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Abstract. This paper is directed towards an infrastructure for handling both uncertainty and vague-
ness in the Rules, Logic, and Proof layers of the Semantic Web. More concretely, we present proba-
bilistic fuzzy description logic programs, which combine fuzzy description logics, fuzzy logic pro-
grams (with stratified nonmonotonic negation), and probabilistic uncertainty in a uniform framework
for the Semantic Web. We define important concepts dealing with both probabilistic uncertainty and
fuzzy vagueness, such as the expected truth value of a crisp sentence and the probability of a vague
sentence. We then provide algorithms for query processing in probabilistic fuzzy description logic
programs, and we also delineate a special case where query processing has a polynomial data com-
plexity. Furthermore, we describe a shopping agent example, which gives evidence of the usefulness
of probabilistic fuzzy description logic programs in realistic web applications.
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1 Introduction

TheSemantic Web[1, 7] aims at an extension of the current World Wide Web by standards and technologies
that help machines to understand the information on the Web so that they can support richer discovery,
data integration, navigation, and automation of tasks. The main ideas behind it are to add a machine-
understandable meaning to Web pages, to use ontologies for a precise definition of shared terms in Web
resources, to use KR technology for automated reasoning from Web resources, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where theOntology layer, in form of theOWL
Web Ontology Language[31, 13], is currently the highest layer of sufficient maturity. OWL consists of three
increasingly expressive sublanguages, namely,OWL Lite, OWL DL, andOWL Full. OWL Lite and OWL
DL are essentially very expressive description logics with an RDF syntax [13]. As shown in [12], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the description
logic SHIF(D) (resp.,SHOIN (D)). On top of the Ontology layer, sophisticated representation and
reasoning capabilities for theRules, Logic, andProof layersof the Semantic Web are being developed next.

In particular, a significant body of recent research is trying to address a key requirement of the layered
architecture of the Semantic Web, which is to integrate the Rules and the Ontology layer. Here, it is crucial
to allow for building rules on top of ontologies, that is, for rule-based systems that use vocabulary from
ontology knowledge bases. Another type of combination is to build ontologies on top of rules, which means
that ontological definitions are supplemented by rules or imported from rules. Both types of integration have
been realized in recent hybrid integrations of rules and ontologies underthe loose coupling, calleddescrip-
tion logic programs(or simplydl-programs), which have the formKB = (L,P ), whereL is a description
logic knowledge base andP is a finite set of rules involving queries toL [4].

Other research efforts are directed towards formalisms forhandling uncertainty and vagueness in the
Semantic Web, which are motivated by important web and semantic web applications. In particular, for-
malisms for handling uncertainty are used in data integration, ontology mapping,and information retrieval,
while dealing with vagueness is motivated by multimedia information processing / retrieval and natural lan-
guage interfaces to the Web. There are several extensions of description logics and web ontology languages
by probabilistic uncertainty and fuzzy vagueness. Similarly, there are alsoextensions of description logic
programs by probabilistic uncertainty [14] and fuzzy vagueness [26, 15].

Clearly, since uncertainty and vagueness are semantically quite different,it is important to have a uni-
fying formalism for the Semantic Web, which allows for dealing with both uncertainty and vagueness. But
even though there has been some important work in the fuzzy logic community in this direction [9], to date
there are no description logic programs that allow for handling both uncertainty and vagueness.

In this paper, we try to fill this gap. We present a novel approach to description logic programs, where
probabilistic rules are defined on top of fuzzy rules, which are in turn defined on top of fuzzy description
logics. This approach allows for handling both probabilistic uncertainty andfuzzy vagueness. Intuitively,
it essentially allows for defining several rankings on ground atoms using fuzzy vagueness, and then for
merging these rankings using probabilistic uncertainty (by associating with each ranking a probabilistic
weight and building the weighted sum of all rankings). The main contributionsare as follows:

• We present probabilistic fuzzy description logic programs, which combine(i) fuzzy description log-
ics, (ii) fuzzy logic programs (with stratified nonmonotonic negation), and (iii)probabilistic uncer-
tainty in a uniform framework for the Semantic Web. Such programs allow for handling both proba-
bilistic uncertainty (especially for probabilistic ontology mapping and probabilistic data integration)
and fuzzy vagueness (especially for dealing with vague concepts).
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• We define important concepts dealing with both probabilistic uncertainty and fuzzy vagueness, such
as the expected truth value of a crisp sentence and the probability of a vague sentence.

• We also give algorithms for query processing in probabilistic fuzzy description logic programs, and
we delineate a special case where query processing has a polynomial data complexity (under suitable
assumptions about the underlying fuzzy description logics), which is an important feature for the Web.

• Furthermore, we describe a shopping agent example, which gives evidence of the usefulness of prob-
abilistic fuzzy description logic programs in realistic web applications.

The rest of this paper is organized as follows. Section 2 gives a motivatingexample. In Sections 3 and 4,
we recall combination strategies and fuzzy description logics. Section 5 defines fuzzy dl-programs on top
of fuzzy description logics. In Sections 6 and 7, we define probabilistic fuzzy dl-programs and provide
algorithms for query processing in such programs. In Section 8, we delineate a special case where query
processing has a polynomial data complexity. Section 9 summarizes our main results and gives an outlook
on future research.

2 Motivating Example

In this section, we describe a shopping agent example, where we encounter both probabilistic uncertainty
(in resource selection, ontology mapping / query transformation, and dataintegration) and fuzzy vagueness
(in query matching with vague concepts).

Example 2.1 (Shopping Agent)Suppose a person would like to buy “a sports car that costs at most about
22 000C and that has a power of around 150 HP”.

In todays Web, the buyer has tomanually(i) search for car selling sites, e.g., using Google, (ii) select the
most promising sites (Fig. 1 shows an excerpt of such a site; seehttp://www.autos.com), (iii) browse
through them, query them to see the cars that they sell, and match the cars with our requirements, (iv) select
the offers in each web site that match our requirements, and (v) eventually merge all the best offers from
each site and select the best ones.

It is obvious that the whole process is rathertediousandtime consuming, since e.g. (i) the buyer has to
visit many sites, (ii) the browsing in each site is very time consuming, (iii) finding theright information in
a site (which has to match the requirements) is not simple, and (iv) the way of browsing and querying may
differ from site to site.

A shopping agentmay now support us as follows,automatizingthe whole selection process once it re-
ceives the request / queryq from the buyer:

• Probabilistic Resource Selection.The agent selects some sites / resourcesS that it considers as
promising for the buyer’s request. The agent has to select a subset ofsomerelevantresources, since it
is not reasonable to assume that it will access and query all the resources known to him. The relevance
of a resourceS to a query is usually (automatically) estimated as the probabilityPr(q|S) (the prob-
ability that the information need represented by the queryq is satisfied by the searching resourceS,
see e.g. [2, 8]). It is not difficult to see that such probabilities can be expressed by probabilistic rules.

• Probabilistic Ontology Mapping / Query Reformulation.For the top-k selected sites, the agent has
to reformulate the buyer’s query using the terminology / ontology of the specific car selling site. For
this task, the agent relies on so-called transformation rules, which say howto translate a concept or
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Figure 1: A car shopping site

property of the agent’s ontology into the ontology of the information resource. Once the set of rules
is given, the query transformation is relatively easy. What is difficult is to learn theontology mapping
rules automatically. This task is calledontology alignmentin the Semantic Web, and some tools for
this exist (e.g., oMap [27, 28]). Often, to relate a conceptB of the buyer’s ontology to a conceptS of
the seller’s ontology, one automatically estimates the probabilityP (B|S) that an instance ofS is also
an instance ofB. For example, oMap represents such rules as probabilistic rules (see also [20]).

• Vague Query Matching.Once the agent has translated the buyer’s request for the specific site’s
terminology, the agent submits the query. But the buyer’s request often contains many so-called
vague / fuzzyconcepts such as “the prize is around 22 000C or less”, rather than strict conditions, and
thus a car maymatchthe buyer’s condition to adegree. As a consequence, a site / resource / web ser-
vice may return a ranked list of cars, where the ranks depend on the degrees to which the sold items
match the buyer’s requestsq.

• Probabilistic Data Integration.Eventually, the agent has to combine the ranked lists (see e.g. [23])
by considering the matching degrees, that is, truth degrees (vagueness) and probability degrees (un-
certainty) involved and show the top-n items to the buyer.

3 Combination Strategies

Rather than being restricted to an ordinary binary truth value amongfalse andtrue, vague propositions
may also have a truth value strictly betweenfalse andtrue. In the sequel, we use the unit interval[0, 1] as
the set of all possible truth values, where0 and1 represent the ordinary binary truth valuesfalse andtrue,
respectively. For example, the vague proposition “John is a tall man” may bemore or less true, and it is thus
associated with a truth value in[0, 1], depending on the body height of John.

In order to combine and modify the truth values in[0, 1], we assumecombination strategies, namely,
conjunction, disjunction, implication, andnegation strategies, denoted⊗,⊕, ⊲, and⊖, respectively, which
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Table 1: Axioms for conjunction and disjunction strategies.

Axiom Name Conjunction Strategy Disjunction Strategy
Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b 6 c, thena⊗ b 6 a⊗ c if b 6 c, thena⊕ b 6 a⊕ c

Table 2: Axioms for implication and negation strategies.

Axiom Name Implication Strategy Negation Strategy
Tautology / Contradiction 0 ⊲ b = 1, a ⊲ 1 = 1, 1 ⊲ 0 = 0 ⊖ 0 = 1, ⊖ 1 = 0
Antitonicity if a 6 b, thena ⊲ c > b ⊲ c if a 6 b, then⊖ a > ⊖ b
Monotonicity if b 6 c, thena ⊲ b 6 a ⊲ c

Table 3: Combination strategies of various fuzzy logics.

Łukasiewicz Logic G̈odel Logic Product Logic Zadeh Logic
a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a ⊲ b min(1− a+ b, 1)

{
1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

⊖ a 1− a
{

1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a

are functions⊗, ⊕, ⊲ : [0, 1] × [0, 1]→ [0, 1] and⊖ : [0, 1]→ [0, 1] that generalize the ordinary Boolean
operators∧, ∨,→, and¬, respectively, to the set of truth values[0, 1]. Fora, b∈ [0, 1], we then calla ⊗ b
(resp.,a⊕b, a ⊲ b) theconjunction(resp.,disjunction, implication) of a andb, and we call⊖ a thenegation
of a. As usual, we assume that combination strategies have some natural algebraic properties, namely, the
properties shown in Tables 1 and 2. Note that in Table 1, Tautology and Contradiction follow from Identity,
Commutativity, and Monotonicity. Conjunction and disjunction strategies (with the properties in Table 1) are
also calledtriangular normsandtriangular co-norms[10], respectively. We do not assume properties that
relate the combination strategies to each other (such as de Morgan’s law). Even though one may additionally
assume such properties, they are not required here.

Example 3.1 The combination strategies of various well-known fuzzy logics are shown inTable 3.

4 Fuzzy Description Logics

In this section, we recall fuzzy generalizations of the description logicsSHIF(D) andSHOIN (D),
which stand behind OWL Lite and OWL DL, respectively; see especially [24, 25, 16]. Intuitively, description
logics model a domain of interest in terms of concepts and roles, which represent classes of individuals resp.
binary relations between classes of individuals. A knowledge base encodes in particular subset relationships
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(a) (b) (c) (d)

Figure 2: (a) Trapezoidal functiontrz (x; a, b, c, d), (b) triangular functiontri(x; a, b, c), (c) left shoulder
functionL(x; a, b), and (d) right shoulder functionR(x; a, b).

between concepts, subset relationships between roles, the membership ofindividuals to concepts, and the
membership of pairs of individuals to roles. In fuzzy description logics, these relationships and memberships
then have a degree of truth in[0, 1].

We now describe the syntax and the semantics of fuzzySHIF(D) and fuzzySHOIN (D) and il-
lustrate them through an example. For an implementation of fuzzySHIF(D), the fuzzyDLsystem, see
http://gaia.isti.cnr.it/∼straccia.

4.1 Syntax

The elementary ingredients are as follows. We assume a set ofdata values, a set ofelementary datatypes,
and a set ofdatatype predicates(each with a predefined arityn> 1). A datatypeis an elementary datatype
or a finite set of data values. Afuzzy datatype theoryD=(∆D, ·D) consists of a datatype domain∆D

and a mapping·D that assigns to each data value an element of∆D, to each elementary datatype a subset
of ∆D, and to each datatype predicate of arityn a fuzzy relation over∆D of arity n (that is, a mapping
(∆D)n → [0, 1]). We extend·D to all datatypes by{v1, . . . , vn}D = {vD1 , . . . , vDn }. For example, a crisp
unary datatype predicate618 over the natural numbers denoting the integers of at most18 may be defined by
618 (x)= 1, if x6 18, and618 (x)= 0, otherwise. Then,Minor =Person ⊓∃age. 618 defines a person of
age at most18. Non-crisp predicates are usually defined by functions for specifyingfuzzy set membership
degrees, such as the trapezoidal, the triangular, the left shoulder, andthe right shoulder functions (see Fig. 2).
For example, a fuzzy unary datatype predicateYoung over the natural numbers denoting the degree of
youngness of a person’s age may be defined byYoung(x)=L(x; 10, 30). Then,YoungPerson =Person⊓
∃age.Young denotes a young person.

Let A, RA, RD, I, andM be pairwise disjoint sets ofatomic concepts, abstract roles, concrete roles,
individuals, and fuzzy modifiers, respectively. Note that afuzzy modifierm [11, 30] represents a func-
tion fm : [0, 1] → [0, 1], which applies to fuzzy sets to change their membership function. For exam-
ple, we may have the fuzzy modifiersvery andslightly , which represent the functionsvery(x)=x2 and
slightly(x)=

√
x, respectively. Then, the concept of sports cars may be defined asSportsCar =Car ⊓

∃speed .very(High), whereHigh is a fuzzy datatype predicate over the domain of speed in km/h, which
may be defined asHigh(x)=R(x; 80, 250).

A role is any element ofRA ∪R−
A ∪RD (whereR−

A is the set ofinversesR− of all R∈RA). We
defineconceptsinductively as follows. EachA∈A is a concept,⊥ and⊤ are concepts, and ifa1, . . . ,
an ∈ I, then{a1, . . . , an} is a concept (calledoneOf). If C, C1, C2 are concepts,R,S ∈RA ∪ R−

A, and
m∈M, then(C1 ⊓C2), (C1 ⊔C2), ¬C, andm(C) are concepts (calledconjunction, disjunction, negation,
andfuzzy modification, respectively), as well as∃R.C, ∀R.C, >nS, and6nS (calledexists, value, atleast,
andatmost restriction, respectively) for an integern> 0. If D is a datatype andT, T1, . . . , Tn ∈RD, then
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∃T1, . . . , Tn.D, ∀T1, . . . , Tn.D, >nT , and6nT are concepts (calleddatatype exists, value, atleast, and
atmost restriction, resp.) for an integern>0. We eliminate parentheses as usual.

A crisp axiomhas one of the following forms: (1)C ⊑D (calledconcept inclusion axiom), whereC
andD are concepts; (2)R⊑S (calledrole inclusion axiom), where eitherR,S ∈RA ∪R−

A orR,S ∈RD;
(3) Trans(R) (calledtransitivity axiom), whereR∈RA; (4)C(a) (calledconcept assertion axiom), where
C is a concept anda∈ I; (5) R(a, b) (resp.,U(a, v)) (calledrole assertion axiom), whereR∈RA (resp.,
U ∈RD) anda, b ∈ I (resp.,a∈ I andv is a data value); and (6)a= b (resp.,a 6= b) (equality(resp.,in-
equality) axiom), wherea, b∈ I. We definefuzzy axiomsas follows: Afuzzy concept inclusion(resp.,fuzzy
role inclusion, fuzzy concept assertion, fuzzy role assertion) axiomis of the formα θ n, whereα is a concept
inclusion (resp., role inclusion, concept assertion, role assertion) axiom, θ∈{6,=,>}, andn∈ [0, 1]. In-
formally,α6n (resp.,α=n, α>n) encodes that the truth value ofα is at most (resp., equal to, at least)n.
We often useα to abbreviateα= 1. A fuzzy (description logic) knowledge baseL is a finite set of fuzzy
axioms, transitivity axioms, and equality and inequality axioms. For decidability, number restrictions inL
are restricted to simple abstract roles.

FuzzySHIF(D) has the same syntax as fuzzySHOIN (D), but without the oneOf constructor and
with the atleast and atmost constructors limited to0 and1.

Example 4.1 (Shopping Agent cont’d)The following axioms are an excerpt of the fuzzy description logic
knowledge baseL that conceptualizes the site in Example 2.1:

Cars ⊔ Trucks ⊔Vans ⊔ SUVs ⊑ Vehicles; (1)

PassengerCars ⊔ LuxuryCars ⊑ Cars; (2)

CompactCars ⊔MidSizeCars ⊔ SportyCars ⊑ PassengerCars; (3)

Cars ⊑ (∃hasReview .Integer) ⊓ (∃hasInvoice.Integer) ⊓ (∃hasHP .Integer)

⊓ (∃hasResellValue.Integer) ⊓ (∃hasSafetyFeatures.Integer) ⊓ . . . ; (4)

(SportyCar ⊓ (∃hasInvoice.{18883}) ⊓ (∃hasHP .{166}) ⊓ . . .)(MazdaMX5Miata); (5)

(SportyCar ⊓ (∃hasInvoice.{20341}) ⊓ (∃hasHP .{200}) ⊓ . . .)(VolkswagenGTI ); (6)

(SportyCar ⊓ (∃hasInvoice.{24029}) ⊓ (∃hasHP .{162}) ⊓ . . .)(MitsubishiES). (7)

Here, axioms (1)–(3) describe the concept taxonomy of the site, while axiom (4) describes the datatype
attributes of the cars sold in the site. For example, every passenger or luxury car is also a car, and ev-
ery car has a resell value. Axioms (5)–(7) describe the properties of some sold cars. For example, the
MazdaMX5Miata is a sports car, costing 18 883C. Note thatInteger denotes the datatype of all integers.

We may now encode “costs at most about 22 000C ” and “has a power of around 150 HP” in the buyer’s
request through the following conceptsC andD, respectively:

C =∃hasInvoice.LeqAbout22000 and D=∃hasHP .Around150HP ,

whereLeqAbout22000=L(22000, 25000) andAround150HP=Tri(125, 150, 175) (see Fig. 2). The latter
two equations define the fuzzy concepts of “at most about 22 000C ” and “around 150 HP”. The former
is modeled as a left shoulder function stating that if the prize is less than 22 000, then the degree of truth
(degree of buyer’s satisfaction) is1, else the truth is linearly decreasing to 0 (reached at the cost of 25 000).
In fact, we are modeling a case were the buyer would like to pay less than 22 000, though may still accept
a higher price (up to 25 000) to a lesser degree. Similarly, the latter models the fuzzy concept “around 150
HP” as a triangular function with vertice in 150 HP.
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4.2 Semantics

Concerning the semantics of fuzzySHIF(D) andSHOIN (D) [25], the main idea is that concepts and
roles are interpreted as fuzzy subsets of an interpretation’s domain. Therefore, concept inclusion, role
inclusion, concept assertion, and role assertion axioms, rather than being satisfied (true) or unsatisfied (false)
in an interpretation, have a degree of truth in[0, 1]. In the sequel, we assume that⊗, ⊕, ⊲, and⊖ are
some arbitrary but fixed conjunction, disjunction, implication, and negation strategies, respectively. Afuzzy
interpretationI =(∆I , ·I) relative to a fuzzy datatype theoryD= (∆D, ·D) consists of a nonempty set
∆I (called thedomain), disjoint from∆D, and afuzzy interpretation function·I , which (i) coincides with
·D on every data value, datatype, and fuzzy datatype predicate, (ii) assigns to each modifierm ∈ M its
modifier functionfm : [0, 1]→ [0, 1], and (iii) assigns

• to each individuala ∈ I an elementaI ∈∆I ;

• to each atomic conceptC ∈ A a functionCI : ∆I → [0, 1];

• to each abstract roleR ∈ RA a functionRI : ∆I ×∆I → [0, 1];

• to each concrete roleT ∈ RD a functionT I : ∆I ×∆D → [0, 1].

The mapping·I is extended to all roles and concepts as follows (wherex, y ∈ ∆I):

(S−)
I
(x, y) = SI(y, x) ;
⊤I(x) = 1 ;

⊥I(x) = 0 ;

{a1, . . . , an}I(x) =

{
1 if x∈{a1

I , . . . , an
I} ;

0 otherwise;

(C1 ⊓ C2)
I(x) = C1

I(x)⊗ C2
I(x) ;

(C1 ⊔ C2)
I(x) = C1

I(x)⊕ C2
I(x) ;

(¬C)I(x) = ⊖CI(x) ;

(m(C))I(x) = fm(CI(x)) ;

(∃R.C)I(x) = supy∈∆I RI(x, y)⊗ CI(y) ;

(∀R.C)I(x) = infy∈∆I RI(x, y) ⊲ CI(y) ;

(> n S)I(x) = supy1,...,yn∈∆I , |{y1,...,yn}|=n

⊗n
i=1 S

I(x, yi) ;

(6 n S)I(x) = infy1,...,yn+1∈∆I , |{y1,...,yn+1}|=n+1

⊕n+1
i=1 ⊖SI(x, yi) ;

(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈∆D(
⊗n

i=1 Ti
I(x, yi))⊗DD(y1, . . . , yn) ;

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈∆D(
⊗n

i=1 Ti
I(x, yi)) ⊲ DD(y1, . . . , yn) .

Note here that individuals are “crisply” interpreted, as opposed to concepts and roles. The mapping·I is
extended to concept inclusion, role inclusion, concept assertion, and role assertion axioms as follows:

(C1 ⊑ C2)
I = infx∈∆I C1

I(x) ⊲ C2
I(x) ;

(R1 ⊑ R2)
I = infx,y∈∆I R1

I(x, y) ⊲ R2
I(x, y) ;

(T1 ⊑ T2)
I = inf(x,y)∈∆I×∆D T1

I(x, y) ⊲ T2
I(x, y) ;

(C(a))I = CI(aI) ;

(R(a, b))I = RI(aI , bI) ;

(T (a, v))I = T I(aI , vD) .



8 INFSYS RR 1843-07-02

The notion of a fuzzy interpretationI satisfyinga transitivity, equality, inequality, or fuzzy axiomE,
or I being amodelof E, denotedI |=E, is defined as follows: (i)I |= trans(R) iff RI(x, y)> supz∈∆I

RI(x, z) ⊗ RI(z, y) for all x, y ∈∆I ; (ii) I |= a= b iff aI = bI , andI |= a 6= b iff aI 6= bI ; and (iii) I |=
α θ n iff αI θ n. We sayI satisfiesa fuzzy knowledge baseL, or I is amodelof L, denotedI |=L, iff I is
a model of allE ∈L. We sayL is satisfiableiff L has a model. A fuzzy axiomE is a logical consequence
of L, denotedL |=E, iff every model ofL satisfiesE. A fuzzy axiomα>n is a tight logical consequence
of L, denotedL |=tight α>n, iff n is the supremum ofm∈ [0, 1] subject toL |=α>m.

Example 4.2 (Shopping Agent cont’d)The following fuzzy axioms are (tight) logical consequences of the
above description logic knowledge baseL (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) = 1.0, C(VolkswagenGTI ) = 1.0, C(MitsubishiES) = 0.32,
D(MazdaMX5Miata) = 0.36, D(VolkswagenGTI ) = 0.0, D(MitsubishiES) = 0.56.

5 Fuzzy Description Logic Programs

In this section, we define fuzzy dl-programs, which are similar to the fuzzy dl-programs in [15], except that
they are based on fuzzy description logics as in [25], and that we consider only stratified fuzzy dl-programs
here. Their canonical model associates with every ground atom a truth value, and so defines a ranking on
the Herbrand base. We first introduce the syntax, and we then define thesemantics of positive and stratified
fuzzy dl-programs in terms of a least model semantics resp. an iterative least model semantics.

5.1 Syntax of Fuzzy Programs

Informally, a normal fuzzy program is a finite collection of normal fuzzy rules, which are similar to ordinary
normal rules, except that (i) they have a lower bound for their truth value, and (ii) they refer to fuzzy
rather than binary interpretations, and thus every of their logical operators is associated with a combination
strategy to specify how the operator combines truth values. Formally, we assume a first-order vocabularyΦ
with nonempty finite sets of constant and predicate symbols, but no function symbols. We useΦc to denote
the set of all constant symbols inΦ. LetX be a set of variables. Aterm is a constant symbol fromΦ or a
variable fromX . If p is a predicate symbol of arityk> 0 from Φ, andt1, . . ., tk are terms, thenp(t1, . . ., tk)
is anatom. A literal is an atoma or a default-negated atomnot a. A (normal) fuzzy ruler has the form

a←⊗0
b1 ∧⊗1

b2 ∧⊗2
· · · ∧⊗k−1

bk∧⊗k

not⊖k+1
bk+1 ∧⊗k+1

· · · ∧⊗m−1
not⊖m

bm > v ,
(8)

wherem> k> 0, a, bk+1, . . . , bm are atoms,b1, . . . , bk are either atoms or truth values from[0, 1],⊗0, . . . ,
⊗m−1 are conjunction strategies,⊖k+1, . . . ,⊖m are negation strategies, andv ∈ (0, 1]. We calla thehead
of r, denotedH(r), whileb1∧⊗1

. . .∧⊗m−1
not⊖m

bm is thebodyof r, andv is thetruth valueof r. We denote
byB(r) the set of body literalsB+(r)∪B−(r), whereB+(r)= {b1, . . . , bk} andB−(r)= {bk+1, . . . , bm}.
We call a fuzzy rule of the form (8) afuzzy factiff m= 0. A normal fuzzy programP is a finite set of fuzzy
rules. We say thatP is positiveiff no fuzzy rule inP contains default-negated atoms.

5.2 Syntax of Fuzzy DL-Programs

Informally, a fuzzy dl-program consists of a fuzzy description logic knowledge baseL and a generalized
normal fuzzy programP , which may contain queries toL. In such a query, it is asked whether a concept or
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a role assertion logically follows fromL or not (see [4] for more background and examples of such queries).
Formally, adl-queryQ(t) is either (a) of the formC(t), whereC is a concept, andt is a term, or (b) of the
formR(t1, t2), whereR is a role, andt1 andt2 are terms. Adl-atomhas the formDL[S1⊎p1, . . . , Sm⊎pm;
Q](t), where eachSi is an atomic concept or a role,pi is a unary resp. binary predicate symbol,Q(t) is a dl-
query, andm> 0. We callp1, . . . , pm its input predicate symbols. Intuitively, Si ⊎ pi encodes that the truth
value of everySi(e) is at least the truth value ofpi(e), wheree is a constant (resp., pair of constants) fromΦ
whenSi is a concept (resp., role) (and thuspi is a unary (resp., binary) predicate symbol). Afuzzy dl-ruler
is of the form (8), where anybi in the body ofr may be a dl-atom. Afuzzy dl-programKB = (L,P ) consists
of a satisfiable fuzzy description logic knowledge baseL and a finite set of fuzzy dl-rulesP . Substitutions,
ground substitutions, ground terms, ground atoms, etc., are defined as usual. We denote byground(P ) the
set of all ground instances of fuzzy dl-rules inP relative toΦ.

Example 5.1 (Shopping Agent cont’d)A fuzzy dl-programKB = (L,P ) is given by the fuzzy description
logic knowledge baseL in Example 4.1, and the set of fuzzy dl-rulesP , which contains only the following
fuzzy dl-rule encoding the buyer’s request (where⊗ is the G̈odel conjunction strategy, that is,x ⊗ y =
min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHP(x, y2)∧⊗
DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) > 1 .

5.3 Models of Fuzzy DL-Programs

We first define fuzzy interpretations, and the semantics of dl-queries andthe truth of fuzzy dl-rules and
dl-programs in such interpretations. In the sequel, letKB = (L,P ) be a (fully general) fuzzy dl-program.

We useHBΦ (resp.,HU Φ) to denote the Herbrand base (resp., universe) overΦ. In the sequel, we
assume thatHBΦ is nonempty. Afuzzy interpretationI is a mappingI : HBΦ→ [0, 1]. We writeHBΦ

to denote the fuzzy interpretationI such thatI(a)= 1 for all a∈HBΦ. For fuzzy interpretationsI andJ ,
we writeI ⊆ J iff I(a)6 J(a) for all a∈HBΦ, and we define theintersectionof I andJ , denotedI ∩J ,
by (I ∩J)(a) = min(I(a), J(a)) for all a∈HBΦ. Note thatI ⊆HBΦ for all fuzzy interpretationsI.
The truth value ofa∈HBΦ in I underL, denotedIL(a), is defined asI(a). The truth value of a ground
dl-atoma=DL[S1 ⊎ p1, . . . , Sm ⊎ pm;Q](c) in I underL, denotedIL(a), is the supremum ofv subject
toL∪ ⋃m

i=1Ai(I) |= Q(c)> v andv ∈ [0, 1], where

Ai(I) = {Si(e)> I(pi(e)) | I(pi(e))> 0, pi(e)∈HBΦ} .

We sayI is amodelof a ground fuzzy dl-ruler of form (8) underL, denotedI |=L r, iff

IL(a) >






IL(b1)⊗1 IL(b2)⊗2 · · · ⊗k−1 IL(bk) ⊗k if m> 1 ;

⊖k+1 IL(bk+1)⊗k+1 · · · ⊗m−1 ⊖mIL(bm)⊗0 v

v otherwise.

We sayI is amodelof KB =(L,P ), denotedI |=KB , iff I |=L r for all r∈ ground(P ).

5.4 Semantics of Positive Fuzzy DL-Programs

We now define the semantics of positive fuzzy dl-programs, which are fuzzy dl-programs without default
negation: A fuzzy dl-programKB = (L,P ) is positiveiff P is “not”-free.
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For ordinary positive programs, as well as positive dl-programsKB , the intersection of two models of
KB is also a model ofKB . A similar result holds for positive fuzzy dl-programsKB . Hence, every positive
fuzzy dl-programKB has as itscanonical modela unique least model, denotedMKB , which is contained
in every model ofKB .

Example 5.2 (Shopping Agent cont’d)The fuzzy dl-programKB = (L,P ) of Example 5.1 is positive,
and its minimal modelMKB is given as follows:

MKB (query(MazdaMX5Miata)) = 0.36 , MKB (query(MitsubishiES)) = 0.32 ,

and all other ground instances ofquery(x) have the truth value0 underMKB .

5.5 Semantics of Stratified Fuzzy DL-Programs

We next define stratified fuzzy dl-programs, which are informally composed of hierarchic layers of positive
fuzzy dl-programs that are linked via default negation. Like for ordinary stratified programs, as well as
stratified dl-programs, a minimal model can be defined by a finite number of iterative least models, which
naturally describes as thecanonical modelthe semantics of stratified fuzzy dl-programs.

For any fuzzy dl-programKB = (L,P ), let DLP denote the set of all ground dl-atoms that occur in
ground(P ). An input atomof a∈DLP is a ground atom with an input predicate ofa and constant symbols
in Φ. A stratification ofKB = (L,P ) (with respect toDLP ) is a mappingλ : HBΦ ∪DLP →{0, 1, . . . , k}
such that

(i) λ(H(r))>λ(a) (resp.,λ(H(r))>λ(a)) for eachr ∈ ground(P ) anda ∈ B+(r) (resp.,a ∈ B−(r)),
and

(ii) λ(a)>λ(a′) for each input atoma′ of eacha ∈ DLP ,

wherek> 0 is the lengthof λ. For i ∈ {0, . . . , k}, we defineKB i = (L,Pi) = (L, {r ∈ ground(P ) |
λ(H(r)) = i}), and we defineHBPi

(resp.,HB⋆
Pi

) as the set of alla ∈ HBΦ such thatλ(a)= i (resp.,
λ(a)6 i).

A fuzzy dl-programKB = (L,P ) is stratifiediff it has a stratificationλ of some lengthk> 0. We define
its iterative least modelsMi⊆HBΦ with i∈{0, . . . , k} by:

(i) M0 is the least model ofKB0;

(ii) if i> 0, thenMi is the least model ofKB i such thatMi|HB⋆
Pi−1

=Mi−1|HB⋆
Pi−1

, whereMi|HB⋆
Pi−1

andMi−1|HB⋆
Pi−1

denote the restrictions of the mappingsMi andMi−1 to HB⋆
Pi−1

, respectively.

Then,MKB denotesMk. Note thatMKB is well-defined, since it does not depend on a particular stratifica-
tion λ. Furthermore,MKB is in fact a minimal model ofKB .

6 Probabilistic Fuzzy Description Logic Programs

In this section, we introduce probabilistic fuzzy dl-programs as a combinationof stratified fuzzy dl-programs
with Poole’s independent choice logic (ICL) [21]. This will allow us to express probabilistic rules. Poole’s
ICL is based on ordinary acyclic logic programsP under different “atomic choices”, where each atomic
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choice along withP produces a first-order model, and one then obtains a probability distributionon the
set of first-order models by placing a probability distribution on the different atomic choices. Here, we use
stratified fuzzy dl-programs rather than ordinary acyclic logic programs,and thus we define a probability
distribution on a set of fuzzy interpretations. In other words, we define aprobability distribution on a set of
rankings on the Herbrand base.

6.1 Syntax

We now define the syntax of probabilistic fuzzy dl-programs and probabilistic queries addressed to them.
We first introduce fuzzy formulas, query constraints, and probabilistic formulas, and we define choice spaces
and probabilities on choice spaces.

We definefuzzy formulasby induction as follows. The propositional constantsfalseandtrue, denoted⊥
and⊤, respectively, and all atomsp(t1, . . . , tk) are fuzzy formulas. Ifφ andψ are fuzzy formulas, and⊗,
⊕, ⊲, and⊖ are conjunction, disjunction, implication, resp. negation strategies, then(φ∧⊗ ψ), (φ∨⊕ ψ),
(φ⇒⊲ψ), and¬⊖ φ are also fuzzy formulas. Aquery constrainthas the form(φ θ r)[l, u] or (E[φ])[l, u]
with θ∈{>, >,<,6}, r, l, u∈ [0, 1], and fuzzy formulasφ. Informally, the former asks for the interval
of the probability that the truth valuev of φ satisfiesv θ r, while the latter asks for the interval of the
expected truth value ofφ. We defineprobabilistic formulasinductively as follows. Each query constraint is
a probabilistic formula. IfF andG are probabilistic formulas, then also¬F and(F ∧G). We use(F ∨G)
and(F ⇒G) to abbreviate¬(¬F ∧¬G) and¬(F ∧¬G), respectively, and eliminate parentheses as usual.

A choice spaceC is a set of pairwise disjoint and nonempty setsA⊆HBΦ. AnyA∈C is analternative
of C and anya∈A an atomic choiceof C. Intuitively, everyA∈C represents a random variable and
everya∈A one of its possible values. Atotal choiceof C is a setB⊆HBΦ such that|B ∩ A|=1 for all
A∈C. Intuitively, every total choiceB of C represents an assignment of values to all the random variables.
A probabilityµ on a choice spaceC is a probability function on the set of all total choices ofC. Intuitively,
every probabilityµ is a probability distribution over the set of all variable assignments. SinceC and all its
alternatives are finite,µ can be defined by (i) a mappingµ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a)= 1 for all

A∈C, and (ii)µ(B)= Πb∈Bµ(b) for all total choicesB of C. Intuitively, (i) defines a probability over the
values of each random variable ofC, and (ii) assumes independence between the random variables.

A probabilistic fuzzy dl-programKB = (L,P,C, µ) consists of a stratified fuzzy dl-program(L,P ), a
choice spaceC such that (i)

⋃
C ⊆HBΦ and (ii) no atomic choice inC coincides with the head of any

fuzzy dl-rule inground(P ), and a probabilityµ onC. Intuitively, since the total choices ofC select subsets
of P , andµ is a probability distribution on the total choices ofC, every probabilistic fuzzy dl-program
is the compact representation of a probability distribution on a finite set of stratified fuzzy dl-programs.
A probabilistic querytoKB has the form∃F , or∃(α θ r)[L,U ], or∃(E[α])[L,U ], whereF is a probabilistic
formula,α is a fuzzy formulas,r∈ [0, 1], andL,U are variables.

Example 6.1 (Shopping Agent cont’d)A probabilistic fuzzy dl-programKB = (L,P,C, µ) is given byL
of Example 4.1, the following set of fuzzy dl-rulesP , which model the query reformulation and retrieval
steps using ontology mapping rules:

query(x) ←⊗ SportsCar(x) ∧⊗ hasPrize(x, y1) ∧⊗ hasPower(x, y2) ∧⊗
DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) > 1 , (9)

SportsCar(x) ←⊗ DL[SportyCar ](x) ∧⊗ scpos > 0.9 , (10)
hasPrize(x) ←⊗ DL[hasInvoice](x) ∧⊗ hipos > 0.8 , (11)

hasPower(x) ←⊗ DL[hasHP ](x) ∧⊗ hhppos > 0.8 , (12)
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the choice spaceC = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}, and the probability distributionµ,
which is given by the following probabilities for the atomic choices (and then extended to all total choices
by assuming independence):

µ(scpos) = 0.91 , µ(scneg) = 0.09 , µ(hipos) = 0.78 ,
µ(hineg) = 0.22 , µ(hhppos) = 0.83 , µ(hhpneg) = 0.17 .

Rule 9 is the buyer’s request, but in a “different” terminology than the one of the car selling site. Rules 10–12
are so-called ontology alignment mapping rules. For example, rule 10 states that the predicate “SportsCar”
of the buyer’s terminology refers to the concept “SportyCar” of the selected side, with probability0.91. Such
mapping rules can be automatically built by relying on ontology alignment tools, such as oMap [27, 28],
whose main purpose is to find relations among the concepts and roles of two different ontologies. oMap
is particularly suited for our case, as it is based on a probabilistic model, andthus the mappings have a
probabilistic reading (see also [20]).

6.2 Semantics

A world I is a fuzzy interpretation overHBΦ. We denote byIΦ the set of all worlds overΦ. A variable
assignmentσ maps eachX ∈X to somet∈HU Φ. It is extended to all terms byσ(c)= c for all constant
symbolsc from Φ. The truth valueof fuzzy formulasφ in I underσ, denotedIσ(φ) (or I(φ) whenφ
is ground), is inductively defined by (1)Iσ(φ ∧⊗ ψ)= Iσ(φ) ⊗ Iσ(ψ), (2) Iσ(φ ∨⊕ ψ)= Iσ(φ) ⊕ Iσ(ψ),
(3) Iσ(φ⇒⊲ψ)= Iσ(φ) ⊲ Iσ(ψ), and (4)Iσ(¬⊖φ)= ⊖ Iσ(φ),

A probabilistic interpretationPr is a probability function onIΦ (that is, a mappingPr : IΦ→ [0, 1]
such that (i) the set of allI ∈IΦ with Pr(I)> 0 is denumerable, and (ii) allPr(I) with I ∈IΦ sum
up to 1). Theprobability of a formulaφ θ r in Pr under a variable assignmentσ, denotedPrσ(φ θ r)
(or Pr(φ θ r) whenφ is ground), is the sum of allPr(I) such thatI ∈IΦ and Iσ(φ) θ r. The expected
truth valueof a formulaφ underPr andσ, denotedEPr ,σ[φ], is the sum of allPr(I) · Iσ(φ) such that
I ∈IΦ. The truth of probabilistic formulasF in Pr underσ, denotedPr |=σ F , is inductively defined by
(1) Pr |=σ (φ θ r)[l, u] iff Prσ(φ θ r)∈ [l, u], (2) Pr |=σ (E[φ])[l, u] iff EPr ,σ[φ]∈ [l, u], (3) Pr |=σ ¬F iff
notPr |=σ F , and (4)Pr |=σ (F ∧G) iff Pr |=σ F andPr |=σ G.

A probabilistic interpretationPr is amodelof a probabilistic formulaF iff Pr |=σF for every variable
assignmentσ. We sayPr is thecanonical modelof a probabilistic fuzzy dl-programKB = (L,P,C, µ) iff
every worldI ∈IΦ with Pr(I)> 0 is the canonical model of(L, P ∪ {p← | p∈B}) for some total choice
B of C such thatPr(I)=µ(B). Notice that everyKB has a unique canonical modelPr . We sayF is a
consequenceof KB , denotedKB ‖∼F , iff the canonical model ofKB is also a model ofF . A query con-
straint(φ θ r)[l, u] (resp.,(E[φ])[l, u]) is atight consequenceof KB , denotedKB ‖∼ tight (φ θr)[l, u] (resp.,
KB ‖∼ tight(E[φ])[l, u]), iff l (resp.,u) is the infimum (resp., supremum) ofPrσ(φ θ r) (resp.,EPr ,σ[φ])
subject to the canonical modelPr of KB and allσ. A correct answerto ∃F is a substitutionσ such thatFσ
is a consequence ofKB . A tight answerto ∃(α θ r)[L,U ] (resp.,∃(E[α])[L,U ]) is a substitutionσ such
that(α θ r)[L,U ]σ (resp.,(E[α])[L,U ]σ) is a tight consequence ofKB .

Example 6.2 (Shopping Agent cont’d)The following are some tight consequences of the probabilistic
fuzzy dl-programKB = (L,P,C, µ) in Example 6.1:

(E[query(MazdaMX5Miata)])[0.21, 0.21] , (E[query(MitsubishiES)])[0.19, 0.19] .

So, the shopping agent ranks theMazdaMX5Miata first with degree0.21 (= 0.36 · 0.91 · 0.78 · 0.83) and
theMitsubishiES second with degree0.19 (= 0.32 · 0.91 · 0.78 · 0.83).
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7 Query Processing in Probabilistic Fuzzy DL-Programs

The canonical model of an ordinary positive resp. stratified normal programKB , as well as of a positive resp.
stratified dl-programKB has a well-known fixpoint characterization in terms of an immediate consequence
operatorTKB , which generalizes to fuzzy dl-programs. This can be exploited for a bottom-up computation
of the canonical model of a positive resp. stratified fuzzy dl-program, and thus for query processing in
probabilistic fuzzy dl-programs.

7.1 Positive Fuzzy DL-Programs

We first define the immediate consequence operator for fuzzy dl-programs. For any fuzzy dl-program
KB =(L,P ), we define the operatorTKB on the subsets ofHBΦ as follows. For everyI ⊆HBΦ and
a∈HBΦ, let TKB (I)(a) be the maximum ofv subject tor∈ ground(P ), H(r)= a, andv being the truth
value ofr’s body underI andL. If there is no such ruler, thenTKB (I)(a)= 0.

The following lemma shows that for positive fuzzy dl-programsKB , the operatorTKB is monotonic,
that is,I ⊆ I ′ ⊆ HBΦ impliesTKB (I) ⊆ TKB (I ′). This result follows immediately from the fact that
every dl-atom and every conjunction strategy inground(P ) is monotonic.

Lemma 7.1 LetKB = (L,P ) be a positive fuzzy dl-program. Then, the operatorTKB is monotonic.

The next result gives a characterization of the pre-fixpoints ofTKB , which coincide with the models
of KB . We recall here thatI ⊆HBΦ is a pre-fixpoint ofTKB iff TKB (I) ⊆ I.

Proposition 7.2 LetKB = (L,P ) be a positive fuzzy dl-program. Then,I ⊆HBΦ is a pre-fixpoint ofTKB

iff I is a model ofKB .

Since every monotonic operator has a least fixpoint, which coincides with its least pre-fixpoint, we
immediately obtain as a corollary that alsoTKB has a least fixpoint, denotedlfp(TKB ), and that this least
fixpoint is given by the least model ofKB .

The next result shows that the least fixpoint ofTKB can be computed by a finite fixpoint iteration, ifKB

is closedunder a finite set of truth valuesTV ⊆ [0, 1] (with |TV |> 2), which means that (i) each datatype
predicate inKB is interpreted by a mapping toTV , (ii) each fuzzy modifierm in KB is interpreted by
a mappingfm : TV →TV , (iii) each truth value inKB is from TV , and (iv) each combination strategy
in KB is closed underTV (note that the combination strategies of Łukasiewicz, Gödel, and Zadeh Logic are
closed under everyTVn = {0, 1

n
, . . . , n

n
}with n> 0). Note that for everyI ⊆HBΦ, we defineT i

KB (I) = I,
if i = 0, andT i

KB (I) = TKB (T i−1
KB (I)), if i > 0.

Theorem 7.3 LetKB =(L,P ) be a positive fuzzy dl-program that is closed under a finite set of truth values
TV ⊆ [0, 1] (with |TV |> 2). Then,lfp(TKB ) = MKB . Furthermore,lfp(TKB )=

⋃n
i=0 T

i
KB (∅)=Tn

KB (∅),
for somen> 0.

7.2 Stratified Fuzzy DL-Programs

We finally describe a sequence of finite fixpoint iterations for stratified fuzzy dl-programs. Using The-
orem 7.3, we can characterize the answer setMKB of a stratified fuzzy dl-programKB =(L,P ) by a
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sequence of finite fixpoint iterations along a stratification ofKB as follows. Let the operator̂T i
KB on inter-

pretationsI ⊆ HBΦ be defined bŷT i
KB (I) = T i

KB (I) ∪ I, for all i > 0. Here,I ∪J for I, J ⊆ HBΦ

denotes theunionof I andJ , which is defined by(I ∪J)(a)= max(I(a), J(a)) for all a∈HBΦ.

Theorem 7.4 LetKB = (L,P ) be a fuzzy dl-program with stratificationλ of lengthk> 0. Suppose thatKB

is closed under a finite set of truth valuesTV ⊆ [0, 1] (with |TV |> 2). LetMi ⊆HBΦ, i∈{−1, 0, . . . , k},
byM−1 = ∅, andMi = T̂ni

KB i
(Mi−1) for eachi> 0, whereni > 0 such thatT̂ni

KBi
(Mi−1) = T̂ni+1

KB i
(Mi−1).

Then,Mk =MKB .

7.3 Probabilistic Fuzzy DL-Programs

Fig. 3 shows Algorithm canonicalmodel, which computes the canonical modelPr of a given probabilistic
fuzzy dl-programKB = (L,P,C, µ). This algorithm is essentially based on a reduction to computing the
canonical model of stratified fuzzy dl-programs (see line 2), which can be done using the above finite
sequence of finite fixpoint iterations.

Algorithm canonical model

Input : probabilistic fuzzy dl-programKB = (L,P,C, µ).
Output : canonical modelPr of KB (represented as{(I,Pr(I)) | I ∈IΦ, Pr(I)> 0}).
1. for every total choiceB of C do begin
2. compute the canonical modelI of the stratified fuzzy dl-program(L,P ∪{p← | p∈B});
3. Pr(I) := µ(B);
4. end;
5. return Pr .

Figure 3: Algorithm canonicalmodel

Algorithm tight answer in Fig. 4 computes the tight answerθ= {L/l, U/u} for a given probabilistic
queryQ=∃(α θ r)[L,U ] (resp.,Q=∃(E[α])[L,U ]) to a given probabilistic fuzzy dl-programKB . The
algorithm first computes the canonical model ofKB in line 1 and then the tight answerθ= {L/l, U/u} in
lines 2–8.

8 Tractability Results

Deciding whether a knowledge base inSHIF(D) (resp.,SHOIN (D)) is satisfiable is complete for the
complexity class EXP (resp., NEXP, assuming unary number encoding; see[12] and the NEXP-hardness
proof forALCQI in [29], which implies the NEXP-hardness ofSHOIN (D)). Recall that EXP (resp.,
NEXP) is the class of all decision problems that can be solved in exponentialtime on a deterministic (resp.,
nondeterministic) Turing machine. Hence, also deciding whether a more general fuzzy knowledge base in
fuzzySHIF(D) (resp., fuzzySHOIN (D)) is satisfiable is hard for EXP (resp., NEXP). Since the latter
can be done via dl-queries in probabilistic fuzzy dl-programs, it thus follows that query processing from
probabilistic fuzzy dl-programs is in general intractable.
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Algorithm tight answer

Input : probabilistic fuzzy dl-programKB =(L,P,C, µ) and
probabilistic queryQ= ∃(α θ r)[L,U ] (resp.,Q= ∃(E[α])[L,U ]).

Output : tight answerθ= {L/l, U/u} for Q to KB .

1. Pr := canonicalmodel(KB);
2. l := 1;
3. u := 0;
4. for every ground instanceα′ of α do begin
5. l := min(l,Pr(α′ θ r)); (resp.,l := min(l,E[α′]);)
6. u := max(u,Pr(α′ θ r)); (resp.,u := max(u,E[α′]);)
7. end;
8. return θ= {L/l, U/u}.

Figure 4: Algorithm tightanswer

In this section, we describe a special class of stratified probabilistic fuzzydl-programsKB for which
query processing has a polynomial data complexity. These programs are defined relative tofuzzy DL-Lite
[26], which is a fuzzy generalization of the description logicDL-Lite [3]. By [26] (resp., [3]), deciding
whether a knowledge base inDL-Lite (resp.,fuzzy DL-Lite) is satisfiable can be done in polynomial time,
and conjunctive query processing from a knowledge base inDL-Lite (resp.,fuzzy DL-Lite) has a polynomial
data complexity.

We first recallDL-Lite andfuzzy DL-Lite. LetA, RA, andI be pairwise disjoint sets of atomic concepts,
abstract roles, and individuals, respectively. Abasic concept in fuzzy DL-Liteis either an atomic concept
from A or an exists restriction on roles∃R.⊤ (abbreviated as∃R), whereR∈RA ∪R−

A. A literal in DL-
Lite is either a basic conceptb or the negation of a basic concept¬b. Concepts in DL-Liteare defined by
induction as follows. Every basic concept inDL-Lite is a concept inDL-Lite. If b is a basic concept in
DL-Lite, andφ1 andφ2 are concepts inDL-Lite, then¬b andφ1 ⊓ φ2 are also concepts inDL-Lite. An
axiom in DL-Liteis either (1) a concept inclusion axiomb⊑ψ, whereb is a basic concept inDL-Lite, and
φ is a concept inDL-Lite, or (2) afunctionality axiom(funct R), whereR∈RA ∪R−

A, or (3) a concept
assertion axiomb(a), whereb is a basic concept inDL-Lite anda∈ I, or (4) a role assertion axiomR(a, c),
whereR∈RA anda, c∈ I. A fuzzy concept(resp.,role) assertion axiomis of the formb(a)>n (resp.,
R(a, c)>n), whereb(a) (resp.,R(a, c)) is a concept (resp., role) assertion axiom inDL-Lite, andn∈ (0, 1].
A fuzzy axiom in DL-Liteis either a fuzzy concept assertion axiom or a fuzzy role assertion axiom.A fuzzy
knowledge base in DL-LiteL is a finite set of concept inclusion, functionality, fuzzy concept assertion,
and fuzzy role assertion axioms inDL-Lite. Like in [26], we here assume thatL is interpreted using the
combination strategies of Zadeh Logic.

We are now ready to define probabilistic fuzzy dl-programs inDL-Lite as follows. We say that a fuzzy dl-
programKB = (L,P ) is defined inDL-Lite iff (i) KB is closed underTVn = {0, 1

n
, . . . , n

n
} for somen> 0,

(ii) KB is stratified, (iii)L is defined inDL-Lite, and (iv)P contains only dl-queries of the formDL[λ;Q](t),
whereQ is either a concept or a role. Note that we assume that the aboven is an explicit part ofKB . We
say that a probabilistic fuzzy dl-programKB =(L,P,C, µ) is in DL-Lite iff (L,P ∪ {p← | p∈B}) is in
DL-Lite for every total choiceB ofC. The following theorem shows that for probabilistic fuzzy dl-programs
in DL-Lite KB = (L,P,C, µ), computing the tight answer to a ground probabilistic query has a polynomial
data complexity.

Theorem 8.1 Let KB = (L,P,C, µ) be a probabilistic fuzzy dl-program inDL-Lite, and letQ = ∃(α θ
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r)[L,U ] (resp.,Q=∃(E[α])[L,U ]) be a ground probabilistic query. Then, computing the tight answer
θ= {L/l, U/u} for Q to KB has a polynomial data complexity.

9 Summary and Outlook

We have presented probabilistic fuzzy dl-programs for the Semantic Web, which allow for handling both
probabilistic uncertainty (especially for probabilistic ontology mapping and probabilistic data integration)
and fuzzy vagueness (especially for dealing with vague concepts) in a uniform framework. We have defined
important concepts related to both probabilistic uncertainty and fuzzy vagueness. We have then provided
algorithms for query processing in such programs, and we have also delineated a special case where query
processing has a polynomial data complexity. Finally, we have described a shopping agent example, which
gives evidence of the usefulness of probabilistic fuzzy dl-programs in realistic web applications.

An interesting topic of future research is to generalize probabilistic fuzzy dl-programs by non-stratified
default negations, classical negations, and disjunctions.
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