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Abstract. Towards sophisticated representation and reasoning techniques that allow for probabilistic
uncertainty in the Rules, Logic, and Proof layers of the Semantic Web, we present probabilistic de-
scription logic programs (or pdl-programs), which are a combination of description logic programs
(or dl-programs) under the answer set semantics and the well-founded semantics with Poole’s inde-
pendent choice logic. We show that query processing in such pdl-programs can be reduced to com-
puting all answer sets of dl-programs and solving linear optimization problems, and to computing
the well-founded model of dl-programs, respectively. Moreover, we show that the answer set seman-
tics of pdl-programs is a refinement of the well-founded semantics of pdl-programs. Furthermore,
we also present an algorithm for query processing in the special case of stratified pdl-programs,
which is based on a reduction to computing the canonical model of stratified dl-programs.
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1 Introduction

TheSemantic Web[5, 14] aims at an extension of the current World Wide Web by standards and technologies
that help machines to understand the information on the Web so that they can support richer discovery, data
integration, navigation, and automation of tasks. The main ideas behind it are toadd a machine-readable
meaning to Web pages, to use ontologies for a precise definition of shared terms in Web resources, to use
KR technology for automated reasoning from Web resources, and to apply cooperative agent technology for
processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where theOntology layer, in form of theOWL
Web Ontology Language[46, 23] (recommended by the W3C), is currently the highest layer of sufficient
maturity. OWL consists of three increasingly expressive sublanguages,namelyOWL Lite, OWL DL, and
OWL Full. OWL Lite and OWL DL are essentially very expressive description logics with an RDF syn-
tax [23]. As shown in [21], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge base
(un)satisfiability in the description logicSHIF(D) (resp.,SHOIN (D)). On top of the Ontology layer,
theRules, Logic, andProof layersof the Semantic Web will be developed next, which should offer sophis-
ticated representation and reasoning capabilities. As a first effort in this direction,RuleML(Rule Markup
Language) [6] is an XML-based markup language for rules and rule-based systems, whereas the OWL Rules
Language [22] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the Rules and the
Ontology layer. In particular, it is crucial to allow for building rules on top ofontologies, that is, for rule-
based systems that use vocabulary from ontology knowledge bases. Another type of combination is to build
ontologies on top of rules, which means that ontological definitions are supplemented by rules or imported
from rules. Towards this goal, the works [12, 13] have proposeddescription logic programs(or simplydl-
programs), which are of the formKB =(L,P ), whereL is a knowledge base in a description logic andP
is a finite set ofdescription logic rules(or simplydl-rules). Such dl-rules are similar to usual rules in logic
programs with negation as failure, but may also containqueries toL in their bodies, which are given by
special atoms (on which possibly default negation may apply). Another important feature of dl-rules is that
queries toL also allow for specifying an input fromP , and thus for aflow of information fromP toL, besides
the flow of information fromL to P , given by any query toL. Hence, description logic programs allow for
building rules on top of ontologies, but also (to some extent) building ontologieson top of rules. In this
way, additional knowledge (gained in the program) can be supplied toL before querying. The semantics
of dl-programs was defined in [12] and [13] as an extension of the answer set semantics by Gelfond and
Lifschitz [17] and the well-founded semantics by Van Gelder, Ross, and Schlipf [45], respectively, which
are the two most widely used semantics for nonmonotonic logic programs. The description logic knowledge
bases in dl-programs are specified in the well-known description logicsSHIF(D) andSHOIN (D).

In this paper, we continue this line of research. Towards sophisticated representation and reasoning
techniques that also allow for modeling probabilistic uncertainty in the Rules, Logic, and Proof layers of
the Semantic Web, we presentprobabilistic description logic programs(or simply pdl-programs), which
generalize dl-programs under the answer set and the well-founded semantics by probabilistic uncertainty.
This probabilistic generalization of dl-programs is developed as a combinationof dl-programs with Poole’s
independent choice logic (ICL) [35].

It is important to point out that Poole’s ICL is a powerful representation and reasoning formalism for
single- and also multi-agent systems, which combines logic and probability, andwhich can represent a
number of important uncertainty formalisms, in particular, influence diagrams,Bayesian networks, Markov
decision processes, and normal form games [35]. Furthermore, Poole’s ICL also allows for natural notions
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of causes and explanations as in Pearl’s structural causal models [15].
To my knowledge, this is the first work that combines description logic programs with probabilistic

uncertainty. The main contributions are summarized as follows:

• We present probabilistic description logic programs (or pdl-programs), which are a probabilistic gen-
eralization of dl-programs [12, 13]. They are a combination of dl-programs with Poole’s independent
choice logic (ICL) [35]; they properly generalize ICL programs (with finite Herbrand bases) by de-
scription logics.

• We define a probabilistic answer set semantics of pdl-programs, which is a generalization of the
(strong) answer set semantics of dl-programs in [12]. We show that query processing in pdl-programs
under this semantics is reducible to computing all answer sets of dl-programs and solving linear
optimization problems.

• We define a probabilistic well-founded semantics of pdl-programs, which is ageneralization of the
well-founded semantics of dl-programs in [13]. We then show that query processing in pdl-programs
under the well-founded semantics can be reduced to computing the well-founded semantics of dl-
programs.

• We show that, like for the case of dl-programs, the answer set semantics ofpdl-programs is a refine-
ment of the well-founded semantics of pdl-programs. That is, whenever an answer to a query under
the well-founded semantics is defined, it coincides with the answer to the query under the answer set
semantics.

• We also present an algorithm for query processing in the special case of stratified pdl-programs. It
is based on a reduction to computing the canonical model of stratified dl-programs, which can be
done by a finite sequence of finite fixpoint iterations. This shows especiallythat query processing in
stratified pdl-programs is conceptually easier than query processing in general pdl-programs.

The rest of this paper is organized as follows. Section 2 recalls the description logicsSHIF(D) and
SHOIN (D). In Section 3, we recall dl-programs under the stratified, the answer set,and the well-founded
semantics. In Section 4, we introduce their probabilistic generalization to pdl-programs. Section 5 focuses
on query processing in stratified pdl-programs. In Sections 6 and 7, we discuss related work, summarize the
main results, and give an outlook on future research.

2 The Description LogicsSHIF(D) and SHOIN (D)

In this section, we recall the description logicsSHIF(D) andSHOIN (D).

2.1 Syntax

We first describe the syntax ofSHOIN (D). We assume a set ofelementary datatypesand a set ofdata val-
ues. A datatypeis either an elementary datatype or a set of data values (calleddatatype oneOf). A datatype
theoryD= (∆D, ·D) consists of adatatype(or concrete) domain∆D and a mapping·D that associates with
every elementary datatype a subset of∆D and with every data value an element of∆D. The mapping·D is
extended to all datatypes by{v1, . . .}D = {vD1 , . . .}. LetA, RA, RD, andI be nonempty finite and pairwise
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disjoint sets ofatomic concepts, abstract roles, datatype(or concrete) roles, andindividuals, respectively.
We denote byR−

A the set of inversesR− of all R∈RA.
A role is an element ofRA ∪R−

A ∪RD. Conceptsare inductively defined as follows. EveryC ∈A is a
concept, and ifo1, . . . , on ∈ I, then{o1, . . . , on} is a concept (calledoneOf). If C, C1, andC2 are concepts
and ifR∈RA ∪R−

A, then also(C1⊓C2), (C1⊔C2), and¬C are concepts (calledconjunction, disjunction,
and negation, respectively), as well as∃R.C, ∀R.C, ≥nR, and≤nR (called exists, value, atleast, and
atmost restriction, respectively) for an integern≥ 0. If D is a datatype andU ∈RD, then∃U.D, ∀U.D,
≥nU , and≤nU are concepts (calleddatatype exists, value, atleast, andatmost restriction, respectively) for
an integern≥ 0. We write⊤ and⊥ to abbreviate the conceptsC ⊔ ¬C andC ⊓ ¬C, respectively, and we
eliminate parentheses as usual.

An axiom is an expression of one of the following forms: (1)C ⊑D (called concept inclusion ax-
iom), whereC andD are concepts; (2)R⊑S (called role inclusion axiom), where eitherR,S ∈RA or
R,S ∈RD; (3) Trans(R) (called transitivity axiom), whereR∈RA; (4) C(a) (calledconcept member-
ship axiom), whereC is a concept anda∈ I; (5) R(a, b) (resp.,U(a, v)) (calledrole membership axiom),
whereR∈RA (resp.,U ∈RD) anda, b∈ I (resp.,a∈ I andv is a data value); and (6)a= b (resp.,a 6= b)
(calledequality (resp.,inequality) axiom), wherea, b∈ I. A knowledge baseL is a finite set of axioms.
For decidability, number restrictions inL are restricted to simple abstract rolesR∈RA [24].

The syntax ofSHIF(D) is as the above syntax ofSHOIN (D), but without the oneOf constructor
and with theatleastandatmostconstructors limited to0 and1.

Example 2.1 An online store (such asamazon.com) may use a description logic knowledge base to classify
and characterize its products. For example, suppose that (1) textbooksare books, (2) personal computers
and cameras are electronic products, (3) books and electronic products are products, (4) every product has
at least one related product, (5) only products are related to each other, (6) tb ai andtb lp are textbooks,
which are related to each other, (7)pc ibm andpc hp are personal computers, which are related to each
other, and (8)ibm andhp are providers forpc ibm andpc hp, respectively. This knowledge is expressed
by the following description logic knowledge baseL1 in SHIF(D):

(1) Textbook ⊑ Book ; (2) PC ⊔ Camera ⊑ Electronics;

(3) Book ⊔ Electronics ⊑ Product ; (4) Product ⊑ ≥ 1 related ;

(5) ≥ 1 related ⊔ ≥ 1 related− ⊑ Product ;

(6) Textbook(tb ai); Textbook(tb lp); related(tb ai , tb lp);

(7) PC (pc ibm); PC (pc hp); related(pc ibm, pc hp);

(8) provides(ibm, pc ibm); provides(hp, pc hp).

2.2 Semantics

An interpretationI = (∆I , ·I) with respect to a datatype theoryD=(∆D, ·D) consists of a nonempty
(abstract) domain∆I disjoint from ∆D, and a mapping·I that assigns to each atomic conceptC ∈A a
subset of∆I , to each individualo∈ I an element of∆I , to each abstract roleR∈RA a subset of∆I ×∆I ,
and to each datatype roleU ∈RD a subset of∆I ×∆D). The mapping·I is extended to all concepts and
roles as usual (where#S denotes the cardinality of a setS):

• {o1, . . . , on}
I = {oI1 , . . . , o

I
n};
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• (C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI , and(¬C)I = ∆I \CI ;

• (∃R.C)I = {x∈∆I | ∃y : (x, y)∈RI ∧ y ∈CI};

• (∀R.C)I = {x∈∆I | ∀y : (x, y)∈RI → y ∈CI};

• (≥nR)I = {x∈∆I | #({y | (x, y)∈RI}) ≥ n};

• (≤nR)I = {x∈∆I | #({y | (x, y)∈RI}) ≤ n};

• (∃U.D)I = {x∈∆I | ∃y : (x, y)∈UI ∧ y ∈DD};

• (∀U.D)I = {x∈∆I | ∀y : (x, y)∈UI → y ∈DD};

• (≥nU)I = {x∈∆I | #({y | (x, y)∈UI}) ≥ n};

• (≤nU)I = {x∈∆I | #({y | (x, y)∈UI}) ≤ n}.

The satisfactionof a description logic axiomF in the interpretationI = (∆I , ·I) with respect toD =
(∆D, ·D), denotedI |=F , is defined as follows: (1)I |=C ⊑D iff CI ⊆DI ; (2) I |=R⊑S iff RI ⊆SI ;
(3) I |=Trans(R) iff RI is transitive; (4)I |=C(a) iff aI ∈CI ; (5) I |=R(a, b) iff (aI , bI)∈RI ; (6)
I |=U(a, v) iff (aI , vD)∈UI ; (7) I |= a= b iff aI = bI ; and (8)I |= a 6= b iff aI 6= bI . The interpretationI
satisfiesthe axiomF , orI is amodelof F , iff I |=F . The interpretationI satisfiesa knowledge baseL, orI
is amodelof L, denotedI |=L, iff I |=F for all F ∈L. We say thatL is satisfiable(resp.,unsatisfiable) iff
L has a (resp., no) model. An axiomF is a logical consequenceof L, denotedL |=F , iff every model ofL
satisfiesF . A negated axiom¬F is alogical consequenceof L, denotedL |=¬F , iff every model ofL does
not satisfyF .

3 Description Logic Programs

In this section, we recalldescription logic programs(or dl-programs) [12, 13], which are a combination of
description logics and normal programs. They consist of a knowledge baseL in a description logic and a
finite set of description logic rulesP . Such rules are similar to usual rules in logic programs with negation
as failure, but may also containqueries toL, possibly default negated. We describe the canonical semantics
of positive and stratified dl-programs, as well as the answer set semanticsand the well-founded semantics
of general dl-programs.

3.1 Syntax

We now define the syntax of dl-programs. We first define the syntax of ordinary normal rules and of ordinary
normal and positive programs.

We assume a function-free first-order vocabularyΦ with nonempty finite sets of constant and predicate
symbols, and a set of variablesX . A term is a constant symbol fromΦ or a variable fromX . If p is a
predicate symbol of arityk≥ 0 from Φ andt1, . . ., tk are terms, thenp(t1, . . ., tk) is anatom. A negation-
as-failure literal is an atoma or a default-negated atomnot a. A normal ruler is of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

wherea, b1, . . . , bm are atoms. We refer toa as theheadof r, denotedH(r), while the conjunction
b1, . . . , bk,not bk+1, . . . ,not bm is called thebody of r; its positive (resp.,negative) part is b1, . . . , bk
(resp.,not bk+1, . . . ,not bm). We defineB(r) = B+(r) ∪ B−(r), whereB+(r) = {b1, . . . , bk} and
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B−(r) = {bk+1, . . . , bm}. A normal programP is a finite set of normal rules. We say thatP is positiveiff
no rule inP contains default-negated atoms.

We next define the syntax of dl-programs. Informally, they consist of a description logic knowledge
baseL and a generalized normal programP , which may contain queries toL. In such a query, it is asked
whether a certain description logic axiom or its negation logically follows fromL or not. Formally, adl-
queryQ(t) is either

(a) a concept inclusion axiomF or its negation¬F ; or

(b) of the formsC(t) or¬C(t), whereC is a concept andt is a term; or

(c) of the formsR(t1, t2) or¬R(t1, t2), whereR is a role andt1, t2 are terms.

A dl-atomhas the formDL[S1op1p1, . . . , Smopm pm;Q](t), where eachSi is a concept resp. role,opi ∈
{⊎, −∪} resp.opi =⊎, pi is a unary resp. binary predicate symbol,Q(t) is a dl-query, andm≥ 0. We call
p1, . . . , pm its input predicate symbols. Intuitively, opi =⊎ (resp.,opi = −∪) increasesSi (resp.,¬Si) by the
extension ofpi. A dl-rule r is of the form (1), where anyb∈B(r) is either an ordinary atom or a dl-atom.
A description logic program(or dl-program) KB = (L,P ) consists of a description logic knowledge baseL
and a finite set of dl-rulesP . Ground terms, atoms, literals, etc., are defined as usual. TheHerbrand base
of P , denotedHBP , is the set of all ground atoms with standard predicate symbols that occur inP and
constant symbols inΦ. We denote byground(P ) the set of all ground instances of dl-rules inP relative
to HBP .

Example 3.1 Consider the dl-programKB1 = (L1, P1), whereL1 is the description logic knowledge base
from Example 2.1, andP1 is the following set of dl-rules:

(1) pc(pc 1 ); pc(pc 2 ); pc(pc 3 );
(2) brand new(pc 1 ); brand new(pc 2 );
(3) vendor(dell , pc 1 ); vendor(dell , pc 2 ); vendor(dell , pc 3 );
(4) avoid(X)← DL[Camera](X),not offer(X);
(5) offer(X)← DL[PC ⊎ pc;Electronics](X),not brand new(X);
(6) provider(V )← vendor(V,X),DL[PC ⊎ pc;Product ](X);
(7) provider(V )← DL[provides](V,X),DL[PC ⊎ pc;Product ](X);
(8) similar(X,Y )← DL[related ](X,Y );
(9) similar(X,Z)← similar(X,Y ), similar(Y, Z).

The above dl-rules express that (1)pc 1 , pc 2 , andpc 3 are additional personal computers, (2)pc 1 and
pc 2 are brand new, (3)dell is the vendor ofpc 1 , pc 2 , andpc 3 , (4) a customer avoids all cameras that
are not on offer, (5) all electronic products that are not brand new are on offer, (6) every vendor of a product
is a provider, (7) every entity providing a product is a provider, (8) allrelated products are similar, and (9)
the binary similarity relation on products is transitively closed.

3.2 Semantics of Positive DL-Programs

We now define positive dl-programs and their canonical semantics. We first define interpretations and the
satisfaction of dl-programs in interpretations.

In the sequel, letKB=(L,P ) be a dl-program. AninterpretationI relative toP is any I ⊆HBP .
We say thatI is amodelof a∈HBP , denotedI |= a, iff a∈ I. We sayI is amodelof a∈HBP underL,
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denotedI |=L a, iff I |= a. We sayI is amodelof a ground dl-atoma=DL[S1op1 p1, . . . , Smopmpm;Q](c)
underL, denotedI |=L a, iff L∪

⋃m
i=1Ai(I) |=Q(c), whereAi(I)= {Si(e) | pi(e)∈ I}, for opi =⊎; and

Ai(I)= {¬Si(e) | pi(e)∈ I}, for opi = −∪. A ground dl-atoma is monotonicrelative toKB =(L,P ) iff
I ⊆ I ′⊆HBP implies that ifI |=L a thenI ′ |=L a. In this paper, we consider only monotonic ground dl-
atoms, but observe that one can also define dl-atoms that are not monotonic; see [12]. We say thatI is a
modelof a ground dl-ruler underL, denotedI |=L r, iff I |=L H(r) wheneverI |=LB(r), that is,I |=L a
for all a∈B+(r) andI 6|=L a for all a∈B−(r). We sayI is amodelof a dl-programKB = (L,P ), denoted
I |=KB , iff I |=L r for everyr∈ ground(P ). We sayKB is satisfiable(resp.,unsatisfiable) iff it has some
(resp., no) model.

We sayKB=(L,P ) is positiveiff no dl-rule inP contains default-negated atoms. Like ordinary positive
programs, every positive dl-programKB is satisfiable and has a unique least model, denotedMKB , that
naturally characterizes its semantics.

3.3 Semantics of Stratified DL-Programs

We next define stratified dl-programs and their canonical semantics. Theyare intuitively composed of hier-
archic layers of positive dl-programs linked via default negation. Like ordinary stratified normal programs,
they are always satisfiable and can be assigned a canonical minimal model via a number of iterative least
models.

For any dl-programKB = (L,P ), we denote byDLP the set of all ground dl-atoms that occur in
ground(P ). An input atomof a∈DLP is a ground atom with an input predicate ofa and constant symbols
in Φ. A (local) stratification ofKB = (L,P ) is a mappingλ :HBP ∪DLP→{0, 1, . . . , k} such that

(i) λ(H(r))≥λ(b′) (resp.,λ(H(r))>λ(b′)) for everyr∈ ground(P ) andb′ ∈ B+(r) (resp.,b′ ∈B−(r)),
and

(ii) λ(a)≥λ(b) for each input atomb of eacha ∈ DLP ,

wherek≥ 0 is thelengthof λ. For i ∈ {0, . . . , k}, let KB i = (L,Pi) = (L, {r ∈ ground(P ) |λ(H(r)) =
i}), and letHBPi

(resp.,HB⋆
Pi

) be the set of allb∈HBP such thatλ(b)= i (resp.,λ(b)≤ i). A dl-program
KB = (L,P ) is (locally) stratifiediff it has a stratificationλ of some lengthk≥ 0. We define its iterative
least modelsMi⊆HBP with i∈{0, . . . , k} as follows:

(i) M0 is the least model ofKB0;

(ii) if i> 0, thenMi is the least model ofKB i such thatMi|HB⋆
Pi−1

=Mi−1|HB⋆
Pi−1

.

The canonical model of the stratified dl-programKB , denotedMKB , is then defined asMk. Observe that
MKB is well-defined, since it does not depend on a particularλ. Furthermore,MKB is in fact a mini-
mal model ofKB .

3.4 Answer Set Semantics of DL-Programs

The answer set semanticsof general dl-programs is defined by a reduction to the least model semantics
of positive dl-programs as follows. We use a transformation that removes all default-negated atoms in
dl-rules and that generalizes the Gelfond-Lifschitz transformation [17].More precisely, for dl-programs
KB = (L,P ), the(strong) dl-transformof P relative toL and an interpretationI ⊆HBP , denotedsP I

L, is
the set of all dl-rules obtained fromground(P ) by (i) deleting every dl-ruler such thatI |=L a for some
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a∈B−(r), and (ii) deleting from each remaining dl-ruler the negative body. A(strong) answer setof KB

is an interpretationI ⊆HBP such thatI is the unique least model of(L, sP I
L).

The answer set semantics of dl-programsKB =(L,P ) without dl-atoms coincides with the ordinary
answer set semantics ofP . Answer sets of a general dl-programKB are also minimal models ofKB .
Positive and locally stratified dl-programs have exactly one answer set, which coincides with their canonical
minimal model.

3.5 Well-Founded Semantics of DL-Programs

In the sequel, letKB =(L,P ) be a dl-program. For literalsl= a (resp.,l=¬a), we use¬.l to denote¬a
(resp.,a), and for sets of literalsS, we define¬.S= {¬.l | l∈S} andS+ = {a∈S | a is an atom}. We define
LitP =HBP ∪¬.HBP . A setS⊆LitP is consistentiff S ∩¬.S= ∅. A three-valued interpretationrelative
to P is any consistentI ⊆LitP . We define the well-founded semantics ofKB by generalizing its standard
definition based on unfounded sets [45].

We first define unfounded sets of dl-programs. LetI ⊆LitP be consistent. A setU ⊆HBP is an
unfounded setof KB relative toI iff the following holds:

(∗) for everya∈U and everyr∈ground(P ) with H(r)= a, either (i)¬b∈ I ∪¬.U for some ordinary
atomb∈B+(r), or (ii) b∈I for some ordinary atomb∈B−(r), or (iii) for some dl-atomb∈B+(r),
it holds thatS+ 6|=Lb for every consistentS ⊆ LitP with I ∪¬.U ⊆S, or (iv) I+|=Lb for some
dl-atomb∈B−(r).

For every dl-programKB = (L,P ) and consistentI ⊆LitP , the set of unfounded sets ofKB relative toI
is closed under union, and thusKB has a greatest unfounded set relative toI, denotedUKB (I). Intuitively,
if I is compatible withKB , then all atoms inUKB (I) can be safely switched to false and the resulting
interpretation is still compatible withKB . We define the operatorsTKB andWKB on all consistentI ⊆LitP

as follows:

• a∈TKB (I) iff a∈HBP and somer∈ ground(P ) exists such that (a)H(r)= a, (b) I+ |=L b for all
b∈B+(r), (c)¬b∈ I for all ordinary atomsb∈B−(r), and (d)S+ 6|=L b for each consistentS⊆LitP

with I ⊆S, for all dl-atomsb∈B−(r);

• WKB (I)=TKB (I)∪¬.UKB (I).

The operatorsTKB , UKB , andWKB are all monotonic. Thus, in particular,WKB has a least fix-
point, denotedlfp(WKB ). The well-founded semanticsof KB = (L,P ), denotedWFS (KB), is defined
as lfp(WKB ). An atoma∈HBP is well-founded(resp.,unfounded) relative toKB iff a (resp.,¬a) is in
WFS (KB). Intuitively, starting withI = ∅, rules are applied to obtain new positive (resp., negated) facts
via TKB (I) (resp.,¬.UKB (I)). This process is repeated until no longer possible.

The well-founded semantics of dl-programsKB = (L,P ) without dl-atoms coincides with the ordinary
well-founded semantics ofP . In general,WFS (KB) is a partial model ofKB . Here, a consistentI ⊆LitP

is apartial modelof KB iff it can be extended to a (two-valued) modelI ′⊆HBP of KB . Like in the or-
dinary case, the well-founded semantics for positive and locally stratified dl-programs is total and coincides
with their canonical minimal model. The well-founded semantics for dl-programsalso approximates their
answer set semantics. That is, every well-founded (resp., unfounded) atoma∈HBP is true (resp., false) in
every answer set.
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4 Probabilistic Description Logic Programs

In this section, we define probabilistic dl-programs (or pdl-programs) as acombination of dl-programs with
Poole’s independent choice logic (ICL) [35]. Poole’s ICL is based onordinary acyclic logic programs under
different “choices”, where every choice along with an acyclic logic program produces a first-order model,
and one then obtains a probability distribution over the set of all first-ordermodels by placing a probability
distribution over the different choices. Here, we use stratified dl-programs under their canonical semantics,
as well as dl-programs under the well-founded and the answer set semantics, instead of the above ordinary
acyclic logic programs under their canonical semantics (which coincides withtheir stable model semantics
and their answer set semantics, respectively).

4.1 Syntax

We now define the syntax of pdl-programs and probabilistic queries addressed to them. We first define
probabilistic formulas and probabilities on choice spaces.

We assume a function-free first-order vocabularyΦ with nonempty finite sets of constant and predicate
symbols, and a set of variablesX , as in Section 3.1. We useHBΦ (resp.,HU Φ) to denote the Herbrand
base (resp., universe) overΦ. In the sequel, we assume thatHBΦ is nonempty. We defineclassical formulas
by induction as follows. The propositional constantsfalseand true, denoted⊥ and⊤, respectively, and
all atoms are classical formulas. Ifφ andψ are classical formulas, then¬φ and(φ∧ψ) are also classical
formulas. Aconditional constraintis of the form(ψ|φ)[l, u] with realsl, u∈ [0, 1] and classical formulasφ
andψ. We defineprobabilistic formulasinductively as follows. Every conditional constraint is a probabilis-
tic formula. IfF andG are probabilistic formulas, then also¬F and(F ∧G). We use(F ∨G), (F ⇐G),
and(F ⇔G) to abbreviate¬(¬F ∧¬G), ¬(¬F ∧G), and(¬(¬F ∧G)∧¬(F ∧¬G)), respectively, and
adopt the usual conventions to eliminate parentheses.Ground terms, ground formulas, substitutions, and
ground instancesof probabilistic formulas are defined as usual.

A choice spaceC is a set of pairwise disjoint and nonempty setsA⊆HBΦ. Any memberA∈C is
analternativeof C and any elementa∈A anatomic choiceof C. A total choiceof C is a setB⊆HBΦ

such that|B ∩ A|=1 for all A∈C. A probability µ on a choice spaceC is a probability function on the
set of all total choices ofC. SinceC and all its alternatives are finite,µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a)= 1 for all A∈C, and (ii)µ(B)= Πb∈Bµ(b) for all total choicesB

of C. Intuitively, (i) associates a probability with each atomic choice ofC, and (ii) assumes independence
between the alternatives ofC.

A probabilistic dl-program(or pdl-program) KB = (L,P,C, µ) consists of a dl-program(L,P ), a
choice spaceC such that no atomic choice inC coincides with the head of any dl-rule inground(P ) (note
that this condition ensures that stratified pdl-programs are always consistent; cf. Section 4.2), and a proba-
bility µ onC. Intuitively, since the total choices ofC select subsets ofP , every probabilistic dl-program is
the compact representation of a probability distribution on a finite set of dl-programs. Aprobabilistic query
to KB has the form?F or the form?(β|α)[R,S], whereF is a probabilistic formula,β, α are classical
formulas, andR,S are variables. Thecorrect answerto ?F is the set of all substitutionsθ such thatFθ is a
consequence ofKB . Thetight answerto?(β|α)[R,S] is the set of all substitutionsθ such that?(β|α)[R,S]θ
is a tight consequence ofKB . In the following paragraphs, we define the notions ofconsequenceandtight
consequenceunder the stratified, the answer set, and the well-founded semantics.

Example 4.1 Consider the pdl-programKB1 = (L1, P1, C1, µ1), whereL1 andP1 are as in Example 2.1
resp. 3.1 except that the dl-rules (4) and (5) are replaced by the dl-rules (4′) and (5′), respectively, and the
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dl-rules (10) and (11) are added:

(4′) avoid(X)← DL[Camera](X),not offer(X), avoid pos;
(5′) offer(X)← DL[PC ⊎ pc;Electronics](X),not brand new(X), offer pos;
(10) buy(C,X)← needs(C,X), view(X),notavoid(X), v buy pos;
(11) buy(C,X)← needs(C,X), buy(C, Y ), also buy(Y,X), a buy pos.

Let C1 = {{avoid pos, avoid neg}, {offer pos, offer neg}, {v buy pos, v buy neg}, {a buy pos,
a buy neg}}, and letµ1 be given byµ1(avoid pos) = 0.9, µ1(avoid neg) = 0.1, µ1(offer pos) =
0.9, µ1(offer neg) = 0.1, µ1(v buy pos) = 0.7, µ1(v buy neg) = 0.3, µ1(a buy pos) = 0.7, and
µ1(a buy neg) = 0.3.

Here, the new dl-rules (4′) and (5′) express that the dl-rules (4) and (5) actually only hold with the
probability0.9. Furthermore, (10) expresses that a customer buys a needed product that is viewed and not
avoided with the probability0.7, while (11) says that a customer buys a needed productx with probability
0.7, if she bought another producty, and every customer that previously had boughty also boughtx.

In a probabilistic query, one may ask for the tight probability bounds that a customerc buys a needed
productx, if (i) c bought another producty, (ii) every customer that previously had boughty also boughtx,
(iii) x is not avoided, and (iv)c has been shown productx (the result to this query may, e.g., help to decide
whether it is useful to make a customer automatically also view productx when buyingy):

?(buy(c, x) |needs(c, x)∧buy(c, y)∧also buy(y, x)∧view(x)∧¬avoid(x))[R,S] .

4.2 Semantics of Stratified PDL-Programs

A stratified pdl-programis a pdl-programKB=(L,P,C, µ) such that the dl-program(L,P ) is stratified.
In the following, we define the semantic notions of consequence and tight consequence for stratified pdl-
programs.

Example 4.2 Consider again the pdl-programKB1 =(L1, P1, C1, µ1) given in Example 4.1. It is not diffi-
cult to see thatKB1 is stratified.

A total world I is a subset ofHBΦ. We useIΦ to denote the set of all total worlds overΦ. A variable
assignmentσ maps each variableX ∈X to an element ofHU Φ. We extendσ to all terms byσ(c)= c
for all constant symbolsc from Φ. The truth of classical formulasφ in I under a variable assignmentσ,
denotedI |=σ φ (or I |=φ whenφ is ground), is inductively defined by:

• I |=σ p(t1, . . ., tk) iff p(σ(t1), . . ., σ(tk)) ∈ I ;

• I |=σ ¬φ iff not I |=σ φ ; andI |=σ (φ ∧ ψ) iff I |=σ φ andI |=σ ψ.

A total probabilistic interpretationPr is a probability function onIΦ (that is, sinceIΦ is finite, a mapping
Pr : IΦ→ [0, 1] such that allPr(I) with I ∈IΦ sum up to 1). Theprobabilityof a classical formulaφ in Pr

under a variable assignmentσ, denotedPrσ(φ) (or Pr(φ) whenφ is ground), is defined as the sum of all
Pr(I) such thatI ∈IΦ andI |=σ φ. For classical formulasφ andψ with Prσ(φ)> 0, we usePrσ(ψ|φ) to
abbreviatePrσ(ψ ∧φ) /Prσ(φ). The truth of probabilistic formulasF in Pr underσ, denotedPr |=σ F ,
is inductively defined as follows:

• Pr |=σ (ψ|φ)[l, u] iff Prσ(φ)= 0 or Prσ(ψ|φ)∈ [l, u] ;
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• Pr |=σ ¬F iff not Pr |=σ F ; andPr |=σ (F ∧G) iff Pr |=σ F andPr |=σ G.

A total probabilistic interpretationPr is amodelof a probabilistic formulaF iff Pr |=σ F for every variable
assignmentσ. We say thatPr is thecanonical modelof a stratified pdl-programKB =(L,P,C, µ) iff every
world I ∈IΦ with Pr(I)> 0 is the canonical model of(L, P ∪ {p ← | p∈B}) for some total choiceB
of C such thatPr(I)=µ(B). Observe that every stratified pdl-programKB has a unique canonical model
Pr . A probabilistic formulaF is a consequenceof KB , denotedKB ‖∼F , iff the canonical model of
KB is also a model ofF . A conditional constraint(ψ|φ)[l, u] is a tight consequenceof KB , denoted
KB ‖∼ tight(ψ|φ)[l, u], iff l (resp.,u) is the infimum (resp., supremum) ofPrσ(ψ|φ) subject to the canonical
modelPr of KB and all variable assignmentsσ with Prσ(φ)> 0. Note that query processing in stratified
pdl-programs is discussed in Section 5 below.

Example 4.3 Consider again the pdl-programKB1 = (L1, P1, C1, µ1) given in Example 4.1. Since(L1, P1)
is stratified, alsoKB1 is stratified. The choice spaceC1 has16 total choices, and each of these total choices
is associated with a probability underµ1. For example, one total choice ofC1 is given byB1 = {avoid pos,
offer pos, v buy pos, a buy pos}; it has the probabilityµ1(B1)= 0.9× 0.9 × 0.7× 0.7 = 0.3969. Every
total choiceB of C1 specifies a canonical model of a stratified dl-program, namely, the canonical model
of (L,P ∪ {p ←| p∈B}), which is associated with the probabilityµ1(B). Hence, the canonical model
Pr1 of KB1 consists of 16 canonical models of stratified dl-programs along with their probabilities. For
example, the canonical modelIB1

for the above total choiceB1 satisfies (among others) the ground atoms
in lines (1) to (3) of Example 3.1 as well asoffer(pc3 ), offer(pc ibm), andoffer(pc hp); the canonical
modelIB1

has the associated probabilityµ1(B1)= 0.3969. The canonical modelPr1 of KB1 thus rep-
resents exactly one probability distribution over first-order models, and it allows to assign a probability to
any ground classical formula. For example, the ground atomsoffer(pc3 ), offer(pc ibm), andoffer(pc hp)
have each the probability0.9 under the canonical modelPr1 of KB1 (besideIB1

there are otherIB that
satisfyoffer(pc3 ), offer(pc ibm), andoffer(pc hp)).

4.3 Answer Set Semantics of PDL-Programs

We now introduce the notions of consistency, consequence, and tight consequence under the answer set
semantics for general pdl-programs.

A total probabilistic interpretationPr is ananswer set modelof a pdl-programKB = (L,P,C, µ) iff (i)
every total worldI ∈IΦ with Pr(I)> 0 is an answer set of(L, P ∪{p← | p∈B}) for some total choiceB
of C, and (ii)Pr(

∧
B) = Pr(

∧
p∈B p)=µ(B) for every total choiceB of C. We say thatKB is consistent

iff it has an answer set modelPr . A probabilistic formulaF is ananswer set consequenceof KB , denoted
KB ‖∼ asF , iff every answer set model ofKB is also a model ofF . A conditional constraint(ψ|φ)[l, u] is
a tight answer set consequenceof KB , denotedKB ‖∼ as

tight(ψ|φ)[l, u], iff l (resp.,u) is the infimum (resp.,
supremum) ofPrσ(ψ|φ) subject to all answer set modelsPr of KB and all variable assignmentsσ with
Prσ(φ)> 0. Here, we assume thatl= 1 andu= 0, whenPrσ(φ)= 0 for all answer set modelsPr of KB

and allσ.
Every stratified pdl-programKB is consistent and has exactly one answer set model, which coincides

with the canonical model ofKB . Deciding whether a general pdl-programKB is consistent can be reduced
to deciding whether dl-programs have an answer set. The following theorem shows that computing tight
answers to queries?(β|α)[R,S] to KB , whereβ andα are ground, can be reduced to computing all answer
sets of dl-programs and then solving two linear optimization problems. It followsfrom a standard result on
transforming linear fractional programs into equivalent linear programs by Charnes and Cooper [7].
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∑
r∈R, r 6|=

V

B

−µ(B) yr +
∑

r∈R, r|=
V

B

(1− µ(B)) yr = 0 (for all total choicesB of C)

∑
r∈R, r|=α

yr = 1

yr ≥ 0 (for all r∈R)

Figure 1: System of linear constraintsLC for Theorem 4.4.

Theorem 4.4 Let KB =(L,P,C, µ) be a consistent pdl-program, and letβ and α be ground classical
formulas such thatPr(α)> 0 for some answer set modelPr of KB . Then,l (resp.,u) such thatKB ‖∼ as

tight

(β|α)[l, u] is the optimal value of the following linear program over the variablesyr (r∈R), whereR is
the union of all sets of answer sets of(L,P ∪ {p← | p∈B}) for all total choicesB ofC:

minimize (resp., maximize)
∑

r∈R, r |= β∧α yr subject toLC in Fig. 1.

4.4 Well-Founded Semantics of PDL-Programs

We finally define the notions of consequence and tight consequence under the well-founded semantics for
general pdl-programs. We first define partial probabilistic interpretations and the evaluation of probabilistic
formulas in them.

A partial world I is a consistent subset ofLitΦ =HBΦ ∪ ¬.HBΦ. We identifyI with the three-valued
interpretationI : HBΦ → {true, false, undefined} that is defined byI(a)= true iff a∈ I, I(a)= false
iff ¬a∈ I, andI(a)=undefined iff I ∩{a,¬a}= ∅). We useIp

Φ to denote the set of all partial worlds over
Φ. Every classical formulaφ in a partial worldI under a variable assignmentσ is associated with athree-
valued truth valuefrom {true, false,undefined}, denotedIσ(φ) (or simply I(φ) whenφ is ground),
which is inductively defined by:

• Iσ(p(t1, . . ., tk))= I(p(σ(t1), . . ., σ(tk))) ;

• Iσ(¬φ)= true iff Iσ(φ)= false, andIσ(¬φ)= false iff Iσ(φ)= true ;

• Iσ(φ ∧ ψ)= true iff Iσ(φ)= Iσ(ψ)= true, and
Iσ(φ ∧ ψ)= false iff Iσ(φ)= false or Iσ(ψ)= false.

A partial probabilistic interpretationPr is a probability function onIp
Φ. Theprobability of a classical

formula φ in Pr under a variable assignmentσ, denotedPrσ(φ) (or simply Pr(φ) whenφ is ground),
is undefined, if Iσ(φ) is undefined for someI ∈Ip

Φ with Pr(I)> 0; and Prσ(φ) is defined as the
sum of all Pr(I) such thatI ∈Ip

Φ and Iσ(φ)= true, otherwise. For classical formulasφ andψ such
that Prσ(φ)> 0, the conditional probabilityof ψ given φ in Pr underσ, denotedPrσ(ψ|φ), is defined
asPrσ(ψ ∧φ) /Prσ(φ). Note that, alternatively, we may also definePrσ(φ) as the interval[

∑
Iσ(φ)=true

Pr(I), 1−
∑

Iσ(φ)=false
Pr(I)]. However, even though this definition ensures thatPrσ(φ) is always defined,

it cannot easily be generalized to conditional probabilities. Every probabilistic formula F in Pr underσ
is associated with athree-valued truth valuefrom {true, false,undefined}, denotedPrσ(F ), which is
inductively defined as follows:
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• Prσ((ψ|φ)[l, u])= true iff Prσ(φ)= 0 or Prσ(ψ|φ)∈ [l, u], and
Prσ((ψ|φ)[l, u])= false iff Prσ(φ) > 0 andPrσ(ψ|φ) 6∈ [l, u] ;

• Prσ(¬F )= true iff Prσ(F )= false, andPrσ(¬F )= false iff Prσ(F )= true ;

• Prσ(F ∧G)= true iff Prσ(F )=Prσ(G)= true, and
Prσ(F ∧G)= false iff Prσ(F )= false or Prσ(G)= false.

The well-founded modelof a pdl-programKB =(L,P,C, µ), denotedPr
wf
KB , is defined as follows:

(i) Pr
wf
KB (IB)=µ(B), whereIB is the well-founded model of(L,P ∪ {p ← | p∈B}), for every total

choiceB of C, and (ii) Pr
wf
KB (I)= 0 for all other I ∈Ip

Φ. A probabilistic formulaF is a well-founded

consequenceof KB , denotedKB ‖∼ wf F , iff F is true in Pr
wf
KB under every variable assignmentσ. A con-

ditional constraint(ψ|φ)[l, u] is a tight well-founded consequenceof KB , denotedKB ‖∼ wf
tight(ψ|φ)[l, u],

iff (i) Pr
wf
KB (φ) under every variable assignmentsσ is different fromundefined, and (ii) l (resp.,u) is

the infimum (resp., supremum) ofPrσ(ψ|φ) subject toPr =Pr
wf
KB and all variable assignmentsσ with

Prσ(φ)> 0.
The well-founded model of a stratified pdl-programKB is total and coincides with the canonical model

of KB . As an advantage of the well-founded semantics, every general pdl-programKB has a unique well-
founded model, but not necessarily an answer set model. Furthermore,the unique well-founded model can
be easily computed by fixpoint iteration [13]. As a drawback, the well-founded model associates only with
someclassical formulas underσ a probability, while every answer set model associates withall classical
formulas underσ a probability. The following theorem shows that the answer set semantics is arefinement
of the well-founded semantics. That is, if an answer to a query under the well-founded semantics is defined,
then it coincides with the answer under the answer set semantics. The theorem follows from the result that
the well-founded semantics of dl-programs approximates their answer set semantics [13]. The advantages
of both semantics can thus be combined in query processing by first trying tocompute the well-founded
answer, and only if this does not exist the answer under the answer setsemantics.

Theorem 4.5 Let KB =(L,P,C, µ) be a consistent pdl-program, and let(ψ|φ)[l, u] be a ground condi-
tional constraint. IfPr

wf
KB (φ),Pr

wf
KB (ψ ∧φ) 6=undefined, then

(a) KB ‖∼ wf (ψ|φ)[l, u] iff KB ‖∼ as(ψ|φ)[l, u], and

(b) KB ‖∼ wf
tight(ψ|φ)[l, u] iff KB ‖∼ as

tight(ψ|φ)[l, u].

Proof (sketch). Let α∈{ψ,ψ ∧φ}. It is sufficient to show thatPr
wf
KB (α) is equal toPr(α) for all answer

set modelsPr of KB . Observe thatPr
wf
KB (α) is the sum of allµ(B) such that (i)B is a total choice ofC,

(ii) µ(B)> 0, and (iii)IB(α)= true, whereIB denotes the well-founded model of(L,P ∪{p← | p∈B}).
By induction on the structure of classical formulas, it is not difficult to see that IB(α)= true iff I |=α for
all answer setsI of (L,P ∪ {p ← | p∈B}). This already shows thatPr

wf
KB (α) is equal toPr(α) for all

answer set modelsPr of KB . 2

5 Query Processing in Stratified PDL-Programs

The canonical model of an ordinary positive (resp., stratified) normal programP has a fixpoint character-
ization in terms of an immediate consequence operatorTP , which generalizes to positive (resp., stratified)
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dl-programs. This can be used for a bottom-up computation of the canonicalmodel of a positive (resp.,
stratified) dl-program, and thus also for computing the canonical model of astratified pdl-program and for
query processing in stratified pdl-programs.

5.1 Fixpoint Iteration in Positive DL-Programs

We first describe a fixpoint characterization of the canonical model of apositive dl-program. For any
dl-programKB = (L,P ), we define the operatorTKB on the subsets ofHBP as follows. For every
I ⊆HBP , let

TKB (I) = {H(r) | r∈ ground(P ), I |=L ℓ for all ℓ∈B(r)} .

If KB is positive, thenTKB is monotonic. Hence,TKB has a least fixpoint, denotedlfp(TKB ). Furthermore,
lfp(TKB ) can be computed by a finite fixpoint iteration (given finiteness ofP and the number of constant
symbols inΦ). For everyI ⊆HBP , we defineT i

KB (I) = I, if i = 0, andT i
KB (I) = TKB (T i−1

KB (I)), if i > 0.

Theorem 5.1 For every positive dl-programKB = (L,P ), it holds thatlfp(TKB ) = MKB . Furthermore,
lfp(TKB )=

⋃n
i=0 T

i
KB (∅)=Tn

KB (∅) for somen≥ 0.

5.2 Fixpoint Iteration in Stratified DL-Programs

We next describe a fixpoint characterization for stratified dl-programs.Using Theorem 5.1, we can character-
ize the canonical modelMKB of a stratified dl-programKB =(L,P ) as follows. LetT̂ i

KB (I) = T i
KB (I)∪I

for all i ≥ 0.

Theorem 5.2 Suppose thatKB = (L,P ) has a stratificationλ of lengthk≥ 0. LetMi⊆HBP , i∈{−1, 0,
. . . , k}, be defined byM−1 = ∅ andMi = T̂ni

KB i
(Mi−1) for i≥ 0, whereni≥ 0 such thatT̂ni

KB i
(Mi−1) =

T̂ni+1
KB i

(Mi−1). Then,Mk =MKB .

5.3 Query Processing in Stratified PDL-Programs

Algorithm canonicalmodel(see Fig. 2) computes the canonical modelPr of a given stratified pdl-program
KB =(L,P,C, µ). It is essentially based on a reduction to computing the canonical model of stratified
dl-programs in line 4, which can be done using the above finite sequence offinite fixpoint iterations.

Example 5.3 Consider again the stratified pdl-programKB1 = (L1, P1, C1, µ1) of Example 4.1. The com-
putation ofcanonicalmodelin Fig. 2 onKB1 is summarized as follows. For each of the 16 total choices
B of C1, the canonical modelIB of the stratified dl-program(L1, P1 ∪{p←| p∈B}) is computed, andIB
is associated with the probabilityµ1(B), while all the otherI ∈IΦ are associated with the probability0.
For example, for the total choiceB1 = {avoid pos, offer pos, v buy pos, a buy pos} of C1, the canon-
ical modelIB1

of the stratified dl-program(L1, P1 ∪{p ←| p∈B1}) satisfies exactly the ground atoms
in lines (1) to (3) of Example 3.1 as well asoffer(pc3 ), offer(pc ibm), offer(pc hp), provider(dell),
provider(ibm), provider(hp), similar(tb ai , tb lp), andsimilar(pc ibm, pc hp), andIB1

is associated
with the probabilityµ1(B1)= 0.9× 0.9× 0.7× 0.7 = 0.3969.
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Algorithm canonicalmodel

Input : stratified pdl-programKB = (L, P, C, µ).
Output : canonical modelPr of KB .

1. for every interpretationI ∈IΦ do
2. Pr(I) := 0;
3. for every total choiceB of C do begin
4. compute the canonical modelI of the
5. stratified dl-program(L, P ∪{p← | p∈B});
6. Pr(I) := µ(B)
7. end;
8. return Pr .

Figure 2: Algorithmcanonicalmodel.

Algorithm tight answer

Input : stratified pdl-programKB = (L, P, C, µ) and probabilistic query?(β|α)[R, S].
Output : tight answerθ = {R/l, S/u} for ?(β|α)[R, S] to KB .

1. Pr := canonicalmodel(KB);
2. l := 1;
3. u := 0;
4. for every ground instanceβ′|α′ of β|α do begin
5. l := min(l,Pr(β′|α′));
6. u := max(u,Pr(β′|α′))
7. end;
8. return θ = {R/l, S/u}.

Figure 3: Algorithmtight answer.

Algorithm tight answer(see Fig. 3) computes tight answersθ= {R/l, S/u} for a given probabilistic
query?(β|α)[R,S] to a given stratified pdl-programKB . It computes the canonical model ofKB in line 1
and the tight answer in lines 2–8.

Example 5.4 To compute the tight answer for the query?(offer(pc3 )|⊤)[R,S] to the stratified pdl-program
KB1 =(L1, P1, C1, µ1) of Example 4.1, Algorithmtight answer in Fig. 3 first computes the canonical
modelPr of KB1, using Algorithmcanonicalmodel. Then, sinceβ|α= offer(pc3 )|⊤ is ground and un-
conditional, Algorithmtight answercomputes only the probability ofoffer(pc3 ) in Pr . Finally, since the
latter is given by0.9, the algorithm returnsθ= {R/0.9, S/0.9}.

6 Related Work

In this section, we discuss related work on the combination of logic programs with description logics and
on uncertainty reasoning for the Semantic Web. Note that an overview of thelarge body of previous work
on the combination of logic programs with probabilistic uncertainty is contained in [30, 26].
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6.1 Description Logic Programs

Related work on the combination of description logics and logic programs can be divided into (a) hybrid
approaches using description logics as input to logic programs, (b) approaches reducing description logics
to logic programs, (c) combinations of description logics with default and defeasible logic, and (d) ap-
proaches to rule-based well-founded reasoning in the Semantic Web. Below we give some representatives
for (a)–(d). Further works and details are given in [12, 13].

The works by Doniniet al.[10], Levy and Rousset [27], and Rosati [37, 38] are representatives of hybrid
approaches using description logics as input. Doniniet al. [10] introduce a combination of (disjunction-
, negation-, and function-free) datalog with the description logicALC. An integrated knowledge base
consists of a structural component inALC and a relational component in datalog, where the integration of
both components lies in using concepts from the structural component as constraints in rule bodies of the
relational component. The closely related work by Levy and Rousset [27] presents a combination of Horn
rules with the description logicALCNR. In contrast to Doniniet al. [10], Levy and Rousset also allow
for roles as constraints in rule bodies, and do not require the safety condition that variables in constraints
in the body of a ruler must also appear in ordinary atoms in the body ofr. Finally, Rosati [37] presents a
combination of disjunctive datalog (with classical and default negation, butwithout function symbols) with
ALC, which is based on a generalized answer set semantics.

Some approaches reducing description logic reasoning to logic programmingare the works by Van
Belleghemet al.[44], Alsaç and Baral [1], Swift [43], Grosofet al. [19], and Hufstadtet al. [25]. Early work
on dealing with default information in description logics is the approach due to Baader and Hollunder [4],
where Reiter’s default logic is adapted to terminological knowledge bases.Antoniou [2] combines defeasible
reasoning with description logics for the Semantic Web. In [3], Antoniou andWagner summarize defeasible
and strict reasoning in a single rule formalism.

An important approach to rule-based reasoning under the well-foundedsemantics for the Semantic Web
is due to Daḿasio [9]. He aims at Prolog tools for implementing different semantics for RuleML [6]. So
far, an XML parser library as well as a RuleML compiler have been developed, with routines to convert
RuleML rule bases to Prolog and vice versa. The compiler supports paraconsistent well-founded semantics
with explicit negation; it is planned to be extended to use XSB [36].

6.2 Uncertainty Reasoning for the Semantic Web

Related approaches to uncertainty reasoning for the Semantic Web can be roughly divided into (a) de-
scription logic programs under non-probabilistic uncertainty, (b) probabilistic generalizations of description
logics, and (c) probabilistic generalizations of web ontology languages, such as DAML+OIL and OWL.

As for (a), previous works by Straccia combine (positive) description logic programs withlattice-based
uncertainty[41] and with fuzzy vagueness[42]. Whereas, to my knowledge, the present paper is the first
one combining (normal) description logic programs withprobabilistic uncertainty.

As for (b), Giugno and Lukasiewicz [18] present a probabilistic generalization of the expressive de-
scription logicSHOQ(D) that stands behind DAML+OIL, which is based on lexicographic probabilistic
reasoning. In earlier work, Heinsohn [20] and Jaeger [28] present probabilistic extensions to the description
logicALC, which are essentially based on probabilistic reasoning in probabilistic logics. Koller et al. [29]
present a probabilistic generalization of the CLASSIC description logic, which uses Bayesian networks as
underlying probabilistic reasoning formalism. Note that fuzzy description logics, such as the ones by Strac-
cia [39, 40], are less closely related to probabilistic description logics, since they deal with fuzzy vagueness,
rather than probabilistic ambiguity and imprecision.
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As for (c), there are especially the works by Costa [8], Pool and Aikin [34], and Ding and Peng [11],
which present probabilistic generalizations of the web ontology language OWL. In particular, Costa’s work
[8] is semantically based on multi-entity Bayesian networks, while [11] has a semantics in standard Bayesian
networks. In closely related work, Fukushige [16] proposes a basic framework for representing probabilistic
relationships in RDF. Finally, Nottelmann and Fuhr [33] present pDAML+OIL, which is a probabilistic
generalization of the web ontology language DAML+OIL, along with a mappingto stratified probabilistic
datalog.

7 Conclusion

We have presented probabilistic dl-programs (or pdl-programs), which are a combination of dl-programs
under the answer set and the well-founded semantics with Poole’s independent choice logic. We have shown
that query processing in such pdl-programs can be reduced to computingall answer sets of dl-programs
and solving linear optimization problems, and to computing the well-founded semantics of dl-programs,
respectively. We have also shown that the answer set semantics of pdl-programs is a refinement of the
well-founded semantics of pdl-programs. Moreover, we have considered the special case of stratified pdl-
programs. In particular, we have presented an algorithm for query processing in such pdl-programs, which
is based on a reduction to computing the canonical model of stratified dl-programs.

An interesting topic of future research is to further enhance pdl-programs towards a possible use for
Web Services. This may be done by exploiting and generalizing further features of Poole’s ICL for dynamic
and multi-agent systems [35]. It would also be interesting to further explorethe computational aspects of
query processing in pdl-programs under the stratified, answer set, andwell-founded semantics.
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