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INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

PROBABILISTIC DESCRIPTION LOGICS

FOR THE SEMANTIC WEB

THOMAS LUKASIEWICZ

INFSYS RESEARCH REPORT 1843-06-05

MARCH 2007





INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-06-05, MARCH 2007

PROBABILISTIC DESCRIPTION LOGICS FOR THE SEMANTIC WEB

MARCH 15, 2007

Thomas Lukasiewicz 1

Abstract. The work in this paper is directed towards sophisticated formalisms for reasoning un-

der probabilistic uncertainty in ontologies in the Semantic Web. Ontologies play a central role in

the development of the Semantic Web, since they provide a precise definition of shared terms in

web resources. They are expressed in the standardized web ontology language OWL, which con-

sists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. The

sublanguages OWL Lite and OWL DL have a formal semantics and a reasoning support through

a mapping to the expressive description logics SHIF(D) and SHOIN (D), respectively. In this

paper, we present the expressive probabilistic description logics P-SHIF(D) and P-SHOIN (D),
which are probabilistic extensions of these description logics. They allow for expressing rich ter-

minological probabilistic knowledge about concepts and roles as well as assertional probabilistic

knowledge about instances of concepts and roles. They are semantically based on the notion of

probabilistic lexicographic entailment from probabilistic default reasoning, which naturally inter-

prets this terminological and assertional probabilistic knowledge as knowledge about random and

concrete instances, respectively. As an important additional feature, they also allow for expressing

terminological default knowledge, which is semantically interpreted as in Lehmann’s lexicographic

entailment in default reasoning from conditional knowledge bases. We then present sound and com-

plete algorithms for the main reasoning problems in the new probabilistic description logics, which

are based on reductions to reasoning in their classical counterparts, and to solving linear optimiza-

tion problems. In particular, this shows the important result that reasoning in the new probabilis-

tic description logics is decidable / computable. Furthermore, we also analyze the computational

complexity of the main reasoning problems in the new probabilistic description logics in the gen-

eral as well as restricted cases.
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1 Introduction

The Semantic Web initiative [8, 23] aims at an extension of the current World Wide Web by standards and

technologies that help machines to understand the information on the Web so that they can support richer

discovery, data integration, navigation, and automation of tasks. The main ideas behind the Semantic Web

are to add a machine-readable meaning to Web pages to use ontologies for a precise definition of shared

terms in Web resources, to make use of knowledge representation technology for automated reasoning from

Web resources, and to apply cooperative agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer, in the form of the

OWL Web Ontology Language [75] (recommended by the W3C), is currently the highest layer of sufficient

maturity. The language OWL consists of the three increasingly expressive sublanguages OWL Lite, OWL

DL, and OWL Full, where OWL Lite and OWL DL are essentially very expressive description logics with

an RDF syntax. As shown in [40], ontology entailment in OWL Lite and OWL DL reduces to knowledge

base (un)satisfiability in the expressive description logics SHIF(D) and SHOIN (D), respectively.

Intuitively, description logics model a domain of interest in terms of concepts and roles, which represent

classes of individuals resp. binary relations on classes of individuals. A description logic knowledge base

(or ontology) encodes in particular subset relationships between classes of individuals, subset relationships

between binary relations on classes of individuals, the membership of individuals to classes, and the mem-

bership of pairs of individuals to binary relations on classes. Other important ingredients of the description

logics SHIF(D) (resp., SHOIN (D)) are datatypes (resp., datatypes and individuals) in concept expres-

sions.

A next crucial step in the construction of the Semantic Web is especially the development of sophisti-

cated representation and reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic Web.

Several recent research efforts are going in this direction. In particular, a large body of work focuses on

integrating rules with description logics / ontologies, which is a key requirement of the layered architecture

of the Semantic Web. Another large body of work concentrates on handling uncertainty in the Semantic

Web, which aims in particular at adding probabilistic uncertainty to description logics / ontologies (see Sec-

tion 7.1) and to integrations of rules with description logics / ontologies [59]. An important recent forum for

approaches to uncertainty in the Semantic Web is the annual Workshop on Uncertainty Reasoning for the

Semantic Web (URSW). There exists also a W3C Incubator Group on Uncertainty Reasoning for the World

Wide Web.

In this paper, we present a novel combination of description logics with probabilistic uncertainty, which

is especially directed towards sophisticated formalisms for reasoning under probabilistic uncertainty in on-

tologies in the Semantic Web. More concretely, we present probabilistic extensions of SHIF(D) and

SHOIN (D).

Intuitively, probabilistic description logic knowledge bases / ontologies extend classical description logic

knowledge bases / ontologies in particular by probabilistic knowledge about concepts and roles (also called

terminological probabilistic knowledge) as well as probabilistic knowledge about the instances of concepts

and roles (also called assertional probabilistic knowledge). The former is probabilistic knowledge about

randomly chosen (or generic) instances of concepts and roles, while the latter is probabilistic knowledge

about concrete instances of concepts and roles. A detailed introduction to probabilistic ontologies is given

in [11, 12].

As noted in [11, 12], there is a plethora of applications with an urgent need for handling uncertain

knowledge in formal domain ontologies, especially in areas like medicine, biology, defense, and astronomy.

Furthermore, there are strong arguments for the critical need of dealing with probabilistic uncertainty in
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ontologies in the Semantic Web, some of which are briefly summarized as follows:

• In addition to being logically related, the concepts of an ontology are generally also probabilistically

related. For example, two concepts either may be logically related via a subset or disjointness rela-

tionship, or they may show a certain degree of overlap. Probabilistic ontologies allow for quantifying

these degrees of overlap, reasoning about them, and using them in semantic-web applications. In par-

ticular, probabilistic ontologies are successfully used in information retrieval for an increased recall

[43, 42] (see also Section 7.1). The degrees of concept overlap may also be exploited in personaliza-

tion and recommender systems.

• Rather than consisting of one standardized overall ontology, the Semantic Web will consist of a huge

collection of different ontologies. Hence, in semantic-web applications such as automated reasoning

and information retrieval, one has to align the concepts of different ontologies, which is called on-

tology matching. In general, the concepts of two different ontologies do not match exactly, and we

have to deal with degrees of concept overlap as above, which can again be quantified and handled via

probabilistic ontologies (see also Section 7.1).

• Like the current Web, the Semantic Web will necessarily contain ambiguous and controversial pieces

of information in different web sources. This can be handled via probabilistic data integration by

associating with every web source a probability value describing its degree of reliability [74, 36]. As

resulting pieces of data, such a probabilistic data integration process necessarily produces probabilis-

tic facts, that is, probabilistic knowledge at the instance level.

As underlying probabilistic reasoning formalism, we use the notion of lexicographic entailment from

probabilistic default reasoning [54, 56], which is a probabilistic generalization of Lehmann’s lexicographic

entailment [51] in default reasoning from conditional knowledge bases. It is a formalism for reasoning from

probabilistic knowledge about random and concrete objects with very nice features: In particular, it shows

a similar behavior as reference-class reasoning in a number of uncontroversial examples. But it also avoids

many drawbacks of reference-class reasoning: It can handle complex scenarios and even purely probabilistic

subjective knowledge as input, and conclusions are drawn in a global way from all the available knowledge

as a whole. Furthermore, it also has very nice nonmonotonic properties, which are essentially inherited from

Lehmann’s lexicographic entailment: In particular, it realizes an inheritance of properties along subclass

relationships, where more specific properties override less specific properties, without showing the problem

of inheritance blocking (where properties are not inherited to subclasses that are exceptional relative to

some other properties). As for general nonmonotonic properties, it satisfies (probabilistic versions of) the

rationality postulates by Kraus, Lehmann, and Magidor [50], the property of rational monotonicity, and

some irrelevance, conditioning, and inclusion properties. All these quite appealing features carry over to our

new probabilistic description logics in this paper.

The main contributions of this paper can be summarized as follows:

• We present the description logics P-SHIF(D) and P-SHOIN (D), which are probabilistic gener-

alizations of the expressive description logics SHIF(D) and SHOIN (D) behind OWL Lite resp.

OWL DL. They allow for expressing rich terminological and assertional probabilistic knowledge in

addition to terminological and assertional classical knowledge in SHIF(D) resp. SHOIN (D). To

my knowledge, this is the first work extending SHIF(D) and SHOIN (D) by probabilistic uncer-

tainty, and the first work on probabilistic description logics that explicitly allow for both terminolog-

ical probabilistic knowledge about concepts and roles, as well as assertional probabilistic knowledge

about concepts and roles (see Section 7.1 for a more detailed comparison to related work).
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• Semantically, the new probabilistic description logics are based on probabilistic lexicographic en-

tailment from probabilistic default reasoning [54, 56] (and thus inherit all its nice features), which

naturally interprets terminological and assertional probabilistic knowledge as probabilistic knowl-

edge about random and concrete instances of concepts and roles, respectively, and which allows for

deriving probabilistic knowledge about both random and concrete instances.

• As an important additional feature, the new probabilistic description logics also allow for expressing

default knowledge about concepts and roles (which is a special type of terminological probabilistic

knowledge). This knowledge is semantically interpreted as in the sophisticated notion of lexicographic

default entailment by Lehmann [51]. To my knowledge, this is the first work combining description

logics with default reasoning from conditional knowledge bases.

• We present sound and complete algorithms for solving the main reasoning problems in the descrip-

tion logics P-SHIF(D) and P-SHOIN (D). These algorithms are based on reductions to classical

reasoning problems in SHIF(D) and SHOIN (D), respectively, and to solving linear optimization

problems. In particular, this shows the important result that the main reasoning problems in the new

probabilistic description logics are decidable / computable.

• We analyze the complexity of the main reasoning problems in the new probabilistic description log-

ics in the general as well as restricted cases. In particular, the problems of deciding consistency in

P-SHIF(D) and P-SHOIN (D) have the same complexity (complete for EXP and NEXP) as de-

ciding knowledge base satisfiability in SHIF(D) and SHOIN (D), respectively, while computing

tight probability intervals under lexicographic entailment can be done with only slightly higher effort

(complete for FEXP and in FP NEXP, respectively).

• Finally, we also analyze the complexity of the main reasoning tasks in a probabilistic extension of the

description logic DL-Lite [10]. In this special case, deciding consistency and computing tight proba-

bility intervals under lexicographic entailment are shown to have the same complexity (complete for

NP and FP NP) as deciding consistency and computing tight intervals under lexicographic entailment

in probabilistic default reasoning, respectively.

The rest of this paper is organized as follows. In Section 2, we provide motivating examples from

the medical domain and from information retrieval. Section 3 recalls the expressive description logics

SHIF(D) and SHOIN (D). In Section 4, we present the probabilistic description logics P-SHIF(D)
and P-SHOIN (D). Sections 5 and 6 provide algorithms for the main computational problems in the new

probabilistic description logics and analyze their complexity, respectively. In Section 7, we discuss related

work. Section 8 summarizes the main contributions of this paper and gives an outlook on future research.

Note that detailed proofs of all results in the body of this paper are given in Appendices A to C.

2 Motivating Examples

To illustrate probabilistic ontologies, consider some medical knowledge about patients. In such knowledge,

we often encounter terminological probabilistic and terminological default knowledge about classes of indi-

viduals, as well as assertional probabilistic knowledge about individuals. Such knowledge may e.g. be used

by a medical company in an advertising campaign for a new product.



4 INFSYS RR 1843-06-05

Example 2.1 (Medical Example) Consider patient records related to cardiological illnesses. We distinguish

between heart patients (who have any kind of cardiological illness), pacemaker patients, male pacemaker

patients, and female pacemaker patients, who all are associated with illnesses, illness statuses, symptoms

of illnesses, and health insurances. Furthermore, we have the patients Tom, John, and Maria, where Tom is

a heart patient, while John and Maria are male and female pacemaker patients, respectively, and John has

the symptoms arrhythmia (abnormal heart beat), chest pain, and breathing difficulties, and the illness status

advanced.

Then, terminological default knowledge is of the form “generally (or typically / in nearly all cases), heart

patients suffer from high blood pressure” and “generally, pacemaker patients do not suffer from high blood

pressure”, while terminological probabilistic knowledge has the form “generally, pacemaker patients are

male with a probability of at least 0.4” (that is, “generally, a randomly chosen pacemaker patient is male

with a probability of at least 0.4”), “generally, heart patients have a private insurance with a probability of

at least 0.9”, and “generally, pacemaker patients have the symptoms arrhythmia, chest pain, and breathing

difficulties with probabilities of at least 0.98, 0.9, and 0.6, respectively”. Finally, assertional probabilistic

knowledge is of the form “Tom is a pacemaker patient with a probability of at least 0.8”, “Maria has the

symptom breathing difficulties with a probability of at least 0.6”, “Maria has the symptom chest pain with a

probability of at least 0.9”, and “Maria’s illness status is final with a probability between 0.2 and 0.8”.

Suppose now that a medical company wants to carry out a targeted advertising campaign about a new

pacemaker product. The company may then first collect all potential addressees of such a campaign (e.g.,

pharmacies, hospitals, doctors, and heart patients) by probabilistic data integration from different web and

data sources (e.g., web listings of pharmacies, hospitals, and doctors along with their product portfolio

resp. fields of expertise; and available online databases with data of clients and their shopping histories).

The result of this process is a collection of individuals with probabilistic memberships to a collection of

concepts in a medical ontology as the one above. The terminological probabilistic and terminological default

knowledge of this ontology can then be used to derive probabilistic concept memberships that are relevant

for a potential addressee of the advertising campaign. For example, for persons that are known to be heart

patients with certain probabilities, we may derive the probabilities with which they are also pacemaker

patients.

The next example illustrates the use of probabilistic ontologies in information retrieval (which has espe-

cially been explored in [43, 42]; see also Section 7.1).

Example 2.2 (Literature Search) Suppose that we want to obtain a list of research papers in the area of

“logic programming”. Then, we should not only collect those papers that are classified as “logic program-

ming” papers, but we should also search for papers in closely related areas, such as “rule-based systems” or

“deductive databases”, as well as in more general areas, such as “knowledge representation and reasoning”

or “artificial intelligence” (since a paper may very well belong to the area of “logic programming”, but is

classified only with a closely related or a more general area). This expansion of the search can be done

automatically using a probabilistic ontology, which has the papers as individuals, the areas as concepts, and

the explicit paper classifications as concept memberships. The probabilistic degrees of overlap between the

concepts in such a probabilistic ontology then provide a means of deriving a probabilistic membership to

the concept “logic programming” and so a probabilistic estimation for the relevance to our search query.
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3 The Description Logics SHIF(D) and SHOIN (D)

In this section, we recall the description logics SHIF(D) and SHOIN (D), which stand behind the

web ontology languages OWL Lite and OWL DL, respectively. See especially [40] for further details and

background.

3.1 Syntax

We now recall the syntax of SHIF(D) and SHOIN (D). We first describe the syntax of the latter, which

has the following datatypes and elementary ingredients. We assume a set of elementary datatypes and a

set of data values. A datatype is an elementary datatype or a set of data values (called datatype oneOf ).

A datatype theory D= (∆D, ·D) consists of a datatype domain ∆D and a mapping ·D that assigns to

each elementary datatype a subset of ∆D and to each data value an element of ∆D. We extend ·D to all

datatypes by {v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, and I be pairwise disjoint finite nonempty sets of

atomic concepts, abstract roles, datatype roles, and individuals, respectively. We denote by R−
A the set of

inverses R− of all R∈RA.

Roles and concepts are defined as follows. A role is any element of RA ∪R−
A ∪RD. Concepts are

inductively defined as follows. Each φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a

concept (called oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−
A, then also ¬φ, (φ1 ⊓ φ2), and

(φ1 ⊔ φ2) are concepts (called negation, conjunction, and disjunction, respectively), as well as ∃R.φ, ∀R.φ,

≥nR, and ≤nR (called exists, value, atleast, and atmost restriction, respectively) for an integer n≥ 0. If D
is a datatype and U ∈RD, then ∃U.D, ∀U.D, ≥nU , and ≤nU are concepts (called datatype exists, value,

atleast, and atmost restriction, respectively) for an integer n≥ 0. We use ⊤ (resp., ⊥) to abbreviate φ⊔¬φ
(resp., φ⊓¬φ), and eliminate parentheses as usual.

We next define axioms and knowledge bases. An axiom is an expression of one of the following forms:

(1) φ⊑ψ (called concept inclusion axiom), where φ and ψ are concepts; (2) R⊑S (called role inclusion

axiom), where either R,S ∈RA or R,S ∈RD; (3) Trans(R) (called transitivity axiom), where R∈RA;

(4) φ(a) (called concept membership axiom), where φ is a concept and a∈ I; (5) R(a, b) (resp., U(a, v))
(called role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I and v is a data

value); and (6) a= b (resp., a 6= b) (equality (resp., inequality) axiom), where a, b∈ I. A classical (descrip-

tion logic) knowledge base KB is a finite set of axioms.

For abstract roles R∈RA, we define Inv(R) = R− and Inv(R−)=R. Let the transitive and reflexive

closure of⊑ on abstract roles relative to KB , denoted⊑⋆, be defined as follows. For two abstract rolesR and

S in KB , let S⊑⋆R relative to KB iff either (a) S=R, or (b) S⊑R∈KB , or (c) Inv(S)⊑ Inv(R)∈KB ,

or (d) some abstract role Q exists such that S⊑⋆Q and Q⊑⋆R relative to KB . An abstract role R is simple

relative to KB iff for each abstract role S such that S⊑⋆R relative to KB , it holds (i) Trans(S) 6∈KB and

(ii) Trans(Inv(S)) 6∈KB . For decidability, number restrictions in KB are restricted to simple abstract roles.

In SHOIN (D), concept and role membership axioms can also be expressed in terms of concept inclu-

sion axioms, since φ(a) can be expressed by {a}⊑φ, while R(a, b) (resp., U(a, v)) can be expressed by

{a}⊑∃R.{b} (resp., {a}⊑∃U.{v}).
The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf constructor

and with the atleast and atmost constructors limited to 0 and 1.

Example 3.1 (Medical Example cont’d) Some atomic concepts in the Medical Example are HeartPatient,

PacemakerPatient, MalePacemakerPatient, FemalePacemakerPatient, Illness, IllnessStatus, IllnessSymp-

tom, and HealthInsurance. Some abstract roles are HasIllness, HasIllnessStatus, HasIllnessSymptom, and
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HasHealthInsurance. Some individuals are Tom, John, Maria, Arrhythmia, ChestPain, BreathingDifficul-

ties, Advanced, and Final. The knowledge that (1) all male and female pacemaker patients are pacemaker

patients, (2) no pacemaker patient can be in the same time male and female, (3) all pacemaker patients are

heart patients, (4) the role HasIllnessSymptom relates only heart patients with symptoms of illnesses, (5)

Tom is a heart patient, (6) John is a male pacemaker patient, (7) Maria is a female pacemaker patient, (8)

John has the symptoms arrhythmia, chest pain, and breathing difficulties, and the illness status advanced

can be expressed by the following description logic knowledge base KB (note that other natural range

restrictions on roles can be expressed by additional concept inclusion axioms):

(1) MalePacemakerPatient⊑PacemakerPatient,

FemalePacemakerPatient⊑PacemakerPatient,

(2) MalePacemakerPatient⊑¬FemalePacemakerPatient,

(3) PacemakerPatient⊑HeartPatient,

(4) ∃HasIllnessSymptom−.⊤⊑HeartPatient,

∃HasIllnessSymptom.⊤⊑ IllnessSymptom,

(5) HeartPatient(Tom),

(6) MalePacemakerPatient(John),

(7) FemalePacemakerPatient(Maria),

(8) HasIllnessSymptom(John,Arrhythmia),

HasIllnessSymptom(John,ChestPain),

HasIllnessSymptom(John,BreathingDifficulties),

HasIllnessStatus(John,Advanced).

3.2 Semantics

We now define the semantics of SHIF(D) and SHOIN (D) in terms of general first-order interpretations,

as usual, and we recall some important reasoning problems in description logics.

An interpretation I = (∆I , · I) relative to a datatype theory D= (∆D, ·D) consists of a nonempty (ab-

stract) domain ∆I disjoint from ∆D, and a mapping · I that assigns to each atomic concept φ∈A a subset

of ∆I , to each individual o∈ I an element of ∆I , to each abstract role R∈RA a subset of ∆I ×∆I , and to

each datatype role U ∈RD a subset of ∆I ×∆D. We extend · I to all roles and concepts as usual (where

#S denotes the cardinality of a set S):

• (R−)I = {(y, x) | (x, y)∈RI};

• {o1, . . . , on}
I = {oI1 , . . . , o

I
n}; (¬φ)I = ∆I \φI ;

• (φ1 ⊓ φ2)
I = φI1 ∩ φ

I
2 ; (φ1 ⊔ φ2)

I = φI1 ∪ φ
I
2 ;

• (∃R.φ)I = {x∈∆I | ∃y : (x, y)∈RI ∧ y ∈φI};

• (∀R.φ)I = {x∈∆I | ∀y : (x, y)∈RI → y ∈φI};

• (≥nR)I = {x∈∆I | #({y | (x, y)∈RI}) ≥ n};

• (≤nR)I = {x∈∆I | #({y | (x, y)∈RI}) ≤ n};
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• (∃U.D)I = {x∈∆I | ∃y : (x, y)∈UI ∧ y ∈DD};

• (∀U.D)I = {x∈∆I | ∀y : (x, y)∈UI → y ∈DD};

• (≥nU)I = {x∈∆I | #({y | (x, y)∈UI}) ≥ n};

• (≤nU)I = {x∈∆I | #({y | (x, y)∈UI}) ≤ n}.

The satisfaction of an axiom F in an interpretation I =(∆I , · I) relative to a datatype theory D =
(∆D, ·D), denoted I |=F , is defined as follows: (1) I |=φ⊑ψ iff φI ⊆ ψI ; (2) I |=R⊑S iff RI ⊆SI ;

(3) I |=Trans(R) iff RI is transitive; (4) I |=φ(a) iff aI ∈φI ; (5) I |=R(a, b) iff (aI , bI) ∈ RI ; (6)

I |=U(a, v) iff (aI , vD)∈UI ; (7) I |= a= b iff aI = bI ; and (8) I |= a 6= b iff aI 6= bI . The interpretation I
satisfies the axiom F , or I is a model of F , iff I |=F . We say that I satisfies a knowledge base KB , or I
is a model of KB , denoted I |=KB , iff I |=F for all F ∈KB . We say that KB is satisfiable (resp., unsat-

isfiable) iff KB has a (resp., no) model. An axiom F is a logical consequence of KB , denoted KB |=F , iff

each model of KB satisfies F .

Some important reasoning problems in description logics are summarized as follows: (KBSAT) given

a knowledge base KB , decide whether KB is satisfiable; (CSAT) given a knowledge base KB and a con-

cept φ, decide whether KB 6|=φ⊑⊥; (CSUB) given a knowledge base KB and concepts φ and ψ, decide

whether KB |= φ⊑ψ; (CMEM) given a knowledge base KB , an individual o∈ I, and a concept φ, decide

whether KB |=φ(o); (RMEM) given a knowledge base KB , individuals o, o′ ∈ I (resp., an individual o∈ I
and a value v), and a role R∈RA (resp., U ∈RD), decide whether KB |=R(o, o′) (resp., KB |=U(o, v)).
Observe that KBSAT is a special case of CSAT, since KB is satisfiable iff KB 6|=⊤⊑⊥. Furthermore,

for SHOIN (D), the problems CMEM and RMEM are special cases of CSUB, since KB |=φ(o) iff

KB |= {o}⊑φ, and KB |=R(o, o′) (resp., KB |=U(o, v)) iff KB |= {o}⊑∃R.{o′} (resp., KB |= {o} ⊑
∃U.{v}). Notice also that CSAT and CSUB can be reduced to each other, since KB |=φ⊓¬ψ⊑⊥ iff

KB |=φ⊑ψ. CSAT and CSUB are both decidable in SHIF(D) and SHOIN (D), if all atmost and

atleast restrictions in KB are restricted to simple abstract roles relative to KB .

Example 3.2 (Medical Example cont’d) The description logic knowledge base KB of Example 3.1 is

satisfiable and logically implies the concept inclusion axiom FemalePacemakerPatient ⊑ HeartPatient and

the concept membership axioms HeartPatient(John) and IllnessSymptom(Arrhythmia).

4 The Probabilistic Description Logics P-SHIF(D) and P-SHOIN (D)

In this section, we present the description logics P-SHIF(D) and P-SHOIN (D), which are probabilis-

tic generalizations of SHIF(D) and SHOIN (D), respectively. We first define their syntax using the

concept of a conditional constraint from [53] to express probabilistic knowledge in addition to the axioms

of SHIF(D) and SHOIN (D), respectively. We then define their semantics using the notion of lexi-

cographic entailment in probabilistic default reasoning [54, 56], which is a probabilistic generalization of

the sophisticated notion of lexicographic entailment by Lehmann [51] in default reasoning from conditional

knowledge bases. This semantics allows for expressing both terminological probabilistic knowledge about

concepts and roles, and also assertional probabilistic knowledge about instances of concepts and roles. It

naturally interprets terminological and assertional probabilistic knowledge as probabilistic knowledge about

random and concrete instances of concepts and roles, respectively, and allows for deriving probabilistic

knowledge about both random and concrete instances. As an important additional feature, it also allows for
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expressing default knowledge about concepts (as a special case of terminological probabilistic knowledge),

which is semantically interpreted in the same way as in Lehmann’s lexicographic default entailment [51].

See especially [56] for further details and background on probabilistic lexicographic entailment.

Informally, the main idea behind P-SHIF(D) and P-SHOIN (D) is to use a designated set of concepts

from SHIF(D) resp. SHOIN (D) as basic events for lexicographic entailment in probabilistic default

reasoning. Observe that this combination technique can be applied to other classical description logics as

well, and is not limited to SHIF(D) resp. SHOIN (D).

4.1 Syntax

We now introduce the notion of a (description logic) probabilistic knowledge base. It is based on the lan-

guage of conditional constraints [53], which encode interval restrictions for conditional probabilities over

concepts. Informally, every probabilistic knowledge base consists of (i) a PTBox, which is a classical (de-

scription logic) knowledge base along with probabilistic terminological knowledge, and (ii) a collection of

PABoxes, which encode probabilistic assertional knowledge about a certain set of individuals. To this end,

we divide the set of individuals I of the classical description logic SHIF(D) (resp., SHOIN (D)) into the

set of classical individuals IC and the set of probabilistic individuals IP , and we associate with every prob-

abilistic individual a PABox. In the extreme cases, we have either only classical individuals (that is, I= IC)

or only probabilistic individuals (that is, I= IP ). Intuitively, the classical individuals here play the same

role as in SHIF(D) (resp., SHOIN (D)), while probabilistic individuals are those individuals in I for

which we store some probabilistic assertional knowledge in a PABox.

Example 4.1 (Medical Example cont’d) Suppose we want to store some probabilistic knowledge about the

individuals Tom, John, and Maria, such as “Tom is a pacemaker patient with a probability of at least 0.8”.

Then, the set of probabilistic individuals is given by IP = {Tom, John, Maria}.

We define the language of conditional constraints as follows. We assume a finite nonempty set C of

basic classification concepts (or basic c-concepts for short), which are (not necessarily atomic) concepts

in SHIF(D) (resp., SHOIN (D)) that are free of individuals from IP . Informally, they are the relevant

description logic concepts for defining probabilistic relationships. The set of classification concepts (or

c-concepts) is inductively defined as follows. Every basic c-concept φ∈C is a c-concept. If φ and ψ are

c-concepts, then ¬φ and (φ ⊓ ψ) are also c-concepts. We often write (φ⊔ψ) to abbreviate ¬(¬φ⊓¬ψ),
as usual. A conditional constraint is an expression of the form (ψ|φ)[l, u], where φ and ψ are c-concepts,

and l and u are reals from [0, 1]. Informally, (ψ|φ)[l, u] encodes that the probability of ψ given φ lies

between l and u.

Example 4.2 (Medical Example cont’d) The terminological probabilistic knowledge “generally, pacemaker

patients are male with a probability of at least 0.4” (that is, “typically / in nearly all cases, a randomly

chosen pacemaker patient is male with a probability of at least 0.4”) can be expressed by the conditional

constraint (MalePacemakerPatient |PacemakerPatient)[0.4, 1], while the terminological default knowledge

“generally, heart patients suffer from high blood pressure” can be expressed by (∃HasHighBloodPressure.
{Yes} |HeartPatient)[1, 1]. The assertional probabilistic knowledge “Tom is a pacemaker patient with a

probability of at least 0.8” can be expressed by the conditional constraint (PacemakerPatient | ⊤)[0.8, 1]
for Tom. Here, the first two conditional constraints are default statements, while the third one is a strict

statement. This different meaning is achieved by handling them differently when drawing conclusions

(see Section 4.2.4).
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A PTBox PT = (T, P ) consists of a classical (description logic) knowledge base T (as defined in Sec-

tion 3.1) and a finite set of conditional constraints P . Informally, P encodes terminological probabilistic

knowledge as well as terminological default knowledge: Every (ψ|φ)[l, u]∈P encodes that “generally, if

φ(o) holds, then ψ(o) holds with a probability between l and u”, for every randomly chosen individual o.

In particular, (∃R.{o′}|φ)[l, u]∈P , where o′ is a classical individual from IC , and R is a role from RA,

encodes that “generally, if φ(o) holds, then R(o, o′) holds with a probability between l and u”, for every

randomly chosen individual o.

Example 4.3 (Medical Example cont’d) The PTBox of the Medical Example contains in particular (Male-

PacemakerPatient |PacemakerPatient)[0.4, 1] and (∃HasHighBloodPressure.{Yes} |HeartPatient)[1, 1] of

Example 4.2.

A PABox Po for a probabilistic individual o∈ IP is a finite set of conditional constraints. Informally,

every (ψ|φ)[l, u]∈Po encodes that “if φ(o) holds, then ψ(o) holds with a probability between l and u”. In

particular, (ψ|⊤)[l, u]∈Po expresses that “ψ(o) holds with a probability between l and u”, while (∃R.{o′} |
φ)[l, u]∈Po, where o′ is a classical individual from IC , andR is a role from RA, encodes that “if φ(o) holds,

then R(o, o′) holds with a probability between l and u”. Hence, differently from the above terminological

probabilistic sentences in P , the assertional probabilistic sentences in Po refer to the concrete probabilistic

individual o∈ IP .

Example 4.4 (Medical Example cont’d) The PABox for the probabilistic individual Tom contains in par-

ticular (PacemakerPatient | ⊤)[0.8, 1] of Example 4.2.

A probabilistic (description logic) knowledge base KB =(T, P, (Po)o∈IP
) relative to IP consists of a

PTBox PT =(T, P ) and one PABox Po for every probabilistic individual o∈ IP . Informally, a probabilistic

knowledge base extends a classical knowledge base T by terminological probabilistic knowledge P and

assertional probabilistic knowledge Po about every o∈ IP . As for the semantics (which is formally defined

in Section 4.2 below), we interpret P as probabilistic knowledge about randomly chosen individuals, while

every Po is interpreted as probabilistic knowledge about the concrete individual o. Notice also that the

axioms in T and the conditional constraints in every PABox Po with o∈ IP are strict statements (that is,

they must always hold), while the conditional constraints in P are default statements (that is, they may have

exceptions and thus do not always have to hold).

Example 4.5 (Medical Example cont’d) We extend the classical knowledge base of Example 3.1 by ad-

ditional axioms, terminological default knowledge, terminological probabilistic knowledge, and assertional

probabilistic knowledge to a probabilistic knowledge base KB = (T, P, (Po)o∈IP
). We assume the addi-

tional atomic concept PrivateHealthInsurance and the additional datatype role HasHighBloodPressure be-

tween heart patients and the elementary datatype Boolean with its data values Yes and No. The following

additional concept inclusion axiom in T expresses that (9) “heart patients cannot both suffer and not suffer

from high blood pressure”:

(9) ∃HasHighBloodPressure.⊤⊑ ≤ 1 HasHighBloodPressure.

The terminological default knowledge (10) “generally, heart patients suffer from high blood pressure” and

(11) “generally, pacemaker patients do not suffer from high blood pressure”, and the terminological prob-

abilistic knowledge (12) “generally, pacemaker patients are male with a probability of at least 0.4”, (13)
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“generally, heart patients have a private health insurance with a probability of at least 0.9”, and (14) “gener-

ally, pacemaker patients have the symptoms arrhythmia with a probability of at least 0.98, chest pain with a

probability of at least 0.9, and breathing difficulties with a probability of at least 0.6” can be expressed by

the following conditional constraints in P :

(10) (∃HasHighBloodPressure.{Yes} |HeartPatient)[1, 1],

(11) (∃HasHighBloodPressure.{No} |PacemakerPatient)[1, 1],

(12) (MalePacemakerPatient |PacemakerPatient)[0.4, 1],

(13) (∃HasHealthInsurance.PrivateHealthInsurance |HeartPatient)[0.9, 1],

(14) (∃HasIllnessSymptom.{Arrhythmia} |PacemakerPatient)[0.98, 1],

(∃HasIllnessSymptom.{ChestPain} |PacemakerPatient)[0.9, 1],

(∃HasIllnessSymptom.{BreathingDifficulties} |PacemakerPatient)[0.6, 1].

The set of probabilistic individuals is given by IP = {Tom, John, Maria}. The assertional probabilistic

knowledge (15) “Tom is a pacemaker patient with a probability of at least 0.8” can be expressed by the

following conditional constraint in PTom :

(15) (PacemakerPatient | ⊤)[0.8, 1].

The assertional probabilistic knowledge (16) “Maria has the symptom breathing difficulties with a prob-

ability of at least 0.6”, (17) “Maria has the symptom chest pain with a probability of at least 0.9”, and

(18) “Maria’s illness status is final with a probability between 0.2 and 0.8” can finally be expressed by the

following conditional constraints in PMaria :

(16) (∃HasIllnessSymptom.{BreathingDifficulties} |⊤)[0.6, 1],

(17) (∃HasIllnessSymptom.{ChestPain} |⊤)[0.9, 1],

(18) (∃HasIllnessStatus.{Final} |⊤)[0.2, 0.8].

4.2 Semantics

We now define the semantics of probabilistic knowledge bases in P-SHIF(D) and P-SHOIN (D). After

some preliminaries, we introduce the notions of consistency and lexicographic entailment for probabilistic

knowledge bases, which are based on the notions of consistency and lexicographic entailment, respectively,

in probabilistic default reasoning (see [54, 56] for further details, motivation, and examples on probabilis-

tic lexicographic entailment), which are in turn probabilistic generalizations of the notions of consistency

and Lehmann’s lexicographic entailment [51] in default reasoning from conditional knowledge bases (see

Section 7.2 for further details on default reasoning from conditional knowledge bases).

4.2.1 Motivation and Key Ideas

There are essentially two different forms of conclusions that we want to draw from probabilistic knowledge

bases KB = (T, P, (Po)o∈IP
). First, we want to derive new terminological probabilistic knowledge from the

PTBox PT = (T, P ). Second, given a probabilistic individual o∈ IP , we want to derive new assertional

probabilistic knowledge about o from the combination of the PTBox PT =(T, P ) and the PABox Po. To

carry out both these forms of conclusions, however, we may have to resolve contextual inconsistencies inside
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the terminological knowledge and between the terminological knowledge and the assertional knowledge

about the individual o (intuitively, o may not necessarily be a typical individual).

Example 4.6 (Medical Example cont’d) Observe that the terminological default knowledge “generally,

heart patients suffer from high blood pressure” is inconsistent with the terminological default knowledge

“generally, pacemaker patients do not suffer from high blood pressure” in the context of pacemaker patients,

given the terminological classical knowledge “all pacemaker patients are heart patients”, since it is unclear

at first sight which of the two contradicting default statements should be applied to pacemaker patients.

Such contextual inconsistencies are resolved by using the rule of maximum specificity, that is, by pre-

ferring more specific pieces of knowledge to less specific ones.

Example 4.7 (Medical Example cont’d) Applying the rule of specificity, the contextual inconsistency de-

scribed in Example 4.6 is resolved by ignoring the terminological default knowledge “generally, heart pa-

tients suffer from high blood pressure”, which is less specific than the terminological default knowledge for

pacemaker patients, since all pacemaker patients are heart patients.

Hence, when drawing conclusions from probabilistic knowledge bases KB = (T, P, (Po)o∈IP
), we first

have to characterize the specificity of each conditional constraint in P . These specificities define a prefer-

ence relation between all subsets of P , which in turn can be extended to a preference relation between all

probabilistic interpretations. We then draw our conclusions from the preferred subsets of P under T (resp.,

T and Po), or equivalently from the preferred probabilistic interpretations that satisfy T (resp., T and Po).

In some cases, the rule of maximum specificity is insufficient to resolve all contextual inconsistencies. This

is when PT (resp., KB ) is inconsistent.

4.2.2 Preliminaries

We now define (possible) worlds as certain sets of basic c-concepts, and probabilistic interpretations as prob-

ability functions on the set of all (possible) worlds. We also define the satisfaction of classical knowledge

bases and conditional constraints in probabilistic interpretations.

A (possible) world I is a set of basic c-concepts φ∈C such that {φ(i) |φ∈ I} ∪ {¬φ(i) |φ ∈ C \ I}
is satisfiable, where i is a new individual. Informally, every world I represents an individual i that is fully

specified on C in the sense that I belongs (resp., does not belong) to every c-concept φ∈ I (resp., φ∈C \ I).

We denote by IC the set of all worlds relative to C. Notice that IC is finite, since C is finite. A world I satisfies

a classical knowledge base T , or I is a model of T , denoted I |=T , iff T ∪{φ(i) |φ∈ I}∪{¬φ(i) |φ∈C \ I}
is satisfiable, where i is a new individual. A world I satisfies a basic c-concept φ∈C, or I is a model of φ,

denoted I |=φ, iff φ∈ I . The satisfaction of c-concepts by worlds is inductively extended to all c-concepts,

as usual, by (i) I |=¬φ iff I |=φ does not hold, and (ii) I |=φ⊓ψ iff I |=φ and I |=ψ. The following

proposition shows that, for classical knowledge bases T , the notion of satisfiability based on worlds I is

compatible with the notion of satisfiability based on classical description logic interpretations I =(∆I , · I).
That is, there exists a classical interpretation I = (∆I , · I) that satisfies T iff there exists a world I ∈IC that

satisfies T .

Proposition 4.8 Let C 6= ∅ be a finite set of basic c-concepts, and let T be a classical knowledge base. Then,

T has a model I = (∆I , · I) iff T has a model I ∈IC .
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A probabilistic interpretation Pr is a probability function on IC (that is, a mapping Pr : IC → [0, 1]
such that all Pr(I) with I ∈IC sum up to 1). We say Pr satisfies a classical knowledge base T , or Pr is

a model of T , denoted Pr |=T , iff I |=T for every I ∈IC such that Pr(I)> 0. We define the probability

of a c-concept and the satisfaction of conditional constraints in probabilistic interpretations as follows. The

probability of a c-concept φ in a probabilistic interpretation Pr , denoted Pr(φ), is the sum of all Pr(I)
such that I |=φ. For c-concepts φ and ψ such that Pr(φ)> 0, we write Pr(ψ|φ) to abbreviate Pr(φ ⊓
ψ) /Pr(φ). We say Pr satisfies a conditional constraint (φ|ψ)[l, u], or Pr is a model of (ψ|φ)[l, u], denoted

Pr |=(ψ|φ)[l, u], iff Pr(φ)= 0 or Pr(ψ|φ) ∈ [l, u]. We say Pr satisfies a set of conditional constraints F ,

or Pr is a model of F , denoted Pr |=F , iff Pr |=F for all F ∈F . The next proposition shows that,

for classical knowledge bases T , the notion of satisfiability based on probabilistic interpretations Pr is

compatible with the notion of satisfiability based on classical interpretations I = (∆I , · I). That is, T has

a satisfying classical interpretation I = (∆I , · I) iff it has a satisfying probabilistic interpretation Pr . The

result follows from Proposition 4.8.

Proposition 4.9 Let C 6= ∅ be a finite set of basic c-concepts, and let T be a classical knowledge base. Then,

T has a model I =(∆I , · I) iff T has a model Pr on IC .

4.2.3 Consistency

In this section, we define the notion of consistency for PTBoxes and probabilistic knowledge bases, which is

based on the notion of consistency in probabilistic default reasoning [54, 56]. The latter in turn generalizes

the notion of consistency in default reasoning from conditional knowledge bases [1, 32].

We first give some preparative definitions (which generalize the notions of verification, falsification,

and toleration in default reasoning from conditional knowledge bases [1, 32] to the framework of proba-

bilistic description logics). A probabilistic interpretation Pr verifies a conditional constraint (ψ|φ)[l, u] iff

Pr(φ)= 1 and Pr(ψ)∈ [l, u]. Notice that the latter is equivalent to Pr(φ)= 1 and Pr |= (ψ|φ)[l, u]. We say

that Pr falsifies (ψ|φ)[l, u] iff Pr(φ)= 1 and Pr 6|= (ψ|φ)[l, u]. A set of conditional constraints F tolerates

a conditional constraint (ψ|φ)[l, u] under a classical knowledge base T , or (ψ|φ)[l, u] is tolerated under

T by F , iff T ∪F has a model that verifies (ψ|φ)[l, u] (which is equivalent to the existence of a model

of T ∪F ∪{(ψ|φ)[l, u], (φ|⊤)[1, 1]}).

A PTBox PT =(T, P ) is consistent iff (i) T is satisfiable and (ii) there exists an ordered partition

(P0, . . . , Pk) of P such that each Pi with i∈{0, . . . , k} is the set of all F ∈P \ (P0 ∪ · · · ∪ Pi−1) that are

tolerated under T by P \ (P0 ∪ · · · ∪ Pi−1). Informally, a PTBox is consistent iff all contained contextual

inconsistencies can be resolved by applying the rule of maximum specificity. More concretely, (ii) means

that P has a natural partition into collections P0, . . . , Pk of conditional constraints of increasing specificities

such that no collection Pi is contextually inconsistent. That is, contextual inconsistencies can only occur

between two different collections Pi and Pj , but not inside a single collection Pi. Such contextual inconsis-

tencies between two different collections can then be resolved by preferring more specific collections and

their elements to less specific ones.

Example 4.10 (Medical Example cont’d) We partition P into two collections of conditional constraints P0

and P1 such that (∃HasHighBloodPressure.{Yes}|HeartPatient)[1, 1]∈P0 and (∃HasHighBloodPressure.
{No} |PacemakerPatient)[1, 1] ∈ P1. The contextual inconsistency between the two when reasoning about

pacemaker patients is then resolved by preferring the latter to the former.
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We call the above ordered partition (P0, . . . , Pk) of P the z-partition of PT . A probabilistic knowledge

base KB = (T, P, (Po)o∈IP
) is consistent iff PT =(T, P ) is consistent and T ∪Po is satisfiable for all

probabilistic individuals o∈ IP . Informally, the latter says that the strict knowledge in T must be compatible

with the strict degrees of belief in Po, for every probabilistic individual o.

Example 4.11 (Medical Example cont’d) The probabilistic knowledge base KB = (T, P, (Po)o∈IP
) of Ex-

ample 4.5 is consistent, since PT = (T, P ) is consistent, and T ∪Po is satisfiable for every o ∈ IP = {Tom,

John, Maria}. Notice that the z-partition of (T, P ) is given by (P0, P1), where P0 = {(ψ|φ)[l, u]∈P |
φ= HeartPatient} and P1 = {(ψ|φ)[l, u]∈P |φ= PacemakerPatient}.

The following theorem provides an alternative characterization of consistency.

Theorem 4.12 A PTBox PT = (T, P ) is consistent iff (i) T is satisfiable and (ii) there exists an ordered

partition (P0, . . . , Pk) of P such that every F ∈Pi, i∈{0, . . . , k}, is tolerated under T by
⋃k
j=i Pi.

4.2.4 Lexicographic Entailment

The notion of lexicographic entailment for probabilistic knowledge bases is based on lexicographic entail-

ment in probabilistic default reasoning [54, 56], which in turn generalizes Lehmann’s lexicographic entail-

ment [51] in default reasoning from conditional knowledge bases. In the sequel, let KB = (T, P, (Po)o∈IP
)

be a consistent probabilistic knowledge base. We first define a lexicographic preference relation on proba-

bilistic interpretations, which is then used to define the notion of lexicographic entailment for sets of con-

ditional constraints under PTBoxes. We finally define the notion of lexicographic entailment for deriving

terminological probabilistic knowledge and assertional probabilistic knowledge about probabilistic individ-

uals from PTBoxes and probabilistic knowledge bases, respectively.

We use the z-partition (P0, . . . , Pk) of (T, P ), which partitions P into collections P0, . . . , Pk of con-

ditional constraints of increasing specificities, to define a lexicographic preference relation on probabilistic

interpretations. For probabilistic interpretations Pr and Pr
′, we say Pr is lexicographically preferable (or

lex-preferable) to Pr
′ iff some i∈{0, . . . , k} exists such that |{F ∈Pi | Pr |=F}|> |{F ∈Pi | Pr

′ |=F}|
and |{F ∈Pj |Pr |=F}|= |{F ∈Pj |Pr

′ |=F}| for all i< j≤ k. Intuitively, this lexicographic preference

relation on probabilistic interpretations implements the idea of preferring more specific collections of con-

ditional constraints Pi and their elements to less specific ones Pj and their elements. It can thus be used

for preferring more specific pieces of knowledge to less specific ones when drawing conclusions in the

case of contextual inconsistencies. A model Pr of a classical knowledge base T and a set of conditional

constraints F is a lexicographically minimal (or lex-minimal) model of T ∪F iff no model of T ∪F is

lex-preferable to Pr .

Example 4.13 (Medical Example cont’d) Recall from Example 4.11 that the z-partition of the Medical

Example is given by (P0, P1), where P0 = {(ψ|φ)[l, u]∈P |φ= HeartPatient} and P1 = {(ψ|φ)[l, u]∈P |
φ= PacemakerPatient}. When reasoning about pacemaker patients, every probabilistic interpretation Pr

that satisfies P1 is lex-preferable to any probabilistic interpretation Pr
′ that does not satisfy P1. So,

the more specific (∃HasHighBloodPressure.{No} |PacemakerPatient)[1, 1] is preferred to the less specific

(∃HasHighBloodPressure.{Yes} |HeartPatient)[1, 1].

We define the notion of lexicographic entailment of conditional constraints from sets of conditional con-

straints under PTBoxes as follows. A conditional constraint (ψ|φ)[l, u] is a lexicographic consequence (or
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lex-consequence) of a set of conditional constraints F under a PTBox PT , denoted F ‖∼ lex (ψ|φ)[l, u] un-

der PT , iff Pr(ψ)∈ [l, u] for every lex-minimal model Pr of T ∪ F ∪ {(φ|⊤)[1, 1]}. We say (ψ|φ)[l, u] is

a tight lexicographic consequence (or tight lex-consequence) of F under PT , denoted F ‖∼ lex
tight (ψ|φ)[l, u]

under PT , iff l (resp., u) is the infimum (resp., supremum) of Pr(ψ) subject to all lex-minimal models Pr

of T∪F∪{(φ|⊤)[1, 1]}. Observe that [l, u] = [1, 0] (where [1, 0] represents the empty interval) when no such

model Pr exists (since inf ∅ and sup ∅ are formally defined as max([0, 1])= 1 and min([0, 1])= 0, respec-

tively). Furthermore, for inconsistent PTBoxes PT , we define F ‖∼ lex (ψ|φ)[l, u] and F ‖∼ lex
tight (ψ|φ)[1, 0]

under PT for all sets of conditional constraints F and all conditional constraints (ψ|φ)[l, u].

We now define which terminological and assertional probabilistic knowledge is lexicographically en-

tailed by PTBoxes resp. probabilistic knowledge bases. A conditional constraint F is a lex-consequence

of a PTBox PT , denoted PT ‖∼ lexF , iff ∅ ‖∼ lexF under PT . We say F is a tight lex-consequence

of PT , denoted PT ‖∼ lex
tight F , iff ∅ ‖∼ lex

tight F under PT . A conditional constraint F for a probabilistic

individual o∈ IP is a lex-consequence of a probabilistic knowledge base KB = (T, P, (Po)o∈IP
), denoted

KB ‖∼ lexF , iff Po ‖∼
lexF under (T, P ). We say F is a tight lex-consequence of KB , denoted KB ‖∼ lex

tight F ,

iff Po ‖∼
lex
tight F under (T, P ).

Example 4.14 (Medical Example cont’d) Consider again the probabilistic knowledge base KB = (T, P,
(Po)o∈IP

) given in Example 4.5. The following conditional constraints are some (terminological default and

terminological probabilistic) tight lex-consequences of PT = (T, P ):

(∃HasHighBloodPressure.{Yes} |HeartPatient)[1, 1],

(∃HasHighBloodPressure.{No} |PacemakerPatient)[1, 1],

(∃HasHighBloodPressure.{Yes} |Male⊓HeartPatient)[1, 1],

(MalePacemakerPatient |PacemakerPatient)[0.4, 1],

(∃HasHealthInsurance.PrivateHealthInsurance |HeartPatient)[0.9, 1],

(∃HasHealthInsurance.PrivateHealthInsurance |PacemakerPatient)[0.9, 1],

(∃HasIllnessSymptom.{Arrhythmia} |PacemakerPatient)[0.98, 1],

(∃HasIllnessSymptom.{ChestPain} |PacemakerPatient)[0.9, 1],

(∃HasIllnessSymptom.{BreathingDifficulties} |PacemakerPatient)[0.6, 1].

So, the default property of having high blood pressure is inherited from heart patients down to male heart

patients, and the probabilistic property of having a private health insurance with a probability of at least

0.9 is inherited from heart patients down to pacemaker patients. Roughly, the tight lex-consequences of

PT = (T, P ) are given by all those conditional constraints that (a) are either in P , or (b) can be constructed

by inheritance along subconcept relationships from the ones in P and are not overridden by more specific

pieces of knowledge in P .

The following conditional constraints for the probabilistic individual Tom are some (assertional proba-

bilistic) tight lex-consequences of KB =(T, P, (Po)o∈IP
):

(PacemakerPatient | ⊤)[0.8, 1],

(∃HasHighBloodPressure.{No} |⊤)[0.8, 1],

(MalePacemakerPatient | ⊤)[0.32, 1],

(∃HasHealthInsurance.PrivateHealthInsurance | ⊤)[0.72, 1],
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(∃HasIllnessSymptom.{Arrhythmia} |⊤)[0.78, 1],

(∃HasIllnessSymptom.{ChestPain} |⊤)[0.72, 1],

(∃HasIllnessSymptom.{BreathingDifficulties} |⊤)[0.48, 1].

We finally provide a characterization of the notion of lexicographic entailment for a set of conditional

constraints under a PTBox in terms of the notions of satisfiability and logical entailment for a set of condi-

tional constraints under a classical knowledge base, which are defined as follows. Given a classical knowl-

edge base T and a set of conditional constraints F , we say T ∪F is satisfiable iff a model of T ∪F exists.

A conditional constraint (ψ|φ)[l, u] is a logical consequence of T ∪F , denoted T ∪F |= (ψ|φ)[l, u], iff each

model of T ∪F is also a model of (ψ|φ)[l, u]. We say (ψ|φ)[l, u] is a tight logical consequence of T ∪F ,

denoted T ∪F |=tight (ψ|φ)[l, u], iff l (resp., u) is the infimum (resp., supremum) of Pr(ψ|φ) subject to all

models Pr of T ∪F with Pr(φ)> 0.

The characterization of lexicographic entailment is formally expressed by the subsequent theorem. More

concretely, given a PTBox PT = (T, P ), a set of conditional constraints F , and two c-concepts φ and ψ,

the key idea behind the characterization is that a set Q of lexicographically minimal subsets of P exists

such that F ‖∼ lex (ψ|φ)[l, u] under PT iff T ∪Q∪F ∪ {(φ|⊤)[1, 1]} |= (ψ|⊤)[l, u] for all Q∈Q. Here,

Q⊆P is lexicographically preferable (or lex-preferable) to Q′⊆P iff some i∈{0, . . . , k} exists such that

|Q ∩ Pi|> |Q
′ ∩ Pi| and |Q ∩ Pj |= |Q

′ ∩ Pj | for all i< j≤ k, where (P0, . . . , Pk) denotes the z-partition

of PT . We say Q is lexicographically minimal (or lex-minimal) in a set S of subsets of P iff Q∈S and no

Q′ ∈S is lex-preferable to Q.

Theorem 4.15 Let PT = (T, P ) be a consistent PTBox, let F be a set of conditional constraints, and let

φ and ψ be two c-concepts. Let Q be the set of all lex-minimal elements in the set of all Q⊆P such

that T ∪Q ∪ F ∪ {(φ|⊤)[1, 1]} is satisfiable. Then,

(a) If Q= ∅, then F ‖∼ lex
tight (ψ|φ)[1, 0] under PT .

(b) If Q 6= ∅, then F ‖∼ lex
tight (ψ|φ)[l, u] under PT , where l= min l′ (resp., u = maxu′) subject to T ∪

Q ∪ F ∪ {(φ|⊤)[1, 1]} |=tight (ψ|⊤)[l′, u′] and Q∈Q.

5 Algorithms

In this section, we provide algorithms for the main reasoning tasks in P-SHIF(D) (resp., P-SHOIN (D)).
They are based on reductions to deciding the satisfiability of classical knowledge bases in SHIF(D)
(resp., SHOIN (D)), deciding the solvability of systems of linear constraints, and computing the opti-

mal value of linear programs. This shows in particular that the main reasoning tasks in P-SHIF(D) (resp.,

P-SHOIN (D)) are decidable resp. computable.

5.1 Problem Statements

The main reasoning tasks related to PTBoxes and probabilistic knowledge bases in P-SHIF(D) and P-

SHOIN (D) are summarized by the following decision and computation problems (where we assume that

every lower and upper bound in the PTBox PT = (T, P ), the probabilistic knowledge base KB = (T, P,
(Po)o∈IP

), and the set of conditional constraints F is rational):
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PTBOX CONSISTENCY (PTCON): Decide whether a given PTBox PT =(T, P ) is consistent.

PROBABILISTIC KNOWLEDGE BASE CONSISTENCY (PKBCON): Given a probabilistic knowledge base

KB = (T, P, (Po)o∈IP
), decide whether KB is consistent.

TIGHT LEXICOGRAPHIC ENTAILMENT (TLEXENT): Given a PTBox PT = (T, P ), a finite set of condi-

tional constraints F , and two c-concepts φ and ψ, compute the rational numbers l, u ∈ [0, 1] such that

F ‖∼ lex
tight (ψ|φ)[l, u] under PT .

Some important special cases of TLEXENT are given as follows: (PCSUB) given a consistent PTBox

PT and two c-concepts φ and ψ, compute l, u∈ [0, 1] such that PT ‖∼ lex
tight (ψ|φ)[l, u]; (PCRSUB) given a

consistent PTBox PT , a c-concept φ, a classical individual o∈ IC , and an abstract role R∈RA, compute

l, u∈ [0, 1] such that PT ‖∼ lex
tight (∃R.{o}|φ)[l, u]; (PCMEM) given a consistent probabilistic knowledge

base KB , a probabilistic individual o∈ IP , and a c-concept ψ, compute l, u∈ [0, 1] such that KB ‖∼ lex
tight

(ψ|⊤)[l, u] for o; and (PRMEM) given a consistent probabilistic knowledge base KB , a classical indi-

vidual o′ ∈ IC , a probabilistic individual o∈ IP , and an abstract role R∈RA, compute l, u∈ [0, 1] such

that KB ‖∼ lex
tight (∃R.{o′}|⊤)[l, u] for o.

Another important decision problem is PROBABILISTIC CONCEPT SATISFIABILITY (PCSAT): Given

a consistent PTBox PT and a c-concept φ, decide whether PT 6‖∼ lex (φ|⊤)[0, 0]. This problem is reducible

to CSAT (see Section 3.2), since (T, P ) 6‖∼ lex (φ|⊤)[0, 0] iff T 6|=φ⊑⊥.

In Section 5.2 below, we show that the above problems PTCON, PKBCON, and TLEXENT can all be

reduced to the following two decision and computation problems (where we assume that every lower and

upper bound in the set of conditional constraints F is rational):

SATISFIABILITY (SAT): Given a classical description logic knowledge base T and a finite set of conditional

constraints F , decide whether T ∪F is satisfiable.

TIGHT LOGICAL ENTAILMENT (TLOGENT): Given a classical description logic knowledge base T , a fi-

nite set of conditional constraints F , and a c-concept ψ, compute the rational numbers l, u∈ [0, 1]
such that T ∪ F |=tight (ψ|⊤)[l, u].

5.2 Consistency and Tight Lexicographic Entailment

We now present algorithms for solving PTCON, PKBCON, and TLEXENT. These algorithms are all based

on reductions to the problems SAT and TLOGENT.

Algorithm pt-consistency in Fig. 1 decides whether a given PTBox PT =(T, P ) is consistent. More pre-

cisely, it returns the z-partition of PT , if PT is consistent, and nil, otherwise. In lines 1 and 2, the algorithm

handles the case where T is unsatisfiable or P is empty. In lines 3–11, it computes and returns the z-partition

of PT (if it exists). Algorithm pt-consistency is a generalization of an algorithm for deciding consistency

in probabilistic default reasoning with conditional constraints [56], which in turn is a generalization of an

algorithm for deciding ε-consistency in default reasoning from conditional knowledge bases [32].

Algorithm pkb-consistency in Fig. 2 decides whether a given probabilistic knowledge base KB = (T, P,
(Po)o∈IP

) is consistent. In line 1, it decides whether (T, P ) is consistent, and in lines 2 and 3, whether every

T ∪Po with o∈ IP is satisfiable.

Finally, given a PTBox PT = (T, P ), a finite set of conditional constraints F , and two c-concepts φ and

ψ, Algorithm tight-lex-entailment in Fig. 3 computes l, u∈ [0, 1] such thatF ‖∼ lex
tight (ψ|φ)[l, u] under PT . It

is based on Theorem 4.15. In lines 1–3, it handles the case where PT is inconsistent or T ∪F∪{(φ|⊤)[1, 1]}
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Algorithm pt-consistency

Input: PTBox PT = (T, P ).
Output: z-partition of PT , if PT is consistent; nil, otherwise.

1. if T is unsatisfiable then return nil;

2. if P = ∅ then return ();
3. H := P ;

4. i := −1;
5. repeat

6. i := i+ 1;

7. P [i] := {C ∈H | C is tolerated under T by H};
8. H := H \P [i]
9. until H = ∅ or P [i] = ∅;

10. if H = ∅ then return (P [0], . . . , P [i])
11. else return nil.

Figure 1: Algorithm pt-consistency.

Algorithm pkb-consistency

Input: probabilistic knowledge base KB = (T, P, (Po)o∈IP
).

Output: “Yes”, if KB is consistent; “No”, otherwise.

1. if (T, P ) is inconsistent then return “No”;

2. for each o∈ IP do

3. if T ∪Po is unsatisfiable then return “No”;

4. return “Yes”.

Figure 2: Algorithm pkb-consistency.

is unsatisfiable. In lines 4–13, it computes the set Q of all lex-minimal elements among all S⊆P such

that T ∪S ∪ F ∪ {(φ|⊤)[1, 1]} is satisfiable. In lines 14–19, it then computes the tight lex-entailed interval

from Q and returns this interval.

Algorithms pt-consistency, pkb-consistency, and tight-lex-entailment reduce the problems PTCON, P-

KBCON, and TLEXENT, respectively, to the problems SAT and TLOGENT. The following theorem shows

that pt-consistency, pkb-consistency, and tight-lex-entailment can be done by solving O(|P |2), O(|P |2 +
|IP |), and O(2|P |), respectively, instances of SAT and TLOGENT.

Theorem 5.1 (a) Algorithm pt-consistency can be done by solvingO(|P |2) instances of SAT. (b) Algorithm

pkb-consistency can be done by solving O(|P |2 + |IP |) instances of SAT. (c) Algorithm tight-lex-entailment

can be done by solving O(2|P |) instances of SAT and TLOGENT.

5.3 Satisfiability and Tight Logical Entailment

We now show that the problems SAT and TLOGENT can be reduced to deciding knowledge base satisfiability

in SHIF(D) (resp., SHOIN (D)), deciding the solvability of systems of linear constraints, and computing

the optimal value of linear programs. These results are immediate by the fact that deciding satisfiability and
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Algorithm tight-lex-entailment

Input: PTBox PT = (T, P ), finite set of conditional constraints F ,

and c-concepts φ and ψ.

Output: (l, u)∈ [0, 1]2 such that F ‖∼ lex

tight (ψ|φ)[l, u] under PT .

Notation: (P0, . . . , Pk) denotes the z-partition of PT .

1. if PT is inconsistent then return (1, 0);
2. R := T ∪F ∪{(φ|⊤)[1, 1]};
3. if R is unsatisfiable then return (1, 0);
4. K := {∅};
5. for j := k downto 0 do begin

6. (m,n) := (0, |Pj |);
7. while m<n do begin

8. l := ⌈(m+ n) / 2⌉;
9. K ′ := {G∪H |G⊆Pj , |G|= l, H ∈K, R∪G∪H is satisfiable};

10. if K ′ 6= ∅ then m := l else n := l− 1
11. end;

12. K := {G∪H |G⊆Pj , |G|=m, H ∈K, R∪G∪H is satisfiable}
13. end;

14. (l, u) := (1, 0);
15. for each H ∈K do begin

16. compute c, d∈ [0, 1] such that R∪H |=tight (ψ|⊤)[c, d];
17. (l, u) := (min(l, c),max(u, d))
18. end;

19. return (l, u).

Figure 3: Algorithm tight-lex-entailment.

computing tight intervals under logical entailment in probabilistic logic can be done by deciding whether

a system of linear constraints is solvable and by computing the optimal values of two linear programs,

respectively (see especially [35]).

The following theorem shows that the problem SAT can be reduced to deciding knowledge base satis-

fiability in SHIF(D) (resp., SHOIN (D)) and deciding whether a system of linear constraints is solvable.

Here (and in Theorem 5.3 below), deciding knowledge base satisfiability in SHIF(D) (resp., SHOIN (D))
is used for computing the index setR= {I ∈IC | I |=T}, which can be done by deciding |IC | times whether

some T ∪{φ(i) |φ∈ I}∪ {¬φ(i) |φ∈C \ I} with I ∈IC is satisfiable.

Theorem 5.2 Let T be a classical knowledge base, and let F be a finite set of conditional constraints. Let

R= {I ∈IC | I |=T}. Then, T ∪F is satisfiable iff the system of linear constraints LC in Fig. 4 over the

variables yr (r∈R) is solvable.

Finally, the following theorem shows that TLOGENT can be reduced to deciding knowledge base satis-

fiability in SHIF(D) (resp., SHOIN (D)) and computing the optimal values of two linear programs.

Theorem 5.3 Let T be a classical knowledge base, let F be a finite set of conditional constraints, and

let ψ be a c-concept. Suppose that T ∪F is satisfiable. Let R= {I ∈IC | I |=T}. Then, l (resp., u)

such that T ∪F |=tight (ψ|⊤)[l, u] is given by the optimal value of the following linear program over the
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∑

r∈R, r|=¬ψ⊓φ

−l yr +
∑

r∈R, r|=ψ⊓φ

(1− l) yr ≥ 0 (for all (ψ|φ)[l, u]∈F , l > 0)

∑

r∈R, r|=¬ψ⊓φ

u yr +
∑

r∈R, r|=ψ⊓φ

(u− 1) yr ≥ 0 (for all (ψ|φ)[l, u]∈F , u< 1)

∑

r∈R

yr = 1

yr ≥ 0 (for all r∈R)

Figure 4: System of linear constraints LC for Theorems 5.2 and 5.3.

variables yr (r∈R):

minimize (resp., maximize)
∑

r∈R, r |=ψ

yr subject to LC in Fig. 4 . (1)

6 Complexity

In this section, we address the computational complexity of the main reasoning tasks in the probabilistic

description logics P-SHIF(D) and P-SHOIN (D). We first recall some necessary complexity classes,

and previous complexity results. Towards special cases of the main reasoning tasks in P-SHIF(D) and

P-SHOIN (D) that have a lower computational complexity, we then introduce probabilistic knowledge

bases in DL-Lite. We finally provide our complexity results.

6.1 Complexity Classes and Previous Results

We assume that the reader has some elementary background in complexity theory, the concepts of Tur-

ing machines and oracle calls, polynomial-time transformations among problems, and the hardness and

completeness of a problem for a complexity class; see especially [47, 48, 66]. We now briefly recall the

complexity classes that we encounter in our complexity results below. The class NP contains all decision

problems that can be solved in polynomial time on a nondeterministic Turing machine, while the class EXP

(resp., NEXP) contains all decision problems that can be solved in exponential time on a deterministic (resp.,

nondeterministic) Turing machine. The class P NP (resp., P NEXP) contains all problems that are decidable

in polynomial time on a deterministic Turing machine with the help of an oracle for NP (resp., NEXP). The

above complexity classes along with their inclusion relationships (all of which are currently believed to be

strict) are summarized by:

NP ⊆ P NP ⊆ EXP ⊆ NEXP ⊆ P NEXP .

For classifying problems that compute an output value, function classes similar to the classes above have

been introduced [70, 47]. In particular, FP NP, FEXP, and FP NEXP are the functional analogs of P NP, EXP,

and P NEXP, respectively.

We recall that deciding if a knowledge base L in SHIF(D) (resp., SHOIN (D)) is satisfiable is com-

plete for EXP [73, 40] (resp., NEXP, assuming unary number encoding; see [40] and the NEXP-hardness
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proof for ALCQI in [73], which implies the NEXP-hardness of SHOIN (D)). We also recall that decid-

ing whether a finite set of conditional constraints in probabilistic logic is satisfiable and deciding whether

a probabilistic default theory is σ-consistent are both NP-complete [55, 56]. Computing tight logically

entailed intervals from a finite set of conditional constraints in probabilistic logic and computing tight lexi-

cographically entailed intervals from a probabilistic default theory are both FP NP-complete [55, 56].

6.2 The Description Logic DL-Lite

Inspired by classical description logic knowledge bases in DL-Lite [10], which are a restricted class of

classical description logic knowledge bases for which deciding whether a knowledge base is satisfiable can

be done in polynomial time, we now define a restricted class of probabilistic knowledge bases in DL-Lite.

We first recall DL-Lite. Let A, RA, and I be pairwise disjoint finite nonempty sets of atomic concepts,

abstract roles, and individuals, respectively. A basic concept in DL-Lite is either an atomic concept from

A or an exists restriction on roles of the form ∃R.⊤ (abbreviated as ∃R), where R∈RA ∪R−
A. Concepts

in DL-Lite are defined by induction as follows. Every basic concept in DL-Lite is a concept in DL-Lite.

If b is a basic concept in DL-Lite, and φ1 and φ2 are concepts in DL-Lite, then ¬b and φ1 ⊓ φ2 are also

concepts in DL-Lite. An axiom in DL-Lite is either (1) a concept inclusion axiom of the form b⊑ψ, where

b is a basic concept in DL-Lite and φ is a concept in DL-Lite, or (2) a functionality axiom (funct R), where

R∈RA ∪R−
A, or (3) a concept membership axiom b(a), where b is a basic concept in DL-Lite and a∈ I,

or (4) a role membership axiom R(a, c), where R∈RA and a, c∈ I. A knowledge base in DL-Lite is a

finite set of axioms in DL-Lite. We recall the following result from [10], which says that deciding whether

a knowledge base in DL-Lite is satisfiable can be done in polynomial time.

Theorem 6.1 (see [10]) Given a knowledge base in DL-Lite T , deciding whether T is satisfiable can be

done in polynomial time.

We now define a similarly restricted class of probabilistic knowledge bases. A literal in DL-Lite is either

a basic concept in DL-Lite b or its negation ¬b. A conjunctive concept in DL-Lite is either ⊥, or ⊤, or a

conjunction of literals in DL-Lite. A set of conditional constraints F is defined in DL-Lite iff F is defined

w.r.t. a set of basic c-concepts C that contains only literals in DL-Lite. A PTBox PT =(T, P ) is defined

in P-DL-Lite iff (i) T is a knowledge base in DL-Lite, and (ii) P is defined in DL-Lite. A probabilistic

knowledge base KB = (T, P, (Po)o∈IP
) is defined in P-DL-Lite iff additionally every Po with o∈ IP is

defined in DL-Lite.

The following theorem shows that deciding whether a world I ∈IC satisfies a knowledge base T in

DL-Lite can be done in polynomial time when C contains only literals in DL-Lite. This result follows from

Theorem 6.1 and the observation that I |=T can be reduced to deciding whether a knowledge base in DL-

Lite is satisfiable when C contains only literals in DL-Lite.

Theorem 6.2 Let T be a knowledge base in DL-Lite, and let C be a finite nonempty set of basic c-concepts

that contains only literals in DL-Lite. Then, given a world I ∈IC , deciding whether I |=T holds can be

done in polynomial time.

6.3 Complexity Results

Our complexity results for the main tasks in P-SHOIN (D), P-SHIF(D), and P-DL-Lite are compactly

summarized in Tables 1 and 2. In detail, the decision problems are all complete for NEXP, EXP, and NP
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Table 1: Complexity of decision problems.

P-DL-Lite P-SHIF(D) P-SHOIN (D)

SAT NP-complete EXP-complete NEXP-complete

PTCON NP-complete EXP-complete NEXP-complete

PKBCON NP-complete EXP-complete NEXP-complete

Table 2: Complexity of computation problems.

P-DL-Lite P-SHIF(D) P-SHOIN (D)

TLOGENT FP NP-complete FEXP-complete in FP NEXP

TLEXENT FP NP-complete FEXP-complete in FP NEXP

when they are defined in P-SHOIN (D), P-SHIF(D), and P-DL-Lite, respectively, while the computation

problems are in FP NEXP, complete for FEXP, and complete for FP NP, respectively. Hence, when the reason-

ing tasks are defined in P-DL-Lite, then they have the same complexity as corresponding reasoning tasks in

probabilistic logic and probabilistic default reasoning. Furthermore, when the reasoning tasks are defined in

P-SHIF(D), then they have the same complexity as knowledge base satisfiability in SHIF(D). Finally,

when the reasoning tasks are defined in P-SHOIN (D), then their complexity ranges from the complexity

of deciding whether a knowledge base in SHOIN (D) is satisfiable to the complexity of other sophisticated

reasoning techniques for the Semantic Web, such as deciding whether a description logic program relative

to SHOIN (D) has a weak or strong answer set [21].

The following theorem shows that the decision problems are complete for NEXP, EXP, and NP when

they are defined in P-SHOIN (D), P-SHIF(D), and P-DL-Lite, respectively. Here, hardness for NEXP

resp. EXP is inherited from the hardness for NEXP resp. EXP of deciding whether a knowledge base in

SHOIN (D) resp. SHIF(D) is satisfiable, while hardness for NP is inherited from the hardness for NP
of deciding whether a finite set of conditional constraints in probabilistic logic is satisfiable and of deciding

whether a probabilistic default theory is σ-consistent. Membership follows from a small-model theorem for

deciding whether a finite set of conditional constraints in probabilistic logic is satisfiable [55].

Theorem 6.3 (a) SAT, PTCON, and PKBCON are complete for NEXP when T ∪F , PT , and KB , respec-

tively, are defined in P-SHOIN (D). (b) SAT, PTCON, and PKBCON are complete for EXP when T ∪F ,

PT , and KB , respectively, are defined in P-SHIF(D). (c) SAT, PTCON, and PKBCON are complete for

NP when T ∪F , PT , and KB , respectively, are defined in P-DL-Lite.

The next theorem shows that the computation problems are in FP NEXP, complete for FEXP, and com-

plete for FP NP when they are defined over P-SHOIN (D), P-SHIF(D), and P-DL-Lite, respectively.

Here, hardness for FEXP is inherited from the EXP-hardness of deciding whether a description logic knowl-

edge base in SHIF(D) is satisfiable, while FP NP-hardness is inherited from the FP NP-hardness of com-

puting tight logically entailed intervals from a finite set of conditional constraints in probabilistic logic and

of computing tight lexicographically entailed intervals from a probabilistic default theory. The membership

results follow from a small-model theorem for computing tight logically entailed intervals from a finite set
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of conditional constraints in probabilistic logic [55].

Theorem 6.4 (a) TLOGENT and TLEXENT are complete for FP NEXP when T∪F and PT∪F , respectively,

are defined in P-SHOIN (D). (b) TLOGENT and TLEXENT are complete for FEXP when T ∪F and

PT ∪F , respectively, are defined in P-SHIF(D). (c) TLOGENT and TLEXENT are complete for FP NP

when T ∪F and PT ∪F , respectively, are defined in P-DL-Lite.

7 Related Work

In this section, we give a brief overview on related approaches to (i) probabilistic description logics and

probabilistic web ontology languages, (ii) default reasoning from conditional knowledge bases and defaults

in description logics, and (iii) possibilistic and fuzzy description logics.

7.1 Probabilistic Description Logics and Web Ontology Languages

There are several related approaches to probabilistic description logics in the literature [37, 44, 46, 49],

which can be classified according to the generalized description logics, the supported forms of probabilistic

knowledge, and the underlying probabilistic reasoning formalism. Heinsohn [37] presents a probabilistic

extension of the description logic ALC, which allows to represent terminological probabilistic knowledge

about concepts and roles, and which is essentially based on probabilistic reasoning in probabilistic logics,

similar to [63, 2, 24, 53]. Heinsohn [37], however, does not allow for assertional knowledge about concept

and role instances. Jaeger’s work [44] (which is perhaps the one closest in spirit to the new probabilistic de-

scription logics of this paper) proposes another probabilistic extension of the description logic ALC, which

allows for terminological and assertional probabilistic knowledge about concepts / roles and about concept

instances, respectively, but does not support assertional probabilistic knowledge about role instances (but he

mentions a possible extension in this direction). The uncertain reasoning formalism in [44] is essentially

based on probabilistic reasoning in probabilistic logics, as the one in [37], but coupled with cross-entropy

minimization to combine terminological probabilistic knowledge with assertional probabilistic knowledge.

Jaeger’s recent work [46] is less closely related, as it focuses on interpreting probabilistic concept sub-

sumption and probabilistic role quantification through statistical sampling distributions, and develops a

probabilistic version of the guarded fragment of first-order logic. The work by Koller et al. [49] gives a

probabilistic generalization of the CLASSIC description logic. Like Heinsohn’s work [37], it allows for ter-

minological probabilistic knowledge about concepts and roles, but does not support assertional knowledge

about instances of concepts and roles. However, differently from [37], it is based on inference in Bayesian

networks as underlying probabilistic reasoning formalism. Closely related work by Yelland [77] combines

a restricted description logic close to FL with Bayesian networks. It also allows for terminological proba-

bilistic knowledge about concepts and roles, but does not support assertional knowledge about instances of

concepts and roles.

The novel probabilistic description logics in this paper differ from the ones in [37, 44, 46, 49] in

several ways. First, they are probabilistic extensions of the expressive description logics SHIF(D) and

SHOIN (D), which stand behind OWL Lite and OWL DL, respectively, towards sophisticated formalisms

for reasoning under probabilistic uncertainty in the Semantic Web. Second, they allow for expressing both

terminological probabilistic knowledge about concepts and roles, and also assertional probabilistic knowl-

edge about instances of concepts and roles. Third, they are based on probabilistic lexicographic entailment

from probabilistic default reasoning [54, 56] as underlying probabilistic reasoning formalism, which treats
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terminological and assertional probabilistic knowledge in a semantically very appealing way as probabilistic

knowledge about random resp. concrete instances.

Related works on probabilistic web ontology languages focus especially on combining the web ontology

language OWL with probabilistic formalisms based on Bayesian networks. In particular, da Costa [11], da

Costa and Laskey [12], and da Costa et al. [13] suggest a probabilistic generalization of OWL, called PR-

OWL, which is based on multi-entity Bayesian networks. The latter are a Bayesian logic that combines

first-order logic with Bayesian probabilities. Ding et al. [16, 17] propose a probabilistic generalization of

OWL, called BayesOWL, which is based on standard Bayesian networks. BayesOWL provides a set of rules

and procedures for the direct translation of an OWL ontology into a Bayesian network that supports ontology

reasoning, both within and across ontologies, as Bayesian inferences. Ding et al. [65, 17] also describe an

application of this approach in ontology mapping. In closely related work, Mitra et al. [62] introduce a

technique to enhancing existing ontology mappings by using a Bayesian network to represent the influences

between potential concept mappings across ontologies. Yang and Calmet [76] present an integration of

the web ontology language OWL with Bayesian networks. The approach makes use of probability and

dependency-annotated OWL to represent uncertain information in Bayesian networks. Pool and Aikin [68]

also provide a method for representing uncertainty in OWL ontologies, while Fukushige [25] proposes a

basic framework for representing probabilistic relationships in RDF. Finally, Nottelmann and Fuhr [64]

present two probabilistic extensions of variants of OWL Lite, along with a mapping to locally stratified

probabilistic Datalog.

An important application for probabilistic ontologies (and thus probabilistic description logics and web

ontology languages) is especially information retrieval: In particular, Subrahmanian’s group [43, 42] ex-

plores the use of probabilistic ontologies in relational databases. They propose to extend relations by associ-

ating with every attribute a constrained probabilistic ontology, which describes relationships between terms

occurring in the domain of that attribute. An extension of the relational algebra then allows for an increased

recall (which is the proportion of documents relevant to a search query in the collection of all returned doc-

uments) in information retrieval. In closely related work, Mantay et al. [61] propose a probabilistic least

common subsumer operation, which is based on a probabilistic extension of the description logic ALN .

They show that applying this approach in information retrieval allows for reducing the amount of retrieved

data and thus for avoiding information flood. Another closely related work by Holi and Hyvönen [38, 39]

shows how degrees of overlap between concepts can be modeled and computed efficiently using Bayesian

networks based on RDF(S) ontologies. Such degrees of overlap indicate how well an individual data item

matches the query concept, and can thus be used for measuring the relevance in information retrieval tasks.

7.2 Conditional Knowledge Bases and Defaults in Description Logics

Conditional knowledge bases consist of a set of strict statements in classical logic and a set of defeasible

rules, also called defaults. The former must always hold, while the latter are rules of the kind ψ←φ, which

read as “generally, if φ then ψ.” Such rules may have exceptions, which can be handled in different ways.

The following example illustrates conditional knowledge bases.

Example 7.1 (Penguins) A conditional knowledge base KB may encode the strict logical knowledge “all

penguins are birds” and the default logical knowledge “generally, birds fly”, “generally, penguins do not

fly”, and “generally, birds have wings”. Some desirable conclusions from KB [34] are “generally, birds

fly” and “generally, birds have wings” (which both belong to KB ), “generally, penguins have wings” (since

the set of all penguins is a subclass of the set of all birds, and thus penguins should inherit all properties
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of birds), “generally, penguins do not fly” (since properties of more specific classes should override inher-

ited properties of less specific classes), and “generally, red birds fly” (since “red” is not mentioned at all

in KB and thus should be considered irrelevant to the ability to fly of birds).

The literature contains several different proposals for default reasoning from conditional knowledge

bases and extensive work on its desired properties. The core of these properties are the rationality postulates

of System P by Kraus et al. [50], which constitute a sound and complete axiom system for several classi-

cal model-theoretic entailment relations under uncertainty measures on worlds. They characterize classical

model-theoretic entailment under preferential structures [50], infinitesimal probabilities [1], possibility mea-

sures [19], and world rankings [71, 33]. They also characterize an entailment relation based on conditional

objects [20]. A survey of all these relationships is given in [6, 26]. Mainly to solve problems with irrelevant

information, the notion of rational closure as a more adventurous notion of entailment was introduced by

Lehmann [52]. It is in particular equivalent to entailment in System Z by Pearl [67] and to the least specific

possibility entailment by Benferhat et al. [5]. Mainly in order to solve problems with property inheritance

from classes to exceptional subclasses, the maximum entropy approach to default entailment was proposed

by Goldszmidt et al. [31], the notion of lexicographic entailment was introduced by Lehmann [51] and Ben-

ferhat et al. [4], the notion of conditional entailment was proposed by Geffner [28, 29], and an infinitesimal

belief function approach was suggested by Benferhat et al. [7].

To my knowledge, the expressive probabilistic description logics P-SHIF(D) and P-SHOIN (D) are

the first extensions of description logics by defaults as in conditional knowledge bases. Note that extensions

of description logics by defaults as in Reiter’s default logic (see e.g. [3, 9]) are less closely related.

7.3 Possibilistic and Fuzzy Description Logics

Similarly to probabilistic description logics for the Semantic Web, also possibilistic and fuzzy description

logics for the Semantic Web have been developed (see especially the works by Dubois et al. [18] and by

Straccia [72], respectively), which adapt and generalize previous approaches to possibilistic description

logics and to fuzzy description logics to the needs of the Semantic Web.

Semantically, however, possibilistic and fuzzy description logics are very different from probabilistic

description logics, since they are based on possibility measures and on many-valued interpretations under

compositional truth functions, respectively, rather than probability measures. As a consequence, possibilistic

description logics encode especially rankings and preferences (such as e.g. “John prefers an ice cream to a

beer”), while fuzzy description logics allow for expressing forms of vagueness and imprecision (such as e.g.

“John is tall”). Probabilistic description logics, in contrast, encode quantified ambiguous information (such

as e.g. “John is a student with the probability 0.7 and a teacher with the probability 0.3”).

8 Conclusion

Towards sophisticated formalisms for reasoning under probabilistic uncertainty in the Semantic Web, we

have presented the probabilistic description logics P-SHIF(D) and P-SHOIN (D), which are exten-

sions of the expressive description logics SHIF(D) and SHOIN (D) behind OWL Lite and OWL DL,

respectively. The new probabilistic description logics allow for expressing rich terminological and asser-

tional probabilistic knowledge. They are semantically based on the notion of probabilistic lexicographic

entailment from probabilistic default reasoning, which naturally interprets terminological and assertional

probabilistic knowledge as probabilistic knowledge about random resp. concrete instances. As an important
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additional feature, the new probabilistic description logics also allow for expressing terminological default

knowledge, which is semantically interpreted as in Lehmann’s lexicographic entailment in default reasoning

from conditional knowledge bases. We have presented sound and complete algorithms for the main reason-

ing problems in P-SHIF(D) and P-SHOIN (D), which are based on reductions to classical reasoning

in SHIF(D) and SHOIN (D), respectively, and to solving linear optimization problems. In particular,

they show the important result that the main reasoning problems in both P-SHIF(D) and P-SHOIN (D)
are decidable / computable. Furthermore, we have analyzed the computational complexity of the main rea-

soning problems in the general as well as restricted cases.

Note that the extension by probabilistic uncertainty can be applied to other description logics as well.

The semantics of such an extension and the algorithms for the main reasoning tasks can then be defined

in the same way as for P-SHIF(D) and P-SHOIN (D). The complexity results for P-SHIF(D) resp.

P-SHOIN (D) also carry over to such an extension as long as the extended classical description logic has

the same complexity characterization as SHIF(D) resp. SHOIN (D).

An implementation of the new probabilistic description logics can be developed on top of the sys-

tem NMPROBLOG (which implements different notions of nonmonotonic probabilistic entailment, including

probabilistic lexicographic entailment in probabilistic default reasoning; see [58]) by essentially replacing

its component for classical reasoning in propositional logics by a component for classical reasoning in the

expressive description logics SHIF(D) and SHOIN (D).

Current work concerns the development and implementation of probabilistic generalizations of OWL

Lite and OWL DL that are based on the two novel probabilistic description logics P-SHIF(D) resp. P-

SHOIN (D). An interesting topic of future research is to explore an application of the new probabilistic

description logics for matchmaking and ranking objects in ontologies (e.g., along the lines of [15, 69, 60]).

Another issue for future work is to investigate an integration of the new probabilistic description logics

with description logic programs and probabilistic description logic programs. Finally, it would also be

interesting to allow for more complex data types and more complex probabilistic query languages on top of

the expressive probabilistic description logics P-SHIF(D) and P-SHOIN (D).

Appendix A: Proofs for Section 4

Proof of Proposition 4.8. (⇒) Suppose that T is satisfiable. That is, there exists an interpretation I =
(∆I , · I) with ∆I 6= ∅ relative to a datatype theory D= (∆D, ·D) such that I satisfies T . Let i be any

member of ∆I , and let I = {φ∈C | i∈φI}. Then, I is a world from IC such that T ∪{φ(j) |φ∈ I} ∪
{¬φ(j) |φ∈C \ I} is satisfiable. That is, I is a model of T .

(⇐) Suppose that T has a model I ∈IC . That is, T ∪{φ(i) |φ∈ I} ∪ {¬φ(i) |φ ∈ C \ I} is satisfiable, and

thus also T is satisfiable. 2

Proof of Proposition 4.9. (⇒) Suppose that T is satisfiable. By Proposition 4.8, T has a model I ∈IC . Let

the probabilistic interpretation Pr on IC be defined by Pr(I)= 1 and Pr(I ′)= 0 for all other I ′ ∈IC . Then,

Pr is a model of T on IC .

(⇐) Suppose that T has a model Pr on IC . Then, there exists some I ∈IC such that Pr(I)> 0. Since Pr

is a model of T , also I is a model of T . By Proposition 4.8, T is satisfiable. 2

Proof of Theorem 4.12. (⇒) Suppose that PT = (T, P ) is consistent. That is, (i) T is satisfiable and (ii)

there exists an ordered partition (P0, . . . , Pk) of P such that each Pi with i∈{0, . . . , k} is the set of all
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F ∈Pi ∪ · · · ∪ Pk that are tolerated under T by Pi ∪ · · · ∪ Pk. The latter implies that every F ∈Pi with

i∈{0, . . . , k} is tolerated under T by Pi ∪ · · · ∪ Pk.

(⇐) Suppose that (i) T is satisfiable and (ii) there exists an ordered partition (P0, . . . , Pk) of P such that

every F ∈Pi with i∈{0, . . . , k} is tolerated under T by Pi ∪ · · · ∪ Pk. Let the pairwise disjoint subsets

P ′
0, . . . , P

′
l of P be defined as follows: (a) every P ′

i with i∈{0, . . . , l} is the set of all F ∈P \ (P ′
0 ∪ · · · ∪

P ′
i−1) that are tolerated under T by P \ (P ′

0 ∪ · · · ∪ P
′
i−1), and (b) no F in P ⋆ =P \ (P ′

0 ∪ · · · ∪ P
′
l−1

) is

tolerated under T by P ⋆. We now show that P ⋆ = ∅. Towards a contradiction, suppose the contrary. Then,

let j ∈{0, . . . , k} be maximal such that P ⋆⊆Pj ∪ · · · ∪Pk. Hence, there exists some F ∈P ⋆ ∩Pj that is

not tolerated under T by P ⋆, and thus also not tolerated under T by Pj ∪ · · · ∪ Pk. But this contradicts

every F ∈Pi with i∈{0, . . . , k} being tolerated under T by Pi ∪ · · · ∪ Pk. This shows that P ⋆ = ∅. Thus,

PT = (T, P ) is consistent. 2

Proof of Theorem 4.15. (a) If Q= ∅, then T ∪Q∪F ∪{(φ|⊤)[1, 1]} is not satisfiable for all Q⊆P . In

particular, T ∪F ∪{(φ|⊤)[1, 1]} is not satisfiable. Thus, F ‖∼ lex
tight (ψ|φ)[1, 0] under PT .

(b) Suppose that Q 6= ∅. Then, a probabilistic interpretation Pr is a lex-minimal model of T ∪F ∪ {(φ |
⊤)[1, 1]} iff (i) Pr is a model of T ∪F ∪{(φ|⊤)[1, 1]} and (ii) {F ∈P |Pr |=F} is a lex-minimal element

in the set of all Q⊆P such that T ∪Q∪F ∪{(φ|⊤)[1, 1]} is satisfiable. The latter is in turn equivalent to

Pr being a model of T ∪Q∪F ∪{(φ|⊤)[1, 1]} for some Q∈Q. 2

Appendix B: Proofs for Section 5

Proof of Theorem 5.1. (a) We first consider Algorithm pt-consistency. In line 1, we first decide one time

whether T is satisfiable. In line 7, we then decide O(|P |2) times whether T ∪ H ∪ {(φ|⊤)[1, 1]}, for

C = (ψ|φ)[l, u]∈H , is satisfiable. In summary, pt-consistency can be done by solving O(|P |2) instances of

SAT.

(b) We next consider Algorithm pkb-consistency. In line 1, we first decide whether (T, P ) is consistent. By

(a), this can be done by solving O(|P |2) instances of SAT. In line 3, we then decide |IP | times whether

T ∪Po, for o∈ IP , is satisfiable. In summary, pkb-consistency can be done by solving O(|P |2 + |IP |)
instances of SAT.

(c) As for Algorithm tight-lex-entailment, in line 1, we first decide whether PT is consistent. By (a), this

can be done by solving O(|P |2) instances of SAT. In line 3, we then decide one time whether T ∪ F ∪
{(φ|⊤)[1, 1]} is satisfiable, and in lines 9 and 12, we decide O(2|P |) times whether T ∪F ∪{(φ|⊤)[1, 1]}∪
G∪H is satisfiable, for certain G⊆Pi and H ⊆ Pi+1 ∪ · · · ∪Pk. Moreover, in line 16, we compute

O(2|P |) times the rational numbers c, d∈ [0, 1] such that T ∪ F ∪ {(φ|⊤)[1, 1]} ∪ H |=tight (ψ|⊤)[c, d],
for certain H ⊆P . In summary, tight-lex-consequence can be done by solving O(2|P |) instances of SAT

and TLOGENT. 2

Appendix C: Proofs for Section 6

Proof of Theorem 6.2. Recall that I |=T is equivalent to T ′ =T ∪{φ(i) |φ∈ I} ∪ {¬φ(i) |φ ∈ C \ I}
being satisfiable, where i is a new individual. Since C is a finite set of literals in DL-Lite, deciding

whether T ′ is satisfiable can be done by a satisfiability test on a knowledge base of the form T ′′ =T ∪
{b(i) | b∈B+} ∪ {¬b(i) | b∈B−}, which in turn is satisfiable iff T ′′′ =T ∪ {b(i) | b∈B+} ∪ {b¬(i) |
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b∈B−} ∪ {b¬⊑¬b | b∈B−} is satisfiable, where the b¬’s are new basic concepts in DL-Lite that do not

occur in T ′′. Since T ′′′ is a knowledge base in DL-Lite, by Theorem 6.1, deciding whether T ′′′ is satisfiable

can be done in polynomial time. In summary, deciding whether I |=T holds can be done in polynomial

time. 2

Proof of Theorem 6.3. (a) We first show that SAT is NEXP-complete for T ∪F in SHOIN (D). By The-

orem 5.2, T ∪F is satisfiable iff the system of linear constraints LC in Fig. 4 over the variables yr (r∈R =
{I ∈IC | I |=T}) is solvable. By a fundamental result from linear programming, the solvability of LC

implies the existence of a solution of LC that has a polynomial size in the input size of F [22], that is, a

solution y⋆r (r∈R) of LC such that (i) the number of all r∈R with y⋆r > 0 and (ii) the size of each y⋆r with

r∈R and y⋆r > 0 are polynomial in the input size of F . Hence, guessing such a solution y⋆r (r∈R) of LC

can be done in nondeterministic polynomial time, and verifying that (a) r |=T for all r∈R with y⋆r > 0 and

(b) y⋆r (r∈R) satisfies LC can be done in nondeterministic exponential time for T in SHOIN (D) and in

polynomial time, respectively. In summary, guessing and verifying such a solution of LC , and thus deciding

whether T ∪F is satisfiable, is in NEXP. The NEXP-hardness of SAT is immediate by a reduction from the

NEXP-hard problem of deciding knowledge base satisfiability in SHOIN (D), since T has a probabilistic

model Pr iff T has a classical model I.

We next prove that PTCON is NEXP-complete for PT in SHOIN (D). By Theorem 4.12, a PTBox

PT = (T, P ) is consistent iff (i) T is satisfiable and (ii) there exists an ordered partition (P0, . . . , Pk) of P
such that every F ∈Pi, i∈{0, . . . , k}, is tolerated under T by Pi ∪ · · · ∪Pk. Since deciding knowledge

base satisfiability in SHOIN (D) is in NEXP, deciding whether (i) holds is in NEXP. Observe then that

guessing a partition (P0, . . . , Pk) of P can be done in nondeterministic polynomial time, and verifying that

every F ∈Pi, i∈{0, . . . , k}, is tolerated under T by Pi ∪ · · · ∪Pk is in NEXP, since SAT is in NEXP. In

summary, guessing and verifying such a partition is in NEXP, and thus also deciding whether PT is con-

sistent is in NEXP. The NEXP-hardness of PTCON holds by a reduction from the NEXP-hard problem of

deciding knowledge base satisfiability in SHOIN (D), since PT = (T, ∅) is consistent iff T has a classical

model I.

We finally prove that PKBCON is NEXP-complete for KB in SHOIN (D). Recall that a probabilistic

knowledge base KB =(T, P, (Po)o∈IP
) is consistent iff (T, P ) is consistent and every T ∪Po with o∈ IP is

satisfiable. As argued above, deciding whether (T, P ) is consistent is in NEXP, and deciding whether every

T ∪Po with o∈ IP is satisfiable is in NEXP as well. This already shows that PKBCON is in NEXP. The

NEXP-hardness of PTCON holds by a reduction from the NEXP-hard problem of deciding knowledge base

satisfiability in SHOIN (D), since KB = (T, ∅, ()) is consistent iff T has a classical model I.

(b) We first show that SAT is EXP-complete for T ∪F in SHIF(D). By Theorem 5.2, T ∪F is satisfiable

iff the system of linear constraints LC in Fig. 4 over the variables yr (r∈R = {I ∈IC | I |=T}) is solvable.

By a fundamental result from linear programming, the solvability of LC implies the existence of a solution

of LC that has a polynomial size in the input size of F [22], that is, a solution y⋆r (r∈R) of LC such that

(i) the number of all r∈R with y⋆r > 0 is polynomial in the input size of F and (ii) the size of each y⋆r with

r∈R and y⋆r > 0 is polynomial in the input size of F . Hence, deciding whether LC is solvable can be done

by generating all potential polynomial-size solutions y⋆r (r∈R) of LC , and verifying that (a) r |=T for all

r∈R with y⋆r > 0 and (b) y⋆r (r∈R) satisfies LC . Since (a) is in EXP and (b) can be done in polynomial

time, deciding whether LC is solvable is in EXP as well. The EXP-hardness of SAT is immediate by a

reduction from the EXP-hard problem of deciding knowledge base satisfiability in SHIF(D), since T has

a probabilistic model Pr iff T has a classical model I.

We next prove that PTCON is EXP-complete for PT in SHIF(D). Recall that Algorithm pt-consis-
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tency decides whether PT =(T, P ) is consistent. By Theorem 5.1, Algorithm pt-consistency can be done

by solving O(|P |2) instances of SAT. As argued above, solving one such instance of SAT is in EXP. In

summary, deciding whether PT is consistent is in EXP. The EXP-hardness of PTCON holds by a reduction

from the EXP-hard problem of deciding knowledge base satisfiability in SHIF(D), since PT = (T, ∅) is

consistent iff T has a classical model I.

We finally prove that PKBCON is EXP-complete for KB in SHIF(D). Recall that a probabilistic

knowledge base KB = (T, P, (Po)o∈IP
) is consistent iff (T, P ) is consistent and every T ∪Po with o∈ IP is

satisfiable. As argued above, deciding whether (T, P ) is consistent is in EXP, and deciding whether every

T ∪Po with o∈ IP is satisfiable is in EXP as well. In summary, this shows that deciding whether KB is

consistent is in EXP. The EXP-hardness of PTCON holds by a reduction from the EXP-hard problem of

deciding knowledge base satisfiability in SHIF(D), since KB = (T, ∅, ()) is consistent iff T has a classical

model I.

(c) The proofs that SAT, PTCON, and PKBCON are in NP when T ∪F , PT , and KB , respectively, are

defined in DL-Lite are verbally the same as the proofs that SAT, PTCON, and PKBCON are in NEXP when

T ∪F , PT , and KB , respectively, are defined in SHOIN (D) in (a), except that now we use that deciding

whether r |=T holds is in P, rather than in NEXP, as for SHOIN (D). Furthermore, we use that SAT and

PTCON for DL-Lite are both in NP, rather than in NEXP.

Hardness for NP of SAT holds by a reduction from the NP-complete problem of deciding whether a

finite set F of conditional constraints over Boolean combinations of elementary propositions is satisfiable

[55], since T ∪F with T = ∅ is satisfiable in our framework iff F is satisfiable in the framework of [55].

Hardness for NP of PTCON holds by a reduction from the NP-complete graph 3-colorability problem [27].

The proof is identical to the proof of NP-hardness of deciding whether a probabilistic default theory is

σ-consistent in [56]. Finally, hardness for NP of PKBCON holds by a reduction from the NP-complete

problem PTCON, since KB = (T, P, ()) is consistent iff (T, P ) is consistent. 2

Proof of Theorem 6.4. (a) We first show that TLOGENT is in FP NEXP for T ∪ F in SHOIN (D). By

Theorem 5.3, l (resp., u) such that T ∪F |=tight (ψ|⊤)[l, u] is the optimal value of the linear program (1)

over the variables yr (r∈R= {I ∈IC | I |=T}). By a fundamental result from linear programming, the

optimal value l (resp., u) of (1) has a polynomial size in the input size of F [55]. Thus, we can compute

l (resp., u) by binary search on the set of all potential polynomial-size values s of the objective function of

(1) subject to LC . For each such s, we decide whether T∪F∪{(ψ|⊤)[s, s]} is satisfiable. The binary search

can be done in polynomial time, and each satisfiability check is in NEXP, by Theorem 6.3 (a). In summary,

this shows that TLOGENT is in FP NEXP.

We next show that TLEXENT is in FP NEXP for PT = (T, P ) and F in SHOIN (D). Let l (resp., u) be

such that F ‖∼ lex
tight (ψ|φ)[l, u] under PT . If T ∪F ∪{(φ|⊤)[1, 1]} is unsatisfiable, then l=1 (resp., u=0).

Otherwise, by Theorem 4.15, l (resp., u) is given by min l′ (resp., maxu′) subject to T ∪ Q ∪ F ∪
{(φ|⊤)[1, 1]} |=tight (ψ|⊤)[l′, u′] and Q∈Q, where Q is the set of all lex-minimal elements in the set

of all S⊆P such that T ∪S ∪ F ∪ {(φ|⊤)[1, 1]} is satisfiable.

Observe then that the vector (n0, . . . , nk)= (|Q∩P0|, . . . , |Q∩Pk|) is the same for all Q∈Q and in

fact characterizes Q. More concretely, Q is the set of all S⊆P such that (i) (|S ∩P0|, . . . , |S ∩Pk|) =
(n0, . . . , nk) and (ii) T ∪ S ∪ F ∪ {(φ|⊤)[1, 1]} is satisfiable. Furthermore, the vector (n0, . . . , nk) can be

computed stepwise for decreasing i∈{0, . . . , k} (starting with i= k) by deciding for every d∈{0, . . . , |Pi|}
(⋆) whether there exists some S⊆Pi ∪ · · · ∪Pk such that (i) |S∩Pi|= d, (ii) |S ∩Pj |=nj for all j ∈{i+1,
. . . , k}, and (iii) T ∪S ∪F ∪ {(φ|⊤)[1, 1]} is satisfiable. Guessing some S⊆Pi ∪ · · · ∪Pk can be done

in nondeterministic polynomial time, and deciding whether (i)–(iii) hold is in NEXP, by Theorem 6.3 (a).
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Hence, (⋆) is in NEXP, and thus the overall stepwise computation of the vector (n0, . . . , nk) is in FP NEXP.

By Theorem 5.3, l′ (resp., u′) such that T ∪ Q ∪ F ∪ {(φ|⊤)[1, 1]} |=tight (ψ|⊤)[l′, u′] is the optimal

value of the linear program (1)′ over the variables yr (r∈R = {I ∈IC | I |=T}), where (1)′ is obtained

from (1) by replacing F by Q ∪ F ∪ {(φ|⊤)[1, 1]}. As argued above, by a fundamental result from linear

programming, the optimal value l′ (resp., u′) of (1)′ has a polynomial size in the input size of Q ∪ F ∪
{(φ|⊤)[1, 1]} [55]. This shows that the desired l (resp., u) has a polynomial size in the input size of P ∪F ∪
{(φ|⊤)[1, 1]}. Hence, we can compute l (resp., u) by binary search on the set of all potential polynomial-

size values s of the objective function of (1)′. For each such s, we decide whether some Q∈Q exists

such that T ∪ Q ∪ F ∪ {(φ|⊤)[1, 1]} ∪ {(ψ|⊤)[s, s]} is satisfiable. The binary search can be done in

polynomial time, and guessing some S⊆P and verifying that (i) (|S ∩P0|, . . . , |S ∩Pk|)= (n0, . . . , nk)
and (ii) T ∪ S ∪ F ∪ {(φ|⊤)[1, 1]} ∪ {(ψ|⊤)[s, s]} is satisfiable is in NEXP, by Theorem 6.3 (a). In

summary, computing the desired l (resp., u) is in FP NEXP, once (n0, . . . , nk) is given.

The overall algorithm for computing l (resp., u) such that F ‖∼ lex
tight (ψ|φ)[l, u] under PT is thus given

as follows. We first decide whether T ∪ F ∪ {(φ|⊤)[1, 1]} is unsatisfiable, which is in co-NEXP, by Theo-

rem 6.3 (a). If this is the case, then l= 1 (resp., u= 0). Otherwise, we first compute the vector (n0, . . . , nk),
and then l (resp., u) by binary search, which is both in FP NEXP. In summary, computing l (resp., u) such

that F ‖∼ lex
tight (ψ|φ)[l, u] under PT is in FP NEXP.

(b) We first prove that TLOGENT is FEXP-complete for T ∪F in SHIF(D). Membership in FEXP is

proved in the same way as membership in FP NEXP for SHOIN (D), except that now each satisfiability

check is in EXP, by Theorem 6.3 (b), and thus TLOGENT is in FEXP. The FEXP-hardness of TLO-

GENT is immediate by a reduction from the EXP-hard problem of deciding knowledge base satisfiability

in SHIF(D), since T |=tight (⊤|⊤)[1, 1] iff T has a classical model I.

As for the FEXP-completeness of TLEXENT for SHIF(D), membership in FEXP is proved in the

same way as membership in FP NEXP for SHOIN (D), except that now each satisfiability check is in EXP,

by Theorem 6.3 (b), and thus TLEXENT is in FEXP. Furthermore, hardness for FEXP of TLEXENT is im-

mediate by a reduction from the EXP-hard problem of deciding knowledge base satisfiability in SHIF(D),
since T ‖∼ lex

tight (⊤|⊤)[1, 1] iff T has a classical model I.

(c) The proofs that TLOGENT and TLEXENT are in FP NP when T ∪ F and PT ∪ F , respectively, are

defined in DL-Lite are the same as the proofs that TLOGENT and TLEXENT are in FP NEXP when T ∪F
and PT ∪F , respectively, are defined in SHOIN (D) in (a), except that now we use that SAT for DL-Lite

is in NP, rather than in NEXP, as for SHOIN (D).
Hardness for FP NP of TLOGENT holds by a reduction from the FP NP-complete problem of computing

tight logically entailed intervals from a finite set F of conditional constraints over Boolean combinations

of elementary propositions [55], since tight logical entailment from T ∪F with T = ∅ here coincides with

tight logical entailment from F in [55]. Hardness for FP NP of TLEXENT holds by a reduction from the

FP NP-complete traveling salesman cost problem [66]. The proof is identical to the proof of FP NP-hardness

of computing tight lex-entailed intervals from a probabilistic default theory in [56]. 2
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tools. In Proceedings of the Workshop on Protégé and Reasoning held at the 7th International Protégé
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