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Abstract. We present a novel approach to fuzzy dl-programs under the answer set semantics, which
is a tight integration of fuzzy disjunctive programs under the answer set semantics with fuzzy de-
scription logics. From a different perspective, it is a generalization of tightly integrated disjunctive
dl-programs by fuzzy vagueness in both the description logic and the logic program component.
We show that the new formalism faithfully extends both fuzzydisjunctive programs and fuzzy de-
scription logics, and that under suitable assumptions, reasoning in the new formalism is decidable.
Furthermore, we present a polynomial reduction of certain fuzzy dl-programs to tightly integrated
disjunctive dl-programs. We also provide a special case of fuzzy dl-programs for which deciding
consistency and query processing have both a polynomial data complexity.
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1 Introduction

TheSemantic Web[1, 9] aims at an extension of the current World Wide Web by standards and technologies
that help machines to understand the information on the Web so that they can support richer discovery, data
integration, navigation, and automation of tasks. The main ideas behind it are toadd a machine-readable
meaning to Web pages, to use ontologies for a precise definition of shared terms in Web resources, to use
KR technology for automated reasoning from Web resources, and to apply cooperative agent technology for
processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where theOntology layer, in form of theOWL
Web Ontology Language[34, 15], is currently the highest layer of sufficient maturity. OWL consists of three
increasingly expressive sublanguages, namely,OWL Lite, OWL DL, andOWL Full. OWL Lite and OWL
DL are essentially very expressive description logics with an RDF syntax [15]. As shown in [13], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the description
logic SHIF(D) (resp.,SHOIN (D)). On top of the Ontology layer, theRules, Logic, andProof layers
of the Semantic Web will be developed next, which should offer sophisticatedrepresentation and reasoning
capabilities.

In particular, there is a large body of work on integrating rules and ontologies, which is a key require-
ment of the layered architecture of the Semantic Web. Significant researchefforts focus on hybrid integra-
tions of rules and ontologies, calleddescription logic programs(or dl-programs), which are of the form
KB =(L,P ), whereL is a description logic knowledge base andP is a finite set of rules involving either
queries toL in a loose integration (see especially [7, 8, 5, 6]) or concepts and roles fromL as unary resp.
binary predicates in a tight integration (see especially [25, 26, 20]).

Other works explore formalisms forhandling uncertainty and vagueness / imprecisionin the Semantic
Web. In particular, formalisms for dealing with uncertainty and vagueness inontologies have been applied
in ontology mapping and information retrieval. Vagueness and imprecision alsoabound in multimedia infor-
mation processing and retrieval. Moreover, handling vagueness is an important aspect of natural language
interfaces to the Web. There are several recent extensions of description logics, ontology languages, and
description logic programs for the Semantic Web by probabilistic uncertainty and fuzzy vagueness. In par-
ticular, description logic programs under probabilistic uncertainty and fuzzy vagueness have been proposed
in [18, 17] resp. [31, 32, 19].

In this paper, we continue this line of research. We presenttightly integrated fuzzy description logic
programs(or simply fuzzy dl-programs) under the answer set semantics, which are a tight integration
of fuzzy disjunctive programs under the answer set semantics with fuzzygeneralizations ofSHIF(D)
andSHOIN (D). Even though there has been previous work on fuzzy positive dl-programs [31, 32] and
on loosely integrated fuzzy normal dl-programs [19], to our knowledge,this is the first approach to tightly
integrated fuzzy disjunctive dl-programs (with default negation in rule bodies). The main contributions of
this paper can be summarized as follows:

• We present a novel approach to fuzzy dl-programs, which is a tight integration of fuzzy disjunctive
programs under the answer set semantics with fuzzy description logics. Itis a generalization of the
tightly integrated disjunctive dl-programs in [20] by fuzzy vagueness in both the description logic and
the logic program component.

• We show that the new fuzzy dl-programs have nice semantic features. In particular, all their answer
sets are also minimal models, and the cautious answer set semantics faithfully extends both fuzzy
disjunctive programs and fuzzy description logics. Furthermore, the newapproach also does not need
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the unique name assumption.

• In the large class of fuzzy dl-programs that are defined over a finite number of truth values, the
problems of deciding consistency, cautious consequence, and brave consequence are all decidable. We
also present a polynomial reduction for certain fuzzy dl-programs to the tightly integrated disjunctive
dl-programs in [20].

• Finally, we delineate a special case of fuzzy dl-programs where decidingconsistency and query pro-
cessing have both a polynomial data complexity.

The rest of this paper is organized as follows. Sections 2 and 3 recall combination strategies and fuzzy
description logics, respectively. Section 4 introduces the syntax of fuzzy dl-programs and defines their
answer set semantics. In Section 5, we analyze some semantic properties offuzzy dl-programs under the
answer set semantics. Section 6 presents a reduction of fuzzy dl-programs to disjunctive dl-programs. In
Section 7, we delineate a special case of fuzzy dl-programs with polynomialdata complexity. Section 8
summarizes our main results and gives an outlook on future research. Notethat detailed proofs of all the
results in this paper are given in the extended version.

2 Combination Strategies

Rather than being restricted to an ordinary binary truth value amongfalse andtrue, vague propositions
may also have a truth value strictly betweenfalse andtrue. In the sequel, we use the unit interval[0, 1] as
the set of all possible truth values, where0 and1 represent the ordinary binary truth valuesfalse andtrue,
respectively. For example, the vague proposition “John is a tall man” may bemore or less true, and it is thus
associated with a truth value in[0, 1], depending on the body height of John.

In order to combine and modify the truth values in[0, 1], we assumecombination strategies, namely,
conjunction, disjunction, implication, andnegation strategies, denoted⊗,⊕, ⊲, and⊖, respectively, which
are functions⊗, ⊕, ⊲ : [0, 1] × [0, 1]→ [0, 1] and⊖ : [0, 1]→ [0, 1] that generalize the ordinary Boolean
operators∧, ∨,→, and¬, respectively, to the set of truth values[0, 1]. Fora, b∈ [0, 1], we then calla ⊗ b
(resp.,a⊕b, a ⊲ b) theconjunction(resp.,disjunction, implication) of a andb, and we call⊖ a thenegation
of a. As usual, we assume that combination strategies have some natural algebraic properties, namely, the
properties shown in Tables 1 and 2. Note that conjunction and disjunction strategies (with the properties
in Table 1) are also calledtriangular normsandtriangular co-norms[11], respectively. We do not assume
properties that relate the combination strategies to each other (such as de Morgan’s law); even though one
may additionally assume such properties, they are not required here.

Example 2.1 The combination strategies of various fuzzy logics are shown in Table 3.

3 Fuzzy Description Logics

In this section, we recall fuzzySHIF(D) and fuzzySHOIN (D) [29, 30, 21] (see also [27]). Note that
there also exists an implementation of fuzzySHIF(D) (thefuzzyDLsystem; seehttp://gaia.isti.
cnr.it/˜straccia ). Intuitively, description logics model a domain of interest in terms of concepts and
roles, which represent classes of individuals and binary relations between classes of individuals, respectively.
A description logic knowledge base encodes in particular subset relationships between classes of individuals,
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Table 1: Axioms for conjunction and disjunction strategies.

Axiom Name Conjunction Strategy Disjunction Strategy
Tautology / Contradictiona⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b 6 c, thena⊗ b 6 a⊗ c if b 6 c, thena⊕ b 6 a⊕ c

Table 2: Axioms for implication and negation strategies.

Axiom Name Implication Strategy Negation Strategy
Tautology / Contradiction0 ⊲ b = 1, a ⊲ 1 = 1, 1 ⊲ 0 = 0 ⊖ 0 = 1, ⊖ 1 = 0
Antitonicity if a 6 b, thena ⊲ c > b ⊲ c if a 6 b, then⊖ a > ⊖ b
Monotonicity if b 6 c, thena ⊲ b 6 a ⊲ c

Table 3: Combination strategies of various fuzzy logics.

Łukasiewicz Logic G̈odel Logic Product Logic Zadeh Logic
a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a ⊲ b min(1− a+ b, 1)

{

1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

⊖ a 1− a
{

1 if a = 0

0 otherwise

{

1 if a = 0

0 otherwise
1− a

subset relationships between binary relations between classes, the membership of individuals to classes, and
the membership of pairs of individuals to binary relations between classes. In fuzzy description logics, these
relationships and memberships then have a degree of truth in[0, 1].

3.1 Syntax

We first describe fuzzySHOIN (D), which has the following elementary ingredients. We assume a set
of data values, a set ofelementary datatypes, and a set ofdatatype predicates(each with a predefined
arity n> 1). A datatypeis an elementary datatype or a finite set of data values. Afuzzy datatype theory
D= (∆D, ·D) consists of a datatype domain∆D and a mapping·D that assigns to each data value an
element of∆D, to each elementary datatype a subset of∆D, and to each datatype predicate of arityn a
fuzzy relation over∆D of arity n (that is, a mapping(∆D)n → [0, 1]). We extend·D to all datatypes by
{v1, . . . , vn}D = {vD1 , . . . , vDn }.

Example 3.1 A crisp unary datatype predicate618 over the natural numbers denoting the integers of at
most18 may be defined by618 (x)= 1, if x6 18, and618 (x)= 0, otherwise. Then,Minor =Person ⊓
∃age.618 defines a person of age at most18. Non-crisp predicates are usually defined by functions
for specifying fuzzy set membership degrees, such as the triangular, the trapezoidal, theL-, and theR-
function (see Fig. 1). For example, a fuzzy unary datatype predicateYoung over the natural numbers
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(a) (b) (c) (d)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c)L-function; (d)R-function

denoting the degree of youngness of a person’s age may be defined byYoung(x)=L(x; 10, 30). Then,
YoungPerson =Person ⊓ ∃age.Young denotes a young person.

Let A, RA, RD, I, andM be pairwise disjoint (nonempty) denumerable sets ofatomic concepts, ab-
stract roles, datatype roles, individuals, andfuzzy modifiers, respectively. Here, afuzzy modifierm [12, 33]
represents a functionfm on [0, 1], which changes the membership function of a fuzzy set.

Example 3.2 The fuzzy modifiersvery resp.slightly may represent the two functionsvery(x)=x2 resp.
slightly(x)=

√
x. Then, the concept of sports cars may be defined asSportsCar =Car⊓∃speed .very(High),

whereHigh is a fuzzy datatype predicate over the domain of speed in km/h, which may be defined as
High(x)=R(x; 80, 250).

A role is any element ofRA ∪R
−
A ∪RD (whereR

−
A is the set ofinversesR− of all R∈RA). We

defineconceptsinductively as follows. EachA∈A is a concept,⊥ and⊤ are concepts, and ifa1, . . . ,
an ∈ I, then{a1, . . . , an} is a concept (calledoneOf). If C, C1, C2 are concepts,R,S ∈RA ∪ R

−
A, and

m∈M, then(C1 ⊓C2), (C1 ⊔C2), ¬C, andm(C) are concepts (calledconjunction, disjunction, negation,
andfuzzy modification, respectively), as well as∃R.C, ∀R.C, >nS, and6nS (calledexists, value, atleast,
andatmost restriction, respectively) for an integern> 0. If D is a datatype andT, T1, . . . , Tn ∈RD, then
∃T1, . . . , Tn.D, ∀T1, . . . , Tn.D, >nT , and6nT are concepts (calleddatatype exists, value, atleast, and
atmost restriction, respectively) for an integern>0. We eliminate parentheses as usual.

A crisp axiomhas one of the following forms: (1)C ⊑D (called concept inclusion axiom), where
C andD are concepts; (2)R⊑S (called role inclusion axiom), where eitherR,S ∈RA or R,S ∈RD;
(3) Trans(R) (calledtransitivity axiom), whereR∈RA; (4)C(a) (calledconcept assertion axiom), where
C is a concept anda∈ I; (5) R(a, b) (resp.,U(a, v)) (calledrole assertion axiom), whereR∈RA (resp.,
U ∈RD) anda, b ∈ I (resp.,a∈ I and v is a data value); and (6)a= b (resp.,a 6= b) (equality (resp.,
inequality) axiom), wherea, b∈ I. We definefuzzy axiomsas follows: Afuzzy concept inclusion(resp.,fuzzy
role inclusion, fuzzy concept assertion, fuzzy role assertion) axiomis of the formα θ n, whereα is a concept
inclusion (resp., role inclusion, concept assertion, role assertion) axiom, θ∈{6 ,=, > }, andn∈ [0, 1]. For
example,C(a)> 0.1,R(a, b)6 0.3,R ⊑ S> 0.4, andC ⊑ D 6 0.6 are fuzzy axioms. Informally, a fuzzy
axiom of the formα6n (resp.,α=n, α>n) encodes that the truth degree ofα is at most (resp., equal
to, at least)n. For example,TallPerson(jim) > 0.2 says thatjim is a tall person with a truth degree of
at least0.2, whileC ⊑ D > n says that the subsumption degree betweenC andD is at leastn. We often
usea : C andα to abbreviateC(a) andα> 1, respectively. Afuzzy (description logic) knowledge baseL
is a finite set of fuzzy axioms, transitivity axioms, and equality and inequality axioms. For decidability,
number restrictions inL are restricted to simple abstract roles [16].

FuzzySHIF(D) has the same syntax as fuzzySHOIN (D), but without the oneOf constructor and
with the atleast and atmost constructors limited to0 and1.
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Example 3.3 (Shopping Agent)The following axioms are an excerpt of the description logic knowledge
baseL that conceptualizes a car selling web site:

Cars ⊔ Trucks ⊔Vans ⊔ SUVs ⊑ Vehicles (1)

PassengerCars ⊔ LuxuryCars ⊑ Cars (2)

CompactCars ⊔MidSizeCars ⊔ SportyCars ⊑ PassengerCars (3)

Cars ⊑ (∃hasReview .Integer) ⊓ (∃hasInvoice.Integer)

⊓ (∃hasResellValue.Integer) ⊓ (∃hasMaxSpeed .Integer)

⊓ (∃hasHorsePower .Integer) ⊓ . . . (4)

MazdaMX5Miata : SportyCar ⊓ (∃hasInvoice.18883)

⊓ (∃hasHorsePower .166) ⊓ . . . (5)

MitsubishiEclipseSpyder : SportyCar ⊓ (∃hasInvoice.24029)

⊓ (∃hasHorsePower .162) ⊓ . . . (6)

Eqs. 1–3 describe the concept taxonomy of the site, while Eq. 4 describesthe datatype attributes of the cars
sold in the site. Eqs. 5–6 describe the properties of some sold cars.

We may then encode “costs at most about 22 000�” and “has a power of around 150 HP” in a buyer’s
request through the following conceptsC andD, respectively:

C =∃hasInvoice.LeqAbout22000 and D=∃hasHorsePower .Around150 ,

whereLeqAbout22000 =L(22000, 25000) andAround150 =Tri(125, 150, 175). The latter two equations
define the fuzzy concepts of “at most about 22 000�” and “around 150 HP”. The former is modeled as a
left shoulder function stating that if the prize is less than 22 000, then the degree of truth (degree of buyer’s
satisfaction) is1, else the truth is linearly decreasing to 0 (reached at the cost of 25 000).In fact, we are
modeling a case were the buyer would like to pay less than 22 000, though may still accept a higher price (up
to 25 000) to a lesser degree. Similarly, the latter models the fuzzy concept “around 150 HP” as a triangular
function with vertice in 150 HP.

3.2 Semantics

Concerning the semantics of fuzzySHIF(D) andSHOIN (D) [30], the main idea is that concepts and
roles are interpreted as fuzzy subsets of an interpretation’s domain. Therefore, concept inclusion, role
inclusion, concept assertion, and role assertion axioms, rather than being satisfied (true) or unsatisfied (false)
in an interpretation, have a degree of truth in[0, 1]. In the sequel, we assume that⊗, ⊕, ⊲, and⊖ are
some arbitrary but fixed conjunction, disjunction, implication, and negation strategies, respectively. Afuzzy
interpretationI =(∆I , ·I) relative to a fuzzy datatype theoryD= (∆D, ·D) consists of a nonempty set
∆I (called thedomain), disjoint from∆D, and afuzzy interpretation function·I , which (i) coincides with
·D on every data value, datatype, and fuzzy datatype predicate, (ii) assigns to each modifierm ∈ M its
modifier functionfm : [0, 1]→ [0, 1], and (iii) assigns

• to each individuala ∈ I an elementaI ∈∆I ;

• to each atomic conceptC ∈ A a functionCI : ∆I → [0, 1];

• to each abstract roleR ∈ RA a functionRI : ∆I ×∆I → [0, 1];
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• to each concrete roleT ∈ RD a functionT I : ∆I ×∆D → [0, 1].

The mapping·I is extended to all roles and concepts as follows (wherex, y ∈ ∆I):

(S−)
I
(x, y) = SI(y, x)
⊤I(x) = 1

⊥I(x) = 0

{a1, . . . , an}I(x) =
⊕n

i=1 ai
I = x

(C1 ⊓ C2)
I(x) = C1

I(x)⊗ C2
I(x)

(C1 ⊔ C2)
I(x) = C1

I(x)⊕ C2
I(x)

(¬C)I(x) = ⊖CI(x)

(m(C))I(x) = fm(CI(x))

(∀R.C)I(x) = infy∈∆I RI(x, y) ⊲ CI(y)

(∃R.C)I(x) = supy∈∆I RI(x, y)⊗ CI(y)

(> n S)I(x) = sup {y1, . . . , yn} ⊆ ∆I

|{y1, . . . , yn}| = n

⊗n
i=1 S

I(x, yi)

(6 n S)I(x) = ⊖ (> n+ 1 S)I(x)

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈∆D(
⊗n

i=1 Ti
I(x, yi)) ⊲ DD(y1, . . . , yn)

(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈∆D(
⊗n

i=1 Ti
I(x, yi))⊗DD(y1, . . . , yn) .

The mapping·I is extended to concept inclusion, role inclusion, concept assertion, androle assertion axioms
as follows (wherea, b ∈ I):

(C1 ⊑ C2)
I = infx∈∆I C1

I(x) ⊲ C2
I(x)

(R1 ⊑ R2)
I = infx,y∈∆I R1

I(x, y) ⊲ R2
I(x, y)

(C(a))I = CI(aI)

(R(a, b))I = RI(aI , bI) .

The notion of a fuzzy interpretationI satisfyinga transitivity, equality, inequality, or fuzzy axiomE,
or I being amodelof E, denotedI |=E, is defined as follows: (i)I |= trans(R) iff RI(x, y)> supz∈∆I

RI(x, z) ⊗ RI(z, y) for all x, y ∈∆I ; (ii) I |= a= b iff aI = bI , andI |= a 6= b iff aI 6= bI ; and (iii) I |=
α θ n iff αI θ n. A conceptC is satisfiableiff there is an interpretationI and somex∈∆I such that
CI(x)> 0. We sayI satisfiesa fuzzy knowledge baseL, or I is amodelof L, denotedI |=L, iff I is a
model of allE ∈L. We sayL is satisfiableiff L has a model. A fuzzy axiomE is a logical consequenceof
L, denotedL |=E, iff every model ofL satisfiesE. A fuzzy axiomα>n is a tight logical consequenceof
L, denotedL |=tight α>n, iff n is the supremum ofm∈ [0, 1] subject toL |=α>m.

Example 3.4 (Shopping Agent cont’d)The following fuzzy axioms are (tight) logical consequences ofL
in Example 3.3 (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) > 1.0 C(MitsubishiEclipseSpyder) > 0.32

D(MazdaMX5Miata) > 0.36 D(MitsubishiEclipseSpyder) > 0.56 .

4 Fuzzy Description Logic Programs

In this section, we present a tightly integrated approach tofuzzy disjunctive description logic programs(or
simply fuzzy dl-programs) under the answer set semantics. Observe that differently from [19] (in addition
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to being a tightly integrated approach to fuzzy dl-programs), the fuzzy dl-programs here are based on fuzzy
description logics as in [30]. Furthermore, they additionally allow for disjunctions in rule heads. We first
introduce the syntax of fuzzy dl-programs and then their answer set semantics.

The basic idea behind the tightly integrated approach in this section is as follows. Suppose that we have
a fuzzy disjunctive programP . Under the answer set semantics,P is equivalent to its groundingground(P ).
Suppose now that some of the ground atoms inground(P ) are additionally related to each other by a fuzzy
description logic knowledge baseL. That is, some of the ground atoms inground(P ) actually represent
concept and role memberships relative toL. Thus, when processingground(P ), we also have to consider
L. However, we only want to do it to the extent that we actually need it for processingground(P ). Hence,
when taking a fuzzy Herbrand interpretationI ⊆HBΦ, we have to ensure thatI represents a valid truth
value assignment relative toL. In other words, the main idea behind the semantics is to interpretP relative
to Herbrand interpretations that also satisfyL, whileL is interpreted relative to general interpretations over
a first-order domain. Thus, we modularly combine the standard semantics of fuzzy disjunctive programs and
of fuzzy description logics as in [19], which allows for building on the standard techniques and the results
of both areas. However, our new approach here allows for a much tighter integration ofL andP .

4.1 Syntax

We assume a function-free first-order vocabularyΦ with nonempty finite sets of constant and predicate
symbols. We useΦc to denote the set of all constant symbols inΦ. We also assume pairwise disjoint
(nonempty) denumerable setsA, RA, RD, I, andM of atomic concepts, abstract roles, datatype roles,
individuals, and fuzzy modifiers, respectively, as in Section 3. We assume thatΦc is a subset ofI. This
assumption guarantees that every ground atom constructed from atomic concepts, abstract roles, datatype
roles, and constants inΦc can be interpreted in the description logic component. We do not assume any other
restriction on the vocabularies, that is,Φ andA (resp.,RA ∪RD) may have unary (resp., binary) predicate
symbols in common.

LetX be a set of variables. Aterm is either a variable fromX or a constant symbol fromΦ. An atomis
of the formp(t1, . . . , tn), wherep is a predicate symbol of arityn > 0 from Φ, andt1, . . . , tn are terms. A
literal l is an atomp or a negated atomnot p. A disjunctive fuzzy rule(or simplyfuzzy rule) r is of the form

a1 ∨⊕1
· · · ∨⊕l−1

al ←⊗0
b1 ∧⊗1

b2 ∧⊗2
· · · ∧⊗k−1

bk∧⊗k

not⊖k+1
bk+1 ∧⊗k+1

· · · ∧⊗m−1
not⊖m bm > v,

(7)

wherel> 1,m> k> 0, a1, . . . , al, bk+1, . . . , bm are atoms,b1, . . . , bk are either atoms or truth values from
[0, 1],⊕1, . . . ,⊕l−1 are disjunction strategies,⊗0, . . . ,⊗m−1 are conjunction strategies,⊖k+1, . . . ,⊖m are
negation strategies, andv ∈ [0, 1]. We refer toa1 ∨⊕1

· · · ∨⊕l−1
al as theheadof r, while the conjunction

b1 ∧⊗1
. . . ∧⊗m−1

not⊖m bm is thebodyof r. We defineH(r)= {a1, . . . , al} andB(r)=B+(r) ∪B−(r),
whereB+(r) = {b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}. A disjunctive fuzzy program(or simply fuzzy
programP is a finite set of fuzzy rules of the form (7). We sayP is anormal fuzzy programiff l= 1 for all
fuzzy rules (7) inP . We sayP is apositive fuzzy programiff l= 1 andm= k for all fuzzy rules (7) inP .

A disjunctive fuzzy description logic program(or simply fuzzy dl-program) KB = (L,P ) consists of
a description logic knowledge baseL and a disjunctive fuzzy programP . It is called anormal fuzzy dl-
program iff P is a normal fuzzy program. It is called apositive fuzzy dl-programiff P is a positive fuzzy
program.
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Example 4.1 (Shopping Agent cont’d)A fuzzy dl-programKB = (L,P ) is given by the fuzzy description
logic knowledge baseL in Example 3.3 and the set of fuzzy dl-rulesP , which contains only the following
fuzzy dl-rule (wherex⊗ y = min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) > 1 .

Informally, the predicatequery collects all sporty cars, and ranks them according to whether they cost at
most around 22 000� and have around 150 HP (such a car may be requested by a car buyer with economic
needs). Another fuzzy dl-rule is given as follows (where⊖x= 1−x andAround300 =Tri(250, 300, 350)):

query ′(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasMaxSpeed(x, y2)∧⊗
not⊖LeqAbout22000 (y1) ∧⊗ Around300 (y2) > 1 .

Informally, this rule collects all sporty cars, and ranks them according to whether they cost at least around
22 000� and have a maximum speed of around 300 km/h (such a car may be requestedby a car buyer with
luxurious needs). Another fuzzy dl-rule involving also a disjunction in its head is given as follows (where
x⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y) ∧⊗ not⊖GeqAbout15000 (y) > 0.7 .

This rule says that a car costing at most around 15 000� is either small or old. Observe here thatSmall and
Old may be two concepts in the fuzzy description logic knowledge baseL. That is, the tightly integrated
approach to fuzzy dl-programs under the answer set semantics also allows for using the rules inL to express
relationships between the concepts and roles inP . This is not possible in the loosely integrated approach to
fuzzy dl-programs under the answer set semantics in [19], since the dl-queries of that framework can only
occur in rule bodies, but not in rule heads.

4.2 Semantics

We now define the answer set semantics of fuzzy dl-programs via a generalization of the standard Gelfond-
Lifschitz transformation [10].

In the sequel, letKB = (L,P ) be a fuzzy dl-program. Aground instanceof a ruler∈P is obtained
from r by replacing every variable that occurs inr by a constant symbol fromΦc. We denote byground(P )
the set of all ground instances of rules inP . The Herbrand baserelative toΦ, denotedHBΦ, is the set
of all ground atoms constructed with constant and predicate symbols fromΦ. Observe that we define the
Herbrand base relative toΦ and not relative toP . This allows for reasoning about ground atoms from the
description logic component that do not necessarily occur inP . Observe, however, that the extension from
P to Φ is only a notational simplification, since we can always make constant and predicate symbols from
Φ occur inP by “dummy” rules such asconstant(c)← andp(c)← p(c), respectively. We denote byDLΦ

the set of all ground atoms inHBΦ that are constructed from atomic concepts inA, abstract roles inRA,
concrete roles inRD, and constant symbols inΦc.

We define Herbrand interpretations and the truth of fuzzy dl-programs in them as follows. Aninterpre-
tation I is a mappingI : HBΦ→ [0, 1]. We writeHBΦ to denote the interpretationI such thatI(a)= 1 for
all a∈HBΦ. For interpretationsI andJ , we writeI ⊆ J iff I(a)6 J(a) for all a∈HBΦ, and we define
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the intersectionof I andJ , denotedI ∩J , by (I ∩J)(a)= min(I(a), J(a)) for all a∈HBΦ. Observe
thatI ⊆HBΦ for all interpretationsI. We say thatI is amodelof a ground fuzzy ruler of the form (7),
denotedI |= r, iff

I(a1)⊕1 · · · ⊕l I(al) > I(b1)⊗1 · · · ⊗k−1 I(bk) ⊗k

⊖k+1 I(bk+1)⊗k+1 · · · ⊗m−1 ⊖mI(bm)⊗0 v .
(8)

Here, we implicitly assume that the disjunction strategies⊕1, . . . ,⊕l and the conjunction strategies⊗1, . . . ,
⊗m−1,⊗0 are evaluated from left to right. Notice also that the above definition implicitly assumes an
implication strategy⊲ that is defined bya ⊲ b= sup {c∈ [0, 1] | a ⊗0 c6 b} for all a, b∈ [0, 1] (and thus
for n,m∈ [0, 1] anda=n, it holds thata⊲ b>m iff b>n⊗0m, if we assume that the conjunction strategy
⊗0 is continuous). Observe that such a relationship between the implication strategy ⊲ and the conjunction
strategy⊗ (including also the continuity of⊗) holds in Łukasiewicz, G̈odel, and Product Logic (see Table 3).
We say thatI is amodelof a fuzzy programP , denotedI |=P , iff I |= r for all r∈ ground(P ). We sayI is
amodelof a description logic knowledge baseL, denotedI |=L, iff L∪{a= I(a) | a∈HBΦ} is satisfiable.
An interpretationI ⊆HBΦ is amodelof a fuzzy dl-programKB = (L,P ), denotedI |=KB , iff I |=L and
I |=P . We sayKB is satisfiableiff it has a model.

The Gelfond-Lifschitz transformof a fuzzy dl-programKB = (L,P ) relative to an interpretationI ⊆
HBΦ, denotedKB I , is defined as the fuzzy dl-program(L,P I), whereP I is the set of all fuzzy rules
obtained fromground(P ) by replacing all default-negated atomsnot⊖j

bj by the truth value⊖jI(bj). We
are now ready to define the answer set semantics of fuzzy dl-programs as follows.

Definition 4.2 Let KB = (L,P ) be a fuzzy dl-program. An interpretationI ⊆HBΦ is ananswer setof
KB iff I is a minimal model ofKB I . We say thatKB is consistent(resp.,inconsistent) iff KB has an
(resp., no) answer set.

We finally define the notions ofcautious(resp.,brave) reasoningfrom fuzzy dl-programs under the
answer set semantics as follows.

Definition 4.3 Let KB = (L,P ) be a fuzzy dl-program. Leta∈HBΦ andn∈ [0, 1]. Then,a>n is a
cautious(resp.,brave) consequenceof a fuzzy dl-programKB under the answer set semantics iffI(a)>n
for every (resp., some) answer setI of KB .

Example 4.4 (Shopping Agent cont’d)Consider again the fuzzy dl-programKB = (L,P ) of Exam-
ple 4.1. The following holds for the answer setM of KB :

M(q(MazdaMX5Miata)) = 0.36 M(q(MitsubishiEclipseSpyder)) = 0.32 .

5 Semantic Properties

In this section, we summarize some semantic properties (especially those relevant for the Semantic Web) of
fuzzy dl-programs under the above answer set semantics.
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5.1 Minimal Models

The following theorem shows that, like for ordinary disjunctive programs,every answer set of a fuzzy dl-
programKB is also a minimal model ofKB , and the answer sets of a positive fuzzy dl-programKB are the
minimal models ofKB .

Theorem 5.1 LetKB =(L,P ) be a fuzzy dl-program. Then, (a) every answer set ofKB is a minimal model
of KB , and (b) ifKB is positive, then the set of all answer sets ofKB is given by the set of all minimal
models ofKB .

5.2 Faithfulness

An important property of integrations of rules and ontologies is that they area faithful [22, 23] extension of
both rules and ontologies.

The following theorem shows that the answer set semantics of fuzzy dl-programs faithfully extends
its counterpart for fuzzy programs. That is, the answer set semantics of a fuzzy dl-programKB = (L,P )
with empty fuzzy description logic knowledge baseL coincides with the answer set semantics of its fuzzy
programP .

Theorem 5.2 Let KB = (L,P ) be a fuzzy dl-program such thatL= ∅. Then, the set of all answer sets of
KB coincides with the set of all answer sets of the fuzzy programP .

The next theorem shows that the answer set semantics of fuzzy dl-programs also faithfully extends the
first-order semantics of fuzzy description logic knowledge bases. Thatis, for a∈HBΦ andn∈ [0, 1], it
holds thata>n is true in all answer sets of a positive fuzzy dl-programKB = (L,P ) iff a>n is true in all
fuzzy first-order models ofL∪ ground(P ). The theorem holds also whena is a ground formula constructed
from HBΦ using∧ and∨, along with conjunction and disjunction strategies⊗ resp.⊕.

Theorem 5.3 LetKB = (L,P ) be a positive fuzzy dl-program, and leta∈HBΦ andn∈ [0, 1]. Then,a>n
is true in all answer sets ofKB iff a>n is true in all fuzzy first-order models ofL∪ ground(P ).

As an immediate corollary, we obtain thata>n is true in all answer sets of a fuzzy dl-programKB =
(L, ∅) iff a>n is true in all fuzzy first-order models ofL.

Corollary 5.4 Let KB = (L,P ) be a fuzzy dl-program withP = ∅, and leta∈HBΦ andn∈ [0, 1]. Then,
a>n is true in all answer sets ofKB iff a>n is true in all fuzzy first-order models ofL.

5.3 Unique Name Assumption

Another aspect that may not be very desirable in the Semantic Web [14] is theunique name assumption
(which says that any two distinct constant symbols inΦc represent two distinct domain objects). It turns out
that we actually do not have to make this assumption, since the fuzzy description logic knowledge base of a
fuzzy dl-program may very well contain or imply equalities between individuals.

This result is included in the following theorem, which shows an alternative characterization of the
satisfaction ofL in I ⊆HBΦ: Rather than being enlarged by a set of axioms of exponential size,L is
enlarged by a set of axioms of polynomial size. This characterization essentially shows that the satisfaction
of L in I corresponds to checking that (i)I restricted toDLΦ satisfiesL, and (ii)I restricted toHBΦ−DLΦ
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does not violate any equality axioms that follow fromL. In the theorem, an equivalence relation∼ on
Φc is admissiblewith an interpretationI ⊆HBΦ iff I(p(c1, . . . , cn)) = I(p(c′1, . . . , c

′
n)) for all n-ary

predicate symbolsp, wheren> 0, and constant symbolsc1, . . . , cn, c′1, . . . , c
′
n ∈Φc such thatci∼ c′i for all

i∈{1, . . . , n}.

Theorem 5.5 LetL be a fuzzy description logic knowledge base, and letI ⊆HBΦ. Then,L ∪ {a= I(a) |
a∈HBΦ} is satisfiable iffL ∪ {a= I(a) | a∈DLΦ} ∪ {c 6= c′ | c 6∼ c′} is satisfiable for some equivalence
relation∼ onΦc admissible withI.

6 Reduction of Fuzzy DL-Programs to DL-Programs

In this section, we present a polynomial reduction of fuzzy dl-programs tothe tightly integrated dl-programs
in [20]. Hence, reasoning in fuzzy dl-programs under the answer setsemantics can be reduced to (a) reason-
ing in tightly integrated dl-programs under the answer set semantics and (b) reasoning in fuzzy description
logics. Note that reasoning in fuzzy description logics may additionally be reduced to reasoning in crisp
description logics along the lines presented in [28, 2] for fuzzyALCH and fuzzySHOIN .

The reduction applies to all fuzzy dl-programsKB that (i) are closed underTVn = {0, 1
n
, . . . , n

n
}

for somen> 0 and (ii) contain only combination strategies from Zadeh Logic. Here,KB is closedunder
TVn iff (a) every datatype predicate inKB is interpreted by a mapping toTVn, (b) every fuzzy modifier
m in KB is interpreted by a mappingfm : TVn→TVn, (c) every truth value inKB is from TVn, and
(d) every combination strategy inKB is closed underTVn (which holds, e.g., for the combination strategies
of Łukasiewicz, G̈odel, and Zadeh Logic). Note that for fuzzy dl-programsKB that are closed underTVn,
the problems of deciding consistency, cautious consequences, and brave consequences are all decidable,
since we only have to consider the finite number of interpretationsI ⊆HBΦ that map toTVn.

We denote byΦn the alphabet that is obtained from the alphabetΦ by replacing every predicate symbol
p by the new predicate symbolspα with α∈TV +

n =TVn \{0}. For atomsa= p(t1, . . . , tk) andα∈TV +
n ,

the atomaα overΦn is defined byaα = pα(t1, . . . , tk). Every fuzzy interpretationI ⊆HBΦ is associated
with the binary interpretationt(I) = {aα | a∈HBΦ, α∈TV +

n , I(a)>α}.
Thecrisp transformof a fuzzy dl-programKB = (L,P ) is the dl-programt(KB) = (L, t(P )), where

t(P ) is the set (i) of all rulespβ(x1, . . . , xk)← pα(x1, . . . , xk) such thatp is a k-ary predicate symbol
from Φ, x1, . . . , xk are distinct variables,α∈TV +

n \ { 1
n
}, andβ=α − 1

n
, and (ii) of all rulesaα

1 ∨ · · · ∨
aα

l ← bα1 ∧· · ·∧ bαk ∧not bγk+1
∧· · ·∧not bγm such that a rule of the form (7) belongs toP , α∈TV +

n , α6 v,
andγ=1− α+ 1

n
. Observe here that the generated dl-programt(P ) has a polynomial size inP andTV +

n

(assuming a unary number encoding for the truth values). The following theorem shows that the answer sets
of KB correspond to the answer sets oft(KB) as in [20].

Theorem 6.1 Let KB = (L,P ) be a fuzzy dl-program that (i) is closed underTVn = {0, 1
n
, . . . , n

n
} for

somen> 0 and (ii) contains only combination strategies from Zadeh Logic. Then,I ⊆HBΦ is an answer
set ofKB iff t(I) is an answer set oft(KB).

Example 6.2 (Shopping Agent cont’d)The last fuzzy dl-rule of Example 4.1 is translated into the follow-
ing dl-rules in the crisp transform (forTV10 = {0, 0.1, . . . , 1}):

Small0.1(x) ∨Old0.1(x) ← Car0.1(x) ∧ hasInvoice0.1(x, y) ∧ not GeqAbout15000 1.0(y),

Small0.2(x) ∨Old0.2(x) ← Car0.2(x) ∧ hasInvoice0.2(x, y) ∧ not GeqAbout15000 0.9(y),
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Small0.3(x) ∨Old0.3(x) ← Car0.3(x) ∧ hasInvoice0.3(x, y) ∧ not GeqAbout15000 0.8(y),

Small0.4(x) ∨Old0.4(x) ← Car0.4(x) ∧ hasInvoice0.4(x, y) ∧ not GeqAbout15000 0.7(y),

Small0.5(x) ∨Old0.5(x) ← Car0.5(x) ∧ hasInvoice0.5(x, y) ∧ not GeqAbout15000 0.6(y),

Small0.6(x) ∨Old0.6(x) ← Car0.6(x) ∧ hasInvoice0.6(x, y) ∧ not GeqAbout15000 0.5(y),

Small0.7(x) ∨Old0.7(x) ← Car0.7(x) ∧ hasInvoice0.7(x, y) ∧ not GeqAbout15000 0.4(y).

7 Tractability Results

In this section, we present a special class of fuzzy dl-programsKB for which the problems of deciding
consistency and of query processing have both a polynomial data complexity. These fuzzy dl-programs are
defined relative tofuzzy DL-Lite[32], which is a fuzzy generalization of the description logicDL-Lite [4].
By [32] (resp., [4]), deciding whether a knowledge base inDL-Lite (resp.,fuzzy DL-Lite) is satisfiable can
be done in polynomial time, and conjunctive query processing from a knowledge base inDL-Lite (resp.,
fuzzy DL-Lite) has a polynomial data complexity.

We first recallDL-Lite and fuzzy DL-Lite. Let A, RA, andI be pairwise disjoint sets of atomic con-
cepts, abstract roles, and individuals, respectively. Abasic concept in fuzzy DL-Liteis either an atomic
concept fromA or an exists restriction on roles∃R.⊤ (abbreviated as∃R), whereR∈RA ∪R

−
A. A literal

in DL-Lite is either a basic conceptb or the negation of a basic concept¬b. Concepts in DL-Liteare defined
by induction as follows. Every basic concept inDL-Lite is a concept inDL-Lite. If b is a basic concept
in DL-Lite, andφ1 andφ2 are concepts inDL-Lite, then¬b andφ1 ⊓ φ2 are also concepts inDL-Lite.
An axiom in DL-Liteis either (1) a concept inclusion axiomb⊑ψ, whereb is a basic concept inDL-Lite,
andφ is a concept inDL-Lite, or (2) afunctionality axiom(funct R), whereR∈RA ∪R

−
A, or (3) a con-

cept assertion axiomb(a), whereb is a basic concept inDL-Lite anda∈ I, or (4) a role assertion axiom
R(a, c), whereR∈RA anda, c∈ I. A fuzzy concept(resp.,role) assertion axiomis of the formb(a)>n
(resp.,R(a, c)>n), whereb(a) (resp.,R(a, c)) is a concept (resp., role) assertion axiom inDL-Lite, and
n∈ [0, 1]. A fuzzy axiom in DL-Liteis either a fuzzy concept assertion axiom or a fuzzy role assertion ax-
iom. A fuzzy knowledge base in DL-LiteL is a finite set of concept inclusion, functionality, fuzzy concept
assertion, and fuzzy role assertion axioms inDL-Lite.

For the conjunction strategies of Gödel and Zadeh Logic, every knowledge base infuzzy DL-LiteL
can be transformed into an equivalent one infuzzy DL-Litetrans(L) in which every concept inclusion
axiom is of formb⊑ ℓ, whereb (resp.,ℓ) is a basic concept (resp., literal) inDL-Lite. We then define
trans(KB)= (L, trans(P )) by trans(P )=P ∪{b′(X)← b(X) | b⊑ b′ ∈ trans(L), b′ is a basic concept}∪
{∃R(X)← R(X,Y ) |R ∈ RA ∩Φ} ∪ {∃R−(Y )←R(X,Y ) |R∈RA ∩Φ}.

We are now ready to define fuzzy dl-programs inDL-Lite as follows. We say that a fuzzy dl-pro-
gramKB = (L,P ) is defined inDL-Lite iff (i) L is in fuzzy DL-Liteand interpreted relative to the conjunc-
tion strategies of G̈odel or Zadeh Logic, (ii)trans(P ) is normal and locally stratified, and (iii)KB is closed
underTVn = {0, 1

n
, . . . , n

n
} for somen> 0, where we assume a unary encoding of the numbers inTVn.

It can be shown that fuzzy dl-programs inDL-Lite have either no or a unique answer set, which can
be computed by a finite sequence of fixpoint iterations, as usual. This implies immediately that for such
programs, consistency checking and query processing have both a polynomial data complexity, which is
formally expressed as follows.
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Theorem 7.1 Let KB =(L,P ) be a fuzzy dl-program in DL-Lite. Then, (a) deciding whetherKB has an
answer set, and (b) computing the truth value of a ground atoma∈HBΦ in the answer set ofKB have both
a polynomial data complexity.

8 Summary and Outlook

We have presented an approach to tightly integrated fuzzy dl-programs under the answer set semantics,
which generalizes the tightly integrated disjunctive dl-programs in [20] by fuzzy vagueness in both the de-
scription logic and the logic program component. We have shown that the newformalism faithfully extends
both fuzzy disjunctive programs and fuzzy description logics, and that under suitable assumptions, reason-
ing in the new formalism is decidable. Furthermore, we have presented a polynomial reduction for certain
fuzzy dl-programs to tightly integrated disjunctive dl-programs. Finally, we have also provided a special
case of fuzzy dl-programs for which deciding consistency and query processing have both a polynomial
data complexity.

An interesting topic for future research is to analyze the computational complexity of the main reasoning
problems in fuzzy dl-programs, and to implement the approach. Another interesting issue is to extend fuzzy
dl-programs by classical negation.

References

[1] T. Berners-Lee.Weaving the Web. Harper, San Francisco, 1999.
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