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1 Introduction

The Semantic We[8, 4, 25, 49] has recently attracted much attention, both from academiadusdry, and

is widely regarded as the next step in the evolution of the World Wide Welimi at an extension of the
current Web by standards and technologies that help machines to tamdttse information on the Web so
that they can support richer discovery, data integration, navigatidngaomation of tasks. The main ideas
behind it are to add a machine-readable meaning to web pages, to use iestidog precise definition of
shared terms in web resources, to use KR technology for automatedirepfom web resources, and to
apply cooperative agent technology for processing the informatiorediMéb.

The development of the Semantic Web proceeds in several hierarclyied,levhere th©ntology layer
in form of theOWL Web Ontology Languad#9, 120] (recommended by the W3C), is currently the highest
layer of sufficient maturity. OWL consists of three increasingly expvessiblanguages, nameDL Lite
OWL DL, andOWL Full. Hence pntologieq29] play a key role in the Semantic Web, and a major effort has
been put by the Semantic Web community into this issue. Informally, an ontologyst®nf a hierarchical
description of important angreciselydefined concepts in a particular domain, along with the description of
the properties (of the instances) of each concept. Web content is thetated by relying on the concepts
defined in a specific domain ontology.

OWL Lite and OWL DL are essentially very expressive description logics antiRDF syntax [49]. As
shown in [48], ontology entailment in OWL Lite and OWL DL reduces to knogketase (un)satisfiability
in the expressive description logi&&HZ F (D) and SHOZN (D), respectively. Hence, these expressive
description logics play an important role in the Semantic Web, since they agatiedly the theoretical
counterparts of OWL Lite and OWL DL, respectively. More generallysadgtion logics are a logical
reconstruction of frame-based knowledge representation languaigeshe aim of providing a decidable
first-order formalism with a simple well-established declarative semantics tareajhe meaning of the
most popular features of structured representation of knowledge.

However, classical ontology languages and description logics araliésisle in all those domains where
the information to be representedimperfect that is, eithemuuncertain or vague/impreciseor both. In
particular, web content is very likely to be imperfect, and thus there is agstreed to deal with imperfect
knowledge in the Semantic Web. This need to deal with uncertainty and veggienontologies for the
Semantic Web has been recognized by a large number of researdk gfftiis direction. In particular,
dealing with uncertainty and vagueness in ontologies has been sudlgesghlied in ontology mapping
and information retrieval.

Due to the rising popularity of description logics and their use, the emergémiealing with uncertain
and vague information is increasingly attracting the attention of many resgactl practitioners towards
description logics able to cope with this lack of expressive power. Theajdhis paper is to provide an
overview of the current state of the art about the management of uimtgrad vagueness in description
logics for the Semantic Web, which should help the reader to get insights orfeagunes of the formalisms
proposed in the literature.

The rest of this paper is organized as follows. In Section 2, we givietibiroduction to uncertainty and
vagueness at the propositional level. In Section 3, we describe thecalatsscription logicSHOZN (D),
which is the reference language in this paper. Sections 4 and 5 show heuetad classical description
logics by probabilistic and possibilistic uncertainty, respectively, while Se@&idescribes how to extend
classical description logics for the management of vague/imprecise krgsvldd Section 7, we give a
summary and an outlook on open research.
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2 Uncertainty and Vagueness

There has been a long-lasting misunderstanding in the literature of artifitéllgance and uncertainty
modeling, regarding the role of probability/possibility theory and fuzzy/meaiyed theory. A clarifying
paper is [19]. We recall here salient notes, which may clarify the role efettiheories for the inexpert
reader.

A standard example that points out the difference between degreeseartainty and degrees of truth
is that of a bottle [19]. In terms of binary truth values, a bottle is viewed aofudimpty. If one accounts
for the quantity of liquid in the bottle, one may say the bottle is “half-full” for ins@nUnder this way of
speaking, “full” becomes a fuzzy predicate [125] and the degree tif bli“the bottle is full” reflects the
amount of liquid in the bottle. The situation is quite different when expressinggoorance about whether
the bottle is either full or empty (given that we know only one of the two situat®ttse true one). To say
that the probability that the bottle is full 55 does not mean that the bottle is half full.

We recall that undeuncertainty theoryall all those approaches in which statements rather than being
either true or false, are true or false to sopmebability or possibility/necessityfor instance, “it will rain
tomorrow”). That is, a statement is true or false in any world, but we ameértain” about which world to
consider as the right one, and, thus, we speak e.g. about a probaistiitiyution or a possibility distribution
over the worlds. For instance, we cannot exactly establish whether itamltomorrow or not, due to our
incompleteknowledge about our world, but we can estimate to which degree this islpimtpossible, and
necessary.

On the other hand, undeagueness/imprecision theofall all those approaches in which statements
(for instance, “the tomato is ripe”) are true to some degree, which is takem dr truth space. That is,
an interpretation maps a statement to a truth degree, as we are unable torestabttser a statement is
completely true or false due to the involvement of vague concepts, sudpels twhich do not have precise
definition. For instance, we cannot exactly say whether a tomato is ripet,doutaather just can say that
the tomato is ripe to some degree. Usually, such statements involve soxcalleelfuzzy predicat¢$25].

Note that vague statements are truth-functional, i.e., the degree of trutht@teanent can be calcu-
lated from the degrees of truth of its constituents, while uncertain statememistdze a function of the
uncertainties of its constituents [18].

In the following, we illustrate a typical formalization of uncertain statements agde statements. In
the former case, we consider a basic probabilistic/possibilistic logic, while ilatteg, we consider a basic
many-valued logic.

2.1 Probabilistic Logic

Probabilistic logic has its origin in philosophy and logic. Its roots can be traeett to already Boole
in 1854 [6]. There is a wide spectrum of formal languages that have é&gaored in probabilistic logic,
ranging from constraints for unconditional and conditional events tolaicuages that specify linear in-
equalities over events (see especially the work by Nilsson [85], Fagin @44 Dubois and Prade et al.
[17, 21, 1, 20], Frisch and Haddawy [26], and the first author §&5,68]; see also the survey on sentential
probability logic by Hailperin [33]). Recently, nonmonotonic generalizatiohprobabilistic logic have
been developed and explored; see especially [70] for an overviethid section, for illustrative purposes,
we recall only the simple probabilistic logic described in [85].

We first define probabilistic formulas and probabilistic knowledge bases.a¥8ume a set dfasic
events® ={py,...,p,} with n>1. We usel and T to denotefalseandtrue, respectively. We define
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eventsy induction as follows. Every element &U {_L, T} is an event. Ifp andi are events, then also
-0, (0 ANY), (¢ V1), and(¢ — 1)) are events. We adopt the usual conventions to eliminate parentheses. A
probabilistic formulais an expression of the forif@ > 1), where¢ is an event, andis a real number from
the unit interval[0, 1]. Informally, (¢ > 1) says that) is true with a probability of at leagt For example,
(rain_tomorrow > 0.7) may express that it will rain tomorrow with a probability of at ledst Notice also
that(—¢ > 1 — u) encodes that is true with a probability of at most. A probabilistic knowledge basg
is a finite set of probabilistic formulas.

We next define worlds and probabilistic interpretationswévld I associates with every basic event
in ® a binary truth value. We extenfdby induction to all events as usual. We denoteZiythe (finite) set
of all worlds for ®. A world I satisfiesan eventp, or I is amodelof ¢, denoted! |~ ¢, iff I(¢)=true.
A probabilistic interpretationPr is a probability function oi¥s (that is, a mappindr: Ze — [0, 1] such
that all Pr(I) with I € Z sum up to 1). Intuitively,Pr(I) is the degree to which the worlfle Zy is
probable, i.e., the probability functioRr encodes our “uncertainty” about which world is the right one.
The probability of an eventp in Pr, denotedPr(¢), is the sum of allPr(I) such that/ € Zp and [ = ¢.
The following theorem is an immediate consequence of the above definitions.

Theorem 2.1 For all probabilistic interpretationsPr and eventg and):

Pr(p Ay) = Pr(¢)+ Pr(y) — Pr(¢ V)

Pr(¢ Av) < min(Pr(¢), Pr(y))

Pr(p Ay) > max(0, Pr(¢) + Pr(y) — 1)

Pr(pvy) = Pr(¢)+ Pr(y) — Pr(¢ Ay)

Pr(¢Vv) < min(L, Pr(¢) + Pr(y)) 1)
Pr(pVvy) = max(Pr(¢), Pr(v))

Pr(—¢) = 1— Pr(¢)

Pr(L) = 0

Pr(T) =1

A probabilistic interpretatiorPr satisfiesa probabilistic formulg¢ > 1), or Pr is amodelof (¢ >1),
denotedPr = (¢ > 1), iff Pr(¢) > 1. We sayPr satisfiesa probabilistic knowledge bagg or Pr is a model
of IC, iff Pr satisfies allF' € K. We sayK is satisfiableiff a model of I exists. A probabilistic formulad’
is alogical consequencef K, denotedC |~ F, iff every model of/C satisfiesF’. We say(¢ >1) is atight
logical consequencef K iff [ is the infimum of Pr(¢) subject to all model$r of K. Notice that the latter
is equivalent td = sup{r [ = (¢ >7)}.

The main decision and optimization problems in probabilistic logic are deciding thefiagaility of
probabilistic knowledge bases and logical consequences from pliebalknowledge bases, as well as
computing tight logical consequences from probabilistic knowledge baggsh can be done by deciding
the solvability of a system of linear inequalities and by solving a linear optimizatioloigm, respectively.
In particular, column generation techniques from operations reseaxehtdeen successfully used to solve
large problem instances in probabilistic logic (see especially the work byalalet al. [53] and Hansen et
al. [37]).

2.2 Possibilistic Logic

We next recall possibilistic logic; see especially [15]. We first definesipdistic formulas and possibilistic
knowledge basesPossibilistic formulashave the form(¢, P 1) or (¢, N 1), where¢ is an event, and is
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a real number fronfo, 1]. Informally, such formulas encode to what extent possiblyresp.necessarily
true. For example(rain_tomorrow, P 0.7) encodes that it will rain tomorrow is possible to degfeg,
while (father — man, N 1) says that a father is necessarily a manpdssibilistic knowledge bag€ is a
finite set of possibilistic formulas.

A possibilistic interpretations a mappingr: Zg — [0, 1]. Intuitively, =(7) is the degree to which the
world I is possible In particular, every world such thatr(7) = 0 is impossible while every world/ such
that (1) =1 is totally possible We sayr is normalizediff 7(I)=1 for somel € Z. Intuitively, this
guarantees that there exists at least one world, which could be catakethe real one.

The possibility of an eventy in a possibilistic interpretatiomr, denotedPoss(¢), is then defined by
Poss(¢) = max{n(I)|1I €Zs, I = ¢} (Wheremax () = 0). Intuitively, the possibility ofp is evaluated in
the most possible world whetgis true. The dual notion to the possibility of an everns thenecessityf ¢,
denotedVec(¢), which is defined byNec(¢) =1 — Poss(—¢). It reflects the lack of possibility of¢, i.e.,
Nec(¢) evaluates to what extentis certainly true. The following theorem follows immediately from the
above definitions.

Theorem 2.2 For all possibilistic interpretationsr and events andq):

Poss(¢p A1) < min(Poss(¢p), Poss(1)))

Poss(¢p V1) max(Poss(¢), Poss())
Poss(—¢) = 1— Nec(9)
Poss(L) =0
Poss(T) = 1 (inthe normalized case)
2
Nec(p ANp) = min(Nec(p), Nec())) @
Nee(¢Ve) > max(Nec(d), Nec(s))
Nec(—¢) = 1— Poss(¢)
Nec(l) = 0 (inthe normalized case)
Nece(T) =1

A possibilistic interpretationr satisfiesa possibilistic formuld®, P 1) (resp.,(¢, N 1)), or = is amodel
of (¢, P1) (resp.,(¢, N 1)), denotedr = (¢, Pl) (resp.,t = (¢, N 1)) iff Poss(¢p) =1 (resp.,Nec(¢) >1).
The notions of satisfiability, logical consequence, and tight logical apresece for possibilistic knowledge
bases are then defined in the standard way (in the same way as in theilptiabse). We refer the reader
to [15, 45] for algorithms around possibilistic knowledge bases.

2.3 Many-Valued Logics

In the setting of many-valued logics, the convention prescribing that sopitiqm is either true or false is
changed. A more refined range is used for the function that repretbentseaning of a proposition. This

is usual in natural language when words are modeled by fuzzy setmgtance, the compatibility of “tall”

in the phrase “a tall man” with some individual of a given height is often ggdad’he man can be judged
not quite tall, somewhat tall, rather tall, very tall, etc. Changing the usual &tse/€onvention leads to a
new concept of proposition whose compatibility with a given state of facts isteenad degree, and can

be measured on an ordered scéléhat is no longef0, 1}, but e.g. the unit intervgD, 1]. This leads to
identifying a “fuzzy propositionp with a fuzzy set of possible states of affairs; the degree of membership
of a state of affairs to this fuzzy set evaluates the degree of fit betwegraposition and the state of facts
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Table 1: Properties of t-norms, s-norms, implication functions, and nedainations.

properties of t-normsA” properties of s-norms\*”
aNl=a aV0=a
b<cimpliesaAb<aAc b< cimpliesavb<aVe
aANb=bAa aVb=bVa
aN(bAc)=(aNb)Nc aV(bVve)=(aVb) Ve
properties of implication functions=” properties of negation functions:"
a < bimpliesa —c>b—c¢ -0=1
b < cimpliesa - b<a—c a < bimplies—-b < —a
0—b=1
a—1=1

it refers to. This degree of fit is callatkegree of truthof the propositiony in the interpretatior¥ (state of
affairs). Many-valued logics provide compositional calculi of degm&esuth, including degrees between
“true” and “false”. A sentence is now not true or false only, but mayehatwuth degree taken fromtrauth
spaces, usually[0,1] or {2, 1 .. 2} for an integem > 1. In the sequel, we assunse= [0, 1].

In the many-valued logic that we consider hemany-valued formulabave the form(¢ > 1), where
[ € [0,1] [32, 34] (informally, the degree of truth efis at leastl). For instance(ripe_tomato > 0.9) says
that we have a rather ripe tomato (the degree of truthief tomato is at leasp.9).

From the semantical point of view,raany-valued interpretatio maps each basic propositipninto

[0, 1] and is then extended inductively to all propositions by:

Lo Ay) = HZ(¢),Z(v))

I(¢V¢) - S(I(@JW)) (3)
(o — o) = i(Z(9),Z(¥))

Z(~o) = n(Z(9))

wheret, s, i, andn are so-called-norms s-norms implication functionsandnegation functionsrespec-
tively, which extend classical Boolean conjunction, disjunction, implicatiod, riegation, respectively, to
the many-valued case.

Several t-norms, s-norms, implication functions, and negation functioesldeen given in the literature
to interpret conjunction/), disjunction {/), negation ) and implication ), respectively. An important
aspect of such functions is that they satisfy some properties that oaetsxp hold for the connectives; see
Table 1. Usually— is defined as-implication, thatis,a — b = sup {c | a A ¢ < b}.

Some t-norms, s-norms, implication functions, and negation functions olugiiazy logics are shown
in Table 2. In fuzzy logic, one usually distinguishes three different Iogiamely, Lukasiewicz, Gdel, and
Product logic; the popular Zadeh logic is a sublogic of Lukasiewicz logiené&salient properties of these
logics are shown in Table 3. For more properties, see especially [34, 87]

The implicationr — y = max(1—uz, y) is called Kleene-Dienes implication in the fuzzy logic literature.
Note that we have the following inferences: Let> n anda — b > m. Then, under Kleene-Dienes
implication, we infer that ifin > 1 — m thenb > m. Under r-implication relative to a t-norm, we infer
thatb > n A m.
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Table 2: T-norms, s-norms, implication functions, and negation functiomaraius fuzzy logics.

] | tukasiewicz logic | Godellogic | Productlogic | Zadeh logic |
T Ay max(z +y — 1,0) min(z,y) x-y min(z,y)
xVy min(x + y, 1) max(z,y) r+y—z-y max(x,y)

1 if v <y 1 ifa<y 1 if v <y
Ty : : | max(1l —z,y)
1—x+y otherwise| |y otherwise| |y/xz otherwise
1 ifxz=0 1 ifz=0
- 1—=x . . 1—=x
0 otherwise 0 otherwise

Table 3: Some additional properties of t-norms, s-norms, implication func¢temtsnegation functions of
various fuzzy logics.

| tukasiewicz logic | Godel logic \ Productlogic [ Zadehlogic |
ANz =0 Jz.x A—x #0 Jz.xAN-x#0 Jr.xAN-x#0
xV-x=1 Jr.xVv -z #1 Jr.xVvV-x#1 Jr.xVv-x#1
Jr.xhNe#x rTANr =1 Jr.xhe#zx TANx =2
Jr.xvae #x rVr=uzx Jr.xvae #ax rVx==zx
—x = Jr. ~—x #x dr. ——x £ - =2

r—y=—xVy

Jr.x —y#-xVy

dr.x - y#-xVy

r—y=—xVy

Jz. =(z—y) # Ay

Jz. =(z—y) # xA—y

—(r—y) = aAoy

~(xAy) =-wV oy

(zAy)=-wV oy

—(xAy) =-wV oy

—(zNy) = —~aVy

~(@Vy) =z Ay

~(@Vy) =-x Ny

~(@Vy) =z Ay

—(@Vy) = ~aA-y
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Thedegree of subsumptidretween two fuzzy setd andB, denotedd — B, is defined aénf,c x A(x)
— B(x), where— is an implication function. Note that ifi(x) < B(z), for all z€[0,1], thenA— B
evaluates tal. Of course,A— B may evaluate to a valuec (0,1) as well. A (binary)fuzzy relation
R over two countable crisp sef§ andY is a functionR: X x Y — [0,1]. Theinverseof R is the
function R~!: Y x X — [0, 1] with membership functiol?~!(y,z) = R(x,y), for everyz € X and
y € Y. Thecompositiorof two fuzzy relations?;: X x Y — [0,1] andRy: Y x Z — [0, 1] is defined as
(R10oRy)(x, z) = sup,ey Ri(z,y) A Ra(y, 2). Afuzzy relationR istransitiveiff R(z,z) = (Ro R)(z, 2).

A many-valued interpretatioff satisfiesa many-valued formuld® >1) or Z is a modelof (¢ >1),
denotedl = (¢ > 1), iff Z(¢) > [. Note that(—¢ > —u) says that the degree of truth ¢fis at most: (when
——z = x). The notions of satisfiability, logical consequence, and tight logicadeguence for many-valued
knowledge bases are then defined in the standard way (as in the prdlzabdse). We refer the reader
to [31, 32, 34] for algorithms deciding logical consequence.

3 Classical Description Logics

In this section, we recall the expressive description I&§itOZN (D), which stands behind the web ontol-
ogy languages OWL DL [49]. Although several XML and RDF syntax@dWL-DL exist, in this paper,
we use the traditional description logic notation. For explicating the relatiormstigeen OWL DL syn-
tax and description logic syntax, see especially [47, 49]. The purdabéscsection is to make the paper
self-contained. More importantly, it helps in understanding the diffeiebeéwveen classical, probabilistic,
possibilistic, and fuzzysHOZN (D). The reader confident with th& HOZN (D) terminology may skip
this section.

3.1 Syntax

The description logiSHOZIN (D) is a generalization a§ HOZN by concrete datatypes, such as strings
and integers, usingoncrete domaing, 73, 72, 74].

The elementary ingredients are as follows. We assume adatafaluesa set okelementary datatypes
and a set oflatatype predicatesach with a predefined arity> 1. A datatypeis an elementary datatype
or a finite set of data values. datatype theonD = (Ap, - p) consists of a datatype domaikp and a
mapping - p that assigns to each data value an elemenhpf to each elementary datatype a subset of
Ap, and to each datatype predicate of arita relation overAp of arity n. We extend P to all datatypes
by {v1,...}P ={vP,...}. For example, over the integetsyy may be a unary predicate denoting the set of
integers greater or equal 20, and thusPerson M Jage. =99 may denote a person whose age is at [2ast
Let A, R4, R¢, andI be pairwise disjoint nonempty finite setsaibmic conceptsabstract rolesconcrete
roles andindividuals respectively.

A role is either an abstract rolB € R 4, theinverseR~ of an abstract rold? € R 4, or a concrete role
U € R¢ (note that concrete roles do not have inverses).RBoxR consists of a finite set of transitivity
axiomstrans(R) and role inclusion axioms of the fori® C S, where eitherR, S R4 or R, S € Rc.
The reflexive and transitive closure of the role inclusion relationshijkBiaxis denoted by_*. A role not
having transitive subroles issimple role

Conceptsare defined by induction, using the following syntactic rules, wheis an atomic concept,
ai,...,ay, are individuals,C, Ci, andC5 are conceptsR is an abstract role$ is a simple abstract role,
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T,T1,...,T, are concrete roleqd) is ann-ary datatype predicate, ang> 0:

c — T’ 1 ]A|{al,...,an}|01|_|02|01|_|02]—|C|
VR.C|3RC|(=nS)|(<nS)]
VTl,...,Tn.D|HTl,...,Tn.D|(}nT)|(<nT)

For example, we may write the concept
Flower 1 3hasPetal Width.(= 20mm M < jomm) M JhasColor. Red

to informally denote the set of flowers having petal’'s dimension wigimm and40mm, whose color is
red. Here 2 s, and<omy, are datatype predicates. We ysel S) to abbreviatg> 1 .5) (< 1.9).

A TBox7 is afinite set of concept inclusion axiom@sC D, whereC andD are concepts. We often use
C=DeTinplace of{fC C D,D C C} C 7. Asimple abstract rol& is functionalif the interpretation
of the roleS (see below) is always functional. A functional rdfecan always be obtained from an abstract
role by means of the axiom C (< 1 .5). Therefore, whenever we say that a role is functional, we assume
thatT C (< 1.9) isin the TBox.

An ABox A is a finite set oconcept assertion axioms C, role assertion axiomséa, b): R, andindi-
vidual equality(resp.,inequality) axiomsa ~ b (resp.,a % b). A knowledge bas& = (7, R,.A) consists
of a TBox7, an RBoxR, and an ABoxA.

3.2 Semantics

An interpretationZ = (A7, -7) relative to a datatype theol) = (Ap, - p) consists of a nonempahbstract
domainAZ, disjoint fromAp, and arinterpretation function? that assigns to eache I an element im\?,
to eachC € A a subset ofAZ, to eachR € R4 a subset oAT x AZ, to eacHl’ € R a subset ofAZ x Ap,
and to every data value, datatype, and datatype predicate the same vaueTa® mapping? is extended
to all roles and concepts as usual:

(S = {(y.2)|(z,y) € ST}

TL = AT
1T =9
{al,...,an}I = {alz,...,anI}

(Cl 1 CQ)I = C1I N CQI
(Cl L CQ)I = Clz U CQI
)I AI \ CI
(VR.C)* {x e AT : RT(z
)
)

o {r e AT : RI(x
(=nS8)F = {zxeAT:#5%(x)
(<nS)F = {zeAT:#5%(x)<n}

and similarly for the other constructs, whelé (z) = {y | (z,y) € R?} and#X denotes the cardinality
of the setX. In particular,

(AT, ..., Th.d)f = {z e AT [TV (2) x ... x T, (z)] Nnd* # 0} .

The satisfactionof an axiomE in an interpretatio = (AZ,.Z), denotedZ = E, is defined as follows:
IECcCDiffc*C DL, ITERCSIiff RICSLTETCUIfTE CUL T = trans(R) iff RZ
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is transitive,Z |= a: C iff aZ € C%, T |= (a,b): Riff (a*,b7) € RE, T |= (a,c): T iff (a?,cF) € TZ,
T = a=~biff of = b7, 7 = a #biff a* # b%. We say a concept is satisfiableff there is an interpretation
7 such thatC? # (). For a set of axioms$, we sayZ satisfiest iff 7 satisfies each element & We say
7 is amodelof E (resp.,€) iff Z = FE (resp.,.Z | £). 7 satisfies(is amodelof) a knowledge base
K=(T,R,A),denoted |= K, iff Z is a model of each component R, and.A.

An axiom E is alogical consequencef a knowledge bas&’, denotedC = FE, iff every model of
KC satisfiesE. According to [47], the entailment, subsumption and the concept satisfiabitibigm can
be reduced to knowledge base satisfiability problem (¢, R, A) = a: C iff (T,R, AU {a: ~C})
unsatisfiable, alsa;' is satisfiable iff{a: C'} is satisfiable), for which decision procedures and reasoning
tools exists (e.g., RACER [30], FACT [46], and Pellet [89]).

Example 3.1 (Car Example)Let us consider the following excerpt of a simple ontology about cars$. Le
R = () and let the TBoXZ contain the following axioms:

Car T (= 1 maker) N (= 1 passenger) N (= 1 speed)

(= 1 maker) C Car T C Vmaker.Maker
(= 1 passenger) C Car T C Vpassenger.N
(=1 speed) C Car T C Vspeed.Km/h

Roadster = Cabriolet M Ipassenger.{2}
Cabriolet T Car M Jtop Type.Soft Top
SportsCar = Car I 3speed.2 oy 55m /1, -

Here, the value forpeed ranges over the datatype of kilometers per héun/h, while the value for
passengers ranges over the concrete domain of natural numbershe concrete predicate o s, /5 1S
true if the value is at least/5km / h.

The ABox.A contains the following assertions:

mgb: Roadster M 3maker. {mg} M Ispeed.< ;7ppm/n
enzo: Car M 3Imaker {ferrari} N Jspeed.> s50km /1
tt: Car M 3Imaker.{audi} M 3speed.= 5 g5 /1, -

Consider the knowledge base= (7, R,.A). Itis then easily verified that, e.g.,

K = Roadster C Car K = mg: Maker
K = enzo: SportsCar K |= tt: =SportsCar .

4 Probabilistic Uncertainty and Description Logics

In this section, we recall an important probabilistic generalizatioS§ HOZN (D) towards sophisticated
formalisms for reasoning under probabilistic uncertainty in the Semantic WeledcPSHOZN (D),
which has recently been introduced in [71] (note that [71] and [28] misoduce closely related proba-
bilistic generalizations of the description logi§${ZF (D) andSHOQ(D), which stand behind the web
ontology languages OWL Lite and DAML+OIL, respectively). The syntdxP-SHOZIN (D) uses the
notion of a conditional constraint from [66] to express probabilistic Keoge in addition to the axioms
of SHOZN (D). Its semantics is based on the notion of lexicographic entailment in probabikstald
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reasoning [67, 69], which is a probabilistic generalization of the sophistia@otion of lexicographic en-
tailment by Lehmann [57] in default reasoning from conditional knowlelolgges. This semantics allows
for expressing both terminological probabilistic knowledge about cascemd roles, and also assertional
probabilistic knowledge about instances of concepts and roles. l&atigtiunterprets terminological and as-
sertional probabilistic knowledge as statistical knowledge about conargdtsoles and as degrees of belief
about instances of concepts and roles, respectively, and allowsifioingd) both statistical knowledge and
degrees of belief. As an important additional feature, it also allows fressing default knowledge about
concepts (as a special case of terminological probabilistic knowledg@hvs semantically interpreted as
in Lehmann’s lexicographic default entailment [57].

The notion of probabilistic lexicographic entailment [67, 69] is a formalismréasoning from sta-
tistical knowledge and degrees of belief, which has very nice featureparticular, it shows a similar
behavior as reference-class reasoning in a number of unconiedv@amples. But it also avoids many
drawbacks of reference-class reasoning: It can handle commeaios and even purely probabilistic sub-
jective knowledge as input, and conclusions are drawn in a global way dil the available knowledge as
a whole. Furthermore, it also has very nice nonmonotonic propertieshvanécessentially inherited from
Lehmann’s lexicographic entailment. In particular, it realizes an inheritahpeoperties along subclass
relationships, where more specific properties override less specifienpies, without showing the problem
of inheritance blocking (where properties are not inherited to subcdisateare exceptional relative to some
other properties). As for general nonmonotonic properties, prob@biéxicographic entailment satisfies
(probabilistic versions of) the rationality postulates by Kraus, LehmarthMagidor [56], the property of
rational monotonicity, and some irrelevance, conditioning, and inclusigmepties. All these quite appeal-
ing features carry over to the probabilistic description logiEROZN (D). See especially [69] for further
details and background on the notion of probabilistic lexicographic entailment.

4.1 Syntax

We now introduce the notion of a probabilistic knowledge base. It is baseldeclanguage of conditional
constraints [66], which encode interval restrictions for conditionabgabilities over concepts. Every proba-
bilistic knowledge base consists of (i) a PTBox, which is a classical (giser logic) knowledge base along
with probabilistic terminological knowledge, and (ii) a collection of PABoxekjolv encode probabilistic
assertional knowledge about a certain set of individuals. To this emgdawtition the set of individualkinto
the set ofclassical individuald~ and the set oprobabilistic individualsl », and we associate with every
probabilistic individual a PABox. That is, probabilistic individuals are thowdividuals inI for which we
explicitly store some probabilistic assertional knowledge in a PABOX.

We first define conditional constraints as follows. We assume a finite napeei@ of basic classifica-
tion conceptgor basic c-conceptfor short), which are (not necessarily atomic) conceptSHOZN (D)
that are free of individuals frorhp. Informally, they are the relevant description logic concepts for defining
probabilistic relationships. The set dfassification conceptfr c-conceptsis inductively defined as fol-
lows. Every basic c-concepte C is a c-concept. Ifh andqy are c-concepts, theng and(¢ M 1)) are also
c-concepts. We often writep LI v)) to abbreviate-(—¢ M —), as usual. Aconditional constrainis an ex-
pression of the fornfy|¢)[l, u], wherep andy are c-concepts, arldandu are reals fronjo, 1]. Informally,
(¥|9)[l, u] encodes that the probability @f given ¢ lies betweer anduw.

We next define the notion of a probabilistic knowledge baseP™ox PT = (7', P) consists of a
classical (description logic) knowledge b&sand a finite set of conditional constrairts Informally, every
conditional constrainty|¢)[l, ] in P encodes that “generally, if an object belonggtdhen it belongs ta
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with a probability betweehandu”. In particular,(3R.{o}|¢)[l, u] in P, whereo € I» andR € R 4, encodes
that “generally, if an object belongs tiy then it is related t@ by R with a probability between andw”.

A PABoxP is a finite set of conditional constraints. pkobabilistic knowledge bas€ = (T, P, (F,)c1,)
relative tol p consists of a PTBo®T = (7', P) and one PAB0X, for every probabilistic individuab € Ip.
Informally, every(:|¢)[l, u] in F,, whereo € Ip, encodes that “ib belongs tap, theno belongs tay with

a probability betweei andw”. In particular, (3R.{0'}|¢)[l,u] in P,, whereo € 1p, o' €I, andR€ R4,
expresses that “if belongs tap, theno is related ta’ by R with a probability betweehandw”. Informally,

a probabilistic knowledge base= (T, P, (F,).c1,) extends a classical knowledge b&sey probabilistic
terminological knowledge® and probabilistic assertional knowleddg® about everyocIp. That is, P
represents oustatistical knowledge about conceptghile every P, represents outlegrees of belief about
the individualo. Observe that the axioms ifi and the conditional constraints in evePy with o € Ip are
strict (that is, they must always hold), while the conditional constrainf3 aredefeasibldthat is, they may
have exceptions and thus do not always have to hold), §in¢é may not always be satisfiable as a whole
in combination with our degrees of belief (and then we ignore some elemenRis of

Example 4.1 (Car Example cont'd)We now extend the classical description logic knowledge agiren
in Example 3.1 by terminological default, terminological probabilistic, and @egat probabilistic knowl-
edge to a probabilistic knowledge bake= (T, P, (F,).c1,). We assume an additional atomic concept
HasFourWheeland an additional datatype rdtasColorbetween cars and the elementary datatygers
which has a finite set of color names as data values.

The terminological default knowledge (1) “generally, cars do not laaked color” and (2) “generally,
sports cars have a red color”, and the terminological probabilistic kn@slE2) “cars have four wheels with
a probability of at leadd.9”, can be expressed by the following conditional constraint8:in

(1) (=3 HasColor{red} | Car)[1, 1],
(2) (3HasColor{red} | SportsCaj([1, 1],
(3) (HasFourWheelsCar)[0.9, 1] .

Suppose we want to encode some probabilistic information about John(a/lsi@h we have not seen so
far). Then, the set of probabilistic individualg contains the individualohn’s car and the assertional
probabilistic knowledge (4) “John’s car is a sports car with a probabiligt édas.8” (we know that John
likes sports cars) can be expressed by the following conditional camtstraonn's car

(4) (SportsCar T)[0.8,1].

4.2 Semantics

In this section, we define the semantics o8P-OZN (D). After some preliminaries, we introduce the
notions of consistency and lexicographic entailment for probabilistic krdyedases, which are based on
the notions of consistency resp. lexicographic entailment in probabilisgutietasoning [67, 69].

4.2.1 Preliminaries

We now define (possible) objects and probabilistic interpretations, whicteatain sets of basic c-concepts
resp. probability functions on the set of all (possible) objects. We alfinadthe satisfaction of classical
knowledge bases and conditional constraints in probabilistic interpretations
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A (possible) object is a set of basic c-concepisc C such that{¢(i) |p € o} U {—¢(i)| ¢ € C\ o}
is satisfiable, wheréis a new individual. Informally, every objeetrepresents an individualthat is fully
specified orC in the sense thatbelongs (resp., does not belong) to every c-congepb (resp.,¢ € C \ 0).
We denote byO. the set of all objects relative 0. An objecto satisfiesa classical knowledge bagg
or o is amodelof 7', denotedh =T, iff TU{¢(i) | p o} U{=¢(i)| p €C\ o} is satisfiable, whereis a
new individual. An objecb satisfiesa basic c-concept € C, or o is amodelof ¢, denote = ¢, iff ¢ € o.
The satisfaction of c-concepts by objects is inductively extended to @hcepts, as usual, by @)= —¢
iff o}=¢ does not hold, and (ii) = ¢ M1 iff o =¢ ando=1. Itis not difficult to verify that a classical
knowledge bas#é’ is satisfiable iff an objeat € O, exists that satisfies.

A probabilistic interpretationPr is a probability function orO¢ (that is, a mapping’r: O¢c — [0, 1]
such that allPr(o) with o € O¢ sum up tol). We sayPr satisfiesa classical knowledge bage or Pr
is amodelof T', denotedPr =T, iff o =T for everyo € O¢ such thatPr(o) >0. We define the prob-
ability of a c-concept and the satisfaction of conditional constraints ingtmgtic interpretations as fol-
lows. Theprobability of a c-concepty in a probabilistic interpretatio®r denotedPr(¢), is the sum of
all Pr(o) such tha = ¢. For c-concept® and such thatPr(¢) >0, we write Pr(|¢) to abbreviate
Pr(¢m4) / Pr(¢). We sayPr satisfiesa conditional constrain(ip|v)[l, u], or Pr is amodelof (¢ |¢)[l, u],
denotedPr |= (v|9)[l, ul, iff Pr(¢)=0 or Pr(y|¢) € [l,u]. We sayPr satisfiesa set of conditional con-
straintsF, or Pr is amodelof F, denotedPr |= F, iff Pr = F for all F' € F. Itis not difficult to verify that
a classical knowledge bageis satisfiable iff there exists a probabilistic interpretation that satigfies

4.2.2 Consistency

The notion of consistency for PTBoxes and probabilistic knowledgeshiad®msed on the notion of consis-
tency in probabilistic default reasoning [67, 69].

We first give some preparative definitions. A probabilistic interpretafiorverifiesa conditional con-
straint (¢|¢)[l, u] iff Pr(¢)=1 and Pr(y) € [l,u], that is, iff Pr(¢) =1 and Pr |= (|¢)[l,u]. We say
Pr falsifies(¢|@)[l, u] iff Pr(¢)=1 and Pr - (v|¢)[l,u]. A set of conditional constraint® toleratesa
conditional constrainE’ under a classical knowledge bagéff 7" U F has a model that verifies.

A PTBox PT = (T, P) is consistentff (i) 7 is satisfiable and (ii) there exists an ordered partition
(Py, ..., P) of P such that eactP; with i € {0, ..., k} is the set of allFF € P, U - - - U Py, that are toler-
ated undefl’ by P; U - - - U Py. Informally, the condition (ii) means tha@ has a natural ordered partition
into collections of conditional constraints of increasing specificities sudhetery collection is locally
consistent. That is, any inconsistencies can be naturally resolved ferrprg more specific pieces of
knowledge to less specific ones. For example, the inconsistency befwéeétasColor{red} | Car)[1, 1]
and (3 HasColor{red} | SportsCaj[1, 1] when reasoning about sports cars is naturally resolved by prefer-
ring the latter to the former. We call the above ordered partiti@y. . ., P;) of P thez-partitionof PT. A
probabilistic knowledge bas€ = (T, P, (F)c1, ) is consistentff PT = (T, P) is consistent and’ U P,
is satisfiable for all probabilistic individuatsc Ip. Informally, the latter says that the strict knowledge in
T must be compatible with the strict degrees of beliePipfor every probabilistic individuad.

Example 4.2 (Car Example cont'd) The probabilistic knowledge basé= (T, P, (F,).c1,) of Exam-
ple 4.1 is consistent, sincBT = (T, P) is consistent, and"U P, is satisfiable for every probabilistic
individual o € Ip = {John’s cart. Observe that the z-partition ¢f", P) is given by (P, P;), where
Py ={(¥|9)[l,u] € P| p=Car} andP; = {(¢|9)[l,u] € P | ¢ = SportsCat.
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There is an algorithm for deciding whether a PTBox (resp., probabilisteviedge base) in BHO-
IN (D) is consistent, which is based on a reduction to deciding whether a classmalekige base in
SHOZN (D) is satisfiable and to deciding whether a system of linear constraints is so[vahleThis
shows that the two consistency problems iSROZN (D) are both decidable.

4.2.3 Lexicographic Entailment

The notion of lexicographic entailment for probabilistic knowledge baseassdon lexicographic entail-
ment in probabilistic default reasoning [67, 69]. In the sequeklet(T', P, (F,).c1, ) be a consistent prob-
abilistic knowledge base. We first define a lexicographic preferemagare on probabilistic interpretations,
which is then used to define the notion of lexicographic entailment for setsnglittonal constraints under
PTBoxes. We finally define the notion of lexicographic entailment for deyigtatistical knowledge and
degrees of belief about probabilistic objects from PTBoxes and piligiEtknowledge bases, respectively.

We use the z-partitio0F, . . ., Py;) of (T, P) to define a lexicographic preference relation on probabilis-
tic interpretationsPr and Pr’: We sayPr is lexicographically preferabléor lex-preferablgto Pr’ iff some
i€{0,...,k} exists such thal{ F € P;| Pr=F}| > {FeP|Pr'EF} and|{FeP;|Pr=F}| =
{F eP; | Pr'l=F} foralli<j<k. Roughly speaking, this preference relation implements the idea of
preferring more specific pieces of knowledge to less specific ones ir#igeot local inconsistencies. It can
thus be used for ignoring the latter when drawing conclusions in the cdgeabinconsistencies. A model
Pr of a classical knowledge ba%eand a set of conditional constrairstsis alexicographically minima(or
lex-minima) modelof 7" U F iff no model of 7" U F is lex-preferable taPr.

We define the notion of lexicographic entailment of conditional constraiais fets of conditional con-
straints under PTBoxes as follows. A conditional constr&in)|l, «] is alexicographic consequender
lex-consequeng®f a set of conditional constraings under a PTBoxPT', denotedF |~ ““* (1)|¢)[l, u] un-
der PT, iff Pr(vy) € [l, u] for every lex-minimal modePr of T"U F U {(¢| T)[1, 1]}. We say(¢|¢)[l, u] is
atight lexicographic consequenger tight lex-consequengef 7 underPT, denotedF H”tlf;ht (V]o)[l, u)
under PT, iff [ (resp.,u) is the infimum (resp., supremum) &#r (1)) subject to all lex-minimal models
Prof T UF U{(¢|T)[1,1]}. Note that[l,u]=[1,0] (where[1,0] represents the empty interval) when
no such modelPr exists. Furthermore, for inconsistent PTBoxe®, we defineF | ' (y|¢)[l, u] and

f]}wtl;”;w (¢|¢)[1,0] under PT for all sets of conditional constraint and all conditional constraints
(@[, ul.

We now define which statistical knowledge and degrees of belief follovemutekicographic entail-
ment from PTBoxes”T and probabilistic knowledge basgs= (T, P, (F).c1, ), respectively. A condi-
tional constraint¥ is alex-consequencef PT, denotedPT |~ " F, iff () |~ ' F underPT. We sayF
is atight lex-consequencef PT, denotedPT |fvff;htF, iff 0 HvtlgﬁltF under PT. A conditional con-
straint F* for a probabilistic individuab € I» is alex-consequencef K, denotedC |~ '“ F, iff P, |~ " F
under PT = (T, P). We sayF is atight lex-consequencef K, denotedt |k, F\, iff B |k /5, F un-
derPT = (T, P).

Example 4.3 (Car Example cont'd)Consider again the probabilistic knowledge b&se: (T, P, (F,)oc1,)
of Example 4.1. The following are some (terminological default and terminabgiobabilistic) tight lex-
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consequences d*T = (T, P):

(=3 HasColor{red} | Car)[1, 1],
(3HasColor{red} | SportsCay|[1, 1],
(HasFourWheelsCar)[0.9, 1],

(-3 HasColor{red} | Roadstey|1, 1],
(HasFourWheelsSportsCaj[0.9, 1],
(HasFourWheelsRoadste)[0.9, 1] .

Hence, in addition to the sentences (1) to (3) directly encodéd] ime also conclude “generally, roadsters
do not have a red color”, “sports cars have four wheels with a pitityabf at least0.9”, and “roadsters
have four wheels with a probability of at ledsd”. Observe here that the default property of not having a
red color and the probabilistic property of having four wheels with a gritibaof at least0.9 are inherited
from cars down to roadsters. Roughly, the tight lex-consequenc@&d'ef (T, P) are given by all those
conditional constraints that (a) are eitherf or (b) can be constructed by inheritance along subconcept
relationships from the ones iR and are not overridden by more specific pieces of knowledde in

The following conditional constraints for the probabilistic individdahn’s carare some (assertional
probabilistic) tight lex-consequences kf= (T, P, (F,).c1,), Which informally say that John’s car is a
sports car, has a red color, and has four wheels with probabilities dst0I8, 0.8, and0.72, respectively:

(SportsCat T)[0.8, 1],
(3HasColor{red} | T)[0.8, 1],
(HasFourWheelsT)[0.72,1] .

There is an algorithm for computing tight intervals under lexicographic entatime?-SHOZN (D),
which is based on a reduction to deciding classical knowledge base &ditgfia SHOZN (D) and to
solving linear optimization problems [71]. Hence, lexicographic entailment 8#ZN (D) is com-
putable.

4.3 Related Work

To our knowledge, there are no other approaches to probabilistidptéstiogics for the Semantic Web in
the literature. However, there are several previous approachesttahplistic description logics without Se-
mantic Web background. Furthermore, there are several probabiligticseans of web ontology languages
in the literature. Finally, there are important applications of probabilistic g#smr logics and probabilistic
web ontology languages in the field of information retrieval. In this sectiongiweean overview of these
approaches.

4.3.1 Probabilistic Description Logics

Other approaches to probabilistic description logics can be classifieddaugdo the generalized descrip-
tion logics, the supported forms of probabilistic knowledge, and the uridgriyrobabilistic reasoning
formalism. Heinsohn [38] presents a probabilistic extension of the deserilotiic ALC, which allows to
represent terminological probabilistic knowledge about concepts desl, mnd which is essentially based
on probabilistic reasoning in probabilistic logics, similar to [85, 1, 26, 66]inktghn [38], however, does
not allow for assertional knowledge about concept and role instangasger's work [51] proposes an-
other probabilistic extension of the description logi€C, which allows for terminological and assertional
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probabilistic knowledge about concepts/roles and about concephdestarespectively, but does not sup-
port assertional probabilistic knowledge about role instances (but héans a possible extension in this
direction). The uncertain reasoning formalism in [51] is essentially baseprababilistic reasoning in
probabilistic logics, as the one in [38], but coupled with cross-entropy miaitioiz to combine terminolog-
ical probabilistic knowledge with assertional probabilistic knowledge. Taekuy Dirig and Studer [22]
presents a further probabilistic extension©fC, which is based on probabilistic reasoning in probabilistic
logics, but which only allows for assertional probabilistic knowledge &boncept and role instances, and
not for terminological probabilistic knowledge. Jaeger's recent wbg{ focuses on interpreting proba-
bilistic concept subsumption and probabilistic role quantification through statisaenpling distributions,
and develops a probabilistic version of the guarded fragment of fiderdogic. Koller et al.'s work [55]
presents a probabilistic generalization of thea8sic description logic. Like Heinsohn’s work [38], it al-
lows for terminological probabilistic knowledge about concepts and rblgsjoes not support assertional
knowledge about instances of concepts and roles. But, in contra$fta[i8 based on inference in Bayesian
networks as underlying probabilistic reasoning formalism. Closely relateki byoYelland [123] combines

a restricted description logic closefoC with Bayesian networks, and applies this approach to market anal-
ysis. It allows for terminological probabilistic knowledge about conceptsrales, but does not support
assertional knowledge about instances of concepts and roles.

4.3.2 Probabilistic Web Ontology Languages

The literature contains several probabilistic generalizations of web optdémguages. Many of these
approaches focus especially on combining the web ontology languagev@Viprobabilistic formalisms
based on Bayesian networks. In particular, da Costa [9], da Costiaaaskdy [10], and da Costa et al. [11]
suggest a probabilistic generalization of OWL, called PR-OWL, which igdas multi-entity Bayesian
networks. The latter are a Bayesian logic that combines first-order logidBaigkesian probabilities. Ding
etal. [13, 14] propose a probabilistic generalization of OWL, called B@y&L, which is based on standard
Bayesian networks. BayesOWL provides a set of rules and proegflurthe direct translation of an OWL
ontology into a Bayesian network that supports ontology reasoning, bitimwand across ontologies, as
Bayesian inferences. Ding et al. [88, 14] also describe an applicdtibis@pproach in ontology mapping.
In closely related work, Mitra et al. [84] introduce a technique to enhgnexisting ontology mappings by
using a Bayesian network to represent the influences between potentalt mappings across ontologies.
Yang and Calmet [122] present an integration of the web ontology largO8gL with Bayesian networks.
The approach makes use of probability and dependency-annotated@wfhresent uncertain information
in Bayesian networks. Pool and Aikin [90] also provide a method foresgmting uncertainty in OWL
ontologies, while Fukushige [27] proposes a basic framework foesgmting probabilistic relationships in
RDF. Finally, Nottelmann and Fuhr [86] present two probabilistic extensibwariants of OWL Lite, along
with a mapping to locally stratified probabilistic Datalog.

4.3.3 Applications in Information Retrieval

An important research direction deals with the application of probabilistici¢ien logics and probabilis-

tic web ontology languages in enhanced information retrieval techniqongsarticular, Mantay et al. [75]
propose a probabilistic least common subsumer operation, which is baseg@robabilistic extension of
the description logic languagéZA\/ . They show that applying this approach in information retrieval allows
for reducing the amount of retrieved data and thus for avoiding informétiod. Closely related work by
Holi and Hyvonen [39, 40] shows how degrees of overlap between conceptseaandeled and computed
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efficiently using Bayesian networks based on RDF(S) ontologies. Sagreels of overlap indicate how well
an individual data item matches the query concept, and can thus be useédsuring the relevance in in-
formation retrieval tasks. In another closely related work, Udrea et 58] [explore the use of probabilistic
ontologies in relational databases. They propose to extend relationsdgiasig with every attribute a
constrained probabilistic ontology, which describes relationships betige®s occurring in the domain of
that attribute. An extension of the relational algebra then allows for andseterecall in information re-
trieval. Finally, Weikum et al. [121] and Thomas and Sheth [117] desthiase of probabilistic ontologies
in information retrieval from a more general perspective.

5 Possibilistic Uncertainty and Description Logics

Similar to probabilistic extensions of description logics, possibilistic extensibdeszription logics have
been developed by Hollunder [45] and Dubois et al. [16] and espeeipfilied in information retrieval by
Liau and Fan [63]. In the sequel, we implicitly assume the description I8$©OZN (D) as underlying
description logic, but any other (decidable) description logic can be asactll.

5.1 Syntax

A possibilistic axiomis of the form(«, P 1) or (o, N1), wherea is a classical description logic axiom,
and! is a real number fronf0, 1]. A possibilistic RBoxXresp., TBox ABo0Y is a finite set of possibilistic
axioms(a, P 1) or (o, N 1), wherex is an RBox (resp., TBox, ABox) axiom. possibilistic knowledge base
K= (R, T, A) consists of a possibilistic RBoR, a possibilistic TBoxZ, and a possibilistic ABoxd. The
following example from [45] illustrates possibilistic knowledge bases.

Example 5.1 (Car Example cont’d) The following possibilistic knowledge bagé= (R, 7,.4) encodes
some possibilistic knowledge about cars and rich peopleRLet). The TBox7 represents the possibilistic
terminological knowledge that “every person owning a Porsche is eittieor a car fanatic with a necessity
of at least).8” and “every rich person is a golfer with a possibility of at least”:

7 = {(3owns.Porsche C richPerson U carFanatic, N 0.8),
(richPerson C golfer, P0.7)} .

Furthermore, the ABox4 expresses the possibilistic assertional knowledge that “Tom owdid avith

necessityl”, “a 911 is a Porsche with necessity, and “Tom is not a car fanatic with a necessity of at
least0.7":

A = {((Tom,911): owns, N 1),
(911: Porsche, N 1),
(Tom: = carFanatic, N 0.7)}.

5.2 Semantics

Let 7 denote the set of all classical description logic interpretationspossibilistic interpretations a
mappingm: Z — [0, 1]. In the sequel, we assume thais normalized that is, thatr(/) =1 for some
I €Z. Thepossibilityof a description logic axiom in a possibilistic interpretation, denotedPoss(«), is
then defined byPoss(a) = max {w(I) | €Z, I =a} (wheremax () = 0), and thenecessityf «, denoted
Nec(a), is defined byNec(a) =1 — Poss(—a).
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A possibilistic interpretationr satisfiesa possibilistic axiom{«, P 1) (resp.,(«, N 1)), or = is amodel
of («, P1) (resp.,(«, N 1)), denotedr |= (a, P 1) (resp.,m = (o, N 1)) iff Poss(«) >1 (resp.,Nec(a) >1).
The notions of satisfiability, logical entailment, and tight logical entailment fesjimlistic knowledge bases
are then defined in the standard way. As shown by Hollunder [45], iecidgical consequences and thus
also deciding satisfiability and computing tight logical consequences caedoead to deciding logical
consequences in description logics.

Example 5.2 (Car Example cont’d)Consider again the possibilistic knowledge b&sef Example 5.2. It
is not difficult to verify that/C is satisfiable and logically implies that “Tom is a golfer with a possibility of
atleas).7”, that is,

K E (Tom: golfer, P0.7).

6 Vagueness and Description Logics

In this section, we define fuzzZ§HOZN (D), using the fuzzy operators of Section 2.3. We recall here the
semantics given in [109, 112] (see also [95]).

6.1 Syntax
We have seen th&HOZN (D) allows to reason with concrete datatypes, such as strings and integegs, us
so-called concrete domains. In our fuzzy approach, concrete domainbe based on fuzzy sets as well.

6.1.1 Fuzzy Datatype Theories

A fuzzy datatype theo® = (Ap, - p) is defined in the same way as a classical datatype theory except that
-p NOw assigns to every-ary datatype predicate anrary fuzzy relation ovelAp. For instance, as for
SHOZN (D), the predicate< ;s may be a unary crisp predicate over the natural numbers denoting the set
of integers smaller or equal i®, i.e.,<;s: Natural — [0, 1] and

1 ifz <18
< = .
<1s(2) { 0 otherwise.
So,
Minor = Person M dage. <13 4)

defines a person, whose age is less or equH tae., it defines a minor.

On the other hand, concerning non crisp fuzzy domain predicates cak tteat in fuzzy set theory and
practice, there are many functions for specifying fuzzy set memberglggeds. However, the triangular,
the trapezoidal, thé.-function (left-shoulder function), and the-function (right-shoulder function) are
simple, but most frequently used to specify membership degrees. Theohmare defined over the set of
non-negative rational®* U {0} (see Fig. 1).

Using these functions, we may then define, for instaf@eing: Natural — [0,1] to be a fuzzy con-
crete predicate over the natural numbers denoting the degree of y@asmgha person’s age. The concrete
fuzzy predicateYoung may be defined a¥oung(x) = L(x;10,30). So,

YoungPerson = Person M Jage. Young (5)

denotes a young person.
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Figure 1: (a) Trapezoidal function; (b) Triangular function; [ejunction; (d) R-function

6.1.2 Fuzzy Modifiers

We allow modifiers in fuzzys HOZN (D). Fuzzy modifiers, likerery, more_or _less andslightly, apply to
fuzzy sets to change their membership function. Formaligodifieris a functionf,,: [0,1] — [0, 1]. For
instance, we may definery(z) = 22 andslightly(z) = /z. Modifiers have been considered, for instance,
in [44, 118]. From a syntactical point of view, M is a new alphabet for modifier symbots, € M is a
modifier, andC' is aSHOZN (D) concept, themn(C) is fuzzy concept as well. For instance, by referring
to Example 3.1, we may define the concept of sports car as the concept

SportsCar = Car M Aspeed.very(High) , (6)

wherewvery is a concept modifier, with membership functiesry(x) = 22, and High is a fuzzy concrete
predicate over the domain of speed expressed in kilometers per hour gnidentefined adfigh(z) =
R(x; 80, 250).

6.1.3 Fuzzy Knowledge Bases

The syntax of fuzzySHOZN (D) concepts is as follows:

C — Tl L[AH{ar,...,an} [C1T1C [CLUC, [ =C | m(C)
YR.C|IRC | (>nS) | (<nS)|
VTi,...,Tp.D|3Th, ..., Ta.D | (ZnT) | (<nT).

Concerning axioms and assertions, similarly to [103], we define fuzzyresas follows: Let bex € (0, 1].
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A fuzzy RBoxR is a finite set ofSHOZN (D) transitivity axiomstrans(R) andfuzzy role inclusion
axiomsof the form (« > n), (a < n), (a > n), and{(a > n), wherea is aSHOZN (D) role inclusion
axiom.

A fuzzy TBox7 is a finite set offuzzy concept inclusion axioms > n), (o < n), (o > n), and
(a < n), wherea is aSHOZN (D) concept inclusion axiom.

A fuzzy ABoxA consists of a finite set diizzy concepandfuzzy role assertion axiont the form
(a = n), (a < n), (> n), or (a < n), wherea is aSHOZN (D) concept or role assertion. As for the
crisp caseA may also contain a finite set of individual (in)equality axioms b anda % b, respectively.

For instancea: C > 0.1), {(a,b): R <0.3), (RC S > 0.4), or (C C D < 0.6) are fuzzy axioms.
Informally, from a semantical point of view, a fuzzy axidm < n) constrains the membership degreevof
to be at most (similarly for >, >, <). Hence(jim: YoungPerson > 0.2) says thafim is a YoungPerson
with degree at leagt2. On the other hand, a fuzzy concept inclusion axiom of the f@thiz D > n) says
that the subsumption degree betwé&eandD is at least.

A SHOIN (D) fuzzy knowledge bagé = (7, R, .A) consists of a fuzzy TBofZ , a fuzzy RBoxR,
and a fuzzy ABoxA.

6.2 Semantics

The semantics extends [103]. The main idea is that concepts and roletegpedited as fuzzy subsets of an
interpretation’s domain. Therefor§ HOZN (D) axioms, rather being satisfied (true) or unsatisfied (false)
in an interpretation, become a degree of truthjOnl]. In the following, we use\, v, = and — in infix
notation, in place of a t-norm s-norms, negation functiom, and implication functior.

6.2.1 Fuzzy Interpretations

A fuzzy interpretatiorZ = (AZ,-7) relative to a fuzzy datatype theo® = (Ap, -p) consists of a
nonempty setA? (called thedomain, disjoint from Ap, and of afuzzy interpretation function’ that
coincides with- p on every data value, datatype, and fuzzy datatype predicate, an@jitsss

e to each abstract individual € I an element imAZ;

to each abstract conceptc A a functionC?: AT — [0, 1];
e to each abstract rol® € R4 a functionRZ: AT x AT — [0,1];

e to each abstract functional role € R4 a partial functionR?: AT x AT — [0, 1] such that for all
x € AT there is an uniqug € A on whichR%(x, %) is defined;

e to each concrete rol€ € R¢ a functionkR?: A x Ap — [0,1];

e to each concrete functional rofé € R¢ a partial function : AZ x Ap — [0, 1] such that for all
x € AT there is an unique € Ap on whichTZ(z, v) is defined,;

e to each modifiern € M the modifier functionf,,: [0,1] — [0, 1].

The mapping? is extended to roles and concepts as specified in the following table (where AZ
andv € Ap):

(S (xy) = St(y,x)
THx) = 1
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15 (z) 0
{a1,..,an}t(x) = Vi ,af =z
(1N ) = CF(x) ACT(x)
(C1uC) (z) = () VvV Cl(z)
(~C)f(z) = —C*(x))
(m(C) (x) = fum(C¥(x))
(VR.C’)I(JC) = infycpr R (z,y) — C%(y)
(EIR.C)I(x) = SUPyear R (z,y) A C%(y)
(=n S)I(x) SUD (41, .., yn} C AT /\?:1 Sz(ﬁ’yi)

‘{ylv'--vyn}‘:n
(<n8)(z) = ~(=n+18) ()

7 infyl,...,yneADI(/\?zl EZ(‘x? yl)) - DI(ylv s 7y’fl)
(3T1,..., Tu.DY (x) = sup,, o capz(Aiey T (2,9:) A D (y1, - yn) -

We comment briefly some points. The semantic3 BfC'

<

e

3

S

Py

=
I

BR.CY (d) = supyenr RE(z,y) ACT(y)

is the result of viewingl R.C' as the open first order formulsy. Fr(z,y) A Fo(y) (whereF is the obvious
translation of roles and concepts into first-order logic (FOL)) and theestial quantified is viewed as a
disjunction over the elements of the domain. Similarly,

(VR.C)I<J?) = inf caz R (x,y) — C%(y)

is related to the open first order formlg. Fr(x,y) — Fco(y), where the universal quantifigris viewed
as a conjunction over the elements of the domain. However, unlike the clasa$en in general, we do
not have thatvR.C)* = (-3R.-C)”. For instance, it holds in tukasiewicz logic, but not ib@&! logic.
Also interesting is that (see [35]) the axiomC —(VR.A) M (-3R.—A) has no classical model. However,
in [35], it is shown that in @del logic it has no finite model, but has an infinite model.

Another point concerns the semantics of number restrictions. The semafrttiesconcept> n .S)

(>nS)I(x) = Sup ‘{{yh.--,yn}}‘gAI /\?lez(x,yi)
Y- Ynt =n

is the result of viewind> n S) as the open first order formula

3ty NS@y) N N\ wiF

i=1 1<i<j<n

That is, there are at leastdistinct elements that satisfy to some degfée, ;). This guarantees us that
35.T = (> 1 5). The semantics df< n S) is defined in such a way to guarantee the classical relationship
(EnS)=-(=n+159).

An alternative definition for th€ n S) and the(< n S) constructs may rely on the scalar cardinality of
a fuzzy set. However, we prefer to stick on the formulation, which dsmwectly from its FOL translation.
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Finally, the mapping?’ is extended to non-fuzzy axioms as specified in the following table (where
a,b el):

(RES) = lnmyGAIR (x7y)_>SI(m7y)
(T L U)I - myEAIT (.%',y) - UI('r7y)
(CC D)’ = infpens C7(z) = D(a)
(a: C)y" = C*(a")
((a,0): R)YF = RZI(dZ,b%).

Note here that e.g. the semantics of a concept inclusion a&iembD is derived directly from its FOL trans-
lation, which is of the fornz.Fo(z) — Fp(z). This definition is clearly different from the approaches
in whichC' C D is viewed asvz.C'(z) < D(x). This latter approach has the effect that the subsumption
relationship is a classicdb, 1} relationship, while the in former approach subsumption is determined up to
a certain degree i, 1].

The notion ofsatisfactionof a fuzzy axiomE by a fuzzy interpretatioff, denoted’ |~ E, is defined as
follows: Z |= trans(R), iff Yo,y € AT.RT(z,y) = sup,ear RE(z,2) A RE(2,y). = (o > n), where
a is a role inclusion or concept inclusion axiom, dff > n. Similarly, for the other relations, < and>.

7 = (a = n), wherea is a concept or a role assertion axiomdff > n. Similarly, for the other relations
<, <, >. We say that a conceydt is satisfiableiff there is an interpretatiof and an individuak: € A%
such thaC”(x) > 0. Finally,Z = a ~ biff o = b andT |= a £ biff o # b’.

For a set of fuzzy axiom§&, we say thatZ satisfiest iff I satisfies each element é&i We say thaiZ
is amodelof E (resp. &) iff Z = E (resp.Z = £). 7 satisfies(is amodelof) a fuzzy knowledge base
K=(T,R,A),denoted = K, iff Z is a model of each component R and.A, respectively.

A fuzzy axiom E is alogical consequencef a knowledge bask, denotedC = E iff every model of
KC satisfiesE.

The interesting point is that according to our semantics, e.g., a minor is a y®msagn to a certain
degree and is obtained without explicitly mentioning it. This inference can aeatchieved in classical
SHOZN (D). Similarly, by referring to Example 3.1, we will have that the ¢awill be a sports car to a
certain degree. Therefore, unlike Example 3tlis now closely a sport caas it should be The following
two examples highlight these points.

Example 6.1 (Car Example cont'dExample 3.1 illustrates an evident difficulty in defining the class of
sport cars. Indeed, it is highly questionable why a car whose speldis:/h is nota sport car anymore.
The point is that essentially, the higher the speed the more closely a carosts &g, which makes the
concept of sports car rathef@zyconcept, i.e.yagueconcept, rather than a crisp one. In the next section,
we will see how to represent such concepts more appropriately. Letusatonsider Example 3.1, where
all axioms of the TBox and ABox are asserted with dedrgee., are of the form{a > 1). We replace the
definition of SportsCar with Definition (6). Then, we have that (under Lukasiewicz logic)

K = (SportsCar T Car > 1) K = (mgb: SportsCar < 0.63)
K = (enzo: SportsCar > 1) K [ (tt: SportsCar > 0.97) .

Note how the maximal speed limit of thegb car (< ;7,,/1) induces an upper limit).53, of the member-
ship degree. Neither this inference is possible in classi#gaDZN (D), nor the one involvingt.
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Example 6.2 Consider the knowledge baggwith definitions (4) and (5). Then under Lukasiewicz logic
we have that (see [108])

K [E (Minor C YoungPerson > 0.6)
K E (YoungPerson C Minor > 0.4)

which are relationships not captured with class@&OZN (D).

6.2.2 Best Truth Value Bound

Finally, givenC and an axiomx, wherea is neither a transitivity axiom, nor an individual (in) equality
axiom, it is of interest to compute’s best lower and upper degree value bouriiss{¢ Truth Value Bound
(BTVB)). Thegreatest lower boundf a w.r.t. I (denotedyib(KC, o)) is

gIb(K, a) = sup{n | K |= {(a = n)} ,
while theleast upper boundf o with respect tdC (denotedub(K, «) is
lub(K,a) = inf{n: L = (e < n)},

wheresup () = 0 andinf () = 1. Determining thdub and theglb is called theBest Degree Boun(BDB)
problem. For instance, the consequences in Examples 6.1 and 6.2 aresthmd$mble degree bounds.
Furthermore, note that,

lub(X,a: C) = —glb(X,a: -C) , (7)

i.e., thelub can be determined through th&® (and vice-versa).

Similarly, lub(%, (a,b): R) = —glb(X,a: -3R.{b}) holds. Also, note that: = («a > n) iff glb(%,
a) = n, and similarly® = (o < n) iff lub(Z, «) < n hold.

Another similar concept is thigest satisfiability boundf a concept’ and amounts to determine

glb(K, C) = sup sup {C%(z) | T =K} .
T zenf

Essentially, among all modelsof the knowledge base, we are determining the maximal degree of truth that
the concept may have over all individuals € AZ.

Example 6.3 Consider the knowledge basgin Example 3.1. Assume, that a car seller sells an Audi TT
for $31500, as from the catalog price. A buyer is looking for a spatstmt wants to pay not more than
around $30000. In classical DLs no agreement can be found. Tixepn relies on the crisp condition
on the seller's and the buyer’s price. A more fine grained approachdwmi (and usually happens in
negotiation) to consider prices as concrete fuzzy sets instead. Forc@sthe seller may consider optimal
to sell above $31500, but can go down to $30500. The buyer prefepgend less than $30000, but can go
up to $32000. We may represent these statements by means of the follovants dgee Figure 2):

AudiTT = SportsCar M IhasPrice.R(x; 30500, 31500)
Query = SportsCar M JhasPrice.L(x; 30000, 32000)

Then we may find out that the highest degree to which the cori€¢ept AudiTT M Query is satisfiable
is 0.75 (the possibility that the Audi TT and the query matches is 0.75). Thatbige, C') = 0.75 and
corresponds to the point where both requests intersects (i.e., the caersalglat $31250).

Problems such as determining #1é can be solved by relying on mixed integer linear programming as done
in [106, 107] and in théuzzyDLsystem (accessible from Umberto Straccia’s home page).
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Buyer's ) Seller's
soft constraint soft constraint

30000 31500

075 - - -7

30500 31250 32000

Figure 2: The soft price constraints.

6.3 Related Work

Several ways of extending DLs using the theory of fuzzy logic have Ipeeposed in the literature. The
first work is due to Yen [124] who considered a sub-languagd 6€, 7L~ [7, 58]. However, it already
informally talks about the use of modifiers and concrete domains. Thoughnptue reasoning facility, the
subsumption test, is a crisp yes/no question. Tresp [118] considemdALL extended with a special form
of modifiers, which are a combination of two linear functionsin, max and1 — x membership functions
has been considered and a sound and complete reasoning algorithmttesssngsumption relationship has
been presented. Similarly to Straccia’s work [106, 107], a linear pnogniag oracle is needed.

Assertional reasoning has been considered by Straccia [100, @BR wlhere fuzzy assertion axioms
have been allowed in fuzz{4£C (with min, max and1—z functions), concept modifiers and fuzzy concrete
domains are not allowed however ([102] reports a four-valued viaoafuzzy ALC). He also introduced
the BTVB problem and provided a sound and complete reasoning algorabadlon completion rules. In
the same spirit, Blldobleret al.[41, 43, 44, 42] extend Straccia’s fuzzyCC with concept maodifiers of the
form f,,(z) = 2%, wheres > 0. A sound and complete reasoning algorithm for the graded subsumption
problem, based on completion rules, is presented.

Straccia’s works [105, 111, 116] are essentially as [103], exceptibw the truth space is a complete
lattice rather tharfo, 1].

Sanchez and Tettamanzi [91, 92, 93] start addressing the issue ohtiltersemantics of quantifiers in
fuzzy ALC (without the assertional component). Essentially, fuzzy quantifiers all@tate sentences such
as Faithful Customer M (Most) buys. LowCalorieFood denoting “the set of individuals that mostly by low
calorie food”.

Hajek [35, 36] considerglLC under arbitrary t-norm and reports, among others, a procedureimgcid
= (C C D > 1) and deciding whethefC C D > 1) is satisfiable, by a reduction to the propositional BL
logic, for which a Hilbert style axiomatization exists [34] (but see also [88]domplexity of rational
Pavelka logic and see [5], which reports some complexity results formesgsm fuzzy DLS).

Straccia [104] provides a translation of fuzzy.C with GCI's into classicalALC. The translation is
modular and, thus, it is expected that it can be extended to more expr&dssvas well. The idea is to
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translate a fuzzy assertion of the fofm: C' > n) into a crisp assertioa: C,, with intended meaningd'is
instance ofC' to degree at least”. It then uses GCI’s to correctly relate tlig,. For instanceCy 7 C Cog

is used to say that whenever an individual is instanc€ tf degree at lea$t7 then it is also instance a@f

to degree at lea$t6. The translation is at most quadratic in the size of the knowledge base. &hdad
further been considered by [61, 62], which essentially provide a taigguage in which expressions of the
forme.g. a: VRyg.Cy 9 are allowed, with intended meaning: ¢fhas anR-successor to degree at least
then this successor is also an instancé€'ab degree at lea$t9”.

Other extension of fuzzy DLs, mainly concern their integration with logic mogning, which we
however do not report here (see, e.g. [116, 113, 111]). Alsagleaal.[54] extends fuzzy DLs by allowing
comparison operators, e.g., allowing to state that “Tom is more tall than Tim"th&nateresting extension
is [16], which combines fuzzy DLs with possibility theory. Essentiallyi@sC > n) is Boolean (either an
interpretation satisfies it or not), we can build on top of it an uncertainty legich is based on possibility
theory in [16].

From a reasoning point of view, no calculus exists yet checking saflgfiadf fuzzy SHOZN (D)
knowledge bases, though there exist an implementation for {82257 (D) (thefuzzyDLsystem) support-
ing Zadeh semantics, Lukasiewicz semantics and classical semantics.

Usually, the semantics used for fuzzy DLs follows the so-called Zadehrgesgbut where the concept
inclusion is crisp, i.e.C' C D is viewed asvz.C(xz) < D(x). [44, 118] report a calculus for the case of
ALC [94] with modifiers and simple TBox under Zadeh semantics. No indication ®@BifvB problem
is given. [100, 103] reports a calculus f@iLC and simple TBox under Zadeh semantics and addresses
the BTVB problem. [104] shows how the satisfiability problem and the BTV@bfam can be reduced to
classicalALC and, thus, can be resolved by means of a tools like FACT and RACERIT98how results
providing a tableaux calculus for fuz&yHZN without GCls and under the Zadeh semantics, by adapting
similar techniques developed for the classical counterpart. Fuzzy @G@&s dadeh semantics can be man-
aged as described in [98]. Ultimately, we expect that the techniques gedelor classicabHOZN (D)
can be extended to the work of [103] as [96, 97] already show. Alsoestiag is the work [60], which
provides a tableaux for fuzz§HZ with GCI's.

On the other hand side, fuzzy tableaux algorithms under Zadeh semasatos,®t to be suitable to
be adapted to other semantics, such as tukasiewicz logic. Even morerpaticlés the fact that they are
unable to deal with fuzzy concrete domains. However, despite theséveegesults, recently [107, 106]
reports a calculus faAd £C (D) whenever the connectives, the modifiers and the concrete fuzzy preslare
representable as a bounded Mixed Integer Linear Program (MlloP)nEtance, Lukasiewicz logic satisfies
these conditions as well as the membership functions for concrete fuedicates we have presented in
this paper. Additionally, modifiers should be a combination of linear functidmghat case the calculus
consists of a set of constraint propagation rules and an invocation toaale dor MILP. The method has
been extended to fuzz§HZ F (D) (the DL behind OWL-Lite) and a reasoner, calledzyDL has been
implemented and is available from Straccia’s Web page (though, a papeibiteg the algorithm has not
yet been published}-uzzyDLsupports more features than we have described in this work, whosgtiesc
go beyond the scope of this work. The use of MILP for reasoning imyflRLs is not surprising as their use
for automated deduction in many-valued logics is well- known [31, 32].

A new problem for fuzzy DLs is the top-retrieval problem. While in classical semantics a tuple
satisfies a query or does not satisfy the query, in fuzzy DLs a tuple niafysaquery to degree. Hence, for
instance, given a conjunctive query over a fuzzy DLs knowledge,bais of interest to compute just the
top-k answers. While in relational databases this problem is a current rasmae (see, e.g. [23, 50, 59]),
almost nothing is known for the case of first-order knowledge basesniergle(but see [114]) and DLs in
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particular. The only works we are aware of are [110, 115] dealing wighptioblem of finding the top-
result over a DL-Lite [8] knowledge bases.

We conclude by pointing out that fuzzy DLs has first been proposetbépc-based information re-
trieval. [81] summarizes many previous works on the same argument [82, 8377883, 79, 78, 80, 96,
99, 101, 101, 102], which originated from the idea to annotated textualnents with graded DL sen-
tences [82]. Other applications are [64] and [12].

7 Conclusions

Handling uncertainty and vagueness has started to play an important rateliogies and description logics
for the Semantic Web. In this paper, we have first provided a brief inttamiuto uncertainty and vague-
ness at the propositional level. We have then given an overview oBpiiidiic uncertainty, possibilistic
uncertainty, and vagueness in expressive description logics for thartiie Web.

An interesting topic of future research is the integration of the above fofonsoertainty and vagueness
in a single description logic for the Semantic Web. Another issue for futweareh is the integration of
probabilistic, possibilistic, and fuzzy description logics with rule-baseddaggs for the Semantic Web.
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