| NF SY S
RESEARCH
R EPORT

Institut fur Informationssysteme
AB Wissensbasierte Systeme
Technische Universitat Wien
Favoritenstrassf3e 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405
Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

REPAIR LOCALIZATION
FOR QUERY ANSWERING
FROM INCONSISTENTDATABASES

Michael Fink
Domenico Lembo

Thomas Eiter Gianluigi Greco

INFSYS RESEARCHREPORT1843-07-01
JANUARY 2007

TU

WIEN







INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-07-01, ANUARY 2007

REPAIR LOCALIZATION FOR QUERY ANSWERING
FROM INCONSISTENTDATABASES

Thomas Eiterand Michael Fink and Gianluigi Grecband Domenico Lembo

Abstract. Query answering from inconsistent databases amounts tiadificheaningful” answers

to queries posed over database instances that do not satefyity constraints specified over their
schema. A declarative approach to this problem relies ométien of repair, i.e., a database that
satisfies integrity constraints and is obtained from thgioail inconsistent database by “minimally”
adding and/or deleting tuples. Consistent answers to aquegy are those answers that are in the
evaluation of the query over each repair. Motivated by tloe taat computing consistent answers
from inconsistent databases is in general intractableptégent paper investigates techniques that
allow to localize the difficult part of the computation on aahfragment of the database at hand,
called “affected” part. Based on a number of localizatiosutes, an approach to query answering
from inconsistent data is presented, in which the query éuated over each of the repairs of the
affected part only, augmented with the part that is not &i@cSingle query results are then suitably
recombined. For some relevant classes of queries and aomsfrtechniques are also discussed
to factorize repairs into components that can be processkpendently of one another, thereby
guaranteeing exponential gain w.r.t. the basic approabiichnis not based on localization. The
effectiveness of the results is demonstrated for congigtesry answering over expressive schemas,
based on logic programming specifications as proposed ilit¢nature.

Hnstitute of Information Systems, Knowledge-Based Syst&@roup, TU Vienna, Favoritenstrae 9-11, A-1040
Vienna, Austria. Email: (eitermichael)@kr.tuwien.ac.at

2Dept. of Mathematics, Univ. Calabria, Via Pietro Bucci 3087036 Rende, Italy. Email: ggreco@mat.unical.it

3DIS University of Roma “La Sapienza”, Via Salaria 113, 1-981Roma, Italy. Email: lembo@dis.uniromal.it

Acknowledgements This work has been partially supported by the European Cigsiom FET Programme
Projects IST-2002-33570 INFOMIX and 1ST-2001-37004 WASRY the Austrian Science Fund (FWF)
project P18019-N04.

Copyright(© 2007 by the authors



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . e 2
2 Preliminaries 4
2.1 DataModel . . . . . . . e e 4
2.2 Datalog>” Programs and QUENES . . . . . . . . . . e e
3 Consistent Query Answering Framework 7
3.1 A General Framework for Database Repairs . . . . . ... .. ... ... ... .... 7
3.2 Constructible Repairs and Safe Constraints . . ... ...........c.cu.... 8
3.3 Queriesand Consistent ANSWEIS . . . . . . . . . o i i i e e e e e 8
4 Locality Properties for Repairing Inconsistent Databases 9
4.1 General Constraints . . . . . . . . e e e e e e e e e 10
4.2 Special Constraints . . . . . . . .. e 14
4.2.1 Constraint€;andCsy . . . . . . . . e e e e 14
422 Constraint€y . . . . .. . e e e e e e 15
5 Query Answering through Localized Repairs 16
5.1 Recombination Step. . . . . . . . .. 17
5.2 Repair Factorization . . . . . . . . . . . e e 17
5.2.1 Recombination of Independent Factors . . . ... ... ... ......... 19
6 Logic Programming for Consistent Query Answering 21
6.1 General Architecture for Repair Compilation . . . .. ... ... ... ... ... ... 21
6.2 Grouped Repair Computation . . . . . . . . . . .. e 23
7 Experimental Results 24
7.1 Benchmark Databases and Compared Methods . . . .. ... ..... . ....... 25
7.2 TheFootball TeamsExample . . . . . . . . . . . . .. . .. .. it mnn 26
7.3 Scalability Assessment . . . . . . e 27
8 Discussion and Conclusion 29
A Proofs for Section 3 33
B Proofs for Section 5 34
C Grouped Repair Computation 37
C.1 QueryReformulation . . . . . . . . . . . .. 37
C.2 Scalingthe Technique . . . . . . . . . . e e 43



D Examples of Logic Program Specifications 43

D.1 Logic programs with unstratified negation . . . . . . . ... .. ... ... .. ... .. 44
D.2 Logic programs with exceptions . . . . . . . . . . . . e 45
D.3 Programs with AnnotationConstants . . . . . . . . .. .. .. .. ... .. .. wuu. 46
E Further Experiments a7
E.1 Assessingthe Need of Localization. . . . .. .. .. .. ... .. .. ... .0aa... 47
E.2 3-Coloring . . . . . . . e 49



1 Introduction

A database is inconsistent if it does not satisfy the integrity constraintsfisgeover its schema. This
may happen for different reasons [4]; for instance, when prdiagislata are re-organized under a new
schema that has integrity constraints describing semantic aspects of theer@wic. This is particularly
challenging in the context of data integration, where a number of dataesyureterogeneous and widely
distributed, must be presented to the user as if they were a single (virtuél@lczed database, which is
often equipped with a rich set of constraints expressing important semamgierfies of the application at
hand. Since, in general, the integrated sources are autonomous, thesddtiag from the integration are
likely to violate these constraints.

One of the main issues arising when dealing with inconsistent databasesbiésbstg the answers
which have to be returned to a query issued over the database schema.

Example 1.1 Consider a database schendl providing information about soccer teams of the
2006/07 edition of the U.E.F.A. Champions League. The schema consists oélétien predicates
player(Pcode, Pname, Pteam), team(Tcode, Tname, Tleader), and coach(Ccode, Cname, Cteam).
The associated constrainiy specify that the keys oblayer, team, and coach, are the sets of attributes
{Pcode, Pteam}, { Tcode}, and{ Ccode, Cteam}, respectively, and that a coach can neither be a player nor
a team leader.

Consider the following inconsistent databd3gfor Sy (possibly built by integrating some autonomous
data sources):

10 Totti RM L Roma | 10

playerPo: 9 T Ronaldinhol BC teamPo:| BC | Barcelona | 8 coach0:[ 7 [ Capello| RM |

RM | Real Madrid | 10

D,y violates the key constraint oteamn, witnessed by the factsam(RM, Roma10) and team(RM,
Real Madrid 10), which coincide onTcode but differ on Tname. In such a situation, it is not clear what
answers should be returned to a query dvgrasking, for instance, for the names of teams, or for the pairs
formed by team code and team leader. |

The standard approach to remedy the existence of conflicts in the dataughhdata cleaning [10].
This approach is procedural in nature, and is based on domain-speaiiormation mechanisms applied
to the data. One of its problems is incomplete information on how certain conflmigcsbe resolved [41].
This typically happens in systems which are not tailored for business logjostiat the enterprise level,
like systems for information integration on-demand. Here, data cleaning mengiécient even if only
few inconsistencies are present in the data.

In the last years, an alternative declarative approach has beetigaved which builds on the notion of
arepair for an inconsistent database [3]. Roughly speaking, a repair is a aglabe which satisfies the
constraints in the schema and minimally differs from the original one. The dititadd a possible repair
depends on the underlying semantics adopted for the inconsistent @datahdson the kinds of integrity
constraints which are allowed on the schema. Importantly, in general, m@la but multiple repairs might
be possible; therefore, the standard way of answering a user quergdmpute the answers which are true
in every possible repair, callagbnsistent answelg the literature.

Example 1.2 Recall that in our scenario, the databdgefor Sy violates the key constraint afeam, wit-
nessed byeam(RM, Roma10) andteam(RM, Real Madrid 10).



A repair results by removing exactly one of these facts. Hence, thetevanepairs only, say?; and
Ro, which are as shown in Figure 1. Accordingly, the consistent answeetquéry asking for the names
of the teams i (Barcelong}, while the consistent answers to the query asking for pairs of team cale a

team leader aré(RM, 10), (BC, 8)}. O
10 Totti RM RM Roma 10
i i f:[7 ] Capello[ RM |
player ™ 9 | Ronaldinho| BC team 1 BC | Barcelona| 8 coach ' Capello
10 Totti RM BC | Barcelona | 8
e e f2:[[7 [ Capello[ RM |
player™: 9 | Ronaldinho| BC team™2: RM | Real Madrid | 10 coach ' Capello

Figure 1: Repairs oby.

Query answering in the presence of inconsistent data (a.k.a. congjggytanswering) has been the
subject of a large body of research (for a survey on this topic, deafid for a discussion on relevant
issues in the area see [15]) and some prototype implementations of systerhditviie semantic repair
framework are available [9, 26, 18, 35]. Basically, these systems diftee kinds of constraints and queries
they are able to deal with. Indeed, depending on these two ingredientyrifexity of consistent query
answering ranges from polynomial-time over co-NP up{o(see, e.g., [13, 16]).

1.1 Contributions

In this paper, we elaborate techniques for consistent query answerimghly-expressive settings. Given
that in these cases query answering is unlikely to be feasible in polynomialdimejain research interest
is to devise an approach that allows to localize the “difficult” part of the cdatjfmn on a small fragment of
the database to hand.

The basic intuition of this approach is that resolving constraint violations onisistent databases does
not generally require to deal with the whole set of facts. For instancesamigle 1.1 inconsistency may be
fixed by just looking at the (few) tuples conflicting on the key. Howeverdélare many interesting cases for
which devising some similar strategies is not as simple as above and, theitedppears relevant to assess
under which circumstances a localization approach can be pursuednemdaecalized repair computation
can be exploited to optimize consistent query answering. In this respeayenall contribution is twofold
in nature.

First, we attack the problem from a theoretic point of view. We provide ayingjfview of previous
approaches to query answering from inconsistent data, we shed tighednteraction between integrity
constraint violation and the structure of repairs, and we study localizatidrfeactorization of consistent
query answering. Specifically,

1) We present a formal framework for consistent query answeririghnig, to large extent, independent
of a commitment to a specific definition of repair, but is based on a common settiegair semantics:
the repairs of the database are characterized by the minimal (nonrpddfelatabases from a space of
candidate repairs with a preference order. Our setting generaliadeys¢roposals in the literature, such
as set-inclusion based orderings [24, 3, 4, 6, 11, 13, 14, 16, aA)inality-based orderings [4, 38], and
weighted-based orderings [37].

2) We investigate some locality properties for repairing inconsistent dasbasning to isolate in the
data those facts that will possibly be touched by a repair, called the tadffgart” of the database and the

2



facts that for sure will be not, called the “safe part” of the databasecifggmly, we establish localization
results for different classes of constraints:

e The first classCy, contains all constraints of the forita(z) > ¢(¥), wherea(Z) is a nonempty
conjunction of atoms over database relations @@ is a disjunction of built-in literals. These con-
straints are semantically equivalent to denial constraints [17].

e The second clas§;;, allows more general constraints of the fovdn(z) O 3(Z) V ¢(Z), wherea(Z)
and¢(Z) are as above and(¥) is a disjunction of atoms over database relations.

e The third classC», has similar constraintéza(z) O G(Z) V ¢(Z); herea(z) may be empty bus(z)
may have at most one atom.

e The fourth class is the class of all universal constraints in clausal félms, semantically, this class
captures all universal constraints.

3) We propose aepair localization approachio query answering from inconsistent databases, in which
the query is first evaluated over each of the repairs of the affecte¢@dplgr augmented with the safe part,
and then results are suitably recombined. Also, we investigate technigdasttwizing repairs into compo-
nents that can be processed independently of each other. For sosesaéagueries and constraints, these
techniques guarantee an exponential gain compared to the basic dpproac

Secondly, our contribution is practical. Indeed, based on the abovhlzktan results, we develop
strategies to consistent query answering relying on existing technoldfgescby stable model engines and
relational DBMS. Resembling several proposals in the literature, ouritpggmmake use of logic programs
to solve inconsistency. However, we limit their usage to the affected pareafata. This approach is useful
to localize the difficult part of the computation, and to overcome the lack ddlsitisy of current (yet still
improving) implementations of stable model engines such as DLV [36] or SmpBIsSpecifically:

4) We propose a formal model of inconsistency resolution via logic progriag specification, which
abstracts from several proposals in the literature [4, 6, 8, 11, 14,R&}ults obtained on this model are
applicable to all such approaches.

5) We discuss an architecture that recombines the repairs of the affemtedith the safe part of an
inconsistent database, interleaving a stable model and a relational datadgase. This is driven by the
fact that database engines are geared towards efficient proceskinge data sets, and thus help to achieve
scalability. In this architecture, the database engine has to “update” thissten answers to a certain query
each time a new repair is computed by the stable model engine. To further intpiostrategy, a technique
for simultaneously processing a (large) group of repairs in the DBMSapgsed. Basically, it consists
in a marking and query rewriting strategy for compiling the reasoning tasédedefor consistent query
answering into a relational database engine.

6) Finally, we assess the effectiveness of our approach in a suitgefiments. They have been car-
ried out on a prototype implementation in which the stable model engine DLV idexbwgth the DBMS
PostgreSQL. The experimental results show that the implementation scalesably well.

We observe that our results on localization extend and generalize psdeicalization results which
have been utilized (sometimes tacitly) for particular repair orderings anseda&é constraints, for instance,
for denial constraints and repairs which are closest to the original alsgatmeasured by set symmetric

3



difference [17]. Also, our results can be exploited for efficient impletagn of consistent query answering
techniques in general, independent of a logic-based approach.

The rest of this paper is organized as follows. Section 2 introduces th&arofor the relational data
model and for logic programs used throughout the paper. Section &ddfia formal framework for con-
sistent query answering from inconsistent databases. Localizatipenties in database repairs and their
exploitation to optimize consistent query answering are discussed in Sediwh ection 5, respectively.
The logic specification for consistent query answering is presentedciio8é, together with an architec-
ture that interleaves DBMS and stable model engines. Finally, Section itsepsults of our experimental
activity, and Section 8 concludes the paper with a brief discussion.

Some proofs as well as further details of our techniques have been rwoardn-line appendix, which
also contains further examples and experiments.

2 Preliminaries

2.1 Data Model

We assume a countable infinite database dofaivhose elements are referenced by constentss, ...
under theunique name assumptigtihat is, different constants denote different real-world objects.
A relational schemdor simplyschemasS is a pair(¥, ¥), where:

¢ U is afinite set of relation (predicate) symbols, each with an associated pasiltiy.

e X is a finite set ofintegrity constraint{ICs) expressed on the relation symbolslin We consider
here universally quantified constraints [1], i.e., first-order senteoicie form

\V/fAl(fl) FANKIRIRIVAN Al(fl) D) Bl(yjl) VeV Bm(gjm) V gbl(z_i) AVARRIIV/ ¢n(5n), (1)

wherel+m > 0,n > 0, the A;(¥;) and theB;(y/;) are atoms ove¥, the¢,(Z;,) are atoms or negated
atoms over possible built-in relations like equality)( inequality €), etc.,Z is a list of all variables
occurring in the formula, and thg, ¢;, andz;, are lists of variables fron¥ and constants froy.1
The conjunction left of ©” is the bodyof the constraint, and the disjunction right af™ its head

In the rest of the pape§ = (¥, ) denotes a relational schema. Since all variables in (1) are universally
guantified, we omit quantifiers in constraints.

Note that (1) is a clausal normal form for arbitrary universal coirgisan a relational schema. We pay
special attention to the following subclasses of constraints:

¢ Constraints with only built-in relations in the head (iz2.= 0 in (1)). The class of these constraints,
which we denote byCy, is a clausal normal form oflenial constraintg17], also calledgeneric
constraintsn [7]. This class (semantically) includes:
- key constraint®(Z, ) A p(Z, 2) D yi=z;, for1 < i < n,
- functional dependencigg, ¥, ¥) A p(Z, Z, W) D y;=z;, for1 <i < n, and
- exclusion dependencigs(v, ) A p2(W, 2) D y1F#2z1 V - -+ V YnF2n,

The conditionl + m > 0 excludes constraints involving only built-in relations, which are irrelevanthfa schema modeling
perspective.



wherey = y1, ...,y @andzZ = z1, ..., z,.

e Constraints with non-empty body (i.€.;> 0 in (1)). We denote the class of these constraints, which
permit conditional generation of tuples in the database;hyNote thatCy, C C; (sincel +m > 0).
The clas<C; includes, for instancenclusion dependenciesf the formp, (%) D p2(T).

e Constraints with at most one database atom in the headsi.es, 1 in (1)). We denote the class
of these constraints, which we call non-disjunctive,@y. Beyond denials, such constraints also
allow to enforce the (unconditional) presence of a tuple. Parts of theatsttabay be protected from
modifications in this way. Note th&, C C-, while C; andC, are incomparable.

Example 2.1 In our example, the schendg is the tuple(¥, X), where¥, consists of the ternary relation
symbolsplayer, team, andcoach, andXy can be defined as follows:

o1t player(z,y,z) A player(z,y',z) D y=y/,
oo team(z,y, z) A team(z,y',2") D y=y/,
os.  team(z,y,z) A team(z,y’, 2') D 2=2/,

/
o4 coach(z,y, z) A coach(x,y',2) D y=y/,
o5: coach(z,y, z) A player(z',y', z) D x#a/,
o¢: coach(x,y,z) A team(z,y', ") D x#z'.

Hereo,—o4 are key constraints, whiles; andog encode that, for any given team, the coach is neither a
player nor a team leader. Note that all these constraints &rg.in O

For a set of relation symbolg as aboveF (V) denotes the set of all fact$t), wherer € ¥ has arityn
andt = (cy,...,cn) € U™ is ann-tuple of constants fror¥. A database instanc@r simply databasgfor
U is any finite set) C F (). The extension of relationin D is the set of tuples? = {¢ | r(t) € D}. We
denote byD(¥) the set of all databases far. For any relation schem& = (¥, ¥), in abuse of notation,
F(S) andD(S) denoteF (V) andD(¥), respectively, and a database &rs a database fob.

A constraints is ground if it is variable-free. For any such, facts(o) denotes the set of all factgt)
F(S) occurring ino, and for any seX of ground constraintgucts(X) = (J, ¢y, facts(o). For any constraint
o = «o(Z), we denote byround (o) the set of itsground instanced(«a(x)), whered is any substitution of
the variables’ by constants fron/. For any set of constrainis, ground (%) = |, cx, ground(o).

GivenD C F(¥), where¥ = {rq,...,r,}, D satisfiesa constraint, denotedD |~ o, if o is true on
the relational structur@/, v, ..., r2 P cP .. )wherec? = ¢;, forallc; € U (i.e., eachv’ € ground(o)
evaluates to true), andolateso otherwise;D satisfieqor is consistent witha set of constraints, denoted
D %, if D | o for everyo € ¥, andviolatesY: otherwise. Finally, a relational schenfa= (¥, Y) is
consistentif there exists a databagefor S that is consistent witl, otherwiseS is inconsistent.

Example 2.2 Consider the constraimt, in 3¢, and its ground instance

team(RM, Roma10) A team(RM, Real Madrid 10) > Roma=Real Madrid

Clearly, this instance does not evaluate true on the relational structw@atss withD,, which there-
fore violatesY. O



2.2 Datalog’” ™ Programs and Queries

Syntax A Datalog” ™ rule p is an expression of the form
a1V...Vay<by,...,bg, not bpy1,..., not bpym (2)

wherea;, b; are atoms in a relational first-order languageHere, *not” is negation as failureand “,” is
conjunction. Ifk =m =0, thenp is afactand “—" is omitted. The part left of £-" is the headof p, denoted
head(p), and the part right of £-” the bodyof p, denotedbody(p). We assumeafety i.e., each variable
occurring inp occurs in some;, 1 < <k, whose predicate is not a built-in relation. Built-in relations may
occur only in the body.

A Datalog”:~ programP is a finite set of Datalog™ rules. Important restrictions ar®rmal programs
Datalog’, wheren =1 for all rules,stratified normalprograms, Datalogy, andnon-recursiveprograms as
follows. Each Datalog programP has adependency grapti(P) = (V, E), whereV are the predicates
occurring in? and E contains an are — s if r occurs inkead(p) ands in body(p) for some rulep € P.
Moreover, ifs occurs under negation, the arc is labeled with Then P is stratified if G(P) has no cycle
with an arc labeled«,” and non-recursiveif G(P) is acyclic.

Semantics The semantics of a Dataldg program?P is defined via itsgroundingground(P) w.r.t. £
(usually, the language generated By, which consists of all ground instances of rulesArpossible with
constant symbols fromd. Let B, be the set of all ground atoms with a predicate and constant symbols in
L. A (Herbrand) interpretation forP is any subsef C B, ; an atomp(¢) € B is trueinl, if p(¢) € I,
and false inl otherwise. A ground rule (2) isatisfiedoy I, if either someu; or by, ; is true inI, or some
bi, 1 <i <k, isfalseinl. Finally, I is a model ofP, if I satisfies all rules iground(P).

Thestable model semanti¢88] assignstable modelso any Datalog:~ programP as follows. IfP is
“not”-free, its stable models are its minimal models, where a madedf P is minimal, if noN C M is
a model ofP. If P has negation) is a stable model oP, if M is a minimal model of theeductP w.r.t.
I, which results fronyround(P) by deleting(i) each rulep with a literalnot p(¢) in the body such that
p(¢) € 1, and(ii) the negative literals from all remaining rules.

We denote bysM(P) the set of stable models &f. Note that for ‘hot”-free programs, minimal models
and stable models coincide, and that positive disjunction-free (resfifistdgprograms have a unique stable
model [28].

Queries A Datalog”™ query Q over a schema = (¥, Y) is a pair(q, P), whereP is a Datalod:~
program such that evegy € ¥ occurs inP only in rule bodies, ang occurs in some rule head &f but
not in ¥. Thearity of Q is the arity ofq. Given any databasP for S, the evaluation ofQ over D, is
Q[D] = {(c1,..-,¢n) | q(e1,...,¢cn) € M, foreachM € SM(P U D)}. Note that as fo), any non-
recursiveP can be rewritten to anion of conjunctive queriege., a set of rules (2) where= 1 andm = 0,
with the same head predicatavhich does not occur in rule bodies. For further background on Dgitalo
and queries, see [1, 22].

Example 2.3 In our ongoing example, we may consider a qu@rthat asks for the codes of all players and
team leaders, and that is formally written @s= (g, ) whereP = {q(z) < player(z,y,2), q(z) <
team(v,w,z)}. Q has arity 1. Note thaP is a union of conjunctive queries. O



3 Consistent Query Answering Framework

3.1 A General Framework for Database Repairs

Let us assume tha& = (¥, X)) is given together with a (possibly inconsistent) databager S. Following
a common approach in the literature on inconsistent databases [3, 2%].18elnext define the semantics
of queryingD in terms of itsrepairs Specifically, we present a generalization of previous approacheewh
the way of repairing a database is chosen according to an arbitramdpremn databases satisfying some
conditions.

We suppose that j, is a preorder (i.e., a reflexive and transitive binary relation)Xqs), and denote
by <p the induced preference order (i.e., an irreflexive and transitiveyonesation) given byR, <p Ro,
if Ry <p Ros AN Ry £p R;. We call Ry <p-preferredto R in this case. A repair foD is now defined in
terms of a minimal element underp.

Definition 3.1 (Repair) Let D be a database f& = (¥, X), and let<p be a preorder o®(S). Then, a
databas& € D(S) is arepair for D w.r.t. S, if

1. RE X, and

2. RisminimalinD(S) w.r.t. <p, i.e., thereis n&®’ € D(S) such that?’ = ¥ andR’ is < p-preferred
to R.

The set of all repairs foD w.r.t. S is denoted byrep (D). When clear from the context, the subscigpt
may be dropped. O

The definition of repair relies on a general notion of preorder on da¢ésbal he method for consistent
guery answering presented in the next sections is based on abstpett@s of the induced preference
order, which we refer to as set inclusion proximity, disjoint preferexgaesion and disjunctive split. The
property ofset inclusion proximitys as follows:

(SIP) For any databasét, Re, andD, A(Ry, D) C A(Rg, D) impliesR; <p Ra,

whereA(A,B) = (A\ B) U (B \ A) is symmetric set difference. Informally, this property effects that a
databaser satisfying the constraints can be a repair only if there is no way to establisiistency with:
by touching merely a strict subset of facts compareft to

The propertieslisjoint preference expansi@nddisjunctive splitare as follows:

(DPE) If Ry <p, R} andRy, D, are disjoint fromR;, R}, andD; (i.e.,(R; U R{ U D;) N (R2 U Dy) = (),
thenR; U Ry <p,up, Rll U Rs.

(DIS) If Ry <p Ra, then for every databage it holds that eithel?; " R <pnr ReNRor Ry \ R <D\R
R} \ R (or both).

Loosely speaking, (DPE) says that preference must be invariaet awalding new facts, while (DIS) says
that preference must uniformly stem from disjoint “components.”

The prototypical preordex p is given byR; <p Ry iff A(Ry, D) C A(Re, D) [3,4,6,11,17, 29, 27].
Intuitively, each repair oD is then obtained by properly adding and deleting facts ffeim order to satisfy
constraints i, as long as we “minimize” such changes. The following proposition is easyot@p

Proposition 3.1 The prototypical preorder satisfies properties (SIP), (DPE), anksjD

7



Notice that a variety of repair semantics are either defined in terms of adpresatisfying the above
properties or can be characterized by such a preorder, besidebtésesa on the prototypical preorder dis-
cussed above, including set-inclusion based ordering [24, 13]ineditg-based ordering [4, 38], weight-
based orderings [37], as well as refinements with priority levels. An istieigespecial case of weight-based
ordering is the lexicographic preference, whétgis preferred toR, w.r.t. D if the first fact in a total
ordering of 7(S) on which R, and R, repair D differently belongs taRs.

However, we point out that our method and results for query answednalso be extended to other
preference orderings under certain conditions (see Section 8).

3.2 Constructible Repairs and Safe Constraints

An important aspect is that constraints might enforce éimgtset of factsk for S = (¥, X) which satisfies

¥ must be infinite, and thus$ is inconsistent, i.e., n® € D(S) satisfiest. A simple example is where

Y = {Vzp(x)}. Semantically, this is commonly avoided by requesting domain-independeramn-of
straints [42], which syntactically is ensured $afety i.e., each variable occurring in the head of a constraint
must also occur in its body. Notice that major classes of constraints includingdastraints, functional
dependencies, exclusion dependencies, inclusion dependenciesfofrttp; (¥) D pa(Z), or denial con-
straints fulfill safety. Together with (SIP), safety of constraints ersstirat any database has a repair if
this is possible at all (proofs of the propositions below are given in Agpeh). For anyR C F(S), we
denote byadom(R, S) theactive domairof R andS, i.e. the set of constants occurringfinand.

Proposition 3.2 Let D be a database fof = (¥, ), where all constraints ift are safe. Suppose thatp
satisfies (SIP). Then, every repdire rep(D) involves only constants fromiom (D, S), and some repair
exists ifS is consistent.

Notice that, for a generic preference order, existence of a repait slways guaranteed, evendsfis
consistent.

Finite repairs can also be ensured for unsafe constraints in which keariablating safety are guarded
by built-in relations, such as fdp = @ w.r.t. S = ({p}, {p(x) vV £>100}), assuming tha¥/ are the natural
numbers. As this example shows, repairs may in this case go beyond theedutivain. However, this is
prevented if built-ins involve only equality and inequality. We have here @trsisnilar to Proposition 3.2.

Proposition 3.3 Let D be a database faf = (¥, X3) where no built-in relations occur iRl except= and+.
Suppose that p satisfies (SIP). Then, every repdirc rep(D) involves only constants fromilom (D, S),
and some repair exists & is consistent.

3.3 Queries and Consistent Answers

The notion of repair is crucial for the definition of the semantics of querinegnsistent databases. We
conclude this section by formalizing this aspect.

Definition 3.2 Let@ be a non-recursive Datalogquery. For any databasP € D(S), the set ofconsistent
answers ta@) w.r.t. D is the set of tupleans(Q, D) = {t | t € Q|[R], for eachR € rep(D) }.

Informally, a tuplet is a consistent answer if it is a consequence under standard certaimaytses for
each possible repair of the databdseNote that in real applications, a query language subsumed by non-
recursive Datalogis often adopted.



Example 3.1 Recall that in our scenario, repairs for the databBgefor Sy are shown in Fig. 1. For
the query@Q = (¢, P), whereP = {q(x) «— player(z,y, ), q(x) «— team(v,w,x)}, we thus obtain
ans(Q, Do) = {(8),(9), (10)}. For the quen®’ = (¢, {q(y) < team(z,y, z)}), we haveans(Q’, Dy) =
{(Barcelong}, while for Q" = (¢/,{¢'(z,z) «— team(x,y,z)}), we haveans(Q", Dy) = {(RM,10),
(BC,8)}. O

4 Locality Properties for Repairing Inconsistent Databases

In this section, we investigate how to localize inconsistency in a given dadhathat is, how to narrow
down the set of facts i to a part which is “affected” by inconsistency and repair, and how toimlthe
repairs ofD from the repairs of this affected part. To this end, we introduce the notiamepair envelope
Informally, a repair envelope is a set of faégisuch that the repairs d touch only facts inZ and are given
by the repairs oD N E plus the “unaffected” (“safe”) part ab, i.e., the portion ofD which is outside the
envelope. More formally, give§ and D, E has to fulfill the conditions

A(R,D) C FE, forall R € repg(D), 3
reps(D) = {RU(D\E)|R€ reps(DNE)}. @

The repair ofD can then be fully localized to the repair Bfn E, which in practice may be much smaller
thanD. In fact, as shown below, for constraint the set of all facts witnessing inconsistency, denoted
C, is always a repair envelope, and for constraffiisand C,, a closureC* of C' under syntactic conflict
propagation is a repair envelope. Such a closure, as we will explain iihidetze following, takes care of
facts that “indirectly” participate in constraint violations. Figure 2 showdifferent sets.

Example 4.1 Recall thatteam (RM, Roma10) A teamn (RM, Real Madrid 10) > Roma= Real Madridwit-
nesses in Example 2.2 a violation of the keytafm; it is the only ground constraint violated ly,. Since
the constraints are of typ€y, the setC' = {team(RM,Roma10), team(RM, Real Madrid 10)} is a re-
pair envelope forD. The databas® N C' = C has the two repair®; = {team(RM,Romal0)} and
Ry = {team(RM, Real Madrid 10) }; therefore, according to (4)) has the two repair®; U Dy \ C and
Ry U Dy \ C, which are those shown in Figure 1. O

Note that a repair envelope always exists, since the set of all facts iga teépair envelope. As for
localizing the computation afep (D), only condition (4) is relevant (i satisfies it, then so does evely
suchthat?’'ND = END, in particularE’ = END). Condition (3), however, allows to bound for the answer
to certain queries. In particular, for monotone que€esve have tha@[D \ E] C ans(Q, D) C Q[DUE].

For general constraint§* is not always a repair envelope. However, we show that itvieeak repair
envelopel, which has to fulfill, instead of (4), the relaxed equation

reps(D) = {(RNE)U(D\ E) | R € reps(D N E)} (5)

That is, the repairs ab are obtained by constraining the repairs/ofy E' to the repair envelope. This is
necessary since facts outside the envelope might be added to such (spaiExample 4.3). However, this
can only occur in presence of certain disjunctions.

Despite the difference thd is either a repair envelope or a weak repair envelop, we call the set
the affected part oD (w.r.t. S), or simply affected database, and we dal E the safe part oD (w.r.t. S),
or simply “safe” database.



[rgb]0.0,

Conflict setC': facts occurring iryround (%) violated inD
Conflict closureC'™ : syntactic conflict propagation frod by X
Repair envelopd : safe bound on tuple changes with local repairs (hatched)

Figure 2: Localization of database repair

We proceed as follows. After formally defining and C* and establishing some auxiliary results,
we show thatC* is a weak repair envelope in general. We then prove that it is a repailopevander
restrictions, in particular fo€; and C, constraints. This envelope may be further decreased. Indeed, we
prove thatC' is a repair envelope foC constraints. In fact, the results for special constraints are stronger
and establish 1-1 correspondences between repalpsofs and repairs o).

4.1 General Constraints

Let D be a database for a relational schethe: (¥, ¥). Theconflict setfor D w.r.t. S is the set of facts
Cs(D) = {p(t) | Jo € ground(¥), p(t) € facts(o), D [~ o}, i.e.,Cs(D) is the set of facts occurring in
the ground instances &f which are violated byD. In the following, if clear from the context) and/or the
subscriptS will be dropped.

Figure 2 shows that the conflict set may contain both fact3 i@as in Example 4.1) and facts jA(S)
that do not belong td. For example, leD = {p(a)}, and letS contain the dependengyz) O ¢(x).
ThenC = {p(a), q(a)}.

For defining conflict propagation, we first introduce the following notibmo factsp(t), p'(t') in F(S)
are constraint-bounded irS, if there exists some < ground(X) such that all constants occurring in
facts(o) are fromadom (D, S), and{p(t), p'(t')} C facts(c). (Note that by assumed safety of constraints
and the results of Section 3.2, we only need to consider(D,S).) We now generalize the notion of
conflict set.

Definition 4.1 (Conflict closure)Let D be a database fa§=(¥,¥). Then, theconflict closurefor D,
denoted byC'’s (D), is the least sel O Cs(D) which contains every fagt(t) constraint-bounded i§ with
some facp/(t') € A. O

We omit D and/or the subscri@# if clear from the context. Intuitively(* contains, besides facts from
C, facts which possibly must be touched by repair in turn to avoid new indensig with ¥ caused by
previous repairing actions. For example, assumedhedntains the constrainigz) O ¢(z) andg(z) O
s(z). Then, forD = {p(a)}, we have thaC' = {p(a), ¢(a)}, andC* = C U {s(a)}. As shown in Figure 2,
C* may add toC' both facts inside and outside. In the example above, for instaneg,andC* would be
the same ifs(a) was inD.

10



Towards a proof that’™* is a weak repair envelope, we need some preliminary technical result®2 For
andS=(V, ¥), consider the following two sets of ground constraints:

(i) X&(D) = {o € ground(X) | facts(c) N C* # 0} consists of all ground constraints in which at least
one fact fromC* occurs;

(i) ¥%(D) = {o € ground(X) | facts(c) € C*} consists of all ground constraints in which at least one
fact occurs which isiotin C*.

As usual,S and/orD will be omitted. We first show that® U ¥° is a special partitioning ofround(X).

Proposition 4.1 (Separation)Let D be a database foS = (¥, X). Then, (1)facts(X%) = C*, (2)
facts(X5)NC* =0, ()L N X =0, and (4)X* U X* = ground(X).

Proof. By definition,o € 3¢ contains at least one fag{t) from C*; any other fact irv is constraint-
bounded inS with p(¢), and hence it also must be @f*. This provesfacts(¥*) C C*. Consider now
any factp(t) € C*. The minimality ofC* implies that there exist factf, ..., f, in C* such thatf; € C,
fn=p(t), and f;1; is constraint-bounded tf;, for eachi € {1,...,n — 1}; i.e., f;, fi+1 € facts(o;) for
someo; € ground(X). Eacho; then belongs t&¢, and thu(t) € facts(X*). This proves"* C facts(X?),
and therefore (1) holds. As for (2), assume by contradiction that someX* with facts(o) N C* # 0
exists. Then, from Definition 4.1 it follows thgtcts(o) C C*, which contradictsr € X°. Item (3) is
straightforward from (1) and (2). Finally, in order to prove (4), wppose that there existsc ground(X)
such thatv ¢ ¥° ando ¢ ¢, but this means thatucts(c) N C* = () and facts(c) C C*, which is an
obvious contradiction. O

The separation property allows us to shed light on the structure of repairs

Proposition 4.2 (Safe databasd)et D be any database f&# = (U, ). Then, for each repaiR € rep(D)
it holds thatkR \ C* = D\ C*.

Proof. Towards a contradiction, suppose that there exists a ré&pairep(D) such that?\ C* # D\ C*.
Let R = (RNC*)U(D\ C*) (notice thatk’ # Ronly if R\ C* # D\ C*). Consider any € ground(X).
By Proposition 4.1, either (iy € X or (ii) ¢ € 3°. In case (i),R’ = o: by Proposition 4.1 (a)facts(c) C
C*, and therefore®’ |= ¢ iff R' N C* = o, which is true, since?’ N C* = RN C* andR = o (because
R € rep(D)). In case (i), agaik’ |= o: by Proposition 4.1 (b)facts(c) N C* = () and therefore?’ = o
iff R"\C* = o, whichistrue, sincé&’\C* = D\C* andD = o. Itfollows thatR’ = X. Furthermore, itis
easy to showthah(R’, D) ¢ A(R, D). Indeed,R'\D = ((RNC*)U(D\C*))\D = (RNC*)\D C R\D,
and alsaD\ R’ = D\ ((RNC*)U(D\C*)) = (D\(RNC*))N(D\(D\C*)) = (D\(RNC*))N(DNC*) C
D\ R. From (SIP), it follows thal?’” < R. This contradict® € rep(D). O

Informally, the above lemma shows that\ C* is a safe portion oD, in the sense that tuples &f
outside the conflict closure will not be touched by repair.
Prior to the main result of this subsection, we establish the following lemma:

Lemma 4.3 Let D be a database faf = (¥, X)), and letA = D N C* andS® = (¥, X.%). Then, for each
S C D\ C*, the following holds:

1. foreachR € repg(A U S), it holds thatR N C* € repga(A);

11



2. for eachR € repga(A) there exists a set of fac® C F(S) such thats’ N C* =0, and(RU S’) €
reps(AUS).

Proof. (1) LetR € repg(AUS), and letR’ = RN C*. SinceR = %, thenR = ground(X), therefore,
from Proposition 4.1 it follows thak’ = X%, while R\ R’ = R\ C* |= ¥°. AssumeR’ ¢ repga(A). Since
R’ = X9, there must exist somB” € repg.(A) such thatR” <4 R’. SinceR” E X andR \ R’ = ¥°,
we have thalR” U (R \ R’) = X. Since the conflict closure dp w.r.t. S is the same as w.r.5% and since
A is contained in its conflict closure w.r.§S, by Proposition 4.2, we havR” \ C* = A\ C* = (), and
thereforeR” C C*. As a consequenceR’UR'UA)N((R\ R')US) = 0 (notice thaf R UR'UA) C C*
whereag R\ R') N S) = (). Then, by (DPE), it follows thaR” U (R \ R') <aus R'"U(R\ R') = R. This
contradicts thak € repg(A U S).

(2) We choose a8’ an arbitrary repair fos w.r.t. S° = (¥, %%),i.e.,S" € repg.(S) (notice thatS may
violate X%, and therefore in general # S). We first show that’ N C* = 0. Let us writeS” = S/ U S.,
whereS; = S'NC%,.(S) andS, = 5"\ C%.(S). By Proposition 4.2, we have thaf = S\ C%.(S), and
therefore, sinc& C D\ C*, S, N C* = (. Also, it is easy to see that* N C%.(S) = 0, and therefore
S NC* = (). We thus conclude th&'NnC* = (). Now, we concentrate on proving thatS’ € repg(AUS).

SinceR € repga.(A), from Proposition 4.2, and from the fact th@t. (A) = C* (in computingCs. (A)
and C* we start from the same conflict set and we close such set w.r.t. the samiecseistraints) and
A C C*, itfollows thatR \ C* = A\ C* = (), and therefore? C C*. Then, it is easy to see that from
R E X% S E ¥ andX = X% U X4, it follows that R U S’ = X. Assume now by contradiction that
RUS" ¢ reps(AUS), then there must exist somi#’ consistent with such thatR” <4us RU S’. We
can writeR” = R/ U R!, whereR! = R" nC* andR! = R"” \ C*. Let us now apply property (DIS)
with R = C*, and obtain that eitheR! <4 RN C* or R! <g S’. From Proposition 4.1, it follows that
R! = X% andR! | X*, but this contradicts the assumptions tRa€ repgs.(A) andS’ € repg:(S). This
proves thatR U S’ € repg(AU S). O

In other words, item (1) in the lemma above shows how to obtain a repair obtabaked = D N C*
w.r.t. S, from a repair, computed w.r.&8, of A augmented with any subs§tof the safe databade \ C*.
Conversely, item (2) shows how to obtain a repaitdof) S w.r.t. S, from a repair ofA w.r.t. S*. Notice
that repairingA w.r.t. S and not w.r.t. S, is necessary for the lemma above to hold, since for a repair
R € reps(AUS), it does not hold in general th& N C* € repg(A). Also, repairing4 w.r.t. S* avoids
repairing constraints il® not satisfied byA.

Armed with the above concepts and results, we state the main theorem of théssoib.

Theorem 4.4 Let D be a database fof = (¥, X). Then,C* is a weak repair envelope fdp.

Proof.  We first show that for eack € reps(D) thenA(R, D) C C*, as specified by condition (3) in
Section 4, where we pose = C*. Assume by contradiction that there exists a fact A(R, D) such
that f ¢ C*. By Proposition 4.1 it follows that there does not exist ang >¢ such thatf € facts(o).
Then,if f € R\ D, itis easy to see that \ {f} = X, but by property (SIP) we have th&t\ {f} <p R,
thus contradicting the assumption thate repg(D). Analogously, iff € D \ R, itis easy to see that
RU{f} E %, but by property (SIP) we have th&U { f} <p R, thus again contradicting the assumption.
We now prove thatep s(D) coincides with the set defined by equation (5) in Section 4, where we pose
E = C*. To this aim, we show that (i) for eve§ € repg(D), there exists som&’ € rep (D N C*) such
thatR = (R'NC*)U(D\ C*), and (i) for everyR € reps(D N C*) there exists som&’ € repg(D) such
thatR' = (RN C*)U (D \ C*).

12



(i) We first apply Item 1 of Lemma 4.3 fof = D \ C* and obtainR N C* € repg.(D N C*) (notice
that in Lemma 4.34 = DN C*, §* = (¥, X%), and since we pos€ = D \ C*, we have thal U S =
D). We then apply Item 2 folS = (), and we obtain that there exisf such thatS’ N C* = () and
R = (RNnC*)U S € repg(A). SinceS’ n C* = (), we also have thak’ N C* = R N C*, and from
Proposition 4.2, it follows thak = (RN C*) U (D \ C*). ThereforeR = (R'NC*) U (D \ C*).

(i) Similarly, applying first Item 1 of Lemma 4.3 fof = () and then Item 2 fo5 = D \ C*, we obtain
that there exists’ such thatS’ N C* = (), andR' = (RNC*)U S’ € repg(D). Then, from Proposition 4.2,
it follows thatS” = D \ C*. We thus easily obtain thd’ = (RN C*) U (D \ C*). ]

For computing repairs for an inconsistent databseve can thus proceed as follows:
1. compute the conflict closure*;
2. compute the repairs of = D N C*;
3. intersect each repair obtained with; and
4. for each such set, take the union with\ C*.

A drawback of this approach is that in Step 2, facts out6itienight be included in a repair of, which
are stripped off subsequently in Step 3.

Example 4.2 ConsiderD = {p(a)} for S = (¥, {p(a),q(a)}). In this caseC = C* = {q(a)}, A =
DNC*=0,andD \ C* = D. We haverep(A) = {{p(a),q(a)}} and{p(a),q(a)} N C* = {q(a)}; p(a)
is stripped off from the repair ofl. O

In this example, the repair of added a fact outside* but from the safe part ab, which doesn’t hurt. The
following example shows that facts outsidé U D may be added.

Example 4.3 ConsiderD = {r(a),p(a)} where forS = (¥, 3) whereX = {r(a) D p(a) V ¢(a), r(a)}.
Then,C* = () andD N C* = () has two repairs, vizR; = {r(a),p(a)} and Ry = {r(a), q(a)}. According
to (4), Re U (D \ C*) = {r(a),p(a), q(a)} would have to be a repair @, which is incorrect. Note that the
constraint-(a) D p(a) V ¢(a) can be satisfied by includinga), which was neither irD nor in C*. O

Note that in Example 4.3, contains constraints from both the clas€gsandCs, but not from a single
class. As we show in the next subsection, the effects in Example 4.3 caapén under restriction to a
single class, and™ is always a repair envelope.

We finally provide the result below that follows from Theorem 4.4, and rksihat repairing basically
depends or®.

Corollary 4.5 Let D be a database fof = (¥, X), and letS’ = (¥, ¥’) be such thak$, (D) = X%(D).
Thenrepg(D) = repg/ (D).

Proof.  We prove thatreps(D) C reps/(D). The converse can be proved analogously. Assume by
contradiction that there exis®® € repg(D) such thatR ¢ reps/ (D). This means that either (& (= >

or (b) there exists®’ such thatR’ = ¥’ and " <p R. Consider first case (a). Sinde (£ Y/ iff

R [~ X¥¢,(D) U XS (D) and sinceR |= X% (D) (which is equal ta¢, (D)), there exists some € X%, (D)

such thatR (= 0. By Theorem 4.4R = (R" N C%(D)) U (D \ C5(D)), whereR" € reps(D N C§(D)).
Sincefacts(X¢(D)) = facts(X$, (D)), by Proposition 4.10%5(D) = C%, (D) = C*. Furthermore, since

o € X%, (D), we havefacts(o) N C* = (. Therefore,R can violates only if D\ C* violateso, but this

is a contradiction. In case (b), we can show similarly as in case (ahgt ' implies R’ = 3. Then,

R’ <p R contradictsR € repg(D). 0

13



Then, we can modify or prune constraints “outsid&” in arbitrary manner, e.g., for optimization pur-
poses. As we show in the next subsection, this makes repair envelope, rather than a weak repair
envelope, in several cases in whi€ltontains general constraints.

4.2 Special Constraints

In this section, we consider the constraint clagsewhich have been introduced in Section 2, and determine
repair envelopes for them.

4.2.1 ConstraintsC; and Cq

Recall thatC; constraints have nonempty bodies, and thus cannot unconditionallycertfar inclusion of
facts to a database instance.

Proposition 4.6 Let D be a database fof = (¥, ) such tha®> C C;. Then, eachrepaik of A = DNC*
w.rt. S satisfiesk C C*.

Proof. By Item 1 of Lemma 4.3, foS = (), eachR € reps(A) gives rise to arepaik’ = RN C* of A
w.rt. S* = (U, X%). By Item 2 of Lemma 4.3, fos = (), R in turn gives rise to a repai” of Aw.r.t. S
of the formR” = R’ U S’ such thats’ N C* = (). Since clearlyS’” |= ¢, property (DPE) implies that’ is
arepair ofS = Q) w.r.t. (I, 3°). Since each constraint Ii* has a nonempty body, it follows by (SIP) that
S’" = (). HenceR N C* is a repair ofA w.r.t. S. Now if R ¢ C* would hold, thenA\(R", A) C A(R, A)
would hold, which by (SIP) implie®” <p R. This is a contradiction. O

Recall thatC, are the non-disjunctive constraints, i.e., every constraint has at mestatabase atom
in the head.

Proposition 4.7 Let D be a database fo§ = (¥, %), whereX C Cs. Then (i) every repaiR of A =
D N C* satisfiesk C D U C*, and (ii) for every repairsk, R’ of A, RN (D \ C*) = R'n (D \ C*).

Proof. By the argument in the proof of Proposition 4.6, ev8rg rep(A) gives rise to som&” € rep(A)
of the formR” = (R N C*) U S’ such thats’ N C* = () and S’ is a repair ofS = 0 w.r.t. (¥, X*). Since
each constraint ifC® is non-disjunctive, there is the least (w.rt) set of factsF such thatF = ¥° (in
essencey’ is a Horn theory), andk C S’ must hold; by (SIP)F = S’. Now if R € C* U D would hold,
thenA(R", A) ¢ A(R, A) would hold (note thatF C R must hold, and thu®” C R), which by (SIP)
meansR” <p R. This is a contradiction, and proves (i). Item (ii) holds sidte (D \ C*) = F for each
R € rep(A). O

The propositions above allows us to exploit Theorem 4.4 in a constructiyefov many significant
classes of constraints, for which it implies a bijection between the repairslatfabasd), and the repairs
of the affected pard = D N C*.

Corollary 4.8 Let D be a database fo§ = (¥, ) whereX C C;, fori € {1,2}. Then,C* is a repair
envelope foD. In fact, there exists a bijectign: rep(D) — rep(DNC*), such that for ever® € rep(D),
R = pu(R)U(D\ C*).

14



Proof. The result forx C C; (resp.X C C,) follows from Theorem 4.4 by applying Proposition 4.6
(resp. Proposition 4.7). Note that for eaBhe rep(D N C*), whenX C C;, RN C* = R, whereas when
YCCy (RNCYHU(D\C*)=RU(D\C*). O

By this result, the repairs of a databd3ecan be computed by avoiding step 3 of the procedure given in
Section 4.1. Note also that by the above corollary and Proposition 4.1 anotla®p 4.5, we can maké'™
a repair envelope for an arbitrary relational sche$na (¥, 3), if we can modifyX to constraintsX’ from
C, or C, while preserving the affected constraints, i¥%4(D) = E?\I,,M(D). Technically, this can be
exploited in different ways, e.g., by dropping constraints, adding gtaustances of constraints, rewriting
constraints by modifying the built-in part (in fact, only semantic equivalefiedgfected ground constraints
is needed), etc.

We also remark tha€* may be decreased to a smaller repair envelope, by taking tuple generating
constraints into account. For examplepif:) belongs to each repair (e.g., enforced by a constraifw),
can be removed from the repair envelope. If there is another constiaint> ¢(z), alsog(a) can be
removed. Exploring this is left for further study.

4.2.2 ConstraintsCy

Recall that constraints i@ have only built-in relations in the head. Notably, the repairs of a database with
integrity constraints from this class are computable by focusing on the immediaits in the database,
without the need of computing the conflict closure set, which may be onémagsneral. Furthermore,
repairs always do only remove tuples from relations, but never incladetmples. We will next formally
prove these properties, starting with the following proposition.

Proposition 4.9 Let D be a database fof = (¥, %), ¥ C Cy, and letA= D N C*. Then,
1. C C D;
2. foreachR e rep(A), (i) RC A, (i) A(R,A) C C, (iii) AACCR,and (iv)RNC € rep(C);
3. foreachR € rep(C), RU(A\ C) € rep(A).

Proof. 1) By definition,C is the set of facts occurring in any constraine ground(X) violated in D.
Since eactw is of the formA\'_, 4;(&) D \/7_, ¢x(dy), it can be violated only if all the body facts are in
D. Thatis,C C D.

2) Let R € rep(A). We first show (i). Assume towards a contradiction tRaZz A and consideR?’ =
RN A. Fromthe factthaR = X, R’ C R, and that each € X is of the form/\éz1 Ai(Z) D Vi—y 01(Zk),
it follows that R’ |= %, therefore (SIP) would raise a contradiction. We now show (ii). Assumarts
a contradiction that\(R, A) ¢ C. SinceR C A, this implies that there exists somé&) € A\ R such
thatp(t) ¢ C. By minimality of R, p(t) occurs in the body of at least one constrainyinund (%) of the
form /\E:1 a; O \/}—, ¢x- No such constraint, however, is violatedArHence,R U {p(t)} = %, which by
(SIP) implies thatR? ¢ rep(A); this is a contradiction. Therefore, (ii) holds. From (i) and (ii), followsttha
A\ C C R; this proves (iii). To show (iv), suppose towards a contradiction thatC' ¢ rep(C'). Then,
it is easy to see thak N C' = X, therefore somér’ € rep(C') must exist such thak’ <~ R. Since all
constraints have only built-ins in their head®,C C. Butthen(R\C)UR’ <4 R contradictsk € rep(A).

3) Let R’ € rep(C). ltem 2.(ii) for D=C (where A=C) implies R’ C C. SinceR’ |= 3, we must have
R = (A\ C)U R’ = 3; otherwise, supposR [~ o for someo € ground(X). Theno must contain a fact

15



p(t) from A\ C. Sinceo is from Cy and Item 1 impliesR C D, alsoD - o. But this meang(t) € C, a
contradiction. From Item 2 and (DIS) (split lty), we can conclude that nB” € rep(A) exists such that
R"” <4 R. Hence,R € rep(A). O

Note that Proposition 4.9 shows that each repair of the confliat’gest removes tuples fror@' (take
D = C'in Item 2.(ii)). We are now ready to prove that und&y constraints, we can use instead ofC"* as
a repair envelope, and thus avoid the onerous constructiofi.din fact, we prove a more general result.

Theorem 4.10 Let D be a database fof = (¥, ) whereX C Cy. Then, every set of facis O C'is a
repair envelope forD. Moreover, there exists a bijectian: rep(D) — rep(D N E), such that for each
R e rep(D), R=v(R)U(D\ E).

Proof. By Corollary 4.8, there is a bijection : rep(D) — rep(A), whereA = D N C*, such that the
repairs ofD are given byu(R) U (D \ C*), forall R € rep(A). Items 1 and 2.(iv) of Proposition 4.9 and
the fact that each repakt of C satisfiesR C C, imply that all repairs ofd are given by(A\ C) U R, where
R € rep(C). Hence, the mapping : rep(D) — rep(C) given byv(R) = p(R) N C is a bijection such
that

R = p(R)U(D\CY)
= V(R)U(A\C)U(D\CY)
= v(R)U((DNCH\C)U(D\CT) = v(R)U(D\C)

This proves the result foE = C. For generalE O C, we note thatD’ = D N E and D have the same
conflict set; hence, there exists a bijectidn rep(D N E) — rep(C') such thatR = v/(R) U (D" \ C), for
eachR € rep(D’). This implies a bijection : rep(D) — rep(D N E) of the given form. 0

Consequently, in this setting we can compute the repairs of a datdbasdollows:
1. compute’,
2. compute the repair® of C' (whereR C C C D), and
2. take for each such repdirthe union withD \ C.

An example of application of the above procedure has been given in Hsahip Notice that because
C C D, we can computé€’ efficiently by suitable SQL statements which express constraint violatiores. Th
fact that everyE O (' is a repair envelope gives convenient flexibility to modify the statements in case
(allow more tuples).

5 Query Answering through Localized Repairs

The localization properties discussed in the previous section may be usedirtoze consistent query
answering from an inconsistent databd3e Indeed, based on them, one may conceive an optimization
procedure consisting of the following three steps:

Focusing StepLocalize inconsistency i), and single out facts that are affected by repair, and facts that
are not, i.e., compute the (weak) repair envelépand the affected databagen E and the safe
databasé \ F.

Decomposition StepCompute repairs of the affected database, and obtain from them repdirs(by
suitably incorporating the safe database).

16



Recombination Step Recombine the repairs @ for computing the answers.

In situations in which the size of the affected database is much smaller thaneh#f gie databasp,
computing the repairs of the affected database is significantly faster thaaitleecomputation, which just
aims at changing tuples “randomly” in the database, and does not in gegigran a focusing strategy.

Moreover, localizing the inconsistency can be carried out easily by &¥adithe constraints issued over
the schema (by means of suitable SQL statements).

Focusing and decomposition have been amply discussed in Section 4. Waddoess the issue of
efficient recombination.

5.1 Recombination Step

Let us now consider the problem of evaluating a guergsued over an inconsistent databaséor S, i.e.,
to computeans(Q, D). Recall that according to the definition in Section 2, a tufdelongs toans(Q, D)
if #'is in the answer t@) on every repair o), i.e., ans(Q, D) = {t | i € Q[R] for eachR € rep(D)} =
Nrerep(p) @IE]. The following proposition, which is immediate from the definitions, states hoveave
exploit repair envelopes for localization in query answering.

Proposition 5.1 Let D be a database fo§ = (¥,3). Let £ be a set of facts, and let = D N £ and
S=D\E. Then
ans(Q, D)= (] QI(R)US], (6)

Rerep(A)

where (i)x(R) = R if E is a repair envelope foD, and (ii) x(R) = RN Eif E is a weak repair envelope
for D.

By the results from above, we can always apply (ii) of (6) withk= C*, and forC; or C constraints apply
always (i) of (6) withE = C*. Furthermore, foICy, we can apply always (i) of (6) witly = C'. Since in
this caseC’ C D, we can rewrite (6) tans(Q, D) = (\geep(c) QIR U S

In the light of the equations above, query answering can be carridaydlacally” repairing the affected
database, and evaluating the query over each local repair augmentéklengtife portion of the data. While
this approach has the advantage of localizing the inefficient (co-NP) wtatign on a fragmen#l of the
databasd), its implementation leads to an algorithm for consistent query answering whedrlynscales
w.r.t. the number of repairs, but possibly exponentially w.r.t. the size of fieetafl database. Actually,
this is the best one may asymptotically expect to achieve for general ineonisiatabases, unless-PNP,
given that consistent query answering is co-NP-hard.

Hence, it is particularly relevant to assess whether some smarter stratagies conceived for spe-
cial classes of queries and constraints, in order to have an algorithrinatieimplements localized repair
computation and linearly scales w.r.t. the size of the database.

5.2 Repair Factorization

In this section, we present a technique that factorizes repairs into indepecomponents (proofs of theo-
rems and propositions are given in Appendix B). The basic idea is to pattigoaffected partl = DN E
of the databas® w.r.t. a repair envelop& into disjoint subpartsiy, ..., 4,,, such that the repairs of

17



are obtained by combining the repairsAf, ..., A,, in all possible ways. Given a repair envelapdor D
andS, a partitioningE, . . ., E,, of E is afactorizationof E for D ands, if

rep(D) ={(D\E)UR U---UR,, | Ry € rep(DNE;),1 <i<m}. (7)
Towards sufficient conditions for factorization, we define a repaimgi@ant partitioning as follows.

Definition 5.1 Let E be a repair envelope for a databade for a schemaS = (¥, X). A partitioning
Eq, ..., E,, of E is repair-compliantif (1) it is constraint-bounded.e., constraint-bounded facts frofi
belong to the same compondnt, and (2) for all R € rep(D N E) andR; € rep(D N E;), 1 < i < m,
R\ E=R;\ E;.

By means of a repair-compliant partitioning, we can factorize the repait ofto the repair of the
(mutually disjoint) partsd; = AN E; = DN E; of A, fori = 1,...,m. The repairs for eachl; are
confined toF' U E; for a fixed set of factd”, and by the abstract properties (SIP), (DPE), and (DIS) of the
preference ordering, they can be easily combined with the repairs fathalt parts4;, as shown next.

Theorem 5.2 (Factorization)Let D be a database fof = (¥, 3), and letE be a repair envelope fab.
Then, every repair-compliant partitioningy, . . ., F,,, of F is a factorization off for D andS.

Note that Condition (2) of Definition 5.1 is trivially satisfied f@, constraints. Furthermore, it is
immaterial forC; constraints under the standard envelépe: C*.

Proposition 5.3 Let D be a database fo§ = (¥, ¥), and letE be a repair envelope fab. If either (1)
Y CCiandE = C*or (2) X C Cy, then every constraint-bounded partitionidg, . . ., F,, of E is
repair-compliant.

Thus, for the practically important classes of constraittsandCy, repair-compliant partitionings, and
thus factorizations, can be obtained by a constraint-bounded partitioh{rig cespectively by a constraint-
bounded partitioning of any repair envelope. ConsequentlyCipand the canonical enveloge = C,
Equation (7) can be rewritten to:

rep(D) ={(D\C)UR U ---URy, | R; € rep(C;),1 < i <m}. (8)

Example 5.1 Let S consist of the relatiorp(z,y, z) and the functional dependendy : p(z,y,z) A
p(z,y,7') D z = 2/, and consider the databage= {p(a;,b;,c;) | 1 <i < mA1l < jk </{}. The
conflict setC' consists of all tuples i, since each pair of facts of the forpta;, b;, ci;) andp(a;, by, cir)
with k& # &/ witnesses a violation of. The partitioningC1, . .., C,, of C, whereC; = {p(a;,b,c) € C},
1 < i < m, is constraint-bounded and thus, by Proposition 5.3, repair-compliaety EY has/ repairs,
while D has/™ repairs in total. In particular, the repairs bfare of the formR, U - - - U R,,,, where each
R; is a repair forC;, according to Equation (8). O

We finally remark that under particular preference relations, Conditipfo(2repair-compliance (see
Definition 5.1) might be relaxed. For instance, in case of the prototypiearger<p, i.e., set inclusion
w.r.t. symmetric difference, it is sufficient that the repairdiof F; coincide outsider; on a fixed part: for
alll1 <i,5 <m, R; € rep(DNE;) andR; € rep(D N E;) impliesR; \ E; = R; \ E;.

Furthermore, we note that we can compute efficiently repair-compliant paitigye of arbitrary repair
envelopes folIC constraints and of the standard enveldpe- C* for C; constraints, for instance, using

18



techniques for computing the connected components of a graph. Notethafeis a union of connected
components of the graph with nodedirand edges between each pair of facts which are constraint-bounded.
In this respect, we point out that techniques exploiting graph (and bsaqe) representations of conflicts

in data have also been introduced and used in [2, 16].

5.2.1 Recombination of Independent Factors

We are now in the position to show how the notion of factorization can be ussstitnize query answering
from inconsistent databases. To this end, we proceed in two directions:

e First, for a user querg), we investigate when some of the components of a factoriz&tion. . , E,,,
although they are inconsistent, need not be repaired to ar@waertuitively, this happens when all
the repairs of a given componeht are indistinguishable as far as answeripgs concerned.

e Second, we investigate how to improve on the naive exploitation of equafiphy(discussing sce-
narios where the answer €9 can be obtained by independently processing the different components,
rather than combining their repairs in all the possible ways.

We focus here on non-recursive Datalog quefles (g, P). Since they can be effectively unfolded to a
union of conjunctive queries with a single head predigatge assume that queries are already in this form,
i.e.,P = {p1, ..., pn}, Wherehead(p;) = q(t;), and each predicate wdy(p;), 1 < j < n, is from the
schema. We denote by(@Q) = n the number of rules if? and bya(Q) the maximal number of variables
appearing in any;.

Example 5.2 Consider a schema with relation§A, B) and s(B, C') which have the keysl and B, re-
spectively. LetD = {r(al, bl), r(al, bg), ’I”(GQ, bl), ’I”(a2, bg), ’I”(ag, b1>, S(bl, Cl), S(bl,CQ), S(bg,Cg)}. Its
conflict set isC = D \ {r(as, b1), s(bs,c3)}, which is a repair envelope. Note that the safe patbadb
S = {T(ag, bl), 8(b3,03)}. The partitioningCrl = {r(al, bl), r(al, bg)}, CTQ = {T(CLQ, bl), T(ag, b3)} and
Cs = {s(b1,c1), s(b1,c2)} of C is repair-compliant, and thus by Theorem 5.2 is a factorization. For the
query@ = (q,{q(x) «— r(z,y), s(y, 2).}), we haven(Q) = 1 anda(Q) = 3. O

We now formalize scenarios where inconsistencies in some components taarated.

Definition 5.2 Let F; ..., E,, C E be a factorization of a repair envelopefor a databasé, and letQ

be a non-recursive (unfolded) Datalog query as above.clbet a new constant symbol not belonging to
the universal database domainh For each componerf;, we defineQ; = (¢;,P;), P; = {qi(j,tg) —
atoms(E;, j) | 1<j<n(Q)}, whereatoms(E;, j) is the set of atomg(Z) € body(p;) such thatE;
contains a fact ovep, andt? is obtained as follows: substitutein t} for each variable not appearing in
atoms(E;, j); append all variables fromtoms(E;, j) occurring inbody(p;) \ atoms(E;, j); and pad the
resulting list to lengthu(Q), usingec. Finally, let ans(Q;,7) = {{(j,5) € Q;[(D\ E)UR]} | R €
rep(D N E;)}. O

Example 5.3 In Example 5.2, we havetoms(C,,, 1) = atoms(Cy,,1) ={r(xz,y)} and atoms(Cs, 1)
={s(y,2)}. We thus haveQ,, = (g, {ar, (L2, y.0) — r(@.)}) andQry = (dry: {ara(L 2y ¢) —
r(z,y)}), while Qs = (gs,{qs(1, ¢, y,c) — s(y,2)}). Cr, has the two repairér(ai,b;)} and{r(a1,b2)},
and ans(Qy,,1) = {{(1,a1,b1,0)}, {(1,a1,b2,¢)}}. Similarly, C,, has two repairs{r(az2,b1)} and
{r(az,b3)}, and ans(Qr,,1) = {{(1,a2,b1,0)}, {(1,a2,b3,c)}}. Finally, Cs has the two repairs
{s(b1,c1)} and{s(by, c2)}, butans(Qs, 1) is the singleto{{(1, ¢, b1,¢)}}. O

19



Notice that a componeri; such thatans(Q;,7)| = 1 for 1 < j < n(Q), while possibly inconsistent,
does not need to be actually repaired as far as answélirggconcerned. In the following, every such
componentr; is calledsingular.

Guided by this observation, given a factorizatiéh, . .., F,, of a repair envelop& for D where
E1, ..., Eyare the singular components, we ¢&8l) = (D \ £) U R;U- - -U R, aquery-safe parof D w.r.t.

Q, ifeachR;, 1 <i</,is an arbitrary repair ob N E;. In Example 5.2 is the only singular component,
andR = {s(b1,c2)} is arepair ofCs = DN Cy; hence,Sg = {r(as, b1), s(bs,c3),s(b1,c1),s(b1,c2)} isa
guery-safe part oD.

Proposition 5.4 Let £, . .., E,,, be a factorization of a repair envelogé for D, and letSg = (D \ £) U
Ry U---U Ry be aquery-safe pamf D w.r.t. Q. Then,

ans(Q, D) = N e N Q[SqQU Rpy1--- U Ry (9)

Ryi1€rep(DNErt1)  Rmé€rep(DNEm)

If all components?; are singular, query answering can be carried out by consideringdpérasy query-
safe part ofD. In this ideal case, the cost for query answering amounts to checkingts@;, j)| = 1
forall1 <i <mandl < j < n(Q), which can be efficiently carried out by processing the components
independently of each other.

Interestingly, even if non-singular components are present, “paraligliginery answering without a
need for recombination may be possible.

Definition 5.3 A factorizationE,, ..., E,, of a repair envelop& for D is decomposablev.r.t. queryQ, if
its non-singular componentsy, ... ., E,, satisfy

(1) atoms(E;, k) = atoms(Ej, k), for everyl <i,j <mandl <k < n(Q); and,
(2) |atoms(E;, k)| = 1, foreveryl <i <mandl < k < n(Q).
3) R\ E; = R; \E]’, for everyR; € rep(D N E;), R; € rep(D N Ej), (<4, <m.O

Proposition 5.5 Let Ey, .. ., E,, be a factorization of a repair envelopé for D which isdecomposable
w.r.t. query@ having the non-singular componerits, ..., E,,. Then

ws@D)=UJ( N Qiseuri) (10)

i=f R;€rep(DNE;)

Example 5.4 In our example, the non-singular components @se and C,,. Since atoms(Cy,,1) =
atoms(Cr,,1) = {r(z,y)} (n(Q) = 1), the factorizationC,,, C,,, Cs is decomposable w.r.t(). By
Proposition 5.5, the querQ = (g, {q¢(z) «— r(z,y),s(y,z).}) can be evaluated independently ovgr
andC,,, taking the query-safe pafly = {r(as,b1), s(bs,c3), s(b1,c1), s(b1,c2)} into account. Specif-
ically, for C,,, we must comput&[Sqo U {r(a1,b1)}] N Q[Sq U {r(a1,b2)}], which yields{(as)}. For
C:,, we must computé)[Sq U {r(az,b1)}] N Q[Sq U {r(asz, b3)}], which yields{(as), (a2)}. Therefore,
ans(Q, D) = {(a3), (a2)}. As can be checked, this is the correct result. O

In closing this section, we note that by virtue of Propositions 5.4 and 5.5 amefficiently answer
a number of queries which do not fall within any of the tractable classgsopeal in the literature so far
[18, 17, 26, 30]. Examples of such queries and a discussion on tfempances of this strategy are given
in Section 7.

20



6 Logic Programming for Consistent Query Answering

According to several proposals in the literature, consistent answersmonsistent databases can be com-
puted by encoding the constraints in the schema by means of a Datalogrpregjrey unstratified negation
or disjunction, in such a way that the stable models of this program map to thiesrepthe database. A
framework that abstracts from several logic programming formalizationilitdmature (such as [29, 4, 6])
is introduced next.

Definition 6.1 Let @ = (q, P) be a non-recursive Datalogjuery overS = (¥, ¥). A logic specification
for queryingS with Q is a (safe) Datalog™ programlls(Q) = II5; Ul such that, for a give) € D(S),

1. repg(D) = SM(Ily U D), and

2. ans(Q, D) = Q'[D], whereQ'= (¢q,11s(Q)), i.e., ans(Q,D) = {t | q(t) € M for eachM €
SM((IIy; UIIg) U D)}, wherell, is a non-recursive safe Datalogrogram,

and= denotes a polynomial-time computable correspondence between two sets. O

In the above definitionlIy is that portion ofills(Q) that encodes the integrity constraint$inwhereas
I1, represents an encoding of the logic progr&nm the user query) (examples of instantiations of the
above logic framework are given in Appendix D).

Encoding repair computation by means of logic programs has some attragdiveds. An important
one is that Datalog™ programs serve asxecutable logical specifications of repaand thus provide a
language for expressing repair policies in a fully declarative mannegrtithn in a procedural way. In fact,
extensions to the Dataldg language that allow, for instance, to handle priorities and weight contstrain
[36, 40], provide a useful set of constructs for expressing alsa@rmwolved criteria that repairs should
satisfy, which possibly have to be customized to a particular applicationrsz€as.in [4]).

However, with current (yet still improving) implementations of stable model exgyisuch as DLV [36]
or Smodels [40], query evaluation over large data sets quickly beconeesibfe because of lacking scala-
bility. The source of complexity in evaluating the progrélg(Q) lies in the conflict resolution moduléy..
Indeed, whilelly, which is in general a non-recursive Datalogrogram, can be evaluated in polynomial
time with respect to underlying databases (data complexity) [19]js in general a Datalog™ program
[29], whose evaluation data complexity is at the second level of the polyhbrararchy [19].

6.1 General Architecture for Repair Compilation

The localization properties discussed in Section 4 and Section 5 may be usgiihize consistent query
answering from inconsistent databases. Indeed, computing the régaibsmay be done in practice by
evaluating the prograrly, only over the affected part of the databd3erather than on the whol® as
obtained by a straight evaluation of the progrA() over D (Item 1 in Definition 6.1). We thus propose
an approach to optimize query answering that implements the strategies in Bqéx@émd Equation (10).
In practice, we just need an architecture in which a stable model engiddaisetrieve one repair at time
is interfaced and with a DBMS that evaluates the query over the repair aggnith the safe part ab.
Figure 3 shows a concrete architecture, whose components have thdrfglfanctionalities:

20ther logic formalizations proposed in the data integration setting [33, &1]4lso fit in our framework, provided that the
retrieved global databasis computed [34]. Notice also that other logic-based approaches to degaaition, based on abductive
logic programming [5] and ID-logic [39], do not fit this framework.

21



control flow

Q@ + database specifications

Pruner

P e —
Query Evaluator |

User | datafiow
Interface |

A Query
1o Query
i I > »| Executor
Logic ¥ Reformulator| >
Translator
IIs | i .
2 | _|Stable Models| repairs Engine DB
,,,,,,,,,,,,,,,,, LGN [N
" Engine Wrapper Interface
1Ix
affected|part safe |part
| Constraint
~--p Violations

Isolator
source database
T Y DBMS

Figure 3: System Architecture.

e Pruner: It takes the user querg and the schem&, and produces an equivalent specification (w.r.t.
Q), stripping off relations and constraints irrelevant for answeénd his is a preprocessing step, which is
not discussed in detail here.

e Logic Translator: It takes the specification & relevant forQ) returned by the Pruner, and produces
the logic progranils(Q) = Ilx, U Ilg, according to some encoding proposed in the literature. In our tests,
we used the mapping in [14, 30].

e Constraint Violations Isolatorlt is responsible of processing the progréiy to produce a set of SQL
views isolating the safe and the affected parts of the database at hard.sSivategies in Section 5.2 are to
be applied, it is also responsible for computing a factorization.

e Stable Models Engindt takes as input the affected database and computes the repairs using-the
gramIls. In our implementation, we used the DLV system [36].

e Engine Wrapperit wraps the output of the Stable Models Engine, by asking the enginenéorepair
at time. In our implementation, this is done with the JAVA Wrapper module availabRLig 2. In the case
the constraints are not in the claSs, it is also responsible of filtering from any repair the facts that are not
in the envelopdy — see conditioni) of Proposition 5.1.

e DB Interface: It does the interfacing between the Stable Models Engine and the DBMS,iah vth
stores both the safe part of the database and the repair computed byttleeN&idel Engine. After that a
new repair is stored, it notifies the query executor module.

e Query Reformulatorit takes the user query and transforms it in a suitable set of SQL statemants th
can be executed directly over the DBMS.

e Query Executorit is responsible for executing the reformulated query. Specifically, it implds the
strategies described in Equation (6) (for its adaptations to the cl@gsasdC,) and Equation (10), using

Shttp://www.mat.unical.ittwrapper/index.html

22



10 Totti RM | 11/ RM Roma 10 | '10’
player,,™Po: |79 | Ronaldinho| BC | "11/ teamm™Po: [ BC | Barcelona | 8 | ‘117
RM | Real Madrid | 10 | 01’

coachy,™Po: [7 ] Capello]| RM [ 11" |

Figure 4: The database of our running example after marking.

standard envelopes. As for the strategy in Equation (6), the module stailess DBMS the result of the
execution in a table. When the first repair of the affected part (intededth F), say Ry, is processed, the
table is initialized with the result of the query ovBi plus the safe pas. Then, for each other repaft;,
the table is updated by filtering those tuples that do not occur in the ansfithies query overR; plus the
safe part. After the last repair is computed, the table is returned to the Aisemilar strategy is applied
for Equation (10), with the major difference that now the computation of amposable partitioning is
needed.

Note that in the case whel® is consistent, query processing resorts to standard query evaluaéibpn ov
the DBMS, with some overhead for checking constraint violations byCiestraint Violations Isolatarin
fact, in this case, th®uery Executomodule evaluates the query directly over= D, since no repair is
produced by th&table Models Engine

6.2 Grouped Repair Computation

We next consider the idea of grouping the repairs computed bStdide Models Engini@ a way such that
a single query may evaluate more than one repair at time. This can be dogeusarking strategy.

Let Ry, ..., R,, be the repairs of the affected part (intersected, if needed, with théopene) which we
want to simultaneously process on the DBMS, indexed using the order itwieStable Models Engine
computes them. In each relatienwe add an auxiliary attributmark leading to a new relatios,,. The
values formarkare strings of bit$, 1. To each fact(t) € D, we associate a matk="b; ... b/, such that,
for everyl < i < n, b; = 1if s(t) belongs toR;, andb; = 0 otherwise. The marked tupteb is stored
in the corresponding relatios),,. The extensions of all,,, constitute thenarkeddatabase, denoted &y, .
Note that the facts in the safe database can be marked without prejmgcéissir mark is'11...1’, since
they belong to every repai®;. In our running example, the marked database derived from the répairs
Figure 1 is shown in Figure 4. In a first approximation, the marked databagée considered as having
its tables altered with an extra column which stores the mark.

A non-recursive Datalogquery@ = (g, P) is reformulated into an SQL query oveér,, by first nor-
malizing the rules irP and then converting each ruténto a separate SQL queSQ L,.. Informally, SQ L,
selects tuples for the head predicate ghereby respecting not only the join conditions given by the body of
r, but also the marks of the joined tuples. Marks corresponding to nedjadrads are inverted and missing
tuples (which do not belong to any repair) are considered as marké&t. by0)’. The details are given in
Appendix C.

Eventually, all rulesy, .. ., s, defining the same predicateof arity n are collected into a view by the
SQL statementQLy,:

CREATE VIEW hy,(a1,...,a,, mark) AS
SELECT ay,. . ., Gn, SUMBIT(mark)
FROM (SQL,, UNION ... UNION SQL,,)
GROUP BY ay, ... an,

23



whereSUMBIT denotes an aggregate function that, givermarks (i.e., bit strings), returns the mark
given by bitwise OR. By means of such a view for the query predigatienotedy,,,, the answers to the
query(Q are obtained through the statem@iq@ L:

SELECT ay,...a, FROM ¢,, WHERE mark =" 1...1’.

It computes the query answers by selecting the facts which evaluate to alledpairs.

Example 6.1 The query in our running query has two rules:: ¢(z) < player(z,y,z) andrs : g(x) «—
team(v, w, z). Their normalized versions are:

0 q(yo,1) — player(yi1, y1.2,Y1,3), Yo,1 = Y115
1 q(yo,1) < team(yi,1,Y1,2,Y1,3), Y0,1 = Y1,3-

Thus, they translate into corresponding SQL statem&s,, andSQL,,:

SELECT player,,.Pcode AS ay, SELECT team,,.Tleader AS a;,
player,, .mark AS mark, team,, . mark AS mark,
FROM player,,; FROM team,;

Finally, a view for the query predicateand the final quenbQ L are expressed as:

CREATE VIEW ¢,,(az, mark) AS
SELECT a;, SUMBIT(mark)
FROM (SQL,, UNION SQL,,)
GROUP BY ay;

SELECT a;FROM ¢,,, WHERE mark =’ 11/;

SQLg yields onD,, the tupleg8), (9), and(10); they are the consistent answerslo O
The querySQ L has the following property (the proof is given in the Appendix C).

Proposition 6.1 Let D be a database fo§ = (¥, X), let @ be a non-recursive Datalogquery over it,
and letR;, ..., R,, be databases such th& = R, N E, whereE is a weak repair envelope fap and R,
is a repair forA = D N E. Then,SQLg computes orD,, the set of tuple§)’ ,{t | t € Q[R; U S|}, for
S=D\E.

Note that wherRy, ..., R}, are all repairs for4, then the tuples computed I$Q L are the consistent
answer ta)) w.r.t. D — see, again, Equation (6).

A limitation to the scalability of the marking strategy is that all safe tuples must be cheuikie’11 . .. 1/,
since they belong to each repair. However, we can avoid this, and tvau&formulated query on a
database instance in which only affected tuples have been marked.t&its de scaling the technique this
way, we also refer to the Appendix. Further optimizations concerning thkimgestrategy may be carried
out, in particular DBMS dependent techniques can be deployed, bhegoad the scope of this paper.

7 Experimental Results

In this section, we present experimental results for evaluating the g#aess of our approach and, specif-
ically, the benefits of the localization techniques discussed in the paper.

24



7.1 Benchmark Databases and Compared Methods

Hippo [17, 18] and ConQuer [26, 27] are two most noticeable prototypeesis available in the literature
for consistent query answering from inconsistent databases. $istegns focus on specific classes of con-
straints and queries over which consistent answers can be efficientiyuted. Indeed, Hippo is able to
deal with queries definable in relational algebra without projection uneeiaticonstraints, and encodes
inconsistencies by a conflict hypergraph built from constraint violatjan46]. Instead, ConQuer consid-
ers database schemas under key dependencies, and deals withaugey fjom a subclass of conjunctive
queries, possibly enriched with aggregates. On this class, ConQuanis $b be very efficient for pro-
viding consistent answers over large databases with many inconsistkr#t ¢up to the 50% of the whole
database).

Since these systems are tailored to efficiently manage specific classegiesqual constraints, their
performances have been tested on some ad-hoc created benchmbagsetaSpecifically, [26] mainly
generated syntectic data for the TCP-H specifications over a schem@oanfaimary keys only and used
gueries with aggregate expressions, while [17] considered progegireries over tables having attributes
x,y, z correlated by the functional dependengy:, y, z) A p(x,y’,2') D z = 2.

In the same way as Hippo and ConQuer are not directly comparable withodaeh thereby having
required the definition of specific benchmarks problems and data, sorabseewario has to be proposed to
assess the effectiveness of our localization approach. Indeet&atuniques are designed for more general
settings than those addressed by Hippo and ConQuer, and therefpathbe used in scenarios that go
beyond the scope of such systems. For instance, neither Hippo nor€ongh answer queries involving
projections, when an integrity constraint which is not a key (such asergefiunctional dependency or an
exclusion dependency) is issued on the schema. But, these constraintsazfur in database design; in fact,
exclusion dependencies are typical for database schemes stemmingR-onodels or other conceptual
data modeling languages, and are widely used in applications in which theadbegiven in terms of an
ontology.

On the other hand, if we focus on the class of queries for which HippoGormQQuer have been re-
spectively designed, it will come as no surprise that our approachipaficiency for its generality and
expressiveness. And, in fact, we envisage an integrated architdeativitches to these more specialized
and efficient systems whenever the query and the constraints fall inféhe dasses they are able to deal
with.

Therefore, to test our more general framework as well as the fadionzachniques discussed in Sec-
tion 5, we proceed as follows:

e We first present a global picture of our approach by consideringtsefor our running example (on
football teams).

¢ We then focus on atest suite over the database scS%msed in [17], which contains two relations of
the formr;(x;, y;, 2;), withi = 1, 2, and the functional dependencyz, y, 2) Ari(z,y',2') D z = 2/,
but we consider queries that involve projections, so that the system lisipymd applicable. Also, we
consider the databas®, which contains a predicate of the foptz, y) and a predicate of the form
q(v,w), with an exclusion dependency between attributesdw.

e We also discuss the impact of the number of atoms involved in the query onrfioenpences of the
localization approach, by considering the scheﬁﬁ’a obtained by generalizingj%, to an increasingly
large number of predicates.

25



10 conflicts
T

T
Safe part:

4 ‘ | |
9 —
L - /7{:?,,,,,,,, 1 — |
e &

—&— 4000
—— 8000

e -

Time [s]
&
L
Time [s]

10f—— .

s o4
oo 65 ———————b— ©- i ; ; i i i i i i i
10 20 30 40 50 60 70 80 90 100 0 05 1 15 2 25 3 35 4 45 5

Size of the affected part Size of the retrieved database x10°

(a) (b)
Figure 5: Football Team. (a) Execution time in DLV system w.r.t. size of thetftepart. (b) Comparison
with the optimization method.

For the schemas above, we generated some random data according eathelascribed in [17, 26], of
tuning the size of the safe part and the number of conflicts.

All experiments have been carried out on a 1.6GHz Pentium IV with 512MB meip assessing the
time needed for query answering when the DLV system computes repainge afffected part only, plus
the time required for the recombination of the results in the DBMS PostgreSQthelexperiments, the
approach proposed in the present paper is compared with the apgmoabich DLV is used to evaluate
the whole logic specification for querying the inconsistent databasesthrchses, the logic programming
encoding we used is inspired by [14, 30].

7.2 The Football Teams Example

We next present an overview of the performances of our appraagthspecifically, its scaling w.r.t. the
size of the safe database, by considering a simple scenario. For aimgwexample, we built a synthetic
data setD p7, such that tuples imoach andteam satisfy the key constraints issued on these relations, while
tuples inplayer violate the corresponding key constraint. Each violation consists of tve tfaat coincide
on Pcode but differ on eitherPname or Pteam; note that these facts constitute the affected paid pf .
For our experiments, we consider the quéry= (q, P) whereP = {q(z) <« player(z,y,z); q(x) «—
team (v, w, x)}, and we encode our problem into a DatalqgogramIlLs, () in the line of [14, 30] (the
encoding used is the one provide in Appendix D.1, in which we get rid ofetftemding for the mapping).
We first measure the execution time of the progidg) (@) in DLV depending on the size of the affected
part, while the size of the safe part is fixed to the values(i) O, (ii) 4000(i@ah8000, respectively. We stress
that values for the execution time of the DLV system refer to query ansgveiith non-ground queries.

The results for this experiment, reported in Figure 5.(a), show that the $yktém scales well w.r.t.
the size of the affected part. Still the big size of the safe part appearstteebwost limiting factor for
an efficient implementation. Indeed, only 8000 facts (in absence of dynflauld require more than 35
second for consistent query answering.

26



100 T T T 70 T
Safe part: : Safe part;

oor ‘ ‘ ——10 | —o— 1000
—5—100 S I
805\ —4—1000 ||
\ , : : 10000 |

70’\
60| -\ :

501

Time [s]

401

301

201

101

12)1 162 A Q 1::3 0 é 4‘1 é é 16 12

Number of grouped repairs Number of repairs x10°
(@) (b)

Figure 6: Query answering ov&zf. (a) Optimization method w.r.t. numberof grouped repairs, for a fixed

number of conflicts. (b) Optimization method w.r.t. the size of the affected paut, £ 2°.

The performance degradation under varying size database is futthesesd in Figure 5.(b), which
shows a comparison (in log-scale) between consistent query answsiitgya single DLV program and
the optimization approach proposed in this paper. As for the optimization agiprealues on execution
time include the cost of computing repairs of the affected database onlymgitkéng and evaluating the
associated SQL query over marked relations. Specifically, we conditiéréolations and a marking string
of 219 bits, so that issuing one query over the database is sufficient to recothbinepairs of the affected
part with the safe part. Interestingly, the growth of the running time of otimigation method under a
varying database size is negligible.

7.3 Scalability Assessment

In a first series of experiments, we assessed the relevance of thgysf@atgrouping repair computation
by focusing on the databa§§. Indeed, so far, we have assumed that the marking string suffice®forgs
all repairs for the affected part and, therefore, the DBMS has beeriegl just once for recombining the
results of the localized repairs with the safe part only. But, the reader ttlig @oint wonder whether this
approach is more efficient than processing each repair sequentiatha(artime).

Figure 6.(a) answers the above question positively. It reports the tinteedder answering the query
Qf = (qr, Ps) whereP;r = {qf(y1) < ri(z,y1, 21), m2(x, Y2, 22)} W.r.t. the number. of repairs that are
grouped and processed simultaneously on the DBMS. Specifically, wk ftxeonflicts in the data (each
involving two inconsistent tuples). Hence, for= 1, we sequentially process each repair, whilerffor 219,
all the repairs are combined in the DBMS at the same time. The advantageupfrgyaepairs is evident,
specifically by considering the scaling of the curves for different siéise safe part.

A second set of experiments has been devoted to assess the scalabilitthe.ntimber of conflicts.
Thus, we reconsidered the above scenario, but we augmented thermfnabeflicts up to 100, and we
fixed the marking string t@” bits. The results are shown in Figure 6.(b). We notice the decent scalihg w.r
the size of the safe part and that, as expected, the time needed foriagsawguery linearly depends on the
total number of repairs. Note that, since this number is exponential in the mwhbenstraint violation,

27



100 T T T 50

Safe part: Safe part:
90 451
5—0 —&—0
80+ —&— 10000 40 —c— 10000

70 35

60 30

50 5|

Time [s]
Time [s]

40} 201
30

201

0 50 100 150 200 0 50 100 150 200
Number of Components Number of Components

(@) (b)

Figure 7: Factorization strategy. Answering () overSJ% w.r.t. the size of the affected part (@/f over
S2,
f

the resulting curve may be in some scenarios exponential in the size oféltedfpart. Yet, this is the best
one expect to achieve for general inconsistent databases for wkidlotisistent query answering problem
is known to be co-NP-hard.

In fact, itis interesting to assess whether some nicer scaling can be otiigiapdlying the factorization
strategy discussed in Section 6.2. In this respect, we notice that the@uetyove and the constraints over
S]% are such that our factorization strategy can be applied. Indeed, theysettiare considering is basically
the one described in Example 5.1, where each component contains odydhtsswitnessing a violation of
the functional dependency over each of the two relatigredr,. Specifically, in our experiments, we fixed
the structure of each component to contain 1000 tuples and 1000 repairgdir of these tuples witnesses
a violation of the dependency), and we generated some syntectic dataifeadimgly large number of
independent components. The parametebounding the number of repairs simultaneously processed, is
fixed to21'0,

The results obtained by applying the recombination strategy in equation Ehana in Figure 7.(a).
Given the ability of independently processing the components, the scalimgvi§imear in the number of
components and, hence, in the size of the whole affected part. In faaty gunswering is feasible for a
much larger number of constraint violations (results are reported 2Q0t8%° repairs).

A similar experiment has been repeated for the quety = (¢}, P}) where P, = {q}(y1) «
ri(x,y1,21)}. Figure 7.(b) shows tha@} has half the answering time @}, given that answering)}
does not need to resolve conflicts in the relation

As a further example to test the factorization technique, we considereathigadeS., which contains
a predicate of the form(x, y) and a predicate of the forg{v, w), with a constraint imposing that attributes
x andwv are disjoint (exclusion dependency). Over it, we evaluated the quert (q., P.) whereP, =
{¢e(y) — p(z,y),q(z,w), g(w) «— p(x,y),q(xz,w)}. Notice that each component in a factorization
contains tuples of the form(a, y) andq(a, w) witnessing the violation of the exclusion dependency between
p andq. Moreover, repairing each component always yields two repairsqeleeting tuples over and the
other selecting tuples ovej. Figure 8.(a) reports timing for consistent query answering, whersateepart
consists of 10000 tuples.

28



30

Safe part:
25} 0
—&— 10000 /
201
2 /
[} L
g 15
=
101
5 [ -
— I G
0 i i i = 4 © ‘
0 50 100 150 200 2 3 4 5 6
Number of components Number of query atoms
(a) (b)

Figure 8: (a) Factorization strategy ovr. (b) Query answering ove?}v, N > 2.

Finally, we also considered the databat%]% and the quen@ = (¢,P) where? = {q(y1) <
ri(z,y1, 21), r2(2, y2, 22), ..., 'v (2, Y, 25) ), for 10 constraint violations per relation ag¥f repairs si-
multaneously processed. In this scenario, we performed some experitnexsisess the dependence of
guery answering on the number of atofisn the query. The results are reported in Figure 8, which shows
an exponential dependency.

8 Discussion and Conclusion

For optimizing logic-based query answering from inconsistent datapasdsave presented a repair local-
ization approach. In this approach, repairs are conceptually cortbreetepair envelope, which intuitively
comprises the part of the database affected by inconsistency, aneétwenbined with the unaffected (safe)
part before determining the query result. We have investigated this appimo@ generic framework ac-
commodating different classes of integrity constraints (including deniatcaints [17]), and preference
orderings for repairs from the literature (see Section 3.1). We thendissessed how this approach can be
fruitfully utilized for query answering using logic programming specificatjomsere a logic programming
engine and a DBMS are combined, such that tremendous performansegaichieved.

While motivated by logic programming specifications, our localization resulta@réound to such a
setting and are, in fact, applicable to any realization of consistent queweaimg. Furthermore, the generic
form of preferences, constraints, and repair envelopes allows taiiseathe results to many different
concrete settings in practice.

The work presented here can be extended in different directionsorAsdalization and query answer-
ing, our results may be extended to repair semantics based on preferdadags violating the properties
in Section 3.1. For example, Chomicki and Marcinkowski [16] considpairs in which a smallest (in
terms of inclusion) set of tuples is deleted from the database but no tuglesided. For such repairs,
Proposition 4.2, Lemma 4.3, and Theorem 4.4 can be established similarly.

Furthermore, answering a negation-free qu@rgn all repairs is equivalent to answering it only on the
repairs which are minimal under set-inclusion, i.e., do not contain any atpairrproperly. If an ordering

29



<p fails to satisfy (SIP), (DPE), and (DIS), we may characterize the sisionn minimal repairs w.r.t.
<p as repairs under an orderirg, satisfying these properties. An example is the ordefg_p R-
iff R1 N D D Ry N D [13, 14], which violates (SIP). We can use here the ordefind_’, R, iff Ry Cp
RoN(RiND = RyND = Ri\D C Ry\D) instead.

Other approaches considered consistent query answering undeerpective of modifying values in
the database rather than entire tuples [43]. Due to the different semamtisisiered in these works, such
repairs are not immediately captured by our framework. A study of réigpezxtensions is left for future
work.

Another extension of the results here is from a single database to a datefioiegystemZ =
(G,S, M), whereg is the global schema$ is the schema of the various sources, avdis the map-
ping establishing the relationship betwegrand S [34]. As briefly discussed in Appendix D.1 and more
in detail in [21], the results developed here can be readily adapted fdolzmlGAs-View (GAV) setting
in which M is given by stratified Datalog queries, and for constraints on the globehsz falling in the
classes considered in this paper. They can be further extended t@&@tiesettings, e.g., as in [33, 14], and
certain Local-As-View (LAV) settings, e.g. asin [8, 11].

In fact, most of the research reported here has been carried out WithiBU project INFOMIX on
advanced data integration for expressive schemas using logic progrgntiowever, the INFOMIX system
is not the implementation of all results in this paper. For more information aboptdiject, see [35].

References

[1] ABITEBOUL, S., HULL, R.,AND VIANU, V. 1995. Foundations of Database#ddison Wesley.

[2] ARENAS, M., BERTOSS| L., AND CHOMICKI, J. 2001. Scalar aggregation in fd-inconsistent
databases. Imternational Conference on Database Theory (ICDT-20&pringer Verlag, 39-53.

[3] ARENAS, M., BERTOSS| L. E., AND CHOMICKI, J. 1999. Consistent query answers in inconsistent
databases. IRroc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principlestaldiaae Systems
(PODS'99) 68-79.

[4] ARENAS, M., BERTOSS| L. E.,AND CHOMICKI, J. 2003. Answer sets for consistent query answering
in inconsistent database3heory and Practice of Logic Programming 8, 393-424. arXiv.org paper
¢s.DB/0207094.

[5] ARIELI, O., DENECKER, M., NUFFELEN, B. V., AND BRUYNOOGHE, M. 2004. Coherent integration
of databases by abductive logic programmidgurnal of Artificial Intelligence Research 2245-286.

[6] BARCELO, P. AND BERTOSS| L. E. 2003. Logic programs for querying inconsistent databases. In
Proc. of Practical Aspects of Declarative Languages (PADL'@BB—222.

[7] BERTOSS| L. AND CHOMICKI, J. 2003. Query answering in inconsistent databased.odjics for
Emerging Applications of Database$. Chomicki, R. van der Meyden, and G. Saake, Eds. Springer-
Verlag, Chapter 2, 43-83.

[8] BERTOSS| L. E., CHOMICKI, J., GORTES A., AND GUTIERREZ, C. 2002. Consistent answers from
integrated data sources. Bmoc. of the 6th Int. Conf. on Flexible Query Answering Systems (FQB83).2
71-85.

30



[9] BERTOSS| L. E., HUNTER, A., AND SCHAUB, T., Eds. 2005Inconsistency Tolerance [result from a
Dagstuhl seminar]Lecture Notes in Computer Science, vol. 3300. Springer.

[10] BouzEGHOUB, M. AND LENZERINI, M. 2001. Introduction to the special issue on data extraction,
cleaning, and reconciliationnformation Systems 28, 535-536.

[11] BrRAVO, L. AND BERTOSS| L. 2003. Logic programming for consistently querying data integration
systems. IrProc. of the 18th Int. Joint Conf. on Atrtificial Intelligence (IJCAI 200B)—15.

[12] BRAVO, L. AND BERTOSS| L. 2005. Disjunctive deductive databases for computing certain and
consistent answers to queries from mediated data integration systiemsial of Applied Logic 31,
329-367.

[13] CALI, A., LEMBO, D., AND ROSATI, R. 2003a. On the decidability and complexity of query answer-
ing over inconsistent and incomplete database®rte. of the 22nd ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2Q68)-271.

[14] CALI, A., LEMBO, D., AND ROSATI, R. 2003b. Query rewriting and answering under constraints
in data integration systems. Rroc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003)
16-21.

[15] CHowmickl, J. 2007. Consistent query answering: Five easy piecesPrdoeedings of the 11th
International Conference on Database Theory (ICDT 2007)Schwentick and D. Suciu, Eds. LNCS.
Springer, Berlin Heidelberg, Germany, 1-17.

[16] CHOMICKI, J. AND MARCINKOWSKI, J. 2005. Minimal-change integrity maintenance using tu-
ple deletions. Information and Computation 197,-2, 90-121. Earlier version: arXiv.org paper
¢s.DB/0212004.

[17] CHOMICKI, J., MARCINKOWSKI, J.,AND STAWORKO, S. 2004a. Computing consistent query an-
swers using conflict hypergraphs. Pmoc. 13th ACM Conference on Information and Knowledge Man-
agement (CIKM-2004)ACM Press, 417-426.

[18] CHOMmICKI, J., MARCINKOWSKI, J.,AND STAWORKO, S. 2004b. Hippo: A system for computing
consistent answers to a class of sqgl queriesPrbteedings 9th International Conference on Extending
Database Technology (EDBT-2008umber 2992 in LNCS. Springer, 841-844.

[19] DANTSIN, E., BTER, T., GOTTLOB, G., AND VORONKOV, A. 2001. Complexity and Expressive
Power of Logic ProgrammingACM Computing Surveys 33, 374—-425.

[20] EITER, T., FINK, M., GRECO, G.,AND LEMBO, D. 2003. Efficient Evaluation of Logic Programs for
Querying Data Integration Systems. Pnoceedings 19th International Conference on Logic Program-
ming (ICLP 2003)C. Palamidessi, Ed. Number 2916 in LNCS. Springer, 163-177.

[21] EITER, T., ANK, M., GRECO, G., AND LEMBO, D. 2005. Optimization methods for logic-based
guery answering from inconsistent data integration systems. TechlNRERY S RR-1843-05-05, Institut
fur Informationssysteme, Technische Universitvien, A-1040 Vienna, Austria. July. Extends [20].

[22] EITER, T., GOTTLOB, G., AND MANNILA, H. 1997. Disjunctive DatalogACM Transactions on
Database Systems 22 (September), 364—-418.

31



[23] FAGIN, R., KOLAITIS, P., MILLER, R. J.,AND POPA, L. 2005. Data exchange: Semantics and query
answering.Theoretical Computer Science 3389-124.

[24] FAGIN, R., ULLMAN, J. D.,AND VARDI, M. Y. 1983. On the semantics of updates in databases. In
Proc. of the 2nd ACM SIGACT SIGMOD Symp. on Principles of Databgsteids (PODS’83B52—-365.

[25] FRIEDMAN, M., LEVY, A. Y., AND MILLSTEIN, T. D. 1999. Navigational plans for data integration.
In Proceedings Sixteenth National Conference on Artificial Intelligence dedeth Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAABAAI Press / The MIT Press, 67-73.

[26] FUXMAN, A., FAzLI, E.,AND MILLER, R. J. 2005. ConQuer: Efficient management of inconsistent
databases. IBIGMOD Conferencel55-166.

[27] FuXMAN, A. AND MILLER, R. J. 2005. First-order query rewriting for inconsistent databasé&so-
ceedings of the 10th International Conference on Database TheoByT(RDO5) T. Eiter and L. Libkin,
Eds. Number 3363 in LNCS. Springer, 337-351.

[28] GELFOND, M. AND LIFSCHITZ, V. 1991. Classical Negation in Logic Programs and Disjunctive
DatabasesNew Generation Computing 865—385.

[29] GRECO, G., GRECO, S.,AND ZUMPANO, E. 2003. A logical framework for querying and repairing
inconsistent databasd&EE Trans. on Knowledge and Data Engineering 851389-1408.

[30] GRIECO, L., LEMBO, D., RosATI, R.,AND Ruzzi, M. 2005. Consistent query answering under key
and exclusion dependencies: algorithms and experiments. submitted fmagiob to an international
conference.

[31] KIFER, M. AND LozINsKII, E. L. 1992. A logic for reasoning with inconsistendyournal of Auto-
mated Reasoning 2, 179-215.

[32] KowaLskl, R. A. AND DADRI, F. 1990. Logic programming with exceptions.Rroc. of the 7th Int.
Conf. on Logic Programming (ICLP’90%90-504.

[33] LEmBO, D., LENZERINI, M., AND ROSATI, R. 2002. Source inconsistency and incompleteness
in data integration. IrProc. of the 9th Int. Workshop on Knowledge Representation meets &3&mb
(KRDB 2002)ht t p: / / ceur - ws. or g/ Vol - 54/ .

[34] LENZERINI, M. 2002. Data integration: A theoretical perspectivePoc. of the 21st ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 26G2246.

[35] LEONE, N., EITER, T., FABER, W., FINK, M., GOTTLOB, G., GRECO, G., IANNI, G., KALKA, E.,
LEMBO, D., LENZERINI, M., L10, V., NowICKI, B., RosATI, R., Ruzzi, M., STANISzZKIS, W., AND
TERRACINA, G. 2005. The INFOMIX system for advanced integration of incompleteiaconsistent
data. InProceedings ACM SIGMOD/PODS 2005 Conference, June 13-16, Battimore, Maryland
ACM, 915-917.

[36] LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S.,AND SCARCELLO, F.
2006. The DLV System for Knowledge Representation and ReasoA®igl Transactions on Computa-
tional Logic 7,3, 499-562.

32



[37] LIN, J. 1996. Integration of weighted knowledge bagetificial Intelligence 832, 363-378.

[38] LIN, J.AND MENDELZON, A. O. 1998. Merging databases under constrailms.J. of Cooperative
Information Systems 1, 55-76.

[39] NUFFELEN, B. V., CORTES-CALABUIG, A., DENECKER, M., ARIELI, O.,AND BRUYNOOGHE, M.
2004. Data integration using id-logic. Proceedings 16th International Conference on Advanced In-
formation Systems Engineering (CAISE 20@4)Persson and J. Stirna, Eds. Lecture Notes in Computer
Science, vol. 3084. Springer, 67-81.

[40] SIMONS, P., NEMELA, |., AND SOININEN, T. 2002. Extending and Implementing the Stable Model
Semantics Artificial Intelligence 138181-234. Smodels home pade:t p: / / www. t cs. hut . fi/
Sof t war e/ snodel s/ .

[41] STAWORKO, S., CHOMICKI, J.,AND MARCINKOWSKI, J. 2006. Preference-driven querying of in-
consistent relational databasesEIDBT WorkshopsT. Grust, H. Hipfner, A. lllarramendi, S. Jablonski,
M. Mesiti, S. Muller, P.-L. Patranjan, K.-U. Sattler, M. Spiliopoulou, and J. Wijsen, Edstiire Notes
in Computer Science, vol. 4254, Springer, 318-335.

[42] ULLMAN, J. D. 1989 Principles of Database and Knowledge Base Syst€umputer Science Press.

[43] WIJSEN, J. 2005. Database repairing using upda#&sSM Transactions on Database Systems30,
722-768.

A Proofs for Section 3

Proposition 3.2 Let D be a database faf = (W, ), where all constraints ift are safe. Suppose thatp
satisfies (SIP). Then, every repdire rep(D) involves only constants fromiom(D, S), and some repair
exists ifS is consistent.

Proof. Let R be an arbitrary database &fconsistent with. Let R’ result fromR by removing every
fact containing some constantt adom(D,S). We show that?’ is a repair. We first show that’ = X.
Towards a contradiction, assume tiitl~ >. Hence, there exists a ground instanéeof some constraint
o e Xofform Ay (@) A« AA(E) D Bi(dy) V-V Bp(dm) V ¢1(E1) V- - - V ¢n(&,) which is violated
by R', e, () A1(@), ..., Ai(@) € R, (i) Bi(d), ..., Bu(dyn) ¢ R, and (i) ¢1(€1) V -+ V 6 (€)
is false. SinceR E o9, by construction ofR’ we havij(J;-) € R\ R forsomej € {1,...,m} and
thusd} contains some constant¢ adom(D,S). It follows that some variable occurring in the headrof
does not occur in the body of, that is,o is not safe, which is a contradiction. Sineand R’ differ only
for facts outsideD, we have thatD \ R = D \ R/, and sinceR’ C R, we have tha?’ \ D C R\ D.
Therefore A(R', D) C A(R, D), and thus by (SIPR’ <p R. The< p-minimality of repairs implies that
each database irep (D) involves only constants fromdom (D, S). Furthermore, by consistency 8fand
the fact that each sequen&e >p Ry >p --- R; >p --- of database®; on adom(D,S) must be finite,
one such repaiR must exist. O

Proposition 3.3 Let D be a database fo§ = (U, ) where no built-in relations occur i&X except
= and #. Suppose that p satisfies (SIP). Then, every repdir € rep(D) involves only constants from
adom(D, S), and some repair existsd is consistent.

33



Proof.  Following the argumentation in the proof of Proposition 3.2, consider a grinstances?9 of
someo € X, which is violated byR’. Then, some atonB;(¢;) € R \ R’ in the head ob¥9 exists such
thatc; = cj1,...,cjn; CcONtains some constanf;, ¢ adom(D,S) and the respective variablg ; in

the atomB;(y;) in o does not occur in the body ef (notice that ify;; would occur in the bodyg;
might not be outsidedom (D, S), because the head 6 is satisfied inR’, which contains only constants
from adom(D, S)). Since all built-in literals irno are equalities and inequalities, there are infinitely many
constants such that for the ground instanag of o which differs froma? only by substitution of; , with

¢, all built-in literals evaluate to false. Sined ands? have the same body aritl = ¢, R must contain a
fact in whichc occurs. This means tha&t is infinite, which is a contradiction. O

B Proofs for Section 5

Theorem 5.2 (Factorization) Let D be a database faf = (¥, ¥). LetFy, ..., E,, be a repair-compliant
partitioning of a repair envelopé& for D. Then,E, ..., E,, is a factorization off’ for D andS.

Proof. We need to show thatp(D) = {(D\ E)UR U---URy, | R € rep(D N E;),1 <i < m}.
SinceE is a repair envelope fab andS, we know thatrep(D) = {(D\ E)UR | R € rep(D N E)}.
Hence, it is sufficient to prove that:

(S) Rerep(DNE)impliesR=R;U...UR, andR; € rep(DNE;) for1l <i < m;
(D) everyRe {RiU...UR,, | Ri € rep(DNE;),1 <i<m}isarepairofDNE.

(S) Let R € rep(D N E). Then, by repair-compliance @f,, ... E,,, R = F U Ry, whereFF = R\ E
andRg C E. ConsiderR; = FU (RN E;) for 1 < i < m. It remains to show thak; € rep(D N E;) for
1 <4 <'m. Towards a contradiction first assume tiRat~ ¥ for somel < i < m. Then, there exists some
o € ground(X) such thatR; ~ o. Thus,R; = body(o), which impliesR |= body(o), andR; -~ head(o).
However,R = head (o) must hold since? = X by hypothesis. This means that there exists a head atom
B(y) of o which is true inR. SinceR; F~ head (o), none of the built-in predicates ofis true and therefore
B(y) is a fact such thaB(y) € E;, j # i. Since the partitioning is constraint-bounded, it follows that
body(o) C F andhead (o) N E; = (. This excludes the existence of a repair of the fdf R}, of DN E;,
such thatR’Ez_ C FE;, a contradiction to the repair complianceff, . . ., E,,. This provesk; |= 3 for every
1=1,...,m.

ConsequentlyR; € rep(D N E;) iff there exists noR, € rep(D N E;) such thatk, <png, R; and
R} = ¥. Assume such a®; would exist. Thenk; = F'U R, and thus by (DISRy, <png, Rg;. By
(DPE) we would conclude foRy, = (RN E;)U... U R’Ei U...U(RNEy), thatRy, <png Rg, which
impliesR’ <png Rfor R = FUR',. FurthermoreR’ |= X. (Otherwise there exists soraec ground(X)
such thatR’ |= body (o) and R’ [~ head (o), while R |= 0. We can conclude thadbdy (o) C R., and since
R! = ¥ we obtainR’ |= head(o), a contradiction.) Together witR’ <pnr R, however, this contradicts
R e rep(DNE). Hence,R; € rep(D N E;), for1 <i < m.

(O)LetR € {R1U...UR,,, | R; € rep(DNE;),1 <i < m}. We show thal® € rep(DNE). Towards
a contradiction supposk (= ¥, i.e., R [~ o for someo € ground(X). By definition of a repair-compliant
partitioning, we conclude that = FU(R;NE;)...U(R,, N Ey,), whereF' = R; \ E; foranyl <i <m.
ConsequentlyR = body(o) implies R; = body(o) for somel < i < m by constraint-boundedness.
However,R; [~ head(c) (otherwiseR = head (o)), which contradicts®; € rep(D N E;). Hence,R = .

34



It remains to show that there is it € rep(D N E) such thatR’ <p~g R. Assume the contrary and let
F = R"\ E. Then by (DIS) (disjunctive split), eithei)(R' N E; <png, BN E;or (ii) R’ \ E; <(pnp)\E
R\ E; holds for eachi = 1, ..., m. Case{) leads to a contradiction witR; € rep(D N E;), however, since
itimplies FU(R'NE;) <png, RiandFU(R'NE;) = X (otherwiseR’ |~ ). So (i) must hold for every
i = 1,...,m. As shown by the recursive argument below, it follows tRat £ <pnpy\g R \ E, which
however, by repair-compliance @, ..., E,,, is equivalent taF' <, F, a contradiction. To see this, note
that we can apply (DIS) t&'\ E; <(pnp)\g, R\ E; wrt. E; foranyl < j # i < m, and arrive in a similar
situation as above: eithet (R’ \ E;) N Ej <(pne)\e)ne, (R\ Ei) N Ej = R' N E; <png; RN E;, or
(#1") (R'\ Ei) \ E; <((pne)\E)\E; (B\ Ei)\ E;. Now (i) leads to a contradiction as if)(and therefore
(4i") must hold. Iterating this argument — 1 times yieldsR’ \ (E1 U ... U En) <(pnp)\(E1U..UE)
R\ (EyU...UEy), whichis equivalentt’ \ E <pngyg R\ E. This provesk € rep(D N E). O

Proposition 5.3 Let D be a database fo§ = (¥, X)), and letE be a repair envelope fob. If either
(1) X C CyandE = C* or (2) ¥ C Cy, then every constraint-bounded partitioniq, . .., E,,, of E is
repair-compliant.

Proof. SinceFE;, ..., E,, is constraint-bounded, what remains to show is that foRadl rep(D N E) and
R; € Tep(DﬂEi),l gzgm,R\E:Rl\Ez WeshowthaIR\E:Rl-\Ei = 0.

Case(1): E = C*. By Proposition 4.6 € rep(D N E) impliesR C E, henceR \ E = (). Towards
a contradiction assume that there exiBtse rep(D N E;), such thatR; \ E; # () for somel < i < m.
ConsiderR, = R; N E;. Clearly (sinceR, C R;), we have by (SIP) thaR, <png, R;. We show
R! = X. AssumeR, (- ¥, i.e., there exists a ground constraint ground(X) such thatR, = o. Thus,
R! |= body(c), which impliesR; |= body(c), and R} (~ head(c). However,R; |= head(c) must hold
sinceR; = X by hypothesis. This means that there exists a head &0 of o which is true inR;.
SinceR, = head(c), none of the built-in predicates eofis true and therefor®(y) is a fact. Furthermore,
body(o) # 0 sinces € Cq, and thusB(y) ¢ E, sinceEy, ..., E,, is constraint-bounded. Consequently,
facts(o) N E # 0 holds, as well agacts(o) € E. Thereforeg ¢ ¥° ando ¢ X, which is a contradiction
to Proposition 4.1. This proveB; = . Together withR, <png, R;, we arrive at a contradiction to
R; € rep(D N E;). Hence,R; \ E; = () must hold.

Case(2): ¥ C Cy. Towards a contradiction assume that there exists rep(D N E) such that
R\ E # (. ConsiderR’ = RN E. Again (sinceR’ C R), we have tha?’ <png R. FurthermoreR = X
implies R’ = X. Indeed, consider any € ground(X) such thatR’ = body(o). ThenR = body(o),
and, by hypothesisR = head(c). SinceX¥ C Cy, one of the built-in atoms in the head ofis true.
Thus,R’ = head (o). This showsR’ = X, which raises a contradiction ® € rep(D N E). This proves
that R \ £ = (). Along the same argumentation line, we can show that efierg rep(D N E;) fulfills
R;\ E; = 0. Hence,R\ E = R;\ E; = O holds for allR € rep(DNE) andR; € rep(DNE;),1 <i<m.

O

Proposition 5.4 Let £, ..., E,, be a factorization of a repair enveloge for D, and letSg = (D \
E)U Ry U---U Ry be aquery-safe pamf D w.r.t. Q. Then,

ans(Q, D) = ﬂ ﬂ QIS U Ryy1--- U Ry].

R(+1 ETep(DﬂE(+1) RmE'rep(DﬁEm)

35



Proof. LetFEy,..., E,, be afactorization off for D. From Equation (7), it holds that:
rep(D) ={(D\E)UR U ---URy, | R € rep(DNE;),1 <i<m}.

Moreover, from Proposition 5.1ns(Q, D) = (\geep(pnp) @IRUS], whereS = D\ E. Thus,ans(Q, D)
can be equivalently written as:

N N Q[D\E)UR U---UR,,].

Ri€rep(DNEY) Rm€rep(DNER)

Consider, now, two repairg) and R} of Ej, with 1 < h < £. Given thatE}, is singular, it holds that:
QD\E)URU-- Ry ---URp] =Q(D\ E)URU---R}---U R,y,]. Therefore, for each singular
componentt),, we can take an arbitrary repdi, and conclude that:

N Q(D\E)URU---Ry,---URy] =Q[(D\E)UR,U---Ryp,---U Ry,
RhETep(DﬂEh)

Hence,ans(Q, D) can be also computed as:

N N QD\E)UR U---UR,y).
Ryi1€rep(DNEp41) Rm€rep(DNEy,)
The result follows by lettinggg = (D \ E) UR U --- U Ry. O
Proposition 5.5 LetF1, ..., E,, be a factorization of a repair envelogefor D which isdecomposable

w.r.t. query@ having the non-singular componerits, . . ., E,,. Then

m

ans(Q, D) = U ( ﬂ Q[Sq U Ri] )

i=f R;€rep(DNE;)

Proof. Let F4,..., E,, be a factorization of a repair envelopefor D, and letFE,, ..., E,, be its non-
singular components. We first show that

Q[SQU Rpy1 -+ U Ry] = Q[Sq U Rl U -+ - UQ[Sg U Ry, (11)

for everyR; € rep(DN E;), 1 < i < m. We haveQ = (g, P), whereP = {p1, ..., p,} is a set of
“not”-free rulesp;. Consider any ground instan¢:§ of p;, and an atonp;(t;) occurring in the body of
p;. that is satisfied bysSg U R, - - - U R,,,. Then eithen;(t;) € Sg or p;(t;) € Ry, for somel < h < m.
Furthermore, sincé, ..., E,, is decomposable, in the case wheré;) € Ry, \ (Sg U (i, Rk), there
is no atompy(Zx) in the body ofp’; which belongs taR; \ Ry, for somel < h' # h < m. Indeed, by
Condition (3),R},\ Ry, = Ry NEy, and thugy(t;) € Ep, would hold, whilep;(;) € E}, holds. Conditions
(1) and (2) would imply thap;(t;) andp(tx) are instances of the same atom in the bodypfand thus
pi(ti) = pi(tx). This, however, contradicts thay, N Ej = 0.

36



As a consequence, the body ,@f is satisfied bySg U R,--- U R,, if and only if it is satisfied by
Sq U Ry, for somel < h < m. Sincep; is non-disjunctive andriot™-free, we can conclude from this that
QUI[SqUR,---URy) =", QY [Sg U R;], whereQW) = (¢, {p;}), and that

Q[SQURg'--URm] = SQURg URy,] = UUQ(j)[SQURi]

U Q[SQ U Rm].

Q

HC:

b
&
C
=
|

°
5
C
&
=

-

This proves (11). To conclude the proof, we observe that fromdaitipn 5.4, the answer to a non-recursive
Datalog quen@ w.r.t. D is:

ans(Q, D)= () - N QISQU Ry~ -- U Ry

Ry€rep(DNEy) Rm€rep(DNEm)

By Equation (11), we then get:

ans(Q, D) = n - N (Q[SQU R/ U---UQ[SqU Rn)),
Rycrep(DNEy) Rm€rep(DNER)
from which the result follows by Boolean algebra (recall that for ang gg By,..., By, it holds that
NpBep,..p (AU B) = AUNpeyp, . By B)- o

C Grouped Repair Computation

This section gives the technical details on grouped repair computation msrotavaluating an SQL query
over a marked database, as discussed less formally in Section 6.2.

C.1 Query Reformulation

We first show how a non-recursive Dataloguery@ can be reformulated into an SQL query whose eval-
uation over the marked database returns the answepstiat are true in any repair dfRy, ..., R,,}. Let
r: h(2p) «— B(Z) be a safe rule of form

po(Zo) — p1(Z1), - 2i(T1), M0t Pri1 (Tisn), -y MOt prog(Trpr).? (12)

Let ¢; ; denote thej-th term inp;(Z;) = pi(tia,. .. tix,), where0 < i < [+ Ekandl < j < k;. We
associate withr a normalized rule’ obtained from it as follows:

1. Replace each ; by a new variabley; ;.

2. if t; ; is a constant, then add the equality atopj ; = ¢ to the body;

“For the sake of simplicity and w.|.0.g. we assume that variables ocguirrity, are all distinct.

37



3. if t; ; is a variabler, then add the equality atom} ; = y; ;- to the body, where; ; is the first
occurrence of: in the body ofr (from left to right), except foi = " andj = j’. (Note that safety of
r guaranteed < ¢ <1.)

In query reformulation, we furthermore use the following functi@N®BIT, INVBIT, and SUMBIT,
which can be build asser-defined function@NDBIT and INVBIT) andaggregate operatoréSUMBIT) in
many relational DBMSs, such as PostgreSQL.:

e ANDBIT is a binary function that takes as its input two bit strifgs. .. a], and’b, ... b/, and returns
‘cy ..., wherec; = a; A b; is the Boolean “and,f = 1,...,n;

e INVBIT is a unary function that takes as its input a bit striag. . . a/, and returnsc; ... c,, where
¢; = —a; is the Boolean complement=1,...,n;
e SUMBIT is an aggregate function such that givenstrings of form’s; ;...b,,, i = 1

i, P

returns'c; ... c),, wherec; = by ; V...V by, ; is the Boolean “or,’j = 1,...,n.

.,m, It

Let @ = (¢, P) be a non-recursive Datalogjuery of arityn, whereP consists of normalized rules:
h(Z') — B(¥'),e(2), wheree(2) are all the equality atoms introduced in normalization. el < i < n,
be pairwise distinct identifiers for the attributes of a predicate of aritfhen, eachr is translated into the
following SQL statement @ L, (notice that, in the statements below, each relation sympotcurring in
r is transformed into the corresponding marked symbg):

SELECT p;r,,,.a5 AS a; (for each atomyg ; = yi j» In e(2))
c AS aj, (for each atomyg ; = c in e(2))
(p1,,-mark ANDBIT...ANDBIT p;,,.mark ANDBIT INVBIT(n_pj+1,,.mark) ANDBIT
... ANDBIT INVBIT(n_pjtk,,-mark)) AS mark
FROM Plms -+ Plms SQLr,l+17 sy SQLT,H-k

WHERE p;,,,.a;=pi’ , -0}, (for each atomy; ; = v/ ;» in e(2),0 < i <)
Dipp -0 =C, (for each atomy; ; = c in e(2),0 < i <)
NPy - Qo =Di? - 5 (for each atomy; ; = y;r ;» in e(2),1 < 1)
N_Pi 0§ =C (for each atomy; ; = ¢ in e(2), 1 < 9).

where eactbQL, , l < h <1+ k, is a subquery of form:

( SELECT * FROM py,,,

UNION

SELECT py,,,.a; AS aj;, (for each atomyy, ; =y, i in e(Z))
cAS aj, (for each atomyy, ; = ¢ in e(Z))
'0...0" AS mark

FROM p1,,,s -+ -5 Pl

WHERE p;,,,.a;=pj’,, -G, (for each atomy; ; = y;r j» i e(2),0 < i <)
Dim -0 =C, (for each atomy; ; = c in e(2),0 < i <)
ROW(a1, ... ,ay, ) NOT IN (SELECT ay, ..., ax, FROM py,,)

) AS N-Phmp-

Roughly speaking, in the statemef®) .., the ANDBIT operator allows us to obtain the mabk, . .., b/,
of each tuple computed for the relation predicdieaccording to rule.. More precisely, foi € {1,...,n},
b, = 1if tisin the repairR; € rep(A), b; = 0 otherwise. Moreover, for each negative literat py,,,, (71),

38



the marks must be inverted, where missing tuples (which do not belong teepaiy,rand thus would be
marked 0. ..0") must be taken into account.

To this aim,SQ L, ;, singles out the tuples returned by the positive body of themupgojects them on
the attributes that are in join with the attributegjp,,, and returns, with maro . .. 0/, those which do not
occur inpy,,, (taking then the union with the tuplesgn,,, itself). The operatoINVBIT guarantees that, for
each such tuple, the mark returned$§ L, is the one computed in the positive part of the query (in these
cases indeed the negative literal is satisfied in every repair). Note fiesif séthe ruler ensures that the
two queries inSQ L, , have the same arity.

All rules, r,...,rs, defining the same predicate of arity n, are collected into a view by the SQL
statemenSQLy,:

CREATE VIEW h,,(a1,...,an, mark) AS
SELECT ay,. .., Gy, SUMBIT(mark)
FROM (SQL,, UNION...UNION SQL,,)
GROUP BY ay, ... ay,.

Finally, the answers to the que€y = (¢, P) are obtained through the stateme&idy L:

SELECT ay, . ..a, FROM g,,, WHERE mark =" 1...1/,
whereg,, is the view predicate defined by the statem&QtZ,.

Example C.1 Let us consider a quer§) = (g, P) asking for players that are not team leaders. Here
contains two rules, of which one defines an auxiliary (thus intensionaljqa&lcader:

r1: q(z) < player(z,y, z), not leader(z);
ro : leader(x) « team(v,w, x).

The use of negation is reerctedShl’QL,q/1 (letr}, 7, be the normalized versions of, r2):

SELECT player,,.Pcode AS ay,
(playery, .mark ANDBIT INVBIT(n_leader,,.mark)) AS mark,
FROM playery,,
(SELECT playery,.Pcode AS ay, ‘00" AS mark
FROM player,, WHERE ROW(player,,.Pcode) NOT IN (SELECT a; FROM leader,,)
UNION SELECT * FROM leader,,) AS n_leader,,
WHERE n_leader,,.a; = player,,.Pcode;

The use of an auxiliary predicate causes the creation of two views: omadb intensional predicate. The
respective SQL statemen$&)L, andSQ Licqq.r, resemble the statemefit) L, in Example 6.1, however,
each of them just depends on a single SQL quéi@ L., and SQL,,, respectively). Moreover, one can
show thatSQLTé andSQLg are equal to the corresponding queries of Example 6.1.

Hence, as easily retraced, the answer to the gQergnsists of the tupl€9), as expected. O

We next show the correctness of the above transformati@hn. Recall that any predicate names in a
Datalog-~ programP are callecextensiona(EDB predicate} if they occur only in the bodies of the rules
in P, andintensional(IDB predicate$ otherwise.

Proposition 6.1 Let D be a database fo§ = (¥, X)), let @ be a non-recursive Datalogquery over
it, and letRy, ..., R,, be databases such th& = R; N E, whereE is a weak repair envelope fdp and R;

39



is a repair forA = D N E. Then,SQLg computes orD,, the set of tuple§)’ ,{t | t € Q[R; U S|}, for
S=D\E.

Proof. We first show that normalization of a Dataloguery does not change query semantics. In par-
ticular, letr be a safe Datalogrule and let”” denote the normalized rule as introduced in Section 6.2. We
show that there is a one-to-one correspondence between relegantignstances, that is, between ground
instances of and ground instances of that satisfy the equality conditions.

() Letr(t) = po(to) <« pi(t1),...,pi(t;), not pry1(tis1), ..., not piyi(ti+x) be a ground instance
of r. Considen”’(t) = po(to) < p1(t1), ..., pi(t)), not pry1(tic1), - - ., not pax(tirr), e(t,), wheret, is
obtained by substituting; ; for every variabley; ; in Z, such tha® < i <[4 kandl < j < k;. Then,
r'(t) is a ground instance of, since every occurrence of a variabjg; in e(Z) is substituted uniformly.
Moreover,e(t,) is true (otherwise we arrive at a contradiction to our hypothesis sincebtheanstruction
of e(?) eitherz; ; = candc # t; j or x; j = xy y andt; ; # ty j, forsomed < i,i' <1 +k, 1 < j <k,
andl < j' < k).

(D) Let r'(t) = po(to) < pi(te),...,m(t), not pryi(tiv1), ..., not prr(tive),e(t:)
be a ground instance ofr/, such that e(t,) is true. Then, r(t) = po(to) <«
p1(t1),...,pi(tr), not pry1(tis1), ..., not prx(tirr) is a ground instance of, since the truth of

e(t.) implies, by construction of(2), thatforall0 < i, <i+k,1<j <k, andl < j' <ky,ifz;; =c
thentm- = ¢, and if:L‘i,j = Ty j thentm = ti/J/.

An immediate consequence is ti¥atl(P) = SM(P’) for a prograniP and the prograrf?’, obtained by
replacing each rule if? by its normalization. Thus, w.l.0.g. we just consider normalized Datatpgeries.

Let @ = (¢, P) be a non-recursive Datalogjuery with query predicatg of arity n, andP its normal-
ized program. Sinc@ is non-recursive, there exists an enumeration of its intensional preslicateh that
the following holds: Leb(p), 1 < o(p) < |IDB|, the enumeration index assigned to an intensional predicate
p, where|IDB| denotes the number if IDB predicates. Thém(p) # o(p') if p # p'; and ¢i) for every rule
r € P such thathead(r) = p(Z), if p/(27) € body(r), thenp' is an extensional predicate afp’) < o(p).

FurthermoreP is constraint-free. Hence, for any database, i.e., for any finite sattf#, the program
FUP has a unique stable moded, i.e.,SM(P) = {M }. In particular, letD be a database f&f = (¥, X),
let Ry, ..., R, ben databases such th&t = R, N E, whereFE is a weak repair envelope f@, A = DN E,
andR; is arepair ford, and letS = D\ E. Then,SU R; UP, 1 < i < n, has a unique stable model which
we will denote byM/;.

Towards a proof of Proposition 6.1, I&t,, be the marked database built by procesdiig...R,,, and
consider any enumeration, of the IDB predicates oP wrt. D that satisfiesi) and ¢:). We first show that
for 1 <i < nand every intensional predicgiethere exists a tupl&, m) in the view relatiorp,,, such that
m(i) = 1, i.e., its mark at positionis 1, iff p(¢t) € M;. The proof is by induction on(p).

Induction baseo(p) = 1.

(©) Let (t,m) € p, andm(i) = 1. Then by the definition ofp,,, it holds thatm =
SUMBIT(my1,...,m;), j > 1, andmy(i) = 1 for at least one markn;, 1 < k < j. Letm' be any of
the marksmy, such thatmy (i) = 1. Then,(t,m’) € SQL,;, forsomel < j <[, wherery,...,r; are all

the rules inP with head predicatg. Let

Ty = p(go) D1 (gl)a Ry 1 (gjz)’ not Pjia (gjz-u)v ..., not Pjits (gju-k)a 6(5)'

Sinceo(p) = 1, by Condition ¢i) we conclude thabody(r;) only contains extensional predicates. By the
definition of SQ L., there exist tuplest;, m}), ..., (t;.,,m that cause the selection ¢f m'), such
that

/
jl+k>

40



1. (tp,m}) € pp,, andm} (i) = 1,forl1 < h <j,
2. (tp, m%) € SQL, andm%(i) =0, for jiz1 < h < Jitx,

3. the equality conditions(t) evaluate to true under the corresponding substitutighsandys |4, , for
1< h < itk

For1 < h < j, we conclude from Condition 1 tha¥,(t,) € S U R; sincepy, is extensional. For
everyjir1 < h < ji4, Condition 2 implies, by construction &fQ L, », that either(t,, m}) € p,, and
m} (i) = 0, or that there does not exist a marlg,, such thatt,, my) € ps,,. In both cases, we conclude
thatpy () ¢ S U R; and thus, sincey, is extensional, thap,(¢;,) ¢ M;. Condition 3 guarantees that
ri(t") = p(t) — pi(tr),...,pj(t;), not pj. (tj..),--.,not pj_, (tj . ),e(t.) is a ground instance of
r; ande(t,) is true. Thus,r;(t') is a ground instance of rule; € P, such thatM; |= body(r;(t')).
Consequently); |= head(r;(t')), i.e.,p(t) € M;.

(D) Let p(t) € M,. Sincep is intensional, there exists a ground rut¢t’) = p(t)
p1(t1), ..., pi(tr), not prya(tivr), - - -, not pryr(tivk), e(t.) in P, such thapy(ty) € M;, for1 < h <,
and pp(tn) &€ M;, fori +1 < h < |+ k. Furthermore, since(p) = 1, p is extensional for
1 < h <1+ k. Thus, forl < h < [ there exist tuplest,, mp) € pp,, such thatm,(i) = 1,
while for I +1 < h < [ + k either (a)(ty, mp) € pp,, such thatm, (i) = 0, or (b) no markm,, ex-
ists such thatt,, mn) € pp,,. Sincee(t,) is true for the given ground instance, in Case (@) my)
is also iNSQL,p; in Case (b)(ty,’0...0") € SQL,s. Thus, forl +1 < h < I+ k, in any case
there exists a tuplét;,, my) € SQL, j, such thatm,(i) = 0. Consequently(t,m) € SQL,, where
m = mq ANDBIT ... ANDBIT m; ANDBIT INVBIT(m;41) ANDBIT ... ANDBIT INVBIT(m; ), i.e.,
m(i¢) = 1. By the definition of viewp,,,, we conclude thatt, m’) € p,, andm/(i) = 1.

Induction hypothesis{t, m) € p,, andm(i) = 1 iff p(¢t) € M;, for all intensional predicates such
thato(p) < n.

Induction stepo(p) = n.

(©) Let (t,m) € p, andm(i) = 1. Then by the definition ofp,,, it holds thatm =
SUMBIT(my,...,m;), j > 1, andmy(i) = 1 for at least one markn, 1 < k < j. Letm' be any of
the marksm;, such thatny (i) = 1. Then,(t,m) € SQL,,, for somel < j <[, wherery,...,r; are all

the rules inP with head predicatg. Let

Ty = p(%o) < p1(#), - - ) P (gj'z)v not pj,., (gjl+1)7 oy not py (gjl+k)v e(2).

Since o(p) = n, by Condition (i) we conclude thatody(r;) just contains extensional predicates
or intensional predicateg’ such thato(p’) < n. By the definition of SQL,,, there exist tuples
(t1,mi), ..., (L. mj, ) that cause the selection 0f m'), such that

1. (tp,m}) € pp,, andm} (i) =1,forl < h <j,
2. (tp, my,) € SQLy,, andm, (i) = 0, for jip1 < h < iy,

3. the equality conditions(t) evaluate to true under the corresponding substitutighsandy |, , for
1 <h < jitk-

For1l < h < j;, we conclude from Condition 1 tha¥,(¢;,) € M; sincepy, is either extensional, i.e.,
pr(ty) € S U Ry, or intensional witho(py,) < n, i.e., the induction hypothesis applies. For evgry, <
h < ji+, Condition 2 implies, by construction &fQL,. j,, that either (a)ts, m},) € pp,, andm}, (i) = 0,

41



or that (b) there does not exist a mawl,, such thatt;, my) € pn,,. We show thapy, (¢,) ¢ M; follows for
Jir1 < h < i1k If pp, is extensional, in both cases, we conclude thét,) ¢ M;, sincepy(t,) & S U R;.
For intensionalpy,, towards a contradiction, assume thatt,) € M;. We know thato(p,) < n and
conclude by the induction hypothesis, that there exists a matlsuch thainy, (i) = 1 and(t,, my) € pp,, -
This contradicts (b), so (a) has to be the case, i.e.,(&lso},) € ps,,, andmy, # mj,. However, this cannot
be the case by construction of the vigyy: tuples which just differ in the mark attribute are grouped and their
mark is computed by the aggregate functBiMBIT. As a consequencety, my) € pp,, and(t,, m}) €
Dh,, implies m;, = mj, contradiction. This provep;(t;,) ¢ M; for ji 11 < h < ji4p. Eventually,
Condition 3 guarantees that(t') = p(t) < p1(t1), ..., p;(t;,), notpj (tj ), ..., notpj, (tj.,,.),e(tz)
is a ground instance of; ande(t,) is true. Thusy;(¢') is a ground instance of rule; € P, such that
M; [= body(r;j(t')). Consequently)/; = head(r;(t')) has to hold, i.ep(t) € M;.

(D) Let p(t) € M;. Sincep is intensional, there exists a ground rutét’) = p(t) «
p1(t1), ..., pi(tr), not prya(tive), - - -, not prk(tive), e(t.) in P, such thapy(ty) € M;, for1 < h <,
andpy(tn) & M;, forl +1 < h < [+ k. Furthermore, since(p) = n, by Condition (i) p;, is either
extensional ob(py) < n, for1 < h <[+ k. Thus, forl < h < [ there exist tuplesty, mn) € pp,,
such thatmy (i) = 1, while forl + 1 < h < [ + k either (a)(t, mn) € pp,, such thatm (i) = 0, or
(b) no markm, exists such thatt,, m,) € pp,,. Sincee(t,) is true for the given ground instance, in
Case (a)ty, mp) is also iNSQL, p; in Case (b)ty,'0...0") € SQL, 4. Thus, forl +1 < h < [+ k,
in any case there exists a tuglg,, ms) € SQL, 5, such thatn, (i) = 0. Consequently(t,m) € SQL,,
wherem = my ANDBIT ... ANDBIT m; ANDBIT INVBIT(rm;,1) ANDBIT ... ANDBIT INVBIT(m k), i.€.,
m(i) = 1. By the definition of viewp,,,, we conclude thatt, m’) € p,, andm/(i) = 1.

This proves(t, m) € p,, andm(i) = 1iff p(t) € M, for every (intensional) predicajein P.

We now prove Proposition 6.1, that is, that the set of tuples comput&dXiy, on the marked database
D,, coincides with the sef)"_,{t | t € Q[R; U S]}.

(©) Lett € SQLg. Then,(t/1...1") € gm, and, henceg(t) € M; for 1 < i < n. SinceSM(R; U
SUP) = {M;}for1 < i < n, by definition we obtain € Q[R; U S] for 1 < i < n, which implies
teNie,{t|teQRiUS}

(D) Lett € N {t |t € Q[R; U S]}. Then,q(t) € M, sinceSM(R; USUP) = {M;},forl <i <n.
Thus, there exist marks;, such that(t, m;) € ¢, andm;(i) = 1, for 1 < i < n. By the definition of
view ¢, (in particular by the definition oUMBIT), it follows thatm; =’ 1...1,for1 < i < n, i.e.,
(t/1...1) € ¢n. Consequently, € SQL. O

Clearly, the SQL statementsQ)L,, SQLy, andSQL¢ can be optimized (which will be done by the
DBMS anyway), and we do not consider optimization here. We remark tadirtal query,SQ L, could
also be integrated into the view definitia$i¢) L, for the query predicatg. By keeping the query definition
SQLg separate, however, other query semantics can easily be expremsidtdnce, possibilistic query
semantics, which selects those tuples which are computed by the query \pitbtresat least one repair, is
obtained by replacing the condition in tHREERE clause bymark # ‘0...0". We finally remark that the
reformulation technique is amenable to other semantics of negation in queviedl.aSpecifically, a more
cautious semantics for negation can also be accomplished with slight modifgcaiona negative ground
literal to be true, it has to evaluate to truedl repairs, i.e., the respective tuple has to be mafied. 0/
(or absent) in the corresponding marked table.

42



C.2 Scaling the Technique

As mentioned in Section 6.2, a limitation for the scalability of the marking strategy is#fiattuples are
required to be marked with the strifill . . . 1/, which appears unnecessary given that we known they belong
to all the repairs. In fact, this overhead can be avoided as descrilbeal B&/ith each relation symbal,

we associate two predicate symbelg;. andr,z, which are intended to store the tuples that occur in the
safe and the affected partof, respectively. Also, we construct the database instatfidsy replacing each
relation symbol- in Ap with r,4, and the database instangeby replacing each relation symboin Sp

With 7., i.€., we have that,z" = {t | r(t) € A} andry..~ = {t | 7(t) € S}. Then, given a query

Q@ = (¢, P), whereP is assumed to be normalized, over a schéima (U, X), we proceed as follows:

— for each ruler : h(Zy) «— B(Z) of form (12) belonging taP, we replace each atopy(Z;) of its
positive body, i.e.] < j <1, bypag (%) V psafe, (Z5);

we rewrite the resulting rule body into disjunctive normal faBi(%) V - - - V B,,(Z);

we replace inB;(Z) each negative literahot p;(z;) with a relationp; € V¥ by the literals
not pagr (%), ot psafe, (Z;); 161 B{(Z) be the result;

we replace with the rulesr; : h(Zy) — Bi(Z), for1 < i < n;

in the SQL statemerftQ L, for r;, replace everyase, - by Psafe; andpsafej .markby’1...1".

One can show that the SQL reformulation of the qu@ras described above, denotﬁd)L’Q, yields
over the partially marked databaSéu A/, the same result aSQ L over the fully marked databage,,.
That is, for the reformulatioSQL’Q only the affected tuples have to be marked.

Notice thatSQL’Q is exponential in the size @) (more precisely, in the number of atoms). However,
as commonly agreed in the database community, the overhead in query comptaatly pays off the
advantage gained in data complexity.

With this approach, the additional space depends only on the siZebot not on the size of. For
example, for 10 constraint violations involving two tuples each, the requiaatting space is 2*1@° bits
= 2.5 KB, independently of the size &f. Furthermore, by allotting 5 MB (=2*2@2° bits) marking space,
the technique may scale up to 20 constraint violations, involving two tuples each

D Examples of Logic Program Specifications

In this section, we discuss some approaches for consistent quergramgw inconsistent database that
rely on the use of logic programming. The notion of repair adopted in therpajescribed below relies on
the prototypical, natural preordetp, originally introduced in [3], for whichR, <p R, iff A(R1,D) C
A(R2, D). The only exception is [14], which uses the orderiRgCp Rs iff Ry N D O Ry N D [13, 14].
However, for the set of integrity constraints and queries considerddlnthe adoption of a different repair
ordering is of no concern; as discussed in Section 8, we carRuse’, R, instead ofR; CTp R for
answering a negation-free queries, like a union of conjunctive quasi@s [14]; under this ordering, the
repairs coincide with the repairs under the canonical ordefipg Logic programs that we devise in this
section refer to the football team scenario introduced in Example 1.1.

Since some of the techniques analyzed below have been applied to a datatioresgetting, we first
recall some formal notions on data integration systems.

43



Data Integration Systems Data integration systems are systems in charge of uniformly providing users
with data residing at different sources, according to some mappingiaaserMore formally, a data inte-
gration systen¥ may be viewed as a triplg7, S, M), whereg is theglobal schemawhich specifies the
global elements exported to usessis thesource schemavhich describes the structure of the data sources
in the system, and is themapping which establishes the relationship between the sources and the global
schema [34]. Classical approaches for specifying the mapping a@ltal-As-View (GAVapproach,
which requires that every element of the global schema is associated viéilv awer the sources, so that its
the meaning is given in terms of the source data, andl.dical-As-View(LAV) approach, which conversely
requires the sources to be defined as views over the global schema.dAatlirmore general approach
is Global-Local-As-View(GLAV), which captures both LAV and GAV. It allows for mapping asserson
which a view over the source schema is put in correspondence with a veavhe sources [34, 23]. A sim-
pler version of GLAV mapping is the one in [25], which allows for combiningguAV and GAV mapping
assertions. From a technical point of view, GLAV basically raises the sssues as LAV.

We point out that all notions and techniques provided in the present papebe easily generalized
to GAV data integration systems. Indeed, the mapping specification in GAVnsygbeovide a means
for populating the global schema with one (possibly inconsistent) globabasganstance, which can be
obtained by simply evaluating the views in the mapping over the source datadathizase is also called
retrieved global databas@4]. The semantics of a GAV data integration system may be then given in terms
of the only retrieved global database (in this case the mapping is called,exaittinay be given in terms
of all global database instances that contain the retrieved global dat@baisis case the mapping is called
sound). In both cases, repairing a data integration system amountsitingefiee global retrieved database,
and therefore our results can be straightforwardly applied to such agsettin

We further note that our techniques can be applied to some LAV data integpaiiposals in the litera-
ture (as discussed in Appendix D.3).

D.1 Logic programs with unstratified negation

The paper [14] addresses the repair probler®AV data integration systens which key constraints are
issued over the global schema, and presents a technique for congigenainswering based on the use of
Datalog'.

More precisely, according to [14], given a data integration sysiem(G, S, M), key constraints i
can be encoded into a suitable DatalggogramPx p, whereas views in the mapping, which are expressed
as union of conjunctive queries, are cast into a Datalog progPam Consistent answers to a union of
conjunctive queries) overZ w.rt. a source databade are returned by the evaluation of the Datalog
query(q, Po U Pxp U Par), where(q, Pg) is the Datalog encoding of the quefy

In the following, we provide the logic program produced by the abovenigcie for our running ex-
ample (suitably adapted to a data integration scenario). To this aim, we explaitearsien of the al-
gorithm of [14], provided in [30], that allows for dealing with the exclusid@pendencies specified in
Example 1.1. We assume to have a data integration syggesuch that the global schema is equal to the
relational schem&, given in Example 1.1, the source schema consists of the relatioof arity 4, and
the relationsss, s3, andsy, all of arity 4, whereas the mapping, denotéd,, is defined by the Datalog
program player(z,y,z) «— si(z,y,z,w); team(x,y,z) «— so(x,y,2); team(z,y,z) — s3(z,y,2);
coach(x,y,z) «— s4(x,y,z). Then, the logic program for consistent query answering @yeidenoted
I17,(Q), is as follows.

44



q(x) — player(z,y,2)
qg(z) «— team(v,w,x)
player p(z,y,2) «— si(z,y,z,w)
teamp(x,y,z) — s2(x,y,2)
teamp(z,y,z) — s3(z,y,2)
coachp(z,y,z) — si(x,y,z)
player(x,y,z) — playerp(z,y,z) , not player(z,y, z)
player(z,y,z) « player(z,w,z) , playerp(z,y,2), y # w
team(z,y,z) «— teamp(z,y,z), not team(z,y, z)
team(z,y,z) «— team(xz,v,w), teamp(x,y,z), y#v
team(x,y,z) «— team(x,v,w), teamp(x,y,2), z £ w
coach(x,y,z) « coachp(x,y,z), not coach(z,y,z)
coach(x,y,z) «— coach(z,w,z), coachp(z,y,z), y#w
player(z,y,z) « playerp(x,y,2), coach(x,w,z)
coach(x,y,z) — coachp(z,y,z), team(z,w,x)
coach(z,y,z) «— coachp(z,y,z), player(z,w,z)
team(z,y,z) < teamp(x,y,z), coach(z,w,z)

In the above prograni?, consists of the first two rules?), comprises the rules ranging from the 3rd
to the 6th. The prograr?xp contains the rules ranging from the 7th to the 13th, whereas the last four
rules, which we denote b p, encode exclusion dependencies. Informally, for each global relatidve
above program contains (i) a relatiop that represents’™*(Z:L): (ii) a relationr that represents a subset of
rret(Z.D) that is consistent with the key constraints and the exclusion dependeonicieqifi) an auxiliary
relation7. We can easily see thalz (Q) = P U Ils,(Q), wherells, (Q)) = Iy, U Il is the logic
specification for querying the relational datab&gein whichIly, = Pxp U Pep andllg = Pg.

We point out that in [14], together with key constraints, also (existentialpntjfied) inclusion depen-
dencies in the global schengaare considered. In this respect, a query reformulation technique is given
that, on the basis of inclusion dependenciegprewrites the user quexy into a new union of conjunctive
queriesQ)rp, again expressed over the global schema, in a way such that the aonaige/ers ta) over
7 w.r.t. a source databage coincide with consistent answersd@q p overZ’ w.r.t. D, whereZ’ is obtained
from Z by dropping the inclusion dependenciegjofln other words, after computing;p, it is possible to
proceed as if inclusion dependencies were not specified on the gldiehas, i.e., by providing the logic
specification for queryin@’ with Q;p described above. Hence, after the first reformulation, the problem of
computing consistent answers in the above setting and our problem coincide

D.2 Logic programs with exceptions

A specification of database repairs for consistent query answeringansistent databases exploiting logic
programs with exceptions (LPESs) is presented in [4]. We recall that thiso§@rograms, firstly intro-
duced by [32], contains botiefault rulesi.e., classic clauses with classic negation in the body literals, and
exception rulesi.e., clauses with negative heads whose conclusion overrides comslugidefault ones.

45



Actually, [4] presents an extension of LPEs for accommodating both negddifaults and extended dis-
junctive exceptions whose semantics is given in termes-afswer setand shows how these models are, in
fact, in correspondence with standard stable models of a suitable statsjarcttive logic program.

In more detail, the transformation in [4] associates to each relationthe database schema a new
relationp’ corresponding to its repaired version, and defidgsto contain three set of rulegi) trigger-
ing exceptions(ii) stabilizing exceptions, an(ii) persistence defaults. Let us, for instance, consider our
running example. Then, triggering exception rules are as follows.

= player'(z,y, 2) V = player' (z,y1,2) « player(x,vy,2), player(z,y1,2), y # y1.

= team’ (x,y,2) V = team/(z,y1,21) «— team(x,y,z), team(x,y1,21), y # Y1
= team(z,y, z) V = team'(z,y1, 2 team(z,y, z), team(x,y1,21), 2 # 21

coach(x,y7z), COGCh(LC,yl,Z), Yy 7é U1

1 —
-
— COG’Ch(I’7 Y, Z)? player(z, Y1, Z)
—

)
)
)
= coach'(z,y,2) V = coach’ (z,y1, 2)
= coach’(x,y,2) V = player’ (z,y1, 2)

)

= coach'(z,y,2) V - team’ (z,y1, x coach(x,y, z), team(z,y1,x)

The above rules represent a suitable rewriting of the integrity constraattenicodes the basic way of
repairing each inconsistency. For example, a conflict on a key is reksbivdeleting one of the tuples that
cause the conflict, i.e., by not including this tuple in the extension of the gameléng primed predicate.
Notice that, in the case of (universally quantified) inclusion dependentisgossible to have repairs by
adding tuples. For instance, the constraifit, y) O ¢(z,y) would be repaired with the rule p'(z, y) v
q'(z,y) < p(z,y), not q(z,y).

Stabilizing exception rules and persistence defaults have been introfdud¢edhnical reasons. Indeed,
rules of the former kind state that each integrity constraint must be evensadibfied in the repair while
rules of the latter kind impose that by default each relatiotontains the facts ip.

Given the rewritindTy;, the user query can be simply issued over the primed relations, i.e., theprogr
Il is easily obtained by substituting in the user query (suitably expressed ilm®eatach predicate with
its repaired versiop’.

D.3 Programs with Annotation Constants

The paper [6] proposes to specify database repairs by means ofatiiggunormal programs under the sta-
ble model semantics. To this aim, suitable annotations are used in an extra arguimueluced in each
(non built-in) predicate of the logic program, for marking the operationss#riion and deletion of tuples
required in the repair process. The idea of annotating predicates éiasnispired by the Annotated Predi-
cate Calculus [31], a non-classical logic in which inconsistencies maydoeranodated without trivializing
reasoning. The values used in [6] for the annotations are:

e tq andfy, which indicate whether, before the repair, a given tuple is in the datalvas®, respec-
tively;

e t, andf,, which represent advisory values that indicate how to resolve possibficts, i.e., a tuple
annotated witht, (resp.f,) has to be inserted (resp. deleted) in the database;

e t* andf*, which indicate whether a given tuple is in the repaired database or nuectesly.

For instance, the annotated logic program used for solving the conflicteedeey of the relatiomlayer in
our running example is as follows:

46



player(z,y, z,ta)

player(x,y, z,ta)

not player(x,y, z,tq)

player(z,y, z,fa)

player(x,y, z,t*), player(z,y1,2z,t*), y # y1.

player(z,y, z,t*
player(x,y, z, t*
player(x,y, z, £
player(x,y, z, £

)
)
)
)
)

L N

player(z,y, z,fa) V player(z,y1, 2, fa

Furthermore, each fact in the original database is assumed to be anrytated

Intuitively, the last rule says that when the key of the relagidnyer is violated (body of the rule), the
database instance has to be repaired according to one of the two alesgrsdtoxvn in the head. Possible
interaction between different constraints are then taken into account loyttlr rules, which force the repair
process to continue and stabilize in a state in which all the integrity constraidtsihdeed, annotations'
andf* can feed back rules of the last kind, until consistency is restored. fihigddbe evident if we consider
also a constraint of the formvach(z, y, z) D player(z,y, z) (we disregard exclusion dependencies of our
running example for a while). This constraint is repaired with the rule

coach(x,y, z,£a) V player(x,y, z,ta) < coach(x,y, z,t*), player(x,y, z,f*),

besides the rules for the predicai@ch that compute facts with annotations (resp.f*) from facts
annotated byq or t, (resp.fy or f,).

The progranil, is then computed by reformulating the original query according to the annuaiio
our running example, we have

q(x) — player(z,y, z,ta) V (player(z,y, z,ta) A —player(z,y, z,fa))
q(z) — team(v,w, x,ta) V (team (v, w, z, tq) A ~team (v, w, z, fa)).

The above rewriting is proposed in [6] for the setting of a single datalasee line of the discussion of
data integration systems in the beginning of Appendix D, this technique caraightforwardly extended
to work in GAV data integration systems. An interesting, more complex gendiatiza the LAV setting
appears instead in [11, 12]. Since in LAV each source relation is assdaeiath a query over the global
schema, an exact specification of which data of the sources fit the glohama is actually missing. In
general, given a source database, several different ways afgimg the global schema according to the
mapping may exist. Hence, not a single but multiple retrieved global databmastde taken into account
for repairing. According to [11, 12], the repairs are defined as thossistent global databases which have
a minimal (under set inclusion) symmetric difference to one of the minimal (agaiter set inclusion)
retrieved global databases. In other words, each such retrieveal glafabase is repaired by adopting the
classic preorder of [3]. These repairs can be obtained from the stetglels of a suitable disjunctive logic
program, which comprises rules for the encoding of integrity constraimstaated as in [6], and specific
rules for computing the minimal retrieved global databases.

E Further Experiments

E.1 Assessing the Need of Localization

We conducted a set of experiments to assess the importance of localizatioacpes, even in those situa-
tions that involve very simple logic programs for computing consistent agswerthis aim, we considered

47



the database schem&g, which contains a relation of the forpix, y), wherez is the key; andS,, which
contains relations of the formgz, y) andq(v, w), with an exclusion dependency between attributesd
V.

1000

T ¥ 1600 T
Safe part: /

900 | O / i
-~ 1000 / 1400}
— 15000 / —— 15000
800 / 4 4
1200 /

Safe part:

—+0
—-5- 1000

700

1000 :
600 - /*

Time [s]

500 : / 800 -

Time [s]

400 / B /
600 /

300
/ / 400

/
/ 4
200k / 7 |
P &

o

200+ /

100 /

F S — 4 < e
o | e . PP S —; — PN S - Lt

S
2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 18 20
Number of violations Number of violations

(a) (b)
Figure 9: Stable model computation time in DLV system w.r.t. number of conflictOrja Key. (b) One
exclusion dependency.

e o
i L

In Figure 9, we report the time needed in the DLV system for computing thiestadels of the logic
encoding for repairing the two databases w.r.t. the number of conflictdjfferent database sizes (where
the sizes of the safe part are printed). This first set of experimentstisyparly interesting, since the cost
of computing all the stable models is a reasonable lower-bound for the foomtnguting consistent query
answers, given that most of the state-of-art answer set engindgdg@support for “Boolean” query answer-
ing, that is, for deciding whether a given ground fact is entailed in angiatlels, but not for computing
non-ground queries. From Figure 9, we observe that DLV scalesnexially in the number of conflicts,
since repairs are in general exponential in this number. Moreoveg #iecsize of each repair is about the
size of the database, the number of processed tuples in the DLV systertuis, iexponential in the size of
the whole database.

The results of Figure 9 stimulated the development of techniques for commdirgistent answers
even to non-ground queries in stable models engines. Moreover,@imimary investigations showed that
most of the current answer set engines are not well-suited for dataapatications since they do not offer
primitives for interfacing with databases, for instance, for importing aqebeing relations or views. And,
in fact, in our first experiments it was necessary to write wrappers thatanéethe output of the answer set
engines and provides I/O functionalities. The DLV system, however,jgeswsome interfacing modules to
automatically access a relational DBMS by means of standard ODBC call;y@edmportantly, provides
support for non-ground queries akin to our techniques. Still, the rergddtantiating the logic program for
consistent query answering over large data sets makes the use ofytstesessunfeasible in practice.

Indeed, in a second set of experiments, we tested the scaling of DLVe&ang non-ground queries.
Figure 10 reports the results for evaluating in DLV some non-groundiggien the two database,
andS.. Interestingly, the support for non-ground queries appears to ive gowerful, since the system
scales well in the size of the input database for a fixed number of conflitdsvever, the performance
is not suited for real database applications. In fact, for 15000 tuplesjitines more than 200 seconds

48



250 350
Attributes: Attributes:
-2

- 4
ol 300+

=2
-84
~<-6

200

Time [s]
Time [s]

/,/// P i -
1001 // o
50| //a/// 4 // e -
_— 50+ / T

— — I 0 — I
0 5000 10000 15000 0 5000 10000 15000
Size of the safe part Size of the safe part

(@) (b)
Figure 10: Execution time in DLV system w.r.t. size of the safe part, for diffenumbers of attributes in
relation. (a) One key. (b) One exclusion dependency.

for computing answers. Moreover, the curves rapidly increase if tiebeu of attributes (arities of the
relations) grows. This behavior does not correspond to the intrinsic leaitypof the problem instances,
which can be formally proven to be solvable in polynomial time.

In fact, a careful analysis of the execution time showed that most of the tiexe bg DLV is for in-
stantiating the logic program with the whole database. Hence, our localizgiooach to query answering
may help speed-up performances, by reducing the size of the progtaerirstantiated in DLV and, hence,
the time needed for the execution.

E.2 3-Coloring

As a further example, we encoded the classical NP-complete graph @agolaroblem into a con-
sistent query answering problem over a datah8gecontaining the relationgdge(Node,Node) and
colored(Node, Color), where the attributé/ode is established to be the key faslored. Then, for a database
D3, for Ss., we fixed a number of nodes and generated factdgia producing a graph; moreover, for each
nodei in the affected part, we generated three faetdored(i, red), colored(i, blue), colored(i, yellow).
Clearly D3, is inconsistent with the key constraint on the relatiofvred, and each node creates three con-
flicts. Moreover, in each repair dPs. only one of the three facts involved in each constraint violation can
be maintained.

Now, consider the query «— edge(z,y), colored(z,C), colored(y, C'). As easily seen, it evaluates to
true onDs, iff there is no legal 3-coloring for the graph ;...

We encoded the problem of establishing consistent answers to the gadigve over the relational
schemaSs, into a Datalog program, according to the encoding proposed in [13].

Figure 11.(a) reports the execution time in DLV for different values of ibe af the affected part, while
Figure 11.(b) reports the comparison with our approach. Again, thentatye of the localization technique
is evident when the size of the database increases.

49



4 conflicts

80 T T
—~ Focusin
70 —&- 0 nodes = = —
—5— 200 nodes _
—=— 400 nodes
60 -
10 4
501 = 4
/Z//
) // =
2401 - 4 ¢
£ £
= / F
30 -
10’
20 = 3
4
o
e
10 DU —
S
<
2 M
o & o 5> L L 10° L L L L
10 20 30 40 50 60 70 80 920 100 100 500 1000 1500 2000 2500

Nodes to be colored Size of the retrieved global database

(a) (b)
Figure 11: 3Coloring. (a) Execution time in DLV w.r.t. humber of nodes (i.enflmts). (b) Comparison
with the optimization method.

50



