| NF SY S
RESEARCH
REPORT

Institut fur Informationssysteme
AB Wissensbasierte Systeme
Technische Universitat Wien
Favoritenstrassf3e 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405
Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at
www.kr.tuwien.ac.at

7 AN AR w3
il TR i i

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

COMPARING ACTION DESCRIPTIONS BASED
ON SEMANTIC PREFERENCES

Thomas Eiter Esra Erdem Michael Fink anJSenko

INFSYS RESEARCHREPORT1843-06-06
JuLy 2006

TU

WIEN

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-06-06, LY 2006

COMPARING ACTION DESCRIPTIONS BASED ON
SEMANTIC PREFERENCES

(PRELIMINARY VERSION, JuLy 1, 2006)

Thomas Eiterand Esra Erdefrand Michael Fink and &n Senkd

Abstract. We consider action domain descriptions whose meaning cagdresented by transition
diagrams. We introduce several semantic measures to cerapah action descriptions, based on
preferences over possible states of the world and prefesemer some given conditions (observa-
tions, assertions, etc.) about the domain, as well as tHaapilities of possible transitions. This
preference information is used to assemble a weight whieksgned to an action description. As
an application of this approach, we study the problem of tipgaction descriptions with respect
to some given conditions. With a semantic approach basedeferpnces, not only, for some prob-
lems, we get more plausible solutions, but also, for somblpnas without any solutions due to too
strong conditions, we can identify which conditions to xela obtain a solution. We further study
computational issues, and give a characterization of thgpatational complexity of the computing
the semantic measures.

Linstitute of Information Systems, Knowledge-Based Syst&roup, TU Vienna, Favoritenstrae 9-11, A-1040
Vienna, Austria. Email: (eiteresral michael| jan)@kr.tuwien.ac.at

Acknowledgements. This work was partially supported by the Austrian Sciencad-(FWF) under grant
P16536-N04.

The contents is partially published in the Proceedings efdth International Conference on Logics in Ar-
tificial Intelligence — Jourees Europennes sur la Logique en Intelligence Artificielle (JELIAOB) and
presented at the Multidisciplinary Workshop on AdvanceRiieference Handling (ECAI 2006).

Copyright(© 2006 by the authors

INFSYS RR 1843-06-06 I

Contents
1 Introduction 1
2 Transition Diagrams and Action Descriptions 2
3 Action Descriptions 2
4 Action Queries 3
5 Sample Queries 5
6 Weight Assignmentsfor Action Descriptions 5
6.1 Weightedstates e 5
6.2 Weighted queries e e e 6
6.3 Weighted histories e e 6
6.4 Weighted queries relative toweighted states c.e.... 1
7 Application: Updating an Action Description 8
7.1 Other semantic approaches to action descriptionupdates 11
8 Computational Aspects 11
8.1 Computation give® andC' L 11
8.2 Computation give®, C,and states' of D 14
9 Conclusion 15
A Appendix: Examples 16
A.1 Yale ShootingDomain e e e 16
A2 GripperDomain 18

A.3 Application: Elaboration Tolerance e 21

INFSYS RR 1843-06-06 1

1 Introduction

This paper discusses how to compare action descriptions, whose meanibg cepresented by transition
diagrams—a directed graph whose nodes correspond to states asdcedgspond to transitions caused
by action occurrences and non-occurrences, with respect to seste@nditions. Comparison of action
descriptions is important for applications, when an agent has to prefetastription more than the others.
One such application is the action description update problem [2]: whegeant &ies to update an action
description with respect to some given information, she usually ends upevighat possibilities and has to
choose one of these action descriptions. Another application is relategréseating an action domain in
an elaboration tolerant way [10, 1]: among several action descriptigmesenting the same action domain,
which one is the most elaboration tolerant one, with respect to some givelitioas describing possible
elaborations?

The preference of an agent over action descriptions may be basedymtaatic measure, such as the
number of formulas: the less the number of formulas contained in an actioripgties, the more preferred
it is. A syntactic measure can be defined also in terms of set containment gfitbcteo a given action
descriptionD: an action description is more preferred if it is a maximal set among otheris tbantained
in D. For instance, according to the syntactic measure used in [2] for updatiagtion descriptio with
some new knowledgé®, an action descriptio’ is more preferred ifD’ is a maximal set among others
containingD and contained itD U @ is maximum.

In this paper, we describe the preference of an agent over actienigtess, with respect to some
semantic measure. The idea is to describe a semantic measure by assignhig (i€ig real numbers)
to action descriptions, with respect to their transition diagrams and some @velitions; then, once the
weights of action descriptions are computed, to compare two descriptiormsripeacing their weights.

We consider action descriptions, in a fragment of the action lang@idgg which consists of “causal
laws.” For instance, the causal law

caused PowerON after PushPB7y A =PowerON, (1)

expresses that the actidtushPBpy causes the value of the flueRbwerON to change fromyf to ¢; such
causal laws describe direct effects of actions. The causal law

caused TvON if PowerON, (2

expresses that if the flueRbwerON is caused to be true, then the fluantON is caused to be true as well;
such causal laws describe state constraints. The meaning of an actoiptitas D can be represented by
a transition diagram, like in Figure 1. In this transition diagram, the nodes ofrtphgshown by boxes)
denote the states of the worlds) (one where both the power and the TV is on, as{ the other where
both the power and the TV is off. The edges denote action occurreRoesistance, the edge frosto s’
labeled by the action of pushing the power button on the TV describes thatiting this action at leads
to s’. The edges labeled by the empty set are due to the law of inertia.

Suppose that we are given another action descripfomescribing the domain above; and that the
transition diagram ofD’ is almost the same as that Bf, except that there is no outgoing edge from the
state{ PowerON, TvON } with the label{ PushPBgr¢ }. Which action description should be preferred? To
answer this question, we assign weights to these two action descriptioed,datheir transition diagrams,
and given conditions (observations, assertions, etc.).

We describe conditions in an action query language, like in [5], by “gaérir instance,

ALWAYS \/ en EXecUtable 4, (3)

2 INFSYS RR 1843-06-06

{} {PushPBRrc} {PushPBRrc} {}
{PushPBrvy,PushPBRrc}
PowerON {PushPBry} —PowerON
- =
TvON -~TvON

{PushPBrv}
{PushPBrvy, PushPBrc}

Figure 1: A transition diagram.

where2® denotes the set of all actions, expresses that, at every state, thameisistion executable. The
query

SOMETIMES evolves PowerON ; { PushPBr¢ }; PowerON 4)
expresses that, at some state when the power is on, pushing the powardsutte remote control does
not turn the power off. Then we can define the weight of an action iiger as the number of queries it
entails. For instance, according to the transition diagram,of3) and (4) are entailed, so the weight/of
is 2; according to the transition diagramf, only (3) is entailed, so the weight & is 1. ThereforeD is
preferred overD’.

The main question we study is the followingiven a setD of action descriptions and a sét of
gueries, which action description i is a most preferred one with respect@? We provide an answer to
this question with respect to mainly four semantically-oriented approachessigning weights to action
descriptions irD, based on preferences of the agent over possible states of the wdniteferences over
conditions, as well as the probabilities of possible transitions. Then we dpgde approaches to the
problem of updating an action description, and observe two benefits, iFagproblem has many solutions
with the syntactic approach of [2], a semantic approach can be used torn@clSecond, if a problem does
not have any solution with any of the approaches due to too strong corsdiia®mantic approach can be
used to identify which conditions to relax to find a solution.

2 Transition Diagramsand Action Descriptions

We start with a(propositional) action signatur¢hat consists of a sdf of fluent names, and a sét of
action names. Aactionis a truth-valued function oA, denoted by the set of action names that are mapped
to ¢t. A (propositional) transition diagranof an action signatur€ = (F, A) consists of a se$ of states
afunctionV : F x S — {f,t}, and a subseR C S x 24 x S of transitions We say thal/ (P, s) is
thevalueof P in s. The states’ such that(s, A, s’) € R are the possibleesults of the executioof the
action A in the states. We say thatd is executablén s, if at least one such staté exists. A transition
diagram can be thought of as a labeled directed graph. Everysstatepresented by a vertex labeled with
the functionP — V (P, s) from fluent names to truth values. Every trigle 4, s’) € R is represented by

an edge leading fromto s’ and labeledd. An example of a transition diagram is shown in Figure 1.

3 Action Descriptions

We consider a subset of the action description langua§id that consists of two kinds of expressions
(calledcausal laws: static lawsof the form

caused L if G, (5)

INFSYS RR 1843-06-06 3

wherel is a fluent literal and- is a fluent formula andynamic lawof the form
caused L if G after U, (6)

where L andG are as above, and is a formula; the parif G can be dropped it7 is True. An action
descriptionis a set of causal laws. For instance, the action description consisting cétisal laws (1), (2),

and
caused ~PowerON after PushPBry A PowerON

caused - TvON if ~PowerON @)
inertial PowerON , ~PowerON, TvON,—~TvON.

encodes how a TV system operatesstial L1, ..., L stands forcaused L; if L; after L; (1 <1 < k).

The meaning of an action description can be represented by a transitioardiabetD be an action
description with a signaturé = (F, A). The transition diagraniS, V, R) describedby D is defined as
follows: S is the set of all interpretationsof F such that, for every static law (5) iR, s satisfiesG O L;
V(P,s) = s(P); andR is the set of all triplegs, A, s’) such thats’ is the only interpretation oF which
satisfies the heads of all static laws (5) inD for which s’ satisfies7, and dynamic laws (6) it for which
s’ satisfiesG ands U A satisfiesU. For instance, the transition diagram described by, (2)} U (7) is
presented in Figure 1. Note that there is a unique transition diagram deEsbsian action description. We
say that an action descriptiondsnsistentf its transition diagram is with nonempty state set.

4 Action Queries

To talk about observations of the world, or assertions about the effétli® execution of actions, we use
an action query language consisting of queries described as followstaWevithbasic queries(a) static
gueriesof the form

holds F, (8)

whereF is a fluent formula; (bflynamic queriesf the form
necessarily () after Aq;...; A, (9)

where() is a basic query and each is an action; and (c) every propositional combination of basic queries.
An existential querys an expression of the form

SOMETIMES @, (10)
where() is a basic query; aniversal querys of the form
ALWAYS Q, (11)

where(Q is a basic query. Aueryis a propositional combination of existential queries and universal querie

As for the semantics, Iéf' = (S, V, R) be a transition diagram, with a s&tof states, a value function
V mapping, at each statg every fluentP to a truth value, and a sét of transitions. Ahistory of T' of
lengthn is a sequence

50,A1a517-~,5n71,Ana5n (12)

where each(s;, Ai+1, si+i) (0 < i < n)isin R. We say that a state € S satisfiesa basic query; of
form (8) (resp. (9)) relative t@’ (denotedl’, s |= q), if the interpretationP — V (P, s) satisfiesF’ (resp.
if, for every historys = sq, 41, s1,..., 8,1, An, s, Of T Of lengthn, basic quen is satisfied at state
sn). For other forms of basic query satisfactionis defined by the truth tables of propositional logic. If

4 INFSYS RR 1843-06-06

T is described by an action descriptiéh then the satisfaction relation betweeandq can be denoted by
D, s = q as well. Note that, for every stateand for every fluent formuld&’, D, s = holds F' iff D,s =
—holds —F'. For every state, every fluent formulat’, and every action sequeneg, ..., A, (n > 1), if
D, s = necessarily (holds F) after Aj;...; A, thenD, s = —necessarily (—holds F') after Ay;...; Ay.

We say thatD entailsa queryq (denotedD [q) if one of the following holds:

e ¢ is an existential query (10) and for some state S, it holds thatD, s = @Q;

e gis auniversal query (11) and for every state S, it holds thatD, s = Q;

q is of the form—Q andD £ Q;
q is of the formQ A @', andD = Q andD = Q’; or
qis of the form@ v @', andD = Q or D = Q'.

For every basic quer§, D = SOMETIMES Q iff D = -ALWAYS Q.
For a setC' of queries, we say thad entailsC (denotedD[=C) if D entailsevery query inC. For
instance, consider the action description consisting of (1), (2), areh@dding how a TV system operates;

inertial Ly,..., L
stands for
caused L; if L; after L; (1<i<k).
This action description does not entail any set of queries containing
ALWAY S necessarily (holds = TvON) after { PushPBrc'}
because this query is not satisfied at the sfdteON, PowerON }; but, it entails the queries:

ALWAY S holds PowerON = TvON,

ALWAY S holds PowerON A TvON D
—necessarily (holds TvON) after { PushPBrv }.
In the rest of the paper, an expression of the form

(13)

possibly () after Aq;...; Ay,
where(is a basic query and each is an action, stands for the dynamic query
—necessarily —Q) after Ay;...; Ap;

an expression of the form
evolves Fo; Ay Fis ..o By A Fy, (14)

where eaclF; is a fluent formula, and each; is an action, stands for the query
holds Fy A possibly (holds F; A possibly (holds F A ...) after As) after Ay;

and an expression of the form
executable Ay;...; An,

where eachy; is an action, stands for the dynamic query
possibly True after Aq;...; A,.

We sometimes dropolds from static queries appearing in dynamic queries.

INFSYS RR 1843-06-06 5

5 Sample Queries

Queries allow us to express various pieces of knowledge about the ddroainstance, we can express the
existence of states where a formufaholds: SOMETIMES holds F. Similarly, we can express the existence
of a transition from some state where a form#ldnolds to another state where a formitaholds, by the

execution of an actionl:
SOMETIMES holds F' A possibly F’ after A.

In general, the existence of a history (12) such that, for eadf the history, the interpretatio® +—
V (P, s;) satisfies some formulB; can be expressed by the query:

SOMETIMESevolves Fy; Ar; Fu; ... Fh1; An; Fi. (15)

For instance, query
SOMETIMES evolves PowerON ; { PushPBrvy };

—PowerON; { PushPBry }; PowerON . (16)

describes the presence of the following history in Figure 1:

{PowerON, TvON },{PushPBry },{—-PowerON, (17)

—~TvON },{PushPBry },{PowerON, TvON }.
Also we can express that there is no transition from any state where aléofolds:

SOMETIMES holds F' A /\A€2A necessarily False after A.
Like in [2], executability of an action sequengg, ..., A, (n > 1) at every state can be described by

ALWAY Sexecutable A1;. .. ; A,; mandatory effects of a sequende, . .., A,, (n > 1) of actions in a given
context byALWAY Sholds G D necessarily F' after A1;...; A,; and possible effects of a sequence of actions

in a context byALWAY S holds G D possibly F' after Ay;...; A,. In the last two queriest’ describes the
effects and~ the context.

6 Weight Assignmentsfor Action Descriptions

To compare action descriptions with respect to their semantics, we can assgjnts to them, based on
their transition diagrams and a given set of conditions. We present bel@mvad weight assignments, each
with a different motivation expresses some appeal of the action description

6.1 Weighted states

We can specify our preference over states of a transition diagfai R) by assigning a weight to each
state inS, by a functiong. Such a function assigning real numbers to states of the world can bidedts
as autility function, as in decision theory. If one state of the world is preferred to anothter aitéhe world
then it has higher utility for the agent; here “utility” is understood as “the quafityeing useful” as in [13].
Alternatively, the functiory can be viewed asr@ward function being at a state will give a reward ofg(s)
to the agent.

Given a utility function for a sef of states, we can identify the highly preferred states relative to a given
numberl: a state with the weight greater thais highly preferred. Then, one way to define the weight of
an action descriptio relative tog and! is as follows:

6 INFSYS RR 1843-06-06

weights(D) = |{s : s € S, g(s) > l}].

With respect to this definition, the more the number of states that are higéfigrped by the agent, the more
preferred the action description is.
For instance, consider the transition diagram in Figure 1 describéd [ake, for eacls € 5,

(18)

(s) = 2 if PowerON € s
9= 1 otherwise

Takel = 1. Thenweights(D) = 1.

6.2 Weighted queries

We can assign weights to queries to specify preferences over conditiepsexpress. Based on such
weighted queries, we can define the weight of an action descriptias follows.

Let C be a set of queries, along with a weight functipmapping each condition i@ to a real number.
Then one way to define the weight bf (relative toC and f) is by

weighty (D) = Zcqu':c f(e).

Intuitively, the weight of an action description defined relative to the weightpueries shows how much
the setC of given preferable queries are satisfigdth this definition, the more the highly preferred queries
are satisfied, the more preferred the action description is.

For instance, suppose th@atconsists of (16) and

ALWAY S executable { PushPBrc }, (29)

with weights 1 and 2 respectively. For the descriptidiwith the transition diagram in Figure 1, we have
weighty (D) = 3.

6.3 Weighted histories

In a transition diagrarfi’ = (S, V, R), we will say that a history (12) of length is desiredwith respect to
a given query (15), if, for each the interpretatior? — V (P, s;) satisfiest;.

Let D be an action description, add= (S, V, R) be the transition diagram described by Let C be
a set of queries, along with a weight functigrmapping each condition i@ to a number. Lef{- be the
set of pairs(w, ¢) such thatw is a desired history ifl” with respect to the query of form (15) inC. Let
us denote byt (w) the starting state, of a historyw of form (12). We define a functioh mapping each
desired historyw appearing inH¢ to a real number, in terms of the utility(w) of statest(w) with respect

tow:
h(w) = u(w) x Z(w’C)GHc f(e).

The functionu mapping a historyw of form (12) to a real number can be defined in terms of a sequence of
functionsu;. Given a utility function (or a reward functiog)mapping each state il to a real number, and
atransition modeln mapping each transitiof, A, s') in R to a probability (i.e., the probability of reaching

s’ from s after execution of4):

un(w) = g(sn)
() = 9g(si) + m((si, Ait1, Si+1)) X uip1(w) (0 < i < n)

i)
o(w).

INFSYS RR 1843-06-06 7

These equations are essentially obtained from the equations used ferdedrmination in the policy-
iteration algorithm described in [13, Chapter 17]: tdks, .. ., s, } as the set of statess;, A;11, si+1) as
the possible transitions, the mapping— A;1; as the fixed policylJ asu, U; asu;, R asg, andM asm.
Then we can define the weight &f in terms of the weights of desired histories, . .., w, appearing in

H¢ as follows: B
weighty, (D) = Zi:l h(w;).

The more the utilities of desired histories (or trajectories) satisfied by theractéscription, the more
preferred the action description is.

For instance, suppose th@t consists of query (16), with weight 3. Consider the transition diagram
T = (S,V, R) in Figure 1. Let us denote history (17) by and query (16) by. ThenH¢ contains(w, c).
Takeg(s) as in (18). Také = 1. Suppose that, for each transition A,) in R,

0.5 if s = {PowerON, TvON}
m((s, A,s")) = NAlI=1 (20)
1 otherwise.

Thenu(w) is computed as 3.5. atdw) = u(w) X3y ¢)cn, f(€) = 3.5x3 = 10.5. Henceweight;, (D) =
10.5.

6.4 Weighted queriesrelativeto weighted states

The three approaches above can be united by also considering to xtdyat each universal query if
is entailed by the action description. The idea is while computing the weight oé@iggon relative to
weighted queries, to take into account the states at which these quersadisiied.

Let D be an action description. L&t = (S, V. R) be the transition diagram described DBy along with
a weight functiory mapping each state ifi to a real number. Lef' be a set of queries such that every query
g in C'is an existential query, a universal query, or a disjunction of both.

First, for each state in S, we compute its new weiglgt(s), taking into account utilities of the desired
histories starting witls. Let H¢ be the set of pair&w, ¢) such thatw is a desired history iff’ with respect to
the querye of form (15) inC'. Let W be the set of histories that appeatl. Letu be a function mapping
a historyw to a real number, describing the utility of stateith respect tav. Then the new weight function
¢ is defined as follows:

g'(s) _ g(S) if /HUJ(’UJ ceWA St(w) = 3)
S wew,si(w)—s W(w) otherwise.

Next, for each query: in C, we compute its new weight’(c). Let f be a function mapping each
condition inC' to a real number. We will denote 8, (B) the set of states such thatD, s = B. Then we
definef’ as follows:

ifg=q¢ Vvq

if ¢ = ALWAYS B

if ¢ = SOMETIMES B A |Sp(B)| > 0
if ¢ = SOMETIMES B A |Sp(B)| = 0,

wherea = f'(¢) + f'(¢"); B = f(@) X Xsesp3)9'(5) v = (@) X [(Zsespm) 9'(5))/1Sp(B)]]-
Intuitively, f’ describes to what extent each preferable qyesysatisfied.
Then the weight oD (relative toC' and f’) is the sum:

)=

o= XL

8 INFSYS RR 1843-06-06

weightqs (D) = quo fI(Q)'

Intuitively, it describes how much and to what extent the given preferaleliges are satisfied.
For instance, suppose thatconsists of three queries:

ALWAY S executable { PushPBry }, (21)

SOMETIMES —executable { PushPBgr¢, PushPBry }, (22)

and query (16), denoted by, c2 andcs respectively. Consider an action descriptibn with the tran-
sition diagram in Figure 1. Let us denote history (17) by then Ho = {(w,c3)}. Take the utility
function g as (18), and the transition model as (20). Takef(c1) = 1, f(c2) = 2, f(e3) = 3. Then
g ({PowerON, TvON}) = 3.5, ¢'({—~PowerON,—=TvON}) =1, andf'(c1) = 4, f'(c2) =4, f'(¢c2) =
10.5. Thereforeweightys (D) = 18.5.

7 Application: Updating an Action Description

Suppose that an action descriptibhconsists of two partsD,, (unmodifiable causal laws) ard,,, (mod-
ifiable causal laws); and a s€tof conditions is partitioned into twoC,,, (must) andC,, (preferable). We
define anAction Description Update (ADWroblem by an action descriptiab = (D,,, D,,), a setQ of
causal laws, a set’ = (C,,,C,) of queries, all with the same signature, and a weight functiefyht
mapping an action description to a number. The weight function can be deélzive to a set of queries,
a utility function, or a transition model, as seen in the previous section. We aby ttonsistent action
descriptionD’ is asolutionto the ADU problem D, Q, C, weight) if

()QuUD,C D' CDUQ,
(i) D" = Crn,

(iii) there is no other consistent action descriptiofi such thay U D, C D" C DU, D" = Cy,
andweight(D") > weight(D').

The definition of an ADU problem in [2] is different from the one above rain two ways. First,
C, = 0. Second, instead of (iii) above, the following syntactic condition is consatieghere is no consistent
action descriptiorD” such thatD’ ¢ D” C DU Q, andD"” = C.

The semantic approach above has mainly two benefits, compared to thdisyagpooach of [2]. First,
there may be more than one solution to some ADU problems with the syntactic epptoauch cases, a
semantic approach may be applied to pick one of those solutions. Example &aidagtris benefit. Second,
for an ADU problem, if no consistent action descriptith satisfying (i) satisfies the must queries,(),
there is no solution to this problem with either syntactic or semantic approackuclna case, we can
use the semantic approach with weighted queries, to relax some must quetigs(éng., move them to
Cp). The idea is first to solve the ADU problet@D,,, D,,,), Q, (0, Cy,), weight), whereC,, is obtained
from C,,, by complementing each query, and where the weights of queri€$,iare equal to some very
small negative integer; and then to identify the querie€§’jpfsatisfied in a solution and add theff, with
weights multiplied by -1. This process of relaxing some conditionS,gfto find a solution is illustrated in
Example 2.

INFSYS RR 1843-06-06 9

{3 {PushPBrvy, PushPBrc} }
{PushPBrc}
{PushPBrv}

PowerON| { PushPBryv, PushPBro} |"PowerON

TvON {PushPBrv} ~TvON

Figure 2: Transition diagram d®® = D, UQ U {(2)}.

{P’LLShPBRc}
{ O 0

{PushPBry,PushPBgrc}
PowerON {PushPBry} —PowerON

TvON ~TvON

P’LLS}LPBRc}
{PuShPBTv}
{PushPBRC} {PuShPBTv}

PowerON| /1PushPBry, PushPBrc}
-TvON

Q{}

Figure 3: Transition diagram d®® = D, UQ U {(1)}.

Example 1 Consider, for instance, the action descripton= (D,,,, D,,), whereD,,, = {(1), (2)} and D,
is (7), that describes a TV system with a remote control. Suppose that, latiiltdwing information,Q,

is obtained:
caused TvON after PushPBrc N\ PowerON A ~TvON

caused = TvON after PushPBrc A TvON.
Suppose that we are given the 6et= (C,,, C,,) of queries wher€’,,, consists of the queries (3) and

SOMETIMES evolves ~ TvON; { PushPBry }; = TvON, (23)

andC,, consists of the queries (16), (22), (21), (19), (4), denotedby. ., c5 respectively. Wherf) is
added toD, the meaning ofD U @ can be represented by a transition diagram almost the same as in that
of D (Figure 1), except that there is no outgoing edge from the $tBteverON, TvON } with the label
{PushPBprc}; thus only (3), (23), and (16) it are entailed byD U). The question is how to updafe
by @ so that the must conditioné;,,, are satisfied, and the preferable conditiarig, are satisfied as much
as possible.

The consistent action descriptions for which (i) holds are

DM =DuUQ,
D@ =D,uQu{(2)},
D(3) =D, U Q U {(1)}7
DW =D, uUQ.
With the syntactic approach of [2], we have to choose betwe@hand D(®), since they have more causal

laws. Consider the semantic approach based on weighted histories/¢ight = weight,), with (18) as
the utility functiong, (20) as the transition modet, and

fler) =3, f(ea) =1, f(es) =4, fea) =3, f(e5) = 2.

Let us consider the states

10

and the histories

so = {PowerON, TvON },
s1 = {PowerON,-~TvON },

s9 = {—PowerON,=TvON };

wo = 89, { PushPBRrc}, s1,
w1 = 81, {PushPBRrc}, so,

INFSYS RR 1843-06-06

wo = 8o, {PushPBTV}, S92, {PUShPBTv}, S1,
wg = s1,{ PushPBry}, so, { PushPBrvy }, 51

whose utilitiesu(w;) = up(w;), can be computed as follows:

w | i u;(w)

Wo 1 g(sl) =2

wo | 0| g(s0) +m((so, {PushPBrc}, s1)) X ui(wp) =3
wy | 1] g(sp) =2

wy | 0] g(s1) +m((s1,{PushPBrc},so)) X ui(wy) =4
we | 2] g(s1) =2

wy | 1| g(s2) +m({s2,{PushPBry},s1)) X ua(ws) =3
wy | 0| g(so) +m({sg,{PushPBrpy},s2)) X ui(ws) = 3.5
wsg | 2] g(s1) =2

wz | 1| g(s2) +m({s2,{PushPBry},s1)) X ua(ws) =3
ws | 0] g(s1) +m({s1,{PushPBry},s2)) X ui(ws) =5

That is,
u(w(]) = 37u(w1) =4, U(’UJQ) = 35,U(UI3) = 5.

For D® (Figure 2), sincelc, = 0,
weight, (D)) = 0.
For D® (Figure 3), sincdi¢, contains(w, c5), (w1, cs), (wa, c3), and(ws, c3),

weighty, (D®)) =

u(wo) X f(cs) +u(wr) x f(es) +u(wz) x f(c3) +u(ws) x f(ez) =
3xXx24+4x2+4+35x4+5x4=48.

ThusD®) is the solution.

Example2 TakeD, Q, C,, andD"-D™ as in Example 1, an@, as the set consisting of the queries

SOMETIMES — \/A€2A executable A, (24)

ALWAY'S —evolves = TvON; { PushPBry }; " TvON, (25)

denoted by, and¢), respectively. None of the description&!) — D™ entailsC,,. Therefore, there is
no solution to the ADU problem above with either the syntactic approach adrf2lhy of the semantic
approaches above. To identify which querie€’ip we shall move ta”), first we obtainC, from C,,, by
negating each query ift,,,, and assigning a very small negative integer, say -100, as their wefi¢s,,

INFSYS RR 1843-06-06 11

consists of the queries (3) and (23), denoted’hband¢f, with weights -100. With the semantic approach
based on weighted queries (i.egight = weight),

weight,(DM) = f(¢]) = —100,
weight,(D?)) = weight,(D®)) = f(c}) + f(c4) = —200,
weight,(DW) = f(}) + f(ch) = —200,

the descriptionD™) is the solution to the ADU probler(D,,, D,,), Q, (0, C%,), weight,). This suggests
relaxing the must query (24) (i.e., adding the query (24) javith the weight 100) and solving the new ADU
problem,((Dy, Dr,), Q,{(25)}, Cp U {(24)}, weight,), for which the descriptio,, U () is the solution.

7.1 Other semantic approachesto action description updates

Given a consistent action descriptidf) condition (iii) of an ADU problem(D, @, C, weight) can be re-
placed by

(iii) " there is no other consistent action descriptighsuch thay U D, C D" C DUQ, D" = Cy,,
and|weight(D") — weight(E)| < |weight(D") — weight(E)|

to express that, among the consistent action descripfider which (i) and (ii) hold, an action description
that is “closest” to (or most “similar” toF is picked. Here, for instancé; may beD U @), to incorporate

as much of the new information as possible, altholigh @ may not entail’’. What is meant by closeness
or similarity is based on the particular definition of the weight function. For mt&abased on the weights
of the states only, witlg(s) = 1 if s is a state off’, and O otherwise, the closeness of an action description
to F is defined in terms of the common world states.

8 Computational Aspects

We confine here to discuss the complexity, in order to shed light on the €astngputing the weight
measures. We assume that the basic functigng f(q), andm((s, A, s’)) are computable in polynomial
time. For a background on complexity, we refer to the literature (see e}y. f12

Apparently, none of the different weights above is polynomially computabla fin input action de-
scription D and a setC of queries in general. Indeed, deciding whetRdnas any states is NP-complete,
thus intractable. Furthermore, evaluating arbitrary queries D (D | q) is a PSPACE-complete prob-
lem. Indeedyg can be evaluated by a simple recursive procedure in polynomial spacthe@ther hand,
evaluating Quantified Boolean Formulas, which is PSPACE-complete, caubeead to decidind | q.

8.1 Computation given D and C

As it turns out, all four weights are computable in polynomial space. Thisdause each weight is a
sum of (in some cases exponentially many) terms, each of which can be easibuted in polynomial
space, using exhaustive enumeration. In some cases, the computatianRSBKCE-hard, but in others
supposedly easier:

1See alsdit t p: / / qwi ki . cal t ech. edu/ wi ki / Conpl exi t y_Zoo

12 INFSYS RR 1843-06-06

Table 1: Complexity of computing weights (completeness)

Input / Weight | weight, |weight, |weight) |weightys
D, C #P FPSPACE| GapP* FPSPACE
D, C,S polynomial

Dpo™*, C in FR™”

* #P for non-negative(s),f(q); ** |S|is polynomially bounded

Theorem 1 Suppose that we are given an action descriptiona setC' of queries, a functioy mapping
every state a number, a functighmapping every query i@’ to a number, and a functiom mapping
every transition to a probability. Suppose that these functions are coniputapolynomial time. Then the
following hold:

(i) Computinguweight (D) relative tog is, #P-complete;
(i) Computingweight,(D) relative toC' and f is FPSPACE-complete;

(i) Computingweight, (D) relative toC, f, g andm is (modulo some normalization) #P-complete, if the
range of f and g are nonnegative numbers, and GapP-complete for arbitfaand g;

(iv) Computinguweight (D) relative toC, f, g andm is FPSPACE-complete.

These results are also shown in the first row of Table 1. Here #P [12} iddlss of the problems where the
output is an integer that can be obtained as the number of the runs of anrdB machine which accepts
the input; problems polynomially solvable with an #P oracle are believed not REBACE-hard. GapP
[4, 8] is the closure of #P under subtraction (equivalently, it containfuilietions which are expressible as
number of accepting computation minus the number of rejecting computations\#t dnring machine).

Informally, corresponding proof ideas for Theorem 1 can be skdtakdollows:

ad (7). Computingweights(D) amounts to counting the number of statesuch thaty(s) > [. This
problem is thus easily seen to be in #P. Moreover, it is also #P-complete, tiiacanonical #P-complete
problem #SAT of counting the models of a propositional formula is readilyaed to it.

ad (7). As for weight,(D), we must evaluate each quergC on D and then take a sum. As testing
Dl=q is PSPACE-complete, computingeight,(D) is in FPSPACE, i.e., the class of functions computable
in polynomial space. Moreover, the problem can also be shown to bddrdtds class.

ad (i13). Computingweight,(D) modulo some normalization (which casts the problem to one with
integer values), can like computingeights(D) be seen to be in #P, if the functiog$s) and f(q) are
non-negative. Indeed, each relevant histargan be nondeterministically generated in polynomial time,
andu(w) andh(w) are easily computed fronw; to account forh(w), simply that many accepting com-
putation branches are nondeterministically generated. On the other & jstreducible to computing
weighty (D).

We sketch here a simple reduction, which is as follows. Supposetima SAT instance on proposi-
tional atomsey, . . ., z,,, which without loss of generality is not satisfied if all atoms are assigneel. fele
letzq,...,z, be the fluents and the single action symbol in an action descriptionwhich consists of all

INFSYS RR 1843-06-06 13

statements

caused x;if x; after T,
caused —x; if —x; after T,

whereT stands for a tautology, and €t consist of the single query

n
c = evolves A\ - 0; T
i=1

Informally, the transition diagram ab for the empty actiori) the complete graph whose nodes are all
truth assignments to4, . . ., x,,, andc captures the transitions from the assignment in which all atoms are
false to some arbitrary assignment via the empty adtioNow we define thag(s) = 2" if s satisfiesE,
andg(s) = 0 if s does not satisfy, for eachs. Furthermore, we define that transitions have uniform
probability, i.e.,m((s, 4, s’)) = 1/2™ for each transition(s, A, s’) in the transition diagram described by
D. Letf(c) = 1.

It is easy to see thall contains all pairgw, c) wherew = sq,), s; such thats is the state in which
all z; are false and, is an arbitrary state. Furthermorgw) = 1 if s; satisfiest andh(w) = 0 otherwise.
Thereforeweighty (D) is the number of satisfying assignmentgbfSinceD, C, m, f, andg are obviously
constructible in polynomial time, and since moreower f, andg are computable in polynomial time, we
obtain #P-hardness of computingighty (D).

In case of arbitrary (possibly negativg)s) and f(q), weight, (D) is computable as the difference of
two #P functions. Therefore, computing:ight; (D) is in the class GapP. Indeed, we have that

weightn(D) = Y u(w)xfle) — 3 —u(w)x f(o),

(w,c)GHg (w,c)inH,

where H/, contains all pairgw, c) from H¢ such thatu(w)x f(c) is positive andH contains all pairs
(w, ¢) from He such that.(w) x f(c¢) is non-negative. Both

> u(w)xf(e)

+
(w,c)eH S

and

> —u(w)xf(c)

(w,e)eH,

can be computed in #P. On the other hand, computing the differgneefs of two #P functionsf; and f,
can be polynomially reduced to computingight; (D) for some action descriptiof? in polynomial time.
More precisely, with a slight adaption of the above construction, we aducescomputing the difference
of the number of satisfying assignmes#§E;) and #(E>) of two SAT instances?; and E, on atoms
x1,...,Tn, respectively, (which is GapP-hard) to computingight, (D). For this, we assume without loss
of generality that bottE, and E» are not satisfied if all atoms; are false, and redefings) to

2" if s satisfiesEl; A —Es,
g(s) =< —2" if ssatisfies~E; A Es,
0 otherwise

14 INFSYS RR 1843-06-06

This has the effect that any histony = s¢, A, s; where(w, ¢) € C, will contribute zero taveighty (D) if
E; andE, have the same value for the assignmgntind contributéh(w) x f(c¢) = 1 (resp.,h(w) x f(c) =
—1) if E; is satisfied but not)s (resp.Fs is satisfied but not;). In total, weight, (D) amounts then to
#(E1) — #(E»). As consequence, computing:ighty (D) for generalf andg is (modulo some normal-
ization) complete for GapP.

ad (iv). Computingweightys(D) is more involved than computingeight, (D). Here, we must take
modified state rewardg (s) into account and normalize witt$p (B)| for certain queries. However, both
values are computable in polynomial space, and thusfa(go for each query;. Consequently, computing
weightys(D) is in FPSPACE; like computingeight, (D), itis also FPSPACE-complete.

In comparisonweights(D) andweighty (D) are of the same computational degree of difficulty, while
weight,(D) andweight,s(D) are harder under common complexity hypotheses. For queries whéirgnes
of formulas is bounded by a constant, the complexity drops below FPSPACE.

8.2 Computation given D, C, and states S of D

Informally, a source of complexity is thd may specify an exponentially large transition diagramif T

is given, then each of the four weights can be calculated in polynomial tinfactjymot the whole transition
diagram is needed, but onlyrelevant part denotedl (D), which comprises all states and all transitions
that involve actions appearing (.

Now if the state sef is known (e.g., after computation withcALc [6]) or computable in polynomial
time, thenT(D) is constructible in polynomial time. Indeed, for each state$ € S and each action
occurring in some query, we can test in polynomial time whethed, s) is a legal transition with respect
to D; the total number of such triples is polynomial |ifi|. Then the following result (the second row of
Table 1) holds.

Theorem 2 Suppose that we are given an action descriptionthe setS' of states described b§, a set

C of queries, a functioy mapping every state il§ to a number, a functiorf mapping every query in

C to a number, and a functiom mapping every transition to a probability. Suppose that these functions
are computable in polynomial time. Then each weight functiatight (D) (relative tog), weight (D)
(relative toC' and f), weight, (D) (relative toC, f, g andm), and weight (D) (relative toC, f, g and

m), can be computed in polynomial time.

Obviously, computingueight(D) onT¢(D) is polynomial. Similarly, computingreight,(D) is poly-
nomial since for each quewy testingD = ¢ is polynomial onT(D): label each state € .S bottom up
with the subformulag’ of ¢ that are true at, and evaluate every dynamic query of form (9) by considering
all reachable nodes at distance

For computingueight, (D), we can also exploit a labeling technique to avoid considering exponentially
many paths i (D) explicitly. First, for a query; of form (15), we label all stateswith p;, i € {0, ... ,n},
such thats = s; for some historyw = sq, 41, s1, . . ., Ap, s, Satisfyingg, in polynomial time. Here is a two
pass procedure for labeling the states:

1) First label, for each state all statess’ at distance = 0, 1,...,n with r; that respect the prefix of
somew desired with respect tpsuch thats = sy ands’ = s;.

2) Then, going backwards from states labeled withturn each} (i = n,n —1,...,0) into p;.

INFSYS RR 1843-06-06 15

Now fori = n,n — 1,...,0, we can for each statelabeled withp, compute the sum of the utilities
u(w') of all suffixesw’ = s;, Aiy1, Sit1,- - -, An, s, Of SOme historyw satisfyinge such thats; = s, easily.
In particular,u(s) is the sum of all utilities:(w) of histories that start at and satisfyg. Exploiting this,
weighty (D) is then readily computed by rearranging the sum of its definition: For edevarg queryc
of form (15), sum up the thej(-) values at all states and multiply the result wjtte). This gives one
summand of a sum to build over all relevant queries (i.e., queries of fdsi. (1

Example 3 Consider, for instance, the action descriptiof®) (Figure 3) in Example 1; takey ands; as
specified in Example 1. For query (4), in the first pass of the labelingegmstats is labeled withr;°,
ri'; and states; is labeled withry', 71°; in the second pass, both statgsands; are labeled wittp, and
p1. Given the utility function and transition model as in Example 1 (i.e., as (18) auf2(3, respectively),
and assuming a weight gf(c) = 3 for the query, summing up we obtain:

ui(s0) 9(s0) =2,
ui(s1) = g(s1) =2,
ug(so) = g(so) +m((so, { PushPBrc}, s1)) X ui(s1) = 3,
ug(s1) = g(s1) +m((s1, { PushPBrc}, so)) x ui(so) = 4.

And in total

f(e) x (ug(s0) + ug(s1)) = 21,
as the summand for the query, considered (and as the value foeight;, (D) asc is the only query
considered in this example).

Using the same techniques as foeight; (D), we can compute’(s) for each states in polynomial
time onT¢ (D) and alsoSp(B)|. Therefore, alsaveight,s(D) is computable in polynomial time in this
case.

Finally, if the state spac# is not large, i.e.|S| is polynomially boundedS can be computed with the
help of an NP-oracle in polynomial time; in fact, this is possible with parallel Nfles queries, and thus
computingsS is in the respective class ﬁiﬁ. The following theorem summarizes these results (the third row
of Table 1):

Theorem 3 Suppose that we are given an action descriptionthe setS of states described b, a set

C of queries, a functiog mapping every state if to a number, a functiorf mapping every query i’

to a number, and a functiom mapping every transition to a probability. Suppose tt#tis polynomially
bounded, and the functiong g, m are computable in polynomial time. Then computing each weight
function,weight ;(D) (relative tog), weight (D) (relative toC and f), weight,, (D) (relative toC, f, g and

m), andweight (D) (relative toC, f, g andm), is in FPﬁIP.

On the other hand, tractability of any of the weight functions in the caseenlS¢ris polynomially
bounded is unlikely, since solving SAT under the assertion that the giverufa /' has at most one model
(which is still considered to be intractable) is reducible to computiaght, (D) for eachp € {s,q, h,gs}.

9 Conclusion

We have presented four ways of assigning weights to action descriptiased on the preferences over
states, preferences over conditions, and probabilities of transitionflas@ne can compare the action

16 INFSYS RR 1843-06-06

descriptions by means of their weights. We have illustrated the usefulnessiofi semantically-oriented
approach of comparing action descriptions, on the problem of updatiagtenm description, in comparison
with the syntactic approach of [2]. For some problems, these two apmeach complementary to each
other: if the syntactic approach leads to many solutions, the semantic alpjmarabe applied to pick one.
For some problems that can not be solved with any approach, due to tog siwaditions, a semantic
approach can be used to identify which conditions to relax.

A Appendix: Examples

A.1 Yale Shooting Domain

Consider the following three formalizations of the Yale shooting domain [9]:

D1 :
caused Loaded after Load
caused —Loaded after Shoot
caused —Alive after Shoot A Loaded
caused Fualse after Shoot N\ Load
inertial Loaded, —Loaded, Alive, —Alive

DQ :
caused Loaded after Load
caused —Loaded after Shoot
caused —Alive after Shoot
caused Fualse after Shoot N —Loaded
caused Fualse after Load N Loaded
inertial Loaded, —Loaded, Alive, —~Alive

D3 :
caused Load if Loaded after Loaded
caused —Loaded after Shoot
caused — Alive after Shoot
caused Fualse after Shoot A\ —Loaded
caused Fualse after Load N Loaded
inertial Loaded, —Loaded, Alive, - Alive

and the following se€’ of queries:

c1 : SOMETIMES evolves Load; True; Shoot; True; Load; Loaded
co : ALWAY S holds Loaded D necessarily False after Load

wheref(c;) = 5 and f(c2) = —10. The first query expresses a desired property: after loading the gun
shooting, and loading again, the gun is loaded. The second query akoresses an undesired property:
the gun can not be loaded when it is already loaded.

Takeweight = weight ,,. Consider the following utility functior for every states:

INFSYS RR 1843-06-06

(s) = 3 if Alive € s
98/ =13 1 otherwise

Suppose that for each transition A, s') in R,

Let us denote by, .

andwy, . .

0.5 if Alive € s andShoot ¢ A
0.3 otherwise.

m((s, A,s")) = {

.., s3 the following states:

so = {Alive, Loaded },

s1 = {Alive, —Loaded },
s9 = {—Alive, Loaded},
sg = {—Alive, ~Loaded };

., ws the following histories:

wo = Sg, Load, sg, Shoot, s3, Load, so
wy = 81, Load, sg, Shoot, s3, Load, so
wo = 89, Load, so, Shoot, s3, Load, so
w3 = s3, Load, s, Shoot, s3, Load, so
wy = 81, Load, sg, Shoot, s3, Load, s3

for which the utilities are computed as follows:

That is,

w | i u;(w)
wo | 3] g(s2) =1

2 | g(s3) +m((s3,{Load},s2)) x uz(wp) =1+0.3=1.3

1| g(so) + m((sg,{Shoot}, s3)) x ua(wp) =3+0.3x1.3=6.9

0 | g(s0) + m({so,{Load},so)) x ui(wp) =3+ 0.5 x 6.9 = 6.45
wy | 3] g(s2)=1

2 | g(s3) + m((s3,{Load},s2)) x uz(wp) =1+0.3=1.3

1| g(so) + m((so,{Shoot}, s3)) x ua(wp) =3 +0.3 x1.3=6.9

0 | g(s1) +m({so,{Load},sp)) X u1(wp) =3+ 0.5 x 6.9 =06.45
wy | 3] g(s2) =1

2 | g(s3) +m((s3,{Load},s2)) x uz(wp) =1+0.3=1.3

1| g(s2) +m((s2,{Shoot}, s3)) x us(wp) =1+0.3 x 1.3 =4.9

0 | g(s2) +m((s2,{Load},s2)) x ur(wg) =1+ 0.3 x 4.9 =2.47
wz | 3| g(s2)=1

2 | g(s3) + m((s3,{Load},s2)) x uz(wp) =1+0.3=1.3

1| g(s2) +m((s2,{Shoot}, s3)) x ug(wp) =1+0.3 x 1.3 =4.9

0 | g(s3) +m((s3,{Load},ss)) X uy(wo) =1+ 0.3 x 4.9 =2.47
wy | 3] g(s3) =1

2 | g(s3) +m((s3,{Load},ss)) x uz(wp) =1+0.3=1.3

1| g(so) + m((sg,{Shoot}, s3)) x us(wp) =3+0.3x1.3=6.9

0 | g(s1) +m((s1,{Load},so)) x u1(wp) =3+ 0.5 x 6.9 = 6.45

(wo) = u(wy) = u(wsg) = 6.45, u(wz) = u(ws) = 2.47.

17

18 INFSYS RR 1843-06-06

For Dy, He = {(wo,c1), (w1, ¢1), (wa, 1), (ws,c1)}. Then, the new utility functioy’ can be com-
puted as follows:

g (s0) =6.45 ¢'(s1) =6.45 ¢'(s2) =2.47 ¢'(s3) = 2.4T;
and the new weight¢’ of queries are computed as follows:
f'(c1) = fle1) x (g’ (s0) + ' (s1) + ' (s2) + ' (s3))/4 =5 x 17.84/4 = 5 x 4.46 = 22.3
f’(Cg) = f(CQ) x 0=0.
Thenweight . (D1) = 22.3 .
For Dy, Ho = {(w1, ¢1), (ws, c1)}. Then, the new utility functiog’ can be computed as follows:
d(s0)=3 ¢(s1)=645 g'(s2)=1 g(s3)=24T;
and the new weightg’ of queries are computed as follows:
(1) = f(c1) x (¢'(s1) +9'(s3))/2 =5 x 4.46 = 22.3
f'(e2) = f(c2) x (g'(s0) + ¢'(s2)) = —10 x 4 = —40.

Thenweight ;i (D2) = —17.7 .
For D3, Ho = {(w1,¢1), (w3, c1), (wg,c1)}. Then, the new utility functioy’ can be computed as
follows:
g (s0) =3 ¢'(s1) =645+247=8.92 g¢'(s2) =1 ¢'(s3) =2.4T;

and the new weightg’ of queries are computed as follows:

f(er) = fler) x (¢'(s1) +¢'(s3))/2 =5 % (8.9242.74)/2 = 5 x 5.83 = 29.15
f'(c2) = f(e2) x (g'(s0) + ¢'(s2)) = —10 x 4 = —40.

Thenweight . (D3) = —10.85.
Therefore,D; is more preferable thaP, andDs. Indeed, although these descriptions satisfy the desired
property ¢1) to some extent, onlyp; does not satisfy the undesired property.

A.2 Gripper Domain

Consider the following variation of the gripper domain [11]. There areethuals, each located in one of

the three rooms. There is a robot with two grippers. It can carry a baliéh.eThe available actions are

picking up, dropping, and painting balls, and moving between rooms. Seppat the paint is available

only in Roomg. Consider the description3;, D2, D3 of this domain shown in Figures 4, 5, 6 respectively.
In these descriptions, the schematic variables vary over constants:

variables| constants

0 {Robot, Bally, Bally, Balls}
b, by {Ball;, Bally, Bally)
9: g1 { Gripper;, Grippers }

r,r1,r2 | {Room;s, Roomg, Roomg}
¢, cl {Red, White, Blue}.

INFSYS RR 1843-06-06 19

caused At(Robot,r) after Walk(r)
caused False after Walk(r) A At(Robot,r)

caused IsHolding (b, g) after PickUp(b, g)
caused False after PickUp(b, g) A\, IsHolding(b1, g)
caused False after PickUp(b, g) A =(V, (At(Robot,r) AN At(b,r)))

caused —IsHolding (b, g) after Drop(b, g)
caused False after Drop(b, g) A —IsHolding (b1, g)

caused Color(b, c) after PaintBall(b,c)
caused False after PaintBall(b,c) A ~(At(Robot, Room3) A At(b, Room3))

caused OnFloor(b) if OnFloor(b)
caused ~OnFloor (b) if \/ , IsHolding(b, g)

caused —At(o,r) if At(o,r) (r#r)
caused —At(b, r) if At(Robot,r) AV, IsHolding(b, g)

caused — Color(b, c1) if Color(b, c) (¢ # 1)

caused False if =\/ . At(o,r)
caused False if =\/_ At(b,c)

inertial At(o,r), Color(b,c), IsHolding(b, g), ~IsHolding (b, g)

caused Fulse after a A ay (a <ay)

Figure 4: A description for the grippers domain.

Consider a set’ of queries consisting of the following queries:

p1 : ALWAYS A, (holds At(Robot,r) D necessarily = At(Robot, r) after Walk(r))
p2 : SOMETIMES A, ,(holds —~IsHolding(b, g) A possbly True after Drop(b))
ps : ALWAY'S
holds A, (At(b, Room;) A Color(b, White) A OnFloor(b)) A At(Robot, Roomg) D
necessarily A, (At(b, Roomg) A At(Robot, Roomg) A\, Color(b, Red)A
Vy Color(b, White) A\, Color(b, Blue)
after Walk(Room;); PickUp(Bally, Gripper;); PickUp(Ballg, Grippers);
Walk(Roomyg); Drop(Bally, Grippery); Walk(Room;); PickUp(Bally, Grippery);
Walk(Rooms); PaintBall(Balls, Blue); PaintBall(Balls, Red); Walk(Roomyg);
Drop(Ballg, Gripper;); Drop(Balls, Grippers); Walk(Rooms),

wheref(p1) = 2, f(p2) = —3, andf(p3) = 1. The first query expresses that after the robot walks to some
location, it is not at its current location anymore. The second one esggéisat the action of dropping a ball

is possible even when the robot is not holding that ball. The third one esgsdhe presence of a trajectory.
The first and the third conditions are desired whereas the second is not.

INFSYS RR 1843-06-06

caused At(Robot,r) after Walk(r)
caused IsHolding(b, g) after PickUp(b,g) A =/, IsHolding(b1, g)

caused —IsHolding(b, g) after Drop(b, g) A IsHolding (b, g)
caused OnFloor(b) after Drop(b, g)

caused Color(b, c) after PaintBall(b,c) A At(Robot, Room3) A At(b, Room3)
caused OnFloor(b) if OnFloor(b)

caused —At(o,rq) if At(o,7) (r#m)

caused = Color(b, ¢1) if Color(b, c) (c# 1)

caused False if =\/, At(o,7)
caused Fulse if - \/, At(b, c)

inertial At(o,r), Color (b, c), IsHolding(b, g), ~IsHolding(b, g)

caused False after a A aq (a <ay)

Figure 5: Another description for the grippers domain.

caused At(Robot,r) after Walk(r) A = At(Robot,)

caused IsHolding(b, g) after PickUp(b,g) A =V, IsHolding(b1, g)
caused Fulse after PickUp(b, g) A =(V,.(At(Robot,r) N At(b,T)))

caused —IsHolding(b, g) after Drop(b, g)
caused False after Drop(b, g) A —IsHolding(b1, g)

caused Color(b, c) after PaintBall(b, c)
caused False after PaintBall(b, c) A ~(At(Robot, Room3) A At(b, Room3))

caused OnFloor(b) if OnFloor(b)
caused —OnFloor(b) if \/, IsHolding(b, g)

caused —At(o,r) if At(o,r) (r#mr)
caused —At(b, r) if At(Robot,r) A\, IsHolding (b,)

caused — Color(b, c¢1) if Color(b, c) (c# 1)

caused False if =\/, At(o,7)
caused False if =\/_ At(b,c)

inertial At(o,r), Color(b, c), IsHolding(b, g), ~IsHolding(b, g)

caused Fulse after a A a; (a < ay)

Figure 6: Yet another description for the grippers domain.

INFSYS RR 1843-06-06 21

With the semantic approach based on weighted queries diegght = weight,), the weights of the
action descriptions are computed as follows:

weight,(D1) = f(p1) + f(ps) =2+1=3
weight (D) = f(p2) = —3
weight,(Ds) = f(ps) = 1.

Therefore,D; is the most preferable description. Indeed, it is the only description thaitehoth desired
gueries and does not entail the undesired one.

A.3 Application: Elaboration Tolerance

Suppose that we are given a getof action descriptions; and a sét of conditions, each describing a
possible elaboration. We say about two action descriptiorend D’ in D that D is more elaboration
tolerant thanD’ with respect toC, if weight(D) > weight(D'), whereweight is defined relative ta”
among other things (e.gueight can beweight,,, weight;,, or weight ;). The question we are interested in
is which action description ifD is the most elaboration tolerant with respecto

Weight functions defined relative to possible elaborations, which mighttakeinto account the sig-
nificance of those elaborations, are reasonable measures of diffi€utgdifying the action descriptions
to entail possible elaborations: if an action description entails higher numbsalodrations, then it is
more tolerant to elaborations; on the other hand, if an action descriptiegnmboentail a lower number of
elaborations, then it is easier to modify it by adding or modifying its causal (aws, like in [3]).

Here is a variation of the example in [1].

Example 4 Consider the following two action descriptiofsandD’ describing how weather changes when
it rains.
D:

caused Cold after Rain

caused Wet after Rain

caused | after Rain A = Cloudy

caused —~Sunny after Sunset

caused —Sunny if Cloudy

D' :
caused Wet after Rain
caused | after Rain A = Cloudy
caused ~Sunny after Sunset
caused —~Sunny if Cloudy
caused Cold if Cold N (~Sunny vV Wet).

Consider also the following possible elaborations on how weather chaglgéige to seasons and regions:

e1 : ALWAY Sholds Winter O necessarily Cold after Sunset
ea : SOMETIMES evolves Tropical; { Rain}; = Cold
e3 : ALWAY S holds — Winter D possibly Cold after Rain.

Suppose thateight = weight,, andf(e1) = f(e3) = 3, f(e2) = 2 (because, e.g., if someone does not
travel much, then elaborations relative to seasons are more importaetrfoiThenD’ is more elaboration
tolerant thanD becauseveight (D) = 3 whereasweight ,(D') = 8.

22 INFSYS RR 1843-06-06

Amir compares, in [1], two axiomatic theori&sandX’ with respect to a target axiomatic theaty,, g,
in terms of a syntactic transformation (e.g., the number of additions and deletisestences). This idea
might be captured with respect to a semantic measure, by means of compmaviagrilar/diverse the action
descriptions are as discussed in Section 7.1. On the other hand, we ukuatyy know the target theory
(resp., the most elaboration tolerant action description), but may haveaofgossible elaborations based
on our observations in different circumstances (as in the example abdov®)ch cases, it is reasonable to
decide which action description 2 is the most elaboration tolerant one, by comparing action descriptions
semantically with respect to some weight function that takes into account

References

[1] E. Amir. Towards a formalization of elaboration tolerance: Adding aeleétthg axioms. IrFrontiers
of Belief RevisionKluwer, 2000.

[2] T. Eiter, E. Erdem, M. Fink, and J. Senko. Updating action domainrgesms. InProc. IJCA| pages
418-423, 2005.

[3] T. Eiter, E. Erdem, M. Fink, and J. Senko. Resolving conflicts in adescriptions. IrProc. of ECA|
2006. To appear.

[4] S. A. Fenner, L. Fortnow, and S. A. Kurtz. Gap-definable cogntitassesJournal of Computer and
System Science$8(1):116-148, 1994.

[5] M. Gelfond and V. Lifschitz. Action language&TAl, 3:195-210, 1998.

[6] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Noonotonic causal theoriesl,
153(1-2):49-104, 2004.

[7] E. Giunchiglia and V. Lifschitz. An action language based on caugabeation: Preliminary report.
In Proc. AAA| pages 623-630, 1998.

[8] S. Gupta. Closure properties and witness reductidournal of Computer and System Sciences
50(3):412-432, 1995.

[9] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projectirtificial Intelligence
33(3):379-412, 1987.

[10] J. McCarthy. Elaboration tolerance. Bioc. CommonSens£998.

[11] D. McDermott. AIPS-98 planning competition results. Availabléap: //ftp. cs. yal e. edu/
pub/ ncdernott/ ai psconp-results. htm. See alsohttp://ww. cs. col ostate.
edu/ meps/ reposi tory/ ai ps98. ht m , 1998.

[12] C. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[13] S. Russel and P. Norvidhrtificial Intelligence: A Modern ApproachPrentice Hall, 1995.

