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1 Introduction

TheSemantic Wefb, 14] aims at an extension of the current World Wide Web by standaditeahnologies
that help machines to understand the information on the Web so that theypgaortsucher discovery, data
integration, navigation, and automation of tasks. The main ideas behind it adelta machine-readable
meaning to Web pages, to use ontologies for a precise definition of shamesliteWeb resources, to use
KR technology for automated reasoning from Web resources, and tp@mperative agent technology for
processing the information of the Web.

The Semantic Web consists of several hierarchical layers, whe€@ritodogy layerin form of theOWL
Web Ontology Languagé®6, 23] (recommended by the W3C), is currently the highest layer dicsrit
maturity. OWL consists of three increasingly expressive sublanguageslyOWL Lite OWL DL, and
OWL Full. OWL Lite and OWL DL are essentially very expressive description logiitk an RDF syn-
tax [23]. As shown in [21], ontology entailment in OWL Lite (resp., OWL DEefuces to knowledge base
(un)satisfiability in the description logi§HZF (D) (resp.,SHOZN (D)). On top of the Ontology layer,
the Rules Logic, andProof layersof the Semantic Web will be developed next, which should offer sophis-
ticated representation and reasoning capabilities. As a first effort in itleistion, RuleML (Rule Markup
Language) [6] is an XML-based markup language for rules and ragedbsystems, whereas the OWL Rules
Language [22] is a first proposal for extending OWL by Horn claudest

A key requirement of the layered architecture of the Semantic Web is to iteeiip@ Rules and the
Ontology layer. In particular, it is crucial to allow for building rules on topootologies, that is, for rule-
based systems that use vocabulary from ontology knowledge basatheAtype of combination is to build
ontologies on top of rules, which means that ontological definitions ardesuppted by rules or imported
from rules. Towards this goal, the works [12, 13] have propatestription logic programsgor simplydl-
programg, which are of the formkB = (L, P), whereL is a knowledge base in a description logic and
is a finite set ofdescription logic rulegor simplydI-rules). Such dl-rules are similar to usual rules in logic
programs with negation as failure, but may also contaigries toL in their bodies, which are given by
special atoms (on which possibly default negation may apply). Another tartdfeature of dl-rules is that
gueries ta also allow for specifying an input from?, and thus for dlow of information fromP to L, besides
the flow of information fromZ to P, given by any query td.. Hence, description logic programs allow for
building rules on top of ontologies, but also (to some extent) building ontolagigsp of rules. In this
way, additional knowledge (gained in the program) can be suppliddiefore querying. The semantics
of dlI-programs was defined in [12] and [13] as an extension of the emnset semantics by Gelfond and
Lifschitz [17] and the well-founded semantics by Van Gelder, Ross, ahtiph [45], respectively, which
are the two most widely used semantics for nonmonotonic logic programs.eBogtion logic knowledge
bases in dl-programs are specified in the well-known description I&§itEF (D) andSHOZN (D).

In this paper, we continue this line of research. Towards sophisticapedsentation and reasoning
techniques that also allow for modeling probabilistic uncertainty in the Rulegicl.and Proof layers of
the Semantic Web, we presgmbbabilistic description logic programgr simply pdl-program3, which
generalize dl-programs under the answer set and the well-foundecdhesriay probabilistic uncertainty.
This probabilistic generalization of dl-programs is developed as a combiratatisprograms with Poole’s
independent choice logic (ICL) [35].

It is important to point out that Poole’s ICL is a powerful representatioth @easoning formalism for
single- and also multi-agent systems, which combines logic and probabilityhinth can represent a
number of important uncertainty formalisms, in particular, influence diagrBaygesian networks, Markov
decision processes, and normal form games [35]. Furthermore,®ilealso allows for natural notions
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of causes and explanations as in Pearl’s structural causal models [15]
To my knowledge, this is the first work that combines description logic prograith probabilistic
uncertainty. The main contributions are summarized as follows:

e We present probabilistic description logic programs (or pdl-prograntsi;hware a probabilistic gen-
eralization of dl-programs [12, 13]. They are a combination of dI-pnogrevith Poole’s independent
choice logic (ICL) [35]; they properly generalize ICL programs (withitérHerbrand bases) by de-
scription logics.

e We define a probabilistic answer set semantics of pdl-programs, which emeraization of the
(strong) answer set semantics of dl-programs in [12]. We show thay guecessing in pdl-programs
under this semantics is reducible to computing all answer sets of dl-progminsodving linear
optimization problems.

e We define a probabilistic well-founded semantics of pdl-programs, whictganaralization of the
well-founded semantics of dI-programs in [13]. We then show that quegessing in pdl-programs
under the well-founded semantics can be reduced to computing the wetlddwsemantics of dlI-
programs.

e \We show that, like for the case of dI-programs, the answer set semanpdéfograms is a refine-
ment of the well-founded semantics of pdl-programs. That is, whenevenswer to a query under
the well-founded semantics is defined, it coincides with the answer to thg gunder the answer set
semantics.

e We also present an algorithm for query processing in the special ¢asetified pdl-programs. It
is based on a reduction to computing the canonical model of stratified digmnsg which can be
done by a finite sequence of finite fixpoint iterations. This shows espethiallyquery processing in
stratified pdl-programs is conceptually easier than query processingénaigd|-programs.

The rest of this paper is organized as follows. Section 2 recalls theiptéseriogics SHZF (D) and
SHOZN (D). In Section 3, we recall dl-programs under the stratified, the answergkthe well-founded
semantics. In Section 4, we introduce their probabilistic generalization torpgkgms. Section 5 focuses
on query processing in stratified pdl-programs. In Sections 6 and 7iseess related work, summarize the
main results, and give an outlook on future research.

2 The Description LogicsSHZ F (D) and SHOZN (D)

In this section, we recall the description logig#(ZF (D) andSHOZN (D).

2.1 Syntax

We first describe the syntax StHOZN (D). We assume a set efementary datatypemd a set oflata val-
ues A datatypeis either an elementary datatype or a set of data values (@Htatype oneOf A datatype
theoryD = (AP, -P) consists of alatatype(or concret¢ domainAP and a mapping® that associates with
every elementary datatype a subset\dt and with every data value an element®?. The mapping® is
extended to all datatypes By, ...}P = {vP,...}. LetA, R4, Rp, andI be nonempty finite and pairwise
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disjoint sets ofatomic conceptsabstract roles datatype(or concretg roles andindividuals respectively.
We denote byR , the set of inverse®~ of all Re R 4.

A roleis an element oR 4 UR, URp. Conceptsare inductively defined as follows. Evefyc A is a
concept, and iby, ..., 0, €1, then{oy,...,0,} is a concept (calledneOj. If C, Cy, andC, are concepts
andifRe R4 UR, thenalsqC; M Cy), (C1 LICy), and—C' are concepts (callezbnjunction disjunction
and negation respectively), as well asR.C, VR.C', >nR, and<nR (called exists valug atleast and
atmost restrictionrespectively) for an integet > 0. If D is a datatype an@ € Rp, then3U.D, VU.D,
>nU, and<nU are concepts (calledhtatype existsralue atleast andatmost restrictionrespectively) for
an integem > 0. We write T and L to abbreviate the conceptsL/ -C' andC 1 —C, respectively, and we
eliminate parentheses as usual.

An axiomis an expression of one of the following forms: (@)C D (called concept inclusion ax-
iom), whereC and D are concepts; (2RC .S (calledrole inclusion axiom, where eitherk, S € R 4 or
R,S €Rp; (3) Trans(R) (calledtransitivity axion), whereR € R 4; (4) C(a) (called concept member-
ship axion), whereC' is a concept and € I; (5) R(a,b) (resp.,U(a,v)) (calledrole membership axiom
whereR € R4 (resp.,U € Rp) anda,b €1 (resp.,a € I andv is a data value); and (&= 0b (resp.,a # b)
(called equality (resp.,inequality) axiom), wherea,be 1. A knowledge basé is a finite set of axioms.
For decidability, number restrictions inare restricted to simple abstract roles R 4 [24].

The syntax ofSHZF (D) is as the above syntax SHOZN (D), but without the oneOf constructor
and with theatleastandatmostconstructors limited t6 and1.

Example 2.1 An online store (such aamazon.coinmay use a description logic knowledge base to classify
and characterize its products. For example, suppose that (1) textamwk®oks, (2) personal computers
and cameras are electronic products, (3) books and electronic psadegroducts, (4) every product has
at least one related product, (5) only products are related to each (@hér_a: and¢b_lp are textbooks,
which are related to each other, (#)_ibm and pc_hp are personal computers, which are related to each
other, and (8)ybm andhp are providers fopc_ibm and pc_hp, respectively. This knowledge is expressed
by the following description logic knowledge base in SHZF(D):

(1) Textbook T Book; (2) PC U Camera T Electronics;

(3) Book LI Electronics € Product; (4) Product = > 1 related;
(5) >1related U > 1 related™ T Product;

(6) Textbook(tb_ai); Textbook(tb_lp); related(tb-ai,tb_lp);
(7) PC(pc-ibm); PC(pc_hp); related(pc_ibm, pc_hp);

(8) provides(ibm, pc_ibm); provides(hp, pc_hp).

2.2 Semantics

An interpretationZ = (AZ, -Z) with respect to a datatype theoFy = (AP, .P) consists of a nonempty
(abstrac) domain A7 disjoint from AP, and a mapping’ that assigns to each atomic concépt A a
subset ofAZ, to each individuab € T an element ofAZ, to each abstract rolg € R 4 a subset oA x AZ,
and to each datatype rolé< Rp a subset ofA” x AP). The mapping?” is extended to all concepts and
roles as usual (wherg S denotes the cardinality of a s&j:

e {01,...,0.Yr ={o?,... 0},

y¥nlt
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nR)f = {z e AT [ #({y | (x,y) € R"}) > n};
nR)F ={ze A | #({y | (z.y) € RT}) < n};
JU.D)t = {x € AT | Jy: (z,y) e UL Ayec DP};
YU.D)t = {z e AT | Vy: (2,y) cU? — ye DP},
nU)t = {ze AT | #({y | (x,y) €UT}) > n};
nU)F = {ze AT | #({y| (z,y) €U*}) < n}.

The satisfactionof a description logic axion¥F in the interpretatiorZ = (A%, -Z) with respect toD =

(AP, .D), denotedl |= F, is defined as follows: (1F =C C D iff C* C D*; (2)T|= RC S iff RT C S%;

(3) Z |=Trans(R) iff R? is transitive; (4)Z |=C(a) iff o € C%; (5) I |= R(a,b) iff (a®,b?) € RT; (6)

Tl=U(a,v)iff (aF,vP)cU%; (7) T = a=0biff a* =b; and (8)T |=a # biff a #bL. The interpretatio
satisfieghe axiomF, orZ is amodelof F, iff Z = F. The interpretatiod satisfiesa knowledge basg, orZ
is amodelof L, denoted’ |~ L, iff Z |= F for all F' € L. We say that is satisfiable(resp. unsatisfiablgiff

L has a (resp., no) model. An axiomis alogical consequencef L, denotedL = F, iff every model ofL

satisfiesF". A negated axiom-F' is alogical consequencef L, denoted. = —F, iff every model ofL does
not satisfyF'.

3 Description Logic Programs

In this section, we recatlescription logic programgor dl-programg [12, 13], which are a combination of
description logics and normal programs. They consist of a knowledgg/ban a description logic and a
finite set of description logic ruleB. Such rules are similar to usual rules in logic programs with negation
as failure, but may also contafueries tol, possibly default negated. We describe the canonical semantics
of positive and stratified dl-programs, as well as the answer set semantidhe well-founded semantics

of general dI-programs.

3.1 Syntax

We now define the syntax of dI-programs. We first define the syntaxdafary normal rules and of ordinary
normal and positive programs.

We assume a function-free first-order vocabukarwith nonempty finite sets of constant and predicate
symbols, and a set of variablés. A termis a constant symbol fron® or a variable fromX. If pis a
predicate symbol of arity > 0 from ® andt, .. ., t; are terms, thep(ty, . . ., t;) is anatom A negation-
as-failure literalis an atomz or a default-negated atonvt a. A normal ruler is of the form

a<«—by,...,bp,n0otbg11,...,n0tby, m>k>0, Q)
wherea, by, ...,b,, are atoms. We refer te as theheadof r, denotedH (), while the conjunction
bi,...,bg, notbxi1,...,notb,, is called thebody of r; its positive (resp., negative part isby, ..., by

(resp.,not by, ..., notby). We defineB(r) = B*(r) U B~(r), where B*(r) = {by,...,bx} and
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B~ (r) = {bk+1,--.,bm}. Anormal programP is a finite set of normal rules. We say this positiveiff
no rule in P contains default-negated atoms.

We next define the syntax of dl-programs. Informally, they consist aéscudption logic knowledge
basel and a generalized normal prografm which may contain queries tb. In such a query, it is asked
whether a certain description logic axiom or its negation logically follows fiowr not. Formally, adl-
queryQ(t) is either

() a concept inclusion axiomf or its negation-F'; or
(b) of the formsC(t) or =C(t), whereC'is a concept andis a term; or
(c) of the formsR(t1,t2) or = R(t1,t2), whereR is a role and;, t, are terms.

A dl-atomhas the formDL[S;opp1, . . ., Smop,, pm; Q](t), where eaclb; is a concept resp. rolep, €
{w,J} resp.op, =W, p; is a unary resp. binary predicate symb@lt) is a dl-query, andn. > 0. We call
P1,- .., Pm itsinput predicate symbaoldntuitively, op, =W (resp.,op; =) increases; (resp.,—.5;) by the
extension ofp;. A dl-rule r is of the form (1), where any < B(r) is either an ordinary atom or a dl-atom.
A description logic prograntor dl-program) KB = (L, P) consists of a description logic knowledge bdse
and a finite set of dl-rule®. Ground termsatoms literals, etc., are defined as usual. THerbrand base
of P, denotedHBp, is the set of all ground atoms with standard predicate symbols that occuimd
constant symbols i®. We denote byround(P) the set of all ground instances of dl-rulesihrelative
to HBp.

Example 3.1 Consider the dI-prograrfkB, = (L1, P;), whereL; is the description logic knowledge base
from Example 2.1, and is the following set of dl-rules:

(1) pe(pe-1); pe(pe-2); pe(pe-3);

(2) brand_new(pc_1); brand_new(pc_2);

(3) wendor(dell,pc_1); wvendor(dell,pc_2); wvendor(dell, pc_3);
(4) avoid(X) < DL[Camera)(X), not offer(X);

(5) offer(X) <« DL[PCW pc; Electronics|(X), not brand_new(X);
(6) provider(V') « vendor(V, X), DL[PC W pc; Product](X);

(7) provider(V') «— DL[provides|(V, X ), DL[PC W pc; Product|(X);
(8) similar(X,Y) « DL[related](X,Y);

9) similar(X, Z) < similar(X,Y"), similar(Y, Z).

The above dl-rules express that (k) 7, pc_2, andpc_3 are additional personal computers, {2) 7 and
pc_2 are brand new, (3Jell is the vendor ofoc_1, pc_2, andpc_3, (4) a customer avoids all cameras that
are not on offer, (5) all electronic products that are not brand mewmoffer, (6) every vendor of a product
is a provider, (7) every entity providing a product is a provider, (8)yelfited products are similar, and (9)
the binary similarity relation on products is transitively closed.

3.2 Semantics of Positive DL-Programs

We now define positive dl-programs and their canonical semantics. Weldiiae interpretations and the
satisfaction of dl-programs in interpretations.

In the sequel, letkB=(L, P) be a dl-program. Arinterpretation! relative to P is any I C HBp.
We say that/ is amodelof a € HB p, denoted! |=q, iff a € I. We say! is amodelof a« € HBp underL,
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denoted =, a, iff I |=a. We sayl is amodelof a ground dl-atora = DL[S10p; p1, - - ., Sm0p,,pm; Q](c)
underL, denoted! |=1, a, iff LU |J;"; A;(I) = Q(c), whereA,(I) ={S;(e) | pi(e) € I'}, for op; =; and
A;(I)={-Si(e)|pi(e) €I}, for op;=4. A ground dl-atoma is monotonicrelative to KB = (L, P) iff
ICI' C HBp implies that if/ =1, a thenI’ =1 a. In this paper, we consider only monotonic ground dl-
atoms, but observe that one can also define dl-atoms that are not monsemid2]. We say that is a
modelof a ground dl-rule- underL, denoted! =, r, iff I =1 H(r) wheneverl =1, B(r), thatis,] =1 a
foralla e B*(r) andl (£, a for all a € B~ (r). We sayI is amodelof a dl-programkB = (L, P), denoted
I'= KB, iff I =1 r for everyr € ground(P). We sayKB is satisfiable(resp.,unsatisfiabliff it has some
(resp., no) model.

We sayKB=(L, P) is positiveiff no dl-rule in P contains default-negated atoms. Like ordinary positive
programs, every positive dl-prograiiB is satisfiable and has a unique least model, dendigg, that
naturally characterizes its semantics.

3.3 Semantics of Stratified DL-Programs

We next define stratified dl-programs and their canonical semantics.arbemtuitively composed of hier-
archic layers of positive dl-programs linked via default negation. Likénary stratified normal programs,
they are always satisfiable and can be assigned a canonical minimal nedehwmber of iterative least
models.

For any dl-programkKB = (L, P), we denote byDLp the set of all ground dl-atoms that occur in
ground(P). An input atomof « € DLp is a ground atom with an input predicatecofnd constant symbols
in ®. A (local) stratification of KB = (L, P) is a mapping\: HBp U DLp—{0, 1, ..., k} such that

(i) M(H(r)) = XV) (resp. \(H(r)) > \(V')) for everyr € ground(P) andb’ € B*(r) (resp.)’ € B~ (r)),
and

(i) A(a) > \(b) for each input atonh of eacha € DLp,

wherek >0 is thelengthof \. Fori € {0,...,k}, let KB; = (L, P;) = (L,{r € ground(P) | AX(H(r)) =
i}), and letHB p, (resp.,HBY,) be the set of alb € HB p such that\(b) =1 (resp.,A(b) <4). A dl-program
KB = (L, P) is (locally) stratifiediff it has a stratification\ of some lengthk > 0. We define its iterative
least models\/; C HBp with i € {0,. .., k} as follows:

() M, is the least model ok By;
(i) if i >0, thenM,; is the least model ok B; such thatM;|HBY, | = M; 1|HBp, ..

The canonical model of the stratified dl-progrda®3, denotedM g3, is then defined as/,. Observe that
Mgp is well-defined, since it does not depend on a particilaf~urthermore M gg is in fact a mini-
mal model ofKB.

3.4 Answer Set Semantics of DL-Programs

The answer set semantiaxf general dl-programs is defined by a reduction to the least model semantic
of positive dl-programs as follows. We use a transformation that remdielefault-negated atoms in
dl-rules and that generalizes the Gelfond-Lifschitz transformation [Mire precisely, for dl-programs
KB = (L, P), the(strong) dI-transfornof P relative toL and an interpretation C HB p, denoteds P}, is

the set of all dl-rules obtained froground(P) by (i) deleting every dl-rule: such thatl =1, a for some
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a € B~ (r), and (ii) deleting from each remaining dI-rutehe negative body. Astrong) answer seif KB
is an interpretatiod C HB p such thatl is the unique least model 61, sPY).

The answer set semantics of dI-prografiB = (L, P) without dl-atoms coincides with the ordinary
answer set semantics @f. Answer sets of a general dl-progralfB are also minimal models okB.
Positive and locally stratified dl-programs have exactly one answer siety wbincides with their canonical
minimal model.

3.5 Well-Founded Semantics of DL-Programs

In the sequel, leKB = (L, P) be a dl-program. For literals=a (resp.,l = —a), we use-.l to denote-a
(resp.a), and for sets of literal§, we define~.5 = {-.l| 1 € S} andS™ ={a € S | ais an aton}. We define
Litp= HBpU—.HBp. A setS C Litp is consisteniff SN —.5 = (). A three-valued interpretatiorelative
to P is any consistent C Lit p. We define the well-founded semanticsiB by generalizing its standard
definition based on unfounded sets [45].

We first define unfounded sets of dl-programs. L&t Litp be consistent. A sel/ C HBp is an
unfounded setf KB relative to! iff the following holds:

(x) for everya € U and everyreground(P) with H(r) = a, either (i)—b € I U-.U for some ordinary
atombeB™ (r), or (ii) bl for some ordinary atorhe B~ (r), or (iii) for some dl-atomb € B*(r),
it holds thatS™}~.b for every consistens C Litp with TU—.U C S, or (iv) IT=.b for some
dl-atomb € B~ (r).

For every dl-progrankB = (L, P) and consistenf C Lit p, the set of unfounded sets &fB relative to/

is closed under union, and thi&3 has a greatest unfounded set relativé,tdenoted/ x5 (1). Intuitively,

if I is compatible withKB, then all atoms /g () can be safely switched to false and the resulting
interpretation is still compatible with B. We define the operatoils,z andWW g on all consistent C Litp

as follows:

o acTxp(I)iff ae HBp and some € ground(P) exists such that (a}f (r) =a, (b) It =1 b for all
be BT (r), (c)-be I for all ordinary atom$ € B~ (r), and (d)S* (£, b for each consisteriC Lit p
with 7 C S, for all dl-atomsh € B~ (r);

° WKB(I):TKB(I) U—hUKB(I).

The operatorsl'’xg, Ukp, and Wkp are all monotonic. Thus, in particulaW kg has a least fix-
point, denotedfp(Wgkp). Thewell-founded semantiosf KB = (L, P), denotedWFS(KB), is defined
aslfp(Wkg). An atoma € HBp is well-founded(resp.,unfoundedi relative to KB iff a (resp.,—a) is in
WFS(KB). Intuitively, starting with/ =), rules are applied to obtain new positive (resp., negated) facts
viaTkp(I) (resp.,—.Ugg(I)). This process is repeated until no longer possible.

The well-founded semantics of dI-prograi® = (L, P) without dl-atoms coincides with the ordinary
well-founded semantics d?. In general, WFS(KB) is a partial model of{B. Here, a consistertC Litp
is apartial modelof KB iff it can be extended to a (two-valued) modélC HBp of KB. Like in the or-
dinary case, the well-founded semantics for positive and locally stratifipcbdrams is total and coincides
with their canonical minimal model. The well-founded semantics for dl-progi@Eswsapproximates their
answer set semantics. That is, every well-founded (resp., unfdyatiema € HB p is true (resp., false) in
every answer set.
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4 Probabilistic Description Logic Programs

In this section, we define probabilistic dl-programs (or pdl-programs)casrdination of dl-programs with
Poole’s independent choice logic (ICL) [35]. Poole’s ICL is basedminary acyclic logic programs under
different “choices”, where every choice along with an acyclic logicgpam produces a first-order model,
and one then obtains a probability distribution over the set of all first-orbetels by placing a probability
distribution over the different choices. Here, we use stratified dl-pragrunder their canonical semantics,
as well as dI-programs under the well-founded and the answer set tsesnarstead of the above ordinary
acyclic logic programs under their canonical semantics (which coincideghaithstable model semantics
and their answer set semantics, respectively).

4.1 Syntax

We now define the syntax of pdl-programs and probabilistic queries saktteo them. We first define
probabilistic formulas and probabilities on choice spaces.

We assume a function-free first-order vocabul&rywith nonempty finite sets of constant and predicate
symbols, and a set of variabl&s, as in Section 3.1. We uséBg¢ (resp.,HU ¢) to denote the Herbrand
base (resp., universe) over In the sequel, we assume tHaB ¢ is nonempty. We definelassical formulas
by induction as follows. The propositional constafatse andtrue, denotedl and T, respectively, and
all atoms are classical formulas. ¢fand are classical formulas, thefy and (¢ A ) are also classical
formulas. Aconditional constraints of the form(v|¢)[l, u] with realsl, v € [0, 1] and classical formulag
andq. We defingprobabilistic formulagnductively as follows. Every conditional constraint is a probabilis-
tic formula. If 7" andG are probabilistic formulas, then alsd” and(F A G). We use(F'V G), (F < G),
and (F' < G) to abbreviate-(—F A =G), =(~F AG), and(=(—=F AG) A—=(F A —=@G)), respectively, and
adopt the usual conventions to eliminate parenthe&esund termsground formulas substitutionsand
ground instancesf probabilistic formulas are defined as usual.

A choice space&” is a set of pairwise disjoint and nonempty sdts HBg. Any memberAeC' is
analternativeof C and any elemeni € A anatomic choiceof C. A total choiceof C is a setB C HBg
such that B N A| =1 for all A< C. A probability . on a choice spac€' is a probability function on the
set of all total choices of’. SinceC' and all its alternatives are finitg, can be defined by (i) a mapping
p: JC—[0,1] suchthaty . , u(a)=1forall AcC, and (i) u(B) =Iye pp(b) for all total choicesB
of C. Intuitively, (i) associates a probability with each atomic choic€'ofind (ii) assumes independence
between the alternatives 6f.

A probabilistic dl-program(or pdl-progran) KB = (L, P, C, 1) consists of a dl-prograniL, P), a
choice spac€’ such that no atomic choice i coincides with the head of any dl-rule imound(P) (note
that this condition ensures that stratified pdl-programs are always tamtsisf. Section 4.2), and a proba-
bility 1 on C. Intuitively, since the total choices @f select subsets d?, every probabilistic dl-program is
the compact representation of a probability distribution on a finite set ofagjrpms. Aprobabilistic query
to KB has the form?F' or the form?(5|«)[R, S], whereF' is a probabilistic formula, « are classical
formulas, andR, S are variables. Theorrect answeto 7 F' is the set of all substitutiorssuch thatf'd is a
consequence df B. Thetight answeto 7(3|«)[R, S] is the set of all substitutiortssuch that’ (5|«)[R, S|0
is a tight consequence & B. In the following paragraphs, we define the notiongafsequencandtight
consequencander the stratified, the answer set, and the well-founded semantics.

Example 4.1 Consider the pdl-prograliB, = (L1, P1, C1, 1), whereL; and P; are as in Example 2.1
resp. 3.1 except that the dl-rules (4) and (5) are replaced by théedl4) and (3), respectively, and the
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dl-rules (10) and (11) are added:

(4) avoid(X) « DL[Camera](X), not offer(X), avoid_pos;

(%) offer(X) « DL[PC W pc; Electronics|(X), not brand_new(X), offer_pos;
(10) buy(C, X) « needs(C, X ), view(X), notavoid(X), v_buy_pos;

(11) buy(C, X) « needs(C, X), buy(C,Y), also_buy(Y, X), a_buy_pos.

Let C; = {{avoid_pos, avoid_neg}, {offer_pos, offer_neg}, {v_buy_pos, v_buy_neg}, {a_buy_pos,
a_buy_neg}}, and letu; be given byui(avoid_pos) = 0.9, pi(avoid_neg) = 0.1, uy(offer_pos) =
0.9, w1(offer_neg) = 0.1, pi(v-dbuy_pos) = 0.7, u1(v-buy-neg) = 0.3, u1(a-buy_pos) = 0.7, and
w1 (a_buy_neg) = 0.3.

Here, the new dl-rules (#and (8) express that the dl-rules (4) and (5) actually only hold with the
probability 0.9. Furthermore, (10) expresses that a customer buys a needed tittatuis viewed and not
avoided with the probability.7, while (11) says that a customer buys a needed produgth probability
0.7, if she bought another produgt and every customer that previously had boughtso bought:.

In a probabilistic query, one may ask for the tight probability bounds thaistomerec buys a needed
productz, if (i) ¢ bought another produgt (ii) every customer that previously had bougtdlso boughtz,

(i) x is not avoided, and (iv} has been shown produet(the result to this query may, e.g., help to decide
whether it is useful to make a customer automatically also view pradutten buyingy):

?(buy(c, x) | needs(c, ) Nbuy(c, y)Aalso_buy(y, z) \view(x) A\—avoid(z))[R, S] .

4.2 Semantics of Stratified PDL-Programs

A stratified pdl-programis a pdl-programiB=(L, P, C, ) such that the dl-prograrfi_, P) is stratified.
In the following, we define the semantic notions of consequence and tigeeqaence for stratified pdl-
programs.

Example 4.2 Consider again the pdl-programB, = (L1, P1, C1, u1) given in Example 4.1. Itis not diffi-
cult to see thaf{B; is stratified.

A total world I is a subset oHHB4. We useZs to denote the set of all total worlds ov@r A variable
assignment maps each variabl& € X’ to an element ofHU 4. We extendo to all terms byo(c) =c¢
for all constant symbols from ®. Thetruth of classical formulag in I under a variable assignmett
denoted! =, ¢ (or I = ¢ wheng is ground), is inductively defined by:

o ] ':o p(tl,.. .,tk> iff p(O’(t1>,.. .,U(tk)) el;
o [ =, ~¢iffnot I =, ¢;andl =, (¢ ANY)iff I =, p andl =, 1.

A total probabilistic interpretationPr is a probability function o (that is, sinceZs is finite, a mapping
Pr: Zg — [0, 1] such that allPr(I) with I € Zg sum up to 1). Th@robability of a classical formulg in Pr
under a variable assignmemt denotedPr,(¢) (or Pr(¢) wheng is ground), is defined as the sum of all
Pr(I) such thatl € Zg andl =, ¢. For classical formulag and« with Pr,(¢) >0, we usePr,(1|¢) to
abbreviatePr, (¢ A ¢) / Pr,(¢). Thetruth of probabilistic formulag’ in Pr undero, denotedPr =, F,

is inductively defined as follows:

o Pri=; (Ylo)[l,u] iff Pro(¢)=00rPro(v|¢) €[l ul;
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e Pr=, —F iff not Pr =, F;andPr =, (F AG) iff Pr=, FandPr =, G.

A total probabilistic interpretatiodr is amodelof a probabilistic formuld’ iff Pr =, F for every variable
assignment. We say thar is thecanonical modebf a stratified pdl-progrank B = (L, P, C, ) iff every
world I € Zy with Pr(I) >0 is the canonical model dfL, P U {p < | p€ B}) for some total choice3

of C such thatPr(I) = u(B). Observe that every stratified pdl-progrdf® has a unique canonical model
Pr. A probabilistic formulaZF’ is a consequencef KB, denotedKB | F, iff the canonical model of
KB is also a model off’. A conditional constraint«|¢)[l, u] is atight consequencef KB, denoted
KB | yigne (¥|@)[1, u], iff [ (resp.,u) is the infimum (resp., supremum) 6t (1|$) subject to the canonical
model Pr of KB and all variable assignmentswith Pr,(¢) > 0. Note that query processing in stratified
pdl-programs is discussed in Section 5 below.

Example 4.3 Consider again the pdIl-progra3, = (L1, P;, C1, 1) given in Example 4.1. Sindd.1, P;)

is stratified, alsd{B is stratified. The choice spacg has16 total choices, and each of these total choices
is associated with a probability under. For example, one total choice 6f is given byB; = { avoid_ _pos,
offer_pos, v_buy_pos, a_buy_pos}; it has the probability:; (B;) =0.9 x 0.9 x 0.7 x 0.7=0.3969. Every
total choiceB of ('} specifies a canonical model of a stratified dl-program, namely, the cahonadel

of (L, P U {p — |pe€ B}), which is associated with the probability (B). Hence, the canonical model
Pry of KB1 consists of 16 canonical models of stratified dl-programs along with thelirapitities. For
example, the canonical modgs, for the above total choic®; satisfies (among others) the ground atoms
in lines (1) to (3) of Example 3.1 as well agfer(pc3), offer(pc-ibm), and offer(pc_hp); the canonical
model I, has the associated probabiliy (B;) =0.3969. The canonical modePr; of KB, thus rep-
resents exactly one probability distribution over first-order models, arbiv@to assign a probability to
any ground classical formula. For example, the ground atgffas(pc3), offer(pc-ibm), andoffer(pc_hp)
have each the probability.9 under the canonical modétr; of KB, (besidelp, there are othefls that

satisfyoffer(pc3), offer(pc_ibm), andoffer(pc_hp)).

4.3 Answer Set Semantics of PDL-Programs

We now introduce the notions of consistency, consequence, and tighéaquence under the answer set
semantics for general pdl-programs.

A total probabilistic interpretatiofr is ananswer set modelf a pdl-programkB = (L, P, C, p) iff (i)
every total worldl € Zg with Pr(I) > 0is an answer set dfL, PU{p < | p € B}) for some total choicé
of C, and (ii) Pr(A\ B) = Pr(/\ <5 p) = 1(B) for every total choices of C'. We say thatB is consistent
iff it has an answer set modélr. A probabilistic formulaF’ is ananswer set consequence KB, denoted
KB |~ “F, iff every answer set model df B is also a model of". A conditional constrainfy|¢)[l, u] is
atight answer set consequeneeK B, denotedK B |~ 7 (Y[ @) (1, ul, iff I (resp.,u) is the infimum (resp.,
supremum) ofPr,(¢|¢) subject to all answer set modes- of KB and all variable assignmentswith
Pr,(¢) > 0. Here, we assume that 1 andu =0, when Pr,(¢) =0 for all answer set modelBr of KB
and allo.

Every stratified pdl-progrank B is consistent and has exactly one answer set model, which coincides
with the canonical model ok B. Deciding whether a general pdl-prograf® is consistent can be reduced
to deciding whether dl-programs have an answer set. The following timesinews that computing tight
answers to querie¥ §|a)[R, S] to KB, wheref anda are ground, can be reduced to computing all answer
sets of dl-programs and then solving two linear optimization problems. It folfoyws a standard result on
transforming linear fractional programs into equivalent linear progran@harnes and Cooper [7].
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—uB)y-+ > (1 —-p(B))y, = 0 (forall total choicesB of C)
reR, ri=A\B reR, r=A\B
> oy =1

r€ER,r=a
y. > 0 (forallreR)

Figure 1: System of linear constraini€’ for Theorem 4.4.

Theorem 4.4 Let KB = (L, P,C, 1) be a consistent pdl-program, and Igtand o be ground classical
formulas such thaPr(«) > 0 for some answer set modet of KB. Then| (resp.,u) such thatkB |~ | tight
(B|a)[l,u] is the optimal value of the following linear program over the variahjesr € R), whereR is
the union of all sets of answer sets(éf, P U {p — | p € B}) for all total choicesB of C:

minimize (resp., Maximize), . g .1 g1, Y- SuUbjecttoLC in Fig. 1.

4.4 Well-Founded Semantics of PDL-Programs

We finally define the notions of consequence and tight consequenee tinedwell-founded semantics for
general pdl-programs. We first define partial probabilistic interpretationl the evaluation of probabilistic
formulas in them.

A partial world I is a consistent subset @fite = HBgs U —. HBg. We identify I with the three-valued
interpretation/ : HBg — {true, false, undefined} that is defined by (a) = trueiff a € I, I(a) = false
iff —a € I, andl(a) = undefined iff I N {a, 7a} =0). We useZ} to denote the set of all partial worlds over
. Every classical formula in a partial world/ under a variable assignmemtis associated with three-
valued truth valugrom {true, false, undefined}, denotedl,(¢) (or simply I(¢) when ¢ is ground),
which is inductively defined by:

o L(p(ts, - tk)) =I(p(a(tr), ..., o(tk)));
o [,(—¢)=trueiff I,(¢)="false, andl,(—¢)="falseiff I,(¢)=true;

(
(
o I,(¢p NYp)=trueiff I,(¢)=1,(¢)) =true, and
I,(¢ N) =false iff I,(¢p)="false or I,(¢) = false.

A partial probabilistic interpretationPr is a probability function oif;. Theprobability of a classical
formula ¢ in Pr under a variable assignment denotedPr,(¢) (or simply Pr(¢) when ¢ is ground),
is undefined, if I,(¢) is undefined for somel € 7}, with Pr(I)>0; and Pr,(¢) is defined as the
sum of all Pr(I) such thatl € 7§ and I,(¢) =true, otherwise. For classical formulasand such
that Pr,(¢) >0, the conditional probabilityof ¢ given ¢ in Pr undero, denotedPr,(|¢), is defined
asPrq (v A ¢) / Pro(¢). Note that, alternatively, we may also defifie, (¢) as the interval} ;) _true
Pr(I),1=3"1 (#)=tase £'r(1)]. However, even though this definition ensures fhat(¢) is always defined,
it cannot easily be generalized to conditional probabilities. Every pibd@bformula £ in Pr undero
is associated with three-valued truth valu&om {true, false, undefined}, denotedPr,(F'), which is
inductively defined as follows:
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o Pro((¢|o)[l,u]) =trueiff Pr,(¢)=0o0r Pr,(¢|¢) € ]l,u], and
Pry((¢|6)[l, u]) =false iff Pry,(¢) > 0andPrq(¢¥|¢) & [I,u];

(
(
o Prg(ﬂF) =trueiff Pr,(F)=false, andPr,(—F)="falseiff Pr,(F)=true;
(F
(

o Pr, G)=trueiff Pr,(F)= Pr,(G)=true, and
Pro(F N G) false iff Pr,(F')=false or Pr,(G)=false.

The well-founded modebf a pdl-programkB = (L, P, C, ), denotedPr%B, is defined as follows:
() Pr s(Ip)=n(B), whereIB is the well-founded model ofL, P U {p < |p € B}), for every total
ch0|ceB of C, and (ii) Pr '»(I)=0 for all otherI €Z%. A probabilistic formulaF is a well-founded
consequencef KB, denotedKB I~ Y Fiff Fistruein Pr 5 under every variable aSS|gnmentA con-
ditional constraint(y)|¢)[l, u] is atight well-founded consequenoé KB, denotedKB | tzght(¢|¢) 1, ul,
iff (i) PrKB(<;5) under every variable assignmentgs different fromundefined, and (i) [ (resp.,u) is
the infimum (resp., supremum) @tr,(¢|¢) subject toPr:Pr}‘}g and all variable assignmentswith
Prq(¢) > 0.

The well-founded model of a stratified pdI-progrdf® is total and coincides with the canonical model
of KB. As an advantage of the well-founded semantics, every general @gitagn KB has a unique well-
founded model, but not necessarily an answer set model. Furthertimenenique well-founded model can
be easily computed by fixpoint iteration [13]. As a drawback, the well-fi@ashmodel associates only with
someclassical formulas under a probability, while every answer set model associates alltielassical
formulas under a probability. The following theorem shows that the answer set semanticefim@ment
of the well-founded semantics. That is, if an answer to a query underghidomnded semantics is defined,
then it coincides with the answer under the answer set semantics. Therthidiows from the result that
the well-founded semantics of dl-programs approximates their answegrasantics [13]. The advantages
of both semantics can thus be combined in query processing by first tryiogmpute the well-founded
answer, and only if this does not exist the answer under the answsraantics.

Theorem 4.5 Let KB = (L, P,C, ;1) be a consistent pdl-program, and lep|¢)[l, «] be a ground condi-
tional constraint. IfPrZ,(4), Pri, (1 A ¢) # undefined, then

(@) KB |~ (¢]6)[1,u] iff KB |~ (1b]¢)[1, u], and
(b) KB |~ i (1 0)[L,u] ift KB |k ), (4]@) 1, ul.

Proof (sketch). Let o€ {¢),1 A ¢}. Itis sufficient to show thaPr%B(a) is equal toPr(«) for all answer
set modelsPr of KB. Observe thaPr%B(oz) is the sum of allu(B) such that (i)B is a total choice ot”,
(i) u(B) >0, and (iii) Ip(«) = true, wherelz denotes the well-founded model@f, PU{p «— |p € B}).
By induction on the structure of classical formulas, it is not difficult to se¢th(«) = true iff I =« for
all answer setg of (L, P U {p < |p€ B}). This already shows theﬂ’r%;(a) is equal toPr(«) for all
answer set modelBr of KB. O

5 Query Processing in Stratified PDL-Programs

The canonical model of an ordinary positive (resp., stratified) normogram P has a fixpoint character-
ization in terms of an immediate consequence opefBtomwhich generalizes to positive (resp., stratified)
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dl-programs. This can be used for a bottom-up computation of the canonazigl of a positive (resp.,
stratified) dl-program, and thus also for computing the canonical modesté#afied pdl-program and for
guery processing in stratified pdI-programs.

5.1 Fixpoint Iteration in Positive DL-Programs

We first describe a fixpoint characterization of the canonical model pbsitive dl-program. For any
dl-program KB = (L, P), we define the operatdfxz on the subsets ofBp as follows. For every
I C HBp, let

Tkp(l) = {H(r) | re€ground(P), I = ¢forall ¢ B(r)}.

If KB is positive, ther{ x5 is monotonic. Hencel x5 has a least fixpoint, denotéfh(7x5). Furthermore,
lfp(Tkp) can be computed by a finite fixpoint iteration (given finitenes®aind the number of constant
symbols in®). For everyl C HB p, we defineli, (1) = I,if i = 0, andTiy(I) = Txp(Tiyg (1)), if i > 0.

Theorem 5.1 For every positive dI-progrank B = (L, P), it holds thatifp(Txp) = Mgkp. Furthermore,
Un(Tis) = o Ticp () = Tj (9) for somen > 0.

5.2 Fixpoint Iteration in Stratified DL-Programs

We next describe a fixpoint characterization for stratified di-progrétsislg Theorem 5.1, we can character-
ize the canonical modél/k of a stratified dl-progrank B = (L, P) as follows. Letl 5 (1) = Tt (1)U
forallz > 0.

Theorem 5.2 Suppose thakB = (L, P) hgs a stratificatiom\ of lengthk > 0. LetM; C HBp, i€ {-1,0,
..., k}, be defined by\/_; = and M; :T]’gjgi(Mi_l) for s >0, wheren; > 0 such thatT}}jBi (M;—1) =
Tped (M;i—y). Then, My = Mxp.

5.3 Query Processing in Stratified PDL-Programs

Algorithm canonicalmodel(see Fig. 2) computes the canonical moBelof a given stratified pdl-program
KB=(L,P,C,u). Itis essentially based on a reduction to computing the canonical modelatifistt
dl-programs in line 4, which can be done using the above finite sequefiog@fixpoint iterations.

Example 5.3 Consider again the stratified pdl-prograt®; = (L1, P;, Cy, 1) of Example 4.1. The com-
putation ofcanonicalmodelin Fig. 2 on KB, is summarized as follows. For each of the 16 total choices
B of 1, the canonical moddl of the stratified dI-programiL,, P, U {p < | p € B}) is computed, andp

is associated with the probability; (B), while all the otherl € Zg are associated with the probability

For example, for the total choicB;, = {avoid_pos, offer_pos, v_buy_pos, a_buy_pos} of Cy, the canon-
ical model I, of the stratified dl-prograniL,, P, U{p <« |p € B;}) satisfies exactly the ground atoms
in lines (1) to (3) of Example 3.1 as well agfer(pc3), offer(pc-ibm), offer(pc_-hp), provider(dell),
provider(ibm), provider(hp), similar(tb_ai, tb_lp), and similar(pc_ibm, pc_hp), andIp, is associated
with the probabilityu; (B1) = 0.9 x 0.9 x 0.7 x 0.7 = 0.3969.
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Algorithm canonicalmodel

Input: stratified pdl-progrankKB = (L, P, C, u).
Output: canonical modePr of KB.

for every interpretation/ € Zs do
Pr(I) :=0;
for every total choiceB of C' do begin
compute the canonical modebf the
stratified dl-prograniL, PU {p < | p € B});
Pr(I) := pu(B)
end,
return Pr.

NGO A~WNE

Figure 2: Algorithmcanonicalmodel

Algorithm tight answer

Input: stratified pdl-progranikB = (L, P, C, ) and probabilistic query(5|a)[R, S].
Output: tight answei = {R/l, S/u} for ?(8|a)[R, S] to KB.

1. Pr:= canonicalmode(KB);

2. l:=1;

3. u:=0;

4. for every ground instanc@’|a’ of 3|a do begin
5. l:=min(l, Pr(8'|a));

6 u := max(u, Pr(f'|a’))

7. end

8. return 0 ={R/l, S/u}.

Figure 3: Algorithmtight answer

Algorithm tight answer(see Fig. 3) computes tight answeéts- {R/l, S/u} for a given probabilistic
query?(B|a)[R, S] to a given stratified pdl-prograti B. It computes the canonical model & in line 1
and the tight answer in lines 2—8.

Example 5.4 To compute the tight answer for the quéfyffer(pc3)| T)[R, S] to the stratified pdl-program
KBy =(Ly, P1,Cy, 1) of Example 4.1, Algorithntight answerin Fig. 3 first computes the canonical
model Pr of KB1, using Algorithmcanonicalmodel Then, since3|a = offer(pc3)|T is ground and un-
conditional, Algorithmtight answercomputes only the probability afffer(pc3) in Pr. Finally, since the
latter is given by0.9, the algorithm returngd = {R/0.9, S/0.9}.

6 Related Work

In this section, we discuss related work on the combination of logic prograthsiescription logics and
on uncertainty reasoning for the Semantic Web. Note that an overview tdrthiesbody of previous work
on the combination of logic programs with probabilistic uncertainty is containegbinZ6].
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6.1 Description Logic Programs

Related work on the combination of description logics and logic programs eaivisied into (a) hybrid
approaches using description logics as input to logic programs, (bdagipes reducing description logics
to logic programs, (c) combinations of description logics with default andad#ble logic, and (d) ap-
proaches to rule-based well-founded reasoning in the Semantic Welw Belgive some representatives
for (a)—(d). Further works and details are given in [12, 13].

The works by Doninet al.[10], Levy and Rousset [27], and Rosati [37, 38] are represigasaof hybrid
approaches using description logics as input. Doatral. [10] introduce a combination of (disjunction-
, hegation-, and function-free) datalog with the description lodi€C. An integrated knowledge base
consists of a structural componentACC and a relational component in datalog, where the integration of
both components lies in using concepts from the structural componentsaiots in rule bodies of the
relational component. The closely related work by Levy and Roussgpfgents a combination of Horn
rules with the description logiglLCNR. In contrast to Doninet al. [10], Levy and Rousset also allow
for roles as constraints in rule bodies, and do not require the safetjticonthat variables in constraints
in the body of a rule- must also appear in ordinary atoms in the body.oFinally, Rosati [37] presents a
combination of disjunctive datalog (with classical and default negationyltibut function symbols) with
ALC, which is based on a generalized answer set semantics.

Some approaches reducing description logic reasoning to logic progranamenigpe works by Van
Belleghemet al.[44], Alsa¢ and Baral [1], Swift [43], Grosait al. [19], and Hufstadét al. [25]. Early work
on dealing with default information in description logics is the approach duaéa& and Hollunder [4],
where Reiter’s default logic is adapted to terminological knowledge bAsgsniou [2] combines defeasible
reasoning with description logics for the Semantic Web. In [3], AntoniouMdagner summarize defeasible
and strict reasoning in a single rule formalism.

An important approach to rule-based reasoning under the well-fosedadntics for the Semantic Web
is due to Darasio [9]. He aims at Prolog tools for implementing different semantics for Rulggy! So
far, an XML parser library as well as a RuleML compiler have been deeslpwith routines to convert
RuleML rule bases to Prolog and vice versa. The compiler supportsqresiatent well-founded semantics
with explicit negation; it is planned to be extended to use XSB [36].

6.2 Uncertainty Reasoning for the Semantic Web

Related approaches to uncertainty reasoning for the Semantic Web caundidyrdivided into (a) de-
scription logic programs under non-probabilistic uncertainty, (b) pritistib generalizations of description
logics, and (c) probabilistic generalizations of web ontology languageb,as DAML+OIL and OWL.

As for (a), previous works by Straccia combine (positive) descriptigitlprograms witHattice-based
uncertainty[41] and withfuzzy vaguenedd42]. Whereas, to my knowledge, the present paper is the first
one combining (normal) description logic programs withbabilistic uncertainty

As for (b), Giugno and Lukasiewicz [18] present a probabilistic galieation of the expressive de-
scription logicSHOQ(D) that stands behind DAML+OIL, which is based on lexicographic probdibilis
reasoning. In earlier work, Heinsohn [20] and Jaeger [28] ptgsebabilistic extensions to the description
logic ALC, which are essentially based on probabilistic reasoning in probabilistic ldgaiker et al. [29]
present a probabilistic generalization of theASsic description logic, which uses Bayesian networks as
underlying probabilistic reasoning formalism. Note that fuzzy descriptiolc$pguch as the ones by Strac-
cia[39, 40], are less closely related to probabilistic description logicse sivey deal with fuzzy vagueness,
rather than probabilistic ambiguity and imprecision.



16 INFSYS RR 1843-06-04

As for (c), there are especially the works by Costa [8], Pool and Aig#],[and Ding and Peng [11],
which present probabilistic generalizations of the web ontology langusigle. @ particular, Costa’s work
[8] is semantically based on multi-entity Bayesian networks, while [11] hasiaskcs in standard Bayesian
networks. In closely related work, Fukushige [16] proposes a besiodwork for representing probabilistic
relationships in RDF. Finally, Nottelmann and Fuhr [33] present pDAMU+QVhich is a probabilistic
generalization of the web ontology language DAML+OIL, along with a mapngfratified probabilistic
datalog.

7 Conclusion

We have presented probabilistic dI-programs (or pdl-programs), whela @ombination of dl-programs
under the answer set and the well-founded semantics with Poole’s irtkgaroice logic. We have shown
that query processing in such pdl-programs can be reduced to compiltengswer sets of dl-programs
and solving linear optimization problems, and to computing the well-founded $iesadf dl-programs,
respectively. We have also shown that the answer set semantics ofogdéms is a refinement of the
well-founded semantics of pdl-programs. Moreover, we have corsidee special case of stratified pdl-
programs. In particular, we have presented an algorithm for quenepsing in such pdl-programs, which
is based on a reduction to computing the canonical model of stratified digrnasg

An interesting topic of future research is to further enhance pdl-pnagtawards a possible use for
Web Services. This may be done by exploiting and generalizing furtheerésaof Poole’s ICL for dynamic
and multi-agent systems [35]. It would also be interesting to further exgh@reomputational aspects of
query processing in pdl-programs under the stratified, answer seiyelhfbunded semantics.
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