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Abstract. Query answering from inconsistent databases amounts to finding “meaningful” answers
to queries posed over database instances that do not satisfyintegrity constraints specified over their
schema. A declarative approach to this problem relies on thenotion of repair, i.e., a database that
satisfies integrity constraints and is obtained from the original inconsistent database by “minimally”
adding and/or deleting tuples. Consistent answers to a userquery are those answers that are in the
evaluation of the query over each repair. Motivated by the fact that computing consistent answers
from inconsistent databases is in general intractable, thepresent paper investigates techniques that
allow to localize the difficult part of the computation on a small fragment of the database at hand,
called “affected” part. Based on a number of localization results, an approach to query answering
from inconsistent data is presented, in which the query is evaluated over each of the repairs of the
affected part only, augmented with the part that is not affected. Single query results are then suitably
recombined. For some relevant classes of queries and constraints, techniques are also discussed
to factorize repairs into components that can be processed independently of one another, thereby
guaranteeing exponential gain w.r.t. the basic approach, which is not based on localization. The
effectiveness of the results is demonstrated for consistent query answering over expressive schemas,
based on logic programming specifications as proposed in theliterature.
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1 Introduction

A database is inconsistent if it does not satisfy the integrity constraints specified over its schema. This
may happen for different reasons [4]; for instance, when pre-existing data are re-organized under a new
schema that has integrity constraints describing semantic aspects of the new scenario. This is particularly
challenging in the context of data integration, where a number of data sources, heterogeneous and widely
distributed, must be presented to the user as if they were a single (virtual) centralized database, which is
often equipped with a rich set of constraints expressing important semantic properties of the application at
hand. Since, in general, the integrated sources are autonomous, the dataresulting from the integration are
likely to violate these constraints.

One of the main issues arising when dealing with inconsistent databases is establishing the answers
which have to be returned to a query issued over the database schema.

Example 1.1 Consider a database schemaS0 providing information about soccer teams of the
2006/07 edition of the U.E.F.A. Champions League. The schema consists of therelation predicates
player(Pcode,Pname,Pteam), team(Tcode,Tname,Tleader), and coach(Ccode,Cname,Cteam).
The associated constraintsΣ0 specify that the keys ofplayer , team, andcoach, are the sets of attributes
{Pcode,Pteam}, {Tcode}, and{Ccode,Cteam}, respectively, and that a coach can neither be a player nor
a team leader.

Consider the following inconsistent databaseD0 for S0 (possibly built by integrating some autonomous
data sources):

playerD0 :
10 Totti RM
9 Ronaldinho BC

teamD0 :
RM Roma 10
BC Barcelona 8
RM Real Madrid 10

coachD0 : 7 Capello RM

D0 violates the key constraint onteam, witnessed by the factsteam(RM, Roma, 10) and team(RM,
Real Madrid, 10), which coincide onTcode but differ onTname. In such a situation, it is not clear what
answers should be returned to a query overD0 asking, for instance, for the names of teams, or for the pairs
formed by team code and team leader. 2

The standard approach to remedy the existence of conflicts in the data is through data cleaning [10].
This approach is procedural in nature, and is based on domain-specifictransformation mechanisms applied
to the data. One of its problems is incomplete information on how certain conflicts should be resolved [41].
This typically happens in systems which are not tailored for business logic support at the enterprise level,
like systems for information integration on-demand. Here, data cleaning may beinsufficient even if only
few inconsistencies are present in the data.

In the last years, an alternative declarative approach has been investigated which builds on the notion of
a repair for an inconsistent database [3]. Roughly speaking, a repair is a new database which satisfies the
constraints in the schema and minimally differs from the original one. The suitability of a possible repair
depends on the underlying semantics adopted for the inconsistent database, and on the kinds of integrity
constraints which are allowed on the schema. Importantly, in general, not a single but multiple repairs might
be possible; therefore, the standard way of answering a user query isto compute the answers which are true
in every possible repair, calledconsistent answersin the literature.

Example 1.2 Recall that in our scenario, the databaseD0 for S0 violates the key constraint onteam, wit-
nessed byteam(RM, Roma, 10) andteam(RM, Real Madrid, 10).
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A repair results by removing exactly one of these facts. Hence, there aretwo repairs only, sayR1 and
R2, which are as shown in Figure 1. Accordingly, the consistent answer to the query asking for the names
of the teams is{(Barcelona)}, while the consistent answers to the query asking for pairs of team code and
team leader are{(RM, 10), (BC, 8)}. 2

playerR1 :
10 Totti RM
9 Ronaldinho BC

teamR1 :
RM Roma 10
BC Barcelona 8

coachR1 : 7 Capello RM

playerR2 :
10 Totti RM
9 Ronaldinho BC

teamR2 :
BC Barcelona 8
RM Real Madrid 10

coachR2 : 7 Capello RM

Figure 1: Repairs ofD0.

Query answering in the presence of inconsistent data (a.k.a. consistentquery answering) has been the
subject of a large body of research (for a survey on this topic, see [7], and for a discussion on relevant
issues in the area see [15]) and some prototype implementations of systems which fit the semantic repair
framework are available [9, 26, 18, 35]. Basically, these systems differin the kinds of constraints and queries
they are able to deal with. Indeed, depending on these two ingredients, thecomplexity of consistent query
answering ranges from polynomial-time over co-NP up toΣP

2 (see, e.g., [13, 16]).

1.1 Contributions

In this paper, we elaborate techniques for consistent query answeringin highly-expressive settings. Given
that in these cases query answering is unlikely to be feasible in polynomial time,our main research interest
is to devise an approach that allows to localize the “difficult” part of the computation on a small fragment of
the database to hand.

The basic intuition of this approach is that resolving constraint violations in inconsistent databases does
not generally require to deal with the whole set of facts. For instance, in Example 1.1 inconsistency may be
fixed by just looking at the (few) tuples conflicting on the key. However, there are many interesting cases for
which devising some similar strategies is not as simple as above and, therefore, it appears relevant to assess
under which circumstances a localization approach can be pursued and when localized repair computation
can be exploited to optimize consistent query answering. In this respect, our overall contribution is twofold
in nature.

First, we attack the problem from a theoretic point of view. We provide a unifying view of previous
approaches to query answering from inconsistent data, we shed light on the interaction between integrity
constraint violation and the structure of repairs, and we study localization and factorization of consistent
query answering. Specifically,

1) We present a formal framework for consistent query answering which is, to large extent, independent
of a commitment to a specific definition of repair, but is based on a common setting of repair semantics:
the repairs of the database are characterized by the minimal (non-preferred) databases from a space of
candidate repairs with a preference order. Our setting generalizes previous proposals in the literature, such
as set-inclusion based orderings [24, 3, 4, 6, 11, 13, 14, 16, 29], cardinality-based orderings [4, 38], and
weighted-based orderings [37].

2) We investigate some locality properties for repairing inconsistent databases, aiming to isolate in the
data those facts that will possibly be touched by a repair, called the “affected part” of the database and the
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facts that for sure will be not, called the “safe part” of the database. Specifically, we establish localization
results for different classes of constraints:

• The first class,C0, contains all constraints of the form∀~xα(~x) ⊃ φ(~x), whereα(~x) is a nonempty
conjunction of atoms over database relations andφ(~x) is a disjunction of built-in literals. These con-
straints are semantically equivalent to denial constraints [17].

• The second class,C1, allows more general constraints of the form∀~xα(~x) ⊃ β(~x)∨φ(~x), whereα(~x)
andφ(~x) are as above andβ(~x) is a disjunction of atoms over database relations.

• The third class,C2, has similar constraints∀~xα(~x) ⊃ β(~x)∨φ(~x); hereα(~x) may be empty butβ(~x)
may have at most one atom.

• The fourth class is the class of all universal constraints in clausal form.Thus, semantically, this class
captures all universal constraints.

3) We propose arepair localization approachto query answering from inconsistent databases, in which
the query is first evaluated over each of the repairs of the affected part only, augmented with the safe part,
and then results are suitably recombined. Also, we investigate techniques for factorizing repairs into compo-
nents that can be processed independently of each other. For some classes of queries and constraints, these
techniques guarantee an exponential gain compared to the basic approach.

Secondly, our contribution is practical. Indeed, based on the above localization results, we develop
strategies to consistent query answering relying on existing technologies offered by stable model engines and
relational DBMS. Resembling several proposals in the literature, our techniques make use of logic programs
to solve inconsistency. However, we limit their usage to the affected part ofthe data. This approach is useful
to localize the difficult part of the computation, and to overcome the lack of scalability of current (yet still
improving) implementations of stable model engines such as DLV [36] or Smodels[40]. Specifically:

4) We propose a formal model of inconsistency resolution via logic programming specification, which
abstracts from several proposals in the literature [4, 6, 8, 11, 14, 29]. Results obtained on this model are
applicable to all such approaches.

5) We discuss an architecture that recombines the repairs of the affectedpart with the safe part of an
inconsistent database, interleaving a stable model and a relational database engine. This is driven by the
fact that database engines are geared towards efficient processingof large data sets, and thus help to achieve
scalability. In this architecture, the database engine has to “update” the consistent answers to a certain query
each time a new repair is computed by the stable model engine. To further improvethis strategy, a technique
for simultaneously processing a (large) group of repairs in the DBMS is proposed. Basically, it consists
in a marking and query rewriting strategy for compiling the reasoning tasks needed for consistent query
answering into a relational database engine.

6) Finally, we assess the effectiveness of our approach in a suite of experiments. They have been car-
ried out on a prototype implementation in which the stable model engine DLV is coupled with the DBMS
PostgreSQL. The experimental results show that the implementation scales reasonably well.

We observe that our results on localization extend and generalize previous localization results which
have been utilized (sometimes tacitly) for particular repair orderings and classes of constraints, for instance,
for denial constraints and repairs which are closest to the original database measured by set symmetric
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difference [17]. Also, our results can be exploited for efficient implementation of consistent query answering
techniques in general, independent of a logic-based approach.

The rest of this paper is organized as follows. Section 2 introduces the notation for the relational data
model and for logic programs used throughout the paper. Section 3 defines the formal framework for con-
sistent query answering from inconsistent databases. Localization properties in database repairs and their
exploitation to optimize consistent query answering are discussed in Section 4and Section 5, respectively.
The logic specification for consistent query answering is presented in Section 6, together with an architec-
ture that interleaves DBMS and stable model engines. Finally, Section 7 reports results of our experimental
activity, and Section 8 concludes the paper with a brief discussion.

Some proofs as well as further details of our techniques have been movedto an on-line appendix, which
also contains further examples and experiments.

2 Preliminaries

2.1 Data Model

We assume a countable infinite database domainU whose elements are referenced by constantsc1, c2, . . .
under theunique name assumption, that is, different constants denote different real-world objects.

A relational schema(or simplyschema) S is a pair〈Ψ, Σ〉, where:

• Ψ is a finite set of relation (predicate) symbols, each with an associated positive arity.

• Σ is a finite set ofintegrity constraints(ICs) expressed on the relation symbols inΨ. We consider
here universally quantified constraints [1], i.e., first-order sentencesof the form

∀~x A1(~x1) ∧ · · · ∧Al(~xl) ⊃ B1(~y1) ∨ · · · ∨Bm(~ym) ∨ φ1(~z1) ∨ · · · ∨ φn(~zn), (1)

wherel+m > 0, n ≥ 0, theAi(~xi) and theBj(~yj) are atoms overΨ, theφk(~zk) are atoms or negated
atoms over possible built-in relations like equality (=), inequality (6=), etc.,~x is a list of all variables
occurring in the formula, and the~xi, ~yj , and~zk are lists of variables from~x and constants fromU .1

The conjunction left of “⊃” is thebodyof the constraint, and the disjunction right of “⊃” its head.

In the rest of the paper,S = 〈Ψ, Σ〉 denotes a relational schema. Since all variables in (1) are universally
quantified, we omit quantifiers in constraints.

Note that (1) is a clausal normal form for arbitrary universal constraints on a relational schema. We pay
special attention to the following subclasses of constraints:

• Constraints with only built-in relations in the head (i.e.,m = 0 in (1)). The class of these constraints,
which we denote byC0, is a clausal normal form ofdenial constraints[17], also calledgeneric
constraintsin [7]. This class (semantically) includes:

- key constraintsp(~x, ~y) ∧ p(~x, ~z) ⊃ yi=zi, for 1 ≤ i ≤ n,

- functional dependenciesp(~x, ~y,~v) ∧ p(~x, ~z, ~w) ⊃ yi=zi, for 1 ≤ i ≤ n, and

- exclusion dependenciesp1(~v, ~y) ∧ p2(~w, ~z) ⊃ y1 6=z1 ∨ · · · ∨ yn 6=zn,

1The conditionl + m > 0 excludes constraints involving only built-in relations, which are irrelevant from a schema modeling
perspective.
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where~y = y1, . . . , yn and~z = z1, . . . , zn.

• Constraints with non-empty body (i.e.,l > 0 in (1)). We denote the class of these constraints, which
permit conditional generation of tuples in the database, byC1. Note thatC0 ⊆ C1 (sincel+m > 0).
The classC1 includes, for instance,inclusion dependenciesof the formp1(~x) ⊃ p2(~x).

• Constraints with at most one database atom in the head (i.e.,m ≤ 1 in (1)). We denote the class
of these constraints, which we call non-disjunctive, byC2. Beyond denials, such constraints also
allow to enforce the (unconditional) presence of a tuple. Parts of the database may be protected from
modifications in this way. Note thatC0 ⊆ C2, whileC1 andC2 are incomparable.

Example 2.1 In our example, the schemaS0 is the tuple〈Ψ0, Σ0〉, whereΨ0 consists of the ternary relation
symbolsplayer , team, andcoach, andΣ0 can be defined as follows:

σ1: player(x, y, z) ∧ player(x, y′, z) ⊃ y=y′,
σ2: team(x, y, z) ∧ team(x, y′, z′) ⊃ y=y′,
σ3: team(x, y, z) ∧ team(x, y′, z′) ⊃ z=z′,
σ4: coach(x, y, z) ∧ coach(x, y′, z) ⊃ y=y′,
σ5: coach(x, y, z) ∧ player(x′, y′, z) ⊃ x6=x′,
σ6: coach(x, y, z) ∧ team(z, y′, x′) ⊃ x6=x′.

Hereσ1–σ4 are key constraints, whileσ5 andσ6 encode that, for any given team, the coach is neither a
player nor a team leader. Note that all these constraints are inC0. 2

For a set of relation symbolsΨ as above,F(Ψ) denotes the set of all factsr(t), wherer ∈ Ψ has arityn
andt = (c1, . . . , cn) ∈ Un is ann-tuple of constants fromU . A database instance(or simplydatabase) for
Ψ is any finite setD ⊆ F(Ψ). The extension of relationr in D is the set of tuplesrD = {t | r(t) ∈ D}. We
denote byD(Ψ) the set of all databases forΨ. For any relation schemaS = 〈Ψ, Σ〉, in abuse of notation,
F(S) andD(S) denoteF(Ψ) andD(Ψ), respectively, and a database forS is a database forΨ.

A constraintσ is ground, if it is variable-free. For any suchσ, facts(σ) denotes the set of all factsp(t) ∈
F(S) occurring inσ, and for any setΣ of ground constraints,facts(Σ) =

⋃

σ∈Σ facts(σ). For any constraint
σ = α(~x), we denote byground(σ) the set of itsground instancesθ(α(~x)), whereθ is any substitution of
the variables~x by constants fromU . For any set of constraintsΣ, ground(Σ) =

⋃

σ∈Σ ground(σ).
GivenD ⊆ F(Ψ), whereΨ = {r1, . . . , rn}, D satisfiesa constraintσ, denotedD |= σ, if σ is true on

the relational structure(U , rD
1 , . . . , rD

n , cD
1 , cD

2 , . . .) wherecD
i = ci, for all ci ∈ U (i.e., eachσ′ ∈ ground(σ)

evaluates to true), andviolatesσ otherwise;D satisfies(or isconsistent with) a set of constraintsΣ, denoted
D |= Σ, if D |= σ for everyσ ∈ Σ, andviolatesΣ otherwise. Finally, a relational schemaS = 〈Ψ, Σ〉 is
consistent, if there exists a databaseD for S that is consistent withΣ, otherwiseS is inconsistent.

Example 2.2 Consider the constraintσ2 in Σ0, and its ground instance

team(RM, Roma, 10) ∧ team(RM, Real Madrid, 10) ⊃ Roma=Real Madrid.

Clearly, this instance does not evaluate true on the relational structure associated withD0, which there-
fore violatesΣ0. 2
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2.2 Datalog∨,¬ Programs and Queries

Syntax A Datalog∨,¬ ruleρ is an expression of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bk+m (2)

whereai, bj are atoms in a relational first-order languageL. Here, “not” is negation as failureand “,” is
conjunction. Ifk = m= 0, thenρ is afactand “←” is omitted. The part left of “←” is theheadof ρ, denoted
head(ρ), and the part right of “←” the bodyof ρ, denotedbody(ρ). We assumesafety, i.e., each variable
occurring inρ occurs in somebi, 1≤ i≤ k, whose predicate is not a built-in relation. Built-in relations may
occur only in the body.

A Datalog∨,¬ programP is a finite set of Datalog∨,¬ rules. Important restrictions arenormal programs,
Datalog¬, wheren =1 for all rules,stratified normalprograms, Datalog¬s , andnon-recursiveprograms as
follows. Each Datalog¬ programP has adependency graphG(P)= 〈V, E〉, whereV are the predicates
occurring inP andE contains an arcr → s if r occurs inhead(ρ) ands in body(ρ) for some ruleρ ∈ P.
Moreover, ifs occurs under negation, the arc is labeled with ’∗.’ ThenP is stratified, if G(P) has no cycle
with an arc labeled ’∗,’ andnon-recursive, if G(P) is acyclic.

Semantics The semantics of a Datalog∨,¬ programP is defined via itsgroundingground(P) w.r.t. L
(usually, the language generated byP), which consists of all ground instances of rules inP possible with
constant symbols fromL. Let BL be the set of all ground atoms with a predicate and constant symbols in
L. A (Herbrand) interpretation forP is any subsetI ⊆ BL; an atomp(~c) ∈ BL is true inI, if p(~c) ∈ I,
and false inI otherwise. A ground rule (2) issatisfiedby I, if either someai or bk+j is true inI, or some
bi, 1 ≤ i ≤ k, is false inI. Finally, I is a model ofP, if I satisfies all rules inground(P).

Thestable model semantics[28] assignsstable modelsto any Datalog∨,¬ programP as follows. IfP is
“not”-free, its stable models are its minimal models, where a modelM of P is minimal, if noN ⊂ M is
a model ofP. If P has negation,M is a stable model ofP, if M is a minimal model of thereductP w.r.t.
I, which results fromground(P) by deleting(i) each ruleρ with a literalnot p(~c) in the body such that
p(~c) ∈ I, and(ii) the negative literals from all remaining rules.

We denote bySM(P) the set of stable models ofP. Note that for “not”-free programs, minimal models
and stable models coincide, and that positive disjunction-free (resp. stratified) programs have a unique stable
model [28].

Queries A Datalog∨,¬ query Q over a schemaS = 〈Ψ, Σ〉 is a pair〈q,P〉, whereP is a Datalog∨,¬

program such that everyp ∈ Ψ occurs inP only in rule bodies, andq occurs in some rule head ofP but
not in Ψ. The arity of Q is the arity ofq. Given any databaseD for S, the evaluation ofQ over D, is
Q[D] = {(c1, . . . , cn) | q(c1, . . . , cn) ∈ M, for eachM ∈ SM(P ∪ D)}. Note that as forQ, any non-
recursiveP can be rewritten to aunion of conjunctive queries, i.e., a set of rules (2) wheren = 1 andm = 0,
with the same head predicateq which does not occur in rule bodies. For further background on Datalog∨,¬

and queries, see [1, 22].

Example 2.3 In our ongoing example, we may consider a queryQ that asks for the codes of all players and
team leaders, and that is formally written asQ = 〈q,P〉 whereP = {q(x) ← player(x, y, z), q(x) ←
team(v, w, x)}. Q has arity 1. Note thatP is a union of conjunctive queries. 2
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3 Consistent Query Answering Framework

3.1 A General Framework for Database Repairs

Let us assume thatS = 〈Ψ, Σ〉 is given together with a (possibly inconsistent) databaseD for S. Following
a common approach in the literature on inconsistent databases [3, 29, 13, 15], we next define the semantics
of queryingD in terms of itsrepairs. Specifically, we present a generalization of previous approaches where
the way of repairing a database is chosen according to an arbitrary preorder on databases satisfying some
conditions.

We suppose that≤D is a preorder (i.e., a reflexive and transitive binary relation) onD(S), and denote
by <D the induced preference order (i.e., an irreflexive and transitive binary relation) given byR1 <D R2,
if R1 ≤D R2 ∧ R2 6≤D R1. We callR1 <D-preferredto R2 in this case. A repair forD is now defined in
terms of a minimal element under<D.

Definition 3.1 (Repair) Let D be a database forS = 〈Ψ, Σ〉, and let≤D be a preorder onD(S). Then, a
databaseR ∈ D(S) is arepair for D w.r.t. S, if

1. R |= Σ, and

2. R is minimal inD(S) w.r.t. <D, i.e., there is noR′ ∈ D(S) such thatR′ |= Σ andR′ is <D-preferred
to R.

The set of all repairs forD w.r.t. S is denoted byrepS(D). When clear from the context, the subscriptS
may be dropped. 2

The definition of repair relies on a general notion of preorder on databases. The method for consistent
query answering presented in the next sections is based on abstract properties of the induced preference
order, which we refer to as set inclusion proximity, disjoint preference expansion and disjunctive split. The
property ofset inclusion proximityis as follows:

(SIP) For any databasesR1,R2, andD,△(R1, D) ⊂ △(R2, D) impliesR1 <D R2,

where△(A, B) = (A \ B) ∪ (B \ A) is symmetric set difference. Informally, this property effects that a
databaseR satisfying the constraints can be a repair only if there is no way to establish consistency withΣ
by touching merely a strict subset of facts compared toR.

The propertiesdisjoint preference expansionanddisjunctive splitare as follows:

(DPE) If R1 <D1
R′

1 andR2, D2 are disjoint fromR1, R′
1, andD1 (i.e.,(R1 ∪R′

1 ∪D1) ∩ (R2 ∪D2) = ∅),
thenR1 ∪ R2 <D1∪D2

R′
1 ∪ R2.

(DIS) If R1 <D R2, then for every databaseR it holds that eitherR1 ∩ R <D∩R R2 ∩ R or R1 \ R <D\R

R′
1 \ R (or both).

Loosely speaking, (DPE) says that preference must be invariant under adding new facts, while (DIS) says
that preference must uniformly stem from disjoint “components.”

The prototypical preorder≤D is given byR1 ≤D R2 iff △(R1, D) ⊆ △(R2, D) [3, 4, 6, 11, 17, 29, 27].
Intuitively, each repair ofD is then obtained by properly adding and deleting facts fromD in order to satisfy
constraints inΣ, as long as we “minimize” such changes. The following proposition is easy to prove.

Proposition 3.1 The prototypical preorder satisfies properties (SIP), (DPE), and (DIS).
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Notice that a variety of repair semantics are either defined in terms of a preorder satisfying the above
properties or can be characterized by such a preorder, beside thosebased on the prototypical preorder dis-
cussed above, including set-inclusion based ordering [24, 13], cardinality-based ordering [4, 38], weight-
based orderings [37], as well as refinements with priority levels. An interesting special case of weight-based
ordering is the lexicographic preference, whereR1 is preferred toR2 w.r.t. D if the first fact in a total
ordering ofF(S) on whichR1 andR2 repairD differently belongs toR2.

However, we point out that our method and results for query answeringcan also be extended to other
preference orderings under certain conditions (see Section 8).

3.2 Constructible Repairs and Safe Constraints

An important aspect is that constraints might enforce thatanyset of factsR for S = 〈Ψ, Σ〉 which satisfies
Σ must be infinite, and thusS is inconsistent, i.e., noD ∈ D(S) satisfiesΣ. A simple example is where
Σ = { ∀x p(x) }. Semantically, this is commonly avoided by requesting domain-independence ofcon-
straints [42], which syntactically is ensured bysafety, i.e., each variable occurring in the head of a constraint
must also occur in its body. Notice that major classes of constraints including key constraints, functional
dependencies, exclusion dependencies, inclusion dependencies of the formp1(~x) ⊃ p2(~x), or denial con-
straints fulfill safety. Together with (SIP), safety of constraints ensures that any databaseD has a repair if
this is possible at all (proofs of the propositions below are given in Appendix A). For anyR ⊆ F(S), we
denote byadom(R,S) theactive domainof R andS, i.e. the set of constants occurring inR andΣ.

Proposition 3.2 LetD be a database forS = 〈Ψ, Σ〉, where all constraints inΣ are safe. Suppose that<D

satisfies (SIP). Then, every repairR ∈ rep(D) involves only constants fromadom(D,S), and some repair
exists ifS is consistent.

Notice that, for a generic preference order, existence of a repair is not always guaranteed, even ifS is
consistent.

Finite repairs can also be ensured for unsafe constraints in which variables violating safety are guarded
by built-in relations, such as forD = ∅ w.r.t. S = 〈{p}, {p(x) ∨ x>100}〉, assuming thatU are the natural
numbers. As this example shows, repairs may in this case go beyond the active domain. However, this is
prevented if built-ins involve only equality and inequality. We have here a result similar to Proposition 3.2.

Proposition 3.3 LetD be a database forS = 〈Ψ, Σ〉where no built-in relations occur inΣ except= and 6=.
Suppose that<D satisfies (SIP). Then, every repairR ∈ rep(D) involves only constants fromadom(D,S),
and some repair exists ifS is consistent.

3.3 Queries and Consistent Answers

The notion of repair is crucial for the definition of the semantics of queryinginconsistent databases. We
conclude this section by formalizing this aspect.

Definition 3.2 LetQ be a non-recursive Datalog¬ query. For any databaseD ∈ D(S), the set ofconsistent
answers toQ w.r.t. D is the set of tuplesans(Q, D) = {t | t ∈ Q[R], for eachR ∈ rep(D) }.

Informally, a tuplet is a consistent answer if it is a consequence under standard certainty semantics for
each possible repair of the databaseD. Note that in real applications, a query language subsumed by non-
recursive Datalog¬ is often adopted.
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Example 3.1 Recall that in our scenario, repairs for the databaseD0 for S0 are shown in Fig. 1. For
the queryQ = 〈q,P〉, whereP = {q(x) ← player(x, y, z), q(x) ← team(v, w, x)}, we thus obtain
ans(Q, D0) = {(8), (9), (10)}. For the queryQ′ = 〈q, {q(y) ← team(x, y, z)}〉, we haveans(Q′, D0) =
{(Barcelona)}, while for Q′′ = 〈q′, {q′(x, z) ← team(x, y, z)}〉, we haveans(Q′′, D0) = {(RM, 10),
(BC, 8)}. 2

4 Locality Properties for Repairing Inconsistent Databases

In this section, we investigate how to localize inconsistency in a given database D, that is, how to narrow
down the set of facts inD to a part which is “affected” by inconsistency and repair, and how to obtain the
repairs ofD from the repairs of this affected part. To this end, we introduce the notion of a repair envelope.
Informally, a repair envelope is a set of factsE such that the repairs ofD touch only facts inE and are given
by the repairs ofD ∩ E plus the “unaffected” (“safe”) part ofD, i.e., the portion ofD which is outside the
envelope. More formally, givenS andD, E has to fulfill the conditions

△(R, D) ⊆ E, for all R ∈ repS(D), (3)

repS(D) = {R ∪ (D \ E) | R ∈ repS(D ∩ E)}. (4)

The repair ofD can then be fully localized to the repair ofD ∩ E, which in practice may be much smaller
thanD. In fact, as shown below, for constraintsC0 the set of all facts witnessing inconsistency, denoted
C, is always a repair envelope, and for constraintsC1 andC2, a closureC∗ of C under syntactic conflict
propagation is a repair envelope. Such a closure, as we will explain in detail in the following, takes care of
facts that “indirectly” participate in constraint violations. Figure 2 shows thedifferent sets.

Example 4.1 Recall thatteam(RM, Roma, 10)∧ team(RM, Real Madrid, 10) ⊃ Roma= Real Madridwit-
nesses in Example 2.2 a violation of the key ofteam; it is the only ground constraint violated byD0. Since
the constraints are of typeC0, the setC = {team(RM, Roma, 10), team(RM, Real Madrid, 10)} is a re-
pair envelope forD. The databaseD ∩ C = C has the two repairsR1 = {team(RM, Roma, 10)} and
R2 = {team(RM, Real Madrid, 10)}; therefore, according to (4),D has the two repairsR1 ∪D0 \ C and
R2 ∪D0 \ C, which are those shown in Figure 1. 2

Note that a repair envelope always exists, since the set of all facts is a trivial repair envelope. As for
localizing the computation ofrep(D), only condition (4) is relevant (ifE satisfies it, then so does everyE′

such thatE′∩D = E∩D, in particularE′ = E∩D). Condition (3), however, allows to bound for the answer
to certain queries. In particular, for monotone queriesQ, we have thatQ[D\E] ⊆ ans(Q, D) ⊆ Q[D∪E].

For general constraints,C∗ is not always a repair envelope. However, we show that it is aweak repair
envelopeE, which has to fulfill, instead of (4), the relaxed equation

repS(D) = {(R ∩ E) ∪ (D \ E) | R ∈ repS(D ∩ E)} (5)

That is, the repairs ofD are obtained by constraining the repairs ofD ∩ E to the repair envelope. This is
necessary since facts outside the envelope might be added to such repairs (see Example 4.3). However, this
can only occur in presence of certain disjunctions.

Despite the difference thatE is either a repair envelope or a weak repair envelop, we call the setD ∩E
the affected part ofD (w.r.t. S), or simply affected database, and we callD \E the safe part ofD (w.r.t. S),
or simply “safe” database.
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Conflict setC : facts occurring inground(Σ) violated inD

Conflict closureC∗ : syntactic conflict propagation fromC by Σ
Repair envelopeE : safe bound on tuple changes with local repairs (hatched)

Figure 2: Localization of database repair

We proceed as follows. After formally definingC and C∗ and establishing some auxiliary results,
we show thatC∗ is a weak repair envelope in general. We then prove that it is a repair envelope under
restrictions, in particular forC1 andC2 constraints. This envelope may be further decreased. Indeed, we
prove thatC is a repair envelope forC0 constraints. In fact, the results for special constraints are stronger
and establish 1-1 correspondences between repairs ofD ∩ E and repairs ofD.

4.1 General Constraints

Let D be a database for a relational schemaS = 〈Ψ, Σ〉. Theconflict setfor D w.r.t. S is the set of facts
CS(D) = {p(t) | ∃σ ∈ ground(Σ), p(t) ∈ facts(σ), D 6|= σ}, i.e.,CS(D) is the set of facts occurring in
the ground instances ofΣ which are violated byD. In the following, if clear from the context,D and/or the
subscriptS will be dropped.

Figure 2 shows that the conflict set may contain both facts inD (as in Example 4.1) and facts inF(S)
that do not belong toD. For example, letD = {p(a)}, and letS contain the dependencyp(x) ⊃ q(x).
ThenC = {p(a), q(a)}.

For defining conflict propagation, we first introduce the following notion.Two factsp(t), p′(t′) in F(S)
are constraint-bounded inS, if there exists someσ ∈ ground(Σ) such that all constants occurring in
facts(σ) are fromadom(D,S), and{p(t), p′(t′)} ⊆ facts(σ). (Note that by assumed safety of constraints
and the results of Section 3.2, we only need to consideradom(D,S).) We now generalize the notion of
conflict set.

Definition 4.1 (Conflict closure) Let D be a database forS=〈Ψ, Σ〉. Then, theconflict closurefor D,
denoted byC∗

S(D), is the least setA ⊇ CS(D) which contains every factp(t) constraint-bounded inS with
some factp′(t′) ∈ A. 2

We omitD and/or the subscriptS if clear from the context. Intuitively,C∗ contains, besides facts from
C, facts which possibly must be touched by repair in turn to avoid new inconsistency withΣ caused by
previous repairing actions. For example, assume thatS contains the constraintsp(x) ⊃ q(x) andq(x) ⊃
s(x). Then, forD = {p(a)}, we have thatC = {p(a), q(a)}, andC∗ = C ∪ {s(a)}. As shown in Figure 2,
C∗ may add toC both facts inside and outsideD. In the example above, for instance,C andC∗ would be
the same ifs(a) was inD.
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Towards a proof thatC∗ is a weak repair envelope, we need some preliminary technical results. ForD
andS=〈Ψ, Σ〉, consider the following two sets of ground constraints:

(i) Σa
S(D) = {σ ∈ ground(Σ) | facts(σ) ∩ C∗ 6= ∅} consists of all ground constraints in which at least

one fact fromC∗ occurs;

(ii) Σs
S(D) = {σ ∈ ground(Σ) | facts(σ) 6⊆ C∗} consists of all ground constraints in which at least one

fact occurs which isnot in C∗.

As usual,S and/orD will be omitted. We first show thatΣa ∪ Σs is a special partitioning ofground(Σ).

Proposition 4.1 (Separation)Let D be a database forS = 〈Ψ, Σ〉. Then, (1)facts(Σa) = C∗, (2)
facts(Σs) ∩ C∗ = ∅, (3) Σa ∩ Σs = ∅, and (4)Σa ∪ Σs = ground(Σ).

Proof. By definition,σ ∈ Σa contains at least one factp(t) from C∗; any other fact inσ is constraint-
bounded inS with p(t), and hence it also must be inC∗. This provesfacts(Σa) ⊆ C∗. Consider now
any factp(t)∈C∗. The minimality ofC∗ implies that there exist factsf1, . . . , fn in C∗ such thatf1 ∈C,
fn = p(t), andfi+1 is constraint-bounded tofi, for eachi ∈ {1, . . . , n − 1}; i.e., fi, fi+1 ∈ facts(σi) for
someσi ∈ ground(Σ). Eachσi then belongs toΣa , and thusp(t)∈ facts(Σa). This provesC∗ ⊆ facts(Σa),
and therefore (1) holds. As for (2), assume by contradiction that someσ ∈ Σs with facts(σ) ∩ C∗ 6= ∅
exists. Then, from Definition 4.1 it follows thatfacts(σ) ⊆ C∗, which contradictsσ ∈ Σs . Item (3) is
straightforward from (1) and (2). Finally, in order to prove (4), we suppose that there existsσ ∈ ground(Σ)
such thatσ 6∈ Σs andσ 6∈ Σa , but this means thatfacts(σ) ∩ C∗ = ∅ and facts(σ) ⊆ C∗, which is an
obvious contradiction. 2

The separation property allows us to shed light on the structure of repairs.

Proposition 4.2 (Safe database)LetD be any database forS = 〈Ψ, Σ〉. Then, for each repairR ∈ rep(D)
it holds thatR \ C∗ = D \ C∗.

Proof. Towards a contradiction, suppose that there exists a repairR ∈ rep(D) such thatR\C∗ 6= D\C∗.
Let R′ = (R∩C∗)∪(D\C∗) (notice thatR′ 6= R only if R\C∗ 6= D\C∗). Consider anyσ ∈ ground(Σ).
By Proposition 4.1, either (i)σ ∈ Σa or (ii) σ ∈ Σs . In case (i),R′ |= σ: by Proposition 4.1 (a),facts(σ) ⊆
C∗, and thereforeR′ |= σ iff R′ ∩ C∗ |= σ, which is true, sinceR′ ∩ C∗ = R ∩ C∗ andR |= σ (because
R ∈ rep(D)). In case (ii), againR′ |= σ: by Proposition 4.1 (b),facts(σ) ∩ C∗ = ∅ and thereforeR′ |= σ
iff R′\C∗ |= σ, which is true, sinceR′\C∗ = D\C∗ andD |= σ. It follows thatR′ |= Σ. Furthermore, it is
easy to show that△(R′, D) ⊂ △(R, D). Indeed,R′\D = ((R∩C∗)∪(D\C∗))\D = (R∩C∗)\D ⊆ R\D,
and alsoD\R′ = D\((R∩C∗)∪(D\C∗)) = (D\(R∩C∗))∩(D\(D\C∗)) = (D\(R∩C∗))∩(D∩C∗) ⊆
D \R. From (SIP), it follows thatR′ <D R. This contradictsR ∈ rep(D). 2

Informally, the above lemma shows thatD \ C∗ is a safe portion ofD, in the sense that tuples ofD
outside the conflict closure will not be touched by repair.

Prior to the main result of this subsection, we establish the following lemma:

Lemma 4.3 LetD be a database forS = 〈Ψ, Σ〉, and letA = D ∩ C∗ andSa = 〈Ψ, Σa〉. Then, for each
S ⊆ D \ C∗, the following holds:

1. for eachR ∈ repS(A ∪ S), it holds thatR ∩ C∗ ∈ repSa(A);
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2. for eachR ∈ repSa(A) there exists a set of factsS′ ⊆ F(S) such thatS′ ∩ C∗ = ∅, and(R ∪ S′) ∈
repS(A ∪ S).

Proof. (1) LetR ∈ repS(A ∪ S), and letR′ = R ∩ C∗. SinceR |= Σ, thenR |= ground(Σ), therefore,
from Proposition 4.1 it follows thatR′ |= Σa , whileR \R′ = R \C∗ |= Σs . AssumeR′ /∈ repSa(A). Since
R′ |= Σa , there must exist someR′′ ∈ repSa(A) such thatR′′ <A R′. SinceR′′ |= Σa andR \ R′ |= Σs ,
we have thatR′′ ∪ (R \ R′) |= Σ. Since the conflict closure ofD w.r.t. S is the same as w.r.t.Sa and since
A is contained in its conflict closure w.r.t.S, by Proposition 4.2, we haveR′′ \ C∗ = A \ C∗ = ∅, and
thereforeR′′ ⊆ C∗. As a consequence,(R′′∪R′∪A)∩ ((R\R′)∪S) = ∅ (notice that(R′′∪R′∪A) ⊆ C∗

whereas(R \R′)∩S) = ∅). Then, by (DPE), it follows thatR′′ ∪ (R \R′) <A∪S R′ ∪ (R \R′) = R. This
contradicts thatR ∈ repS(A ∪ S).

(2) We choose asS′ an arbitrary repair forS w.r.t. Ss = 〈Ψ, Σs〉, i.e.,S′ ∈ repSs (S) (notice thatS may
violateΣs, and therefore in generalS′ 6= S). We first show thatS′ ∩ C∗ = 0. Let us writeS′ = S′

a ∪ S′
s,

whereS′
a = S′ ∩ C∗

Ss (S) andS′
s = S′ \ C∗

Ss (S). By Proposition 4.2, we have thatS′
s = S \ C∗

Ss (S), and
therefore, sinceS ⊆ D \ C∗, S′

s ∩ C∗ = ∅. Also, it is easy to see thatC∗ ∩ C∗
Ss (S) = ∅, and therefore

S′
a∩C∗ = ∅. We thus conclude thatS′∩C∗ = ∅. Now, we concentrate on proving thatR∪S′ ∈ repS(A∪S).

SinceR ∈ repSa(A), from Proposition 4.2, and from the fact thatC∗
Sa(A) = C∗ (in computingC∗

Sa(A)
andC∗ we start from the same conflict set and we close such set w.r.t. the same setof constraints) and
A ⊆ C∗, it follows thatR \ C∗ = A \ C∗ = ∅, and thereforeR ⊆ C∗. Then, it is easy to see that from
R |= Σa , S′ |= Σs , andΣ = Σa ∪ Σs , it follows thatR ∪ S′ |= Σ. Assume now by contradiction that
R ∪ S′ /∈ repS(A ∪ S), then there must exist someR′′ consistent withΣ such thatR′′ <A∪S R ∪ S′. We
can writeR′′ = R′′

a ∪ R′′
s , whereR′′

a = R′′ ∩ C∗ andR′′
s = R′′ \ C∗. Let us now apply property (DIS)

with R = C∗, and obtain that eitherR′′
a <A R ∩ C∗ or R′′

s <S S′. From Proposition 4.1, it follows that
R′′

a |= Σa andR′′
s |= Σs , but this contradicts the assumptions thatR ∈ repSa(A) andS′ ∈ repSs (S). This

proves thatR ∪ S′ ∈ repS(A ∪ S). 2

In other words, item (1) in the lemma above shows how to obtain a repair of the databaseA = D ∩ C∗

w.r.t. Sa, from a repair, computed w.r.t.S, of A augmented with any subsetS of the safe databaseD \ C∗.
Conversely, item (2) shows how to obtain a repair ofA ∪ S w.r.t. S, from a repair ofA w.r.t. Sa. Notice
that repairingA w.r.t. Sa, and not w.r.t.S, is necessary for the lemma above to hold, since for a repair
R ∈ repS(A ∪ S), it does not hold in general thatR ∩ C∗ ∈ repS(A). Also, repairingA w.r.t. Sa avoids
repairing constraints inΣs not satisfied byA.

Armed with the above concepts and results, we state the main theorem of this subsection.

Theorem 4.4 LetD be a database forS = 〈Ψ, Σ〉. Then,C∗ is a weak repair envelope forD.

Proof. We first show that for eachR ∈ repS(D) then△(R, D) ⊆ C∗, as specified by condition (3) in
Section 4, where we poseE = C∗. Assume by contradiction that there exists a factf ∈ △(R, D) such
thatf 6∈ C∗. By Proposition 4.1 it follows that there does not exist anyσ ∈ Σa such thatf ∈ facts(σ).
Then, iff ∈ R \D, it is easy to see thatR \ {f} |= Σ, but by property (SIP) we have thatR \ {f} <D R,
thus contradicting the assumption thatR ∈ repS(D). Analogously, iff ∈ D \ R, it is easy to see that
R ∪ {f} |= Σ, but by property (SIP) we have thatR ∪ {f} <D R, thus again contradicting the assumption.

We now prove thatrepS(D) coincides with the set defined by equation (5) in Section 4, where we pose
E = C∗. To this aim, we show that (i) for everyR ∈ repS(D), there exists someR′ ∈ repS(D ∩ C∗) such
thatR = (R′ ∩C∗)∪ (D \C∗), and (ii) for everyR ∈ repS(D∩C∗) there exists someR′ ∈ repS(D) such
thatR′ = (R ∩ C∗) ∪ (D \ C∗).
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(i) We first apply Item 1 of Lemma 4.3 forS = D \ C∗ and obtainR ∩ C∗ ∈ repSa(D ∩ C∗) (notice
that in Lemma 4.3A = D ∩ C∗, Sa = 〈Ψ, Σa〉, and since we poseS = D \ C∗, we have thatA ∪ S =
D). We then apply Item 2 forS = ∅, and we obtain that there existsS′ such thatS′ ∩ C∗ = ∅ and
R′ = (R ∩ C∗) ∪ S′ ∈ repS(A). SinceS′ ∩ C∗ = ∅, we also have thatR′ ∩ C∗ = R ∩ C∗, and from
Proposition 4.2, it follows thatR = (R ∩ C∗) ∪ (D \ C∗). Therefore,R = (R′ ∩ C∗) ∪ (D \ C∗).

(ii) Similarly, applying first Item 1 of Lemma 4.3 forS = ∅ and then Item 2 forS = D \ C∗, we obtain
that there existsS′ such thatS′∩C∗ = ∅, andR′ = (R∩C∗)∪S′ ∈ repS(D). Then, from Proposition 4.2,
it follows thatS′ = D \ C∗. We thus easily obtain thatR′ = (R ∩ C∗) ∪ (D \ C∗). 2

For computing repairs for an inconsistent databaseD, we can thus proceed as follows:
1. compute the conflict closureC∗;
2. compute the repairs ofA = D ∩ C∗;
3. intersect each repair obtained withC∗; and
4. for each such set, take the union withD \ C∗.

A drawback of this approach is that in Step 2, facts outsideC∗ might be included in a repair ofA, which
are stripped off subsequently in Step 3.

Example 4.2 ConsiderD = {p(a)} for S = 〈Ψ, {p(a), q(a)}〉. In this case,C = C∗ = {q(a)}, A =
D ∩ C∗ = ∅, andD \ C∗ = D. We haverep(A) = {{p(a), q(a)}} and{p(a), q(a)} ∩ C∗ = {q(a)}; p(a)
is stripped off from the repair ofA. 2

In this example, the repair ofA added a fact outsideC∗ but from the safe part ofD, which doesn’t hurt. The
following example shows that facts outsideC∗ ∪D may be added.

Example 4.3 ConsiderD = {r(a), p(a)} where forS = 〈Ψ, Σ〉 whereΣ = {r(a) ⊃ p(a) ∨ q(a), r(a)}.
Then,C∗ = ∅ andD ∩ C∗ = ∅ has two repairs, viz.R1 = {r(a), p(a)} andR2 = {r(a), q(a)}. According
to (4),R2 ∪ (D \C∗) = {r(a), p(a), q(a)} would have to be a repair ofD, which is incorrect. Note that the
constraintr(a) ⊃ p(a) ∨ q(a) can be satisfied by includingq(a), which was neither inD nor inC∗. 2

Note that in Example 4.3,Σ contains constraints from both the classesC1 andC2, but not from a single
class. As we show in the next subsection, the effects in Example 4.3 can nothappen under restriction to a
single class, andC∗ is always a repair envelope.

We finally provide the result below that follows from Theorem 4.4, and remarks that repairing basically
depends onΣa.

Corollary 4.5 Let D be a database forS = 〈Ψ, Σ〉, and letS ′ = 〈Ψ, Σ′〉 be such thatΣa
S′(D) = Σa

S(D).
ThenrepS(D) = repS′(D).

Proof. We prove thatrepS(D) ⊆ repS′(D). The converse can be proved analogously. Assume by
contradiction that there existsR ∈ repS(D) such thatR 6∈ repS′(D). This means that either (a)R 6|= Σ′

or (b) there existsR′ such thatR′ |= Σ′ and R′ <D R. Consider first case (a). SinceR 6|= Σ′ iff
R 6|= Σa

S′(D) ∪ Σs
S′(D) and sinceR |= Σa

S(D) (which is equal toΣa
S′(D)), there exists someσ ∈ Σs

S′(D)
such thatR 6|= σ. By Theorem 4.4,R = (R′′ ∩ C∗

S(D)) ∪ (D \ C∗
S(D)), whereR′′ ∈ repS(D ∩ C∗

S(D)).
Sincefacts(Σa

S(D)) = facts(Σa
S′(D)), by Proposition 4.1C∗

S(D) = C∗
S′(D) = C∗. Furthermore, since

σ ∈ Σs
S′(D), we havefacts(σ) ∩ C∗ = ∅. Therefore,R can violateσ only if D \ C∗ violatesσ, but this

is a contradiction. In case (b), we can show similarly as in case (a) thatR′ |= Σ′ impliesR′ |= Σ. Then,
R′ <D R contradictsR ∈ repS(D). 2
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Then, we can modify or prune constraints “outside”Σa in arbitrary manner, e.g., for optimization pur-
poses. As we show in the next subsection, this makesC∗ a repair envelope, rather than a weak repair
envelope, in several cases in whichΣ contains general constraints.

4.2 Special Constraints

In this section, we consider the constraint classesCi which have been introduced in Section 2, and determine
repair envelopes for them.

4.2.1 ConstraintsC1 and C2

Recall thatC1 constraints have nonempty bodies, and thus cannot unconditionally enforce the inclusion of
facts to a database instance.

Proposition 4.6 LetD be a database forS = 〈Ψ, Σ〉 such thatΣ ⊆ C1. Then, each repairR ofA = D∩C∗

w.r.t. S satisfiesR ⊆ C∗.

Proof. By Item 1 of Lemma 4.3, forS = ∅, eachR ∈ repS(A) gives rise to a repairR′ = R ∩ C∗ of A
w.r.t. Sa = 〈Ψ, Σa〉. By Item 2 of Lemma 4.3, forS = ∅, R′ in turn gives rise to a repairR′′ of A w.r.t. S
of the formR′′ = R′ ∪ S′ such thatS′ ∩ C∗ = ∅. Since clearlyS′ |= Σs , property (DPE) implies thatS′ is
a repair ofS = ∅ w.r.t. 〈Ψ, Σs〉. Since each constraint inΣs has a nonempty body, it follows by (SIP) that
S′ = ∅. HenceR ∩ C∗ is a repair ofA w.r.t. S. Now if R 6⊆ C∗ would hold, then△(R′′, A) ⊂ △(R, A)
would hold, which by (SIP) impliesR′′ <D R. This is a contradiction. 2

Recall thatC2 are the non-disjunctive constraints, i.e., every constraint has at most one database atom
in the head.

Proposition 4.7 Let D be a database forS = 〈Ψ, Σ〉, whereΣ ⊆ C2. Then (i) every repairR of A =
D ∩ C∗ satisfiesR ⊆ D ∪ C∗, and (ii) for every repairsR,R′ of A, R ∩ (D \ C∗) = R′ ∩ (D \ C∗).

Proof. By the argument in the proof of Proposition 4.6, everyR ∈ rep(A) gives rise to someR′′ ∈ rep(A)
of the formR′′ = (R ∩ C∗) ∪ S′ such thatS′ ∩ C∗ = ∅ andS′ is a repair ofS = ∅ w.r.t. 〈Ψ, Σs〉. Since
each constraint inΣs is non-disjunctive, there is the least (w.r.t.⊆) set of factsF such thatF |= Σs (in
essence,Σs is a Horn theory), andF ⊆ S′ must hold; by (SIP),F = S′. Now if R 6⊆ C∗ ∪D would hold,
then△(R′′, A) ⊂ △(R, A) would hold (note thatF ⊆ R must hold, and thusR′′ ⊆ R), which by (SIP)
meansR′′ <D R. This is a contradiction, and proves (i). Item (ii) holds sinceR ∩ (D \ C∗) = F for each
R ∈ rep(A). 2

The propositions above allows us to exploit Theorem 4.4 in a constructive way for many significant
classes of constraints, for which it implies a bijection between the repairs of adatabaseD, and the repairs
of the affected partA = D ∩ C∗.

Corollary 4.8 Let D be a database forS = 〈Ψ, Σ〉 whereΣ ⊆ Ci, for i ∈ {1, 2}. Then,C∗ is a repair
envelope forD. In fact, there exists a bijectionµ : rep(D)→ rep(D∩C∗), such that for everyR ∈ rep(D),
R = µ(R)∪(D \ C∗).
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Proof. The result forΣ ⊆ C1 (resp.Σ ⊆ C2) follows from Theorem 4.4 by applying Proposition 4.6
(resp. Proposition 4.7). Note that for eachR ∈ rep(D ∩ C∗), whenΣ ⊆ C1, R ∩ C∗ = R, whereas when
Σ ⊆ C2, (R ∩ C∗) ∪ (D \ C∗) = R ∪ (D \ C∗). 2

By this result, the repairs of a databaseD can be computed by avoiding step 3 of the procedure given in
Section 4.1. Note also that by the above corollary and Proposition 4.1 and Corollary 4.5, we can makeC∗

a repair envelope for an arbitrary relational schemaS = 〈Ψ, Σ〉, if we can modifyΣ to constraintsΣ′ from
C1 or C2 while preserving the affected constraints, i.e.,Σa

S(D) = Σa
〈Ψ,Σ′〉(D). Technically, this can be

exploited in different ways, e.g., by dropping constraints, adding ground instances of constraints, rewriting
constraints by modifying the built-in part (in fact, only semantic equivalence of affected ground constraints
is needed), etc.

We also remark thatC∗ may be decreased to a smaller repair envelope, by taking tuple generating
constraints into account. For example, ifp(a) belongs to each repair (e.g., enforced by a constraint),p(a)
can be removed from the repair envelope. If there is another constraintp(x) ⊃ q(x), alsoq(a) can be
removed. Exploring this is left for further study.

4.2.2 ConstraintsC0

Recall that constraints inC0 have only built-in relations in the head. Notably, the repairs of a database with
integrity constraints from this class are computable by focusing on the immediate conflicts in the database,
without the need of computing the conflict closure set, which may be onerousin general. Furthermore,
repairs always do only remove tuples from relations, but never include new tuples. We will next formally
prove these properties, starting with the following proposition.

Proposition 4.9 LetD be a database forS = 〈Ψ, Σ〉, Σ⊆C0, and letA = D ∩ C∗. Then,

1. C ⊆ D;

2. for eachR ∈ rep(A), (i) R⊆A, (ii) △(R, A) ⊆ C, (iii) A\C ⊆R, and (iv)R ∩ C ∈ rep(C);

3. for eachR ∈ rep(C), R ∪ (A \ C) ∈ rep(A).

Proof. 1) By definition,C is the set of facts occurring in any constraintσ ∈ ground(Σ) violated inD.
Since eachσ is of the form

∧l
i=1 Ai(~ci) ⊃

∨n
k=1 φk(~dk), it can be violated only if all the body facts are in

D. That is,C ⊆ D.

2) Let R ∈ rep(A). We first show (i). Assume towards a contradiction thatR 6⊆ A and considerR′ =
R∩A. From the fact thatR |= Σ, R′ ⊆ R, and that eachσ ∈ Σ is of the form

∧l
i=1 Ai(~xi) ⊃

∨n
k=1 φk(~zk),

it follows thatR′ |= Σ, therefore (SIP) would raise a contradiction. We now show (ii). Assume towards
a contradiction that△(R, A) 6⊆ C. SinceR ⊆ A, this implies that there exists somep(~t) ∈ A \ R such
thatp(~t) /∈ C. By minimality of R, p(~t) occurs in the body of at least one constraint inground(Σ) of the
form

∧l
i=1 ai ⊃

∨n
k=1 φk. No such constraint, however, is violated inA Hence,R ∪ {p(~t)} |= Σ, which by

(SIP) implies thatR /∈ rep(A); this is a contradiction. Therefore, (ii) holds. From (i) and (ii), follows that
A \ C ⊆ R; this proves (iii). To show (iv), suppose towards a contradiction thatR ∩ C /∈ rep(C). Then,
it is easy to see thatR ∩ C |= Σ, therefore someR′ ∈ rep(C) must exist such thatR′ <C R. Since all
constraints have only built-ins in their heads,R′ ⊆ C. But then(R\C)∪R′ <A R contradictsR ∈ rep(A).

3) Let R′ ∈ rep(C). Item 2.(ii) for D=C (whereA=C) impliesR′⊆C. SinceR′ |= Σ, we must have
R = (A \ C) ∪ R′ |= Σ; otherwise, supposeR 6|= σ for someσ ∈ ground(Σ). Thenσ must contain a fact
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p(t) from A \ C. Sinceσ is fromC0 and Item 1 impliesR ⊆ D, alsoD 6|= σ. But this meansp(t) ∈ C, a
contradiction. From Item 2 and (DIS) (split byC), we can conclude that noR′′ ∈ rep(A) exists such that
R′′ <A R. Hence,R ∈ rep(A). 2

Note that Proposition 4.9 shows that each repair of the conflict setC just removes tuples fromC (take
D = C in Item 2.(ii)). We are now ready to prove that underC0 constraints, we can useC instead ofC∗ as
a repair envelope, and thus avoid the onerous construction ofC∗. In fact, we prove a more general result.

Theorem 4.10 Let D be a database forS = 〈Ψ, Σ〉 whereΣ ⊆ C0. Then, every set of factsE ⊇ C is a
repair envelope forD. Moreover, there exists a bijectionν : rep(D) → rep(D ∩ E), such that for each
R ∈ rep(D), R = ν(R)∪(D \ E).

Proof. By Corollary 4.8, there is a bijectionµ : rep(D) → rep(A), whereA = D ∩ C∗, such that the
repairs ofD are given byµ(R) ∪ (D \ C∗), for all R ∈ rep(A). Items 1 and 2.(iv) of Proposition 4.9 and
the fact that each repairR of C satisfiesR ⊆ C, imply that all repairs ofA are given by(A \C)∪R, where
R ∈ rep(C). Hence, the mappingν : rep(D) → rep(C) given byν(R) = µ(R) ∩ C is a bijection such
that

R = µ(R) ∪ (D \ C∗)

= ν(R) ∪ (A \ C) ∪ (D \ C∗)

= ν(R) ∪ ((D ∩ C∗) \ C) ∪ (D \ C∗) = ν(R) ∪ (D \ C)

This proves the result forE = C. For generalE ⊇ C, we note thatD′ = D ∩ E andD have the same
conflict set; hence, there exists a bijectionν ′ : rep(D ∩E)→ rep(C) such thatR = ν ′(R) ∪ (D′ \C), for
eachR ∈ rep(D′). This implies a bijectionν ′′ : rep(D)→ rep(D ∩ E) of the given form. 2

Consequently, in this setting we can compute the repairs of a databaseD as follows:
1. computeC,
2. compute the repairsR of C (whereR ⊆ C ⊆ D), and
2. take for each such repairR the union withD \ C.

An example of application of the above procedure has been given in Example 4.1. Notice that because
C ⊆ D, we can computeC efficiently by suitable SQL statements which express constraint violations. The
fact that everyE ⊇ C is a repair envelope gives convenient flexibility to modify the statements in case
(allow more tuples).

5 Query Answering through Localized Repairs

The localization properties discussed in the previous section may be used to optimize consistent query
answering from an inconsistent databaseD. Indeed, based on them, one may conceive an optimization
procedure consisting of the following three steps:

Focusing StepLocalize inconsistency inD, and single out facts that are affected by repair, and facts that
are not, i.e., compute the (weak) repair envelopeE and the affected databaseD ∩ E and the safe
databaseD \ E.

Decomposition StepCompute repairs of the affected database, and obtain from them repairs of D, (by
suitably incorporating the safe database).
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Recombination Step Recombine the repairs ofD for computing the answers.

In situations in which the size of the affected database is much smaller than the size of the databaseD,
computing the repairs of the affected database is significantly faster than thenaive computation, which just
aims at changing tuples “randomly” in the database, and does not in general rely on a focusing strategy.

Moreover, localizing the inconsistency can be carried out easily by evaluating the constraints issued over
the schema (by means of suitable SQL statements).

Focusing and decomposition have been amply discussed in Section 4. We nowaddress the issue of
efficient recombination.

5.1 Recombination Step

Let us now consider the problem of evaluating a queryQ issued over an inconsistent databaseD for S, i.e.,
to computeans(Q, D). Recall that according to the definition in Section 2, a tuple~t belongs toans(Q, D)
if ~t is in the answer toQ on every repair ofD, i.e.,ans(Q, D) = {~t | ~t ∈ Q[R] for eachR ∈ rep(D)} =
⋂

R∈rep(D) Q[R]. The following proposition, which is immediate from the definitions, states how wecan
exploit repair envelopes for localization in query answering.

Proposition 5.1 Let D be a database forS = 〈Ψ, Σ〉. Let E be a set of facts, and letA = D ∩ E and
S = D \ E. Then

ans(Q, D) =
⋂

R∈rep(A)

Q[χ(R) ∪ S], (6)

where (i)χ(R) = R if E is a repair envelope forD, and (ii) χ(R) = R ∩ E if E is a weak repair envelope
for D.

By the results from above, we can always apply (ii) of (6) withE = C∗, and forC1 or C2 constraints apply
always (i) of (6) withE = C∗. Furthermore, forC0, we can apply always (i) of (6) withE = C. Since in
this caseC ⊆ D, we can rewrite (6) toans(Q, D) =

⋂

R∈rep(C) Q[R ∪ S].
In the light of the equations above, query answering can be carried outby “locally” repairing the affected

database, and evaluating the query over each local repair augmented withthe safe portion of the data. While
this approach has the advantage of localizing the inefficient (co-NP) computation on a fragmentA of the
databaseD, its implementation leads to an algorithm for consistent query answering which linearly scales
w.r.t. the number of repairs, but possibly exponentially w.r.t. the size of the affected database. Actually,
this is the best one may asymptotically expect to achieve for general inconsistent databases, unless P= NP,
given that consistent query answering is co-NP-hard.

Hence, it is particularly relevant to assess whether some smarter strategiescan be conceived for spe-
cial classes of queries and constraints, in order to have an algorithm thatboth implements localized repair
computation and linearly scales w.r.t. the size of the database.

5.2 Repair Factorization

In this section, we present a technique that factorizes repairs into independent components (proofs of theo-
rems and propositions are given in Appendix B). The basic idea is to partitionthe affected partA = D ∩E
of the databaseD w.r.t. a repair envelopeE into disjoint subpartsA1, . . . , Am, such that the repairs ofA
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are obtained by combining the repairs ofA1, . . . ,Am in all possible ways. Given a repair envelopeE for D
andS, a partitioningE1, . . . , Em of E is afactorizationof E for D andS, if

rep(D) = {(D \ E) ∪ R1 ∪ · · · ∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m}. (7)

Towards sufficient conditions for factorization, we define a repair-compliant partitioning as follows.

Definition 5.1 Let E be a repair envelope for a databaseD for a schemaS = 〈Ψ, Σ〉. A partitioning
E1, . . . , Em of E is repair-compliant, if (1) it is constraint-bounded, i.e., constraint-bounded facts fromE
belong to the same componentEi, and(2) for all R ∈ rep(D ∩ E) andRi ∈ rep(D ∩ Ei), 1 ≤ i ≤ m,
R \ E = Ri \ Ei.

By means of a repair-compliant partitioning, we can factorize the repair ofA into the repair of the
(mutually disjoint) partsAi = A ∩ Ei = D ∩ Ei of A, for i = 1, . . . , m. The repairs for eachAi are
confined toF ∪ Ei for a fixed set of factsF , and by the abstract properties (SIP), (DPE), and (DIS) of the
preference ordering, they can be easily combined with the repairs for allother partsAj , as shown next.

Theorem 5.2 (Factorization)Let D be a database forS = 〈Ψ, Σ〉, and letE be a repair envelope forD.
Then, every repair-compliant partitioningE1, . . . , Em of E is a factorization ofE for D andS.

Note that Condition (2) of Definition 5.1 is trivially satisfied forC0 constraints. Furthermore, it is
immaterial forC1 constraints under the standard envelopeE = C∗.

Proposition 5.3 Let D be a database forS = 〈Ψ, Σ〉, and letE be a repair envelope forD. If either (1)
Σ ⊆ C1 and E = C∗ or (2) Σ ⊆ C0, then every constraint-bounded partitioningE1, . . . , Em of E is
repair-compliant.

Thus, for the practically important classes of constraintsC1 andC0, repair-compliant partitionings, and
thus factorizations, can be obtained by a constraint-bounded partitioning of C∗, respectively by a constraint-
bounded partitioning of any repair envelope. Consequently, forC0 and the canonical envelopeE = C,
Equation (7) can be rewritten to:

rep(D) = {(D \ C) ∪ R1 ∪ · · · ∪ Rm | Ri ∈ rep(Ci), 1 ≤ i ≤ m}. (8)

Example 5.1 Let S consist of the relationp(x, y, z) and the functional dependencyf : p(x, y, z) ∧
p(x, y′, z′) ⊃ z = z′, and consider the databaseD = {p(ai, bj , ck) | 1 ≤ i ≤ m ∧ 1 ≤ j, k ≤ ℓ}. The
conflict setC consists of all tuples inD, since each pair of facts of the formp(ai, bj , ck) andp(ai, bj′ , ck′)
with k 6= k′ witnesses a violation off . The partitioningC1, . . . , Cm of C, whereCi = {p(ai, b, c) ∈ C},
1 ≤ i ≤ m, is constraint-bounded and thus, by Proposition 5.3, repair-compliant. Every Ci hasℓ repairs,
while D hasℓm repairs in total. In particular, the repairs ofD are of the formR1 ∪ · · · ∪ Rm, where each
Ri is a repair forCi, according to Equation (8). 2

We finally remark that under particular preference relations, Condition (2) for repair-compliance (see
Definition 5.1) might be relaxed. For instance, in case of the prototypical preorder≤D, i.e., set inclusion
w.r.t. symmetric difference, it is sufficient that the repairs ofD ∩Ei coincide outsideEi on a fixed part: for
all 1 ≤ i, j ≤ m, Ri ∈ rep(D ∩ Ei) andRj ∈ rep(D ∩ Ej) impliesRi \ Ei = Rj \ Ej .

Furthermore, we note that we can compute efficiently repair-compliant partitionings of arbitrary repair
envelopes forC0 constraints and of the standard envelopeE = C∗ for C1 constraints, for instance, using
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techniques for computing the connected components of a graph. Note that eachEi is a union of connected
components of the graph with nodes inE and edges between each pair of facts which are constraint-bounded.
In this respect, we point out that techniques exploiting graph (and hypergraph) representations of conflicts
in data have also been introduced and used in [2, 16].

5.2.1 Recombination of Independent Factors

We are now in the position to show how the notion of factorization can be used tooptimize query answering
from inconsistent databases. To this end, we proceed in two directions:

• First, for a user queryQ, we investigate when some of the components of a factorizationE1, . . . , Em,
although they are inconsistent, need not be repaired to answerQ. Intuitively, this happens when all
the repairs of a given componentEi are indistinguishable as far as answeringQ is concerned.

• Second, we investigate how to improve on the naive exploitation of equation (7), by discussing sce-
narios where the answer toQ can be obtained by independently processing the different components,
rather than combining their repairs in all the possible ways.

We focus here on non-recursive Datalog queriesQ = 〈q,P〉. Since they can be effectively unfolded to a
union of conjunctive queries with a single head predicateq, we assume that queries are already in this form,
i.e.,P = {ρ1, . . . , ρn}, wherehead(ρj) = q(~tj), and each predicate inbody(ρj), 1 ≤ j ≤ n, is from the
schema. We denote byn(Q) = n the number of rules inP and bya(Q) the maximal number of variables
appearing in anyρj .

Example 5.2 Consider a schema with relationsr(A, B) ands(B, C) which have the keysA andB, re-
spectively. LetD = {r(a1, b1), r(a1, b2), r(a2, b1), r(a2, b3), r(a3, b1), s(b1, c1), s(b1, c2), s(b3, c3)}. Its
conflict set isC = D \ {r(a3, b1), s(b3, c3)}, which is a repair envelope. Note that the safe part ofD is
S = {r(a3, b1), s(b3, c3)}. The partitioningCr1

= {r(a1, b1), r(a1, b2)}, Cr2
= {r(a2, b1), r(a2, b3)} and

Cs = {s(b1, c1), s(b1, c2)} of C is repair-compliant, and thus by Theorem 5.2 is a factorization. For the
queryQ = 〈q, {q(x)← r(x, y), s(y, z).}〉, we haven(Q) = 1 anda(Q) = 3. 2

We now formalize scenarios where inconsistencies in some components can be tolerated.

Definition 5.2 Let E1 . . . , Em ⊆ E be a factorization of a repair envelopeE for a databaseD, and letQ
be a non-recursive (unfolded) Datalog query as above. Letc be a new constant symbol not belonging to
the universal database domainU . For each componentEi, we defineQi = 〈qi,Pi〉, Pi = {qi(j, ~t′j) ←
atoms(Ei, j) | 1≤ j≤n(Q)}, whereatoms(Ei, j) is the set of atomsp(~x) ∈ body(ρj) such thatEi

contains a fact overp, and~t′j is obtained as follows: substitutec in ~tj for each variable not appearing in
atoms(Ei, j); append all variables fromatoms(Ei, j) occurring inbody(ρj) \ atoms(Ei, j); and pad the
resulting list to lengtha(Q), usingc. Finally, let ans(Qi, j) = { {(j, ~s) ∈ Qi[(D \ E) ∪ R]} | R ∈
rep(D ∩ Ei)}. 2

Example 5.3 In Example 5.2, we haveatoms(Cr1
, 1)= atoms(Cr2

, 1)= {r(x, y)} and atoms(Cs, 1)
={s(y, z)}. We thus haveQr1

= 〈qr1
, {qr1

(1, x, y, c) ← r(x, y)}〉 andQr2
= 〈qr2

, {qr2
(1, x, y, c) ←

r(x, y)}〉, while Qs = 〈qs, {qs(1, c, y, c) ← s(y, z)}〉. Cr1
has the two repairs{r(a1, b1)} and{r(a1, b2)},

and ans(Qr1
, 1) = {{(1, a1, b1, c)}, {(1, a1, b2, c)}}. Similarly, Cr2

has two repairs,{r(a2, b1)} and
{r(a2, b3)}, and ans(Qr2

, 1) = {{(1, a2, b1, c)}, {(1, a2, b3, c)}}. Finally, Cs has the two repairs
{s(b1, c1)} and{s(b1, c2)}, butans(Qs, 1) is the singleton{{(1, c, b1, c)}}. 2
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Notice that a componentEi such that|ans(Qi, j)| = 1 for 1 ≤ j ≤ n(Q), while possibly inconsistent,
does not need to be actually repaired as far as answeringQ is concerned. In the following, every such
componentEi is calledsingular.

Guided by this observation, given a factorizationE1, . . . , Em of a repair envelopeE for D where
E1, . . . , Eℓ are the singular components, we callSQ = (D \E)∪R1∪· · ·∪Rℓ aquery-safe partof D w.r.t.
Q, if eachRi, 1≤ i≤ ℓ, is an arbitrary repair ofD∩Ei. In Example 5.2,Cs is the only singular component,
andR = {s(b1, c2)} is a repair ofCs = D∩Cs; hence,SQ = {r(a3, b1), s(b3, c3), s(b1, c1), s(b1, c2)} is a
query-safe part ofD.

Proposition 5.4 LetE1, . . . , Em be a factorization of a repair envelopeE for D, and letSQ = (D \ E) ∪
R1 ∪ · · · ∪Rℓ be aquery-safe partof D w.r.t. Q. Then,

ans(Q, D) =
⋂

Rℓ+1∈rep(D∩Eℓ+1)

· · ·
⋂

Rm∈rep(D∩Em)

Q[SQ ∪ Rℓ+1 · · · ∪ Rm]. (9)

If all componentsEi are singular, query answering can be carried out by considering an arbitrary query-
safe part ofD. In this ideal case, the cost for query answering amounts to checking that |ans(Qi, j)| = 1
for all 1 ≤ i ≤ m and1 ≤ j ≤ n(Q), which can be efficiently carried out by processing the components
independently of each other.

Interestingly, even if non-singular components are present, “parallelizing” query answering without a
need for recombination may be possible.

Definition 5.3 A factorizationE1, . . . , Em of a repair envelopeE for D is decomposablew.r.t. queryQ, if
its non-singular componentsEℓ, . . . , Em satisfy

(1) atoms(Ei, k) = atoms(Ej , k), for everyℓ ≤ i, j ≤ m and1 ≤ k ≤ n(Q); and,

(2) |atoms(Ei, k)| = 1, for everyℓ ≤ i ≤ m and1 ≤ k ≤ n(Q).

(3) Ri \ Ei = Rj \ Ej , for everyRi ∈ rep(D ∩ Ei), Rj ∈ rep(D ∩ Ej), ℓ ≤ i, j ≤ m. 2

Proposition 5.5 Let E1, . . . , Em be a factorization of a repair envelopeE for D which isdecomposable
w.r.t. queryQ having the non-singular componentsEℓ, . . . , Em. Then

ans(Q, D) =

m
⋃

i=ℓ

(

⋂

Ri∈rep(D∩Ei)

Q[SQ ∪ Ri]
)

(10)

Example 5.4 In our example, the non-singular components areCr1
and Cr2

. Sinceatoms(Cr1
, 1) =

atoms(Cr2
, 1) = {r(x, y)} (n(Q) = 1), the factorizationCr1

, Cr2
, Cs is decomposable w.r.t.Q. By

Proposition 5.5, the queryQ = 〈q, {q(x) ← r(x, y), s(y, z).}〉 can be evaluated independently overCr1

andCr2
, taking the query-safe partSQ = {r(a3, b1), s(b3, c3), s(b1, c1), s(b1, c2)} into account. Specif-

ically, for Cr1
, we must computeQ[SQ ∪ {r(a1, b1)}] ∩ Q[SQ ∪ {r(a1, b2)}], which yields{(a3)}. For

Cr2
, we must computeQ[SQ ∪ {r(a2, b1)}] ∩ Q[SQ ∪ {r(a2, b3)}], which yields{(a3), (a2)}. Therefore,

ans(Q, D) = {(a3), (a2)}. As can be checked, this is the correct result. 2

In closing this section, we note that by virtue of Propositions 5.4 and 5.5 one can efficiently answer
a number of queries which do not fall within any of the tractable classes proposed in the literature so far
[18, 17, 26, 30]. Examples of such queries and a discussion on the performances of this strategy are given
in Section 7.

20



6 Logic Programming for Consistent Query Answering

According to several proposals in the literature, consistent answers over inconsistent databases can be com-
puted by encoding the constraints in the schema by means of a Datalog program using unstratified negation
or disjunction, in such a way that the stable models of this program map to the repairs of the database. A
framework that abstracts from several logic programming formalizations in the literature (such as [29, 4, 6])
is introduced next.2

Definition 6.1 Let Q = 〈q,P〉 be a non-recursive Datalog¬ query overS = 〈Ψ, Σ〉. A logic specification
for queryingS with Q is a (safe) Datalog∨,¬ programΠS(Q) = ΠΣ ∪ΠQ such that, for a givenD ∈ D(S),

1. repS(D) ⇋ SM(ΠΣ ∪D), and

2. ans(Q, D) = Q′[D], whereQ′= 〈q, ΠS(Q)〉, i.e., ans(Q, D) = {t | q(t)∈M for eachM ∈
SM((ΠΣ ∪ΠQ) ∪D)}, whereΠQ is a non-recursive safe Datalog¬ program,

and⇋ denotes a polynomial-time computable correspondence between two sets. 2

In the above definition,ΠΣ is that portion ofΠS(Q) that encodes the integrity constraints inΣ, whereas
ΠQ represents an encoding of the logic programP in the user queryQ (examples of instantiations of the
above logic framework are given in Appendix D).

Encoding repair computation by means of logic programs has some attractive features. An important
one is that Datalog∨,¬ programs serve asexecutable logical specifications of repair, and thus provide a
language for expressing repair policies in a fully declarative manner rather than in a procedural way. In fact,
extensions to the Datalog∨,¬ language that allow, for instance, to handle priorities and weight constraints
[36, 40], provide a useful set of constructs for expressing also more involved criteria that repairs should
satisfy, which possibly have to be customized to a particular application scenario (as in [4]).

However, with current (yet still improving) implementations of stable model engines, such as DLV [36]
or Smodels [40], query evaluation over large data sets quickly becomes infeasible because of lacking scala-
bility. The source of complexity in evaluating the programΠS(Q) lies in the conflict resolution moduleΠΣ.
Indeed, whileΠQ, which is in general a non-recursive Datalog¬ program, can be evaluated in polynomial
time with respect to underlying databases (data complexity) [19],ΠΣ is in general a Datalog∨,¬ program
[29], whose evaluation data complexity is at the second level of the polynomial hierarchy [19].

6.1 General Architecture for Repair Compilation

The localization properties discussed in Section 4 and Section 5 may be used tooptimize consistent query
answering from inconsistent databases. Indeed, computing the repairsfor D may be done in practice by
evaluating the programΠΣ only over the affected part of the databaseD, rather than on the wholeD as
obtained by a straight evaluation of the programΠS(Q) overD (Item 1 in Definition 6.1). We thus propose
an approach to optimize query answering that implements the strategies in Equation (6) and Equation (10).
In practice, we just need an architecture in which a stable model engine used to retrieve one repair at time
is interfaced and with a DBMS that evaluates the query over the repair augmented with the safe part ofD.
Figure 3 shows a concrete architecture, whose components have the following functionalities:

2Other logic formalizations proposed in the data integration setting [33, 8, 14,11] also fit in our framework, provided that the
retrieved global databaseis computed [34]. Notice also that other logic-based approaches to data integration, based on abductive
logic programming [5] and ID-logic [39], do not fit this framework.
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Figure 3: System Architecture.

• Pruner: It takes the user queryQ and the schemaS, and produces an equivalent specification (w.r.t.
Q), stripping off relations and constraints irrelevant for answeringQ. This is a preprocessing step, which is
not discussed in detail here.

• Logic Translator: It takes the specification ofS relevant forQ returned by the Pruner, and produces
the logic programΠS(Q) = ΠΣ ∪ ΠQ, according to some encoding proposed in the literature. In our tests,
we used the mapping in [14, 30].

• Constraint Violations Isolator:It is responsible of processing the programΠΣ to produce a set of SQL
views isolating the safe and the affected parts of the database at hand. When strategies in Section 5.2 are to
be applied, it is also responsible for computing a factorization.

• Stable Models Engine:It takes as input the affected database and computes the repairs using thepro-
gramΠΣ. In our implementation, we used the DLV system [36].

• Engine Wrapper:It wraps the output of the Stable Models Engine, by asking the engine for one repair
at time. In our implementation, this is done with the JAVA Wrapper module available for DLV3. In the case
the constraints are not in the classC1, it is also responsible of filtering from any repair the facts that are not
in the envelopeE — see condition (ii) of Proposition 5.1.

• DB Interface: It does the interfacing between the Stable Models Engine and the DBMS, in which it
stores both the safe part of the database and the repair computed by the Stable Model Engine. After that a
new repair is stored, it notifies the query executor module.

• Query Reformulator:It takes the user query and transforms it in a suitable set of SQL statements that
can be executed directly over the DBMS.

• Query Executor:It is responsible for executing the reformulated query. Specifically, it implements the
strategies described in Equation (6) (for its adaptations to the classesC1 andC0) and Equation (10), using

3http://www.mat.unical.it/wrapper/index.html
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Figure 4: The database of our running example after marking.

standard envelopes. As for the strategy in Equation (6), the module storesin the DBMS the result of the
execution in a table. When the first repair of the affected part (intersected with E), sayR1, is processed, the
table is initialized with the result of the query overR1 plus the safe partS. Then, for each other repairRi,
the table is updated by filtering those tuples that do not occur in the answers of the query overRi plus the
safe part. After the last repair is computed, the table is returned to the user.A similar strategy is applied
for Equation (10), with the major difference that now the computation of a decomposable partitioning is
needed.

Note that in the case whereD is consistent, query processing resorts to standard query evaluation over
the DBMS, with some overhead for checking constraint violations by theConstraint Violations Isolator. In
fact, in this case, theQuery Executormodule evaluates the query directly overS = D, since no repair is
produced by theStable Models Engine.

6.2 Grouped Repair Computation

We next consider the idea of grouping the repairs computed by theStable Models Enginein a way such that
a single query may evaluate more than one repair at time. This can be done using a marking strategy.

Let R1, ...,Rn be the repairs of the affected part (intersected, if needed, with the envelopeE) which we
want to simultaneously process on the DBMS, indexed using the order in which theStable Models Engine
computes them. In each relations, we add an auxiliary attributemark, leading to a new relationsm. The
values formarkare strings of bits0, 1. To each facts(t) ∈ D, we associate a markb =′ b1 . . . b′n such that,
for every1 ≤ i ≤ n, bi = 1 if s(t) belongs toRi, andbi = 0 otherwise. The marked tuplet, b is stored
in the corresponding relationsm. The extensions of allsm constitute themarkeddatabase, denoted byDm.
Note that the facts in the safe database can be marked without preprocessing: their mark is′11 . . . 1′, since
they belong to every repairRi. In our running example, the marked database derived from the repairsin
Figure 1 is shown in Figure 4. In a first approximation, the marked databasemay be considered as having
its tables altered with an extra column which stores the mark.

A non-recursive Datalog¬ queryQ = 〈q,P〉 is reformulated into an SQL query overDm by first nor-
malizing the rules inP and then converting each ruler into a separate SQL querySQLr. Informally,SQLr

selects tuples for the head predicate ofr, thereby respecting not only the join conditions given by the body of
r, but also the marks of the joined tuples. Marks corresponding to negativeliterals are inverted and missing
tuples (which do not belong to any repair) are considered as marked by′0 . . . 0′. The details are given in
Appendix C.

Eventually, all rules,r1, . . . , rℓ, defining the same predicateh of arity n are collected into a view by the
SQL statementSQLh:

CREATE VIEW hm(a1, . . . , an,mark) AS

SELECT a1, . . . , an, SUMBIT(mark)
FROM (SQLr1

UNION . . . UNION SQLrℓ
)

GROUP BY a1, . . . an,
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whereSUMBIT denotes an aggregate function that, givenm marks (i.e., bit strings), returns the mark
given by bitwise OR. By means of such a view for the query predicateq, denotedqm, the answers to the
queryQ are obtained through the statementSQLQ:

SELECT a1, . . . an FROM qm WHERE mark =′ 1 . . . 1′.

It computes the query answers by selecting the facts which evaluate to true inall repairs.

Example 6.1 The query in our running query has two rules:r1 : q(x) ← player(x, y, z) andr2 : q(x) ←
team(v, w, x). Their normalized versions are:

r′1 : q(y0,1)← player(y1,1, y1,2, y1,3), y0,1 = y1,1;
r′2 : q(y0,1)← team(y1,1, y1,2, y1,3), y0,1 = y1,3.

Thus, they translate into corresponding SQL statementsSQLr1
andSQLr2

:

SELECT playerm .Pcode AS a1 ,
playerm .mark AS mark ,

FROM playerm ;

SELECT teamm .Tleader AS a1 ,
teamm .mark AS mark ,

FROM teamm ;

Finally, a view for the query predicateq and the final querySQLQ are expressed as:

CREATE VIEW qm(a1 , mark) AS

SELECT a1 , SUMBIT(mark)
FROM (SQLr1

UNION SQLr2
)

GROUP BY a1 ;

SELECT a1FROM qm WHERE mark =′ 11′;

SQLQ yields onDm the tuples(8), (9), and(10); they are the consistent answers toQ. 2

The querySQLQ has the following property (the proof is given in the Appendix C).

Proposition 6.1 Let D be a database forS = 〈Ψ, Σ〉, let Q be a non-recursive Datalog¬ query over it,
and letR1, ...,Rn be databases such thatRi = R′

i ∩ E, whereE is a weak repair envelope forD andR′
i

is a repair forA = D ∩ E. Then,SQLQ computes onDm the set of tuples
⋂n

i=1{t | t ∈ Q[Ri ∪ S]}, for
S = D \ E.

Note that whenR′
1, ...,R

′
n are all repairs forA, then the tuples computed bySQLQ are the consistent

answer toQ w.r.t. D — see, again, Equation (6).
A limitation to the scalability of the marking strategy is that all safe tuples must be marked with ′11 . . . 1′,

since they belong to each repair. However, we can avoid this, and evaluate a reformulated query on a
database instance in which only affected tuples have been marked. For details on scaling the technique this
way, we also refer to the Appendix. Further optimizations concerning the marking strategy may be carried
out, in particular DBMS dependent techniques can be deployed, but arebeyond the scope of this paper.

7 Experimental Results

In this section, we present experimental results for evaluating the effectiveness of our approach and, specif-
ically, the benefits of the localization techniques discussed in the paper.
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7.1 Benchmark Databases and Compared Methods

Hippo [17, 18] and ConQuer [26, 27] are two most noticeable prototype systems available in the literature
for consistent query answering from inconsistent databases. Thesesystems focus on specific classes of con-
straints and queries over which consistent answers can be efficiently computed. Indeed, Hippo is able to
deal with queries definable in relational algebra without projection under denial constraints, and encodes
inconsistencies by a conflict hypergraph built from constraint violations[2, 16]. Instead, ConQuer consid-
ers database schemas under key dependencies, and deals with user queries from a subclass of conjunctive
queries, possibly enriched with aggregates. On this class, ConQuer is shown to be very efficient for pro-
viding consistent answers over large databases with many inconsistent tuples (up to the 50% of the whole
database).

Since these systems are tailored to efficiently manage specific classes of queries and constraints, their
performances have been tested on some ad-hoc created benchmark databases. Specifically, [26] mainly
generated syntectic data for the TCP-H specifications over a schema containing primary keys only and used
queries with aggregate expressions, while [17] considered project-free queries over tables having attributes
x, y, z correlated by the functional dependencyp(x, y, z) ∧ p(x, y′, z′) ⊃ z = z′.

In the same way as Hippo and ConQuer are not directly comparable with eachother, thereby having
required the definition of specific benchmarks problems and data, some novel scenario has to be proposed to
assess the effectiveness of our localization approach. Indeed, ourtechniques are designed for more general
settings than those addressed by Hippo and ConQuer, and therefore they can be used in scenarios that go
beyond the scope of such systems. For instance, neither Hippo nor ConQuer can answer queries involving
projections, when an integrity constraint which is not a key (such as a general functional dependency or an
exclusion dependency) is issued on the schema. But, these constraints often occur in database design; in fact,
exclusion dependencies are typical for database schemes stemming from ER-models or other conceptual
data modeling languages, and are widely used in applications in which the schema is given in terms of an
ontology.

On the other hand, if we focus on the class of queries for which Hippo andConQuer have been re-
spectively designed, it will come as no surprise that our approach paysin efficiency for its generality and
expressiveness. And, in fact, we envisage an integrated architecturethat switches to these more specialized
and efficient systems whenever the query and the constraints fall in one of the classes they are able to deal
with.

Therefore, to test our more general framework as well as the factorization techniques discussed in Sec-
tion 5, we proceed as follows:

• We first present a global picture of our approach by considering results for our running example (on
football teams).

• We then focus on a test suite over the database schemaS2
f used in [17], which contains two relations of

the formri(xi, yi, zi), with i = 1, 2, and the functional dependencyri(x, y, z)∧ri(x, y′, z′) ⊃ z = z′,
but we consider queries that involve projections, so that the system Hippois not applicable. Also, we
consider the databaseSe, which contains a predicate of the formp(x, y) and a predicate of the form
q(v, w), with an exclusion dependency between attributesx andv.

• We also discuss the impact of the number of atoms involved in the query on the performances of the
localization approach, by considering the schemaSN

f , obtained by generalizingS2
f , to an increasingly

large number of predicates.
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Figure 5: Football Team. (a) Execution time in DLV system w.r.t. size of the affected part. (b) Comparison
with the optimization method.

For the schemas above, we generated some random data according to the ideas, described in [17, 26], of
tuning the size of the safe part and the number of conflicts.

All experiments have been carried out on a 1.6GHz Pentium IV with 512MB memory, by assessing the
time needed for query answering when the DLV system computes repairs ofthe affected part only, plus
the time required for the recombination of the results in the DBMS PostgreSQL. In the experiments, the
approach proposed in the present paper is compared with the approachin which DLV is used to evaluate
the whole logic specification for querying the inconsistent databases. In both cases, the logic programming
encoding we used is inspired by [14, 30].

7.2 The Football Teams Example

We next present an overview of the performances of our approach and, specifically, its scaling w.r.t. the
size of the safe database, by considering a simple scenario. For our running example, we built a synthetic
data setDFT , such that tuples incoach andteam satisfy the key constraints issued on these relations, while
tuples inplayer violate the corresponding key constraint. Each violation consists of two facts that coincide
on Pcode but differ on eitherPname or Pteam; note that these facts constitute the affected part ofDFT .
For our experiments, we consider the queryQ = 〈q,P〉 whereP = {q(x) ← player(x, y, z); q(x) ←
team(v, w, x)}, and we encode our problem into a Datalog¬ programΠS0

(Q) in the line of [14, 30] (the
encoding used is the one provide in Appendix D.1, in which we get rid off theencoding for the mapping).
We first measure the execution time of the programΠS0

(Q) in DLV depending on the size of the affected
part, while the size of the safe part is fixed to the values(i) 0, (ii) 4000, and(iii) 8000, respectively. We stress
that values for the execution time of the DLV system refer to query answering with non-ground queries.

The results for this experiment, reported in Figure 5.(a), show that the DLVsystem scales well w.r.t.
the size of the affected part. Still the big size of the safe part appears to bethe most limiting factor for
an efficient implementation. Indeed, only 8000 facts (in absence of conflict) would require more than 35
second for consistent query answering.
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Figure 6: Query answering overS2
f . (a) Optimization method w.r.t. numbern of grouped repairs, for a fixed

number of conflicts. (b) Optimization method w.r.t. the size of the affected part, for n = 29.

The performance degradation under varying size database is further stressed in Figure 5.(b), which
shows a comparison (in log-scale) between consistent query answeringusing a single DLV program and
the optimization approach proposed in this paper. As for the optimization approach, values on execution
time include the cost of computing repairs of the affected database only, plusmarking and evaluating the
associated SQL query over marked relations. Specifically, we considered 10 violations and a marking string
of 210 bits, so that issuing one query over the database is sufficient to recombinethe repairs of the affected
part with the safe part. Interestingly, the growth of the running time of our optimization method under a
varying database size is negligible.

7.3 Scalability Assessment

In a first series of experiments, we assessed the relevance of the strategy for grouping repair computation
by focusing on the databaseS2

f . Indeed, so far, we have assumed that the marking string suffices for storing
all repairs for the affected part and, therefore, the DBMS has been queried just once for recombining the
results of the localized repairs with the safe part only. But, the reader may at this point wonder whether this
approach is more efficient than processing each repair sequentially (one at a time).

Figure 6.(a) answers the above question positively. It reports the time needed for answering the query
Qf = 〈qf ,Pf 〉 wherePf = {qf (y1) ← r1(x, y1, z1), r2(x, y2, z2)} w.r.t. the numbern of repairs that are
grouped and processed simultaneously on the DBMS. Specifically, we fixed 10 conflicts in the data (each
involving two inconsistent tuples). Hence, forn = 1, we sequentially process each repair, while forn = 210,
all the repairs are combined in the DBMS at the same time. The advantage of grouping repairs is evident,
specifically by considering the scaling of the curves for different sizesof the safe part.

A second set of experiments has been devoted to assess the scalability w.r.t.the number of conflicts.
Thus, we reconsidered the above scenario, but we augmented the number of conflicts up to 100, and we
fixed the marking string to29 bits. The results are shown in Figure 6.(b). We notice the decent scaling w.r.t.
the size of the safe part and that, as expected, the time needed for answering a query linearly depends on the
total number of repairs. Note that, since this number is exponential in the number of constraint violation,
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Figure 7: Factorization strategy. Answering (a)Qf overS2
f w.r.t. the size of the affected part (b)Q′

f over
S2

f .

the resulting curve may be in some scenarios exponential in the size of the affected part. Yet, this is the best
one expect to achieve for general inconsistent databases for which the consistent query answering problem
is known to be co-NP-hard.

In fact, it is interesting to assess whether some nicer scaling can be obtainedby applying the factorization
strategy discussed in Section 6.2. In this respect, we notice that the queryQf above and the constraints over
S2

f are such that our factorization strategy can be applied. Indeed, the setting we are considering is basically
the one described in Example 5.1, where each component contains only those facts witnessing a violation of
the functional dependency over each of the two relationsr1 andr2. Specifically, in our experiments, we fixed
the structure of each component to contain 1000 tuples and 1000 repairs (any pair of these tuples witnesses
a violation of the dependency), and we generated some syntectic data for increasingly large number of
independent components. The parametern, bounding the number of repairs simultaneously processed, is
fixed to210.

The results obtained by applying the recombination strategy in equation 10 areshown in Figure 7.(a).
Given the ability of independently processing the components, the scaling is now linear in the number of
components and, hence, in the size of the whole affected part. In fact, query answering is feasible for a
much larger number of constraint violations (results are reported up to2001000 repairs).

A similar experiment has been repeated for the queryQ′
f = 〈q′f ,P ′

f 〉 whereP ′
f = {q′f (y1) ←

r1(x, y1, z1)}. Figure 7.(b) shows thatQ′
f has half the answering time ofQf , given that answeringQ′

f

does not need to resolve conflicts in the relationr2.
As a further example to test the factorization technique, we considered the databaseSe, which contains

a predicate of the formp(x, y) and a predicate of the formq(v, w), with a constraint imposing that attributes
x andv are disjoint (exclusion dependency). Over it, we evaluated the queryQe = 〈qe,Pe〉 wherePe =
{qe(y) ← p(x, y), q(x, w), qe(w) ← p(x, y), q(x, w)}. Notice that each component in a factorization
contains tuples of the formp(a, y) andq(a, w) witnessing the violation of the exclusion dependency between
p andq. Moreover, repairing each component always yields two repairs (oneselecting tuples overp and the
other selecting tuples overq). Figure 8.(a) reports timing for consistent query answering, where thesafe part
consists of 10000 tuples.
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Figure 8: (a) Factorization strategy overSe. (b) Query answering overSN
f , N > 2.

Finally, we also considered the databaseSN
f and the queryQ = 〈q,P〉 whereP = {q(y1) ←

r1(x, y1, z1), r2(x, y2, z2), ..., rN (x, yN , zN )}, for 10 constraint violations per relation and210 repairs si-
multaneously processed. In this scenario, we performed some experimentsto assess the dependence of
query answering on the number of atomsN in the query. The results are reported in Figure 8, which shows
an exponential dependency.

8 Discussion and Conclusion

For optimizing logic-based query answering from inconsistent databases, we have presented a repair local-
ization approach. In this approach, repairs are conceptually confinedto a repair envelope, which intuitively
comprises the part of the database affected by inconsistency, and then recombined with the unaffected (safe)
part before determining the query result. We have investigated this approach in a generic framework ac-
commodating different classes of integrity constraints (including denial constraints [17]), and preference
orderings for repairs from the literature (see Section 3.1). We then havediscussed how this approach can be
fruitfully utilized for query answering using logic programming specifications, where a logic programming
engine and a DBMS are combined, such that tremendous performance gains are achieved.

While motivated by logic programming specifications, our localization results arenot bound to such a
setting and are, in fact, applicable to any realization of consistent query answering. Furthermore, the generic
form of preferences, constraints, and repair envelopes allows to instantiate the results to many different
concrete settings in practice.

The work presented here can be extended in different directions. As for localization and query answer-
ing, our results may be extended to repair semantics based on preferenceorderings violating the properties
in Section 3.1. For example, Chomicki and Marcinkowski [16] consider repairs in which a smallest (in
terms of inclusion) set of tuples is deleted from the database but no tuples are added. For such repairs,
Proposition 4.2, Lemma 4.3, and Theorem 4.4 can be established similarly.

Furthermore, answering a negation-free queryQ on all repairs is equivalent to answering it only on the
repairs which are minimal under set-inclusion, i.e., do not contain any other repair properly. If an ordering
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≤D fails to satisfy (SIP), (DPE), and (DIS), we may characterize the set-inclusion minimal repairs w.r.t.
≤D as repairs under an ordering≤′

D satisfying these properties. An example is the orderingR1 ⊑D R2

iff R1 ∩D ⊇ R2 ∩ D [13, 14], which violates (SIP). We can use here the orderingR1 ⊑
′
D R2 iff R1 ⊑D

R2 ∧ (R1 ∩D = R2 ∩D ⇒ R1\D ⊆ R2\D) instead.
Other approaches considered consistent query answering under theperspective of modifying values in

the database rather than entire tuples [43]. Due to the different semantics considered in these works, such
repairs are not immediately captured by our framework. A study of respective extensions is left for future
work.

Another extension of the results here is from a single database to a data integration systemI =
〈G,S,M〉, whereG is the global schema,S is the schema of the various sources, andM is the map-
ping establishing the relationship betweenG andS [34]. As briefly discussed in Appendix D.1 and more
in detail in [21], the results developed here can be readily adapted for a Global-As-View (GAV) setting
in whichM is given by stratified Datalog queries, and for constraints on the global schema falling in the
classes considered in this paper. They can be further extended to otherGAV settings, e.g., as in [33, 14], and
certain Local-As-View (LAV) settings, e.g. as in [8, 11].

In fact, most of the research reported here has been carried out withinthe EU project INFOMIX on
advanced data integration for expressive schemas using logic programming. However, the INFOMIX system
is not the implementation of all results in this paper. For more information about theproject, see [35].
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A Proofs for Section 3

Proposition 3.2 LetD be a database forS = 〈Ψ, Σ〉, where all constraints inΣ are safe. Suppose that<D

satisfies (SIP). Then, every repairR ∈ rep(D) involves only constants fromadom(D,S), and some repair
exists ifS is consistent.

Proof. Let R be an arbitrary database ofS consistent withΣ. Let R′ result fromR by removing every
fact containing some constantc /∈ adom(D,S). We show thatR′ is a repair. We first show thatR′ |= Σ.
Towards a contradiction, assume thatR′ 6|= Σ. Hence, there exists a ground instanceσg of some constraint
σ ∈ Σ of form A1(~c1) ∧ · · · ∧Al(~cl) ⊃ B1(~d1) ∨ · · · ∨Bm(~dm) ∨ φ1(~e1) ∨ · · · ∨ φn(~en) which is violated
by R′, i.e., (i) A1(~c1), . . . , Al(~cl) ∈ R′, (ii) B1(~d1), . . . , Bm(~dm) /∈ R′, and (iii) φ1(~e1) ∨ · · · ∨ φn(~en)
is false. SinceR |= σg, by construction ofR′ we haveBj(~dj) ∈ R \ R′ for somej ∈ {1, . . . , m} and
thus ~dj contains some constantc /∈ adom(D,S). It follows that some variable occurring in the head ofσ
does not occur in the body ofσ; that is,σ is not safe, which is a contradiction. SinceR andR′ differ only
for facts outsideD, we have thatD \ R = D \ R′, and sinceR′ ⊂ R, we have thatR′ \ D ⊂ R \ D.
Therefore,△(R′, D) ⊂ △(R, D), and thus by (SIP)R′ <D R. The<D-minimality of repairs implies that
each database inrep(D) involves only constants fromadom(D,S). Furthermore, by consistency ofS and
the fact that each sequenceR1 >D R2 >D · · ·Ri >D · · · of databasesRi on adom(D,S) must be finite,
one such repairR must exist. 2

Proposition 3.3 Let D be a database forS = 〈Ψ, Σ〉 where no built-in relations occur inΣ except
= and 6=. Suppose that<D satisfies (SIP). Then, every repairR ∈ rep(D) involves only constants from
adom(D,S), and some repair exists ifS is consistent.
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Proof. Following the argumentation in the proof of Proposition 3.2, consider a ground instanceσg of
someσ ∈ Σ, which is violated byR′. Then, some atomBj(~cj) ∈ R \ R′ in the head ofσg exists such
that~cj = cj,1, . . . , cj,nj

contains some constantcj,h /∈ adom(D,S) and the respective variableyj,h in
the atomBj(~yj) in σ does not occur in the body ofσ (notice that ifyj,h would occur in the body,cj,h

might not be outsideadom(D,S), because the head ofσg is satisfied inR′, which contains only constants
from adom(D,S)). Since all built-in literals inσ are equalities and inequalities, there are infinitely many
constantsc such that for the ground instanceσg

c of σ which differs fromσg only by substitution ofyj,h with
c, all built-in literals evaluate to false. Sinceσg

c andσg have the same body andR |= σg
c , R must contain a

fact in whichc occurs. This means thatR is infinite, which is a contradiction. 2

B Proofs for Section 5

Theorem 5.2 (Factorization) LetD be a database forS = 〈Ψ, Σ〉. LetE1, . . . , Em be a repair-compliant
partitioning of a repair envelopeE for D. Then,E1, . . . , Em is a factorization ofE for D andS.

Proof. We need to show thatrep(D) = {(D \ E) ∪ R1 ∪ · · · ∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m}.
SinceE is a repair envelope forD andS, we know thatrep(D) = {(D \ E) ∪ R | R ∈ rep(D ∩ E)}.
Hence, it is sufficient to prove that:

(⊆) R ∈ rep(D ∩ E) impliesR = R1 ∪ . . . ∪ Rm andRi ∈ rep(D ∩ Ei) for 1 ≤ i ≤ m;

(⊇) everyR ∈ {R1 ∪ . . . ∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m} is a repair ofD ∩ E.

(⊆) Let R ∈ rep(D ∩ E). Then, by repair-compliance ofE1, . . . Em, R = F ∪ RE , whereF = R \ E
andRE ⊆ E. ConsiderRi = F ∪ (RE ∩Ei) for 1 ≤ i ≤ m. It remains to show thatRi ∈ rep(D ∩Ei) for
1 ≤ i ≤ m. Towards a contradiction first assume thatRi 6|= Σ for some1 ≤ i ≤ m. Then, there exists some
σ ∈ ground(Σ) such thatRi 6|= σ. Thus,Ri |= body(σ), which impliesR |= body(σ), andRi 6|= head(σ).
However,R |= head(σ) must hold sinceR |= Σ by hypothesis. This means that there exists a head atom
B(~y) of σ which is true inR. SinceRi 6|= head(σ), none of the built-in predicates ofσ is true and therefore
B(~y) is a fact such thatB(~y) ∈ Ej , j 6= i. Since the partitioning is constraint-bounded, it follows that
body(σ) ⊆ F andhead(σ)∩Ei = ∅. This excludes the existence of a repair of the formF ∪R′

Ei
of D∩Ei,

such thatR′
Ei
⊆ Ei, a contradiction to the repair compliance ofE1, . . . , Em. This provesRi |= Σ for every

i = 1, . . . , m.
Consequently,Ri ∈ rep(D ∩ Ei) iff there exists noR′

i ∈ rep(D ∩ Ei) such thatR′
i <D∩Ei

Ri and
R′

i |= Σ. Assume such anR′
i would exist. ThenR′

i = F ∪ R′
Ei

and thus by (DIS)R′
Ei

<D∩Ei
REi

. By
(DPE) we would conclude forR′

E = (R ∩ E1) ∪ . . . ∪ R′
Ei
∪ . . . ∪ (R ∩ Em), thatR′

E <D∩E RE , which
impliesR′ <D∩E R for R′ = F ∪R′

E . Furthermore,R′ |= Σ. (Otherwise there exists someσ ∈ ground(Σ)
such thatR′ |= body(σ) andR′ 6|= head(σ), while R |= σ. We can conclude thatbody(σ) ⊆ R′

i, and since
R′

i |= Σ we obtainR′ |= head(σ), a contradiction.) Together withR′ <D∩E R, however, this contradicts
R ∈ rep(D ∩ E). Hence,Ri ∈ rep(D ∩ Ei), for 1 ≤ i ≤ m.

(⊇) Let R ∈ {R1∪ . . .∪Rm | Ri ∈ rep(D∩Ei), 1 ≤ i ≤ m}. We show thatR ∈ rep(D∩E). Towards
a contradiction supposeR 6|= Σ, i.e.,R 6|= σ for someσ ∈ ground(Σ). By definition of a repair-compliant
partitioning, we conclude thatR = F ∪ (Ri∩Ei) . . .∪ (Rm∩Em), whereF = Ri \Ei for any1 ≤ i ≤ m.
Consequently,R |= body(σ) implies Ri |= body(σ) for some1 ≤ i ≤ m by constraint-boundedness.
However,Ri 6|= head(σ) (otherwiseR |= head(σ)), which contradictsRi ∈ rep(D ∩ Ei). Hence,R |= Σ.
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It remains to show that there is noR′ ∈ rep(D∩E) such thatR′ <D∩E R. Assume the contrary and let
F = R′ \E. Then by (DIS) (disjunctive split), either (i) R′ ∩Ei <D∩Ei

R ∩Ei or (ii) R′ \Ei <(D∩E)\Ei

R \Ei holds for eachi = 1, . . . , m. Case (i) leads to a contradiction withRi ∈ rep(D∩Ei), however, since
it impliesF ∪ (R′∩Ei) <D∩Ei

Ri andF ∪ (R′∩Ei) |= Σ (otherwiseR′ 6|= Σ). So (ii) must hold for every
i = 1, . . . , m. As shown by the recursive argument below, it follows thatR′ \ E <(D∩E)\E R \ E, which
however, by repair-compliance ofE1, . . . , Em, is equivalent toF <∅ F , a contradiction. To see this, note
that we can apply (DIS) toR′ \Ei <(D∩E)\Ei

R \Ei wrt. Ej for any1 ≤ j 6= i ≤ m, and arrive in a similar
situation as above: either (i′) (R′ \Ei) ∩Ej <((D∩E)\Ei)∩Ej

(R \Ei) ∩Ej = R′ ∩Ej <D∩Ej
R ∩Ej , or

(ii′) (R′ \Ei) \Ej <((D∩E)\Ei)\Ej
(R \Ei) \Ej . Now (i′) leads to a contradiction as in (i), and therefore

(ii′) must hold. Iterating this argumentm − 1 times yieldsR′ \ (E1 ∪ . . . ∪ Em) <(D∩E)\(E1∪...∪Em)

R \ (E1 ∪ . . . ∪ Em), which is equivalentR′ \ E <(D∩E)\E R \ E. This provesR ∈ rep(D ∩ E). 2

Proposition 5.3 Let D be a database forS = 〈Ψ, Σ〉, and letE be a repair envelope forD. If either
(1) Σ ⊆ C1 andE = C∗ or (2) Σ ⊆ C0, then every constraint-bounded partitioningE1, . . . , Em of E is
repair-compliant.

Proof. SinceE1, . . . , Em is constraint-bounded, what remains to show is that for allR ∈ rep(D ∩E) and
Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m, R \ E = Ri \ Ei. We show thatR \ E = Ri \ Ei = ∅.

Case(1): E = C∗. By Proposition 4.6,R ∈ rep(D ∩ E) impliesR ⊆ E, henceR \ E = ∅. Towards
a contradiction assume that there existsRi ∈ rep(D ∩ Ei), such thatRi \ Ei 6= ∅ for some1 ≤ i ≤ m.
ConsiderR′

i = Ri ∩ Ei. Clearly (sinceR′
i ⊂ Ri), we have by (SIP) thatR′

i <D∩Ei
Ri. We show

R′
i |= Σ. AssumeR′

i 6|= Σ, i.e., there exists a ground constraintσ ∈ ground(Σ) such thatR′
i 6|= σ. Thus,

R′
i |= body(σ), which impliesRi |= body(σ), andR′

i 6|= head(σ). However,Ri |= head(σ) must hold
sinceRi |= Σ by hypothesis. This means that there exists a head atomB(~y) of σ which is true inRi.
SinceR′

i 6|= head(σ), none of the built-in predicates ofσ is true and thereforeB(~y) is a fact. Furthermore,
body(σ) 6= ∅ sinceσ ∈ C1, and thus,B(~y) 6∈ E, sinceE1, . . . , Em is constraint-bounded. Consequently,
facts(σ) ∩E 6= ∅ holds, as well asfacts(σ) 6⊆ E. Therefore,σ 6∈ Σs andσ 6∈ Σa , which is a contradiction
to Proposition 4.1. This provesR′

i |= Σ. Together withR′
i <D∩Ei

Ri, we arrive at a contradiction to
Ri ∈ rep(D ∩ Ei). Hence,Ri \ Ei = ∅ must hold.

Case(2): Σ ⊆ C0. Towards a contradiction assume that there existsR ∈ rep(D ∩ E) such that
R \ E 6= ∅. ConsiderR′ = R ∩ E. Again (sinceR′ ⊂ R), we have thatR′ <D∩E R. Furthermore,R |= Σ
implies R′ |= Σ. Indeed, consider anyσ ∈ ground(Σ) such thatR′ |= body(σ). ThenR |= body(σ),
and, by hypothesis,R |= head(σ). SinceΣ ⊆ C0, one of the built-in atoms in the head ofσ is true.
Thus,R′ |= head(σ). This showsR′ |= Σ, which raises a contradiction toR ∈ rep(D ∩ E). This proves
thatR \ E = ∅. Along the same argumentation line, we can show that everyRi ∈ rep(D ∩ Ei) fulfills
Ri \Ei = ∅. Hence,R \E = Ri \Ei = ∅ holds for allR ∈ rep(D∩E) andRi ∈ rep(D∩Ei), 1 ≤ i ≤ m.

2

Proposition 5.4 Let E1, . . . , Em be a factorization of a repair envelopeE for D, and letSQ = (D \
E) ∪R1 ∪ · · · ∪Rℓ be aquery-safe partof D w.r.t. Q. Then,

ans(Q, D) =
⋂

Rℓ+1∈rep(D∩Eℓ+1)

· · ·
⋂

Rm∈rep(D∩Em)

Q[SQ ∪ Rℓ+1 · · · ∪ Rm].
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Proof. Let E1, . . . , Em be a factorization ofE for D. From Equation (7), it holds that:

rep(D) = {(D \ E) ∪ R1 ∪ · · · ∪ Rm | Ri ∈ rep(D ∩ Ei), 1 ≤ i ≤ m}.

Moreover, from Proposition 5.1,ans(Q, D) =
⋂

R∈rep(D∩E) Q[R∪S], whereS = D\E. Thus,ans(Q, D)
can be equivalently written as:

⋂

R1∈rep(D∩E1)

· · ·
⋂

Rm∈rep(D∩Em)

Q[(D \ E) ∪ R1 ∪ · · · ∪ Rm].

Consider, now, two repairsR′
h andR′′

h of Eh, with 1 ≤ h ≤ ℓ. Given thatEh is singular, it holds that:
Q[(D \ E) ∪ R1 ∪ · · ·R

′
h · · · ∪ Rm] = Q[(D \ E) ∪ R1 ∪ · · ·R

′′
h · · · ∪ Rm]. Therefore, for each singular

componentEh, we can take an arbitrary repairRh and conclude that:

⋂

R̃h∈rep(D∩Eh)

Q[(D \ E) ∪ R1 ∪ · · · R̃h · · · ∪ Rm] = Q[(D \ E) ∪ R1 ∪ · · ·Rh · · · ∪ Rm].

Hence,ans(Q, D) can be also computed as:

⋂

Rℓ+1∈rep(D∩Eℓ+1)

· · ·
⋂

Rm∈rep(D∩Em)

Q[(D \ E) ∪ R1 ∪ · · · ∪ Rm].

The result follows by lettingSQ = (D \ E) ∪R1 ∪ · · · ∪Rℓ. 2

Proposition 5.5 LetE1, . . . , Em be a factorization of a repair envelopeE for D which isdecomposable
w.r.t. queryQ having the non-singular componentsEℓ, . . . , Em. Then

ans(Q, D) =

m
⋃

i=ℓ

(

⋂

Ri∈rep(D∩Ei)

Q[SQ ∪ Ri]
)

Proof. Let E1, . . . , Em be a factorization of a repair envelopeE for D, and letEℓ, . . . , Em be its non-
singular components. We first show that

Q[SQ ∪ Rℓ+1 · · · ∪ Rm] = Q[SQ ∪ Rℓ+1] ∪ · · · ∪Q[SQ ∪ Rm], (11)

for everyRi ∈ rep(D ∩ Ei), 1 ≤ i ≤ m. We haveQ = 〈q,P〉, whereP = {ρ1, . . . , ρn} is a set of
“not”-free rulesρj . Consider any ground instanceρ′j of ρj , and an atompi(t̄i) occurring in the body of
ρ′j that is satisfied bySQ ∪ Rℓ · · · ∪ Rm. Then eitherpi(t̄i) ∈ SQ or pi(t̄i) ∈ Rh, for someℓ ≤ h ≤ m.
Furthermore, sinceE1, . . . , Em is decomposable, in the case wherepi(t̄i) ∈ Rh \ (SQ ∪

⋂m
k=ℓ Rk), there

is no atompk(t̄k) in the body ofρ′j which belongs toRh′ \ Rh, for someℓ ≤ h′ 6= h ≤ m. Indeed, by
Condition (3),R′

h\Rh = Rh′∩Eh′ , and thuspk(t̄k) ∈ Eh′ would hold, whilepi(t̄i) ∈ Eh holds. Conditions
(1) and (2) would imply thatpi(t̄i) andpk(t̄k) are instances of the same atom in the body ofρj , and thus
pi(t̄i) = pk(t̄k). This, however, contradicts thatEh ∩ Eh′ = ∅.

36



As a consequence, the body ofρ′j is satisfied bySQ ∪ Rℓ · · · ∪ Rm if and only if it is satisfied by
SQ ∪ Rh, for someℓ ≤ h ≤ m. Sinceρj is non-disjunctive and “not”-free, we can conclude from this that
Q(j)[SQ ∪ Rℓ · · · ∪ Rm] =

⋃m
i=ℓ Q(j)[SQ ∪Ri], whereQ(j) = 〈q, {ρj}〉, and that

Q[SQ ∪ Rℓ · · · ∪ Rm] =
n
⋃

j=1

Q(j)[SQ ∪ Rℓ · · · ∪ Rm] =
n
⋃

j=1

m
⋃

i=ℓ

Q(j)[SQ ∪Ri]

=
m
⋃

i=ℓ

n
⋃

j=1

Q(j)[SQ ∪Ri] = Q[SQ ∪ Rℓ+1] ∪ · · · ∪Q[SQ ∪ Rm].

This proves (11). To conclude the proof, we observe that from Proposition 5.4, the answer to a non-recursive
Datalog queryQ w.r.t. D is:

ans(Q, D) =
⋂

Rℓ∈rep(D∩Eℓ)

· · ·
⋂

Rm∈rep(D∩Em)

Q[SQ ∪ Rℓ · · · ∪ Rm]

By Equation (11), we then get:

ans(Q, D) =
⋂

Rℓ∈rep(D∩Eℓ)

· · ·
⋂

Rm∈rep(D∩Em)

(Q[SQ ∪ Rℓ] ∪ · · · ∪Q[SQ ∪ Rm]) ,

from which the result follows by Boolean algebra (recall that for any sets A, B1, . . . , Bk, it holds that
⋂

B∈{B1,...,Bk}
(A ∪B) = A ∪

⋂

B∈{B1,...,Bk}
B). 2

C Grouped Repair Computation

This section gives the technical details on grouped repair computation by means of evaluating an SQL query
over a marked database, as discussed less formally in Section 6.2.

C.1 Query Reformulation

We first show how a non-recursive Datalog¬ queryQ can be reformulated into an SQL query whose eval-
uation over the marked database returns the answers toQ that are true in any repair of{R1, ...,Rn}. Let
r : h( ~x0)← B(~x) be a safe rule of form

p0(~x0)← p1(~x1), ..., pl(~xl), not pl+1(~xl+1), ..., not pl+k(~xl+k).
4 (12)

Let ti,j denote thej-th term inpi(~xi) = pi(ti,1, . . . , ti,ki
), where0 ≤ i ≤ l + k and1 ≤ j ≤ ki. We

associate withr a normalized ruler′ obtained from it as follows:

1. Replace eachti,j by a new variableyi,j .

2. if ti,j is a constantc, then add the equality atomyi,j = c to the body;

4For the sake of simplicity and w.l.o.g. we assume that variables occurring in ~x0 are all distinct.
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3. if ti,j is a variablex, then add the equality atomyi,j = yi′,j′ to the body, whereti′,j′ is the first
occurrence ofx in the body ofr (from left to right), except fori = i′ andj = j′. (Note that safety of
r guarantees0 ≤ i′ ≤ l.)

In query reformulation, we furthermore use the following functionsANDBIT, INVBIT, andSUMBIT,
which can be build asuser-defined functions(ANDBIT andINVBIT) andaggregate operators(SUMBIT) in
many relational DBMSs, such as PostgreSQL:

• ANDBIT is a binary function that takes as its input two bit strings′a1 . . . a′n and′b1 . . . b′n and returns
′c1 . . . c′n, whereci = ai ∧ bi is the Boolean “and,”i = 1, . . . , n;

• INVBIT is a unary function that takes as its input a bit string′a1 . . . a′n and returns′c1 . . . c′n, where
ci = ¬ai is the Boolean complement,i = 1, . . . , n;

• SUMBIT is an aggregate function such that givenm strings of form′bi,1 . . . b′i,n, i = 1, . . . , m, it
returns′c1 . . . c′n, wherecj = b1,j ∨ . . . ∨ bm,j is the Boolean “or,”j = 1, . . . , n.

Let Q = 〈q,P〉 be a non-recursive Datalog¬ query of arityn, whereP consists of normalized rulesr :
h(~x′)← B(~y′), e(~z), wheree(~z) are all the equality atoms introduced in normalization. Letai, 1 ≤ i ≤ n,
be pairwise distinct identifiers for the attributes of a predicate of arityn. Then, eachr is translated into the
following SQL statementSQLr (notice that, in the statements below, each relation symbolpi occurring in
r is transformed into the corresponding marked symbolpim):

SELECT pi′m.aj′ AS aj (for each atomy0,j = yi′,j′ in e(~z))
c AS aj , (for each atomy0,j = c in e(~z))
(p1m.mark ANDBIT . . . ANDBIT plm.mark ANDBIT INVBIT(n pl+1m.mark) ANDBIT
. . . ANDBIT INVBIT(n pl+km.mark)) AS mark

FROM p1m, . . . , plm, SQLr,l+1, . . . , SQLr,l+k

WHERE pim.aj=pi′m.aj′ , (for each atomyi,j = yi′,j′ in e(~z), 0 < i ≤ l)
pim.aj=c, (for each atomyi,j = c in e(~z), 0 < i ≤ l)
n pim.aj=pi′m.aj′ , (for each atomyi,j = yi′,j′ in e(~z), l < i)
n pim.aj=c (for each atomyi,j = c in e(~z), l < i).

where eachSQLr,h, l < h ≤ l + k, is a subquery of form:

( SELECT ∗ FROM phm

UNION

SELECT pi′m.aj′ AS aj , (for each atomyh,j = yi′,j′ in e(~z))
c AS aj , (for each atomyh,j = c in e(~z))
′0 . . . 0′ AS mark

FROM p1m, . . . , plm

WHERE pim.aj=pi′m.aj′ , (for each atomyi,j = yi′,j′ in e(~z), 0 < i ≤ l)
pim.aj=c, (for each atomyi,j = c in e(~z), 0 < i ≤ l)
ROW(a1, . . . , akh

) NOT IN (SELECT a1, . . . , akh
FROM phm)

) AS n phm.

Roughly speaking, in the statementSQLr, theANDBIT operator allows us to obtain the mark′b1, . . . , b
′
n

of each tuplet computed for the relation predicateh, according to ruler. More precisely, fori ∈ {1, . . . , n},
bi = 1 if t is in the repairRi ∈ rep(A), bi = 0 otherwise. Moreover, for each negative literalnot phm(~yh),
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the marks must be inverted, where missing tuples (which do not belong to any repair, and thus would be
marked′0 . . . 0′) must be taken into account.

To this aim,SQLr,h singles out the tuples returned by the positive body of the ruler, projects them on
the attributes that are in join with the attributes inphm, and returns, with mark′0 . . . 0′, those which do not
occur inphm (taking then the union with the tuples inphm itself). The operatorINVBIT guarantees that, for
each such tuple, the mark returned bySQLr is the one computed in the positive part of the query (in these
cases indeed the negative literal is satisfied in every repair). Note that safety of the ruler ensures that the
two queries inSQLr,h have the same arity.

All rules, r1, . . . , rℓ, defining the same predicateh of arity n, are collected into a view by the SQL
statementSQLh:

CREATE VIEW hm(a1, . . . , an,mark) AS

SELECT a1, . . . , an, SUMBIT(mark)
FROM (SQLr1

UNION . . . UNION SQLrℓ
)

GROUP BY a1, . . . an.

Finally, the answers to the queryQ = 〈q,P〉 are obtained through the statementSQLQ:

SELECT a1, . . . an FROM qm WHERE mark =′ 1 . . . 1′,

whereqm is the view predicate defined by the statementSQLq.

Example C.1 Let us consider a queryQ = 〈q,P〉 asking for players that are not team leaders. HereP
contains two rules, of which one defines an auxiliary (thus intensional) predicateleader:

r1 : q(x)← player(x, y, z), not leader(x);
r2 : leader(x)← team(v, w, x).

The use of negation is reflected inSQLr′
1

(let r′1, r′2 be the normalized versions ofr1, r2):

SELECT playerm .Pcode AS a1 ,
(playerm .mark ANDBIT INVBIT(n leaderm .mark)) AS mark ,

FROM playerm ,
(SELECT playerm .Pcode AS a1 , ′00′ AS mark

FROM playerm WHERE ROW(playerm .Pcode) NOT IN (SELECT a1 FROM leaderm)
UNION SELECT ∗ FROM leaderm) AS n leaderm

WHERE n leaderm .a1 = playerm .Pcode;

The use of an auxiliary predicate causes the creation of two views: one for each intensional predicate. The
respective SQL statementsSQLq andSQLleader, resemble the statementSQLq in Example 6.1, however,
each of them just depends on a single SQL query (SQLr′

1
andSQLr′

2
, respectively). Moreover, one can

show thatSQLr′
2

andSQLQ are equal to the corresponding queries of Example 6.1.
Hence, as easily retraced, the answer to the queryQ consists of the tuple(9), as expected. 2

We next show the correctness of the above transformationSQLQ. Recall that any predicate names in a
Datalog∨,¬ programP are calledextensional(EDB predicates), if they occur only in the bodies of the rules
in P, andintensional(IDB predicates) otherwise.

Proposition 6.1 Let D be a database forS = 〈Ψ, Σ〉, let Q be a non-recursive Datalog¬ query over
it, and letR1, ...,Rn be databases such thatRi = R′

i ∩E, whereE is a weak repair envelope forD andR′
i

39



is a repair forA = D ∩ E. Then,SQLQ computes onDm the set of tuples
⋂n

i=1{t | t ∈ Q[Ri ∪ S]}, for
S = D \ E.

Proof. We first show that normalization of a Datalog¬ query does not change query semantics. In par-
ticular, letr be a safe Datalog¬ rule and letr′ denote the normalized rule as introduced in Section 6.2. We
show that there is a one-to-one correspondence between relevant ground instances, that is, between ground
instances ofr and ground instances ofr′ that satisfy the equality conditions.

(⊆) Let r(t) = p0(t0) ← p1(t1), . . . , pl(tl),not pl+1(tl+1), . . . ,not pl+k(tl+k) be a ground instance
of r. Considerr′(t) = p0(t0) ← p1(t1), . . . , pl(tl), not pl+1(tl+1), . . . , not pl+k(tl+k), e(tz), wheretz is
obtained by substitutingti,j for every variableyi,j in ~z, such that0 ≤ i ≤ l + k and1 ≤ j ≤ ki. Then,
r′(t) is a ground instance ofr′, since every occurrence of a variableyi,j in e(~z) is substituted uniformly.
Moreover,e(tz) is true (otherwise we arrive at a contradiction to our hypothesis since thenby construction
of e(~z) eitherxi,j = c andc 6= ti,j or xi,j = xi′,j′ andti,j 6= ti′,j′ , for some0 ≤ i, i′ ≤ l + k, 1 ≤ j ≤ ki,
and1 ≤ j′ ≤ ki′).

(⊇) Let r′(t) = p0(t0) ← p1(t1), . . . , pl(tl),not pl+1(tl+1), . . . ,not pl+k(tl+k), e(tz)
be a ground instance ofr′, such that e(tz) is true. Then, r(t) = p0(t0) ←
p1(t1), . . . , pl(tl),not pl+1(tl+1), . . . ,not pl+k(tl+k) is a ground instance ofr, since the truth of
e(tz) implies, by construction ofe(~z), that for all0 ≤ i, i′ ≤ l +k, 1 ≤ j ≤ ki, and1 ≤ j′ ≤ ki′ , if xi,j = c
thenti,j = c, and ifxi,j = xi′,j′ thenti,j = ti′,j′ .

An immediate consequence is thatSM(P) = SM(P ′) for a programP and the programP ′, obtained by
replacing each rule inP by its normalization. Thus, w.l.o.g. we just consider normalized Datalog¬ queries.

Let Q = 〈q,P〉 be a non-recursive Datalog¬ query with query predicateq of arity n, andP its normal-
ized program. SinceP is non-recursive, there exists an enumeration of its intensional predicates, such that
the following holds: Leto(p), 1 ≤ o(p) ≤ |IDB|, the enumeration index assigned to an intensional predicate
p, where|IDB| denotes the number if IDB predicates. Then (i) o(p) 6= o(p′) if p 6= p′; and (ii) for every rule
r ∈ P such thathead(r) = p(~x), if p′(~x′) ∈ body(r), thenp′ is an extensional predicate oro(p′) < o(p).

Furthermore,P is constraint-free. Hence, for any database, i.e., for any finite set of factsF , the program
F ∪P has a unique stable modelM , i.e.,SM(P) = {M}. In particular, letD be a database forS = 〈Ψ, Σ〉,
let R1, ...,Rn ben databases such thatRi = R′

i ∩E, whereE is a weak repair envelope forD, A = D∩E,
andR′

i is a repair forA, and letS = D \E. Then,S ∪Ri ∪P, 1 ≤ i ≤ n, has a unique stable model which
we will denote byMi.

Towards a proof of Proposition 6.1, letDm be the marked database built by processingR1, ...Rn, and
consider any enumeration,o, of the IDB predicates ofP wrt. D that satisfies (i) and (ii). We first show that
for 1 ≤ i ≤ n and every intensional predicatep, there exists a tuple〈t, m〉 in the view relationpm such that
m(i) = 1, i.e., its mark at positioni is 1, iff p(t) ∈Mi. The proof is by induction ono(p).

Induction base:o(p) = 1.
(⊆) Let 〈t, m〉 ∈ pm and m(i) = 1. Then by the definition ofpm, it holds that m =

SUMBIT(m1, . . . , mj), j ≥ 1, andmk(i) = 1 for at least one markmk, 1 ≤ k ≤ j. Let m′ be any of
the marksmk such thatmk(i) = 1. Then,〈t, m′〉 ∈ SQLrj

, for some1 ≤ j ≤ l, wherer1, . . . , rl are all
the rules inP with head predicatep. Let

rj = p(~y0)← p1(~y1), . . . , pjl
(~yjl

),not pjl+1
(~yjl+1

), . . . ,not pjl+k
(~yjl+k

), e(~z).

Sinceo(p) = 1, by Condition (ii) we conclude thatbody(rj) only contains extensional predicates. By the
definition ofSQLrj

, there exist tuples〈t1, m′
1〉, . . . , 〈tjl+k

, m′
jl+k
〉 that cause the selection of〈t, m′〉, such

that
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1. 〈th, m′
h〉 ∈ phm

andm′
h(i) = 1, for 1 ≤ h ≤ jl,

2. 〈th, m′
h〉 ∈ SQLr,h andm′

h(i) = 0, for jl+1 ≤ h ≤ jl+k,

3. the equality conditionse(tz) evaluate to true under the corresponding substitutions~y0|t and~yh|th , for
1 ≤ h ≤ jl+k.

For 1 ≤ h ≤ jl, we conclude from Condition 1 thatph(th) ∈ S ∪ Ri sinceph is extensional. For
everyjl+1 ≤ h ≤ jl+k, Condition 2 implies, by construction ofSQLr,h, that either〈th, m′

h〉 ∈ phm
and

m′
h(i) = 0, or that there does not exist a markmh, such that〈th, mh〉 ∈ phm

. In both cases, we conclude
that ph(th) 6∈ S ∪ Ri and thus, sinceph is extensional, thatph(th) 6∈ Mi. Condition 3 guarantees that
rj(t

′) = p(t) ← p1(t1), . . . , pjl
(tjl

),not pjl+1
(tjl+1

), . . . ,not pjl+k
(tjl+k

), e(tz) is a ground instance of
rj and e(tz) is true. Thus,rj(t

′) is a ground instance of rulerj ∈ P, such thatMi |= body(rj(t
′)).

Consequently,Mi |= head(rj(t
′)), i.e.,p(t) ∈Mi.

(⊇) Let p(t) ∈ Mi. Since p is intensional, there exists a ground ruler(t′) = p(t) ←
p1(t1), . . . , pl(tl),not pl+1(tl+1), . . . ,not pl+k(tl+k), e(tz) in P, such thatph(th) ∈ Mi, for 1 ≤ h ≤ l,
and ph(th) 6∈ Mi, for l + 1 ≤ h ≤ l + k. Furthermore, sinceo(p) = 1, ph is extensional for
1 ≤ h ≤ l + k. Thus, for1 ≤ h ≤ l there exist tuples〈th, mh〉 ∈ phm

such thatmh(i) = 1,
while for l + 1 ≤ h ≤ l + k either (a)〈th, mh〉 ∈ phm

such thatmh(i) = 0, or (b) no markmh ex-
ists such that〈th, mh〉 ∈ phm

. Sincee(tz) is true for the given ground instance, in Case (a)〈th, mh〉
is also inSQLr,h; in Case (b)〈th,′ 0 . . . 0′〉 ∈ SQLr,h. Thus, for l + 1 ≤ h ≤ l + k, in any case
there exists a tuple〈th, mh〉 ∈ SQLr,h, such thatmh(i) = 0. Consequently,〈t, m〉 ∈ SQLr, where
m = m1 ANDBIT . . . ANDBIT ml ANDBIT INVBIT(ml+1) ANDBIT . . . ANDBIT INVBIT(ml+k), i.e.,
m(i) = 1. By the definition of viewpm, we conclude that〈t, m′〉 ∈ pm andm′(i) = 1.

Induction hypothesis:〈t, m〉 ∈ pm andm(i) = 1 iff p(t) ∈ Mi, for all intensional predicatesp such
thato(p) < n.

Induction step:o(p) = n.
(⊆) Let 〈t, m〉 ∈ pm and m(i) = 1. Then by the definition ofpm, it holds that m =

SUMBIT(m1, . . . , mj), j ≥ 1, andmk(i) = 1 for at least one markmk, 1 ≤ k ≤ j. Let m′ be any of
the marksmk such thatmk(i) = 1. Then,〈t, m′〉 ∈ SQLrj

, for some1 ≤ j ≤ l, wherer1, . . . , rl are all
the rules inP with head predicatep. Let

rj = p(~y0)← p1(~y1), . . . , pjl
(~yjl

),not pjl+1
(~yjl+1

), . . . ,not pjl+k
(~yjl+k

), e(~z).

Since o(p) = n, by Condition (ii) we conclude thatbody(rj) just contains extensional predicates
or intensional predicatesp′ such thato(p′) < n. By the definition ofSQLrj

, there exist tuples
〈t1, m

′
1〉, . . . , 〈tjl+k

, m′
jl+k
〉 that cause the selection of〈t, m′〉, such that

1. 〈th, m′
h〉 ∈ phm

andm′
h(i) = 1, for 1 ≤ h ≤ jl,

2. 〈th, m′
h〉 ∈ SQLr,h andm′

h(i) = 0, for jl+1 ≤ h ≤ jl+k,

3. the equality conditionse(tz) evaluate to true under the corresponding substitutions~y0|t and~yh|th , for
1 ≤ h ≤ jl+k.

For 1 ≤ h ≤ jl, we conclude from Condition 1 thatph(th) ∈ Mi sinceph is either extensional, i.e.,
ph(th) ∈ S ∪ Ri, or intensional witho(ph) < n, i.e., the induction hypothesis applies. For everyjl+1 ≤
h ≤ jl+k, Condition 2 implies, by construction ofSQLr,h, that either (a)〈th, m′

h〉 ∈ phm
andm′

h(i) = 0,
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or that (b) there does not exist a markmh, such that〈th, mh〉 ∈ phm
. We show thatph(th) 6∈Mi follows for

jl+1 ≤ h ≤ jl+k. If ph is extensional, in both cases, we conclude thatph(th) 6∈Mi, sinceph(th) 6∈ S ∪ Ri.
For intensionalph, towards a contradiction, assume thatph(th) ∈ Mi. We know thato(ph) < n and
conclude by the induction hypothesis, that there exists a markmh, such thatmh(i) = 1 and〈th, mh〉 ∈ phm

.
This contradicts (b), so (a) has to be the case, i.e., also〈th, m′

h〉 ∈ phm
, andmh 6= m′

h. However, this cannot
be the case by construction of the viewpm: tuples which just differ in the mark attribute are grouped and their
mark is computed by the aggregate functionSUMBIT. As a consequence,〈th, mh〉 ∈ phm

and〈th, m′
h〉 ∈

phm
implies mh = m′

h, contradiction. This provesph(th) 6∈ Mi for jl+1 ≤ h ≤ jl+k. Eventually,
Condition 3 guarantees thatrj(t

′) = p(t)← p1(t1), . . . , pjl
(tjl

),notpjl+1
(tjl+1

), . . . ,notpjl+k
(tjl+k

), e(tz)
is a ground instance ofrj ande(tz) is true. Thus,rj(t

′) is a ground instance of rulerj ∈ P, such that
Mi |= body(rj(t

′)). Consequently,Mi |= head(rj(t
′)) has to hold, i.e.,p(t) ∈Mi.

(⊇) Let p(t) ∈ Mi. Since p is intensional, there exists a ground ruler(t′) = p(t) ←
p1(t1), . . . , pl(tl),not pl+1(tl+1), . . . ,not pl+k(tl+k), e(tz) in P, such thatph(th) ∈ Mi, for 1 ≤ h ≤ l,
andph(th) 6∈ Mi, for l + 1 ≤ h ≤ l + k. Furthermore, sinceo(p) = n, by Condition (ii) ph is either
extensional oro(ph) < n, for 1 ≤ h ≤ l + k. Thus, for1 ≤ h ≤ l there exist tuples〈th, mh〉 ∈ phm

such thatmh(i) = 1, while for l + 1 ≤ h ≤ l + k either (a)〈th, mh〉 ∈ phm
such thatmh(i) = 0, or

(b) no markmh exists such that〈th, mh〉 ∈ phm
. Sincee(tz) is true for the given ground instance, in

Case (a)〈th, mh〉 is also inSQLr,h; in Case (b)〈th,′ 0 . . . 0′〉 ∈ SQLr,h. Thus, forl + 1 ≤ h ≤ l + k,
in any case there exists a tuple〈th, mh〉 ∈ SQLr,h, such thatmh(i) = 0. Consequently,〈t, m〉 ∈ SQLr,
wherem = m1 ANDBIT . . . ANDBIT ml ANDBIT INVBIT(ml+1) ANDBIT . . . ANDBIT INVBIT(ml+k), i.e.,
m(i) = 1. By the definition of viewpm, we conclude that〈t, m′〉 ∈ pm andm′(i) = 1.

This proves〈t, m〉 ∈ pm andm(i) = 1 iff p(t) ∈Mi for every (intensional) predicatep in P.
We now prove Proposition 6.1, that is, that the set of tuples computed bySQLQ on the marked database

Dm coincides with the set
⋂n

i=1{t | t ∈ Q[Ri ∪ S]}.
(⊆) Let t ∈ SQLQ. Then,〈t,′ 1 . . . 1′〉 ∈ qm, and, hence,q(t) ∈ Mi for 1 ≤ i ≤ n. SinceSM(Ri ∪

S ∪ P) = {Mi} for 1 ≤ i ≤ n, by definition we obtaint ∈ Q[Ri ∪ S] for 1 ≤ i ≤ n, which implies
t ∈

⋂n
i=1{t | t ∈ Q[Ri ∪ S]}.

(⊇) Let t ∈
⋂n

i=1{t | t ∈ Q[Ri ∪ S]}. Then,q(t) ∈Mi sinceSM(Ri ∪ S ∪P) = {Mi}, for 1 ≤ i ≤ n.
Thus, there exist marksmi, such that〈t, mi〉 ∈ qm andmi(i) = 1, for 1 ≤ i ≤ n. By the definition of
view qm (in particular by the definition ofSUMBIT), it follows that mi =′ 1 . . . 1′, for 1 ≤ i ≤ n, i.e.,
〈t,′ 1 . . . 1′〉 ∈ qm. Consequently,t ∈ SQLQ. 2

Clearly, the SQL statementsSQLr, SQLh, andSQLQ can be optimized (which will be done by the
DBMS anyway), and we do not consider optimization here. We remark that the final query,SQLQ, could
also be integrated into the view definition,SQLq, for the query predicateq. By keeping the query definition
SQLQ separate, however, other query semantics can easily be expressed; for instance, possibilistic query
semantics, which selects those tuples which are computed by the query with respect to at least one repair, is
obtained by replacing the condition in theWHERE clause bymark 6= ′0 . . . 0′. We finally remark that the
reformulation technique is amenable to other semantics of negation in queries aswell. Specifically, a more
cautious semantics for negation can also be accomplished with slight modifications: For a negative ground
literal to be true, it has to evaluate to true inall repairs, i.e., the respective tuple has to be marked′0 . . . 0′

(or absent) in the corresponding marked table.
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C.2 Scaling the Technique

As mentioned in Section 6.2, a limitation for the scalability of the marking strategy is thatsafe tuples are
required to be marked with the string′11 . . . 1′, which appears unnecessary given that we known they belong
to all the repairs. In fact, this overhead can be avoided as described below. With each relation symbolr,
we associate two predicate symbolsrsafe andraff , which are intended to store the tuples that occur in the
safe and the affected part ofrD, respectively. Also, we construct the database instanceA′ by replacing each
relation symbolr in AD with raff , and the database instanceS′ by replacing each relation symbolr in SD

with rsafe , i.e., we have thatraff
A′

= {t | r(t) ∈ A} andrsafe
S′

= {t | r(t) ∈ S}. Then, given a query
Q = 〈q,P〉, whereP is assumed to be normalized, over a schemaS = 〈Ψ, Σ〉, we proceed as follows:

– for each ruler : h(~x0) ← B(~x) of form (12) belonging toP, we replace each atompj(~xj) of its
positive body, i.e.,1 ≤ j ≤ l, by paff j

(~xj) ∨ psafej
(~xj);

– we rewrite the resulting rule body into disjunctive normal formB1(~x) ∨ · · · ∨Bn(~x);

– we replace inBi(~x) each negative literalnot pj(~xj) with a relation pj ∈ Ψ by the literals
not paff j

( ~xj), not psafej
(~xj); let B′

i(~x) be the result;

– we replacer with the rulesri : h(~x0)← B′
i(~x), for 1 ≤ i ≤ n;

– in the SQL statementSQLri
for ri, replace everypsafej m

by psafej
, andpsafej

.mark by ′1 . . . 1′.

One can show that the SQL reformulation of the queryQ as described above, denotedSQL′
Q, yields

over the partially marked databaseS′ ∪ A′
m the same result asSQLQ over the fully marked databaseDm.

That is, for the reformulationSQL′
Q only the affected tuples have to be marked.

Notice thatSQL′
Q is exponential in the size ofQ (more precisely, in the number of atoms). However,

as commonly agreed in the database community, the overhead in query complexityusually pays off the
advantage gained in data complexity.

With this approach, the additional space depends only on the size ofA but not on the size ofS. For
example, for 10 constraint violations involving two tuples each, the requiredmarking space is 2*10*210 bits
= 2.5 KB, independently of the size ofD. Furthermore, by allotting 5 MB (=2*20*220 bits) marking space,
the technique may scale up to 20 constraint violations, involving two tuples each.

D Examples of Logic Program Specifications

In this section, we discuss some approaches for consistent query answering in inconsistent database that
rely on the use of logic programming. The notion of repair adopted in the papers described below relies on
the prototypical, natural preorder≤D, originally introduced in [3], for whichR1 ≤D R2 iff △(R1, D) ⊆
△(R2, D). The only exception is [14], which uses the orderingR1 ⊑D R2 iff R1 ∩D ⊇ R2 ∩D [13, 14].
However, for the set of integrity constraints and queries considered in [14], the adoption of a different repair
ordering is of no concern; as discussed in Section 8, we can useR1 ⊑

′
D R2 instead ofR1 ⊑D R2 for

answering a negation-free queries, like a union of conjunctive queriesas in [14]; under this ordering, the
repairs coincide with the repairs under the canonical ordering≤D. Logic programs that we devise in this
section refer to the football team scenario introduced in Example 1.1.

Since some of the techniques analyzed below have been applied to a data integration setting, we first
recall some formal notions on data integration systems.
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Data Integration Systems Data integration systems are systems in charge of uniformly providing users
with data residing at different sources, according to some mapping assertions. More formally, a data inte-
gration systemI may be viewed as a triple〈G,S,M〉, whereG is theglobal schema, which specifies the
global elements exported to users,S is thesource schema, which describes the structure of the data sources
in the system, andM is themapping, which establishes the relationship between the sources and the global
schema [34]. Classical approaches for specifying the mapping are theGlobal-As-View (GAV)approach,
which requires that every element of the global schema is associated with a view over the sources, so that its
the meaning is given in terms of the source data, and theLocal-As-View(LAV) approach, which conversely
requires the sources to be defined as views over the global schema. A third and more general approach
is Global-Local-As-View(GLAV), which captures both LAV and GAV. It allows for mapping assertions in
which a view over the source schema is put in correspondence with a view over the sources [34, 23]. A sim-
pler version of GLAV mapping is the one in [25], which allows for combining pure LAV and GAV mapping
assertions. From a technical point of view, GLAV basically raises the sameissues as LAV.

We point out that all notions and techniques provided in the present paper can be easily generalized
to GAV data integration systems. Indeed, the mapping specification in GAV systems provide a means
for populating the global schema with one (possibly inconsistent) global database instance, which can be
obtained by simply evaluating the views in the mapping over the source data. Thisdatabase is also called
retrieved global database[34]. The semantics of a GAV data integration system may be then given in terms
of the only retrieved global database (in this case the mapping is called exact), or it may be given in terms
of all global database instances that contain the retrieved global database (in this case the mapping is called
sound). In both cases, repairing a data integration system amounts to repairing the global retrieved database,
and therefore our results can be straightforwardly applied to such a setting.

We further note that our techniques can be applied to some LAV data integration proposals in the litera-
ture (as discussed in Appendix D.3).

D.1 Logic programs with unstratified negation

The paper [14] addresses the repair problem inGAV data integration systemsin which key constraints are
issued over the global schema, and presents a technique for consistentquery answering based on the use of
Datalog¬.

More precisely, according to [14], given a data integration systemI = 〈G,S,M〉, key constraints inG
can be encoded into a suitable Datalog¬ programPKD, whereas views in the mapping, which are expressed
as union of conjunctive queries, are cast into a Datalog programPM . Consistent answers to a union of
conjunctive queriesQ over I w.r.t. a source databaseD are returned by the evaluation of the Datalog¬

query〈q,PQ ∪ PKD ∪ PM 〉, where〈q,PQ〉 is the Datalog encoding of the queryQ.
In the following, we provide the logic program produced by the above technique for our running ex-

ample (suitably adapted to a data integration scenario). To this aim, we exploit an extension of the al-
gorithm of [14], provided in [30], that allows for dealing with the exclusiondependencies specified in
Example 1.1. We assume to have a data integration systemI0 such that the global schema is equal to the
relational schemaS0 given in Example 1.1, the source schema consists of the relations1, of arity 4, and
the relationss2, s3, ands4, all of arity 4, whereas the mapping, denotedM0, is defined by the Datalog
programplayer(x, y, z) ← s1(x, y, z, w); team(x, y, z) ← s2(x, y, z); team(x, y, z) ← s3(x, y, z);
coach(x, y, z) ← s4(x, y, z). Then, the logic program for consistent query answering overI0, denoted
ΠI0

(Q), is as follows.
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q(x) ← player(x, y, z)

q(x) ← team(v, w, x)

playerD(x, y, z) ← s1(x, y, z, w)

teamD(x, y, z) ← s2(x, y, z)

teamD(x, y, z) ← s3(x, y, z)

coachD(x, y, z) ← s4(x, y, z)

player(x, y, z) ← playerD(x, y, z) , not player(x, y, z)

player(x, y, z) ← player(x,w, z) , playerD(x, y, z) , y 6= w

team(x, y, z) ← teamD(x, y, z) , not team(x, y, z)

team(x, y, z) ← team(x, v, w) , teamD(x, y, z) , y 6= v

team(x, y, z) ← team(x, v, w) , teamD(x, y, z) , z 6= w

coach(x, y, z) ← coachD(x, y, z) , not coach(x, y, z)

coach(x, y, z) ← coach(x,w, z) , coachD(x, y, z) , y 6= w

player(x, y, z) ← playerD(x, y, z) , coach(x,w, z)

coach(x, y, z) ← coachD(x, y, z) , team(z, w, x)

coach(x, y, z) ← coachD(x, y, z) , player(x,w, z)

team(x, y, z) ← teamD(x, y, z) , coach(z, w, x)

In the above program,PQ consists of the first two rules;PM comprises the rules ranging from the 3rd
to the 6th. The programPKD contains the rules ranging from the 7th to the 13th, whereas the last four
rules, which we denote byPED, encode exclusion dependencies. Informally, for each global relationr, the
above program contains (i) a relationrD that representsrret(I,D); (ii) a relationr that represents a subset of
rret(I,D) that is consistent with the key constraints and the exclusion dependencies for r; (iii) an auxiliary
relationr. We can easily see thatΠI0

(Q) = PM ∪ ΠS0
(Q), whereΠS0

(Q)) = ΠΣ0
∪ ΠQ is the logic

specification for querying the relational databaseS0, in whichΠΣ0
= PKD ∪ PED andΠQ = PQ.

We point out that in [14], together with key constraints, also (existentially-quantified) inclusion depen-
dencies in the global schemaG are considered. In this respect, a query reformulation technique is given
that, on the basis of inclusion dependencies onG, rewrites the user queryQ into a new union of conjunctive
queriesQID, again expressed over the global schema, in a way such that the consistent answers toQ over
I w.r.t. a source databaseD coincide with consistent answers toQID overI ′ w.r.t. D, whereI ′ is obtained
from I by dropping the inclusion dependencies ofG. In other words, after computingQID, it is possible to
proceed as if inclusion dependencies were not specified on the global schema, i.e., by providing the logic
specification for queryingI ′ with QID described above. Hence, after the first reformulation, the problem of
computing consistent answers in the above setting and our problem coincide.

D.2 Logic programs with exceptions

A specification of database repairs for consistent query answering in inconsistent databases exploiting logic
programs with exceptions (LPEs) is presented in [4]. We recall that this sort of programs, firstly intro-
duced by [32], contains bothdefault rules, i.e., classic clauses with classic negation in the body literals, and
exception rules, i.e., clauses with negative heads whose conclusion overrides conclusions of default ones.
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Actually, [4] presents an extension of LPEs for accommodating both negative defaults and extended dis-
junctive exceptions whose semantics is given in terms ofe-answer sets, and shows how these models are, in
fact, in correspondence with standard stable models of a suitable standarddisjunctive logic program.

In more detail, the transformation in [4] associates to each relationp in the database schema a new
relationp′ corresponding to its repaired version, and definesΠΣ to contain three set of rules:(i) trigger-
ing exceptions,(ii) stabilizing exceptions, and(iii) persistence defaults. Let us, for instance, consider our
running example. Then, triggering exception rules are as follows.

¬ player ′(x, y, z) ∨ ¬ player ′(x, y1, z) ← player(x, y, z), player(x, y1, z), y 6= y1.

¬ team ′(x, y, z) ∨ ¬ team ′(x, y1, z1) ← team(x, y, z), team(x, y1, z1), y 6= y1

¬ team ′(x, y, z) ∨ ¬ team ′(x, y1, z1) ← team(x, y, z), team(x, y1, z1), z 6= z1

¬ coach ′(x, y, z) ∨ ¬ coach ′(x, y1, z) ← coach(x, y, z), coach(x, y1, z), y 6= y1

¬ coach ′(x, y, z) ∨ ¬ player ′(x, y1, z) ← coach(x, y, z), player(x, y1, z)

¬ coach ′(x, y, z) ∨ ¬ team ′(z, y1, x) ← coach(x, y, z), team(z, y1, x)

The above rules represent a suitable rewriting of the integrity constraints that encodes the basic way of
repairing each inconsistency. For example, a conflict on a key is resolved by deleting one of the tuples that
cause the conflict, i.e., by not including this tuple in the extension of the corresponding primed predicate.
Notice that, in the case of (universally quantified) inclusion dependencies, it is possible to have repairs by
adding tuples. For instance, the constraintp(x, y) ⊃ q(x, y) would be repaired with the rule¬ p′(x, y) ∨
q′(x, y)← p(x, y),not q(x, y).

Stabilizing exception rules and persistence defaults have been introducedfor technical reasons. Indeed,
rules of the former kind state that each integrity constraint must be eventuallysatisfied in the repair while
rules of the latter kind impose that by default each relationp′ contains the facts inp.

Given the rewritingΠΣ, the user query can be simply issued over the primed relations, i.e., the program
ΠQ is easily obtained by substituting in the user query (suitably expressed in Datalog) each predicatep with
its repaired versionp′.

D.3 Programs with Annotation Constants

The paper [6] proposes to specify database repairs by means of disjunctive normal programs under the sta-
ble model semantics. To this aim, suitable annotations are used in an extra argument introduced in each
(non built-in) predicate of the logic program, for marking the operations of insertion and deletion of tuples
required in the repair process. The idea of annotating predicates has been inspired by the Annotated Predi-
cate Calculus [31], a non-classical logic in which inconsistencies may be accommodated without trivializing
reasoning. The values used in [6] for the annotations are:

• td andfd, which indicate whether, before the repair, a given tuple is in the databaseor not, respec-
tively;

• ta andfa, which represent advisory values that indicate how to resolve possible conflicts, i.e., a tuple
annotated withta (resp.fa) has to be inserted (resp. deleted) in the database;

• t
∗ andf

∗, which indicate whether a given tuple is in the repaired database or not, respectively.

For instance, the annotated logic program used for solving the conflicts onthe key of the relationplayer in
our running example is as follows:
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player(x, y, z, t∗) ← player(x, y, z, td)

player(x, y, z, t∗) ← player(x, y, z, ta)

player(x, y, z, f∗) ← not player(x, y, z, td)

player(x, y, z, f∗) ← player(x, y, z, fa)

player(x, y, z, fa) ∨ player(x, y1, z, fa) ← player(x, y, z, t∗), player(x, y1, z, t∗), y 6= y1.

Furthermore, each fact in the original database is assumed to be annotatedby td.
Intuitively, the last rule says that when the key of the relationplayer is violated (body of the rule), the

database instance has to be repaired according to one of the two alternatives shown in the head. Possible
interaction between different constraints are then taken into account by the other rules, which force the repair
process to continue and stabilize in a state in which all the integrity constraints hold. Indeed, annotationst∗

andf∗ can feed back rules of the last kind, until consistency is restored. This should be evident if we consider
also a constraint of the formcoach(x, y, z) ⊃ player(x, y, z) (we disregard exclusion dependencies of our
running example for a while). This constraint is repaired with the rule

coach(x, y, z, fa) ∨ player(x, y, z, ta)← coach(x, y, z, t∗), player(x, y, z, f∗),

besides the rules for the predicatecoach that compute facts with annotationst∗ (resp.f∗) from facts
annotated bytd or ta (resp.fd or fa).

The programΠQ is then computed by reformulating the original query according to the annotations: in
our running example, we have

q(x)← player(x, y, z, ta) ∨ (player(x, y, z, td) ∧ ¬player(x, y, z, fa))
q(x)← team(v, w, x, ta) ∨ (team(v, w, x, td) ∧ ¬team(v, w, x, fa)).

The above rewriting is proposed in [6] for the setting of a single database.In the line of the discussion of
data integration systems in the beginning of Appendix D, this technique can be straightforwardly extended
to work in GAV data integration systems. An interesting, more complex generalization to the LAV setting
appears instead in [11, 12]. Since in LAV each source relation is associated with a query over the global
schema, an exact specification of which data of the sources fit the globalschema is actually missing. In
general, given a source database, several different ways of populating the global schema according to the
mapping may exist. Hence, not a single but multiple retrieved global databasesmust be taken into account
for repairing. According to [11, 12], the repairs are defined as thoseconsistent global databases which have
a minimal (under set inclusion) symmetric difference to one of the minimal (again,under set inclusion)
retrieved global databases. In other words, each such retrieved global database is repaired by adopting the
classic preorder of [3]. These repairs can be obtained from the stablemodels of a suitable disjunctive logic
program, which comprises rules for the encoding of integrity constraints constructed as in [6], and specific
rules for computing the minimal retrieved global databases.

E Further Experiments

E.1 Assessing the Need of Localization

We conducted a set of experiments to assess the importance of localization approaches, even in those situa-
tions that involve very simple logic programs for computing consistent answers. To this aim, we considered
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the database schemasSk, which contains a relation of the formp(x, y), wherex is the key; and,Se, which
contains relations of the formsp(x, y) andq(v, w), with an exclusion dependency between attributesx and
v.
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Figure 9: Stable model computation time in DLV system w.r.t. number of conflicts. (a) One Key. (b) One
exclusion dependency.

In Figure 9, we report the time needed in the DLV system for computing the stable models of the logic
encoding for repairing the two databases w.r.t. the number of conflicts, fordifferent database sizes (where
the sizes of the safe part are printed). This first set of experiments is particularly interesting, since the cost
of computing all the stable models is a reasonable lower-bound for the cost of computing consistent query
answers, given that most of the state-of-art answer set engines provide support for “Boolean” query answer-
ing, that is, for deciding whether a given ground fact is entailed in any/allmodels, but not for computing
non-ground queries. From Figure 9, we observe that DLV scales exponentially in the number of conflicts,
since repairs are in general exponential in this number. Moreover, since the size of each repair is about the
size of the database, the number of processed tuples in the DLV system is, inturn, exponential in the size of
the whole database.

The results of Figure 9 stimulated the development of techniques for computingconsistent answers
even to non-ground queries in stable models engines. Moreover, our preliminary investigations showed that
most of the current answer set engines are not well-suited for data base applications since they do not offer
primitives for interfacing with databases, for instance, for importing and exporting relations or views. And,
in fact, in our first experiments it was necessary to write wrappers that interface the output of the answer set
engines and provides I/O functionalities. The DLV system, however, provides some interfacing modules to
automatically access a relational DBMS by means of standard ODBC calls, andmore importantly, provides
support for non-ground queries akin to our techniques. Still, the need for instantiating the logic program for
consistent query answering over large data sets makes the use of these systems unfeasible in practice.

Indeed, in a second set of experiments, we tested the scaling of DLV in answering non-ground queries.
Figure 10 reports the results for evaluating in DLV some non-ground queries on the two databasesSk

andSe. Interestingly, the support for non-ground queries appears to be quite powerful, since the system
scales well in the size of the input database for a fixed number of conflicts.However, the performance
is not suited for real database applications. In fact, for 15000 tuples it requires more than 200 seconds
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Figure 10: Execution time in DLV system w.r.t. size of the safe part, for different numbers of attributes in
relation. (a) One key. (b) One exclusion dependency.

for computing answers. Moreover, the curves rapidly increase if the number of attributes (arities of the
relations) grows. This behavior does not correspond to the intrinsic complexity of the problem instances,
which can be formally proven to be solvable in polynomial time.

In fact, a careful analysis of the execution time showed that most of the time spent by DLV is for in-
stantiating the logic program with the whole database. Hence, our localization approach to query answering
may help speed-up performances, by reducing the size of the program tobe instantiated in DLV and, hence,
the time needed for the execution.

E.2 3-Coloring

As a further example, we encoded the classical NP-complete graph 3-coloring problem into a con-
sistent query answering problem over a databaseS3c containing the relationsedge(Node,Node) and
colored(Node,Color), where the attributeNode is established to be the key forcolored . Then, for a database
D3c for S3c, we fixed a number of nodes and generated facts inedge producing a graph; moreover, for each
nodei in the affected part, we generated three facts:colored(i, red), colored(i, blue), colored(i, yellow).
ClearlyD3c is inconsistent with the key constraint on the relationcolored , and each node creates three con-
flicts. Moreover, in each repair ofD3c only one of the three facts involved in each constraint violation can
be maintained.

Now, consider the queryq ← edge(x, y), colored(x, C), colored(y, C). As easily seen, it evaluates to
true onD3c iff there is no legal 3-coloring for the graph inD3c.

We encoded the problem of establishing consistent answers to the queryq above over the relational
schemaS3c into a Datalog¬ program, according to the encoding proposed in [13].

Figure 11.(a) reports the execution time in DLV for different values of the size of the affected part, while
Figure 11.(b) reports the comparison with our approach. Again, the advantage of the localization technique
is evident when the size of the database increases.
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Figure 11: 3Coloring. (a) Execution time in DLV w.r.t. number of nodes (i.e., conflicts). (b) Comparison
with the optimization method.
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