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1 Introduction

TheSemantic Wefl, 7] aims at an extension of the current World Wide Web by standaditeghnologies
that help machines to understand the information on the Web so that they maortsticher discovery,
data integration, navigation, and automation of tasks. The main ideas behiredtd add a machine-
understandable meaning to Web pages, to use ontologies for a preciggatetif shared terms in Web
resources, to use KR technology for automated reasoning from Webreces, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, whe€@rtodogy layerin form of theOWL
Web Ontology Languad81, 13], is currently the highest layer of sufficient maturity. OWL cotssid three
increasingly expressive sublanguages, nan@WL Lite OWL DL, andOWL Full. OWL Lite and OWL
DL are essentially very expressive description logics with an RDF sydt#{x As shown in [12], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (unjisdtikty in the description
logic SHZF (D) (resp.,SHOZN (D)). On top of the Ontology layer, sophisticated representation and
reasoning capabilities for tHeules Logic, andProof layersof the Semantic Web are being developed next.

In particular, a significant body of recent research is trying to addedsey requirement of the layered
architecture of the Semantic Web, which is to integrate the Rules and the OntojegyHire, it is crucial
to allow for building rules on top of ontologies, that is, for rule-based systthat use vocabulary from
ontology knowledge bases. Another type of combination is to build ontologisspoof rules, which means
that ontological definitions are supplemented by rules or imported from fBiteh types of integration have
been realized in recent hybrid integrations of rules and ontologies timeléwose coupling, calledescrip-
tion logic programgor simply dl-programg, which have the fornrkB = (L, P), whereL is a description
logic knowledge base and is a finite set of rules involving queries 1o[4].

Other research efforts are directed towards formalism&i&mdling uncertainty and vagueness in the
Semantic Webwhich are motivated by important web and semantic web applications. Inudartiéor-
malisms for handling uncertainty are used in data integration, ontology magpiddgnformation retrieval,
while dealing with vagueness is motivated by multimedia information processimgpted and natural lan-
guage interfaces to the Web. There are several extensions of diesciggics and web ontology languages
by probabilistic uncertainty and fuzzy vagueness. Similarly, there aresateasions of description logic
programs by probabilistic uncertainty [14] and fuzzy vagueness &6, 1

Clearly, since uncertainty and vagueness are semantically quite différisritnportant to have a uni-
fying formalism for the Semantic Web, which allows for dealing with both ungestaand vagueness. But
even though there has been some important work in the fuzzy logic communiig tiréction [9], to date
there are no description logic programs that allow for handling both umerend vagueness.

In this paper, we try to fill this gap. We present a novel approach taigésa logic programs, where
probabilistic rules are defined on top of fuzzy rules, which are in turmddfon top of fuzzy description
logics. This approach allows for handling both probabilistic uncertaintyfanziy vagueness. Intuitively,
it essentially allows for defining several rankings on ground atoms usirgyfvagueness, and then for
merging these rankings using probabilistic uncertainty (by associating with raking a probabilistic
weight and building the weighted sum of all rankings). The main contribuaoass follows:

» We present probabilistic fuzzy description logic programs, which comgjriezzy description log-
ics, (ii) fuzzy logic programs (with stratified nonmonotonic negation), andgiigbabilistic uncer-
tainty in a uniform framework for the Semantic Web. Such programs allowdodling both proba-
bilistic uncertainty (especially for probabilistic ontology mapping and probaisiligata integration)
and fuzzy vagueness (especially for dealing with vague concepts).
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» We define important concepts dealing with both probabilistic uncertainty way fvagueness, such
as the expected truth value of a crisp sentence and the probability of @ sagtence.

» We also give algorithms for query processing in probabilistic fuzzy rijetsan logic programs, and
we delineate a special case where query processing has a polynotaiabdglexity (under suitable
assumptions about the underlying fuzzy description logics), which is an temgdeature for the Web.

» Furthermore, we describe a shopping agent example, which giveneeaf the usefulness of prob-
abilistic fuzzy description logic programs in realistic web applications.

The rest of this paper is organized as follows. Section 2 gives a motivetismgple. In Sections 3 and 4,
we recall combination strategies and fuzzy description logics. Sectionrteddfizzy dl-programs on top
of fuzzy description logics. In Sections 6 and 7, we define probabilisizyfull-programs and provide
algorithms for query processing in such programs. In Section 8, we d#&direspecial case where query
processing has a polynomial data complexity. Section 9 summarizes our mais eg®l gives an outlook
on future research.

2 Motivating Example

In this section, we describe a shopping agent example, where we @ecboth probabilistic uncertainty
(in resource selection, ontology mapping/query transformation, andrdatgation) and fuzzy vagueness
(in query matching with vague concepts).

Example 2.1 (Shopping Agent)Suppose a person would like to buy “a sports car that costs at most about
22 000€ and that has a power of around 150 HP”.

In todays Web, the buyer hasnmanually(i) search for car selling sites, e.g., using Google, (ii) select the
most promising sites (Fig. 1 shows an excerpt of such a sitdjtsep: / / www. aut os. con), (iii) browse
through them, query them to see the cars that they sell, and match the carswiluirements, (iv) select
the offers in each web site that match our requirements, and (v) eventuathe rakk the best offers from
each site and select the best ones.

It is obvious that the whole process is rathedliousandtime consumingsince e.g. (i) the buyer has to
visit many sites, (ii) the browsing in each site is very time consuming, (iii) findingitie information in
a site (which has to match the requirements) is not simple, and (iv) the wapws$img and querying may
differ from site to site.

A shopping agenitnay now support us as followaptomatizinghe whole selection process once it re-
ceives the request/ quegyfrom the buyer:

» Probabilistic Resource SelectionThe agent selects some sites/resourSethat it considers as
promising for the buyer’s request. The agent has to select a sulsmhefelevantresources, since it
is not reasonable to assume that it will access and query all the reséumen to him. The relevance
of a resources to a query is usually (automatically) estimated as the probalflity|S) (the prob-
ability that the information need represented by the ques/satisfied by the searching resouise
see e.g. [2, 8]). Itis not difficult to see that such probabilities can pesssed by probabilistic rules.

» Probabilistic Ontology Mapping/Query Reformulatiofror the topk selected sites, the agent has
to reformulate the buyer’s query using the terminology / ontology of theifspear selling site. For
this task, the agent relies on so-called transformation rules, which saychianslate a concept or
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Figure 1: A car shopping site

property of the agent’s ontology into the ontology of the information resu@nce the set of rules
is given, the query transformation is relatively easy. What is difficult isaon¢heontology mapping
rules automatically. This task is callemtology alignmenin the Semantic Web, and some tools for
this exist (e.g., oMap [27, 28]). Often, to relate a condépif the buyer’s ontology to a concefstof
the seller's ontology, one automatically estimates the probaldfljt|S) that an instance of is also
an instance oB3. For example, oMap represents such rules as probabilistic rules (sd2@ls

» Vague Query Matching.Once the agent has translated the buyer's request for the specific site’
terminology, the agent submits the query. But the buyer's request oftetains many so-called
vague /fuzzgoncepts such as “the prize is around 22€00r less”, rather than strict conditions, and
thus a car maynatchthe buyer’s condition to degree As a consequence, a site/resource /web ser-
vice may return a ranked list of cars, where the ranks depend on theede® which the sold items
match the buyer’s requesis

» Probabilistic Data Integration.Eventually, the agent has to combine the ranked lists (see e.g. [23])
by considering the matching degrees, that is, truth degrees (vagpandgsrobability degrees (un-
certainty) involved and show the topitems to the buyer.

3 Combination Strategies

Rather than being restricted to an ordinary binary truth value anfislsg andtrue, vague propositions
may also have a truth value strictly betwefadse andtrue. In the sequel, we use the unit intery@l1] as
the set of all possible truth values, whérand1 represent the ordinary binary truth valda$se andtrue,
respectively. For example, the vague proposition “John is a tall man” meyobe or less true, and it is thus
associated with a truth value |, 1], depending on the body height of John.

In order to combine and modify the truth values[in1], we assumeombination strategienamely,
conjunction disjunction implication, andnegation strategiesddenoted», @, t>, ando, respectively, which
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Table 1: Axioms for conjunction and disjunction strategies.

Axiom Name Conjunction Strategy Disjunction Strategy
Tautology / Contradiction a ® 0 =0 a®l=1

Identity a®l=a a®0=a

Commutativity a®b=0R®a adb=bDa
Associativity (a®@b)@c=a® (b®c) (a®b)@ec=a@ (bdc)
Monotonicity ifo<c,thena®@b<a®c fb<cthenadb<ade

Table 2: Axioms for implication and negation strategies.

Axiom Name Implication Strategy Negation Strategy
Tautology / Contradiction 0>b=1, a>1=1,1>0=0 ©0=1, 61=0
Antitonicity if a <bthena>c>b>c if a <b,thenoa>cSb
Monotonicity ifb<c, thena>b<arc

Table 3: Combination strategies of various fuzzy logics.

tukasiewicz Logic ~ @del Logic Product Logic ~ Zadeh Logic

a®b max(a+b—1,0) min(a, b) a-b min(a, b)

a®b min(a + b, 1) max(a, b) a+b—a-b max(a, b)
1 ifa<b

> b in(l-a+0b,1 . in(1,b 1—a,b

a min(l —a ) b otherwise min(1,b/a)  max(l —a,b)
1 ifa=0 1 ifa=0

©a 1—a . . 1—-a
0 otherwise |0 otherwise

are functionsg, &, >: [0,1] x [0,1] —[0,1] and&: [0, 1] — [0, 1] that generalize the ordinary Boolean
operators\, V, —, and—, respectively, to the set of truth valugs 1]. Fora, b€ [0, 1], we then calk ® b
(resp.,a @b, a > b) theconjunction(resp. disjunction implication) of a andb, and we calb a thenegation

of a. As usual, we assume that combination strategies have some natural ialgetyparties, namely, the
properties shown in Tables 1 and 2. Note that in Table 1, Tautology antadartion follow from Identity,
Commutativity, and Monotonicity. Conjunction and disjunction strategies (withrihyegoties in Table 1) are
also calledriangular normsandtriangular co-normg10], respectively. We do not assume properties that
relate the combination strategies to each other (such as de Morgan’s izem)tiiBugh one may additionally
assume such properties, they are not required here.

Example 3.1 The combination strategies of various well-known fuzzy logics are showalite 3.

4 Fuzzy Description Logics

In this section, we recall fuzzy generalizations of the description lo§itg (D) and SHOZN (D),
which stand behind OWL Lite and OWL DL, respectively; see especiallyd3416]. Intuitively, description
logics model a domain of interest in terms of concepts and roles, whichsexgirelasses of individuals resp.
binary relations between classes of individuals. A knowledge baselesao particular subset relationships
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(@) (b)

Figure 2: (a) Trapezoidal functiofrz(z; a, b, ¢, d), (b) triangular functioniri(x; a, b, ¢), (c) left shoulder
function L(z; a, b), and (d) right shoulder functioR(x; a, b).

between concepts, subset relationships between roles, the memberstdjvidiials to concepts, and the
membership of pairs of individuals to roles. In fuzzy description logicsdhelationships and memberships
then have a degree of truth oy 1].

We now describe the syntax and the semantics of flEZ 7 (D) and fuzzySHOZN (D) and il-
lustrate them through an example. For an implementation of f$22¢ 7 (D), the fuzzyDLsystem, see
http://gaia.isti.cnr.it/~straccia.

4.1 Syntax

The elementary ingredients are as follows. We assume a skttafvaluesa set ofelementary datatypes
and a set oflatatype predicate@ach with a predefined arity> 1). A datatypeis an elementary datatype
or a finite set of data values. fuzzy datatype theord = (AP, - P) consists of a datatype domaix®

and a mapping P that assigns to each data value an element'df to each elementary datatype a subset
of AP, and to each datatype predicate of aritya fuzzy relation over\P of arity n (that is, a mapping
(AP)™ — [0,1]). We extend P to all datatypes byfvy,...,v,}P ={vP,... vP1. For example, a crisp
unary datatype predicate;s over the natural numbers denoting the integers of at itistay be defined by
<ys(x)=1,if x <18, and<;¢(x) =0, otherwise. Then)Minor = PersonM3Jage. <15 defines a person of
age at most8. Non-crisp predicates are usually defined by functions for specifiyinzy set membership
degrees, such as the trapezoidal, the triangular, the left shouldeneanght shoulder functions (see Fig. 2).
For example, a fuzzy unary datatype predicaieing over the natural numbers denoting the degree of
youngness of a person’s age may be definedtyng(x) = L(z; 10, 30). Then, YoungPerson = Personl
Jage. Young denotes a young person.

Let A, R4, Rp, I, andM be pairwise disjoint sets @tomic conceptsabstract rolesconcrete roles
individuals andfuzzy modifiersrespectively. Note that fuzzy modifiern [11, 30] represents a func-
tion f,,: [0,1] — [0,1], which applies to fuzzy sets to change their membership function. For exam-
ple, we may have the fuzzy modifiersry and slightly, which represent the functiongry(z) =z and
slightly(x) = v/z, respectively. Then, the concept of sports cars may be definégcassCar = Car 11
dspeed.very(High), where High is a fuzzy datatype predicate over the domain of speed in km/h, which
may be defined aHigh(x) = R(x; 80, 250).

A role is any element oR, UR; URp (whereR, is the set ofinverseskR™ of all Rc R,). We
defineconceptdnductively as follows. Eachl € A is a concept,l. and T are concepts, and iy, ...,
an €1, then{a,, ..., a,} is a concept (calledneOy. If C, C, C; are conceptsRk, S€ R4 UR,, and
m € M, then(C, M Cy), (C1 U Cy), -C, andm(C') are concepts (callecbnjunction disjunction negation
andfuzzy modificatioyrespectively), as well asR.C', VR.C, >nS, and<n.S (calledexists value atleast
andatmost restrictionrespectively) for an integet > 0. If D is a datatype and’, 71, ..., T,, € Rp, then
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1, ..., T,.D,VT,...,T,.D, >nT, and<nT are concepts (calledatatype existsvalue atleast and
atmost restrictionresp.) for an integet>0. We eliminate parentheses as usual.

A crisp axiomhas one of the following forms: (1)’ C D (calledconcept inclusion axiojnwhereC'
andD are concepts; (2R C S (calledrole inclusion axion) where eithel?, Sc R4UR, or R, S € Rp;
(3) Trans(R) (calledtransitivity axionm), whereR € R 4; (4) C(a) (calledconcept assertion axionwhere
C'is a concept and €1I; (5) R(a,b) (resp.,U(a,v)) (calledrole assertion axiom whereR € R 4 (resp.,
UeRp)anda,b € I (resp.,a €I andv is a data value); and (&)= b (resp.,a # b) (equality (resp.,in-
equality) axiom), wherea, b € I. We definefuzzy axiomas follows: Afuzzy concept inclusiofresp. fuzzy
role inclusion fuzzy concept assertipfuzzy role assertigraxiomis of the forma 6 n, wherea is a concept
inclusion (resp., role inclusion, concept assertion, role assertionagie {<,=, >}, andn € [0, 1]. In-
formally, o < n (resp.,c =n, a > n) encodes that the truth value @fis at most (resp., equal to, at least)
We often usex to abbreviatex=1. A fuzzy (description logic) knowledge bakes a finite set of fuzzy
axioms, transitivity axioms, and equality and inequality axioms. For decidabilitpoer restrictions irl.
are restricted to simple abstract roles.

FuzzySHZF (D) has the same syntax as fuz8{OZN (D), but without the oneOf constructor and
with the atleast and atmost constructors limited end1.

Example 4.1 (Shopping Agent cont’d) The following axioms are an excerpt of the fuzzy description logic
knowledge basé that conceptualizes the site in Example 2.1:

Cars U Trucks Ll Vans U SUVs C Vehicles; Q)
PassengerCars L LuxuryCars T Cars; (2)
CompactCars LI MidSizeCars LI SportyCars = PassengerCars; 3)
Cars C (3hasReview.Integer) M (Jhaslnvoice.Integer) M (FhasHP.Integer)

M (JhasResellValue Integer) M (JhasSafetyFeatures.Integer) M ... ; 4
(SportyCar M (hasInvoice.{18883}) M (FhasHP.{166}) M ...)(MazdaMX5Miata); (5)
(SportyCar M (3haslnvoice.{20341}) M (FhasHP.{200}) M ...)( VolkswagenGTI); (6)
(SportyCar 1M (Shaslnvoice.{24029}) M (3hasHP .{162}) M ...)(MitsubishiES). (7)

Here, axioms (1)—(3) describe the concept taxonomy of the site, whilenafdd describes the datatype
attributes of the cars sold in the site. For example, every passenger oy keeuis also a car, and ev-
ery car has a resell value. Axioms (5)—(7) describe the propertiesroé sold cars. For example, the
MazdaMX5Miata is a sports car, costing 18 8&3 Note thainteger denotes the datatype of all integers.

We may now encode “costs at most about 22800and “has a power of around 150 HP” in the buyer’s
request through the following concegtsand D, respectively:

C = JhasInvoice. LeqAbout22000 and D = 3hasHP.Around150HP,

where LeqAbout22000=L(22000, 25000) and Around150HP=Tri(125, 150, 175) (see Fig. 2). The latter
two equations define the fuzzy concepts of “at most about 2ZD0@nd “around 150 HP”. The former

is modeled as a left shoulder function stating that if the prize is less than 22@00the degree of truth
(degree of buyer’s satisfaction) is else the truth is linearly decreasing to O (reached at the cost of 25 000).
In fact, we are modeling a case were the buyer would like to pay less thad02&ugh may still accept

a higher price (up to 25000) to a lesser degree. Similarly, the latter modelsznedoncept “around 150
HP” as a triangular function with vertice in 150 HP.
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4.2 Semantics

Concerning the semantics of fuz&HZ F(D) andSHOZN (D) [25], the main idea is that concepts and
roles are interpreted as fuzzy subsets of an interpretation’s domaincefdres concept inclusion, role
inclusion, concept assertion, and role assertion axioms, rather thandagisfied (true) or unsatisfied (false)
in an interpretation, have a degree of truth[inl]. In the sequel, we assume thaf @, >, ando are
some arbitrary but fixed conjunction, disjunction, implication, and negatiatesgfies, respectively. Aizzy
interpretationZ = (AZ, ) relative to a fuzzy datatype theoly = (AP, - P) consists of a nonempty set
AT (called thedomain), disjoint from AP, and afuzzy interpretation functiorf, which (i) coincides with
-D on every data value, datatype, and fuzzy datatype predicate, (ii) agsigrach modifiern € M its
modifier functionf,, : [0, 1] — [0, 1], and (iii) assigns

« to each individuak € I an element? € AZ;
» to each atomic concefit € A a functionC%: AT — [0, 1];
« to each abstract rol8 € R4 a functionR?: AT x AT — [0, 1];

» to each concrete rolf € Rp a function7?: AT x AP — [0, 1].

The mapping? is extended to all roles and concepts as follows (whegec AT):

Supyl,...,ynGAD (®?:1 nz(x7 yl)) & DD(y17 ce 7y’fl) )
infyl,...,ynGAD (®?:1 EI(:L., yl)) D DD(y17 ce 7yn) ‘

(S (m,y) = SHy2);
TI(z) = 1;
1%x) = 0;
I )1 if zc{a?,...,a,%};
la, - anf™ (@) = {0 otherwise
(C1 M Co) () Cif () ® Cot () ;
CLuC) () = CF(z)® Co¥(a);
(~C)Y(x) = oCH(x);
(m(C) (z) = fm(CE(x));
(FR.CY (x) = supyear R (z,y) ® CT(y);
(VR.C)I(Z‘) = inf caz R (z,y) > C%(y);
(QnS)I(x) = SUPyy,...yneAT, {y1,....yn}|=n ®?:1 SI(‘Tayi);
(<n5>I($) = infy1,-..,yn+16AI,\{y1,...,yn+1}|:n+1 @?illesz(x7yi)3
)" (z)
)" (z)

Note here that individuals are “crisply” interpreted, as opposed toegia@nd roles. The mapping is
extended to concept inclusion, role inclusion, concept assertionpémessertion axioms as follows:

(CLE Gyt = infenzr O/ () > Co¥ ()

(Ri C Ro)" = inf, year R (2,y) > Ro* (2, y);
(Tl C T2>§ = inf(a:,y)EAIXAD TlI(x7 y) > TQI(xa y) )
C(a = C%(a?);
<R(<afbgif — RIEaI,)bIm
Tz _ Z(,7 , D
(T(a,v)) - T (a , U )
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The notion of a fuzzy interpretatiofi satisfyinga transitivity, equality, inequality, or fuzzy axiorf,
or Z being amodelof E, denoted’ |= E, is defined as follows: (iY |= trans(R) iff RZ(z,y) > sup,caz
RY(z,2) ® RY(z,y) for all z,y € AZ; (i) Tl=a=0iff aZ =b", andT =a #b iff o #£b%; and (i) Z |=
afniff of On. We sayZ satisfiesa fuzzy knowledge bask, or 7 is amodelof L, denoted’ = L, iff Z is
a model of allE € L. We sayL is satisfiableiff L. has a model. A fuzzy axiomv' is alogical consequence
of L, denotedL = F, iff every model ofL satisfiesE. A fuzzy axioma > n is atight logical consequence
of L, denotedl =g a >, iff nis the supremum of: € [0, 1] subject tol = o > m.

Example 4.2 (Shopping Agent cont’d) The following fuzzy axioms are (tight) logical consequences of the
above description logic knowledge bakéunder the Zadeh semantics of the connectives):

C(MazdaMX5Miata) = 1.0, C(VolkswagenGTI) = 1.0, C(MitsubishiES) = 0.32,
D(MazdaMX5Miata) = 0.36, D(VolkswagenGTI) = 0.0, D(MitsubishiES) = 0.56.

5 Fuzzy Description Logic Programs

In this section, we define fuzzy dI-programs, which are similar to the fukpyagrams in [15], except that

they are based on fuzzy description logics as in [25], and that we @il stratified fuzzy dl-programs

here. Their canonical model associates with every ground atom a tduids, \zand so defines a ranking on
the Herbrand base. We first introduce the syntax, and we then defigertiantics of positive and stratified
fuzzy dl-programs in terms of a least model semantics resp. an iterativeriedsl semantics.

5.1 Syntax of Fuzzy Programs

Informally, a normal fuzzy program is a finite collection of normal fuzzigsywhich are similar to ordinary
normal rules, except that (i) they have a lower bound for their truth yand (i) they refer to fuzzy
rather than binary interpretations, and thus every of their logical opsristassociated with a combination
strategy to specify how the operator combines truth values. Formally, wenassfirst-order vocabulady
with nonempty finite sets of constant and predicate symbols, but no fungtioinats. We useb.. to denote
the set of all constant symbols in Let X be a set of variables. fermis a constant symbol fror or a
variable fromX’. If p is a predicate symbol of arity > 0 from &, andty, . . ., ¢, are terms, thep(¢q, . . ., tx)

is anatom A literal is an atonu or a default-negated atonvt a. A (normal) fuzzy rule- has the form

a4 =g, bl /\®1 b2 /\®2 e /\®k71 bk’/\®k

8

nOt@k-H bk+1 /\®k+1 “ N@,,q NOtg,, bm = v, ( )

wherem >k >0, a, bg1, ..., by, are atomsby, ..., by are either atoms or truth values frdm 1], ®o, . . .,
®pm—1 are conjunction strategiesy. .1, . . . , ©,, are negation strategies, and (0, 1]. We calla thehead

of r, denoted” (r), whileb; Ag, . . .Ag,, , nots,, b, is thebodyof r, andv is thetruth valueof . We denote
by B(r) the set of body literal8* (r)UB~(r), whereB* (r) = {b1,...,bx } andB~ (1) = {bgs1,- - -, b }-
We call a fuzzy rule of the form (8) fuzzy faciff m =0. A normal fuzzy progran® is a finite set of fuzzy
rules. We say thaP is positiveiff no fuzzy rule in P contains default-negated atoms.

5.2 Syntax of Fuzzy DL-Programs

Informally, a fuzzy dl-program consists of a fuzzy description logic\iealge basd. and a generalized
normal fuzzy progran®, which may contain queries tb. In such a query, it is asked whether a concept or
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a role assertion logically follows frorh or not (see [4] for more background and examples of such queries).
Formally, adl-queryQ(t) is either (a) of the fornC'(¢), whereC' is a concept, andis a term, or (b) of the
form R(t1,t2), whereR is arole, and; andt, are terms. All-atomhas the formDL[S1Wp1, ..., SpmWpm;
Q](t), where eacls; is an atomic concept or a rolg; is a unary resp. binary predicate symlp(t) is a dl-
query, andn > 0. We callp, ..., p,, its input predicate symboldntuitively, S; W p; encodes that the truth
value of everyS;(e) is at least the truth value @f(e), wheree is a constant (resp., pair of constants) frém
whenSs; is a concept (resp., role) (and thpds a unary (resp., binary) predicate symbol)fukzy dl-ruler

is of the form (8), where any; in the body ofr may be a dl-atom. Auzzy dl-progrank’B = (L, P) consists
of a satisfiable fuzzy description logic knowledge basand a finite set of fuzzy dl-ruleB. Substitutions
ground substitutiongground termsground atomsetc., are defined as usual. We denotg/tyund(P) the
set of all ground instances of fuzzy dl-rulesiihrelative tod.

Example 5.1 (Shopping Agent cont'd) A fuzzy dl-programk B = (L, P) is given by the fuzzy description
logic knowledge basé in Example 4.1, and the set of fuzzy dI-rul®s which contains only the following
fuzzy dl-rule encoding the buyer's request (wheras the Gdel conjunction strategy, that is,® y =

min(z,y)):

query(z) <«—g SportyCar(x) Ag hasInvoice(x,y1) Ag hasHP (z,y2)\g
DL[LegAbout22000](y1) Ng DL[Around150HP](y2) > 1.

5.3 Models of Fuzzy DL-Programs

We first define fuzzy interpretations, and the semantics of dl-querieshentfuth of fuzzy dl-rules and
dl-programs in such interpretations. In the sequelKiBt= (L, P) be a (fully general) fuzzy dl-program.

We useHBg (resp.,HUg) to denote the Herbrand base (resp., universe) dvein the sequel, we
assume that/Bg is nonempty. Afuzzy interpretatiorn/ is a mappingl/ : HBg — [0, 1]. We write HBg
to denote the fuzzy interpretatidnsuch that/ (a) =1 for all a € HBg. For fuzzy interpretation$ and J,
we write I C J iff I(a) < J(a) for all a € HBg, and we define thantersectionof I and.J, denoted/ N J,
by (INJ)(a) = min(I(a),J(a)) for all a € HBg. Note that! C HBg for all fuzzy interpretationd.
The truth value ol € HB4 in I underL, denoted/,(a), is defined ad (a). The truth value of a ground
dl-atoma = DL[S1 W p1,...,Sm W pm; Q](c) in I underL, denotedl,(a), is the supremum of subject
to LU J", Ai(I) = Q(c) > v andv €0, 1], where

Ai(I) = {Si(e) = I(pi(e)) | I(pi(e)) >0, pi(e) € HBo} .
We sayI is amodelof a ground fuzzy dl-rule- of form (8) underL, denoted ., r, iff
Ir(b1) @1 Ir(b2) ®2 -+ Qp—1 I1(bk) R ifm>1;

Ip(a) > Okt1 11 (bky1) @kt1 - Dm—1 Om I (bpy) ®o v
v otherwise.

We say! is amodelof KB = (L, P), denotedl = KB, iff I =, r for all » € ground(P).

5.4 Semantics of Positive Fuzzy DL-Programs

We now define the semantics of positive fuzzy dI-programs, which amy fdlzprograms without default
negation: A fuzzy dl-progrank B = (L, P) is positiveiff P is “not"-free.
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For ordinary positive programs, as well as positive dl-progrés the intersection of two models of
KB is also a model of(B. A similar result holds for positive fuzzy dl-programi&3. Hence, every positive
fuzzy dl-programK B has as itcanonical mode& unique least model, denotédy g, which is contained
in every model ofKB.

Example 5.2 (Shopping Agent cont’d) The fuzzy dI-programkB = (L, P) of Example 5.1 is positive,
and its minimal modelM kg is given as follows:

Mgp(query(MazdaMX5Miata)) = 0.36, Mgp(query(MitsubishiES)) = 0.32,

and all other ground instances @fery(x) have the truth valué underM k5.

5.5 Semantics of Stratified Fuzzy DL-Programs

We next define stratified fuzzy dl-programs, which are informally comgho$dierarchic layers of positive
fuzzy dl-programs that are linked via default negation. Like for ordirsratified programs, as well as
stratified dl-programs, a minimal model can be defined by a finite number diveeteast models, which
naturally describes as tlianonical modethe semantics of stratified fuzzy dI-programs.

For any fuzzy dl-progranikB = (L, P), let DLp denote the set of all ground dl-atoms that occur in
ground(P). An input atomof a € DLp is a ground atom with an input predicatecofnd constant symbols
in ®. A stratification of KB = (L, P) (with respect taDLp) is a mapping\: HBe U DLp —{0,1, ...k}
such that

(i) MH(1)) =X a) (resp. A(H(r)) > Xa)) for eachr € ground(P) anda € BT (r) (resp.,a € B~ (r)),
and

(i) A(a) = \(a) for each input atom’ of eacha € DLp,

wherek > 0 is thelengthof \. Fori € {0,...,k}, we defineKB; = (L, P;) = (L,{r € ground(P) |
A(H(r)) = i}), and we defindiBp, (resp.,HB},) as the set of alb € HBg such that\(a) =1 (resp.,
Aa) <i).

A fuzzy dl-programk B = (L, P) is stratifiediff it has a stratificatiom\ of some lengttk > 0. We define
its iterative least modeld/; C HB4 with i € {0, ..., k} by:

(i) My is the least model oK By,

(ii) if >0, then); is the least model oK B; such thaMﬂHB;i_l = i_1|HB}i_1, whereM”HB}i_1
andM;_1|HB?}, | denote the restrictions of the mappings andM;_; to HB}, |, respectively.

Then, Mg denotesM,. Note thatM kg is well-defined, since it does not depend on a particular stratifica-
tion A\. FurthermoreM g5 is in fact a minimal model oK B.

6 Probabilistic Fuzzy Description Logic Programs

In this section, we introduce probabilistic fuzzy dl-programs as a combinaftstnatified fuzzy di-programs
with Poole’s independent choice logic (ICL) [21]. This will allow us to egs probabilistic rules. Poole’s
ICL is based on ordinary acyclic logic programsunder different “atomic choices”, where each atomic
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choice along withP produces a first-order model, and one then obtains a probability distriboriadhe
set of first-order models by placing a probability distribution on the diffea¢omic choices. Here, we use
stratified fuzzy dl-programs rather than ordinary acyclic logic programd,thus we define a probability
distribution on a set of fuzzy interpretations. In other words, we defip@lability distribution on a set of
rankings on the Herbrand base.

6.1 Syntax

We now define the syntax of probabilistic fuzzy dI-programs and probtbitisieries addressed to them.
We first introduce fuzzy formulas, query constraints, and probabilistin@ilas, and we define choice spaces
and probabilities on choice spaces.

We defingfuzzy formula®y induction as follows. The propositional constdiaiseandtrue, denotedL
andT, respectively, and all atomst1, ..., t;) are fuzzy formulas. If» andv are fuzzy formulas, and,

@, >, ando are conjunction, disjunction, implication, resp. negation strategies,(theg, ), (¢ Vg 1),

(¢ =), and—g ¢ are also fuzzy formulas. Auery constrainhas the form(¢ 0 r)[l, u| or (E[¢])[l, u]

with 0 € {>, >, <, <}, r,l,u€0,1], and fuzzy formulas. Informally, the former asks for the interval
of the probability that the truth value of ¢ satisfiesv 8 r, while the latter asks for the interval of the
expected truth value af. We defingprobabilistic formulasnductively as follows. Each query constraint is
a probabilistic formula. I andG are probabilistic formulas, then alsd” and(F' A G). We use(F'V G)
and(F = G) to abbreviate-(—F A =G) and—(F A —~@G), respectively, and eliminate parentheses as usual.

A choice spacé’ is a set of pairwise disjoint and nonempty s&tS HBg. Any A € C'is analternative
of C and anya € A an atomic choiceof C. Intuitively, every A € C represents a random variable and
everya € A one of its possible values. #tal choiceof C is a setB C HBg such that B N A| =1 for all
A € C. Intuitively, every total choice3 of C' represents an assignment of values to all the random variables.
A probability + on a choice spac€ is a probability function on the set of all total choices(af Intuitively,
every probabilityu is a probability distribution over the set of all variable assignments. Sihaad all its
alternatives are finitgy can be defined by (i) a mapping |JC — [0, 1] such thad ", . , s(a) =1 for all
AeC,and (i) u(B) =1y gu(b) for all total choicesB of C. Intuitively, (i) defines a probability over the
values of each random variable @f and (ii) assumes independence between the random variables.

A probabilistic fuzzy dl-progrank B = (L, P, C, i) consists of a stratified fuzzy dl-prografh, P), a
choice spac&” such that (i) JC C HBg and (ii) no atomic choice i’ coincides with the head of any
fuzzy dl-rule inground(P), and a probability: on C. Intuitively, since the total choices 6f select subsets
of P, andy is a probability distribution on the total choices @f every probabilistic fuzzy dl-program
is the compact representation of a probability distribution on a finite set dffigitiafuzzy dl-programs.

A probabilistic queryto KB has the formiF’, or3(a 0 r)[L, U], or 3(E[«a])[L, U], whereF' is a probabilistic
formula,« is a fuzzy formulasy € [0, 1], and L, U are variables.

Example 6.1 (Shopping Agent cont’d) A probabilistic fuzzy dl-progrankB = (L, P, C, 1) is given byL
of Example 4.1, the following set of fuzzy dl-rulg® which model the query reformulation and retrieval
steps using ontology mapping rules:

query(x) g SportsCar(x) Ag hasPrize(x,y1) Ag hasPower(z,y2) Ag

DL[LeqAbout22000](y1) Ng DL[Around150HP](y2) > 1, 9
SportsCar(z) <«g DL[SportyCar](z) Ag sCpos = 0.9, (10)
hasPrize(x) <« DLhasInvoice](x) Ag hipos = 0.8, (11)

hasPower(x) <« DL[hasHP|(x) Ag hhp,,s > 0.8, (12)
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the choice space' = {{s¢pos, SCneg }, { Hiposs Pineg }> {PAPpos, hhpyey }}, @nd the probability distribution,
which is given by the following probabilities for the atomic choices (and theéengbed to all total choices
by assuming independence):

1(5Cpos) = 0.91, p(Scneg) = 0.09,  p(hipes) = 0.78,
(i hineg) = 0.22, p(hhppys) = 0.83, pu(hhp,e,) = 0.17.

Rule 9 is the buyer’s request, but in a “different” terminology than the étigeccar selling site. Rules 10-12
are so-called ontology alignment mapping rules. For example, rule 10 statekelpredicate “SportsCar”
of the buyer’s terminology refers to the concept “SportyCar” of thecseteside, with probabilitp.91. Such
mapping rules can be automatically built by relying on ontology alignment toot$, ast oMap [27, 28],
whose main purpose is to find relations among the concepts and roles of ferelifontologies. oMap
is particularly suited for our case, as it is based on a probabilistic modelthasckthe mappings have a
probabilistic reading (see also [20]).

6.2 Semantics

A world I is a fuzzy interpretation ovellBg. We denote byZg the set of all worlds ove®. A variable
assignment maps each¥ € X' to somet € HU 3. It is extended to all terms hy(c) = ¢ for all constant
symbolsc from ®. The truth valueof fuzzy formulase in I undero, denotedl,(¢) (or I(¢) when ¢
is ground), is inductively defined by (1) (¢ Ag V) =1,(¢) ® I5(¢), (2) Io(¢ Ve ) =1,(¢) & 1,(¢)),
@) Lo (¢ =) =1(d) > I, (), and (4),(—e9) = © I5(),

A probabilistic interpretationPr is a probability function oy (that is, a mapping®r: Zg — [0, 1]
such that (i) the set of all € Zs with Pr(I)>0 is denumerable, and (ii) alPr(I) with I € Zg sum
up to 1). Theprobability of a formula¢ 6 r in Pr under a variable assignmeat denotedPr, (¢ 0 r)
(or Pr(¢6r) when g is ground), is the sum of alPr(I) such thatl € Zs andI,(¢) 0 r. The expected
truth valueof a formula¢ under Pr and o, denotedE p, ,[¢], is the sum of allPr(I) - I,(¢) such that
I € Zy. Thetruth of probabilistic formulagt’ in Pr undero, denotedPr =, F, is inductively defined by
(1) Pr=o (¢07)[Lu] iff Pro(667) € [l u], 2) Pr = (E[9])[L u] iff Epro[d] €[l,u], (3) Pri=q ~F iff
not Pr =, F, and (4)Pr =, (F A G) iff Pr =, F andPr =, G.

A probabilistic interpretatiorPr is amodelof a probabilistic formulal” iff Pri=,F for every variable
assignment. We sayPr is thecanonical modebf a probabilistic fuzzy dl-programkB = (L, P, C, ) iff
every world! € Zg with Pr(I) >0 is the canonical model dfL, P U {p < | p € B}) for some total choice
B of C such thatPr(I) = u(B). Notice that everykB has a unique canonical modBt. We sayF' is a
consequencef KB, denotedkB |k F, iff the canonical model ok B is also a model of". A query con-
straint(¢ 6 7)[l, u] (resp.,(E[¢])[!, u]) is atight consequencef KB, denotedK B |~ ., (¢ 07)[L, u] (resp.,
KB | yign (E[9]) [l u]), iff I (resp.,u) is the infimum (resp., supremum) &t (¢ 6r) (resp.,Ep; +[¢))
subject to the canonical modet of KB and allo. A correct answeto 3F' is a substitutiorr such thatt'o
is a consequence dfB. A tight answerto 3(a0r)[L, U] (resp.,3(E[«a])[L, U]) is a substitutiors such
that(a 6 r)[L,Ulo (resp.,(E[a])[L, Ulo) is a tight consequence &fB.

Example 6.2 (Shopping Agent cont'd) The following are some tight consequences of the probabilistic
fuzzy dl-programkB = (L, P, C, 1) in Example 6.1:
(E[query(MazdaMX5Miata)])[0.21,0.21], (E[query(MitsubishiES)])[0.19,0.19].

So, the shopping agent ranks th&zda M X5Miata first with degreed.21 (= 0.36 - 0.91 - 0.78 - 0.83) and
the MitsubishiES second with degre@ 19 (= 0.32 - 0.91 - 0.78 - 0.83).
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7 Query Processing in Probabilistic Fuzzy DL-Programs

The canonical model of an ordinary positive resp. stratified normgkrpm KB, as well as of a positive resp.
stratified dl-progranB has a well-known fixpoint characterization in terms of an immediate conseguen
operatorT’xg, which generalizes to fuzzy dl-programs. This can be exploited for arhatim computation

of the canonical model of a positive resp. stratified fuzzy dl-programd, taus for query processing in
probabilistic fuzzy dl-programs.

7.1 Positive Fuzzy DL-Programs

We first define the immediate consequence operator for fuzzy dl-prsgraor any fuzzy dl-program
KB = (L, P), we define the operatdfxz on the subsets al{Bg4 as follows. For every C HBg and
a€ HBg, letTkp(I)(a) be the maximum of subject tor € ground(P), H(r) = a, andv being the truth
value ofr’s body under/ and L. If there is no such rule, thenTxp(I)(a) =0.

The following lemma shows that for positive fuzzy dl-prograiiB, the operatofl k3 is monotonic,
thatis,/ C I' C HBg impliesTxp(I) C Tkp(I'). This result follows immediately from the fact that
every dl-atom and every conjunction strategyinund(P) is monotonic.

Lemma 7.1 Let KB = (L, P) be a positive fuzzy dl-program. Then, the operdtgp is monotonic.

The next result gives a characterization of the pre-fixpoint€gf, which coincide with the models
of KB. We recall here that C HBg is a pre-fixpoint ofl'xp iff Txp(I) C I.

Proposition 7.2 Let KB = (L, P) be a positive fuzzy dl-program. ThenZ HBg is a pre-fixpoint ofl x5
iff I is a model ofKB.

Since every monotonic operator has a least fixpoint, which coincides withai$$ fee-fixpoint, we
immediately obtain as a corollary that al$@p has a least fixpoint, denotéfh(Txp), and that this least
fixpoint is given by the least model @fB.

The next result shows that the least fixpoinflafz can be computed by a finite fixpoint iteration A3
is closedunder a finite set of truth valueBV C [0, 1] (with | TV| > 2), which means that (i) each datatype
predicate inKB is interpreted by a mapping t8'V, (ii) each fuzzy modifiern in KB is interpreted by
a mappingf,,: TV — TV, (iii) each truth value inKB is from TV, and (iv) each combination strategy
in KB is closed undefl'V (note that the combination strategies of Lukasiewicad&, and Zadeh Logic are
closed under ever§'v,, = {0, L, ..., 2} with n > 0). Note that for every C HBg, we definel; (1) = I,
if i =0, andTig(I) = Tkp(Tip (1)), if i > 0.

Theorem 7.3 Let KB = (L, P) be a positive fuzzy dl-program that is closed under a finite set of truthsalue
TV C[0,1] (with|TV|>2). Then,lfp(Txp) = Mkp. Furthermore,fp(Tkp) = Ui Ty (0) =Tr5(0),
for somen > 0.

7.2 Stratified Fuzzy DL-Programs

We finally describe a sequence of finite fixpoint iterations for stratifie@yfud-programs. Using The-
orem 7.3, we can characterize the answer/detz of a stratified fuzzy dl-progrankB = (L, P) by a
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sequence of finite fixpoint iterations along a stratificatiork@f as follows. Let the operat(‘il'?}'@ on inter-
pretations]/ C HBg be defined byl's; (1) = Tip(I) U I, for alli > 0. Here,IU J for I,J C HBg
denotes thenionof I and.J, which is defined by/ U J)(a) = max(I(a), J(a)) for alla € HBs.

Theorem 7.4 Let KB = (L, P) be a fuzzy dI-program with stratificationof lengthk > 0. Suppose thak'B
is closed under a finite set of truth valugs” C [0, 1] (with | TV > 2). LetM; C HBg,i€{-1,0,...,k},
by M_1 =0, andM; = T}éjgi(Mi_l) for each: > 0, wheren; > 0 such thatF}}iBi (M;—1) = T}}"Btl(Mi_l).
Then,Mk =Mkgp.

7.3 Probabilistic Fuzzy DL-Programs

Fig. 3 shows Algorithm canonicahodel, which computes the canonical model of a given probabilistic
fuzzy dl-programKB = (L, P, C, ). This algorithm is essentially based on a reduction to computing the
canonical model of stratified fuzzy dl-programs (see line 2), which @awnldne using the above finite
sequence of finite fixpoint iterations.

Algorithm canonical_model

Input: probabilistic fuzzy dI-progrankB = (L, P, C, ).
Output: canonical modePr of KB (represented a1, Pr(I))|I € Zs, Pr(I)>0}).

1. for every total choiceB of C' do begin

2. compute the canonical modebf the stratified fuzzy dl-progrartiL, P U {p < | p € B});
3. Pr(I):=u(B);

4. end

5. return Pr.

Figure 3: Algorithm canonicamnodel

Algorithm tight answer in Fig. 4 computes the tight answet {L/l,U/u} for a given probabilistic
query@=3(a0r)[L,U] (resp.,Q =3(E[a])[L, U]) to a given probabilistic fuzzy dl-progratiB. The
algorithm first computes the canonical modelfoB in line 1 and then the tight answée{L/l, U/u} in
lines 2-8.

8 Tractability Results

Deciding whether a knowledge baseS#ZF (D) (resp..SHOZN (D)) is satisfiable is complete for the
complexity class EXP (resp., NEXP, assuming unary number encodingi®eand the NEXP-hardness
proof for ALC QT in [29], which implies the NEXP-hardness 8fHOZN (D)). Recall that EXP (resp.,
NEXP) is the class of all decision problems that can be solved in expongmigabn a deterministic (resp.,
nondeterministic) Turing machine. Hence, also deciding whether a moreagénezy knowledge base in
fuzzy SHZF (D) (resp., fuzzySHOZN (D)) is satisfiable is hard for EXP (resp., NEXP). Since the latter
can be done via dl-queries in probabilistic fuzzy dl-programs, it thus fallthvat query processing from
probabilistic fuzzy dl-programs is in general intractable.
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Algorithm tight _answer

Input: probabilistic fuzzy dl-progrankB = (L, P, C, 1) and
probabilistic queny@ = 3(a 0 r)[L, U] (resp.,Q = I(E[a])[L, U]).

Output: tight answel = {L/l, U/u} for Q to KB.

Pr := canonicalmode( KB);
l:=1;
u:=0;

for every ground instance’ of « do begin

I := min(l, Pr(a’ 071)); (resp.l := min(l, E[a/]);)

w := max(u, Pr(a’ 01)); (resp.,u := max(u, E[a']);)
end;
return 6 ={L/l,U/u}.

©ONoOGOA~LNE

Figure 4: Algorithm tightanswer

In this section, we describe a special class of stratified probabilistic fulzgyogramsKB for which
query processing has a polynomial data complexity. These programgfaredirelative tduzzy DL-Lite
[26], which is a fuzzy generalization of the description lo@it-Lite [3]. By [26] (resp., [3]), deciding
whether a knowledge base DL-Lite (resp.,fuzzy DL-Litg is satisfiable can be done in polynomial time,
and conjunctive query processing from a knowledge ba&d Hhite (resp.,fuzzy DL-Lit¢ has a polynomial
data complexity.

We first recallDL-Lite andfuzzy DL-Lite Let A, R 4, andI be pairwise disjoint sets of atomic concepts,
abstract roles, and individuals, respectivelybd@sic concept in fuzzy DL-Lite either an atomic concept
from A or an exists restriction on roles?. T (abbreviated asR), whereRc R4 UR . A literal in DL-
Lite is either a basic conceptor the negation of a basic concepli. Concepts in DL-Liteare defined by
induction as follows. Every basic conceptDi-Lite is a concept irDL-Lite. If b is a basic concept in
DL-Lite, and¢; and ¢y are concepts iDL-Lite, then—b and ¢ M ¢, are also concepts iBL-Lite. An
axiom in DL-Liteis either (1) a concept inclusion axiolvi ¢/, whereb is a basic concept iDL-Lite, and
¢ is a concept irDL-Lite, or (2) afunctionality axiom(funct R), whereR € R4 UR, or (3) a concept
assertion axiomh(a), whereb is a basic concept iDL-Lite anda € I, or (4) a role assertion axiol(a, c),
whereR€ R4 anda,ce 1. A fuzzy concepfresp.,role) assertion axionis of the formb(a) >n (resp.,
R(a,c) >n), whereb(a) (resp.,R(a, c)) is a concept (resp., role) assertion axionDir-Lite, andn € (0, 1].

A fuzzy axiom in DL-Lités either a fuzzy concept assertion axiom or a fuzzy role assertion aidozzy
knowledge base in DL-Lité is a finite set of concept inclusion, functionality, fuzzy concept assertio
and fuzzy role assertion axioms BL-Lite. Like in [26], we here assume thatis interpreted using the
combination strategies of Zadeh Logic.

We are now ready to define probabilistic fuzzy dI-progranislinLite as follows. We say that a fuzzy dI-
programKB = (L, P) is defined irDL-Liteiff (i) KB is closed undef’'V,, = {0, %, ..., ~} forsomen >0,

(i) KB is stratified, (iii) L is defined irDL-Lite, and (iv) P contains only dl-queries of the forfL[\; Q](t),
where() is either a concept or a role. Note that we assume that the absvan explicit part ofKB. We

say that a probabilistic fuzzy dl-prografB = (L, P, C, i) is in DL-Lite iff (L, P U {p < | p€ B})isin
DL-Lite for every total choicé3 of C. The following theorem shows that for probabilistic fuzzy dI-programs
in DL-Lite KB = (L, P, C, ), computing the tight answer to a ground probabilistic query has a polynomial
data complexity.

Theorem 8.1 Let KB = (L, P,C, i) be a probabilistic fuzzy dI-program iDL-Lite, and let@ = 3(« 6
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r)[L, U] (resp.,@Q =3(E[a])[L,U]) be a ground probabilistic query. Then, computing the tight answer
0={L/1,U/u} for Q to KB has a polynomial data complexity.

9 Summary and Outlook

We have presented probabilistic fuzzy dI-programs for the Semantic Weibhallow for handling both
probabilistic uncertainty (especially for probabilistic ontology mapping atgiilistic data integration)
and fuzzy vagueness (especially for dealing with vague conceptsiificara framework. We have defined
important concepts related to both probabilistic uncertainty and fuzzy wagse We have then provided
algorithms for query processing in such programs, and we have alsealeliha special case where query
processing has a polynomial data complexity. Finally, we have describezbaiag agent example, which
gives evidence of the usefulness of probabilistic fuzzy dI-programesilistic web applications.

An interesting topic of future research is to generalize probabilistic fukpyajrams by non-stratified
default negations, classical negations, and disjunctions.

References

[1] T. Berners-LeeWeaving the WelHarper, San Francisco, 1999.

[2] J. Callan. Distributed information retrieval. In W. B. Croft, editAdvances in Information Retrieval
pp. 127-150. Kluwer, Hingham, MA, USA, 2000.

[3] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rdd&tiLite: Tractable description
logics for ontologies. IfProc. AAAI-2005pp. 602—-607, 2005.

[4] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combiningwaer set programming with
description logics for the Semantic Web. Broc. KR-2004 pp. 141-151, 2004. Extended Report
RR-1843-07-04, Institutifr Informationssysteme, TU Wien, 2007.

[5] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-foethdemantics for description logic
programs in the Semantic Web. Rroc. RuleML-2004pp. 81-97, 2004.

[6] T. Eiter, G. lanni, R. Schindlauer, H. Tompits. Effective integratidémleclarative rules with external
evaluations for semantic-web reasoningPhoc. ESWC-20060p. 273-287, 2006.

[7] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, edit8pinning the Semantic Web: Bringing
the World Wide Web to Its Full PotentidWlIT Press, 2002.

[8] N. Fuhr. A decision-theoretic approach to database selection in naad/dR. ACM Transactions on
Information System$(17):229-249, 1999.

[9] T. Flaminio and L. Godo. A logic for reasoning about the probabilitywfdy eventsFuzzy Sets and
Systemsl158(6):625-638, 2007.

[10] P. Hajek. Metamathematics of Fuzzy Logi€luwer, 1998.

[11] S. Holldobler, H.-P. Sbrr, and T. D. Khang. The subsumption problem of the fuzzy descrijigic
ALCFy. InProc. IPMU-2004 pp. 243-250, 2004.

[12] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailmet¢saription logic satisfiability. In
Proc. ISWC-2003pp. 17-29, 2003.



INFSYS RR 1843-07-02 17

[13] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. &#fHiQ and RDF to OWL: The making
of a web ontology languagd. Web Sem1(1):7-26, 2003.

[14] T. Lukasiewicz. Probabilistic description logic programs. Froc. ECSQARU-20Q5p. 737-749,
2005. Extended version int. J. Approx. Reason2007. In press.

[15] T. Lukasiewicz. Fuzzy description logic programs under the anseesemantics for the Semantic
Web. InProc. RuleML-2006pp. 89-96, 2006. Extended version accepted for publicatidGtuida-
menta Informaticae

[16] T. Lukasiewicz and U. Straccia. An overview of uncertainty anguemess in description logics for
the Semantic Web. Technical Report INFSYS RR-1843-06-07, Institunformationssysteme, TU
Wien, October 2006.

[17] H. Nottelmann and U. Straccia. Information retrieval and machine ilegufior probabilistic schema
matching. InProc. CIKM-2005 pp. 295-296, 2005.

[18] H. Nottelmann and U. Straccia. A probabilistic approach to schema mgtchirProc. ECIR-2005
pp. 81-95, 2005.

[19] H. Nottelmann and U. Straccia. A probabilistic, logic-based framev@riautomated web directory
alignment. In Z. Ma, editorSoft Computing in Ontologies and the Semantic Weltume 204 of
Studies in Fuzziness and Soft Computpy 47-77. Springer, 2006.

[20] H. Nottelmann and U. Straccia. Information retrieval and machine ilegufior probabilistic schema
matching.Information Processing & Manageme2007. To appear.

[21] D. Poole. The independent choice logic for modelling multiple agentsmumacertainty Artif. Intell.,
94(1-2):7-56, 1997.

[22] D. Poole. Logic, knowledge representation, and Bayesian dacik&ory. InProc. CL-2000 pp.
70-86, 2000.

[23] M. E. Renda and U. Straccia. Web metasearch: Rank vs. sesestlvank aggregation methods. In
Proc. SAC-2003pp. 841-846, 2003.

[24] U. Straccia. Towards a fuzzy description logic for the Semantic Vigedlitninary report). InProc.
ESWC-2005pp. 167-181, 2005.

[25] U. Straccia. A fuzzy description logic for the Semantic Web. In E.cBam, editorFuzzy Logic and
the Semantic WelCapturing Intelligence, chapter 4, pp. 73-90. Elsevier, 2006.

[26] U. Straccia. Fuzzy description logic programs Pioc. IPMU-2006 pp. 1818-1825, 2006.

[27] U. Straccia and R. Troncy. oMAP: Combining classifiers for aligrangpmatically OWL ontologies.
In Proc. WISE-2005pp. 133-147, 2005.

[28] U. Straccia and R. Troncy. Towards distributed information rettigvéhe Semantic Web. [iProc.
ESWC-2006pp. 378-392, 2006.

[29] S. Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Reptaton PhD
thesis, RWTH Aachen, Germany, 2001.

[30] C. Tresp and R. Molitor. A description logic for vague knowledgePtoc. ECAI-1998pp. 361-365,
1998.

[31] W3C. OWL web ontology language overview, 2004. W3C Recommigmmdéfl0 Feb. 2004). Available
atwww.w3.0rg/TR/2004/REC-owl-features-20040210/.



