT .

EachF ∈ ccfn(FK) induces a tableauTF , and this tableau gives us acanonical modelfor F , which we
will denoteIF .

Definition 3.22 [Tableau induced by a completion forest] Apath in a completion forestF is a sequence
of pairs of nodes of the formp = [v0

v′
0
, . . . , vn

v′
n
]. In such a path, we definetail(p) = vn andtail′(p) = v′n;

and [p | vn+1

v′
n+1

] denotes the path[v0
v′
0
, . . . , vn

v′
n
, vn+1

v′
n+1

]. For any pathp and variablew ∈ vars(F), if w is not

blocked andw is anR-successor oftail(p), then[p | w
w

] is anR-stepof p. If w′ is blocked byw andw′ is an
R-successor oftail(p), then[p | w

w′] is anR-step ofp.
Given a completion forestF , the setpaths(F) is defined inductively as follows:

• If a is a root inF , [a
a
] ∈ paths(F).

• If p ∈ paths(F) andq is a step ofp, thenq ∈ paths(F).

The tableauTF = (S,L, E , I) induced by the completion forestF is defined as follows:

S = paths(F)
L(p) = L(tail(p))
E(R) = {〈p, q〉 ∈ S × S | q is anR-step ofp} ∪

{〈p, q〉 ∈ S × S | p is anInv(R)-step ofq} ∪
{〈p, q〉 ∈ S × S | tail(q) is an individual node and

anR-successor oftail(p)} ∪
{〈p, q〉 ∈ S × S | tail(p) is an individual node and

anInv(R)-successor oftail(q)}
I(a) = [a

a
]

Note that the definition ofR-steps requiresw to be a variable node. Every path starts with a nodea
a

for
some individuala, and a node of such a form never occurs after the first position in sucha path. The last two
cases in the definition ofE(R) are necessary in order to consider the arcs arbitrarily connecting individual
nodes, which are not unraveled.

Example 3.23 By unravelingF1, we obtain a modelIF1 that has as a domain the infinite set of paths from
a to eachvi. Note that a path actually comprises a sequence of pairs of nodes, in order to witness the loops
introduced by blocked variables. When a node is not blocked, likev1, the pairv1

v1
is added to the path. Since

18 INFSYS RR 1843-06-03

T 1
v1

tree-blocksT 1
v5

, every time a path reachesv7, which is a leaf of a blocked tree, we addv3
v7

to the path
and ‘loop’ back to the successors ofv3. In this way, we obtain the following infinite set of paths:

p0 = [a
a
], p6 = [a

a
, v1

v1
, v3

v3
, v6

v6
],

p1 = [a
a
, v1

v1
], p7 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
],

p2 = [a
a
, v2

v2
], p8 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v4

v8
],

p3 = [a
a
, v1

v1
, v3

v3
], p9 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v5

v5
],

p4 = [a
a
, v1

v1
, v4

v4
], p10 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v6

v6
],

p5 = [a
a
, v1

v1
, v3

v3
, v5

v5
], p11 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v5

v5
, v3

v7
],

...

This set of paths is the domain ofIF . The extension of each conceptC is determined by the set allpi

such thatC occurs in the label of the last node inpi. For the extension of each roleR, we consider the
pairs〈pi, pj〉 such that the last node inpj is anR-successor ofpi. If R ∈ R+, its extension is transitively

expanded. Thereforep0, p1, p3, . . . are inAIF1 , and〈p0, p1〉, 〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are all inP
IF1
1 .

Lemma 3.24 Letn ≥ 1. EveryF ∈ ccfn(FK) induces a modelIF ofK.

Proof. First, it is proved as in [26] that everyF ∈ ccfn(FK) for n ≥ 1 induces a tableauTF for K. For
the last item of the proof of(P9), note that sincen ≥ 1, pairwise blocking is subsumed and the existence
theu predecessor can be ensured.(P15) also holds due to the following facts:

• All nodesv are initialized withgcon(K, Cq) ⊆ L(v).

• The concept names ingcon(K, Cq) are never removed from the label of a node unless the label is set
to ∅ by the≤-rule. In this case, the label of the node is never modified again.

SinceTF is a tableau forK, it has a canonical modelIF that is a model ofK.

Now we will prove that, for a sufficiently largen, if Q is entailed by the canonical model of ann-
complete and clash free forest, then a mapping of the variables inQ into the forest itself can be achieved.
This reveals that, semantically, this canonical model suffices to check query entailment.

In this proof, the blocking parametern will be crucial. As we mentioned, it depends onQ. More
specifically, it depends in what we callmaximalQ-distance. If the canonical model of a forestF entailsQ,
then there is a mappingσ of the variables inQ into the nodes of the tableau induced byF . Intuitively, the
maximalQ-distanceis the length of the longest path between two connected nodes of the graphG defined
by the image of the query underσ. For a maximalQ-distance ofd, ad-complete completion forest will be
large enough to find a mapping whose image is isomorphic toG, sinceG has no paths longer thand.

We show that from any mappingσ of the variables and constants inQ intoIF satisfyingQ, a mappingµ
of Q into F can be obtained. For a given forestF in ccfn(FK) for somen, letTF = 〈S,L, E , I〉 denote its
tableau andIF the canonical interpretation ofF . If IF |= Q, then there is a mappingσ : varsIndivs(Q) → S

such that for everyR(x, y) in Q, 〈σ(x), σ(y)〉 ∈ E(R′) for someR′ ⊑∗ R. Consider the image ofQ
underσ in TF . We restrict it to the subgraphG obtained by removing each node of the form[a

a
] for some

individual a(with its corresponding incoming and outgoing edges). Note thatG comprises a set of tree-
shaped components. The reason to consider only the subgraphG will be clear later. Informally, we want
prove that there is, in the completion graphF , a subgraph isomorphic to the image ofQ into TF . For the

INFSYS RR 1843-06-03 19

arcs in the query graph involving nodes like[a
a
] for some individuala, the existence of an isomorphic arc in

F is trivial, since the non-tree shaped part ofTF is isomorphic toF . It is only in the tree-shaped parts ofTF
that the structure was unraveled, and the mapping of the query intoTF may use nodes that do not explicitly
exist inF . The possibility of finding a mapping ofQ intoF from the mapping ofQ into TF will depend on
the size and structure of the tree-shaped components of the query image.

Definition 3.25 Let F be a forest inccfn(FK) (for somen) such thatIF |= Q. Consider a mappingσ
verifying the conditions in Definition 3.16. LetG denote the subgraph of the image ofQ underσ in TF
obtained by removing each node of the form[a

a
] for some individuala. For anyx, y in varsIndivs(Q), if σ(x)

andσ(y) are nodes ofG and there is a path between them, thendσ(x, y) denotes the length of the shortest
such path. Otherwisedσ(x, y) = 0. Finally, themaximalQ-distance ofσ, denoteddσ

Q, is the maximal
dσ(x, y) for all x, y in varsIndivs(Q).

Example 3.26 The canonical modelIF1 modelsQ1. We can consider the following substitutionσ: σ(x) =
p7, σ(y) = p9 andσ(z) = p10. The image ofQ1 underσ has no nodes of the form[a

a
], soG is the graph

with nodesp7, p9 andp10 and arcsp7 → p9 andp7 → p10. Moreover,dσ(x, y) = 1, dσ(x, z) = 1 and
dσ(y, z) = 0, sodσ

Q = 1.

In the following, letnQ denote the number of role atoms inQ. Since only simple roles occur in the query,
every pair of variablesx, y in varsIndivs(Q) that occur in someR(x, y) ∈ Q hasdQ(x, y) = 1, and thus
dσ

Q is bounded bynQ. Due to this fact, when expanding the completion forest it is sufficient to considern-
blocking as a termination condition for anyn ≥ nQ. Now we prove that for any suchn and for any complete
and clash freen-completion forestF , if IF |= Q, then there is a mappingµ : varsIndivs(Q) → nodes(F)
that witnesses the entailment ofQ.

Proposition 3.27 Consider anyF ∈ ccfn(FK) with n ≥ nQ, and letIF be the canonical model ofF . If
IF |= Q thenQ →֒F .

Proof. SinceIF |= Q, then there is aσ : varsIndivs(Q) → ∆IF s.t.

• For allC(x) in Q, σ(x) ∈ CIF .

• For allR(x, y) in Q, 〈σ(x), σ(y)〉 ∈ RIF .

Since∆IF = S, σ(x) andσ(y) and correspond to paths inF . By the definition ofIF , the mappingσ
satisfies that for allC(x) in Q, C ∈ L(σ(x)) and for allR(x, y) in Q, 〈σ(x), σ(y)〉 ∈ E(R′) for some
R′ ⊑∗ R.

We will define a new mappingµ : varsIndivs(Q) → nodes(F). In order to defineµ, we will use again
the graphG, given by the image ofQ underσ (on the graphTF restricted to the roles occurring in the query),
and we will restrict it to have only the images of the variables invars(Q) as nodes. This graph consists of
a set of tree-shaped componentsG1, . . . , Gk. For each connected componentGi, let nodes(Gi) denote the
set of nodes ofGi. We define the setblockedLeaves(Gi) as the set containing each nodep of Gi such that
tail(p) 6= tail′(p), and for every ancestorp′ of p inGi, tail(p′) = tail′(p′). The setafterblocked(Gi) contains
all the nodes innodes(Gi) that are descendants of some node inblockedLeaves(Gi).

Recalling the definition ofpaths(F), sinceF is n-blocked, it is easy to see that if a pathp contains two
nodes v

v′ and w
w′ such thatv 6= v′ andw 6= w′, then the distance between these two nodes inp is strictly

greater thann. Also, if p contains first a nodev
v

that is not tree blocked and further onp there is a nodew
w′

such thatw 6= w′, then the distance betweenv
v

and w
w′ is also greater thann. Thus the following also hold:

20 INFSYS RR 1843-06-03

(*) If σ(x) is in afterblocked(Gi) for someGi, tail(σ(x)) = tail′(σ(x)).
If σ(x) ∈ afterblocked(Gi) then, by definition,σ(x) is a successor ofσ(y) for somey ∈ vars(Q)
such thattail(σ(y)) 6= tail′(σ(y)), i.e.,σ(x) is of the form[p | v0

v0
′ , . . . ,

vm

vm
′], with tail(p) 6= tail′(p).

Therefore, ifvm 6= vm
′ then the sequence of nodestail(p)

tail′(p) ,
v0
v0

′ , . . . ,
vm

vm
′ has a length strictly greater

thann, and thusdσ(x, y) > nQ, which is a contradiction.

(**) If σ(x) ∈ nodes(Gi) for someGi with afterblocked(Gi) 6= ∅ andσ(x) 6∈ afterblocked(Gi), then
tail′(σ(x)) is tree-blocked byψ(tail′(σ(x))).
If afterblocked(Gi) 6= ∅, then there is somey ∈ varsIndivs(Q) such thatσ(y) ∈ nodes(Gi) has
as a proper subpath somep such thattail(p) = tail′(p). Sinceσ(x) andσ(y) are in the same tree
componentGi, then eitherσ(x) is an ancestor ofσ(y) or there is somez ∈ varsIndivs(Q) such that
σ(z) is a common ancestor ofσ(x) andσ(y) in nodes(Gi). In the first case, iftail′(σ(x)) was not
tree-blocked, we would have thatdσ(x, y) > n ≥ nQ, which is a contradiction. In the second case, if
tail′(σ(x)) was not tree-blocked, thentail′(σ(z)) would not be tree-blocked either, and thus we also
derive a contradiction sincedσ(z, y) > n ≥ nQ.

Therefore, we can define the mappingµ : varsIndivs(Q) → nodes(F) as follows:

• For each individuala in varsIndivs(Q), µ(a) = tail(σ(a)) = a.

• For each variablex in varsIndivs(Q) such thatσ(x) ∈ nodes(Gi) for someGi which satisfies that
afterblocked(Gi) = ∅, µ(x) = tail(σ(x)).

• For each variablex in varsIndivs(Q) such thatσ(x) ∈ nodes(Gi) for someGi which satisfies that
afterblocked(Gi) 6= ∅, the mappingµ is given by:

µ(x) =

{

tail′(σ(x)) if σ(x) ∈ afterblocked(Gi)
ψ(tail′(σ(x))) otherwise

Now we will show that it has the following properties:

1. If C ∈ L(σ(x)), thenC ∈ L((µ(x))).

2. If 〈σ(x), σ(y)〉 ∈ E(R′), thenµ(y) is anR′-neighbor ofµ(x).

The proof of 1 is trivial, sinceL(σ(x)) = L(tail′(σ(x))) = L(ψ(tail′(σ(x)))), soL(σ(x)) = L(µ(x)).
The proof of 2 is slightly more involved. By the definition ofE(R′) and ofR′-step, if〈σ(x), σ(y)〉 ∈

E(R′) then either:

(i) tail′(σ(y)) is anR′-successor oftail(σ(x)) or

(ii) tail′(σ(x)) is anInv(R′)-successor oftail(σ(y)).

Now we will prove that (i) implies thatµ(y) is anR′-successor ofµ(x). The same proof shows that (ii)
implies thatµ(x) is anInv(R′)-successor ofµ(y). Together, this two facts complete the proof of 2.

We will consider each connected componentGi. The case whenafterblocked(Gi) = ∅ is trivial. In
this case, for eachx in varsIndivs(Q) such thatσ(x) ∈ Gi, tail(σ(x)) = tail′(σ(x)) (in fact,σ(x) does not
contain anyv

v′ with v 6= v′), so if tail′(σ(y)) is anR′-successor oftail(σ(x)), thenµ(y) = tail′(σ(y)) is an
R′-successor ofµ(x) = tail′(σ(x)) = tail(σ(x)). To do the proof for anyGi with afterblocked(Gi) 6= ∅,
we will proceed by cases. Note that sinceσ(y) is anR′-step ofσ(x), it can not be the case thatσ(x) is in
afterblocked(Gi) andσ(y) is not, thus we have the following cases:

INFSYS RR 1843-06-03 21

(a) Bothσ(x) andσ(y) are inafterblocked(Gi).
In this case we have thatµ(x) = tail′(σ(x)) and µ(y) = tail′(σ(y)), and by (*) , tail(σ(x)) =
tail′(σ(x)). If tail′(σ(y)) is anR′-successor oftail(σ(x)), thenµ(y) = tail′(σ(y)) is anR′-successor
of µ(x) = tail′(σ(x)) = tail(σ(x)) as desired.

(b) Neitherσ(x) norσ(y) is in afterblocked(Gi).
Note that in this casetail(σ(x)) = tail′(σ(x)), otherwiseσ(y) would be inafterblocked(Gi). By
(**) , we know thattail′(σ(x)) is tree-blocked byψ(tail′(σ(x))) and tail′(σ(y)) is tree-blocked by
ψ(tail′(σ(y))). Thus, if tail′(σ(y)) is anR′-successor oftail(σ(x)) = tail′(σ(x)), then µ(y) =
ψ(tail′(σ(y))) is anR′-successor ofµ(x) = ψ(tail′(σ(x))) as desired.

(c) σ(x) is not inafterblocked(Q), butσ(y) is.
In this case we have thattail(σ(x)) 6= tail′(σ(x)) andtail(σ(x)) = ψ(tail′(σ(x)))(i.e., σ(x) ends in
a blocked leaf), so iftail′(σ(y)) is anR′-successor oftail(σ(x)) thenµ(y) = tail′(σ(y)) is anR′-
successor ofµ(x) = ψ(tail′(σ(x))).

Since the mappingµ is the identity for all individuals and it has properties 1 and 2,Q →֒F .

Example 3.28 The graphG has only one connected component, namelyG itself. In G we have that
blockedLeaves(G) = {p7}, andafterblocked(G) = {p9, p10}. For theσ given in Example 3.26, we get
the mappingµ defined as:µ(x) = ψ(tail′(p7)) = v3; µ(y) = tail′(p9) = v5; µ(z) = tail′(p10)) = v6. It
satisfies the conditions of Definition 3.16, so it proves thatQ1 →֒F1.

Summing up, to solve the conjunctive query entailment problem, it suffices to check for entailment
the set of complete and clash free completion forests forK, no matter then that is used as a termination
condition. However, if we choose a suitablen-blocking, checking for entailment in all the models of a
completion forest can be done through one single canonical model, and thisis achieved by mapping the
query into the completion forest itself.

Theorem 3.29 LetQ be a CQ andK a SHIQ knowledge base.K |= Q iff Q →֒F for every completion
forestF ∈ ccfn(FK), n ≥ nQ.

Proof. First we prove that ifK |= Q thenQ →֒F . Take any arbitraryF ∈ ccfnQ
(FK). SinceK |= Q,

thenF |= Q (Proposition 3.15). In particular, we have thatIF |= Q, whereIF is the canonical model of
the tableau induced byF . Thus, by Proposition 3.27,Q →֒F .

To prove the other direction, observe that fromQ →֒F and Lemma 3.18, we have thatF |= Q for every
F ∈ ccfnQ

(FK). Finally, by Proposition 3.15,K |= Q.

Example 3.30K |= Q1, soF1 |= Q1 must hold. This is witnessed by the mappingµ in Example 3.28.
Note that there are longer queries, likeQ′ = {P1(a, x0), P1(x0, x1), P1(x1, x2), P1(x2, x3), P1(x3, x4)}
such thatK |= Q′ holds, but the entailmentF1 |= Q′ cannot be verified by mappingQ′ into F1 sinceF1 is
1-blocked andnQ′ > 1.

22 INFSYS RR 1843-06-03

3.4 Answering unions of conjunctive queries

The results given above can be extended straightforwardly to an UCQU . As usual, we will useF |= U
to denote thatF semantically entailsU (i.e., every model ofF is a model ofU), andU →֒F to denote
syntactical mappability, which is defined asQi →֒F for someQi in U . We already know that to decide
K |= U it suffices to verify whetherF |= U for everyF in ccfn(FK) for any arbitraryn ≥ 0 (in fact,
Proposition 3.15 holds for any kind of query). It is only left to prove thatfor a suitablen, F |= U can be
effectively reduced toU →֒F . For an UCQU , we will denote bynU the maximalnQi

for all Qi in U . We
can then prove the following result:

Proposition 3.31 Consider anyF ∈ ccfn(FK) with n ≥ nU . ThenF |= U iff U →֒F .

Proof. Again, one direction is trivial. IfU →֒F , then by definition, there is someQi in U such that
Qi →֒F , and as this impliesF |= Qi, then we also have thatF |= U . The other direction is also quite
straightforward. For eachF ∈ ccfn(FK), with n ≥ nU , if IF |= U , thenIF |= Qi for someQi in U . As
n ≥ nU ≥ nQi

, by Proposition 3.27 we know thatQi →֒F and thenU →֒F . ThusF |= U impliesU →֒F
as well.

Example 3.32 By the mappingQ1 →֒F1 in Example 3.17, we haveU →֒F1. F1 |= Q1 impliesF1 |= U .

Finally, we establish our key result: answeringK |= U for an UCQU reduces to finding a mapping of
U into everyF ∈ ccfn(FK) for anyn ≥ nU .

Theorem 3.33 Let U be an UCQ andK a SHIQ knowledge base.K |= U iff U →֒F for everyF ∈
ccfn(FK), n ≥ nU .

Proof. As in the proof of Theorem 3.29, it follows Proposition 3.15 and Proposition3.31.

4 Extending the Algorithm to SHOIQ

When describing the algorithm forSHIQ, we used completion forests to represent models. The ABox
individuals form a graph that might be arbitrarily interconnected, which wecall a cloud, and each individual
in the cloud is the root of a tree. Since the cloud has a fixed size, we can talk about some kind of forest
model property.

In SHOIQ however, this property is almost completely lost. Initially the nominals forms a cloud
of arbitrarily connected nodes. Each of this nodes is the root of a variable tree, which might be blocked
representing an infinite structure. However, due to the interaction betweennominals, inverse roles and
number restrictions, we have to consider arbitrary relational structures between some nodes that are not
named individuals. For example, consider a knowledge base containing theaxioms⊤ ⊑ ∃R−.{o} and
{o} ⊑≤ 3R.B. If there was a blocked tree structure whose unraveling generates instances ofB, they would
all have to have anR− arc too possibly violating the number restriction≤ 3R.B. It is then necessary
to identify these nodes as individuals, and avoid their multiplication by unraveling. Thus when applying
the expansion rules, we will generate not only variable nodes, but also individual nodes which might be
arbitrarily connected to the other individuals, and that may also be descendants of some variable in a tree.
Therefore, instead of completion forests, we now refer to completion graphs. In completion graphs the
initial cloud may grow, and some variable nodes may contain edges connectingthem to an individual in the
cloud.

INFSYS RR 1843-06-03 23

P2

v1

L1 L1 L1 L1 L1

P1P1P1 P1a v2 v3 v4

o

G

L2

P2 P2 P2 P2

Figure 2: Completion graph for the example knowledge base

Definition 4.1 [completion graph [23]] Acompletion graphG for a knowledge baseK is a given by a
directed graph and an inequality relation6≈, implicitly assumed to be symmetric. In the directed graph,
each nodev is labeled with a set of conceptsL(v) ⊆ clos(K) and each arcv→w with a set of roles
L(v→w) ⊆ RK , respectively. The nodes and arcs ofG are denoted bynodes(G) andarcs(G). The set of
nodesv in nodes(G) such that{o} 6∈ L(v) for each nominalo ∈ N, is denotedvars(G), these nodes are
calledvariable nodes. The individual nodesare the nodes in the setnodes(G) \ vars(G), i.e.,{o} ∈ L(v)
for some nominalo ∈ N

4.

The notions ofR-successor,Inv(R)-predecessor,R-neighbor and ancestor are defined as usual (see
Definition 3.4). As in the algorithm forSHIQ, we will associate toK an initial completion graph, and then
we will apply expansion rulesto obtain new completion graphs, until no more rules can be applied. The
initial completion graphGK associated withK has a nodea for each individuala ∈ IK , labeled withL(a)
= {{a}} ∪ gcon(K, Cq). The relation6≈ is initialized asa 6≈ b iff a 6= b ∈ A.

Example 4.2 In our running example,GK2 contains two nodes,a ando with the labelsL(a) := {{a}, A,
¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, A ⊔ ¬A} andL({o}) := {{o}, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, A ⊔ ¬A}. The
6≈ relation is empty.

Note that ifK is aSHIQ knowledge base,FK is isomorphic toGK′ , whereK ′ is obtained fromK by
internalizing the ABox in the TBox (see Section 2).

From this initialGK we will obtain new graphs by applying expansion rules. Initially,GK contains only
individual nodes which can be arbitrarily interconnected. When we applythe expansion rules, we might
introduce new nodes. Like in theSHIQ case, variable nodes will only be introduced in such a way, that
they will always occur in a variable tree (see Section 3.1). However, nowwe also have a rule that introduces
individual nodes which may be successors of a variable node (o?-rule, see later). Informally, a branch of a
tree may end with an arc leading from a variable to an individual in the cloud. If we remove fromG all such
arcs, we will obtain a forest of variable trees rooted at individual nodes, and arbitrary arcs connecting these
individuals, i.e., a completion forest (see Definition 3.4). Therefore we can talk about theforest partof G.

Definition 4.3 The forest partof a completion graphG, denotedGf , is obtained fromG by removing from
arcs(G) all arcsv→w with v a variable node andw an individual node.

Example 4.4 Figure 2 shows the completion graphG, whereL1 = {A,¬A⊔∃P1.A,¬A⊔∃P2.{o},A⊔¬A,
∃P1.A, ∃P2.{o}},
L2 = {{o}, ¬A, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, A ⊔ ¬A}
Gf , the forest part ofG, is obtained by removing the arcs:v1 → o, v2 → o, v3 → o, v4 → o. The 6≈ relation is
empty in both the graph and the forest.

4Our individual nodes correspond tonominal nodesin [23], and our variable nodes toblockable nodes.

24 INFSYS RR 1843-06-03

Before given the expansion rules, we will discuss the blocking conditions. For the forest part of a
completion graph, we can use the same blocking conditions as for aSHIQ completion forest, given in
Definition 3.6.

Definition 4.5 [n-blocking] For an integern≥ 0, a variable nodev in a completion graphG is n-blocked,
if v is n-blockedin the completion forestGf . Nodev is (in)directly n-blockedin G if it is (in)directly
n-blocked inGf .

Note that, as usual, only variable nodes can be blocked. When the blockingconditions forSHIQ are
extended toSHOIQ in [23], the authors impose as an additional condition that no individual node occurs
between the blocking and the blocked tree. We do not need to state this requirement explicitly: any path inG
between two variable nodes that contains an individual node must contain some arcv→w with v a variable
andw an individual, and thus it does not exist inGf .

Example 4.6 In the completion forestGf , the1-tree rooted atv1 tree-blocks the1-tree rooted atv3. Since
v4 is a leaf of a tree-blocked1-tree,v4 is 1-blocked inGf , so it is also1-blocked in the completion graphG.

To obtain the new completion graphs from the initialGK , we apply the rules in Table 1, plus two new
rules handling the creation and merging of nominal nodes, given in Table 2.Theo?-rule is a generating rule,
and theo-rule a shrinking one. Note that the new rules do not require blocking. The only difference between
the rules in Table 2 and the ones in [26] is that in theo?-rule, the labels of the newly introduced nodes must
containgcon(K, Cq).

The following strategy is used to apply the expansion rules:

1. Theo-rule is applied with highest priority.

2. Next come the≤-rule ando?-rule. They are applied first to individual nodes with lower level. The
level of an individual nodev is 0 if L(v) ∩ NK 6= ∅; it is i if v has a neighbor of leveli− 1 and it is
not of levelj for any0 ≤ j ≤ i. If both the≤-rule ando?-rule are applicable to the same node, the
o?-rule is applied first.

3. All the remaining rules are applied with a lower priority.

We will see later that this strategy is necessary to ensure termination of the algorithm.

Definition 4.7 [Clash free completion graph,n-complete completion graph] A completion graphG contains
a clashif some nodev ∈ nodes(G) satisfies conditions 1 or 2 in Definition 3.8, or if there is some nominal
o ∈ N such that{o} ∈ L(v)∩L(v′) for somev, v′ ∈ nodes(G) with v 6≈ v′. A completion graphG is clash
free if it contains no clash. A completion graphG is n-complete if none of the rules in Tables 1 and 2 can
be applied to it (undern-blocking).

We denote byGK the set of allG obtained from the initialGK by means of the expansion rules, and by
ccfn(GK) we denote the set of graphs inGK that aren-complete and clash free.

Example 4.8 Consider the completion graphG′ in Figure 3. BothG andG′ can be obtained fromGK by
means of the expansion rules. They are both clash free completion graphs, and they are1-complete and
2-complete respectively, soG ∈ ccf1(GK) andG′ ∈ ccf2(GK).

INFSYS RR 1843-06-03 25

o-rule: if there arev, v′ in nodes(G) with notv 6≈ v′ and
{o} ∈ L(v) ∩ L(v′) for someo ∈ N

then merge(v, v′)
o?-rule: if ≤ nS.C ∈ L(v), v is an individual node

there is av′ in vars(G) such thatv′ is anS-neighbour ofv,
C ∈ L(v′) andv is a successor ofv′;
and there is nom with 1 ≤ m ≤ n, ≤ mS.C ∈ L(v),
v hasm S-neighboursw1, . . . , wm such that for all1 ≤ j ≤ i ≤ m
wi is an individual node,C ∈ L(wi) andwi 6≈ wj

then guessm ≤ n, setL(v) := L(v)∪ ≤ mS.C,
createm new nodesw1, . . . , wm with L(v→wi) := {S},
L(wi) := {C, {oi}} ∪ gcon(K, Cq) for someoi ∈ N new inG,
andwi 6≈ wj for all 1 ≤ j ≤ i ≤ m.

Table 2: New Expansion Rules forSHOIQ

P2

v1

L1 L1 L1 L1 L1

P1P1P1 P1a v2 v3 v4

o
L2

P2 P2 P2 P2

v5 v6P1 P1

L1 L1

P2 P2

G′

Figure 3: 2-complete completion graph for the example knowledge base

Each completion graphG in GK represents a set of possibly extended models ofK in the natural way:
I |= G if I |= K and for all nodesv, w ∈ G the three conditions given in Definition 3.11 hold, i.e., each
node corresponds to an individual in the interpretation in such a way that the node and arc labels, as well
as the inequality relation, are contained in the concept, role and inequality extensions ofI. The following
extension of Lemma 3.12 shows thatGK represents all models ofK:

Lemma 4.9 An interpretationI is a model ofGK iff I is a model ofK.

Proof. The proof is similar to the one of Lemma 3.12. The if direction follows from the definition of
model of a completion graph. To prove the only if direction, it suffices to verify that for an arbitrary model
I of K and for all nodesa, b ∈ nodes(GK), conditions(i) to (iii) of Lemma 3.12 hold.

The semantical notion of query entailment in a completion graph is defined in the natural way: for a
completion graphG and a queryU , we say thatG |= U iff for every interpretationI, I |= G impliesI |= U .

Lemma 3.13 and Proposition 3.14 can be easily extended to completion graphs (see Lemma A.1 and
Proposition A.2 in the Appendix). The union of all the models of the graphs inccfn(GK) captures all the
models of a knowledge baseK, independently of the value ofn. Thus we need to consider only the set of
graphsccfn(GK) when verifying all models ofK for query entailment.

Proposition 4.10 Letn ≥ 0 be arbitrary. ThenK |= U iff G |= U for eachG ∈ ccfn(GK).

Now it is only left to prove that semantical entailment in a completion graph can bereduced to syntactical
mappability, if a suitablen-blocking is used. Mappability ofQ into a completion graphG, is defined exactly
as for completion forests:

26 INFSYS RR 1843-06-03

Definition 4.11 Q →֒ G if there is a mappingµ : varsIndivs(Q) → nodes(G) that is the identity mapping
for all individuals invarsIndivs(Q) and that satisfies the following:

1. For allC(x) in Q, C ∈ L(µ(x)).

2. For allR(x, y) in Q, µ(y) is anR-neighbor ofµ(x).

Example 4.12 The mappingµ(x) = a, µ(y) = v1 andµ(o) = o shows thatQ3 →֒ G andQ3 →֒ G′.

Clearly mappability implies entailment (see Lemma 3.18):

Lemma 4.13 If Q →֒ G, thenG |= Q.

The other direction is also easy, since it follows directly from the results in Section 3.3. IfG |= Q and
G ∈ ccfn(GK) for a suitablen, then we can obtain a canonical model ofG and obtain a mapping ofQ into
G from it.

In order to obtain the canonical model ofG, we follow the same steps as before. The completion graphG
is first unraveled into a tableauTG , and this tableau induces a canonical modelIG . We will shortly describe
how the definitions and results given in Section 3.3.1 are extended toSHOIQ.

To obtain the canonical model of a completion graphG, G is first unraveled into a tableauTG . The
definition ofSHOIQ tableau is extended toSHOIQ by adding to the conditions (P1) to (P15), given in
Definition 3.19, an additional one:

(P16) if{o} ∈ L(s) ∩ L(s′) for someo ∈ N, thens = s′.

This condition ensures that nominals are interpreted as singletons.
EveryG ∈ ccfn(GK) can be unraveled into a possibly infinite a tableauTG . Since only the forest-shaped

part ofG is unraveled into possibly infinite paths, the unraveling is defined in the same way as forSHIQ.
Note that in Definition 3.22, we defined[p | w

w
] to be anR-step ofp only if w is a variable, so only nodes

in vars(G) will occur after the first position in a path. The definition of the tableau induced by a completion
forest is extended to completion graphs as follows:

Definition 4.14 [Tableau induced by a completion graph] A pathq is anR-stepof a pathp if q is anR-
stepof p in the completion forestGf , and the setpaths(G) of paths in a completion graphis defined as
paths(G) = paths(Gf). The tableauTG = (S,L, E , I) induced by a completion graphG is obtained by
settingS = paths(G), andL, E , I are defined as in Definition 3.22.

The tableauTG is already very close to a model ofK. To obtain its canonical modelIG , it suffices add
the missing transitive edges as we did with theSHIQ tableau. The canonical model of aSHOIQ tableau
is defined exactly as for aSHOIQ tableau, i.e., as in Definition 3.20.

Lemma 4.15 Letn ≥ 1. EveryG ∈ ccfn(GK) induces a modelIG ofK.

Proof. First, observe that everyG ∈ ccfn(GK) for n ≥ 1 can be unraveled into a tableauTG for K. In
the proof of Lemma 3.24, we already proved that everySHIQ completion forest can be unraveled into a
SHIQ tableau. The only difference between aSHIQ completion forest and aSHOIQ completion graph
is that there might be additional arcs connecting some variable node to an individual in the cloud. In [23, 24]
the authors prove that each complete and clash free completion graph can be unraveled into a tableauTG .

INFSYS RR 1843-06-03 27

Their blocking conditions are different from ours, but since1-tree blocking implies their blocking, their
proof applies to everyG ∈ ccfn(GK) for n ≥ 1. It is verified that conditions (P1) to (P14) hold, the details
are almost exactly as in the proof forSHIQ, but taking into account these new arcs. Additionally, to verify
thatTG is indeed aSHOIQ tableau, we must prove that (P16) also holds, which is clear sinceG is complete
and clash free. Condition (P15), which is not considered in [24], holdsbecause all nodesv are initialized
with gcon(K, Cq) ⊆ L(v) (see Lemma 3.24).

Finally, it only remains to verify that the canonical model induced byTG is indeed a model ofK. Again
the proof is a straightforward extension of the one of Lemma 3.21. The only additional consideration is that
in IG the nominals must be interpreted as singletons, which is ensured by condition (P16). This is also the
way the proof of Lemma 4 in [23] extends the corresponding proof forSHIQ.

Example 4.16 By unravelingG′, we obtain a modelIG′ that has as domain the infinite set of paths froma
to eachvi, since there are no paths fromo to any other node, i.e., the domain is:

p0 = [o
o
],

p1 = [a
a
], p5 = [a

a
, v1

v1
, v2

v2
, v3

v3
, v4

v4
],

p2 = [a
a
, v1

v1
], p6 = [a

a
, v1

v1
, v2

v2
, v3

v3
, v4

v4
, v5

v5
]

p3 = [a
a
, v1

v1
, v2

v2
], p7 = [a

a
, v1

v1
, v2

v2
, v3

v3
, v4

v4
, v5

v5
, v4

v6
]

p4 = [a
a
, v1

v1
, v2

v2
, v3

v3
] p8 = [a

a
, v1

v1
, v2

v2
, v3

v3
, v4

v4
, v5

v5
, v4

v6
, v5

v5
]

...

The extension of the concepts are{o}IG = {p0} andAIG = {pi | i ≥ 1}, and the extentions of the roles are
P

IG
1 = {〈pi, pi+1〉 | i ≥ 1} andP IG

2 = {〈pi, p0〉 | i ≥ 1}.

Now we are ready to prove that, for a sufficiently largen, the canonical model of ann-complete and
clash free completion graph semantically suffices to check query entailment. It is not hard to see that for the
SHOIQ case, a suitable lower bound forn is also given by the maximal distance between any two paths
ending in variable nodes in the graph defined by the image ofQ in the tableauTG (under any satisfying
mapping, which must exist sinceIG entailsQ)

Given a completion graphG in ccfn(GK) for somen, letTG = 〈S,L, E , I〉 denote its tableau andIG its
canonical model. IfIG |= Q, then there is a mappingσ : varsIndivs(Q) → S such that for everyR(x, y) in
Q, 〈σ(x), σ(y)〉 ∈ E(R′) for someR′ ⊑∗ R. Consider the image ofQ underσ in the tableauTG . Remove
from this graph every node of the form[a

a
] for some individual nodea ∈ nodes(G), with its corresponding

incoming and outgoing edges, to obtain the graphG. Note thatG comprises a set of tree-shaped components
exactly as in theSHIQ case. On this graphG themaximalQ-distance ofσ, dσ

Q, is defined exactly as in
Section 3. Recall thatdσ

Q is bounded bynQ, the number of role atoms inQ.

Example 4.17 As we saw before,K2 |= Q3, thusIG′ |= Q3. Consider the substitutionσ(x) = p7, σ(y) =
p8 andσ(o) = p0. It defines the graph with nodesp0, p7 andp8, and arcsp7 → p8 andp8 → p0. When we
remove from the graph the nodep0 (it is of the form[o

o
] ando is an individual) with the corresponding arc

p8 → p0, we obtain the graphG with two nodesp7 andp8 and an arcp7 → p8. ObviouslyG is tree shaped
anddσ

Q3
= 1.

Now Proposition 3.27 can be extended to completion graphs as follows:

28 INFSYS RR 1843-06-03

Proposition 4.18 Consider anyG ∈ ccfn(GK) with n ≥ nQ, and letIG be the canonical model ofG. If
IG |= Q thenQ →֒ G.

Proof. SinceIG |= Q, there is a substitutionσ : varsIndivs(Q) → ∆IG which witnesses this entailment.
As before, we can use thisσ to define a the mappingµ : varsIndivs(Q) → nodes(G). Thisµ maps each
individual a in varsIndivs(Q) to tail(σ(a)) = a. For each variablex in varsIndivs(Q) such thatσ(x) ∈
nodes(Gi) for someGi with afterblocked(Gi) = ∅, µ mapsx to tail(σ(x)); and for all other variablesµ is
be defined by:

µ(x) =

{

tail′(σ(x)) if σ(x) ∈ afterblocked(Gi)
ψ(tail′(σ(x))) otherwise

The mappingµ is the identity for all individuals. As showed in the proof of Proposition 3.27,it satisfies the
conditions 1 and 2, henceQ →֒ G holds.

Example 4.19 The graphG has only one tree shaped component, namelyG itself, andafterblocked(G) =
p8. Thusµ is defined asµ(x) = ψ(tail′(p7)) = v4, µ(y) = tail′(p8) = v5 andµ(o) = tail(p0) = o. Note
thatµ satisfies the necessary conditions to prove thatQ3 →֒ G′.

With this we have finished giving a method to answer CQs inSHOIQ.

Theorem 4.20 Let Q be a CQ andK a SHOIQ knowledge base.K |= Q iff Q →֒ G for everyG ∈
ccfn(GK), n ≥ nQ.

Proof. In Proposition 4.10 we proved thatK |= Q iff G |= Q for everyG ∈ ccfn(GK). From
Lemma 4.13 and Proposition 4.18 we have thatG |= Q iff Q →֒ G for eachG ∈ ccfnQ

(GK) (sinceG |= Q
impliesIG |= Q), and then the Theorem holds.

The extension of the method to an UCQU is analogous to the case ofSHIQ. By uniformly replacing
F by G andccfn(FK) by ccfn(GK) in the statement and proof of Proposition 3.31, the result applies to any
SHOIQ knowledge baseK. From this and Proposition 4.10 we obtain the main result of this section:

Theorem 4.21 LetU be an UCQ andK a SHOIQ knowledge base.K |= U iff U →֒ G for everyG ∈
ccfn(GK), n ≥ nU .

Example 4.22 Let U be the UCQQ1 ∨Q2 ∨Q3. SinceK2 |= Q3, thenK2 |= U . To verify this, it would
be necessary to check whetherU →֒ G for eachG in ccf2(GK2). In particular, sinceG′ ∈ ccf2(GK2), it must
be the case thatU →֒ G′. In Example 4.19 we saw thatQ3 →֒ G′, thus we also have thatU →֒ G′.

5 Termination and Complexity

In this section, we consider the complexity of the query answering method which we have developed in the
previous sections, and we shall prove our main result concerning the data complexity of query answering in
SHIQ andSHOIQ.

To this end, we shall first derive a bound on the size of the completion forests inccfn(FK) for aSHIQ
knowledge baseK, and then of the completion graphs inccfn(GK) for a SHOIQ knowledge baseK.
Since the forest part of aSHOIQ completion graph corresponds toSHIQ a completion forest, we can

INFSYS RR 1843-06-03 29

treat both structures in a similar way. First we will obtain a bound on the possible size of ann-blocked
variable tree, which applies both to the trees in a completion forestF and in the forest-part of a completion
graphGf .

We point out, however, that conjunctive query answering is intractable with respect to combined com-
plexity already on very small completion graphs and completion forest, and in fact even for a fixed comple-
tion graph which consists of few nodes. This is shown in the proof of the next proposition.

Proposition 5.1 LetG be a (fixed) completion graph inGK (or a forest inFK), and letQ be a given CQ.
DecidingQ →֒ G is NP-hard.

Proof. Finding a mappingQ →֒ G has the same query complexity as evaluating a conjunctive query
over a database (given by the ABox), which is an NP-hard problem. To verify this, it suffices to consider
the completion graphGcol associated to the ABox:

E(red , green) E(green, red) E(red , blue)
E(blue, red) E(green, blue) E(blue, green)

Any (directed) graphG can be encoded as a conjunctive queryQ: the nodes inG are the variables inQ and
for each arc〈x, y〉 in G there is a literalE(x, y) in Q. ThenQ can be mapped intoGcol iff G is 3-colorable.

Note that whenQ is fixed, the testQ →֒ G can be done in time polynomial in the size ofG by simple
methods, since only a polynomial number of candidate mappings needs to be checked, This will be relevant
to prove a tight upper bound in data complexity.

5.1 Bounding the size of completion forests and graphs

In what follows, for a knowledge baseK, we will denote byc the cardinality ofclos(K) ∪ Cq, by r the
cardinality ofRK , and bym the maximum numbern occurring in a concept of the form≤ nR.C or
≥ nR.C in K. Furthermore,|A| denotes the number of assertions inA.

Claim 5.2 Let Tn be the maximal number of non-isomorphicn-trees in a completion forest or in the forest
part of a completion graph forK. Then,Tn = O((22·c(c·m)r)(c·m·r)n

).

Proof. There are only variable nodes in the tree-shaped part, so the label of each such node is a subset
of clos(K) ∪ Cq and there are at most2c different such labels. Each successor of a node can be the root of a
tree of depth(n− 1). Considering a single roleR, if a nodev hasx R-successors, then there is a maximum
number of(Tn−1)

x (ordered) combinations of trees of depth(n− 1) rooted at the successors ofv.
There are three generating rules: the∃-rule, the≥-rule and theo?-rule. Since the nodes introduced by

theo?-rule are individual nodes (they initially contain a nominal label), variable nodes are only introduced
by applying the∃-rule and the≥-rule. Only concepts of the form∃R.S or ≥ nR.C trigger the application
these rules, and there are at mostc such concepts. Each time one such rule it is applied, it generates at most
m variableR-successors for each roleR. Note that if a nodev is identified with another by a shrinking rule,
then the rule application which led to the generation ofv will never be repeated [24], so a generating rule
can be applied to each node at mostc times. This gives a bound ofc·m variableR-successors for each role.

The number ofR-successors of a node,x, might range from0 to c·m, and for eachx, we have at most
(Tn−1)

(c·m) combinations of trees of depth(n − 1). So, each node can have at most(c·m)(Tn−1)
(c·m)

30 INFSYS RR 1843-06-03

combinations of trees of depth(n− 1) as successors, if we consider one single role. Since for every role in
RK at most this number of trees can be generated, there is a bound of((c·m)(Tn−1)

(c·m))r combinations
of trees of depth(n − 1) for the successors of each node. The number of different roots of an n-tree is
bounded by2c. We thus obtain as an upper bound on the number of non isomorphicn-trees

Tn = O(2c((c·m)(Tn−1)
(c·m))r).

To simplify the notation, let’s considerx = 2c(c·m)r anda = c·m·r. Then we have

Tn = O(x·(Tn−1)
a) = O(x1+a+...+an−1

·(T0)
an

) = O((x·T0)
an

)

The maximal number of trees of depth0 is also bounded by2c. Returning to the original notation we get

Tn = O((22c(c·m)r)(c·m·r)n

)

Claim 5.3 Let T be a variable tree in a completion forestF ∈ FK or in the forest partGf of a completion
graphG ∈ GK . The number of nodes inT is bounded by

O((c·m·r)1+n·(22·c·(c·m)r)(c·m·r)n

)

Proof. The claim follows from the following properties:

i) The outdegree ofT is bounded byc·m·r.
As shown above, there are at mostc·m variableR-successors for each roleR, and there arer roles.

ii) The depth ofT is bounded byd = (Tn + 1)·n.
This is due to the fact that there is a maximum ofTn non-isomorphicn-trees. If there was a path of
length greater than(Tn + 1)·n to a nodev in T , this would imply thatv occurred after a sequence of
Tn + 1 non overlappingn-trees, and then one of them would have been blocked andv would not have
been generated.

iii) The number of variables inT is bounded byO((c·m·r)d+1).

There can be one such tree rooted at each individual node. Since foraSHIQ completion forest there is
at most one individual node for each ABox individual, then we easily geta bound on the size of a completion
forest for aSHIQ knowledge base.

Lemma 5.4 LetK be aSHIQ knowledge base. The number of nodes in a completion forestF ∈ FK is
bounded by

O(|IK |·(c·m·r)1+n·(22·c·(c·m)r)(c·m·r)n

)

For theSHOIQ case, we first need to derive a bound on the number of individual nodes. The arguments
are essentially the same as in [23]. The bounds we derive are not the same, since they depend on the maximal
depth of a variable node.

INFSYS RR 1843-06-03 31

Claim 5.5 Let K be aSHOIQ knowledge base. The number of individual nodes in a completion graph
G ∈ GK is bounded by

O(|IK |·(c·m)1+n·(22·c·(c·m)r)(c·m·r)n

)

Proof (sketch). The argument is exactly as in [23] (Proof of Lemma 6, item 4). Simply replaceλ
(maximal depth of a variable node) byd. Due to the the strategy for the rule application and the preconditions
of theo?-rule, this implies that theo?-rule can only be applied to nominal nodes of level belowd. This and
some counting gives a bound ofO(|IK |(cm)d). For more details, we refer to [24].

Lemma 5.6 LetK be aSHOIQ knowledge base. The number of nodes in a completion graphG ∈ GK is
bounded by

O(|IK |2·(c·m·r)2+2·n·(22·c·(c·m)r)(c·m·r)n

)

Proof. Follows from Claims 5.3 and 5.5.

Note that aSHOIQ completion forest may be quadratically larger than aSHOIQ completion graph.

5.2 Complexity of the algorithm for SHIQ

LetK be aSHIQ knowledge base. We will determine the complexity of decidingK |= Q andK |= U for
a CQQ and an UCQU respectively.

By ||K,Q|| we will denote the total size of (the string encoding) the knowledge baseK and the query
Q. Note thatm is linear in ||K,Q|| if we assume unary coding of numbers in number restrictions, and
single exponential if binary coding is used. In any case, ifQ and all ofK except forA is fixed, thenm is a
constant. Furthermore,c andr are linear in||K,Q||, but also constant in|A|. Finally, |IK | is linear in both.

From Lemma 5.4, we obtain the following corollaries.

Corollary 5.7 (i) If n is polynomial in||K,Q||, then the maximum number of nodes in a completion forest
F ∈ FK is triple exponential in||K,Q||.
(ii) If Q and all ofK except forA is fixed andn is a constant, then the maximum number of nodes in a
completion forestF ∈ FK is linear in |A|.

Proposition 5.8 The expansion ofFK into someF ∈ FK terminates in time triple exponential in||K,Q||
if n is polynomial in||K,Q||. If Q and all ofK except forA is fixed, andn is a constant, then the expansion
ofFK into someF ∈ FK terminates in time polynomial in|A|.

Proof. We have given a bound on the size ofF in Lemma 5.4. The proposition follows from this and a
polynomial bound on the number of times that each expansion rule can be applied to a node while expanding
the forest. The≤-rule is the only shrinking rule. If this rule is not applied, then it is clear that all rules extend
the node labels and possibly add new nodes to the forest. They are appliedat most once for each concept
in L(v) for each nodev, thus their application is bounded byc. If the ≤-rule is applied to a nodev, then
a neighborw of v is merged into a neighborw′ of v. Sincew′ inherits the labels and inequalities ofw, the
rule application that led to the generation ofw′ will never be repeated. Clearly, the times the≤-rule can
be applied is bounded by the branching degree ofF . Thus the application of all rules to a node will be
polynomially bounded also under the merging of nodes caused by the≤-rule.

32 INFSYS RR 1843-06-03

Checking whetherQ →֒F can be done by naive methods in time single exponential in the size ofQ. For
anF ∈ ccf(FK) with M nodes and a queryQ with nQ literals, the naive search space hasM2·nQ candidate
assignments, and each one can be polynomially checked. So, ifM is triple exponentially bounded in
||K,Q||, then alsoM2·nQ is triple exponentially bounded in||K,Q||. On the other hand, the testQ →֒F
can be done in time polynomial in the size ofF whenQ is fixed.

Therefore, we obtain the following result:

Theorem 5.9 Given aSHIQ knowledge baseK and a union of conjunctive queriesU in which all roles
are simple, deciding whetherK |= U is:

1. in CO-3NEXPTIME w.r.t. combined complexity, for both unary and binary encoding of numberre-
strictions inK.

2. in CO-2NEXPTIME w.r.t. combined complexity for a fixedU if number restrictions are encoded in
unary.

3. in CONP w.r.t. data complexity.

Proof. If K 6|= U , then there is a completion forestF ∈ ccfnU
(FK) such thatU 6 →֒ F . If this F

is guessed non-deterministically then, by Proposition 5.8, it can be obtained intime triple exponential in
‖K,Qi∗‖, whereQi∗ is such thatnQi∗

= nU , thus also in‖K,U‖. Furthermore,Qi →֒F can be checked by
naive methods in triple exponential time in‖K,Qi∗‖ and thus in‖K,U‖ as well. Therefore, non-entailment
of U can be checked in 3NEXPTIME, entailment inCO-3NEXPTIME and item 1 holds.

Item 2 follows from the above arguments, modified according to the observation thatm does not occur
in the uppermost exponent of the bound of the forest size, and thus anyF in ccfnU

(FK) can be obtained in
double exponential time.

As for Item 3, under data complexity,U and all components ofK = 〈T ,R,A〉 except for the ABoxA
are fixed, thereforenU is constant. By Proposition 5.8, we know that every completion forestF ∈ ccf(FK)
can be nondeterministically generated in polynomial time. Since deciding whetherU →֒F is polynomial in
the size ofF ,K |= U is in CONP.

We note that the testQ →֒F might also be done in time polynomial in the size ofG whenQ is fixed, or
when the expansion rules generate a big enough completion forest, such that its size exponentially dominates
the size of the query. Other particular cases can be solved in polynomial time as well.

For example, whenF is tree shaped (i.e., the ABox is tree shaped and there are no arcs connecting
variable nodes to individuals in the cloud), then the complexity of the mapping corresponds to evaluating a
conjunctive query over a tree-shaped database, which is known to be polynomial in the size of the database
in certain cases [18].

5.3 Complexity of the algorithm for SHOIQ

In this section, we will discuss the data and combined complexity of deciding entailment of conjunctive
queries and unions of conjunctive queries onSHOIQ. In contrast toSHIQ, the distinction between
extensional and intensional data inSHOIQ is not so clear. The presence of nominals naturally expresses
extensional information in the TBox axioms. Moreover, the ABox of aSHIQ knowledge base can be
expressed as new TBox axioms, and ABox+TBox reasoning is polynomiallyreducible to reasoning w.r.t. a
TBox only [38]. Recall that for any concept assertionA(a) in the ABox, we can equivalently add to the
TBox the axiom{a} ⊑ A, and for any role assertionP (a, b) the axiom{a} ⊑ ∃P .{b}.

INFSYS RR 1843-06-03 33

For determining data complexity, the TBox, RBox, and the query are fixed. If in addition we would
assume thatSHOIQ ABoxes are always empty (as we did when describing the algorithm), then query
entailment can be done trivially in constant time. Clearly, this setting seems not appropriate.

To obtain a more interesting result, we will assume that initially an arbitrarySHOIQ knowledge base
K is given. ThisK, as defined in Definition 2.3, comprises a TBox, an RBox, and an ABox. Todecide
query entailment w.r.t. to thisK, we will replace the ABox by new TBox axioms to obtain a knowledge
baseK ′ with an empty ABox as described above. The complexity bounds will then be given w.r.t. to the
initial K, i.e., for data complexity we will consider the size of the originalA as variable.

In this section,K will denote aSHOIQ knowledge base〈T ,R,A〉, andK ′ will denote the knowledge
base〈T ′,R, ∅〉 obtained by expressingA within T ′. We will denote by||K,Q|| the total size of the string
encodings the knowledge basesK and the queryQ, and by||K ′, Q|| the size of the string encodingK ′ and
Q.

Because of the axioms added to express the ABox assertions,T ′ may be larger thanT . One axiom is
added toT for each assertion inA, and there will be at most one new nominal inNK′ for each individual in
A. Hence,||K ′, Q|| is polynomially (in fact, linearly) bounded in||K,Q||, and|IK′ | polynomially in|IK |.

By Lemma 5.6, we know that the maximum number of nodes in a completion graphG ∈ GK′ is triple
exponential in||K ′, Q|| if n is polynomial on||K ′, Q||, and that it is polynomial (actually, quadratic) in|A|
if n is a constant. From this, together with the polynomial bound on the size of||K ′, Q|| and|IK′ |, we easily
obtain:

Corollary 5.10 (i) If n is polynomial on||K,Q||, then the maximum number of nodes in a completion graph
G ∈ GK′ is triple exponential in||K,Q||.
(ii) If Q and all ofK except forA are fixed andn is a constant, then the maximum number of nodes in a
completion forestG ∈ GK′ is polynomial in|A|.

Proposition 5.11 The expansion ofG′
K into someG ∈ GK′ terminates in time triple exponential in||K,Q||

if n is polynomial on||K,Q||. If Q and all ofK except forA are fixed, andn is a constant, then the
expansion ofG′

K into someG ∈ GK′ terminates in time polynomial in|A|.

Proof. The argument is similar to the one in the proof of Proposition 5.8 for the nodes inthe forest part
of the completion graph. Additionally, we must observe that :

1. The bound in the rule applications holds also in the presence of the new shrinking rule. Again, if a
nodew is merged into a nodew′, thenw′ will inherits the labels and inequalities ofw, as well as all
its neighbors that are not variable successors (which are removed byprune). This will ensure that the
rule application that led to the generation ofw′ will never be repeated.

2. For each nominal nodev, theo?-rule can only be applied once for each concept of the form≤ nS.C
in the label ofv.

Thus the number of rule applications is polynomially bounded in the number of nodes ofG.
Note that, in total, the maximal number of applications of theo?-rule is |IK |·c·(c·m)d (i.e., triple ex-

ponential in||K,Q|| if n is polynomial on||K,Q||). The arguments are similar to those of the proof of
Claim 5.5. The bound is obtained from the one given in [23] by replacing themaximal depthλ by d.

Theorem 5.12 Given aSHOIQ knowledge baseK and a union of conjunctive queriesU in which all
roles are simple, deciding whetherK |= U is:

34 INFSYS RR 1843-06-03

1. in CO-3NEXPTIME w.r.t. combined complexity, for both unary and binary encoding of numberre-
strictions inK.

2. in CO-2NEXPTIME w.r.t. combined complexity for a fixedU if number restrictions are encoded in
unary.

3. in CONP w.r.t. data complexity.

Proof (sketch). The argument is analogous to that in the proof of Theorem 5.9. By Proposition 5.11,
K 6|= U can be decided in 3NEXPTIME, and in NP w.r.t. data complexity. For fixedQ, unary encoding
yields an exponential drop in the size of the completion graph (and thus in the number of rule applications
to obtain it) w.r.t. combined complexity.

5.4 Data complexity

The upper bound for data complexity given in Theorems 5.9 and 5.12 are worst-case optimal. In [15],
CONP-hardness was proved for instance checking overALE knowledge bases, and recently this result has
been extended to description logics which are even less expressive thanALE [10]. This allows us to state
the following main result.

Theorem 5.13 On knowledge bases in any description logic fromAL to SHOIQ, answering unions of
conjunctive queries in which all roles are simple isCONP-complete w.r.t. data complexity.

This result provides an exact characterization of the data complexity of UCQs for a wide range of de-
scription logics. Note that for the most expressive one,SHOIQ, the result is highly significant, since such
a logic is an extension ofSHOIN , the description logic counterpart of the standard ontology language
OWL-DL [22, 36]. It is interesting to see that once we include in the description logic universal quantifica-
tion, one of the basic constructs of description logics, many more constructscan be added without affecting
worst-case data complexity. Also, this result extends two previousCONP-completeness results w.r.t. data
complexity, which are not obvious: On the one hand, in [32], the same bound was proved for answering
UCQs overALCNR knowledge bases. Now we extend this result to a description logic including role
hierarchies, as well as inverse (and transitive) roles. On the other hand, [30] showed aCONP-upper bound
for data complexity of query answering in the quite expressive descriptionlogic SHIQ, already a logic
lacking the finite model property. The result was established for atomic queries only, but can be immedi-
ately extended to tree shaped queries, since these admit a representation as a description logic concept (e.g.,
by making use of the notion of tuple-graph of [11], or via rolling up [27]).Instead, its extension to arbitrary
conjunctive queries, which is what we have done in the present work, proved to be surprisingly involved
from a technical point of view.

5.5 Combined complexity

Theorems 5.9 and 5.12 do not provide optimal upper bounds with respect tothe combined complexity of
query answering. The main reason is that the tableaux algorithms in [26] and[23], which we extended, are
also not worse case optimal. They are both nondeterministically double exponential, while satisfiability of a
knowledge base is an EXPTIME-complete problem forSHIQ [40] and NEXPTIME-complete forSHOIQ
[39]. It is well known that often tableaux algorithms for expressive DLsdo not provide optimal complexity

INFSYS RR 1843-06-03 35

upper bounds. However, they are easy to implement and amenable for optimizations [4]. Moreover, there
are efficient reasoners available that implement these algorithms [21, 19].

We want to point out that, in our algorithm, the witness of a blocked variable must be its ancestor. This
restriction, however, could be eliminated, and blocking with any previous occurrence of an isomorphicn-
tree could be used, without affecting the soundness and completeness ofthe algorithm. We use the stricter
conditions for blocking in order to make them closer to the conventional onesin DL tableaux, where it
is usually required that the blocking and the blocked variable are on the samepath. Despite the fact that
this condition actually increases the overall complexity of the algorithm, it is imposed for practical reasons,
since it is consider better for implementation. If this condition is relaxed, blocking may occur sooner and
the resulting completion graph/forest may be exponentially smaller than the one we have described. This
exponential drop applies also to the satisfiability tableaux algorithms like in [26] and in [23]. With this
relaxed condition, we would obtain the same complexity upper bounds as thosegiven in [32]. In fact, the
absence of this additional condition of ‘blocking on the same path’ is the actual reason why the bounds
in [32] are exponentially lower than the ones we obtained.

Finally, from the results in [30] we know that a 2EXPTIME bound forSHIQ can be achieved. This
bound coincides with the one given in [11] for containment of conjunctivequeries overDLR. It remains
an open question whether this bound is tight. Our algorithm, even if we relax theblocking conditions as
described above, would yield a non-optimalCO-2NEXPTIME worst-case complexity in the combined case.
As for SHOIQ, to the best of our knowledge, this is the only existing result concerning complexity of
answering conjunctive query answering, even without transitive rolesin queries.

6 Conclusion

In this paper, we have studied answering conjunctive queries (CQs) and union of conjunctive Queries
(UCQs) over knowledge bases in the expressive Description Logics (DLs) SHIQ andSHOIQ, where
we have focused on the issue of data complexity, i.e., measuring the complexity of query answering with
respect to the size of the ABox of the knowledge base while the other parts are fixed. This setting is gain-
ing importance since DL knowledge bases are more and more used also for representing data repositories,
especially in the context of the Semantic Web and in Enterprise Application Integration.

Generalizing a technique presented in [32] for a DL which is far less expressive thanSHIQ and
SHOIQ, we have developed novel tableaux-based algorithms for CQ answeringin these DLs. These
algorithms manage the technical challenges caused by the simultaneous presence of inverse roles, number
restrictions, and general knowledge bases, leading to DLs which are lacking the finite model property. To
this end, we have developed suitable blocking conditions which ensure termination of the algorithm. They
are more involved than previous blocking conditions in [26], and parameterized with the depth of trees which
must be considered in blocking. Query answering itself is then accomplishedby a technique which maps
the query to completion graphs, which are constructed using the tableaux-style rules, of bounded depth,
provided that queries have only simple roles.

The algorithms which we have developed are worst case optimal in data complexity, and allows us to
characterize the data complexity of answering CQs and UCQs for a wide range of DLs, including very
expressive ones. Namely, for each description logic ranging fromAL toSHOIQ, both answering CQs and
UCQs having only simple roles isCONP-complete w.r.t. data complexity. This closes the gap between the
known CONP lower bound and the best known EXPTIME upper bound for even weaker DLs, providing a
negative answer to the open issue whether the data complexity of expressive description logics will similarly
increase as their combined complexity.

36 INFSYS RR 1843-06-03

Some comments on our results in this paper are in order. We first point out that our method for query
answering can also be exploited to the problem of deciding query containment, i.e., given two queriesQ1

andQ2, is it true thatK |= Q2 if K |= Q1, for each knowledge baseK? By virtue of the correspondence
between query containment and query answering [1], one can adapt the algorithms which we have presented
to decide containment of CQs, and furthermore also the containment of UCQs(which follows from easy
relationships between CQs and UCQs), for bothSHIQ andSHOIQ. As a simple consequence, we thus
obtain that the equivalence of queries inSHIQ andSHOIQ is decidable. This result may be exploited
for query optimization, and to the best of our knowledge is the first result inthis direction for (union of)
conjunctive queries in expressive DLs.

Several issues remain for further work. The query languages considered in this paper do not allow
arbitrary roles, but supposed that roles are simple. This constraint, however, is also adopted in [29]. To our
knowledge, only the recent [17] deals with transitive roles in CQs, but onthe far less expressive DLSHQ,
which does not allow inverse roles and nominals and, differently fromSHIQ andSHOIQ, has the finite
model property. A natural question is whether the results in this paper extend to a query language in which
arbitrary roles may occur in queries. Currently, this is open, and to our knowledge it is yet unknown whether
conjunctive query answering inSHIQ andSHOIQ remains decidable in this setting. It remains unclear
whether the algorithm which we have presented here can be exploited, since the presence of transitive roles
imposes difficulties in establishing a bound on the depth of completion forests which need to be considered
for answering a given query. It also remains to explore whether the proposed technique can be applied to
even more expressive description logics, for example, containing reflexive-transitive closure in the TBox
(in the style of PDL), or to more expressive query languages. We note, however, that including inequality
atoms in CQs is not feasible; as follows from results in [11], answering CQswith inequalities overSHIQ
knowledge bases is undecidable.

Apart from the issue of data complexity for expressive DLs, also the combined complexity remains for
further investigation. It follows from [28] that the problem is in 2EXPTIME for SHIQ. Hence, the bound
established above in Theorem 5.9 is not tight, since we build on tableaux algorithms that are not optimal
in the worst case. Indeed, a more relaxed blocking condition can be used, where the witness of the root
of a blocked tree need not necessarily be its ancestor. This optimization yields an exponential drop in the
worst-case size of the forest, thus obtaining aCO-2NEXPTIME upper bound. Note that this can also be
done in the standard tableau algorithms for satisfiability checking, but might not be convenient from an
implementation perspective. Further optimization of the algorithms which we have presented here may be
considered following the ideas in [14].

Finally, it remains as an interesting issue whether other techniques may be applied to derive similar
results as those in this paper. For instance, whether resolution-based techniques as in [28, 30] or techniques
based on tree automata can be fruitfully applied. While the latter may look conceptually appealing, in
particular in the light of the completion forests employed by our algorithms, it remains less clear how with
respect to the data complexity the contribution of the ABox may be singled out, which was easy in the
tableaux-style algorithms which we have presented.

Acknowledgments

The authors thank Ian Horrocks and Birte Glimm for many fruitful and stimulating discussions. They are
very grateful to them for pointing out errors in preliminary work to this paper, and for helpful suggestions
for improvement.

INFSYS RR 1843-06-03 37

A Appendix

Proof of Lemma 3.13We will do the proof for each ruler in Table 1.
First we will consider the deterministic, non-generating rules. There is onlyoneF ′ in F and the models

of F are exactly the models ofF ′. For the case of the⊓-rule, there is some nodev in F s.t.C1⊓C2 ∈ L(v).
SinceI is a model ofF , thenvI ∈ (C1 ⊓ C2)

I , and sinceI is a model ofK, then bothvI ∈ CI
1 and

vI ∈ CI
2 hold. The inequality relation and all labels inF ′ are exactly as inF , the only change is that

{C1, C2} ⊂ L(v) in F ′, soI |= F ′.
The cases of the the∀-rule and the∀+-rule, are similar to the⊓-rule. All labels ofF are preserved

in F ′. Only the label of the nodew to which the rule was applied is modified inF ′, havingC ⊂ L(w)
or ∀R′.C ⊂ L(w) respectively. SinceI is a model ofK, vI ∈ (∀R.C)I andw andR-neighbor ofv
imply yI ∈ CI , andvI ∈ (∀R.C)I andw andR′-neighbor ofv for some transitive sub-role ofR imply
wI ∈ (∀R′.C)I , then clearlyI |= F ′ in both cases.

Let us analyze the non-deterministic rules. For the case of the⊔-rule, there is some nodev in F s.t.
C1 ⊔ C2 ∈ L(v). After applying the⊔-rule, we will have two forestsF ′

1, F ′
2 with {C1} ⊂ L(v) in F ′

1 and
{C2} ⊂ L(v) in F ′

2 respectively. For everyI such thatI is a model ofF we havevI ∈ (C1 ⊔ C2)
I , and

sinceI is a model ofK, then eithervI ∈ CI
1 or vI ∈ CI

2 hold. If it is the case thatvI ∈ CI
1 , thenI |= F ′

1,
and otherwiseI |= F ′

2, so the claim holds.
The proof for the choose rule is trivial, since after its application we will have two forestsF ′

1, F ′
2 with

{C} ⊂ L(v) in F ′
1 and{NNF (¬C)} ⊂ L(v) in F ′

2 respectively, but since triviallyvI ∈ (C ⊔¬C)I holds
for anyv, anyC and anyI model ofK, then for everyI eitherI |= F ′

1 or I |= F ′
2 holds.

When the≤-rule is applied to a variablev in F , then there is some concept≤ nS.C in L(v) andv has
more thann S-neighborsw1, . . . , wn, wn+1 that are labeled withC. SinceI |= F , thenvI ∈ (≤ nS.C)I ,
which implies that in there are at mosto1, . . . , on elements such that〈vI , oi〉 ∈ SI andoi ∈ CI . Thus
there arewi andwj , S-neighbors ofv and instances ofC, with i 6= j andwI

i = wI
j . This implies that

wi 6≈ wj /∈ F , and the nodes can be merged as a result of the rule application. Hence it holds thatI |= F ′,
whereF is obtained fromF by merging nodewi intowj .

Finally we consider the two generating rules. For the case of the∃-rule, since the propagation rule was
applied, there is somev in F such that∃R.C ∈ L(v), which implies the existence of someo ∈ ∆I with
〈vI , o〉 ∈ RI ando ∈ CI . F ′ was obtained by adding toF a new node which we denotew. I will be
extended toI ′ by settingwI′

= o, and thusI ′ |= F ′.
The case of the≥-rule is analogous to the∃-rule, since in models ofF ′ we have thatwI

i = oi for
1 ≤ i ≤ n, where{w1, . . . , wn} are the variables added toF ando1, . . . , on denote the elements in∆I s.t.
〈vI , oi〉 ∈ RI andoi ∈ CI for the variablev in F to which the rule was applied.

Note that this proof is very similar to the proof for soundness forSHIQ, given in detail in [25]. Intu-
itively, the difference is that they define a mappingπ from the forest nodes into the elements of the tableau.
Since we are doing the ‘steering’ of the algorithm directly with the model, the interpretation function itself
maps nodes to elements of the domain. In the same way as the proof of soundness from [25] is extended to
SHOIQ, this proof can be extended to the following Lemma.

Lemma A.1 LetG be a completion forests inGK , letr be a rule in Table 1 and letG be the set of completion
forests that can be obtained fromG by applyingr. Then for everyI such thatI |= F there is someG′ ∈ G

and someI ′ that is an extension ofI such thatI ′ |= G′.

Proof. For theSHIQ rules, the proof of Lemma 3.13 holds, just replaceF by G. For theo-rule, it is
applicable when{a} ∈ L(v) ∩ L(v′) for some nominal{a} and two nodesv andv′. SinceI |= F , it must

38 INFSYS RR 1843-06-03

be the case thatvI = v′I = a, thereforev can be merged intov′ to obtainF ′ andI |= F ′. Finally, for the
o?-rule, it is only applicable tov when≤ nS.C ∈ L(v) and there is av′ S-neighbor ofv with C ∈ L(v′).
If m = 1 is guessed, then one new nodew will be generated inF ′ with L(w) := {C, {w}} ∪ gcon(K, Cq).
Since{C} ∪ gcon(K, Cq) ⊆ L(v′) andv′ is anS-neighbor ofv, we can extendI to I ′ by settingwI = v′,
and thenI ′ |= F ′ holds.

Using Lemma 4.9 and Lemma A.1 a proof of the next proposition is obtained from the proof of Propo-
sition 3.14 (by replacing ‘forests’ by ‘graphs’ andF by G).

Proposition A.2 Letn ≥ 0. For everyI such thatI |= K, there is someG ∈ ccfn(GK) and someI ′ that
is an extension ofI such thatI ′ |= G.

References

[1] S. Abiteboul and O. Duschka. Complexity of answering queries usingmaterialized views. InProc.
17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pp. 254–
265, 1998.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[3] F. Baader and P. Hanschke. A schema for integrating concrete domains into concept languages. In
Proc. 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pp. 452–457, 1991.

[4] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69(1):5–40, 2001.

[5] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.Artificial Intelli-
gence, 168(1–2):70–118, 2005.

[6] A. Borgida and R. J. Brachman. Conceptual modeling with description logics. In Baader et al. [2],
chapter 10, pp. 349–372.

[7] D. Calvanese and G. De Giacomo. Expressive description logics. InBaader et al. [2], chapter 5, pp.
178–218.

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.Data complexity of query an-
swering in description logics. InProc. 2005 Description Logic Workshop (DL 2005). CEUR Electronic
Workshop Proceedings,http://ceur-ws.org/Vol-147/, 2005.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.DL-Lite: Tractable description
logics for ontologies. InProc. 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607,
2005.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query
answering in description logics. InProc. 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), 2006.

[11] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability ofquery containment under
constraints. InProc. 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’98), pp. 149–158, 1998.

INFSYS RR 1843-06-03 39

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views over description
logics knowledge bases. InProc. 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pp. 386–391,
2000.

[13] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-basedrepresentation formalisms.J. of
Artificial Intelligence Research, 11:199–240, 1999.

[14] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and algo-
rithms for converse-PDL.Information and Computation, 160(1–2):117–137, 2000.

[15] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction inconcept languages: From sub-
sumption to instance checking.J. of Logic and Computation, 4(4):423–452, 1994.

[16] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.J. of Computer and
System Sciences, 18:194–211, 1979.

[17] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answeringfor description logics with tran-
sitive roles. InProc. 2006 Description Logic Workshop (DL 2006). CEUR Electronic Workshop Pro-
ceedings,http://ceur-ws.org/, 2006.

[18] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. InProc. 23rd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004), pp. 189–200, 2004.

[19] V. Haarslev and R. M̈oller. RACER system description. InProc. Int. Joint Conf. on Automated Rea-
soning (IJCAR 2001), volume 2083 ofLecture Notes in Artificial Intelligence, pp. 701–705. Springer,
2001.

[20] J. Heflin and J. Hendler. A portrait of the Semantic Web in action.IEEE Intelligent Systems, 16(2):54–
59, 2001.

[21] I. Horrocks. The FaCT system. In H. de Swart, editor,Proc. 7th Int. Conf. on Automated Reason-
ing with Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397 ofLecture Notes in
Artificial Intelligence, pp. 307–312. Springer, 1998.

[22] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. FromSHIQ and RDF to OWL: The making
of a web ontology language.J. of Web Semantics, 1(1):7–26, 2003.

[23] I. Horrocks and U. Sattler. A tableaux decision procedure forSHOIQ. In Proc. 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005), pp. 448–453, 2005.

[24] I. Horrocks and U. Sattler. A tableaux decision procedure forSHOIQ. Technical report, Department
of Computer Science, University of Manchester, 2005. Available athttp://www.cs.man.ac.
uk/∼sattler/publications/shoiq-tr.pdf.

[25] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning forexpressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov, editors,Proc. 6th Int. Conf. on Logic for Program-
ming and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence,
pp. 161–180. Springer, 1999.

[26] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individualsfor the description logicSHIQ. In
D. McAllester, editor,Proc. 17th Int. Conf. on Automated Deduction (CADE 2000), volume 1831 of
Lecture Notes in Computer Science, pp. 482–496. Springer, 2000.

40 INFSYS RR 1843-06-03

[27] I. Horrocks and S. Tessaris. A conjunctive query language for description logic ABoxes. InProc. 17th
Nat. Conf. on Artificial Intelligence (AAAI 2000), pp. 399–404, 2000.

[28] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision procedures by resolution-
based calculi. InProc. 11th Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2004), pp. 21–35, 2004.

[29] U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ-description logic to disjunctive datalog
programs. InProc. 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2004), pp. 152–162, 2004.

[30] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive description
logics. InProc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 466–471, 2005.

[31] M. Lenzerini. Data integration: A theoretical perspective. InProc. 21st ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 2002), pp. 233–246, 2002.

[32] A. Y. Levy and M.-C. Rousset. Combining Horn rules and descriptionlogics in CARIN. Artificial
Intelligence, 104(1–2):165–209, 1998.

[33] C. Lutz. Description logics with concrete domains: A survey. In P. Balbiani, N.-Y. Suzuki, F. Wolter,
and M. Zakharyaschev, editors,Advances in Modal Logics, volume 4. King’s College Publications,
2003.

[34] M. Ortiz de la Fuente, D. Calvanese, T. Eiter, and E. Franconi. Characterizing Data Complexity
for Conjunctive Query Answering in Expressive Description Logics. In Proceedings 21th National
Conference on Artificial Intelligence (AAAI ’06), July 16-23, 2006, Boston. AAAI Press, 2006.

[35] M. Ortiz de la Fuente, D. Calvanese, T. Eiter, and E. Franconi. DataComplexity of Answering Unions
of Conjunctive Queries in SHIQ. InProceedings 2006 International Workshop on Description Logics
(DL2006), The Lake District of the UK, May 30-June 1, 2006, 2006.

[36] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language semantics and abstract
syntax – W3C recommendation. Technical report, World Wide Web Consortium, Feb. 2004. Available
athttp://www.w3.org/TR/owl-semantics/.

[37] A. Schaerf. On the complexity of the instance checking problem in concept languages with existential
quantification.J. of Intelligent Information Systems, 2:265–278, 1993.

[38] A. Schaerf. Reasoning with individuals in concept languages.Data and Knowledge Engineering,
13(2):141–176, 1994.

[39] S. Tobies. The complexity of reasoning with cardinality restrictions andnominals in expressive de-
scription logics.J. of Artificial Intelligence Research, 12:199–217, 2000.

[40] S. Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD
thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany, 2001.

[41] M. Y. Vardi. The complexity of relational query languages. InProc. 14th ACM SIGACT Symp. on
Theory of Computing (STOC’82), pp. 137–146, 1982.

