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is a tight integration of fuzzy disjunctive programs undes answer set semantics with fuzzy de-
scription logics. From a different perspective, it is a gatieation of tightly integrated disjunctive
dl-programs by fuzzy vagueness in both the descriptiorclagid the logic program component.
We show that the new formalism faithfully extends both fudzsjunctive programs and fuzzy de-
scription logics, and that under suitable assumptionsomag in the new formalism is decidable.
Furthermore, we present a polynomial reduction of certazzy dl-programs to tightly integrated
disjunctive dl-programs. We also provide a special caseinfyf dl-programs for which deciding
consistency and query processing have both a polynomialadeplexity.

1Dipartimento di Informatica e Sistemistica, Univeasiti Roma “La Sapienza”, Via Salaria 113, 1-00198 Rome,
Italy; e-mail: lukasiewicz@dis.uniromal.it. Institutrfinformationssysteme, Technische Univeéxsiien, Favoriten-
stral3e 9-11, A-1040 Vienna, Austria; e-mail: lukasiewidz@wien.ac.at.

2ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy; e-mail: atcia@isti.cnr.it.

Acknowledgements This work has been partially supported by a HeisenbergeBsafrship of the German
Research Foundation (DFG).

Copyright(© 2007 by the authors



INFSYS RR 1843-07-03

Contents

1

2

Introduction
Combination Strategies

Fuzzy Description Logics

3.1 Syntax . . ... e
3.2 SemantiCs . . . . . ... e

Fuzzy Description Logic Programs

4.1 Syntax . . ... e e
4.2 SemantiCs . . . . . . ..

Semantic Properties

51 MinimalModels. . . ... .. .. ... .. .. ... . . . ...
5.2 Faithfulness . . . . . . . . . .. .. ...
5.3 Unique Name Assumption . . . .. .. ... ... .. ......

Reduction of Fuzzy DL-Programs to DL-Programs
Tractability Results

Summary and Outlook



INFSYS RR 1843-07-03 1

1 Introduction

TheSemantic We[d, 9] aims at an extension of the current World Wide Web by standawditeghnologies
that help machines to understand the information on the Web so that theypraortsicher discovery, data
integration, navigation, and automation of tasks. The main ideas behind it adel ta machine-readable
meaning to Web pages, to use ontologies for a precise definition of shameslite\Web resources, to use
KR technology for automated reasoning from Web resources, and p@gperative agent technology for
processing the information of the Web.

The Semantic Web consists of several hierarchical layers, whe@rtodogy layeyin form of theOWL
Web Ontology Languad8&4, 15], is currently the highest layer of sufficient maturity. OWL coissid three
increasingly expressive sublanguages, nan@WL Lite OWL DL, andOWL Full. OWL Lite and OWL
DL are essentially very expressive description logics with an RDF syd&ix As shown in [13], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (unjiddikty in the description
logic SHZF(D) (resp.,.SHOZN (D)). On top of the Ontology layer, theules Logic, andProof layers
of the Semantic Web will be developed next, which should offer sophisticafgdsentation and reasoning
capabilities.

In particular, there is a large body of work on integrating rules and onedogvhich is a key require-
ment of the layered architecture of the Semantic Web. Significant reseffocts focus on hybrid integra-
tions of rules and ontologies, calletkscription logic programgor dl-programg, which are of the form
KB = (L, P), whereL is a description logic knowledge base aRds a finite set of rules involving either
queries tol in a loose integration (see especially [7, 8, 5, 6]) or concepts and roles/f as unary resp.
binary predicates in a tight integration (see especially [25, 26, 20]).

Other works explore formalisms fdrandling uncertainty and vagueness/imprecidiothe Semantic
Web. In particular, formalisms for dealing with uncertainty and vaguenesstologies have been applied
in ontology mapping and information retrieval. Vagueness and imprecisiomalatamnd in multimedia infor-
mation processing and retrieval. Moreover, handling vagueness is antémpaspect of natural language
interfaces to the Web. There are several recent extensions ofaliescitogics, ontology languages, and
description logic programs for the Semantic Web by probabilistic uncertaintyuazy vagueness. In par-
ticular, description logic programs under probabilistic uncertainty and/fuagueness have been proposed
in [18, 17] resp. [31, 32, 19].

In this paper, we continue this line of research. We pretightly integrated fuzzy description logic
programs(or simply fuzzy dl-programsunder the answer set semantiagshich are a tight integration
of fuzzy disjunctive programs under the answer set semantics with fyeagralizations 08 HZ F (D)
andSHOIN (D). Even though there has been previous work on fuzzy positive dirpnegy[31, 32] and
on loosely integrated fuzzy normal dl-programs [19], to our knowletlgs,is the first approach to tightly
integrated fuzzy disjunctive dl-programs (with default negation in ruleds)d The main contributions of
this paper can be summarized as follows:

e We present a novel approach to fuzzy dl-programs, which is a tightratieg of fuzzy disjunctive
programs under the answer set semantics with fuzzy description logissa tjeneralization of the
tightly integrated disjunctive dl-programs in [20] by fuzzy vagueness th thee description logic and
the logic program component.

e We show that the new fuzzy dI-programs have nice semantic featuresrtloytar, all their answer
sets are also minimal models, and the cautious answer set semantics faithfeligsekoth fuzzy
disjunctive programs and fuzzy description logics. Furthermore, theapgwoach also does not need
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the unique name assumption.

e In the large class of fuzzy dl-programs that are defined over a finite euwibtruth values, the
problems of deciding consistency, cautious consequence, and brasegeience are all decidable. We
also present a polynomial reduction for certain fuzzy dl-programs to thitigitegrated disjunctive
dl-programs in [20].

e Finally, we delineate a special case of fuzzy dl-programs where deadimgjstency and query pro-
cessing have both a polynomial data complexity.

The rest of this paper is organized as follows. Sections 2 and 3 recabination strategies and fuzzy
description logics, respectively. Section 4 introduces the syntax of/fdkprograms and defines their
answer set semantics. In Section 5, we analyze some semantic propeftizgyodll-programs under the
answer set semantics. Section 6 presents a reduction of fuzzy deprego disjunctive dl-programs. In
Section 7, we delineate a special case of fuzzy dl-programs with polyndiatialcomplexity. Section 8
summarizes our main results and gives an outlook on future researchthidotetailed proofs of all the
results in this paper are given in the extended version.

2 Combination Strategies

Rather than being restricted to an ordinary binary truth value anfialsg andtrue, vague propositions
may also have a truth value strictly betwefaise andtrue. In the sequel, we use the unit interj@l 1] as
the set of all possible truth values, whérand1 represent the ordinary binary truth valdadse andtrue,
respectively. For example, the vague proposition “John is a tall man” meyobe or less true, and it is thus
associated with a truth value i, 1], depending on the body height of John.

In order to combine and modify the truth values[in1], we assumeombination strategienamely,
conjunction disjunction implication andnegation strategiegenoted, ¢, >, ando, respectively, which
are functionsg, &, >: [0,1] x [0,1] —[0,1] and&: [0, 1] — [0, 1] that generalize the ordinary Boolean
operators\, V, —, and—, respectively, to the set of truth valugs 1]. Fora, b€ [0, 1], we then calk ® b
(resp..a®b, a > b) theconjunction(resp. disjunction implication) of a andb, and we calb a thenegation
of a. As usual, we assume that combination strategies have some natural iglgetyparties, namely, the
properties shown in Tables 1 and 2. Note that conjunction and disjunctategigs (with the properties
in Table 1) are also callemiangular normsandtriangular co-normg11], respectively. We do not assume
properties that relate the combination strategies to each other (such aggkniddaw); even though one
may additionally assume such properties, they are not required here.

Example 2.1 The combination strategies of various fuzzy logics are shown in Table 3.

3 Fuzzy Description Logics

In this section, we recall fuzz§ HZ F (D) and fuzzySHOZIN (D) [29, 30, 21] (see also [27]). Note that
there also exists an implementation of fu&{ZF (D) (thefuzzyDLsystem; seéttp://gaia.isti.
cnr.it/"straccia ). Intuitively, description logics model a domain of interest in terms of cotscapd
roles, which represent classes of individuals and binary relationeketalasses of individuals, respectively.
A description logic knowledge base encodes in particular subset relaifisrizetween classes of individuals,
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Table 1: Axioms for conjunction and disjunction strategies.

Axiom Name Conjunction Strategy Disjunction Strategy
Tautology / Contradictiona ® 0 = 0 a®1l=1

Identity a®l=a a®0=a

Commutativity a®b=>bR®a a®db=bDa
Associativity (a@b)@c=a®(b®c) (apb)dc=ad (bdc)
Monotonicity ifb<c,thena®@b<a®ce ifb< e, thena®b<adc

Table 2: Axioms for implication and negation strategies.

Axiom Name Implication Strategy Negation Strategy
Tautology / Contradiction0 > b=1, ax>1=1, 1>0=0 €0=1, 1=0
Antitonicity if a <bthena>c>bp>c if a <b,thenca>Sb
Monotonicity ifb<c thena>b<arc

Table 3: Combination strategies of various fuzzy logics.

tukasiewicz Logic @del Logic  Product Logic Zadeh Logic

a®b max(a+b—1,0) min(a,b) a-b min(a, b)

a®b  min(a+0b,1) max(a, b) a+b—a-b max(a, b)
1 ifa<b

>b min(l—a+b,1 : in(1,b 1—a,b

a min(l —a+b,1) {b otherwise min(1,b/a) max(1 — a,b)
1 ifa=0 1 ifa=0

©a 1—-a . . 1—a
0 otherwise |0 otherwise

subset relationships between binary relations between classes, the si@mbéindividuals to classes, and
the membership of pairs of individuals to binary relations between classfszy description logics, these
relationships and memberships then have a degree of trithlih

3.1 Syntax

We first describe fuzzys HOZN (D), which has the following elementary ingredients. We assume a set
of data values a set ofelementary datatypesnd a set oflatatype predicategeach with a predefined
arity n > 1). A datatypeis an elementary datatype or a finite set of data valuefuz&y datatype theory
D = (AP, - D) consists of a datatype domais® and a mapping P that assigns to each data value an
element ofAP, to each elementary datatype a subsef®, and to each datatype predicate of arity
fuzzy relation overAP of arity n (that is, a mappindAP)" — [0, 1]). We extend P to all datatypes by
{v1,.. 0, P ={0P,... WPl

Example 3.1 A crisp unary datatype predicate;s over the natural numbers denoting the integers of at
most18 may be defined by ;3(x) =1, if <18, and<;4(x) =0, otherwise. ThenMinor = Person 1
Jage.< ;¢ defines a person of age at mdst. Non-crisp predicates are usually defined by functions
for specifying fuzzy set membership degrees, such as the triangwataiezoidal, thd.-, and theR-
function (see Fig. 1). For example, a fuzzy unary datatype preditateg over the natural numbers



4 INFSYS RR 1843-07-03

(b) (©) (

d)

1
x

(@)

Figure 1: (a) Trapezoidal function; (b) Triangular function; [ejunction; (d) R-function

denoting the degree of youngness of a person’s age may be defingaulby (z) = L(x; 10, 30). Then,
YoungPerson = Person N Jage. Young denotes a young person.

Let A, R4, Rp, I, andM be pairwise disjoint (nonempty) denumerable setatofnic conceptsab-
stract roles datatype rolesindividuals andfuzzy modifiersrespectively. Here, fuzzy modifiern [12, 33]
represents a functiofy,, on [0, 1], which changes the membership function of a fuzzy set.

Example 3.2 The fuzzy modifiersiery resp.slightly may represent the two functionsry(z) = x2 resp.
slightly(x) = \/x. Then, the concept of sports cars may be definetpasts Car = CarMIspeed.very(High),
where High is a fuzzy datatype predicate over the domain of speed in km/h, which mayfinedlas
High(xz) = R(z;80,250).

A role is any element oR4 UR; URp (whereR, is the set ofinversesk™ of all R€ R4). We
defineconceptdnductively as follows. Eachl € A is a concept,l. and T are concepts, and iy, ...,
an €1, then{ay, ..., a,} is a concept (calledneOy. If C, C, C; are conceptsRk, S€ R4 UR,, and
m € M, then(C, M Cy), (C1 U Cy), -C, andm(C') are concepts (callecbnjunction disjunction negation
andfuzzy maodificatioyrespectively), as well asR.C, VR.C, >n.S, and<nS (calledexists value atleast
andatmost restrictionrespectively) for an integet > 0. If D is a datatype an@’, 71, ..., T,, € Rp, then
1, ..., T,.D,VT,...,T,.D, >nT, and<nT are concepts (calledatatype existsvalue atleast and
atmost restrictionrespectively) for an integer>0. We eliminate parentheses as usual.

A crisp axiomhas one of the following forms: (1)'C D (called concept inclusion axiojn where
C and D are concepts; (2RC S (calledrole inclusion axion, where eitherR, SR 4 or R, S € Rp;
(3) Trans(R) (calledtransitivity axiom), whereR € R 4; (4) C(a) (calledconcept assertion axiogwhere
C'is a concept and €I; (5) R(a,b) (resp.,U(a,v)) (calledrole assertion axiot whereR € R 4 (resp.,
UeRp) anda,b € I (resp.,acI andv is a data value); and (&) =b (resp.,a # b) (equality (resp.,
inequality) axiom), wherea, b € I. We definduzzy axiomas follows: Afuzzy concept inclusiamesp. fuzzy
role inclusion fuzzy concept assertipfuzzy role assertigraxiomis of the forma. 6 n, wherex is a concept
inclusion (resp., role inclusion, concept assertion, role assertionnaie { <, =, >}, andn € [0, 1]. For
example(C'(a) >0.1, R(a,b)<0.3, RC S>0.4, andC C D < 0.6 are fuzzy axioms. Informally, a fuzzy
axiom of the forma < n (resp.,a =n, a >n) encodes that the truth degreewfs at most (resp., equal
to, at least)r. For example,TallPerson(jim) > 0.2 says thatim is a tall person with a truth degree of
at least0.2, while C' C D > n says that the subsumption degree betw€emd D is at leastn. We often
usea: C anda to abbreviate” (a) anda > 1, respectively. Afuzzy (description logic) knowledge bake
is a finite set of fuzzy axioms, transitivity axioms, and equality and inequaliynasc For decidability,
number restrictions il, are restricted to simple abstract roles [16].

FuzzySHZF (D) has the same syntax as fuz3{OZN (D), but without the oneOf constructor and
with the atleast and atmost constructors limite@ end1.
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Example 3.3 (Shopping Agent)The following axioms are an excerpt of the description logic knowledge
baseL that conceptualizes a car selling web site:

Cars U Trucks U Vans U SUVs T Vehicles (1)
PassengerCars Ll LuzuryCars = Cars (2)
CompactCars L MidSizeCars LI SportyCars = PassengerCars 3)

Cars C (3hasReview.Integer) M (IhasInvoice.Integer)
M (3hasResellValue.Integer) M (3hasMazSpeed.Integer)

M (FhasHorsePower.Integer) M ... 4
MazdaMX5Miata: SportyCar M (3hasInvoice.18883)

M (3hasHorsePower.166) 1. .. (5)
MitsubishiEclipseSpyder: SportyCar M (3haslnvoice.24029)

M (3hasHorsePower.162) 1. .. (6)

Egs. 1-3 describe the concept taxonomy of the site, while Eq. 4 destirdbdatatype attributes of the cars
sold in the site. Eqgs. 5—6 describe the properties of some sold cars.

We may then encode “costs at most about 22€0and “has a power of around 150 HP” in a buyer’s
request through the following conceptsand D, respectively:

C =3hasInvoice. LeqAbout22000 and D =dhasHorsePower.Around150,

whereLeqAbout22000 = L(22000, 25000) and Around150 = Tri(125,150, 175). The latter two equations
define the fuzzy concepts of “at most about 22 @@nd “around 150 HP”. The former is modeled as a
left shoulder function stating that if the prize is less than 22 000, then thre@lef truth (degree of buyer’s
satisfaction) isl, else the truth is linearly decreasing to O (reached at the cost of 25 00€jct, we are
modeling a case were the buyer would like to pay less than 22 000, thoughihregcept a higher price (up
to 25000) to a lesser degree. Similarly, the latter models the fuzzy coneeptnth150 HP” as a triangular
function with vertice in 150 HP.

3.2 Semantics

Concerning the semantics of fuz&HZ F (D) andSHOZN (D) [30], the main idea is that concepts and
roles are interpreted as fuzzy subsets of an interpretation’s domaincefdres concept inclusion, role
inclusion, concept assertion, and role assertion axioms, rather thandagisfied (true) or unsatisfied (false)
in an interpretation, have a degree of truth[inl]. In the sequel, we assume that @, >, ando are
some arbitrary but fixed conjunction, disjunction, implication, and negatiatesfies, respectively. Aizzy
interpretationZ = (A, .7) relative to a fuzzy datatype theoly = (AP, -P) consists of a nonempty set
AT (called thedomain), disjoint from AP, and afuzzy interpretation functiorf, which (i) coincides with

. D on every data value, datatype, and fuzzy datatype predicate, (ii) agsigrach modifiern € M its
modifier functionf,, : [0, 1] — [0, 1], and (iii) assigns

e to each individuak € I an element? € AZ;
e to each atomic conceit € A a functionC%: AT — [0,1];
e to each abstract rolR € R4 a functionR%: AT x AT — [0,1];
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e to each concrete rol€ € Rp a function7?: AT x AP — [0, 1].

The mapping? is extended to all roles and concepts as follows (whegee AL):

(57 (z,y) = S%(y,a)

TIx) = 1
15z = 0
{a1,...,a,} (x) = D" a0 =2
(C1NCy) () = CF(x) @ Cy¥ ()
(CLUC) () = Cif(z) ® CF(x)
(=C)(x) = ©C%(x)
(mC) (@) = fm(CH(2))
(VR.C) (z) = infyenr RY(z,y) > CF(y)
(BRC) (x) = supyenz RE(z,y) ® C%(y)
(208 (@) = sup (. ,ycar @y ST (@ )
Hyi,. - untl=n
(<nSx) = e(=n+18(2)
(VTla e aTn~D)I($) = infyl,..A,yneAD(®?:l T%I(m7 yl)) > DD(ylv ce ayn)

(EITlv s >TnD)I($) = SUPy,; ... y,cAD (®?:1 T%I(xa yl)) ® DD(yla s ,yn) :

The mapping? is extended to concept inclusion, role inclusion, concept assertiompknassertion axioms
as follows (wherex, b € I):

(Cl C CQ)I = ianGAZ ClI(x) > CQI(l')
(Ri C Ry)" = inf, jenr Ri%(z,y) > Ro¥ (2,y)
(Cla)* = C%(d?)
(R(a,b))* = RZI(dZ,b7).

The notion of a fuzzy interpretatiofi satisfyinga transitivity, equality, inequality, or fuzzy axiorf,
or Z being amodelof £, denotedZ = E, is defined as follows: (if |= trans(R) iff R%(x,y) > sup,caz
RI(z,2) ® RY(z,y) for all z,y € AT; (i) ZT|=a=0biff o =b%, andZ =a #b iff o #b%; and (i) Z =
afn iff o On. A conceptC is satisfiableiff there is an interpretatiof and somer € A such that
C’I(x) > (. We sayZ satisfiesa fuzzy knowledge basg, or Z is amodelof L, denotedZ |= L, iff 7 is a
model of all ' € L. We sayL is satisfiableiff L has a model. A fuzzy axionv is alogical consequencef
L, denotedL = E, iff every model ofL satisfiesE. A fuzzy axioma > n is atight logical consequencef
L, denotedl [=4gn¢ o > n, iff nis the supremum afr € [0, 1] subject toL =« > m.

N

Example 3.4 (Shopping Agent cont'd) The following fuzzy axioms are (tight) logical consequences of
in Example 3.3 (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) > 1.0 C(MitsubishiEclipseSpyder) > 0.32
D(MazdaMX5Miata) > 0.36 D(MitsubishiEclipseSpyder) = 0.56 .

4 Fuzzy Description Logic Programs

In this section, we present a tightly integrated approadizay disjunctive description logic prograrfe
simply fuzzy dl-programsunder the answer set semantics. Observe that differently from ifi @8pdgition
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to being a tightly integrated approach to fuzzy dl-programs), the fuzzyatjrpms here are based on fuzzy
description logics as in [30]. Furthermore, they additionally allow for digjons in rule heads. We first
introduce the syntax of fuzzy dI-programs and then their answer sensema

The basic idea behind the tightly integrated approach in this section is as fobawpose that we have
a fuzzy disjunctive prograr®?. Under the answer set semantifsis equivalent to its groundinground (P).
Suppose now that some of the ground atomg-irund (P) are additionally related to each other by a fuzzy
description logic knowledge bade That is, some of the ground atomsgrmund(P) actually represent
concept and role memberships relativeltoThus, when processingound(P), we also have to consider
L. However, we only want to do it to the extent that we actually need it fotgssingground(P). Hence,
when taking a fuzzy Herbrand interpretatidoiC HB 4, we have to ensure thdtrepresents a valid truth
value assignment relative fo. In other words, the main idea behind the semantics is to intefpretative
to Herbrand interpretations that also satigfywhile L is interpreted relative to general interpretations over
a first-order domain. Thus, we modularly combine the standard semanticzgfdisjunctive programs and
of fuzzy description logics as in [19], which allows for building on the staddechniques and the results
of both areas. However, our new approach here allows for a muchrtigkegration of and P.

4.1 Syntax

We assume a function-free first-order vocabul@ryvith nonempty finite sets of constant and predicate
symbols. We us&, to denote the set of all constant symbolsdin We also assume pairwise disjoint
(nonempty) denumerable sefs R4, Rp, I, andM of atomic concepts, abstract roles, datatype roles,
individuals, and fuzzy modifiers, respectively, as in Section 3. Wenasghat®.. is a subset ol. This
assumption guarantees that every ground atom constructed from atamipts, abstract roles, datatype
roles, and constants th,. can be interpreted in the description logic component. We do not assume any oth
restriction on the vocabularies, thatisand A (resp.,R 4 U Rp) may have unary (resp., binary) predicate
symbols in common.

Let X’ be a set of variables. fermis either a variable from¥’ or a constant symbol fron. An atomis
of the formp(¢4,...,t,), wherep is a predicate symbol of arity > 0 from &, and¢, ..., ¢, are terms. A
literal [ is an atonp or a negated atomot p. A disjunctive fuzzy ruléor simplyfuzzy rul¢ r is of the form

a1 Vg, - Ve, @ g b1 Agy b2 Ngy -+ N@y_1 bk’/\®k

(7)
n0t9k+1 bk""l /\®k:+1 © A@p oy NOtg,, b = v,
wherel>1,m>k>0,ay,...,a;,bgy1,...,by are atomshy, ..., by are either atoms or truth values from
[0,1], ®1,...,@®;_; are disjunction strategies, . . ., ®,,—1 are conjunction strategieSy, 1, . . ., ©,, are

negation strategies, and= [0, 1]. We refer toa; Vg, --- Vg, , a; as theheadof r, while the conjunction
b1 A, --- Ng,,_, note,, by, is thebodyof r. We defineH (r) ={as,...,a;} andB(r)=B*(r) U B~ (r),
whereB*(r) = {by,...,bx} andB~(r) = {bxs1,...,bn}. A disjunctive fuzzy prograrfor simply fuzzy
program P is a finite set of fuzzy rules of the form (7). We s&yis anormal fuzzy progranff (=1 for all
fuzzy rules (7) inP. We sayP is apositive fuzzy progranff [ =1 andm = k for all fuzzy rules (7) inP.

A disjunctive fuzzy description logic prografor simply fuzzy dI-prograh KB = (L, P) consists of
a description logic knowledge bageand a disjunctive fuzzy prograrf. It is called anormal fuzzy dlI-
programiff P is a normal fuzzy program. It is calledpsitive fuzzy dl-prograriif P is a positive fuzzy
program.
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Example 4.1 (Shopping Agent cont'd) A fuzzy dl-programKB = (L, P) is given by the fuzzy description
logic knowledge basé in Example 3.3 and the set of fuzzy dl-rul&s which contains only the following
fuzzy dl-rule (wherer ® y = min(z, y)):

query(z) <«—g SportyCar(x) Ag hasInvoice(x,y1) Ng hasHorsePower(z,y2) g
LeqAbout22000(y1) N Around150(y2) > 1.

Informally, the predicateuery collects all sporty cars, and ranks them according to whether they ttost a
most around 22 00€@ and have around 150 HP (such a car may be requested by a car hthyec@nomic
needs). Another fuzzy dI-rule is given as follows (where = 1—x and Around300 = Tri(250, 300, 350)):

query’(x) «—g SportyCar(x) Ag haslnvoice(x,y1) Ng hasMaxSpeed(x, y2)A\g
note LeqAbout22000(y1) Ng Around300(y2) > 1.

Informally, this rule collects all sporty cars, and ranks them accordinghtetiver they cost at least around
22 000€ and have a maximum speed of around 300 km/h (such a car may be redueatedr buyer with
luxurious needs). Another fuzzy dl-rule involving also a disjunction in itsdis given as follows (where
x @y = max(z,y)):

Small(x)Ve Old(x) «—g Car(z) Ag hasInvoice(x,y) Ag note GeqAbout15000(y) > 0.7.

This rule says that a car costing at most around 150B0either small or old. Observe here tifatall and

Old may be two concepts in the fuzzy description logic knowledge lbas€hat is, the tightly integrated
approach to fuzzy dl-programs under the answer set semantics alse flawging the rules i to express
relationships between the concepts and roleB.iiThis is not possible in the loosely integrated approach to
fuzzy dl-programs under the answer set semantics in [19], since theedkeg of that framework can only
occur in rule bodies, but not in rule heads.

4.2 Semantics

We now define the answer set semantics of fuzzy dI-programs via aadieation of the standard Gelfond-
Lifschitz transformation [10].

In the sequel, leiB = (L, P) be a fuzzy dl-program. Ayround instanceof a ruler € P is obtained
from r by replacing every variable that occursiby a constant symbol from.. We denote byround(P)
the set of all ground instances of rulesih The Herbrand baseaelative to®, denotedHB 3, is the set
of all ground atoms constructed with constant and predicate symbols@ro@bserve that we define the
Herbrand base relative t and not relative taP. This allows for reasoning about ground atoms from the
description logic component that do not necessarily occut.i®bserve, however, that the extension from
P to @ is only a notational simplification, since we can always make constant adit@te symbols from
® occur inP by “dummy” rules such asonstant(c) < andp(c) < p(c), respectively. We denote byLg
the set of all ground atoms iHB g that are constructed from atomic conceptAinabstract roles iR 4,
concrete roles ilR p, and constant symbols ib...

We define Herbrand interpretations and the truth of fuzzy dl-programm #s follows. Annterpre-
tation I is a mapping : HB¢ — [0, 1]. We write HB ¢ to denote the interpretatiahsuch that/ (a) =1 for
all a € HBg. For interpretationd and.J, we write I C J iff I(a)<J(a) for all a € HB, and we define
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the intersectionof I and.J, denoted/ N .J, by (I N.J)(a) = min(I(a), J(a)) for all a € HBy. Observe
that/ C HBg for all interpretationd. We say that/ is amodelof a ground fuzzy rule- of the form (7),
denoted! =, iff

I(a1) @1 --- @ L(ar) > 1(b1) ®1 -+ @p—1 I(by) @i, ®)
Skt+1 L(bk+1) @kt -+ Am—1 OmI(bm) o v.
Here, we implicitly assume that the disjunction strategigs. . . , ®; and the conjunction strategies, . . .,
®m_1, Qo are evaluated from left to right. Notice also that the above definition implicitlurass an
implication strategy> that is defined by: > b= sup {c€[0,1]|a ®¢ c< b} for all a, b€ [0,1] (and thus
for n,m €0, 1] anda = n, it holds thata > b > m iff b >n ®m, if we assume that the conjunction strategy
®o Is continuous). Observe that such a relationship between the implicatiorggiratnd the conjunction
strategy® (including also the continuity ab) holds in Lukasiewicz, @del, and Product Logic (see Table 3).
We say thatl is amodelof a fuzzy programP, denoted! |= P, iff I |=r for all € ground(P). We sayl is
amodelof a description logic knowledge bagedenoted = L, iff LU{a=1(a)|a € HBgs} is satisfiable.
An interpretation/ C HBg is amodelof a fuzzy dI-programkB = (L, P), denoted/ = KB, iff I =L and
I = P. We sayKB is satisfiableff it has a model.

The Gelfond-Lifschitz transforrof a fuzzy dl-programik’B = (L, P) relative to an interpretation C
HBg, denotedKB’, is defined as the fuzzy dl-prografi, P'), where P! is the set of all fuzzy rules
obtained fromground(P) by replacing all default-negated atomsts;b; by the truth values; I(b;). We
are now ready to define the answer set semantics of fuzzy dl-progsafokoavs.

Definition 4.2 Let KB = (L, P) be a fuzzy dl-program. An interpretatidnC HBg4 is ananswer sebf
KB iff T is a minimal model ofKB!. We say thatkB is consisteni(resp.,inconsistentiff KB has an
(resp., no) answer set.

We finally define the notions ofautious(resp.,brave reasoningfrom fuzzy dl-programs under the
answer set semantics as follows.

Definition 4.3 Let KB = (L, P) be a fuzzy dl-program. Let € HBg andn€[0,1]. Then,a>n is a
cautious(resp.,brave consequencef a fuzzy dl-programkK B under the answer set semantics/ift) > n
for every (resp., some) answer geif KB.

Example 4.4 (Shopping Agent cont'd) Consider again the fuzzy dl-prograiiB = (L, P) of Exam-
ple 4.1. The following holds for the answer S¢tof KB:

M(q(MazdaMX5Miata)) = 0.36 M (q(MitsubishiEclipseSpyder)) = 0.32.

5 Semantic Properties

In this section, we summarize some semantic properties (especially thosatré&evthe Semantic Web) of
fuzzy dl-programs under the above answer set semantics.
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5.1 Minimal Models

The following theorem shows that, like for ordinary disjunctive prograewsyy answer set of a fuzzy dl-
programKB is also a minimal model oK B, and the answer sets of a positive fuzzy dl-progrdm are the
minimal models ofKB.

Theorem 5.1 Let KB = (L, P) be a fuzzy dl-program. Then, (a) every answer séfBfis a minimal model
of KB, and (b) if KB is positive, then the set of all answer setsid® is given by the set of all minimal
models ofK B.

5.2 Faithfulness

An important property of integrations of rules and ontologies is that theg &ihful [22, 23] extension of
both rules and ontologies.

The following theorem shows that the answer set semantics of fuzzyodkgms faithfully extends
its counterpart for fuzzy programs. That is, the answer set semaffiticuazy dl-programkKB = (L, P)
with empty fuzzy description logic knowledge bakeoincides with the answer set semantics of its fuzzy
programpP.

Theorem 5.2 Let KB = (L, P) be a fuzzy dl-program such that= (. Then, the set of all answer sets of
KB coincides with the set of all answer sets of the fuzzy progfam

The next theorem shows that the answer set semantics of fuzzy dapreglso faithfully extends the
first-order semantics of fuzzy description logic knowledge bases. i$h&ir « € HBg andn € |0, 1], it
holds thata > n is true in all answer sets of a positive fuzzy dl-progr&l = (L, P) iff a >n is true in all
fuzzy first-order models of U ground(P). The theorem holds also wheris a ground formula constructed
from HBg usingA andV, along with conjunction and disjunction strategiesesp..

Theorem 5.3 Let KB = (L, P) be a positive fuzzy dl-program, and le€ HB¢ andn € [0, 1]. Thena >n
is true in all answer sets A& B iff a > n is true in all fuzzy first-order models &fU ground(P).

As an immediate corollary, we obtain that » is true in all answer sets of a fuzzy dl-prograti? =
(L,0) iff a>nis true in all fuzzy first-order models df.

Corollary 5.4 Let KB = (L, P) be a fuzzy dl-program witl? = (), and leta € HBg andn € [0, 1]. Then,
a >=nistrue in all answer sets ok B iff a > n is true in all fuzzy first-order models @f.

5.3 Unique Name Assumption

Another aspect that may not be very desirable in the Semantic Web [14] isthee name assumption
(which says that any two distinct constant symboljrrepresent two distinct domain objects). It turns out
that we actually do not have to make this assumption, since the fuzzy desctggio knowledge base of a
fuzzy dl-program may very well contain or imply equalities between indiMglua

This result is included in the following theorem, which shows an alternatiaeacierization of the
satisfaction ofL. in I C HBg4: Rather than being enlarged by a set of axioms of exponential &iig,
enlarged by a set of axioms of polynomial size. This characterizationtisseshows that the satisfaction
of L in I corresponds to checking that {iyestricted taDLg satisfiesl, and (ii) I restricted toHBg — DLg
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does not violate any equality axioms that follow frain In the theorem, an equivalence relatisnon
®. is admissiblewith an interpretationl C HBg iff I(p(c1,...,¢n)) = I(p(c},...,c,)) for all n-ary

predicate symbolg, wheren > 0, and constant symbols, . .., c,,c, ..., ¢, € ®. such that; ~ ¢ for all
ie{l,...,n}.

Theorem 5.5 Let L be a fuzzy description logic knowledge base, and [etHB 4. Then,L U {a=1I(a) |
a€ HBg} is satisfiable iffl U {a=1I(a)|a€ DLs} U {c#c | ¢4} is satisfiable for some equivalence
relation ~ on ®. admissible with/.

6 Reduction of Fuzzy DL-Programs to DL-Programs

In this section, we present a polynomial reduction of fuzzy dl-progranisttightly integrated dl-programs
in [20]. Hence, reasoning in fuzzy dl-programs under the answeaeseantics can be reduced to (a) reason-
ing in tightly integrated dl-programs under the answer set semantics aneb@mning in fuzzy description
logics. Note that reasoning in fuzzy description logics may additionally becestito reasoning in crisp
description logics along the lines presented in [28, 2] for fudz3CH and fuzzySHOIN .

The reduction applies to all fuzzy dl-programis3 that (i) are closed undef'V,, = {0, %, ey
for somen > 0 and (ii) contain only combination strategies from Zadeh Logic. H&B,is closedunder
TV, iff (a) every datatype predicate B is interpreted by a mapping t6'V,,, (b) every fuzzy modifier
m in KB is interpreted by a mapping,,: 7V, — TV,, (c) every truth value inKB is from T7'V,,, and
(d) every combination strategy B is closed undef'V,, (which holds, e.g., for the combination strategies
of Lukasiewicz, ®@del, and Zadeh Logic). Note that for fuzzy dl-programB that are closed underV,,
the problems of deciding consistency, cautious consequences, amddorssequences are all decidable,
since we only have to consider the finite number of interpretatiaghddB ¢ that map toT'V,.

We denote byp" the alphabet that is obtained from the alphabdly replacing every predicate symbol
p by the new predicate symbal§ with o € TV,F = TV,,\ {0}. For atomsi = p(t1,...,t;) anda € TV, ,
the atoma® over ®” is defined byu® = p®(t1,...,t;). Every fuzzy interpretatiod C HBg is associated
with the binary interpretation(/) = {a®|a € HBg, a € TV,}, I(a) > a}.

Thecrisp transformof a fuzzy dI-programikB = (L, P) is the dl-programt(KB) = (L,t(P)), where

t(P) is the set (i) of all rule®(x1,...,z;) — p®(z1,...,x;) such thatp is a k-ary predicate symbol
from @, z1,..., z; are distinct variablesy € TV,f \ {1}, and3=a — 1, and (ii) of all rulesa§ v - - - v
aft —bY A+ ADY Anot bZH A -+ Anot by, such that a rule of the form (7) belongs®oa € TV, , a <,

andy=1—-—a+ % Observe here that the generated dl-progtéR) has a polynomial size ii* and TV, "
(assuming a unary number encoding for the truth values). The followimngegheshows that the answer sets
of KB correspond to the answer sets0kB) as in [20].

Theorem 6.1 Let KB = (L, P) be a fuzzy dl-program that (i) is closed undéi,, = {0,%,...,2} for

somen > 0 and (ii) contains only combination strategies from Zadeh Logic. ThenHB is an answer
set of KB iff ¢(I) is an answer set df KB).

Example 6.2 (Shopping Agent cont’d) The last fuzzy dlI-rule of Example 4.1 is translated into the follow-
ing dl-rules in the crisp transform (faf Vo = {0,0.1,...,1}):

Small®!(z) v Old*Y(z) « Car®Y(x) A hasInvoice® (z,y) A not GeqAbout15000"°(y),
Small®?(x) v Old*?(x) « Car®%(x) A hasInvoice®?(x,y) A not GeqAbout15000%° (y),
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Small®3(x) v 0ld°3(x x) A hasInvoice®~
Small®*(z) v Old**(z

(x) () Car A not GeqAbout15000°3(y),

() (z)
Small®>(z) v 0ld°>(z)

() (z)

() (z)

03 () 03 (x,y) (y)
Car®*(x) 04 (2, y) A not GeqAbout15000% (),
Car®(z) A hasInvoice®® (x,y) A not GeqAbout15000°°(y),
09 () 09z, y) (y)
7 () Oz, y) (y)

)

x) A hasInvoice™

Small®6(x) v 01d°(x z) A hasInvoice®S

Small®"(x) v Old°7 (x

Car A not GeqAbout15000°° (y),
Car A not GeqgAbout15000°4(y).

)

L

) A hasInvoice™ ' (z,

7 Tractability Results

In this section, we present a special class of fuzzy dl-programisfor which the problems of deciding
consistency and of query processing have both a polynomial data catpplehese fuzzy dl-programs are
defined relative tduzzy DL-Lite[32], which is a fuzzy generalization of the description loBic-Lite [4].
By [32] (resp., [4]), deciding whether a knowledge bas®InLite (resp.,fuzzy DL-Lit¢ is satisfiable can
be done in polynomial time, and conjunctive query processing from a ledpe base iDL-Lite (resp.,
fuzzy DL-Lit¢ has a polynomial data complexity.

We first recallDL-Lite andfuzzy DL-Lite Let A, R4, andI be pairwise disjoint sets of atomic con-
cepts, abstract roles, and individuals, respectivelybasic concept in fuzzy DL-Lits either an atomic
concept fromA or an exists restriction on roles?. T (abbreviated asR), whereR c R4 UR . A literal
in DL-Lite is either a basic concepior the negation of a basic concefit. Concepts in DL-Litare defined
by induction as follows. Every basic concepthi-Lite is a concept irDL-Lite. If b is a basic concept
in DL-Lite, and¢; and ¢, are concepts ifDL-Lite, then—b and ¢; M ¢ are also concepts iDL-Lite.
An axiom in DL-Liteis either (1) a concept inclusion axiobic ), whereb is a basic concept iDL-Lite,
and¢ is a concept irDL-Lite, or (2) afunctionality axiom(funct R), whereRe R4 UR,, or (3) a con-
cept assertion axiort(a), whereb is a basic concept iDL-Lite anda €1, or (4) a role assertion axiom
R(a,c), whereR € R4 anda, c€1. A fuzzy concepfresp.,role) assertion axionis of the formb(a) >n
(resp.,R(a,c) >n), whereb(a) (resp.,R(a,c)) is a concept (resp., role) assertion axionDib-Lite, and
n € 1[0,1]. A fuzzy axiom in DL-Lités either a fuzzy concept assertion axiom or a fuzzy role assertion ax-
iom. A fuzzy knowledge base in DL-Lifeis a finite set of concept inclusion, functionality, fuzzy concept
assertion, and fuzzy role assertion axiomPlrrLite.

For the conjunction strategies ofo@el and Zadeh Logic, every knowledge basdurzy DL-LiteL
can be transformed into an equivalent onefumzy DL-Litetrans(L) in which every concept inclusion
axiom is of formbC ¢, whereb (resp.,£) is a basic concept (resp., literal) DL-Lite. We then define
trans(KB) = (L, trans(P)) by trans(P) = PU{V/(X) < b(X) | bC ¥ € trans(L), b’ is a basic concept)
{3R(X) — R(X,)Y)|ReRANP}U{IR(Y)—R(X,Y)|RER4ND}.

We are now ready to define fuzzy dl-programsDh-Lite as follows. We say that a fuzzy dl-pro-
gramKB = (L, P) is defined inDL-Lite iff (i) L is infuzzy DL-Liteand interpreted relative to the conjunc-
tion strategies of @del or Zadeh Logic, (ii}rans(P) is normal and locally stratified, and (iif B is closed
underTV,, = {0, %, ..., w} for somen >0, where we assume a unary encoding of the numbef#slip.

It can be shown that fuzzy dI-programs i-Lite have either no or a unique answer set, which can
be computed by a finite sequence of fixpoint iterations, as usual. This impliesdiately that for such
programs, consistency checking and query processing have botlgreomial data complexity, which is
formally expressed as follows.
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Theorem 7.1 Let KB = (L, P) be a fuzzy dl-program in DL-Lite. Then, (a) deciding wheth&# has an
answer set, and (b) computing the truth value of a ground atent/ B¢ in the answer set ak B have both
a polynomial data complexity.

8 Summary and Outlook

We have presented an approach to tightly integrated fuzzy dl-progrades thne answer set semantics,
which generalizes the tightly integrated disjunctive dI-programs in [20] bgyfwvagueness in both the de-
scription logic and the logic program component. We have shown that théonealism faithfully extends
both fuzzy disjunctive programs and fuzzy description logics, and thdg¢usuitable assumptions, reason-
ing in the new formalism is decidable. Furthermore, we have presented ropubl reduction for certain
fuzzy dl-programs to tightly integrated disjunctive dl-programs. Finally, weehalso provided a special
case of fuzzy dl-programs for which deciding consistency and quergegsing have both a polynomial
data complexity.

An interesting topic for future research is to analyze the computational cgitypdéthe main reasoning
problems in fuzzy dl-programs, and to implement the approach. Anotheestitey issue is to extend fuzzy
dl-programs by classical negation.
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