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Abstract. We propose a combination of logic programming under the answer set semantics with

the description logics SHIF(D) and SHOIN (D), which underly the Web ontology languages

OWL Lite and OWL DL, respectively. To this end, we introduce description logic programs (or

dl-programs), which consist of a description logic knowledge base L and a finite set of description

logic rules (or dl-rules) P . Such rules are similar to usual rules in nonmonotonic logic programs,

but may also contain queries to L, possibly under default negation, in their bodies. They allow for

building rules on top of ontologies but also, to a limited extent, building ontologies on top of rules.

We define a suite of semantics for various classes of dl-programs, which conservatively extend the

standard semantics of the respective classes, and coincide with it in absence of a description logic

knowledge base. More concretely, we generalize positive, stratified, and arbitrary normal logic

programs to dl-programs, and define a Herbrand model semantics for them. We show that they have

similar properties as ordinary logic programs, and also provide fixpoint characterizations in terms of

(iterated) consequence operators. For arbitrary dl-programs, we define answer sets by generalizing

Gelfond and Lifschitz’s notion of a reduct, leading to a strong and a weak answer set semantics,

which are based on reductions to the semantics of positive dl-programs and ordinary positive logic

programs, respectively. We also show how the weak answer sets can be computed utilizing answer

sets of ordinary normal logic programs. Furthermore, we show how some advanced reasoning tasks

for the Semantic Web, including different forms of closed-world reasoning and default reasoning,

as well as DL-safe rules, can be realized on top of dl-programs. Finally, we give a precise picture of

the computational complexity of dl-programs, and we describe efficient algorithms and a prototype

implementation of dl-programs which is available on the Web.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;

e-mail: {eiter, ianni, lukasiewicz, roman, tompits}@kr.tuwien.ac.at.
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1 Introduction

The World Wide Web is impressively successful. Both the information that is stored on the Web and the

number of its human users have been growing exponentially in the recent years. For many people, the Web

has started to play a fundamental role as a means of providing and searching for information. However,

searching the Web in its current form is not always a joyful experience, since today’s search engines often

return a huge number of answers, many of which are completely irrelevant, while some relevant answers

are not returned. One of the main reasons for this problem is that the current Web is designed for human

consumption, but not for automated processing through machines, since the HTML standard only allows

for describing the layout of Web pages, but not their semantic content.

The Semantic Web [9, 10, 37] is an extension of the current Web by standards and technologies that

help machines to understand the information on the Web so that they can support richer discovery, data

integration, navigation, and automation of tasks. The Semantic Web will not only allow for more exact an-

swers when we search for information, but also provide knowledge necessary for integrating and comparing

information from different sources, and allow for various forms of automated services. Roughly, the main

idea behind the Semantic Web is to add a machine-readable meaning to Web pages, to use ontologies for a

precise definition of shared terms in Web resources, to make use of KR technology for automated reasoning

from Web resources, and to apply cooperative agent technology for processing the information of the Web.

The development of the Semantic Web proceeds in layers of Web technologies and standards, where every

layer is lying on top of lower layers. The highest layer that has currently reached a sufficient maturity is the

Ontology layer in the form of the OWL Web Ontology Language [98, 59].

The language OWL provides the three increasingly expressive sublanguages, OWL Lite, OWL DL, and

OWL Full, where OWL DL basically corresponds to the Web ontology language DAML+OIL [53, 54],

which was developed by merging DAML [49] and OIL [36]. The languages OWL Lite and OWL DL

are essentially very expressive Description Logics (DLs) with an RDF syntax [59]. One can therefore

exploit a large body of existing previous work on description logic research, to define, for example, the

formal semantics of the languages, to understand their formal properties (in particular, the decidability and

the complexity of key inference problems), and for an automated reasoning support. In fact, as shown in

[55], ontology entailment in OWL Lite and OWL DL reduces to knowledge base (un)satisfiability in the

expressive DLs SHIF(D) and SHOIN (D), respectively.

The next step in the development of the Semantic Web is the realization of the Rules, Logic, and Proof

layers, which are developed on top of the Ontology layer, and which should offer sophisticated representa-

tion and reasoning capabilities. A first effort in this direction was RuleML (Rule Markup Language) [11],

fostering an XML-based markup language for rules and rule-based systems, while the OWL Rules Lan-

guage [56] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the Rules and the

Ontology layer. In particular, it is crucial to allow for building rules on top of ontologies, that is, for rule-

based systems that use vocabulary specified in ontology knowledge bases. Another type of combination is

to build ontologies on top of rules, which means that ontological definitions are supplemented by rules or

imported from rules.

Towards the integration of rules and ontologies in the Semantic Web, we propose in this paper a combi-

nation of logic programming under the answer set semantics [39] with description logics, focusing here on

the DLs SHIF(D) and SHOIN (D), which underly the Web ontology languages OWL Lite and OWL

DL, respectively. Our combination of dl-programs allows for building rules on top of ontologies, and also,

to some extent, building ontologies on top of rules. Answer set semantics is the predominating semantics
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for nonmonotonic logic programs, and gave rise to the answer set programming (ASP) paradigm (cf. [7]), in

which the solutions for a problem are encoded in terms of the answer sets of a nonmonotonic logic program.

Then, using an answer set solver, models (i.e, answer sets) of this program are generated, from which the

solutions of the problem are read off. ASP has been successfully deployed to a variety of areas including

diagnosis, configuration, planning, information integration, text mining, or security management, to name a

few (cf. [101] for a comprehensive report on recent ASP applications).

The main innovations and contributions of this paper can be summarized as follows:

• We introduce description logic programs (or dl-programs for short), which consist of a knowledge base

L in a description logic and a finite set of description logic rules (or dl-rules for short) P . Such rules are

similar to usual rules in logic programs with negation as failure, but may also contain queries to L, possibly

default-negated, in their bodies. As an important feature, such queries also allow for specifying an input

from P , and thus for a flow of information from P to L, besides the flow of information from L to P , given

by any query to L. For example, concepts and roles in L may be enhanced by facts generated from dl-rules,

possibly involving heuristic knowledge and other concepts and roles from L.

• Fostering an encapsulation view, the queries to L are treated in a way such that logic programming and

DL inference are technically separated. Merely interfacing details need to be known, while the components

behind are black boxes. This approach, which provides a loose integration of rules and ontologies, is differ-

ent from previous ones, which can be roughly divided into (i) hybrid approaches, which use DLs to specify

structural constraints in the bodies of logic program rules, and (ii) approaches that reduce DL inference to

logic programming. The basic idea behind (i) is to combine the semantic and computational strengths of

the two different systems, while the main rationale of (ii) is to use powerful logic programming technology

for inference in DLs. Both approaches differ significantly from our approach; this is discussed in detail in

Section 9.

• We define a suite of semantics for various classes of dl-programs, which conservatively extend the

standard semantics of the respective classes, and coincide with it in absence of a DL knowledge base.

More concretely, we generalize the classes of positive, stratified, and arbitrary normal logic programs to dl-

programs, and define a Herbrand model semantics for them. We show that satisfiable positive dl-programs

have the least Herbrand model, and that satisfiable stratified dl-programs can be associated with a unique

minimal Herbrand model, which is characterized through a finite number of iterative least Herbrand models.

For arbitrary dl-programs, we define answer sets in the spirit of Gelfond and Lifschitz [39], for which we

generalize their notion of reduct. We define the strong answer set semantics, which is based on a reduction

to the least model semantics of positive dl-programs. We show that for positive and stratified dl-programs

KB , the strong answer set semantics of KB coincides with the (unique) minimal Herbrand model semantics

of KB . We also define the weak answer set semantics for general dl-programs, which is based on a reduction

to the least model semantics of ordinary positive programs. Every strong answer set is also a weak answer

set, but not vice versa. Both types of answer set semantics of general dl-programs properly generalize the

answer set semantics of ordinary normal programs. In particular, the nondeterminism inherent in answer sets

is retained, and the ASP problem solving paradigm thus extended to an integration of rules and ontologies.

• We give fixpoint characterizations for the unique minimal models of satisfiable positive and stratified

dl-programs, and show how to compute them by fixpoint iteration and a sequence of finite fixpoint iterations,

respectively. We also provide a general guess-and-check algorithm for computing the set of all weak answer

sets of a general dl-program (which includes the set of all strong answer sets) by computing the set of

all answer sets of an ordinary normal logic program. We also describe advanced algorithms which make
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use of these algorithms, but also exploit structural properties like splitting sets and caching techniques for

querying the DL knowledge base. They have been implemented in a working prototype implementation for

dl-programs under the answer set semantics, which is available on the Web. To the best of our knowledge,

it is currently the most advanced system for an integration of nonmonotonic rules and ontologies.

• We show that dl-programs under the answer set semantics can be fruitfully used to support advanced

reasoning tasks for the Semantic Web. More concretely, we show that different forms of closed-world

reasoning [85, 40, 41] and default reasoning [84, 86] on top of DL knowledge bases can be elegantly realized

using dl-programs. Furthermore, we show that dl-programs can be used to simulate DL-safe rules on DL

knowledge bases [78].

• We give a precise picture of the complexity of deciding strong and weak answer set existence for a

given dl-program, as well as of brave and cautious reasoning under both the weak and strong answer set

semantics. We consider the general case as well as the restrictions where the given dl-program is positive

or stratified. We consider the description logics SHIF(D) and SHOIN (D), but most of our results can

be easily transferred to other description logics of the same complexity (EXP resp. NEXP). In detail, for

KB =(L, P ) with L in SHIF(D), answer set existence is EXP-complete if KB is positive or stratified,

and NEXP-complete if KB is arbitrary. If L is in SHOIN (D), it is NEXP-complete if KB is positive, and

PNEXP-complete if KB is stratified or general. In nearly all cases, the complexity of cautious (resp., brave)

reasoning from dl-programs coincides with the complexity of answer set non-existence (resp., existence) for

dl-programs.

Our interfacing approach of dl-programs has several attractive features. First of all, it enables the us-

age of legacy software and solvers for answer set programs and DLs, respectively, to craft an engine for

dl-programs. Furthermore, an engine for dl-programs will benefit from improvements to solvers for the

components used. Another aspect is that the interfacing approach is amenable to distributed evaluation, and

to privacy aspects for both the DL knowledge base L and the logic program P , since the internal structure

of the one part need not be revealed to the other part for evaluation. This is particularly useful for realizing

a service-oriented architecture of programs, in which access to an ontology is provided through a service.

The rest of this paper is organized as follows. Section 2 recalls normal logic programs under the answer

set semantics, and Section 3 discusses the description logics SHOIN (D) and SHIF(D). In Section 4, we

first introduce the syntax of dl-programs, and then define Herbrand models of dl-programs, unique minimal

Herbrand models of positive and stratified dl-programs, and finally the strong and the weak answer set

semantics for general dl-programs. Section 5 shows how the unique minimal Herbrand models of positive

and stratified dl-programs can be computed through fixpoint iterations. It also gives a general guess-and-

check algorithm for computing the set of all weak answer sets of general dl-programs. Section 6 shows

how advanced reasoning tasks for the Semantic Web can be realized on top of dl-programs. In Section 7,

we provide a precise picture of the complexity of deciding strong and weak answer set existence for a dl-

program, and of brave and cautious reasoning from dl-programs under the weak and the strong answer set

semantics. In Section 8, we describe advanced algorithms and a prototype implementation for dl-programs,

and, in Section 9, we provide a detailed discussion on related work in the literature. Section 10 summarizes

the main results and gives an outlook on further and future research. Detailed proofs of all results are

relegated to Appendices B to F.
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2 Normal Programs under the Answer Set Semantics

In this section, we recall normal programs (over classical literals) under the answer set semantics [39], which

extends the stable model semantics [38] with classical (more often called strong) negation. We first describe

the syntax and then the semantics of normal logic programs.

2.1 Syntax

Roughly, a normal (logic) program is a finite set of rules, where each rule has a classical literal in its head

and a conjunction of classical literals and default-negated classical literals in its body. Such a program is

positive if it is free of default negations.

More concretely, let Φ be a first-order vocabulary with nonempty finite sets of constant and predicate

symbols, but no function symbols. Let X be a set of variables. A term is either a variable from X or a

constant symbol from Φ. An atom is an expression of the form p(t1, . . . , tn), where p is a predicate symbol

of arity n > 0 from Φ, and t1, . . . , tn are terms. A classical literal (or simply literal) l is an atom p or a

negated atom ¬p. Its complementary literal is ¬p (resp., p). A negation as failure literal (or simply NAF-

literal) is a literal l or a default-negated literal not l. A normal rule (or simply rule) r is an expression of

the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m> k > 0 , (1)

where a, b1, . . . , bm are classical literals. The literal a is the head of the rule r, while the conjunction

b1, . . . , bk, not bk+1, . . . ,not bm is the body of r, where b1, . . . , bk (resp., not bk+1, . . . ,not bm) is the

positive (resp., negative) body of r. We use H(r) to denote its head literal a, and B(r) to denote the

set of all its body literals B+(r) ∪ B−(r), where B+(r)= {b1, . . . , bk} and B−(r)= {bk+1, . . . , bm}. If

the body of the rule r is empty (that is, if k = m= 0), then r is a fact, and we often omit “←”. A normal

program (or simply program) P is a finite set of rules. A positive program P is a finite set of “not”-free

rules.

2.2 Semantics

The answer set semantics of normal programs is defined in terms of consistent sets of classical literals, which

represent three-valued interpretations. Positive programs are associated with their least satisfying consistent

set of classical literals, if one exists, while the semantics of normal programs is defined by a reduction to the

least model semantics of positive programs via the Gelfond-Lifschitz transformation.

More formally, the Herbrand universe of a program P , denoted HU P , is the set of all constant symbols

appearing in P . If there is no such constant symbol, then HU P = {c}, where c is an arbitrary constant

symbol from Φ. As usual, terms, atoms, literals, rules, programs, etc. are ground iff they do not contain any

variables. The Herbrand base of a program P , denoted HBP , is the set of all ground (classical) literals that

can be constructed from the predicate symbols appearing in P and the constant symbols in HU P . A ground

instance of a rule r∈P is obtained from r by replacing every variable that occurs in r by a constant symbol

from HU P . We denote by ground(P ) the set of all ground instances of rules in P .

A set X ⊆HBP of literals is consistent iff {p,¬p} 6⊆X for every atom p∈HBP . An interpretation I
relative to a program P is a consistent subset of HBP . Intuitively, any such I represents a three-valued inter-

pretation of all ground atoms as follows: an atom a has the truth value true, false, and unknown iff a∈ I ,

¬a∈ I , and {a,¬a}∩ I = ∅, respectively. A model of a positive program P is an interpretation I ⊆HBP
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such that B(r)⊆ I implies H(r)∈ I , for every r∈ ground(P ). An answer set of a positive program P is

the least model of P with respect to set inclusion.

The Gelfond-Lifschitz transform of a program P relative to an interpretation I ⊆ HBP , denoted P I ,

is the ground positive program that is obtained from ground(P ) by (i) deleting every rule r such that

B−(r)∩ I 6= ∅, and (ii) deleting the negative body from every remaining rule. An answer set of a (normal)

program P is an interpretation I ⊆HBP such that I is an answer set of P I .

The main reasoning tasks for programs under the answer set semantics are the following: (1) decide

whether a given program P has an answer set; (2) given a program P and a ground formula φ, decide

whether φ holds in every (resp., some) answer set of P (cautious (resp., brave) reasoning); (3) given a

program P and an interpretation I ⊆HBP , decide whether I is an answer set of P (answer set checking);

and (4) compute the set of all answer sets of a given program P .

3 The Description Logics SHIF(D) and SHOIN (D)

In this section, we recall the syntax and the semantics of the expressive description logics SHIF(D) and

SHOIN (D), which stand behind the Web ontology languages OWL Lite and OWL DL, respectively (see

[55, 59] for further details and background). Intuitively, description logics model a domain of interest

in terms of concepts and roles, which represent classes of individuals and binary relations on classes of

individuals, respectively. A description logic knowledge base encodes in particular subset relationships

between classes of individuals, subset relationships between binary relations on classes of individuals, the

membership of individuals to classes, and the membership of pairs of individuals to binary relations on

classes. Other important ingredients of SHIF(D) (resp., SHOIN (D)) are datatypes (resp., datatypes

and individuals) in concept expressions.

3.1 Syntax

We now recall the syntax of SHIF(D) and SHOIN (D). We first describe the syntax of the latter, which

has the following datatypes and elementary ingredients. We assume a set of elementary datatypes and a set

of data values. A datatype is either an elementary datatype or a set of data values (called datatype oneOf ).

A datatype theory D= (∆D, ·D) consists of a datatype (or concrete) domain ∆D and a mapping ·D that

assigns to every elementary datatype a subset of ∆D and to every data value an element of ∆D. The mapping

·D is extended to all datatypes by {v1, . . .}
D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint finite

nonempty sets of atomic concepts, abstract roles, datatype (or concrete) roles, and individuals, respectively.

We denote by R−A the set of inverses R− of all R∈RA.

Roles and concepts are defined as follows. A role is an element of RA ∪R−A ∪RD. Concepts are

inductively defined as follows. Every atomic concept C ∈A is a concept. If o1, o2, . . . are individuals from

I, then {o1, o2, . . .} is a concept (called oneOf). If C and D are concepts, then also (C ⊓ D), (C ⊔ D),
and ¬C are concepts (called conjunction, disjunction, and negation, respectively). If C is a concept, R
is an abstract role from RA ∪R−A, and n is a nonnegative integer, then ∃R.C, ∀R.C, >nR, and 6nR
are concepts (called exists, value, atleast, and atmost restriction, respectively). If D is a datatype, U is a

datatype role from RD, and n is a nonnegative integer, then ∃U.D, ∀U.D, >nU , and 6nU are concepts

(called datatype exists, value, atleast, and atmost restriction, respectively). We use ⊤ and ⊥ to abbreviate

the concepts C ⊔¬C and C ⊓¬C, respectively, and we eliminate parentheses as usual.

We next define axioms and knowledge bases as follows. An axiom is an expression of one of the follow-

ing forms: (1) C ⊑D (called concept inclusion axiom), where C and D are concepts; (2) R⊑S (called role
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inclusion axiom), where either R, S ∈RA or R, S ∈RD; (3) Trans(R) (called transitivity axiom), where

R ∈ RA; (4) C(a) (called concept membership axiom), where C is a concept and a∈ I; (5) R(a, b) (resp.,

U(a, v)) (called role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I and v
is a data value); and (6) a= b (resp., a 6= b) (called equality (resp., inequality) axiom), where a, b∈ I. A

(description logic) knowledge base L is a finite set of axioms.

For an abstract role R∈RA, we define Inv(R)= R− and Inv(R−)= R. Let the transitive and reflexive

closure of ⊑ on abstract roles relative to L, denoted ⊑⋆, be defined as follows. For two abstract roles

R and S in L, let S⊑⋆ R relative to L iff either (a) S =R, (b) S⊑R∈L, (c) Inv(S)⊑ Inv(R)∈L, or

(d) some abstract role Q exists such that S⊑⋆ Q and Q⊑⋆ R relative to L. An abstract role R is simple

relative to L iff for each abstract role S such that S⊑⋆ R relative to L, it holds that (i) Trans(S) 6∈L and

(ii) Trans(Inv(S)) 6∈L. For decidability, number restrictions in L are restricted to simple abstract roles [60].

Observe that in SHOIN (D), concept and role membership axioms can also be expressed through

concept inclusion axioms. The knowledge that the individual a is an instance of the concept C can be

expressed by the concept inclusion axiom {a}⊑C, while the knowledge that the pair (a, b) (resp., (a, v)) is

an instance of the role R (resp., U ) can be expressed by {a}⊑∃R.{b} (resp., {a}⊑∃U.{v}).
The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf constructor

and with the atleast and atmost constructors limited to 0 and 1.

Example 3.1 (Scientific Publications) Suppose we want to store some knowledge about scientific publi-

cations, using a description logic knowledge base. Let string and N denote the datatypes of strings and

natural numbers, respectively. Let the concepts Publication and Paper denote the classes of publications

and (conference or journal) papers, respectively. Let the datatype roles title and year associate with every

publication a string resp. natural number, which represent its title resp. publication year. The following

axioms then encode that (1) title is a binary relation between publications and strings, (2) year is a binary

relation between publications and natural numbers, (3) every paper is a publication, (4) pub1 is a publica-

tion, (5) pub1 has the title “Classical Negation in Logic Programs and Disjunctive Databases”, and (6) pub1

was published in 1991 (see Appendix A for a more detailed description logic knowledge base including

scientific publications):

(1) ≥ 1 title ⊑ Publication; ⊤ ⊑ ∀title.string ;

(2) ≥ 1 year ⊑ Publication; ⊤ ⊑ ∀year .N;

(3) Paper ⊑ Publication;

(4) Paper(pub1);

(5) title(pub1, “Classical Negation in Logic Programs and Disjunctive Databases”);

(6) year(pub1, “1991”) .

3.2 Semantics

We now define the semantics of SHIF(D) and SHOIN (D) in terms of general first-order interpretations,

as usual, and we also recall some important reasoning problems in description logics.

An interpretation I = (∆I , ·I) with respect to a datatype theory D= (∆D, ·D) consists of a nonempty

(abstract) domain ∆I disjoint from ∆D, and a mapping ·I that assigns to each atomic concept C ∈A a

subset of ∆I , to each individual o∈ I an element of ∆I , to each abstract role R∈RA a subset of ∆I ×∆I ,

and to each datatype role U ∈RD a subset of ∆I ×∆D. The mapping ·I is extended to all concepts and

roles as usual (where #S denotes the cardinality of a set S):
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• (R−)I = {(a, b) | (b, a)∈RI};

• {o1, . . . , on}
I = {oI1 , . . . , oIn};

• (C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI , and (¬C)I = ∆I \CI ;

• (∃R.C)I = {x∈∆I | ∃y : (x, y)∈RI ∧ y ∈CI};

• (∀R.C)I = {x∈∆I | ∀y : (x, y)∈RI → y ∈CI};

• (>nR)I = {x∈∆I | #({y | (x, y)∈RI}) > n};

• (6nR)I = {x∈∆I | #({y | (x, y)∈RI}) 6 n};

• (∃U.D)I = {x∈∆I | ∃y : (x, y)∈UI ∧ y ∈DD};

• (∀U.D)I = {x∈∆I | ∀y : (x, y)∈UI → y ∈DD};

• (>nU)I = {x∈∆I | #({y | (x, y)∈UI}) > n};

• (6nU)I = {x∈∆I | #({y | (x, y)∈UI}) 6 n}.

The satisfaction of a description logic axiom F in the interpretation I = (∆I , ·I) with respect to a datatype

theory D= (∆D, ·D), denoted I |= F , is defined as follows: (1) I |= C ⊑D iff CI ⊆DI ; (2) I |=R⊑S iff

RI ⊆SI ; (3) I |=Trans(R) iff RI is transitive; (4) I |=C(a) iff aI ∈CI ; (5) I |= R(a, b) iff (aI , bI)∈RI

(resp., I |=U(a, v) iff (aI , vD)∈UI); and (6) I |= a= b iff aI = bI (resp., I |= a 6= b iff aI 6= bI). The

interpretation I satisfies the axiom F , or I is a model of F , iff I |= F . The interpretation I satisfies a

knowledge base L, or I is a model of L, denoted I |=L, iff I |=F for all F ∈L. We say that L is satisfiable

(resp., unsatisfiable) iff L has a (resp., no) model. An axiom F is a logical consequence of L, denoted L |= F ,

iff every model of L satisfies F . A negated axiom ¬F is a logical consequence of L, denoted L |=¬F , iff

every model of L does not satisfy F .

Some important reasoning problems related to description logic knowledge bases L are the following:

(1) decide whether a given L is satisfiable; (2) given L and a concept C, decide whether L 6|= C ⊑⊥; (3)

given L and two concepts C and D, decide whether L |= C ⊑D; (4) given L, an individual a∈ I, and a

concept C, decide whether L |= C(a); and (5) given L, two individuals a, b∈ I (resp., an individual a∈ I and

a data value v), and an abstract role R∈RA (resp., a datatype role U ∈RD), decide whether L |= R(a, b)
(resp., L |= U(a, v)). Here, (1) is a special case of (2), since L is satisfiable iff L 6|= ⊤⊑⊥. Furthermore,

(2) and (3) can be reduced to each other, since L |= C ⊓¬D⊑⊥ iff L |= C ⊑D. Finally, in SHOIN (D),
(4) and (5) are special cases of (3).

Example 3.2 (Scientific Publications, ctd.) It is not difficult to verify that the set L of all axioms given in

Example 3.1 is satisfiable, and thus that the class of all publications and the class of all papers both may have

some instances. Furthermore, L logically implies all its axioms as well as the axiom Publication(pub1).

4 Description Logic Programs

In this section, we introduce description logic programs (or simply dl-programs), which are a novel com-

bination of normal programs under the answer set semantics and description logic knowledge bases under

their standard first-order semantics. We first define the syntax of dl-programs and then their semantics.
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4.1 Syntax

Informally, a dl-program consists of a description logic knowledge base L and a generalized normal pro-

gram P . The latter is a finite set of generalized rules, which may contain queries to L in their body. Roughly,

in such a query, it is asked whether a certain description logic axiom or its negation logically follows from

L or not.

We first define the notions of dl-queries and dl-atoms, which are used in rule bodies to express queries

to the description logic knowledge base L. A dl-query Q(t) is either (a) a concept inclusion axiom F or

its negation ¬F ; (b) of the forms C(t) or ¬C(t), where C is a concept, and t is a term; or (c) of the forms

R(t1, t2) or ¬R(t1, t2), where R is a role, and t1, t2 are terms. A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm; Q](t) , m> 0, (2)

where each Si is either a concept or a role, opi ∈{⊎, −∪, −∩}, pi is a unary resp. binary predicate symbol,

and Q(t) is a dl-query. We call p1, . . . , pm its input predicate symbols. Intuitively, opi =⊎ (resp., opi = −∪)

increases Si (resp., ¬Si) by the extension of pi, while opi = −∩ constrains Si to pi. A dl-rule r has the

form (1), where any literal b1, . . . , bm ∈B(r) may be a dl-atom. A dl-program KB = (L, P ) consists of a

description logic knowledge base L and a finite set of dl-rules P .

We use the following example to illustrate our main ideas.

Example 4.1 (Reviewer Selection) Suppose we want to assign reviewers to papers, based on certain infor-

mation about the papers and available persons, using a description logic knowledge base LS about scientific

publications (such as the one sketched in Example 3.1 and given in more detail in Appendix A).

We assume not to be aware of the entire structure and contents of LS , but of the following aspects.

The description logic knowledge base LS classifies papers into research areas, stored in the concept Area,

depending on keyword information. The abstract roles keyword and inArea associate with each paper its

relevant keywords and the areas that it is classified into (obtained, e.g., by reification of the classes). Fur-

thermore, the abstract role expert relates persons to their areas of expertise, and the concept Referee contains

all referees. Finally, the abstract role hasMember associates with a cluster of similar keywords all its mem-

bers. Consider then the dl-program KBS = (LS , PS), where PS is given by the following dl-rules:

(1) paper(p1); kw(p1,Semantic Web);

(2) paper(p2); kw(p2,Bioinformatics); kw(p2,Answer Set Programming);

(3) kw(P, K2)← kw(P, K1), DL[hasMember ](S, K1), DL[hasMember ](S, K2);

(4) paperArea(P, A)← DL[keywords ⊎ kw ; inArea](P, A);

(5) cand(X, P )← paperArea(P, A), DL[Referee](X), DL[expert ](X, A);

(6) assign(X, P )← cand(X, P ),not ¬assign(X, P );
(7) ¬assign(Y, P )← cand(Y, P ), assign(X, P ), X 6= Y ;

(8) a(P )← assign(X, P );
(9) error(P )← paper(P ),not a(P ).

Intuitively, lines (1) and (2) specify the keyword information of the two papers p1 and p2, which should

be assigned to reviewers. The rule (3) augments, by choice of the designer, the keyword information with

similar ones (hoping for good). The rule (4) queries the augmented LS to retrieve the areas that each paper is

classified into, and the rule (5) singles out review candidates based on this information from experts among

the reviewers according to LS . Rules (6) and (7) pick one of the candidate reviewers for a paper (multiple



INFSYS RR 1843-07-04 9

reviewers can be selected similarly). Finally, (8) and (9) check if each paper is assigned; if not, an error is

flagged. Note that, in view of rules (3)–(5), information flows in both directions between the description

logic knowledge base LS and the knowledge represented by the above dl-program.

To illustrate the use of the operator −∩, a predicate poss Referees may be defined in the dl-program,

and “Referee −∩ poss Referees” may be added in the first dl-atom of (5), which thus constrains the set of

referees.

The dl-rule below shows in particular how dl-rules can be used to encode certain qualified number

restrictions, which are not available in SHOIN (D). It defines an expert as an author of at least three

papers of the same area:

expert(X,A)← DL[isAuthorOf ](X,P1), DL[isAuthorOf ](X,P2),

DL[isAuthorOf ](X,P3), DL[inArea](P1, A),

DL[inArea](P2, A), DL[inArea](P3, A),

P1 6= P2, P2 6= P3, P3 6= P1.

4.2 Semantics

We now define the semantics of dl-programs. We first define Herbrand interpretations and the truth of dl-

programs in Herbrand interpretations. The latter is done by defining the truth of ground dl-atoms in Herbrand

interpretations. We then define a canonical least model semantics and a canonical iterative least model

semantics of positive and stratified dl-programs, respectively. We finally define two alternative notions of

answer sets of general dl-programs, namely strong and weak answer sets. In the sequel, let KB = (L, P ) be

a dl-program.

The Herbrand base of P , denoted HBP , is the set of all ground literals with a standard predicate symbol

that occurs in P and constant symbols in Φ. An interpretation I relative to P is a consistent subset of HBP .

We define that I is a model of a ground literal or dl-atom l (or I satisfies l) under L, denoted I |=L l, as

follows:

• if l∈HBP , then I |=L l iff l∈ I;

• if l is a ground dl-atom DL[λ; Q](c), where λ = S1op1 p1, . . . , Smopmpm, then I |=L l iff

L(I; λ) |= Q(c), where L(I; λ) = L∪
⋃m

i=1 Ai(I) and, for 1 ≤ i ≤ m,

Ai(I) =






{Si(e) | pi(e)∈ I}, if opi =⊎;

{¬Si(e) | pi(e)∈ I}, if opi = −∪;

{¬Si(e) | pi(e)∈ I does not hold}, if opi = −∩.

We say that I is a model of a ground dl-rule r iff I |=L l for all l∈B+(r) and I 6|=L l for all l∈B−(r) im-

plies I |=L H(r). We say I is a model of a dl-program KB =(L, P ), or I satisfies KB , denoted I |=KB , iff

I |=L r for all r∈ ground(P ). We say KB is satisfiable (resp., unsatisfiable) iff it has some (resp., no) model.

4.2.1 Least Model Semantics of Positive dl-Programs

We now define positive dl-programs, which are informally dl-programs that contain no default negations

and that involve only monotonic dl-atoms. Like ordinary positive programs, every positive dl-program that

is satisfiable has a unique least model, which naturally characterizes its semantics.
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We first define the notion of monotonicity for dl-atoms as follows. A ground dl-atom a is monotonic

relative to KB = (L, P ) iff I |=L a implies I ′ |=L a, for all I ⊆ I ′⊆HBP , otherwise a is nonmonotonic.

Observe that a dl-atom containing the operator −∩ may fail to be monotonic, since an increasing set of pi(e)
in P results in a reduction of ¬Si(e) in L, whereas dl-atoms containing only the operators ⊎ and −∪ are

always monotonic. A dl-program KB =(L, P ) is positive iff (i) P is “not”-free, and (ii) every ground

dl-atom that occurs in ground(P ) is monotonic relative to KB .

For ordinary positive programs P , the intersection of two models of P is also a model of P . The

following lemma shows that a similar result holds for positive dl-programs KB as well.

Lemma 4.2 Let KB = (L, P ) be a positive dl-program. If the interpretations I1, I2⊆HBP are models

of KB , then I1 ∩ I2 is also a model of KB .

As an immediate corollary, every satisfiable positive dl-program KB has a unique least model, denoted

MKB , which is contained in every model of KB .

Corollary 4.3 Let KB = (L, P ) be a positive dl-program. If KB is satisfiable, then there exists a unique

model I ⊆HBP of KB such that I ⊆ J for all models J ⊆HBP of KB .

Example 4.4 Let the dl-program KB be given by the dl-program KBS of Example 4.1 without the rules

(6)–(9). Clearly, KB is “not”-free. Moreover, since the dl-atoms do not contain −∩, they are all monotonic.

Thus, KB is positive. As well, its unique least model contains all review candidates for the given papers p1

and p2.

4.2.2 Iterative Least Model Semantics of Stratified dl-Programs

We next define stratified dl-programs, which are intuitively composed of hierarchic layers of positive dl-

programs linked via default-negation and certain dl-atoms. Like for ordinary stratified programs, a canonical

minimal model can be singled out by a number of iterative least models, which naturally describes the

semantics, provided some model exists. We can accommodate this with possibly nonmonotonic dl-atoms by

treating them similarly as NAF-literals. This is particularly useful, if we do not know a priori whether some

dl-atoms are monotonic, and determining this might be costly; notice, however, that absence of −∩ in (2) is a

simple syntactic criterion that implies monotonicity of a dl-atom (cf. also Example 4.4).

For any dl-program KB = (L, P ), we denote by DLP the set of all ground dl-atoms that occur in

ground(P ). We assume that KB has an associated set DL+
P ⊆ DLP of ground dl-atoms which are known

to be monotonic, and we denote by DL?
P =DLP \DL+

P the set of all other ground dl-atoms. An input literal

of a∈DLP is a ground literal with an input predicate of a and constant symbols in Φ.

The notion of a stratification for dl-programs defines an ordered partition of the set of all ground

atoms and ground dl-atoms as follows. A stratification of KB =(L, P ) (relative to DL+
P ) is a mapping

λ :HBP ∪DLP→{0, 1, . . . , k} such that

(i) for each r∈ground(P ), λ(H(r))>λ(l′) for each l′∈B+(r), and λ(H(r))>λ(l′) for each l′∈B−(r)),
and

(ii) λ(a)> λ(l) for each input literal l of each a∈DL+
P , and λ(a)> λ(l)) for each input literal l of each

a∈DL?
P .
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We call k > 0 the length of λ. For every i∈{0, . . . , k}, we then define the dl-program KB i as (L, Pi)=
(L, {r∈ ground(P ) |λ(H(r))= i}), and HBPi

(resp., HB⋆
Pi

) as the set of all l∈HBP such that λ(l)= i
(resp., λ(l)6 i).

A dl-program KB = (L, P ) is stratified iff it has a stratification λ of some length k > 0. We define its

iterative least models Mi⊆HBP with i∈{0, . . . , k} by:

(i) M0 is the least model of KB0;

(ii) if i > 0, then Mi is the least model of KB i such that Mi|HB⋆
Pi−1

= Mi−1|HB⋆
Pi−1

.

We say KB is consistent, if every Mi with i∈{0, . . . , k} exists, and KB is inconsistent otherwise. If KB is

consistent, then MKB denotes Mk. Notice that MKB is well-defined, since it does not depend on a particu-

lar λ (cf. Corollary 4.11). The following result shows that MKB is in fact a minimal model of KB .

Theorem 4.5 Let KB =(L, P ) be a stratified dl-program. Then, MKB is a minimal model of KB .

Example 4.6 Consider the dl-program KB = (L, P ) given by the dl-program KBS of Example 4.1, but

without the rules (6) and (7). This program has a stratification of length 2, with the associated set DL+
P

comprising all dl-atoms occurring in P . The least model of P contains all review candidates of the given

papers, together with error flags for them, because no paper is assigned so far.

4.2.3 Strong Answer Set Semantics of dl-Programs

We now define the strong answer set semantics of general dl-programs KB , which is reduced to the least

model semantics of positive dl-programs. We use a generalized transformation that removes all NAF-literals

and all dl-atoms except for those known to be monotonic. If we ignore this knowledge and remove all

dl-atoms, then we arrive at the weak answer set semantics of KB (see Section 4.2.4).

In the sequel, let KB = (L, P ) be a dl-program, and let DLP , DL+
P , and DL?

P be as above. The strong

dl-transform of P relative to L and an interpretation I ⊆ HBP , denoted sP I
L, is the set of all dl-rules

obtained from ground(P ) by

(i) deleting every dl-rule r such that either I 6|=L a for some a∈B+(r)∩DL?
P , or I |=L l for some

l∈B−(r); and

(ii) deleting from each remaining dl-rule r all literals in B−(r)∪ (B+(r)∩DL?
P ).

Notice that (L, sP I
L) has only monotonic dl-atoms and no NAF-literals anymore. Thus, (L, sP I

L) is a positive

dl-program, and by Corollary 4.3, has a least model, if it is satisfiable. We thus define the strong answer

set semantics of general dl-programs by reduction to the least model semantics of positive dl-programs as

follows.

Definition 4.7 Let KB = (L, P ) be a dl-program. A strong answer set of KB is an interpretation I ⊆HBP

such that I is the least model of (L, sP I
L).

The following result shows that the strong answer set semantics of a dl-program KB = (L, P ) without

dl-atoms coincides with the ordinary answer set semantics of P .

Theorem 4.8 Let KB =(L, P ) be a dl-program without dl-atoms. Then, I ⊆HBP is a strong answer set

of KB iff it is an answer set of the ordinary program P .
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The next result shows that, as desired, strong answer sets of a dl-program KB are also models of KB ,

and moreover minimal models of KB if all dl-atoms are monotonic (and known as such).

Theorem 4.9 Let KB = (L, P ) be a dl-program, and let M be a strong answer set of KB . Then, (a) M is

a model of KB , and (b) M is a minimal model of KB if DLP = DL+
P .

The following result shows that positive resp. stratified dl-programs KB are satisfiable resp. consistent

iff they have a strong answer set. In this case, they have at most one strong answer set, which coincides with

their canonical minimal model MKB .

Theorem 4.10 Let KB =(L, P ) be a positive (resp., stratified) dl-program. If KB is satisfiable (resp., con-

sistent), then MKB is the only strong answer set of KB . If KB is unsatisfiable (resp., inconsistent), then

KB has no strong answer set.

Since the strong answer sets of a stratified dl-program KB are independent of the stratification λ of

KB , we thus obtain that the notion of consistency of KB and the canonical minimal model MKB are both

independent of λ.

Corollary 4.11 Let KB be a stratified dl-program. Then, the notion of consistency of KB and the model

MKB do not depend on the stratification of KB .

Example 4.12 Consider now the full dl-program of Example 4.1. This program is not stratified, in view of

the rules (6) and (7), which take care of the selection between the different candidates for being reviewers.

Each strong answer set containing no error flags corresponds to an acceptable review assignment scenario.

4.2.4 Weak Answer Set Semantics of dl-Programs

We finally introduce the weak answer set semantics of general dl-programs, which associates with a dl-

program a larger set of models than the strong answer set semantics. It is based on a generalized transfor-

mation that removes all NAF-literals and all dl-atoms, and it reduces to the answer set semantics of ordinary

programs.

In the sequel, let KB =(L, P ) be a dl-program. The weak dl-transform of P relative to L and to an

interpretation I ⊆HBP , denoted wP I
L, is the ordinary positive program obtained from ground(P ) by

(i) deleting all dl-rules r such that either I 6|=L a for some dl-atom a∈B+(r), or I |=L l for some

l∈B−(r); and

(ii) deleting from every remaining dl-rule r all the dl-atoms in B+(r) and all the literals in B−(r).

Observe that wP I
L is an ordinary ground positive program, which does not contain any dl-atoms any-

more, and which also does not contain any NAF-literals anymore. We thus define the weak answer set

semantics of general dl-programs by reduction to the least model semantics of ordinary positive programs

as follows.

Definition 4.13 Let KB =(L, P ) be a dl-program. A weak answer set of KB is an interpretation I ⊆HBP

such that I is the least model of the ordinary positive program wP I
L.

The following result shows that the weak answer set semantics of a dl-program KB = (L, P ) without

dl-atoms coincides with the ordinary answer set semantics of P .
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Theorem 4.14 Let KB = (L, P ) be a dl-program without dl-atoms. Then, I ⊆HBP is a weak answer set

of KB iff it is an answer set of the ordinary normal program P .

The next result shows that every weak answer set of a dl-program KB is also a model of KB . In contrast

to strong answer sets, the weak answer sets of KB are generally not minimal models of KB , even if KB

has only monotonic dl-atoms.

Theorem 4.15 Let KB = (L, P ) be a dl-program. Then, every weak answer set of KB is also a model of

KB .

The following result shows that the weak answer set semantics of dl-programs can be reduced to the

answer set semantics of ordinary normal programs.

Theorem 4.16 Let KB = (L, P ) be a dl-program. Let I ⊆HBP and let P I
L be obtained from ground(P )

by (i) deleting every dl-rule r where either I 6|=L a for some dl-atom a∈B+(r), or I |=L a for some

dl-atom a∈B−(r), and (ii) deleting from every remaining dl-rule r every dl-atom in B+(r)∪B−(r).
Then, I is a weak answer set of KB iff I is an answer set of P I

L.

Finally, the following theorem shows that the set of all strong answer sets of a dl-program KB is con-

tained in the set of all weak answer sets of KB . Intuitively, the additional information about the monotonicity

of dl-atoms that we use for specifying strong answer sets allows for focusing on a smaller set of models.

Hence, the set of all weak answer sets of KB can be seen as an approximation of the set of all strong answer

sets of KB . Note that the converse of the following theorem generally does not hold. That is, there exist

dl-programs KB , which have a weak answer set that is not a strong answer set.

Theorem 4.17 Every strong answer set of a dl-program KB = (L, P ) is also a weak answer set of KB .

Example 4.18 Assume it is given the short program P = {p(a)← DL[c⊎p; c](a)} and L = ∅. The unique

strong answer set of (L, P ) is M1 = ∅, while the weak answer sets of (L, P ) are M1 and M2 = {p(a)}.

It is important to observe that the weak answer set semantics does not enjoy the property of minimal-

ity of answer sets as (Theorem 4.9) the strong answer set semantics (in case all dl-atoms are known to be

monotonic) does. Thus M2, although not minimal, is a weak answer set. M2 might be considered a counter-

intuitive answer, since evidence of the truth of p(a) is inferred by means of a “self-supporting” loop. This

problem is solved by means of the strong answer set semantics. Nonetheless, when no knowledge about

monotonicity of dl-atoms is available the weak answer set semantics remains a reasonable choice.

The above problem is strictly related to the issue of establishing an intuitive semantics for logic pro-

grams with aggregates. A further discussion of this issue, focused on logic programs with aggregates, and

proposing a new notion of reduct for answer set programs, can be found in [35].

5 Computation

In this section, we give a fixpoint characterization for the strong answer set of satisfiable positive (resp.,

consistent stratified) dl-programs KB , and we show how to compute it by a finite fixpoint iteration (resp.,

by a sequence of finite fixpoint iterations along a stratification of KB ). We also provide a general guess-

and-check algorithm for computing the set of all weak answer sets of general dl-programs KB (which, by

Theorem 4.17, includes the set of all strong answer sets of KB ).
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5.1 Fixpoint Semantics

The answer set of an ordinary positive resp. stratified normal program P has a well-known fixpoint char-

acterization in terms of an immediate consequence operator TP , which gracefully generalizes to analog

dl-programs KB . This can be exploited for a bottom-up computation of the strong answer set of KB .

5.1.1 Positive DL-Programs

We first define the immediate consequence operator for dl-programs. For any (not necessarily satisfiable) dl-

program KB = (L, P ), we define the operator TKB on the subsets of HBP as follows. For every I ⊆HBP ,

let

TKB (I) =

{
HBP , if I is not consistent,
{H(r) | r∈ ground(P ), I |=L l for all l∈B(r)} , otherwise.

The following lemma shows that for positive dl-programs KB , the operator TKB is monotonic, that is,

I ⊆ I ′⊆HBP implies TKB (I)⊆TKB (I ′). This result is immediate from the fact that for positive dl-

programs KB = (L, P ), every dl-atom that occurs in ground(P ) is monotonic relative to KB .

Lemma 5.1 Let KB = (L, P ) be a positive dl-program. Then, TKB is monotonic.

The next result gives a characterization of the pre-fixpoints of TKB . If KB is satisfiable, then every

pre-fixpoint of TKB is either a model of KB , or equal to HBP . If KB is unsatisfiable, then HBP is the only

pre-fixpoint of TKB . We recall here that I ⊆HBP is a pre-fixpoint of TKB iff TKB (I)⊆ I .

Proposition 5.2 Let KB = (L, P ) be a positive dl-program. Then, I ⊆HBP is a pre-fixpoint of TKB iff

I is either (a) a model of KB or (b) equal to HBP .

Since every monotonic operator has a least fixpoint, which coincides with its least pre-fixpoint, we

immediately obtain the following corollary: The least fixpoint of TKB , denoted lfp(TKB ), is given by the

least model of KB , if KB is satisfiable, and by HBP , if KB is unsatisfiable.

Corollary 5.3 Let KB = (L, P ) be a positive dl-program. Then, (a) lfp(TKB ) = MKB , if KB is satisfiable,

and (b) lfp(TKB )=HBP , if KB is unsatisfiable.

The next result shows that the least fixpoint of TKB can be computed by a finite fixpoint iteration (which

is based on the assumption that P and the number of constant symbols in Φ are finite). Note that for

every I ⊆HBP , we define T i
KB (I)= I , if i=0, and T i

KB (I)=TKB (T i−1
KB (I)), if i > 0.

Theorem 5.4 Let KB be a positive dl-program. Then, lfp(TKB )=
⋃n

i=1 T i
KB (∅) = Tn

KB (∅) for some

n > 0.

Example 5.5 Suppose that the program P in KB = (L, P ) consists of the rules r1 : b←DL[S ⊎ p; C](a)
and r2 : p(a) ← , and L is the axiom S⊑C. Then, KB is positive, and lfp(TKB )= {p(a), b}, where

T 0
KB (∅)= ∅, T 1

KB (∅)= {p(a)}, and T 2
KB (∅)= {p(a), b}.
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5.1.2 Stratified dl-Programs

Using Theorem 5.4, we can characterize the answer set MKB of a stratified dl-program KB by a sequence

of fixpoint iterations along a stratification as follows. Let T̂ i
KB (I) = T i

KB (I) ∪ I , for all i ≥ 0.

Theorem 5.6 Suppose KB = (L, P ) has a stratification λ of length k > 0. Define the literal sets Mi⊆HBP ,

i∈{−1, 0, . . . , k}, as follows: M−1 = ∅, and

Mi = T̂ni

KBi
(Mi−1), where ni > 0 such that T̂ni

KB i
(Mi−1)= T̂ni+1

KBi
(Mi−1), i ≥ 0.

Then, KB is consistent iff Mk 6= HBP , and in this case, Mk = MKB .

Notice that M0 = lfp(TKB0
) and that Mi−1 = T̂ j

KB i
(Mi−1) ∩ HB⋆

Pi−1
holds for any j if T̂ j

KB i
(Mi−1) is

consistent, which means that ni always exists.

Example 5.7 Assume that also the rule r3 : q(x)←not ¬b,not DL[S](x) is in P of Example 5.5. Then,

the mapping λ that assigns 1 to q(a), 0 to DL[S](a), and 0 to all other ground atoms and ground dl-atoms

in HBP ∪DLP stratifies KB , and M0 = lfp(TKB0
) = {p(a), b} and M1 = {p(a), b, q(a)} = MKB .

5.2 General Algorithm for Computing Weak Answer Sets

Computing the set of all weak answer sets of a given (general) dl-program KB = (L, P ) can be reduced to

computing the set of all answer sets of a normal logic program. This is done by a guess-and-check algorithm

as follows:

1) We first replace each dl-atom a(t) in P of the form

DL[S1op1p1, . . . , Smopm pm; Q](t)

by a globally new atom da(t).

2) We then add to the result of Step (1) all ground rules of the form

da(c)← not ¬da(c) and ¬da(c)← not da(c) (3)

for each dl-atom a(c)∈DLP . Intuitively, they “guess” the truth values of the dl-atoms of P .1 We

denote the resulting normal logic program by Pguess .

3) We construct the answer sets of Pguess and check whether the original “guess” of the truth values of

the auxiliary atoms da(c) is correct relative to the given description logic knowledge base L. That

is, for each answer set I of Pguess and each dl-atom a(c) ∈ DLP , we check whether da(c) ∈ I iff

I |=L a(c). If this condition holds, then I|HBP (which is the restriction of I to HBP ) is a weak

answer set of KB .

The following theorem shows the correctness of the above algorithm.

1The guessing rules in (3) can be equivalently replaced by a disjunctive rule da(c) ∨ ¬da(c)← . Such disjunctive rules can be

efficiently processed by the DLV system [66].
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Theorem 5.8 Let KB =(L, P ) be a dl-program, and let I ⊆HBP . Then, I is a weak answer set of KB

iff I can be completed to an answer set I⋆⊆HBPguess of Pguess such that da(c)∈ I⋆ iff I⋆ |=L a(c), for all

a(c)∈DLP .

Although this basic algorithm is in general not very efficient and leaves room for improvements, it shows

that the weak answer set semantics can be realized on top of existing answer set solvers like DLV [23] or

Smodels [79].

Example 5.9 The following short program P (naively) emulates the closed-world assumption (see Section

6.1) on the concept man in the description logic base L = {man ⊑ person, person(lee) }:

nman(X)← not pman(X);
pman(X)← DL[man−∪nman; man](X).

According to the translation above, P is rewritten as:

nman(X)← not pman(X);
pman(X)← d1(X);

d1(lee)← not ¬d1(lee);
¬d1(lee)← not d1(lee);

This rewritten program has the two answer sets M1 = {¬d1(lee), nman(lee)} and M2 = {d1(lee),
pman(lee)}. Note that M1 6|= DL[man−∪nman; man](lee) according to the fact that ¬d1(lee) ∈ M1,

while M2 6|= DL[man−∪nman; man](lee), in disagreement with the fact that d1(lee) ∈ M2. The only

accepted answer set is M1.

6 Reasoning Applications

In this section, we show the usefulness of dl-programs for three concrete scenarios, where in particular

the nonmonotonic behavior of the rules part is exploited in order to implement very well-known forms of

nonmonotonic reasoning on top of a description logic knowledge base, or as in one case to emulate another

well-known extension of description logics with rules. More concretely, we show that classical forms of

closed-world reasoning, like Reiter’s closed-world assumption (CWA) [85] and the extended closed-world

assumption (ECWA) [40, 41], and of default reasoning, including Poole’s [84] and Reiter’s approach [86],

can be implemented on top of a description logic knowledge base. Indeed, dl-programs are particularly

well-suited for capturing Reiter’s default logic, since they offer the possibility to talk about consistency and

provability within the language, which is a basic ingredient of this logic. Furthermore, we show that DL-safe

rules [78] can be emulated using dl-programs in a faithful way.

6.1 Closed-World Reasoning

Reiter’s well-known closed-world assumption (CWA) [85]2 is acknowledged as an important reasoning

principle for inferring negative information from a logical knowledge base T : For a ground atom p(c),
conclude ¬p(c) if T 6|= p(c). Any such atom p(c) is also called free for negation. The CWA of T , denoted

CWA(T ), is then the extension of T with all literals ¬p(c) where p(c) is free for negation.

2Throughout this section, we refer to [74, 14] for references to closed-world reasoning and circumscription.
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Description logic knowledge bases lack this notion of inference, adhering to the open-world assump-

tion. The open-world assumption can indeed be considered reasonable in a variety of contexts, such as the

Semantic Web scenario. There, a single knowledge base is generally considered as part of a distributed pool

of information, rather than an isolated traditional database containing complete information. Thus, new

information may easily contradict information inferred by CWA and lead to inconsistency.

Nonetheless, it is acknowledged that many Semantic Web application scenarios can not renounce to

some form of closed-world reasoning [2, 47, 83]. Furthermore, the use of description logics for more ex-

pressive data models than the plain relational model, which has been proposed, e.g., in [16, 8] and advocated

for enterprise application integration and data integration [65], also increases the interest in dealing with the

CWA in this context.

Using dl-programs, the CWA may be easily expressed on top of an external KB which can be queried

through suitable dl-atoms. We show this here for a description logic knowledge base L.

Intuitively, given a concept C, the ground atoms of C which are free for negation are determined by the

following rule, where c̄ is a designated predicate:

c̄(X)← not DL[C](X) .

For example, given

L = {man ⊑ person, person(lee) } ,

the CWA infers man(lee). We can set up similar rules

r̄(X, Y )← not DL[R](X, Y )

for a role R determining all ground atoms free for negation in the designated predicate r̄. Answering a query

Q(t) on L under the CWA, where Q is a (possibly negated) concept or role, is then accomplished with the

stratified dl-program KB = (L, P ) where P contains for all concepts and roles occurring in L and Q3 the

rules above, plus the rule

q(t)← DL[λ; Q](t), (4)

where λ contains for each concept C (resp., role R) the expression C−∪c̄ (resp., R−∪r̄). The ground instances

Q(c) of Q(~t) such that CWA(L) |= Q(c) are then given by the atoms q(c) in the single answer set of KB .

In the above example, the query man(X) has no answer, while ¬man(X) has the answer X = lee.

As well-known, the CWA can lead to inconsistency. If in the above example, L contains the further

axiom

person = man ⊔ woman,

then both man(lee) and woman(lee) are free for negation, since L 6|= man(lee) and L 6|= woman(lee),
and thus CWA(L) is unsatisfiable. We can easily check inconsistency of the CWA with a further rule

incons ← DL[λ;⊥](b),

3An infinite number of concepts can be defined starting from atomic concepts. We only consider those relevant for CWA which

are explicitly addressed; otherwise, CWA leads to an infinite result. In line of this, we can easily accommodate a partial CWA (cf.

[42]), in which only atoms over selected concepts and roles are free for negation.
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where ⊥ is the empty concept (entailment of ⊥(b), for an arbitrary constant b, is tantamount to inconsis-

tency).

The problem with inconsistency in the CWA as presented above stems from disjunctive knowledge.

Several refinements of the CWA have been proposed to avoid such inconsistency, by restricting the predicates

that can safely be negated, and/or by considering more general formulas than literals to be free for negation

(see, e.g., [74, 14] for an overview).

One of the most advanced refinements is the extended closed-world assumption (ECWA) [40, 41], which

is intimately related to circumscription [68]. As in [40, 41], we adopt the following assumptions, which are

common in a database context:

• the domain-closure assumption (DCA): ∀x(x = c1 ∨ x = c2 ∨ · · ·x = cn), which states that there

are no individuals other than the individuals c1, . . . , cn which are explicitly named in the theory T ,

and

• the unique-names assumption (UNA): ci 6= cj , for all i 6= j, which states that distinct names also

refer to distinct objects in the domain.

These assumptions are fulfilled by the semantics of dl-programs, and can also be expressed in SHOIN (D).

The ECWA introduces a partitioning 〈P,Q,Z〉 of the predicates in T into three disjoint lists (viewed as

sets) P ,Q, and Z (Q is often omitted since it is clear from P and Z). Informally, the predicates in P should

be minimized and ¬p(c) concluded if p(c) can not be proved, while the predicates in Q are not subject to

such inference, and the predicates in Z can take arbitrary extensions in order to minimize those in P .

Syntactically, the ECWA is expressed by declaring all closed formulas α free for negation in T such that

α contains no predicate from Z and that there is no disjunction γ = ℓ1 ∨ · · · ∨ ℓm where each ℓi is either a

positive ground atom with predicate from P , or a ground literal with predicate fromQ, such that T ⊢ α∨ γ
and T 6⊢ γ. Then, the ECWA of T with respect to 〈P,Z〉 is given by ECWA(T ;P,Z) = T ∪ {¬α | α is

free for negation in T w.r.t. 〈P;Z〉}.
Semantically, ECWA(T ;P,Z) is characterized in terms of minimal models defined as follows. Given

two interpretations M and N for T , we write M ≤P,Z N if M and N only differ in how they interpret

predicate symbols in P and Z , and for each p ∈ P the extension in M is a subset of the extension in N .

We call M a 〈P,Z〉-minimal model of T , iff M is a model of T and there is no model N of T such that

N ≤P,Z M and M 6≤P,Z N .

Informally, a model M of T is 〈P,Z〉-minimal, if it makes a smallest set of ground atoms over P true,

while the interpretation of Q is fixed and the atoms over Z may take arbitrary value. In particular, if P
contains all predicates, then the models of ECWA(T ;P,Z) correspond to the minimal Herbrand models of

T .

Proposition 6.1 ([40, 41]) An interpretation M is a model of ECWA(T ;P,Z) iff M is a 〈P,Z〉-minimal

model of T .

This result implies that ECWA(T ;P,Z) is consistent when T is consistent. It also shows that ECWA(T ;P,
Z) semantically coincides with the parallel circumscription CIRC (T ;P,Z) of the predicates from P in T
while the predicates in Z are allowed to vary, which singles out precisely the 〈P,Z〉-minimal models of

T [68].

Since we can view a description logic knowledge base L as a first-order theory with unary and binary

predicates for concepts and roles, respectively, we can readily apply the ECWA to it. If we minimize in our
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example knowledge base

L = {man ⊑ person, person = man ⊔ woman, person(lee) }

all predicates (P = man,woman, person), then we get the minimal models M1 = {person(lee),man(lee)}
and M2 = {person(lee),woman(lee)}. We can elegantly single out these minimal models by the strong

answer sets of the following dl-program KB ′ = (L, P ′):

man(X)← not man+(X),

woman(X)← not woman+(X),

person(X)← not person+(X),

man+(X)← DL[λ;man](X),

woman+(X)← DL[λ;woman](X),

person+(X)← DL[λ; person](X),

where λ = woman−∪woman,man−∪man, person−∪person . Intuitively, p+(X) for predicate p means that

p(X) is provably true in a minimal model to be constructed, and can not be switched to false to generate a

smaller model. The first three rules state that, by default, a ground atom p(c) is not provably true, and thus

p(c) false in the minimal model, which is represented by man(c) in the strong answer set. The next three

rules query, for each p(c), whether p(c) is provably true on L under all assumptions about non-provability

of atoms. If in all cases the answer complies with the assumption, then we have a minimal model of L and

a strong answer set of P . Otherwise, the assumptions encoded in the interpretation can not be reproduced

using the rules, and we have not an answer set.

In our example, the program has two strong answer sets:

M1 = {person+(lee),woman+(lee),man(lee)},

M2 = {person+(lee), man+(lee),woman(lee)}.

which correspond to the 〈P, ∅〉-minimal models of L as desired.

The above scheme can be easily formulated for encoding 〈P, ∅〉-minimal models; assuming that L is

consistent, we set up rules for each predicate p in P as above, and set λ accordingly. We next describe an

encoding of the 〈P,Z〉-minimal models for an arbitrary L, where the predicates inQ and Z are encoded by

different rules.

Definition 6.2 Let L be a description logic knowledge base, and let 〈P,Q,Z〉 be a partitioning of all

concepts and roles occurring in it. The dl-program KB ECWA

〈P,Z〉 = (L, P ) is built by constructing P as follows:

1. For each concept or role p in P , add the rules

p( ~X)← not p+( ~X), (5)

p+( ~X)← DL[λ; p]( ~X), (6)

where λ contains for each p in P ∪Q the expression p−∪p, and for each p in Q the expression p ⊎ p+.

2. For each concept or role p in Q∪ Z , add the rules

p( ~X)← not p+( ~X), (7)

p+( ~X)← not p( ~X). (8)
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3. P contains the rule

fail ← DL[λ′;⊥](b),not fail , (9)

where λ′ is λ from above plus the expressions z ⊎ z+ and z−∪z for each z in Z , and b is an arbitrary

constant symbol.

In this program, the rules (5) and (6) determine, similar as in the example above, the extensions of the

predicates from P in a 〈P,Z〉-minimal model. Here the assumptions on P and Q are fed into L in (6), but

not those on Z since they are not relevant. The rules (7) and (8) simply guess the extension of the concepts

and roles in P and Q. The compatibility of the interpretation of all ground atoms is then checked with the

rule (9); note that, by the minimality of the part on P , no positive assumptions about P have to be fed to L
(i.e., p ⊎ p+ is not needed in λ′).

Theorem 6.3 Let L be a description logic knowledge base, and let 〈P,Q,Z〉 be a partitioning of its con-

cepts and roles. Then:

1. For each strong answer set M of KB ECWA

〈P,Z〉, there exists a 〈P,Z〉-minimal model M ′ of L such that

for each ground atom p(c), M ′ |= p(c) iff p+(c)∈M .

2. For each 〈P, Z〉-minimal model M ′ of L, there exists a strong answer set M of KB ECWA

〈P,Z〉 such that

for each ground atom p(c), M ′ |= p(c) iff p+(c)∈M .

An immediate consequence of this result is that we can reduce query answering from a description logic

knowledge base L under ECWA to cautious reasoning from KB ECWA

〈P,Z〉. For a given dl-query Q(t), where Q

is a (possibly negated) role or concept p from P ∪ Q ∪ Z , let dlQ(t) = p+(t), if Q is unnegated, and let

dlQ(t) = p(t) otherwise.

Corollary 6.4 Let L be a description logic knowledge base, let 〈P,Q,Z〉 be a partitioning of all concepts

and roles occurring in it, and let Q(t) be a query as above. Then, for every ground instance Q(c), L |= Q(c)
iff dlQ(c) is a cautious consequence of KB ECWA

〈P,Z〉 under the strong answer set semantics, i.e., dlQ(c) belongs

to every strong answer set of KB ECWA

〈P,Z〉.

We remark that as for query answering, we may also modify the program KB ECWA

〈P,Z〉 by omitting all rules

related to predicates in Z , and by using the rule (4) encoding the query for CWA from above (in particular,

if the concept resp. role of Q is from Z), and ask for the cautious consequences q(c) under strong answer

set semantics.

Furthermore, we may add not DL[p]( ~X) in the body of the rule (5) without changing the answer sets,

and similarly not DL[p]( ~X) and not DL[¬p]( ~X) in the body of rule (7) and rule (8), respectively. These

additions just prune assumptions made on p which are obviously not consistent with L itself.

We finally remark that without the domain-closure assumption, the dl-program KB ECWA

〈P,Z〉 does not single

out the 〈P,Z〉-minimal models of L in general. The reason is that KB ECWA

〈P,Z〉 selects models where the set

of ground facts over P which are true is minimal. But, in general, models with different domains might be

compared; unnamed individuals can help to minimize this set of facts.
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6.2 Default Reasoning

In essence, description logics can be viewed as a fragment of classical first-order logic in disguise, and thus

share many of its properties. Among them is the property of monotonicity, according to which all conclu-

sions remain valid if the stock of knowledge increases. In particular, description logic knowledge bases

only support monotonic inheritance from a more general to a more specific concept. This makes express-

ing “default” inheritance, according to which inheritance is carried out unless it is overridden, difficult and

cumbersome. However, overriding a “default” value is often a natural way for defining a subclass.

Example 6.5 Consider the following simple wine ontology L, which contains some knowledge about red

and white wine, Lambrusco, as well as about Veuve Cliquot and Lambrusco di Modena.

L = {redWine ⊑ ¬whiteWine,

lambrusco ⊑ sparklingWine ⊓ redWine,

sparklingWine(veuveCliquot), lambrusco(lambrusco di Modena)},

We know that sparkling wine is usually white; however, we can not add the axiom sparklingWine ⊑
whiteWine to L without destroying L’s consistency, since Lambrusco is an exception. From L alone,

we can not conclude that Veuve Cliquot is white. What is missing is the possibility to express in L that

sparkling wines are white by default. This calls for an integration of description logics with default reason-

ing, which is a nontrivial task in general and easily leads to undecidability [6], or more specifically to resort

to a method of nonmonotonic inheritance reasoning [61].

Our dl-programs are a convenient framework to realize different notions of defaults on L, and thus can

also be exploited for implementing default reasoning on top of an existing description logic reasoner. In the

above example, we may express that sparkling wines are white by default through the following two rules:

white(W )← DL[sparklingWine](W ),not ¬white(W );

¬white(W )← DL[whiteWine ⊎ white;¬whiteWine](W ).

Here, we are aiming at deriving as much positive information without causing inconsistencies, i.e., maxi-

mizing predicate extensions instead of minimizing them as proposed in the previous subsection. From these

rules and L, we then can conclude white(veuveCliquot) and ¬white(lambrusco di Modena), as desired.

As we show in what follows, Poole’s approach to default reasoning [84] and Reiter’s classical default

logic [86] can be realized on description logics using dl-programs.

6.2.1 Poole’s Approach

Poole’s approach views default reasoning as theory formation instead of the definition of a new logic like

Reiter’s. He categorizes a theory into a satisfiable set F of closed formulas and a set H of (possibly open)

formulas, called possible hypotheses. The formulas in F are treated as “facts”, which must be true in any

case, while any ground instance of H can be used if it is consistent. Intuitively, we can view g ∈ H as the

default ⊤ : Mg
g

in Reiter’s logic, where ⊤ is any tautology.

We go here one step further and equip g with a precondition pc(g), which is another (possibly) open

formula which is instantiated along with g. It enables the instance g′ of g if the instance pc(g)′ of pc(g) is

provable from L; roughly, this corresponds to the Reiter default
pc(g) : Mg

g
(with some proviso, discussed

below). Following [84], a scenario is a satisfiable set F ∪D where D consists of ground instances g′ such
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that g ∈ H and T ⊢ pc(g)′, and an extension of T is the set of consequences Cn(T ∪S) of a maximal (with

respect to ⊆) scenario T ∪ S.

In what follows, we assume that both pc(g) and g are atoms a( ~X) and w(~Y ), respectively, where a and

w are concepts or roles, and write the possible hypothesis as a( ~X) : w(~Y ). Intuitively, it maximizes the

extension of w, whenever a is true in a description logic knowledge base L while maintaining consistency.

In our example above, the possible hypothesis would be sparklingWine(X) :whiteWine(X).

Given possible hypotheses H = {ai( ~Xi) : wi(~Yi), 1 ≤ i ≤ n}, we can model this behavior according

to the above scheme as follows:

w+
i (~Yi)← DL[ai]( ~Xi),not ¬w+

i (~Yi), (10)

¬w+
i (~Yi)← DL[λ;¬wi](~Yi), (11)

where p+ is a predicate in the logic program for p, and λ = w1 ⊎ w+
1 , . . . , wn ⊎ w+

n , i.e., the update of L
with instances of possible hypotheses to form a scenario. The answer set semantics effects that the update λ
is maximal and, moreover, preserves consistency. If it would cause inconsistency, then ¬w+

i (X) would be

derived for every wi(X), and hence no rule (10) could be applied; thus, the update would be empty, and L
would have to be inconsistent itself. Note that the encoding of the default in Example 6.5 is of this form.

Formally, we have the following correspondence result.

Theorem 6.6 Let L be a satisfiable description logic knowledge base, and let H = {ai( ~Xi) : wi(~Yi),
1 ≤ i ≤ n} be a set of possible hypotheses. Furthermore, let KB = (L, P ) where P consists of all rules

(10) and (11) for H , and define scen(M) = L ∪ {wi(c) | w
+
i (c) ∈M} for any interpretation M . Then:

1. For every strong answer set M of KB , scen(M) is a maximal scenario.

2. For every maximal scenario L ∪ S, there exists a strong answer set M of KB such that L ∪ S =
scen(M).

The following example shows a simple application of this result.

Example 6.7 Consider a circuit diagnosis scenario. We recall that in classical model-based diagnosis, one

aims at finding diagnoses which maximize the set of working components. A Reiter diagnosis [87] of

a system S = (SD ,COMP ,OBS ), where SD is the logical system description, COMP the set of com-

ponents, and OBS the set of observations, is a minimal (with respect to ⊆) set ∆ ⊆ COMP such that

SD ∪ OBS ∪ {¬ok(c) | c ∈ ∆} ∪ {ok(c) | c ∈ COMP \ ∆} is satisfiable; here, ok(c) denotes that

component c is working.

Assume that SD , COMP , and OBS are given by a description logic knowledge base L, which contains

the concepts comp and ok . Using the possible hypothesis comp(X) : ok(X), the diagnoses of the system

naturally correspond to the maximal scenarios L ∪ S. Expressing the hypothesis by

working(X)← DL[comp](X),not ¬working(X), (12)

¬working(X)← DL[ok ⊎ working ;¬ok ](X), (13)

the answer sets of KB = (L, P ) encode the diagnoses of S as described by Theorem 6.6. In particular, for

component c, an answer set contains working(c) iff c does not belong to the corresponding diagnosis.
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By adding to the program in Theorem 6.6 further rules

p+( ~X)← DL[λ; p]( ~X), ¬p+( ~X)← DL[λ;¬p]( ~X), (14)

where p is a concept or a role, we can export positive resp. negative ground literals on p from the extension

of a maximal scenario to the corresponding answer set. In the scenario of Example 6.5, the rule

red(W ) ← DL[whiteWine ⊎ white; redWine](W )

would export the red wines, and in particular red(lambrusco di Modena) would be contained in the single

answer set.

We can also exploit this for expressing brave and cautious query answering from the extensions of L.

Given a dl-query Q(t), where Q is a (possibly negated) concept or role p, in presence of the respective rule

(14), for each instance Q(c) it holds that the literal (¬)p(c) belongs to some (resp., every) extension of L
iff (¬)p+(c) belongs to some (resp. every) strong answer set of KB .

As mentioned above, a possible hypothesis pc(g) : g roughly corresponds to the Reiter default
pc(g) : Mg

g
.

The difference is that, in the definition above, the precondition pc(g) refers to the original theory T , while in

Reiter’s default logic it refers to T augmented with all default conclusions. In particular, the above definition

does not capture “chaining” of defaults, where one default has to be applied to enable the application of

another one. In this way, expected conclusions might be missed.

Example 6.8 Suppose that in the wine scenario, we have the further knowledge that white wine is usu-

ally served cold, expressed by whiteWine(X):servedCold(X). From the program KB in Theorem 6.6,

however, we can not conclude that Veuve Cliquot is served cold, since servedCold+(veuveCliquot) is

not contained in the single strong answer set of KB . The reason is that the precondition of whiteWine

(veuveCliquot):servedCold(veuveCliquot), the fact whiteWine(veuveCliquot), is not a consequence of

L, but is only obtained after the application of sparklingWine (veuveCliquot) :whiteWine(veuveCliquot).

In order to propagate conclusions from defaults to preconditions of defaults, we have to add these con-

clusions to the description logic knowledge base L when testing the preconditions. To this end, we modify

rule (10) in the following way:

w+
i (X)← DL[λ; ai](X),not wi(X). (15)

Following this approach, we can in fact capture Reiter’s default logic, which we show next.

6.2.2 Reiter’s Default Logic

Recall that a default theory T = 〈W, D〉 consists of a set W of first-order sentences and a set D of defaults
α : Mβ1,...,Mβn

γ
, where α, all βi, and γ are (possibly open) first-order formulas. Reiter defines the extensions

of a closed default theory T (i.e., where all defaults in T contain sentences only) as the fixpoints of the

operator ΓT (S) as follows. For a set of sentences S, ΓT (S) is the least set of sentences such that

1. W ⊆ ΓT (S);

2. Cn(ΓT (S)) = ΓT (S);

3. if α : β1,...,βn

γ
∈ D, α ∈ ΓT (S), and ¬β1, . . . ,¬βn 6∈ S then γ ∈ ΓT (S).
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Then, a set of formulas E is an extension of T iff E = ΓT (E). Extensions of open default theories (i.e., de-

fault theories which are not closed) are defined via ground instances of defaults. In case the defaults contain

only literals, the grounding is defined analogous to logic program rules; otherwise, a suitable skolemization

step is required (see [74] for details).

For a set D of defaults of the form
a( ~X) : Mw(~Y )

w(~Y )
(referred to as normal defaults in the literature), i.e.,

for possible hypotheses a( ~X) : w(~Y ) as in Section 6.2.1, over a description logic knowledge base L, we can

express the extensions of 〈L, D〉 by the strong answer sets of a corresponding dl-program. Roughly, the latter

program implements a guess-and-check strategy, according to which a sufficiently large part of an extension

E, which includes all conclusions of applied defaults, is guessed using predicates in w i(~Yi) and out w i(~Yi)
and described by an update λ′ = w1 ⊎ in w1, . . . , wn ⊎ in wn of L. The candidate E is then checked using

predicates w+
i (~Yi) to characterize ΓT (E), which is described by the update λ = w1 ⊎w+

1 , . . . , wn ⊎w+
n of

L.

Definition 6.9 Let L be a description logic knowledge base, and let D = {δi = ai( ~Xi) : wi(~Yi), 1 ≤ i ≤
n} be a set of defaults. Then, KBDf is the dl-program (L, P ), where P contains for each i = 1, . . . , n, the

following rules:

1. rules that guess whether δi’s conclusion wi(~Y )i belongs to the extension E:

in w i(~Yi)← not out w i(~Yi), (16)

out w i(~Yi)← not in w i(~Yi); (17)

2. a rule which checks the compliance of the guess for E with L:

false ← DL[λ′; wi](~Yi), out w i(~Yi),not false, (18)

where λ′ = w1 ⊎ in w1, . . . , wn ⊎ in wn;

3. a rule for applying δi as in ΓT (E):

w+
i (~Yi)← DL[λ; ai]( ~Xi),not DL[λ′;¬wi](~Yi), (19)

where λ = w1 ⊎ w+
1 , . . . , wn ⊎ w+

n ;

4. rules which check whether E and ΓT (E) coincide:

false ← not DL[λ; wi](~Yi), in w i(~Yi),not false, (20)

false ← DL[λ; wi](~Yi), out w i(~Yi),not false. (21)

Example 6.10 Considering again our wine scenario with the two defaults sparklingWine:white- Wine and

whiteWine:servedCold , the program KBdf (which is not listed here for space reasons) has a single answer

set M , which contains white+(veuveCliquot) and servedcold+(veuveCliquot). Thus, it is concluded that

Veuve Cliquot is served cold. On the other hand, M neither contains servedcold+(lambrusco di Modena)
nor ¬servedcold+(lambrusco di Modena), and nothing can be concluded about Lambrusco di Modena

being served cold or not.
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The following result establishes the correspondence between default extensions and strong answer sets

of the program KBdf .

Theorem 6.11 Let L be a description logic knowledge base, let D = {δi = ai( ~Xi) : wi(~Yi), 1 ≤ i ≤ n}
be a set of defaults, and let T = 〈L, D〉. Then:

1. For each extension E of T , there exists a (unique) strong answer set M of KBdf such that

E = Cn(L(M ; λ′)) (= Cn(L(M ; λ))).

2. For each strong answer set M of KBdf, the set

E = Cn(L(M ; λ′)) (= Cn(L(M ; λ)))

is an extension of T .

Furthermore, for each ground instance wi(c) of wi(~Yi), w+
i (c) is in a strong answer set M of KBdf iff

wi(c) is in the corresponding extension.

By adding rules (14) for concepts resp. roles p to KBdf , we can again export positive resp. negative ground

literals on p from the extension to the corresponding answer set, and we can utilize this for brave and cautious

reasoning from the extensions of T , via brave and cautious reasoning from KBdf .

We note that the rules (18) can be eliminated from KBdf , at the price of introducing more dl-literals,

by replacing in w i(~Yi) in (20) with DL[λ′; wi](~Yi) and out w i(~Yi) in (21) with not DL[λ; wi](~Yi). Fur-

thermore, the guesses in Part 1 might be limited with techniques similar to those mentioned in the previous

subsection.

Eventually, we remark that the above encoding can be extended to more general classes of defaults
α : Mβ1,...,Mβn

γ
. In particular, this is straightforward, yet notationally cumbersome, for defaults where α and

γ are conjunctions of literals and each βi is a literal. The investigation of further fragments remains for

future work.

6.3 DL-Safe Rules

DL-safe rules [78] represent one of the first attempts to couple rules with ontologies while keeping a full

first-order semantics together with decidability. In order to ensure this, only a limited form of rules is

allowed.

Intuitively, a DL-safe program is a description logic knowledge base L coupled with a set of Horn rules

P . Concepts and roles from L may freely appear in P (also in rule heads). Nonetheless, any variable must

appear in the body of a rule within an atom whose predicate name does not appear in L.

Definition 6.12 Suppose L is a SHOIN (D) knowledge base, where A, RA, and RD are the atomic

concept names, abstract role names, and datatype roles, respectively. Let P be a set of predicate symbols

such that A ∪RA ∪RD ⊆ P. A (disjunctive) DL-safe rule is a (disjunctive) rule r of the form

h1(~Y1) ∨ · · · ∨ hm(~Ym)← b1( ~X1), . . . , bn( ~Xn), (22)

where all hi, bj are from P and all ~Yi, ~Xj are lists of variables and constants matching the arities of hi resp.

bj ,4 such that each variable in r occurs in some atom bj( ~Xj) where bj ∈ P \ (A∪RA ∪RD). A combined

4Concept names from A are unary predicates, while role names from RA ∪RD are binary predicates.
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knowledge base is any pair (L, P ), where L is a DL knowledge base and P is a finite set of (disjunctive)

DL-safe rules.

Example 6.13 Consider the simple person knowledge base from Section 6.1, and suppose there is also

a role parent and a concept name allDaughters , and that L contains axioms effecting allDaughters =
∃parent .⊤ ⊓ ∀parent .woman , i.e., allDaughters are those parents whose children are all girls. Let P
contain the rule

p(X)←knows(X, Y ), allDaugthers(Y ), knows(X, Z), parent(Y, Z) (23)

plus facts of the form knows(n, n′), where n and n′ are person names. Intuitively, the rule singles out those

persons who know a parent whose children are all girls, and know at least one of these children. Then,

(L, P ) is a combined knowledge base.

The semantics of combined knowledge bases is defined as follows.

Definition 6.14 An arbitrary first-order interpretation I is a model of (or satisfies) a combined knowledge

base (L, P ), denoted I |= (L, P ), if I |= L and I |= P .

We can simulate combined knowledge bases using dl-programs in the following way:

Definition 6.15 Given a combined knowledge base (L, P ), let KBdls be the dl-program (L, P dls), where

P dls includes the following rules:

1. for each predicate p appearing in P , the rules

p+( ~X)← not p−( ~X), (24)

p−( ~X)← not p+( ~X), (25)

where p+ and p− are new predicates;5

2. for each rule r : h1(~Y1) ∨ · · · ∨ hm(~Ym)← b1( ~X1), . . . , bn( ~Xn) in P , the rule

fail ← not h+
1 (~Y1), . . . ,not h+

m(~Ym), b+
1 ( ~X1), . . . , b

+
n ( ~Xn),not fail ; (26)

and

3. the rule

fail ← DL[λ;⊥](b),not fail , (27)

where b is an arbitrary constant symbol and λ = p1⊎p+
1 , p1−∪p−1 , . . . , pn⊎p+

n , pn−∪p−n where p1, . . . , pn

are all predicates in P that occur in L.

5For simplicity, we do not distinguish between individuals (constants) and datatype values, whose sort can be expressed by

respective typing predicates.
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Intuitively, rules (24) and (25) guess the extension of each predicate in P . Rule (26) checks satisfaction

of the rule r, and rule (27) implements a consistency check and discards guesses that are not compliant with

L.

The following lemma shows that the grounding of P over the constant symbols in the language, which

we denote by P ↓,6 is sufficient to capture the models of a combined knowledge base (L, P ) with respect to

ground atoms.

Lemma 6.16 Let (L, P ) be a combined knowledge base. Then, for every model I of (L, P ↓), there is a

model J of (L, P ) which differs from I only by the interpretation of predicates p∈P \ (A∪RA ∪RD)
such that for all ground atoms α, J |=α iff I |=α.

Indeed, this holds since we can simply remove all tuples e from the extensions of all predicates p∈P \ (A∪
RA ∪RD) in I which contain some unnamed individual, i.e., there is some element in e such that I maps

no constant to it; then, J clearly satisfies L, and by DL-safety, all formulas in P will be satisfied. Based on

this lemma, we can establish the following property of the encoding KBdls .

Theorem 6.17 Let (L, P ) be a combined knowledge base, and let ga(P ) be the set of ground atoms with a

predicate name occurring in P . Then,

1. for every strong answer set M of KBdls , there exists some first-order model I of (L, P ) such that for

every p(c) ∈ ga(P ), I |= p(c) iff p+(c), and

2. for every first-order model I of (L, P ), the set

M = {p+(c) | p(c) ∈ ga(P ), I |= p(c)} ∪ {p−(c) | p(c)∈ ga(P ), I 6|= p(c)}

is a strong answer set of KBdls .

Answering a query Q(t), where Q is a (possibly negated) predicate name from P and t a list of variables

and constants (resp. values), from a combined knowledge base (L, P ), i.e., determining all tuples c of

constant symbols (resp. values) such that (L, P ) |= Q(c), can then be performed as follows. Add to KBdls

the rule

q(t)← χ(Q; t), (28)

where q is a fresh predicate and χ(Q; t) = DL[λ; Q](t), if the predicate of Q is from A∪RA ∪RD

but does not occur in P ; otherwise, χ(Q; t) = p+(t), if Q is unnegated, and χ(Q; t) = p−(t), if Q is

negated. Denote by KBdls
Q(t) the resulting dl-program. From Theorem 6.17, the following result is then

easily obtained.

Corollary 6.18 Given a combined knowledge base (L, P ) and a query Q(t) as above, c is an answer to

Q(t) iff q(c) is a cautious consequence of KBdls
Q(t), i.e., belongs to all strong answer sets of KBdls

Q(t).

Note that as for query answering, the rule (27) can be dropped from KBdls
Q(t). Furthermore, equality in

the DL-knowledge base and rules (≈) can be emulated by treating ≈ like a role occurring in P , and adding

further constraints which enforce that equal objects behave equally (i.e, fail ← p( ~X),not p(~Y ), X1 ≈ Y1,

. . . , Xn ≈ Yn,not fail , for all predicates p in P where ~X = X1 . . . , Xn and ~Y = Y1, . . . .Yn). Finally, we

remark that we can extend the program KBdls to inductively built concepts, and similar for query answering.

6We assume here sorted (finite) sets of constant symbols resp. values. An extension to infinite sets would not be a problem in

principle, if infinite answer sets would be considered.
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Figure 1: Containment between complexity classes.

7 Complexity

In this section, we address the complexity of dl-programs. We first recall the complexity classes that we en-

counter. We then formally state the considered reasoning problems for dl-programs and summarize relevant

previous complexity results. We finally provide our complexity results for dl-programs.

7.1 Complexity Classes

We assume that the reader has some elementary background in complexity theory, and is familiar with the

concepts of Turing machines and oracle calls, polynomial-time transformations among problems, and the

hardness and completeness of a problem for a complexity class, as can be found, e.g., in [63, 64, 82]. We

now briefly recall the complexity classes that we encounter in our complexity results below.

The class EXP (resp., NEXP) contains all decision problems that can be solved in exponential time

on a deterministic (resp., nondeterministic) Turing machine. The class co-NEXP is the complementary

class of NEXP, which has yes- and no-instances interchanged, while the class Dexp = {L×L′ |L∈NEXP,
L′ ∈ co-NEXP} is the “conjunction” of NEXP and co-NEXP. The class PNEXP contains all problems that are

decidable in polynomial time on a deterministic Turing machine with the help of a NEXP oracle. It coincides

with the class NPNEXP [48] of all problems that are decidable in polynomial time on a nondeterministic

Turing machine with the help of an oracle for NEXP. The above complexity classes and their inclusion

relationships (which are all currently believed to be strict) are shown in Fig. 1.

7.2 Problem Statements and Previous Results

We consider the following canonical decision problems for dl-programs:

ANSWER SET EXISTENCE: Given vocabulary Φ and a dl-program KB =(L, P ), decide whether KB has

a strong (resp., weak) answer set.

CAUTIOUS REASONING: Given vocabulary Φ, a dl-program KB = (L, P ), and a literal l∈ HBP , decide

whether l is in every strong (resp., weak) answer set of KB .

BRAVE REASONING: Given vocabulary Φ, a dl-program KB = (L, P ), and a literal l∈HBP , decide whether

l is in some strong (resp., weak) answer set of KB .

We next summarize some relevant previous complexity results. We recall that deciding whether a given

(non-ground) normal logic program has an answer set is complete for NEXP [17]. Furthermore, deciding
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Table I: Complexity of deciding strong or weak answer set existence for dl-programs.

dl-program KB = (L, P ) L in SHIF(D) L in SHOIN (D)

KB positive EXP-complete NEXP-complete

KB stratified EXP-complete PNEXP-complete

KB general NEXP-complete PNEXP-complete

whether a knowledge base L in SHIF(D) (resp., SHOIN (D)) is satisfiable is complete for EXP [95, 55]

(resp., NEXP, assuming unary number encoding; see [55] and the NEXP-hardness proof forALCQI in [95],

which implies the NEXP-hardness of SHOIN (D)). As an easy consequence, evaluating a given ground

dl-atom a of the form (1) in a given dl-program KB = (L, P ) and an interpretation Ip of its input predicates

p = p1, . . . , pm (that is, deciding whether I |=L a for each I which coincides on p with Ip) is complete

for EXP (resp., co-NEXP) for L from SHIF(D) (resp., SHOIN (D)).

7.3 Answer Set Existence

We first consider the problem of deciding whether a given dl-program KB = (L, P ) has a strong or weak

answer set. Table I compactly summarizes our complexity results for this problem for L from SHIF(D)
and SHOIN (D). In detail, for L in SHIF(D), this problem is EXP-complete for positive and stratified

KB , and NEXP-complete for general KB . For L in SHOIN (D), the problem is NEXP-complete for

positive KB , and PNEXP-complete for stratified and general KB . Thus, the complexity of dl-programs is

not or only mildly higher than the one of its components, with the exception of general dl-programs with

L from SHIF(D), where it moves from EXP to NEXP. As for practical concerns, the complexity can be

drastically lower if both components have lower complexity. For example, if evaluating dl-atoms is feasible

with an NP oracle in polynomial time and the number of variables in each rule in P is bounded by a constant

(e.g., if P is fixed), then deciding strong and weak answer set existence is feasible within NPNP = Σp
2, and

thus within the bounds of many classical formalisms for non-monotonic reasoning in the propositional case

[44, 24]; we leave a detailed study of the complexity of fragments of dl-programs for further work.

The following theorem shows that deciding the existence of strong or weak answer sets of dl-programs

KB =(L, P ) with L in SHIF(D) is complete for EXP in the positive and the stratified case, and complete

for NEXP in the general case.

Theorem 7.1 Given vocabulary Φ and a dl-program KB = (L, P ) with L belonging to SHIF(D), decid-

ing whether KB has a strong or weak answer set is EXP-complete when KB is positive or stratified, and

NEXP-complete when KB is a general dl-program.

The next theorem shows that deciding the existence of strong or weak answer sets of dl-programs

KB =(L, P ) with L in SHOIN (D) is complete for NEXP in the positive case, and complete for PNEXP

in the stratified and the general case.

Theorem 7.2 Given vocabulary Φ and a dl-program KB = (L, P ) with L belonging to SHOIN (D), de-

ciding whether KB has a strong or weak answer set is NEXP-complete when KB is positive, and PNEXP-

complete when KB is a stratified or general dl-program.
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Table II: Complexity of cautious reasoning from the strong or weak answer sets of a dl-program.

KB = (L, P ) L in SHIF(D) L in SHOIN (D)

KB positive EXP-complete co-NEXP-complete

KB stratified EXP-complete PNEXP-complete

KB general co-NEXP-complete PNEXP-complete

Table III: Complexity of brave reasoning from the strong / weak answer sets of a dl-program.

KB = (L, P ) L in SHIF(D) L in SHOIN (D)

KB positive EXP-complete Dexp-complete / PNEXP-complete

KB stratified EXP-complete PNEXP-complete

KB general NEXP-complete PNEXP-complete

A more detailed discussion of these and the other complexity results in this section is given in Ap-

pendix E.

7.4 Cautious and Brave Reasoning

We next consider the problems of cautious and brave reasoning from dl-programs, that is, of deciding

whether a classical literal l∈HBP belongs to every resp. some strong or weak answer set of a given dl-

program KB = (L, P ). Tables II and III, respectively, compactly summarize our complexity results for these

problems for L from SHIF(D) and SHOIN (D). Roughly, except for brave reasoning from positive dl-

programs KB = (L, P ) with L from SHOIN (D), the complexity of cautious (resp., brave) reasoning from

dl-programs coincides with the complexity of answer set non-existence (resp., existence) for dl-programs

(see Table I).

The following theorem shows that deciding whether a classical literal l∈HBP belongs to every (resp.,

some) strong or weak answer set of a given dl-program KB = (L, P ) with L in SHIF(D) is complete for

EXP in the positive and the stratified case, and complete for co-NEXP (resp., NEXP) in the general case.

Theorem 7.3 Given vocabulary Φ, a dl-program KB =(L, P ) with L belonging to SHIF(D), and a

classical literal l∈HBP , deciding whether l is in every (resp., some) strong or weak answer set of KB is

complete for EXP when KB is positive or stratified, and complete for co-NEXP (resp., NEXP) when KB is

a general dl-program.

The next theorem shows that deciding whether a classical literal l∈HBP belongs to every (resp.,

some) strong / weak answer set of a given dl-program KB = (L, P ) with L in SHOIN (D) is complete

for co-NEXP (resp., Dexp / PNEXP) in the positive case, and complete for PNEXP in the stratified and the

general case. Note that brave reasoning from the weak answer sets of a positive dl-program KB = (L, P )
with L in SHOIN (D) is co-NEXP-complete when P is “¬”-free.
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Theorem 7.4 Given vocabulary Φ, a dl-program KB =(L, P ) with L belonging to SHOIN (D), and a

classical literal l∈HBP , deciding whether l is in every (resp., some) strong or weak answer set of KB is

complete for co-NEXP (resp., Dexp / PNEXP) when KB is positive, and complete for PNEXP when KB is a

stratified or general dl-program.

8 Implementation

As stressed in the introduction, dl-programs treat DL knowledge bases and logic programs as separated

modules. As a beneficial side effect of this approach, only interfacing details between the two worlds have

to be known as far as an efficient implementation is concerned. This allows to design a reasoning framework

on top of existing reasoners for ASP resp. DLs. Our idea behind the implementation principle was thus to

design a reasoning framework on top of existing reasoners for answer set programs resp. description logics

instead of creating everything from scratch. The reasons for this decision were mainly constrained human

resources but also the fact that these existing engines have been professionally developed and are supposedly

highly efficient.

In Section 4, we presented a method for evaluating a general dl-program. It is evident that in practice

the guessing part of this algorithm generates many answer set candidates. However, when looking at the

corresponding dependency graph, programs are often structured in two hierarchic layers: a first, stratified

layer at the bottom performs some preprocessing on the input data and a second, unstratified layer usually

is aimed at encoding some nondeterministic choice and verification. It is therefore desirable to constrain

the usage of the general guess-and-check method to the upper layer of the program and evaluate the lower

layer using a more efficient fixpoint computation. This requires that we can split the program and evaluate

each part separately; this is in fact feasible, relying on the notion of a splitting set for programs under the

answer set semantics [70]. For simplicity, our approach is to split the program only in two parts, having a

fast routine for finding the answer set(s) of the lower layer, while the remaining subprogram will be solved

by the guess-and-check method (if such a subprogram exists at all).

8.1 Splitting the Input Program

Lifschitz and Turner [70] have shown that the computation of the answer sets of a logic program can be

simplified by dividing the program P into two parts. Informally, first identify the unstratified subprograms

of P , i.e., rules of P that contain negated cycles. Then, remove these rules from P as well as all rules that

depend on P , leaving a stratified subprogram on the “bottom” of the dependency graph of P . The model

of this part can now be solved by a fixpoint iteration, i.e., resulting in a unique least model. Subsequently,

this model is added as extensional knowledge to the remaining, unstratified part of P , which is eventually

solved by means of a guess-and-check procedure.

Formally, a splitting set was defined in [70] as a set U of literals such that, for every rule r ∈ P , if

H(r) ∩ U 6= ∅ then lit(r) ⊆ U , where lit(r) denotes H(r) ∪ B+(r) ∪ B−(r). Since in dl-programs, not

only the dependency between rule body and rule head, but also between dl-atoms and their input predicates

needs to be taken into account, we need to modify the definition of a splitting set. To this end, we first

formalize the notion of dependency, which takes the occurrence of dl-atoms into account.

Definition 8.1 Let KB = (L, P ) be a dl-program and a and b literals occurring in some rule of P . Then, a
depends positively on b, denoted a→p b, if one of the following conditions holds:
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(P1) There is some rule r ∈ P such that a ∈ H(r) and b ∈ B+(r).

(P2) There are some rules r1, r2 ∈ P such that a ∈ B(r1) and b ∈ H(r2) and a and b can be unified.

(P3) There are some rules r1, r2 ∈ P such that a ∈ B(r1) is a dl-atom, b ∈ H(r2) is a positive literal, and

the predicate symbol of b occurs in the input list of a.

We say that a depends negatively on b, denoted a→n b, if one of the following conditions holds:

(N1) There is some rule r ∈ P such that a ∈ H(r) and b ∈ B−(r).

(N2) There is some rule r ∈ P such that a ∈ H(r), b ∈ B(r) and b is a (possibly) non-monotonic dl-atom.

The relation → is the union of →p and →n , and →+ its transitive closure.

For example, for r : p(X)← q(X), r(X), according to (P1), we have the dependencies p(X)→p q(X)
and p(X)→p r(X). Furthermore, for r1 : p(X) ← q(X), r(X) and r2 : q(Y ) ← s(Y ), condition (P2)

yields q(X)→p q(Y ). On the other hand, for r1 : p(X)← DL[Student ⊎ s;Person](X) and r2 : s(X)←
enrolled(X), in view of (P3), DL[Student ⊎s;Person](X)→p s(X) holds. As for negative dependencies,

rule r : flies(X) ← bird(X),not penguin(X) entails flies(X)→n penguin(X) in view of (N1). Finally,

for rule r : part(X) ← DL[P −∩known; P ](X), we get part(X)→n DL[P −∩known; P ](X) according to

condition (N2).

We now define splitting sets as follows.

Definition 8.2 A splitting set for a dl-program KB = (L, P ) is any set U of literals such that, for any

a ∈ U , if a→ b, then b ∈ U . The set of rules r ∈ P such that H(r) ∈ U is called the bottom of P relative

to the splitting set U and is denoted by bU (P ).

To describe a method how to use this splitting for the computation of answer sets, we first need to define

the notion of a solution to KB with respect to U, which corresponds directly to the respective notion of

Lifschitz and Turner [70]. We consider two sets U , X of literals and a dl-program KB = (L, P ). Let

ground(U) denote the set of all grounded literals in U . For each rule r ∈ ground(P ) such that B+(r) ∩
ground(U) ⊆ X and B−(r) ∩ ground(U) is disjoint from X , create a new rule r′, with H(r′) = H(r),
B+(r′) = B+(r) \ ground(U) and B−(r′) = B−(r) \ ground(U). The program consisting of all such

rules r′ is denoted by eU (P, X).

Definition 8.3 Let U be a splitting set for a program KB = (L, P ). We call a pair 〈X, Y 〉 of sets of literals

a solution to KB with respect to U , if

• X is an answer set for bU (P ),

• Y is an answer set for eU (P \ bU (P ), X ∪ {a ∈ ground(U) | a is a dl-atom and X |=L a}),

• and X ∪ Y is consistent.

Theorem 8.4 Let U be a splitting set for a dl-program KB = (L, P ). Then, A is an answer set of KB iff

A = X ∪ Y for some solution 〈X, Y 〉 to KB with respect to U .

Our aim is to find the largest subprogram of P which does not involve cycles through default negation or

nonmonotonic dl-atoms.
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Theorem 8.5 Given KB = (L, P ), let V be the least set of literals such that (i) a, b ∈ V whenever a→n b
and b→+ a holds in P , and (ii) if a→ b and b ∈ V , then a ∈ V . Then, the set S = lit(P ) \ V is a

splitting set for P , where lit(P ) =
⋃

r∈P H(r)∪B(r). Furthermore, bS(P ) has a single answer set (if it is

consistent).

In fact, if bS(P ) contains only monotonic dl-atoms, then bS(P ) is stratified. Moreover, any nonmonotonic

dl-atom DL[λ; Q](t) in bS(P ) can be replaced with a monotonic dl-atom DL[λ′; Q](t) where each Si−∩pi

in λ is replaced with Si−∪pi, where pi is a fresh predicate, and the rule pi( ~X) ← not pi( ~X) is added. The

resulting program is stratified and has the same answer sets as bS(P ) with respect to the original set of

predicates.

Thus, in essence bS(P ) is stratified. We therefore call a splitting set S as in Theorem 8.5 a stratification

splitting set for a dl-program KB . The following property is an immediate consequence of Theorem 8.5.

Corollary 8.6 Each dl-program has exactly one stratification splitting set.

Example 8.7 Consider the reviewer selection program from Example 4.1. The stratification splitting set of

this program comprises all literals except those with the predicates assign , a, and error . Thus, it has the

following stratified subprogram:

paper(p1);

kw(p1,Semantic Web);

paper(p2);

kw(p2,Bioinformatics);

kw(p2,Answer Set Programming);

kw(P, K2)← kw(P, K1), DL[hasMember ](S, K1), DL[hasMember ](S, K2);

paperArea(P, A)← DL[keywords ⊎ kw ; inArea](P, A);

cand(X, P )← paperArea(P, A), DL[Referee](X), DL[expert ](X, A).

This program is positive, and thus can only have a single answer set. The unstratified part of the program

are the remaining rules:

assign(X, P )← cand(X, P ),not ¬assign(X, P );
¬assign(Y, P )← cand(Y, P ), assign(X, P ), X 6= Y ;

a(P )← assign(X, P );
error(P )← paper(P ),not a(P ).

It follows directly from Theorem 8.4 that the answer sets of a dl-program KB = (L, P ) can be obtained by

computing the unique answer set M of bU (P ) (where U is the stratification splitting set) and then computing

the answer sets of eU (P \bU (P ), M ′), where M ′ is M augmented with the dl-atoms from ground(U) which

are true with respect to M . To this end, our implementation uses a fixpoint algorithm fixpoint (which takes

as input a stratified dl-program KB) based on results given by Theorem 5.6 and [29], in order to compute

M . Then, eU (P \ bU (P ), M ′) is evaluated taking advantage of an algorithm guess (which takes as input a

generic knowledge base KB), which is based on Theorem 5.8.

It is reasonable to expect that this method of splitting the dl-program is more efficient than the pure

guess-and-check approach, since the “preliminary” computation of any stratified subprogram will in general

narrow the search space of the guessing. A subsequent, more fine grained splitting into strongly and weakly

connected components of the program will further optimize the computation. Efforts towards such a more
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sophisticated processing of the program’s dependency information were eventually put into dlvhex, the

reasoner for HEX-programs [32].

8.2 Efficient DL-Atom Evaluation and Caching

Since the calls to the DL-reasoner are a bottleneck in the coupling of an ASP solver with a DL-engine,

special methods need to be devised in order to save on the number of calls to the DL-engine. To this end,

we use several complementary techniques.

8.2.1 DL-Function Calls

One of the features of DL-reasoners which may be fruitfully exploited for speed up are non-ground queries.

RACER provides the possibility to retrieve in a function call all instances of a concept C (resp., of a role R)

that are provable in the DL knowledge base. Given that the cost for accessing the DL-reasoner is high, in the

case when several different ground instances a(c1), a(c2), . . . , a(ck) of the dl-atom a(t) have be evaluated,

it is a reasonable strategy to retrieve at once, using the apposite function call feature from the DL-reasoner,

all instances of the concept C (resp., a role R) in a(t) = DL[λ; C](t). This allows to avoid issuing k
separate calls for the single ground atoms a(c1), . . . , a(ck).

If the retrieval set has presumably many more than k elements, we can filter it with respect to c1, . . . , ck,

by pushing these instances to a DL-engine as follows. For the query concept C, we add in L axioms to the

effect that C ′′ = C ⊓ C ′, where C ′ and C ′′ are fresh concept names, and axioms C ′(c1), . . . , C ′(ck); then

we ask for all instances of C ′′. For roles, a similar yet more involved approximation method is introduced,

given that SHIF(D) and SHOIN (D) do not offer role intersection.

With the above techniques, the number of calls to the DL-reasoner can be greatly reduced. Another very

useful technique to achieve this goal is caching, described next.

8.2.2 DL-Caching

Whatever semantics is considered, a number of calls will be made to the DL-engine. Therefore, it is is very

important to avoid an unnecessary flow of data between the two engines, and to save time when a redundant

DL-query has to be made. In order to achieve these objectives, it is important to introduce some special

caching data structures tailored for fast access to previous query calls. Such a caching system needs to deal

with the case of Boolean as well as non-Boolean DL-calls.

For any dl-atom DL[λ; Q](t), where λ = S1op1p1, . . . , Snopnpn, and interpretation I , let us denote by

Iλ the projection of I on p1, . . . , pn.

Boolean DL-calls In this case, an external call must be issued in order to verify whether a given ground

dl-atom b fulfills I |=L b, where I is the current interpretation and L is the DL-knowledge base hosted by the

DL-engine. In this setting, the caching system exploits properties of monotonic dl-atoms a = DL[λ; Q](c).
Given two interpretations I1 and I2 such that I1 ⊆ I2, monotonicity of a implies that (i) if I1 |=L a then

I2 |=L a, and (ii) if I2 6|=L a then I1 6|=L a. This property allows to set up a caching machinery where only

the outcome for ground dl-atoms with minimal/maximal input is stored.

Roughly speaking, for each monotonic ground dl-atom a, we store a set cache(a) of pairs 〈Iλ, v〉, where

v ∈ {true, undefined}. If 〈Iλ, true〉 ∈ cache(a), then we can conclude that J |=L a for each J such that

Iλ ⊆ Jλ. Dually, if 〈Iλ, undefined〉 ∈ cache(a), we can conclude that J 6|=L a for each J such that

Iλ ⊇ Jλ.
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We sketch the maintenance strategy for cache(a) in the following. The rationale is to cache minimal

(resp., maximal) input sets Iλ for which a is evaluated to true (resp., undefined ) in past external calls.

Suppose a ground dl-atom a = DL[λ; Q](c), an interpretation I , and a cache set cache(a) are given.

With a small abuse of notation, let I(a) be a function whose value is true iff I |=L a and undefined

otherwise. In order to check whether I |=L a, cache(a) is consulted and updated as follows:

1. Check whether cache(a) contains some 〈J, o〉 such that J ⊆ Iλ if v = true, or J ⊇ Iλ if v =
undefined . If such a J exists, conclude that I(a) = v.

2. If no such J exists, then decide I |=L a through the external DL-engine. If I |=L a, then add

〈Iλ, true〉 to cache(a), and remove from it each pair 〈J, true〉 such that Iλ ⊂ J . Otherwise (i.e.,

if I 6|=L a), add 〈Iλ, undefined〉 to cache(a) and remove from it each pair 〈J, undefined〉 such that

Iλ ⊃ J .

Some other implementational issues are worth mentioning. First of all, since the subsumption test

between sets of atoms is a critical task, some optimization is made in order to improve cache look-up. For

instance, an element count is stored for each atom set, in order to prove early that I 6⊆ J whenever |I| > |J |.
More intelligent strategies could be envisaged in this respect. Furthermore, a standard least recently used

(LRU) algorithm has been introduced in order to keep a fixed cache size.

Non-Boolean DL-calls In most cases, a single non-ground query for retrieving all instances of a concept or

role might be employed. Caching of such queries is also possible, but cache look-up cannot take advantage

of monotonicity as in the Boolean case. For each non-ground dl-atom a = DL[λ; Q](c), a set cache(a) of

pairs 〈Iλ, a↓(Iλ)〉 is maintained, where a↓(I) is the set of all ground instances a′ of a such that I |=L a′.
Whenever for some interpretation I , a↓(I) is needed, then cache(a) is looked up for some pair 〈J, a↓(J)〉
such that Iλ = J .

8.3 System Prototype

The architecture of our system prototype NLP-DL, which has been described in [29, 28], is depicted in

Figure 2. The system comprises different modules, each of which is coded in the PHP scripting language;

the overhead is insignificant, given that most of the computing power is devoted to the execution of the

two external reasoners. Moreover, the choice of this language enabled us to make the prototype easily

accessible by a Web-interface, thus serving its main purposes as a testing and demonstration tool. The Web-

interface7 allows the user to enter a dl-program KB in form of an OWL-ontology L and a program P . It

can then be used either to compute model(s) or perform reasoning, both according to the selected semantics,

which can be chosen between the strong answer set semantics and the well-founded semantics. The query

operation mode requires the specification of one or more query atoms as input from the user; here, another

choice between brave and cautious reasoning is available. Furthermore, the result can be filtered by specific

predicate names.

The shadowed boxes represent the external reasoning engines: DLV [66] was used as answer set solver

and RACER [46] as DL reasoner, which is embedded in a caching module.

Our prototypical implementation is capable of evaluating a dl-program in three different modes: (1) un-

der the answer set semantics, (2) under the well-founded semantics (WFS) [34], and (3) under the answer

set semantics with preliminary computation of the WFS.

7The prototype is accessible at http://www.kr.tuwien.ac.at/research/nlpdl.
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Figure 2: System architecture of the dl-program evaluation prototype

The preprocessing module evaluates all dl-atoms without any input (producing the set MDL), applies

the splitting method (separating the unstratified subprogram Pu), and computes the single answer set of

the stratified subprogram (Ms). The ASP module implements the guessing part of the evaluation, using

DLV for the answer set generation ({M1 . . .Mn}). This result is streamed to a post-processing module,

which carries out the verification of each incoming answer set according to the weak resp. strong answer

set semantics, returning the final result {Mk1 . . .Mkn}. The WFS module is used for computing the well-

founded semantics Mwfs of the knowledge base [34], which conservatively extends the canonical well-

founded semantics of logic programs [97] to dl-programs, retaining many of its attractive properties. In

particular, it approximates the intersection of all strong answer sets, and thus preliminary computation of

the WFS can be exploited to reduce guesses for the generation of answer sets [29].

9 Related Work

In essence, related work on combining rules and ontologies can be grouped into the following three lines

of research: interaction of rules and ontologies with strict semantic separation (loose coupling); interaction

of rules and ontologies with strict semantic integration (tight coupling); and reductions from DLs to ASP

and/or other formalisms.

For excellent surveys that classify the numerous proposals for combining rules and ontologies, we refer

the interested reader to [5, 81], and for discussions of general issues that come up when combining rules and

ontologies to [18, 27, 91].
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R D F SO n t o l o g i e s ( O W L ) R u l e s R D F SO n t o l o g i e s ( O W L ) R u l e s
Figure 3: Integrating Ontologies and Rules by defining “safe interaction” (left) vs. “safe interfaces” (right)

9.1 Interaction of Rules and Ontologies with Strict Semantic Separation

In this setting, a (usually nonmonotonic) language plays a central role in the Rules Layer, while OWL/RDF

flavors keep their purpose of description languages, not aimed at intensive reasoning jobs, in the underlying

Ontology Layer. The two layers are kept strictly separate and only communicate via a “safe interface,” but

do not impose syntactic restrictions on either the rules or the ontology part (see Fig. 3).

From the Rules Layer point of view, ontologies are dealt with as an external source of information whose

semantics is treated separately. Nonmonotonic reasoning and rules are allowed in a decidable setting, as well

as arbitrary mixing of closed and open world reasoning. This approach typically involves special predicates

in rule bodies which allow queries to a description logic knowledge base, and the exchange of factual

knowledge. Examples for this type of interaction are dl-programs themselves and various generalizations

and extensions [30, 31, 71, 72, 73, 99, 102]. More concretely, HEX-programs [30, 31] extend the framework

of dl-programs so that multiple sources of external knowledge, with possibly different semantics, might be

brought into play. Probabilistic dl-programs [71, 72] extend dl-programs by probabilistic uncertainty, and

similarly fuzzy dl-programs [73] by fuzzy vagueness. An extension of dl-programs to handle priorities is

conceived in [102]. In [99], dl-programs are extended with a framework conceived for aligning ontologies.

Further work inspired by dl-programs is [4], which combines defeasible reasoning with description

logics. Like in other work mentioned above, the considered description logic serves in [4] only as an input

for the default reasoning mechanism running on top of it. Moreover, similar in spirit is also the approach of

calling external description logic reasoners in the TRIPLE [93] rules engine.

9.2 Interaction of Rules and Ontologies with Strict Semantic Integration

This category groups formalisms that introduce rules by adapting existing semantics for rule languages di-

rectly in the Ontology Layer. The DLP [45] fragment marks one end of this spectrum while the undecidable

SWRL [58] approach marks the other end. Nonetheless, in between, several proposals have been put forth

recently to extend expressiveness while still retaining decidability; remarkably, several of these attempts

build on the stable model resp. answer set semantics. Common to these approaches are syntactic restrictions

of the combined language in a way that guarantees “safe interaction” of the rules and the ontology parts of

the language (see Fig. 3).

Grosof et al. [45] show how inference in a subset of the description logic SHOIQ can be reduced

to inference in a subset of Horn programs (in which no function symbols, negations, and disjunctions are

permitted), and vice versa how inference in such Horn programs can be reduced inference in SHOIQ. This

work evolved to the Web Rule Language (WRL) proposal [3].

The works by Donini et al. [21], Levy and Rousset [67], and Rosati [88, 89] are representatives of hybrid

approaches in which DL knowledge bases are input sources. In detail, Donini et al. [21] introduced a com-

bination of plain datalog (without negation and disjunction) with the description logic ALC. An integrated

knowledge base consists of a structural component in ALC and a relational component in datalog, where
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the integration of both components lies in using concepts from the structural component as “constraints” in

rule bodies of the relational component. The rules must satisfy the condition that all variables in constraints

atoms in a rule must also appear in ordinary atoms in the body of the same rule; this is known as DL-safety.

Donini et al. also present a technique for answering conjunctive queries (existentially quantified conjunc-

tions of atoms) with such constraints, where SLD-resolution as an inference method for datalog is integrated

with a method for inference in ALC.

Levy and Rousset [67] presented a combination of Horn rules with the description logic ALCNR,

where in contrast to [21] also roles are allowed as constraints in rule bodies. They showed that reasoning

in it is undecidable already in plain settings, and singled out two decidable syntactic fragments for the

rule part: non-recursive rules and recursive but role-safe rules, which requires that at least one variable

appearing in a role atom also appears in some atom in the body with a datalog predicate which does not

occur in the consequent of rules. Motik et al. [78] adopted DL-safety like Donini et al., but permitted both

concepts and roles as constraints freely in the heads and bodies of rules. They showed decidability of the

combination with the more expressive description logic SHIQ (cf. Section 6.3), thus bringing us (close to)

a decidable extension of OWL with rules. Horrocks et al.’s SWRL [58], instead, which extends OWL by

rules that violate the DL-safety restriction, is undecidable. Another approach [50] in the direction of Motik

et al. shows decidability for query answering in ALCHO-Q(⊔,⊓) with DL-safe rules by an embedding

in extended conceptual logic programming, which is a decidable extension of the answer set semantics by

open domains.

Rosati’s r-hybrid knowledge bases [88, 89] combined disjunctive datalog (with classical and default

negation) with ALC based on a generalized answer set semantics. Like Levy and Rousset [67], he allowed

besides concepts also roles as constraints in rule bodies, and, similar to Donini et al. [21], DL-safety

was not requested. Besides satisfiability, also answering ground atomic queries was discussed, based on a

combination of ordinary ASP with inference in ALC. However, since in rule heads no ontology predicate

are allowed, no direct flow of information from the rules to the ontology part was facilitated.

Rosati’s recent DL+log formalism [92, 91], which builds on his previous work [88, 89], is the one

closest in spirit to our dl-programs. In this approach, predicates are split into DL predicates and into logic

program (datalog) predicates. Rules allow arbitrary disjunction of DL and datalog atoms in the head, and

conjunction in the body; furthermore, atoms with a datalog predicate can occur under negation as failure.

The rules must be datalog safe, i.e., each variable occurring in a rule must occur in a unnegated atom in the

body of that rule; this is because DL+log uses an infinite domain under the standard-names assumption.

The interaction between DL- and datalog predicates must be weakly safe, i.e., each variable that occurs in a

DL-atom in the head must occur in a positive datalog atom in the body of the same rule. Note that differently

from usual DL-safety [78], variables may occur only in atoms with DL predicates.

Rosati introduces a new notion of model of a combined rule and ontology knowledge base. A model

is defined using a two-step reduct in which, in the first step, the ontology predicates are eliminated under

the open-world assumption (OWA) and, in the second step, the negated logic programming predicates are

removed under the closed-world assumption (CWA). As shown by Rosati, the resulting formalism is decid-

able provided that containment of conjunctive queries in unions of conjunctive queries over the underlying

ontology is decidable. The main differences between DL+log and dl-programs are the following.

• DL+log is a tight coupling of rules and ontologies, on the basis of single models, while dl-programs

provide a loose coupling of rules and ontologies, on the basis of inference. This manifests also in

different behavior for reasoning by cases. For example, given the simple person knowledge base

L from Section 6.1 and the two dl-rules p(X) ← DL[man](X) and p(X) ← DL[woman](X),
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we can not conclude p(lee) since neither man(lee) nor woman(lee) is a consequence of L; from

the corresponding DL+log program, p(lee) is concluded since in each model either man(lee) or

woman(lee) is true, and thus also p(lee). We remark, however, that by using auxiliary concepts or

more expressive queries to the DL knowledge base [26], the behavior of dl-programs in this respect

can be mitigated.

• The coupling, as realized in dl-programs, aims at facilitating interoperability of existing reasoning

systems and software, such as DLV and RACER. For this, a combination of the underlying formalisms

at the extensional level is needed. On the other hand, the loose coupling requires a bridging between

the two worlds of ontologies and rules, which has to be provided by the user. In particular, this applies

to the individuals at the instance level.

• The concept of dl-atom makes straightforward the introduction of extensions to dl-programs to inte-

grate ontologies even in different formats; there is no corresponding counterpart in DL+log , instead.

Indeed, the approach of dl-atoms is more flexible for mixing different reasoning modalities, such as

consistency checking and logical consequence. In the realm of HEX-programs [30], almost arbitrary

combinations can be conceived.

The most recent work of Motik and Rosati [75, 76] aims at combining rules and ontologies in the

framework of hybrid MKNF knowledge bases, which are based on the first-order variant of Lifschitz’s logic

MKNF [69]. Rules are of the form

Kh1 ∨ · · · ∨Khl ← Kb1, . . .Kbm,not bm+1, . . . ,not bn,

where all hi and bj are function-free first-order atoms, and Kφ informally means that φ is known to hold

under the values of the not-atoms. To obtain decidability, DL-safety is adopted. As discussed in [76],

adding such rules to an open-world DL knowledge base is a faithful extension of both logic programming

and DL (in the sense that in absence of one component, the conclusions are the original ones), and allows

to put on “closed world glasses.” Furthermore, [76] reports that an extension permitting both modal and

non-modal atoms in rules allows to generalize both SWRL and DL+log . However, [75] reports that our

dl-programs can not be captured using MKNF rules.

Other recent works which aim at combining rules and ontologies through uniform first-order nonmono-

tonic formalisms are [19, 20]. Finally, nonmonotonic extensions of DLs (but not with rules) have been

proposed in [12, 22].

9.3 Reductions from Description Logics to ASP and/or Other Formalisms

Some representatives of approaches reducing description logics to logic programming are the works by Van

Belleghem et al. [96], Alsaç and Baral [1, 7], Swift [94], Hufstadt et al. [62], and Heymans and Vermeir [51,

52]. In more detail, Van Belleghem et al. [96] analyze the close relationship between description logics

and open logic programs, and present a mapping of description logic knowledge bases in ALCN to open

logic programs. They also show how other description logics correspond to sublanguages of open logic

programs, and they explore the computational correspondences between a typical algorithm for description

logic inference and the resolution procedure for open logic programs. The works by Alsaç and Baral [1, 7]

and Swift [94] reduce inference in the description logic ALCQI to query answering from normal logic

programs (with default negation, but without disjunctions and classical negations) under the answer set

semantics.
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The remarkable work of Hufstadt et al. [62] considers SHIQ ontologies. They reduce consistency

checking and query answering to the evaluation of a positive disjunctive datalog program. Such a program

is generated after an ordinary translation of the ontology to first-order logic, followed by clever application of

superposition techniques and subsequent elimination of function symbols from the resulting set of clauses.

The method has been practicably adopted in the KAON2 system, whose promising experimental results are

accounted in [77].

Finally, Heymans and Vermeir [51, 52] present an extension of disjunctive logic programming under

the answer set semantics by inverses and an infinite universe. In particular, they prove that this extension is

still decidable under the assumption that the rules form a tree structure, and they show how inference in the

description logic SHIF extended by transitive closures of roles can be simulated in it.

10 Conclusion

Towards the integration of rules and ontologies in the Semantic Web, we have presented a combination

of logic programming under the answer set semantics and the description logics (DLs) SHIF(D) and

SHOIN (D) behind the W3C standard ontology languages OWL Lite and OWL DL, respectively. We have

introduced dl-programs, which consist of a DL knowledge base L and a set of dl-rules P , which may also

contain queries to L in their bodies and which permit the use of non-monotonic negation. Such programs

naturally generalize both the DL and the logic programming component. Differently from other proposals,

dl-programs provide a loose integration of these components, which safely interact through well-defined

interfaces. This facilitates a lean bridging of the quite diverse worlds of DLs and (nonmonotonic) logic

programs, and moreover provides a clean semantical basis for a coupling of reasoning engines available

from the logic programming and the DL communities.

In the spirit of logic programming, we have defined Herbrand models for dl-programs, and we have

generalized many well-known concepts in logic programming to dl-programs, including least models, strat-

ifications, and answer sets. We then have derived generalizations of major results for these concepts to

dl-programs, including that satisfiable positive dl-programs have a unique least Herbrand model and that

satisfiable stratified dl-programs can be associated with a unique minimal Herbrand model that is character-

ized through iterative least Herbrand models. As for answer sets, we have presented the notion of a strong

answer set, which is based on a reduction to the least model semantics of positive dl-programs, and the

notion of a weak answer set, which is based on a reduction to the least model semantics of ordinary positive

logic programs.

On the computational side, we gave fixpoint characterizations for the semantics of positive and stratified

dl-programs, and we have shown how to compute it by finite fixpoint iterations. We have also shown how the

weak answer set semantics can be reduced to the answer set semantics of ordinary normal logic programs.

Furthermore, we have briefly described a prototype implementation of dl-programs, which has been built on

top of the systems DLV [66] and RACER [46], and for which a number of optimization techniques have been

developed. To our knowledge, this prototype is currently the most advanced implementation of a decidable

combination of nonmonotonic rules and ontologies. Furthermore, we have given a precise picture of the

complexity of deciding strong and weak answer set existence for a dl-program, and of brave and cautious

reasoning from a dl-program under the weak and the strong answer set semantics.

Finally, we have shown how some advanced reasoning tasks like closed-world reasoning and different

forms of default reasoning on ontologies can be easily realized via dl-programs. These applications fruitfully

exploit nonmonotonic negation and the inherent minimality property of answer sets. They demonstrate that

dl-programs are a flexible framework for accommodating different reasoning tasks on top of existing DL
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knowledge bases and reasoning engines, and provide a declarative “glue” for combining different inferences.

Here, in particular the possibility to talk both about provability and consistency of the (possible augmented)

knowledge base is a valuable feature of dl-programs. We have also shown that DL-safe rules on ontologies

[78] can be emulated on top of dl-programs. We expect that the flexibility and expressiveness of dl-programs

can be beneficial for a variety of applications in the context of the Semantic Web and other fields where

DLs are more and more used—the work of Wang et al. on merging ontologies [99] is one example. Also

other tasks like planning, diagnosis, configuration, or information integration, where ontological knowledge

should be combined with knowledge in form of rules, are possible application areas.

The concept of dl-programs which we introduced here can be extended in several directions. First of

all, the coupling approach is not bound to the description logics SHIF(D) or SHOIN (D), but can in

principle be deployed to any DL (under necessary constraints concerning the flow of information from the

logic program to the DL knowledge base). Another extension concerns modifications of the DL knowledge

base before querying. In this paper, we have considered three operators which add temporarily further

axioms to the knowledge base. However, it is perfectly reasonable that the update also performs removal of

axioms, and that more sophisticated update operators following methods from conditional and counterfactual

reasoning are applied.

A further and no less important extension is a richer language of dl-queries to the DL knowledge base.

Natural candidates for this enrichment are conjunctive queries (CQs) and unions of conjunctive queries

(UCQs), which are standard in the database field. Since DLs have been proposed as an expressive data model

[16, 8], the interest in CQs and UCQs on DL knowledge bases is increasing [15, 43, 80], and (restricted

forms of) such queries are supported by popular DL reasoning engines like RACER, Pellet, or KAON2. Our

dl-programs can be easily extended to accommodate CQs and UCQs, as done in [26]; the nice feature is

that, in our framework, such a combination remains decidable, as long as query answering to the description

logic knowledge base (after a virtual update of the facts part) is decidable.

Finally, another direction of extension concerns the language elements on the logic programming side.

Here, an extension with disjunction in rule heads is smoothly possible [27]. This is similar for the use of

default negation in rule heads, and for optimization constructs like weak constraints [66]. Other extensions

concern different semantics of the rules; in [34], a well-founded semantics for dl-programs has been de-

fined, and in [100], a semantics based on defeasible logic. Other extensions concern the consideration of

probabilities [71, 72], fuzziness [73], and of rule priorities [102].

On the computational side, while the current prototype implementation incorporates several optimiza-

tions, there is a lot of room for improvements. Further optimization techniques for evaluating dl-programs

need to be developed. As for deployment in a distributed environment, these algorithms have to be built

on top of heterogeneous reasoners. One challenging aspect here is that such algorithms will interleave the

execution of a logic programming and a DL engine. Good overall performance will very much depend on

the computational characteristics of the components, which may change over time as versions improve and

evolve, as well as of other factors like response and data transfer time for an underlying communication

medium like the Internet. Furthermore, such algorithms should exploit structural properties of dl-programs,

like splitting sets and stratifiability, to a larger extent, and aim at reducing the interfacing between the logic

program and the DL engine. Here, pushing work from the logic program to the DL engine might be bene-

ficial [26]. Besides optimization, another desirable issue would be to interface different logic programming

engines and DL reasoners (currently, the DLV system and RACER are interfaced). In this way, the strengths

of different reasoners may be exploited as much as possible and a powerful tool made available for devel-

oping reasoning applications in a highly declarative manner.
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A Appendix: Further Details on the Reviewer Selection Example

The description logic knowledge base LS of the dl-program KBS = (LS , PS) that is described in Example

4.1 is partially given below (note that in our current prototype implementation based on RACER, the de-

scription logic knowledge base LS as well as the logic program PS have to be extended by workarounds,

since RACER does not support individuals as part of concept expressions):

≥ 1 title ⊑ Publication; ⊤ ⊑ ∀title.string ;

≥ 1 year ⊑ Publication; ⊤ ⊑ ∀year .N;

≥ 1 firstname ⊑ Person; ⊤ ⊑ ∀firstname.string ;

≥ 1 lastname ⊑ Person; ⊤ ⊑ ∀lastname.string ;

≥ 1 keyword ⊑ Paper ; ⊤ ⊑ ∀keyword .Kw ;

≥ 1 cites ⊑ Paper ; ⊤ ⊑ ∀cites.Paper ;

≥ 1 contains ⊑ Area; ⊤ ⊑ ∀contains.Kw ;

≥ 1 hasAuthor ⊑ Paper ; ⊤ ⊑ ∀hasAuthor .Person;

≥ 1 expert ⊑ Person; ⊤ ⊑ ∀expert .Area;

≥ 1 inArea ⊑ Paper ; ⊤ ⊑ ∀inArea.Area;

≥ 1 hasMember ⊑ TopicCluster ; ⊤ ⊑ ∀hasMember .Kw ;

isContainedIn = contains−;

isAuthorOf = hasAuthor−;

isMemberOf = hasMember−;

Paper ⊑ Publication; Referee ⊑ Person;

∃inArea.{A} = ∃keyword .(∃isContainedIn.{A});
∃expert .{c} = ∃isAuthorOf .(∃inArea.{c}), c ∈ {A,B,C,D,E};

Kw(Belief Revision); Kw(Frame Systems);
Kw(Intelligent Agents); Kw(Bioinformatics);
. . .

Area(A); contains(A,Belief Revision); contains(A,Default Reasoning);
Area(B); contains(B,Frame Systems); contains(B,Ontologies);
Area(C); contains(C,Semantic Web);
Area(D);
. . .

TopicCluster(T1); hasMember(T1,Semantic Web); hasMember(T1,OWL);
hasMember(T1,Ontologies);

TopicCluster(T2); hasMember(T2,Coherence and Coordination);
. . .

Person(per
1
); firstname(per

1
, “Vladimir”); lastname(per

1
, “Lifschitz”);

Person(per
2
); firstname(per

2
, “Michael”); lastname(per

2
, “Gelfond”);

. . .

Referee(per
1
);



INFSYS RR 1843-07-04 43

Referee(per
2
);

. . .

Paper(pub
1
);

title(pub
1
, “Classical Negation in Logic Programs and

Disjunctive Databases”);
year(pub

1
, “1991”);

hasAuthor(pub
1
, per

1
); hasAuthor(pub

1
, per

2
);

keyword(pub
1
,Answer Set Programming);

keyword(pub
1
,Disjunctive Logic Programming).

. . .

In addition to the dl-rules (1)–(9), the logic program PS of the dl-program KBS = (LS , PS) of Example

4.1 also contains the following facts:

author(per
1
); author(per

2
); author(per

3
); . . .

area(A); area(B); area(C); area(D);

cluster(T1); cluster(T2);

key(Belief Revision);
key(Nonmonotonic Reasoning); key(Answer Set Programming); . . .

B Appendix: Proofs for Section 4

Proof of Lemma 4.2. Suppose that I1, I2⊆HBP are both models of KB , that is, Ii |=L r for every

r∈ ground(P ) and i∈{1, 2}. We show that I = I1 ∩ I2 is also a model of KB , that is, I |=L r for every

r∈ ground(P ). Consider any r∈ ground(P ), and assume that I |=L l for all l∈B+(r)=B(r). That

is, I |=L l for all classical literals l∈B(r) and I |=L a for all dl-atoms a∈B(r). Hence, Ii |=L l
for all classical literals l∈B(r), for every i∈{1, 2}. Furthermore, since every dl-atom in ground(P ) is

monotonic relative to KB , it holds that Ii |=L a for all dl-atoms a∈B(r), for every i∈{1, 2}. Since I1 and

I2 are models of KB , it follows that Ii |=L H(r), for every i∈{1, 2}, and thus I |=L H(r). This shows

that I |=L r. Hence, I is a model of KB . 2

Proof of Theorem 4.5. Let λ : HBP ∪DLP →{0, 1, . . . , k} be a stratification of KB = (L, P ) relative to

DL+
P . Recall that M0 is the least model (and thus in particular a model) of KB0 =(L0, P0) and for every

i∈{1, . . . , k}, it holds that Mi is the least model (and thus in particular a model) of KB i = (Li, Pi) such

that Mi|HB⋆
Pi−1

= Mi−1|HB⋆
Pi−1

. It thus follows that Mk = MKB is a model of KB . We next show that

Mk is also a minimal model of KB . Towards a contradiction, suppose that there exists a model J ⊆HBP

of KB such that J ⊂Mk. Hence, there exists some i∈{0, 1, . . . , k} such that J |HB⋆
Pi
6= J |HB⋆

Pi
. Let j be

a minimal such i. Then, J is a model of KB j . Furthermore, if j > 0, then J |HB⋆
Pj−1

= J |HB⋆
Pj−1

. But this

contradicts Mj being the least model of KB j such that Mj |HB⋆
Pj−1

= Mj−1|HB⋆
Pj−1

. This shows that Mk

is a minimal model of KB . 2

Proof of Theorem 4.8. Let I ⊆HBP . If KB is free of dl-atoms, then sP I
L=P I . Thus, I is the least model

of (L, sP I
L) iff I is the least model of P I . Hence, I is a strong answer set of KB iff I is an answer set of

P . 2

Proof of Theorem 4.9. (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we

have to show that I |=L r for all r∈ ground(P ). Consider any r∈ ground(P ). Suppose that I |=L l for

all l∈B+(r) and I 6|=L l for all l∈B−(r). Then, the dl-rule r′ that is obtained from r by removing all the
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literals in B−(r)∪ (B+(r)∩DL?
P ) is contained in sP I

L. Since I is a least model of (L, sP I
L) and thus in

particular a model of (L, sP I
L), it follows that I is a model of r′. Since I |=L l for all l∈B+(r′) and I 6|=L l

for all l∈B−(r′)= ∅, it follows that I |=L H(r). This shows that I |=L r. Hence, I is a model of KB .

(b) By (a), every strong answer set I of KB is a model of KB . Assume that every dl-atom in DLP is mono-

tonic relative to KB . We now show that then I is also a minimal model of KB . Towards a contradiction,

suppose the contrary. That is, there is a model J of KB with J ⊂ I . Since J is a model of KB , it follows

that J is also a model of (L, sP J
L ). Since every dl-atom in DLP is monotonic relative to KB , it then fol-

lows that sP I
L⊆ sP J

L . Thus, J is also a model of (L, sP I
L). But this contradicts I being the least model of

(L, sP I
L). This shows that I is a minimal model of KB . 2

Proof of Theorem 4.10. Let KB = (L, P ) be positive. If KB is satisfiable, then MKB is defined. A strong

answer set of KB is an interpretation I ⊆HBP such that I is the least model of (L, sP I
L). Since KB is

positive, it follows that sP I
L coincides with ground(P ). Hence, I ⊆HBP is a strong answer set of KB iff

I = MKB . If KB is unsatisfiable, then KB has no model. Thus, by Theorem 4.9, KB has no strong answer

set.

Now assume that KB is stratified. Let λ be a stratification of KB of length k > 0. Suppose that I ⊆HBP is

a strong answer set of KB . That is, I is the least model of (L, sP I
L). Hence,

• I|HB⋆
P0

is the least among all models J ⊆HB⋆
P0

of (L, sP0
I
L), and

• if i > 0, then I|HB⋆
Pi

is the least among all models J ⊆HB⋆
Pi

of (L, sPi
I
L) with J |HB⋆

Pi−1
= I|HB⋆

Pi−1
.

It thus follows that

• I|HB⋆
P0

is the least among all models J ⊆HB⋆
P0

of KB0, and

• if i > 0, then I|HB⋆
Pi

is the least among all models J ⊆HB⋆
Pi

of KB i with J |HB⋆
Pi−1

= I|HB⋆
Pi−1

.

Hence, KB is consistent, and I =MKB . Since the above line of argumentation also holds in the converse

direction, it follows that I ⊆HBP is a strong answer set of KB iff KB is consistent and I = MKB . 2

Proof of Theorem 4.14. Let I ⊆HBP . If KB is free of dl-atoms, then wP I
L = P I . Thus, I is the least

model of wP I
L iff I is the least model of P I . Hence, I is a weak answer set of KB iff I is an answer set

of P . 2

Proof of Theorem 4.15. Let I ⊆HBP be a weak answer set of KB . To show that I is also a model of KB ,

we have to show that I |=L r for all r∈ ground(P ). Consider any r∈ ground(P ). Suppose that I |=L l for

all l∈B+(r) and I 6|=L l for all l∈B−(r). Then, the dl-rule r′ that is obtained from r by removing all dl-

atoms in B+(r) and all literals in B−(r) is in wP I
L. Since I is the least model of wP I

L and thus in particular

a model of wP I
L, it follows that I |=L r′. Since I |=L l for all l∈B+(r′) and I 6|=L l for all l∈B−(r′)= ∅,

it follows I |=L H(r′)=H(r). This shows that I |=L r. Hence, I is a model of KB . 2

Proof of Theorem 4.16. Immediate by the observation that wP I
L = (P I

L)I . 2

Proof of Theorem 4.17. Let I ⊆HBP be a strong answer set of KB . That is, I is the least model of

(L, sP I
L). Hence, I is also a model of wP I

L. We show that I is in fact the least model of wP I
L. Towards a

contradiction, assume the contrary. That is, there exists a model J ⊂ I of wP I
L. Hence, J is also a model

of (L, sP I
L). But this contradicts that I is the least model of (L, sP I

L). This shows that I the least model

of wP I
L. That is, I is a weak answer set of KB . 2
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C Appendix: Proofs for Section 5

Proof of Lemma 5.1. Let I ⊆ I ′⊆HBP . Consider any r∈ ground(P ). Then, for every classical lit-

eral l∈B(r), it holds that I |=L l implies I ′ |=L l. Furthermore, since a is monotonic relative to KB , for

every dl-atom a∈B(r), it holds that I |=L a implies I ′ |=L a. This shows that TKB (I)⊆TKB (I ′). 2

Proof of Proposition 5.2. (⇒) Assume that TKB (I)⊆ I ⊆HBP . Suppose first that I is consistent. Then,

for every r∈ ground(P ), it holds that I |=L l for all l∈B(r) implies that I |=L H(r), and thus I |=L r.

Hence, I is a model of KB . Suppose next that I is not consistent. Then, TKB (I)=HBP , and thus I =HBP .

(⇐) Suppose first that I is a model of KB . That is, I |=L r for all r∈ ground(P ). Equivalently, I |=L l
for all l∈B(r) implies that I |=L H(r), for all r∈ ground(P ). Hence, TKB (I)⊆ I . Suppose next that

I =HBP . Then, TKB (I) = HBP = I . 2

Proof of Theorem 5.4. Since TKB is monotonic and HBP is finite, it follows that T i
KB (∅) for i> 0 is an

increasing sequence of sets contained in lfp(TKB ), and Tn
KB (∅)= Tn+1

KB (∅) for some n > 0. Since Tn
KB (∅)

is a fixpoint of TKB that is contained in lfp(TKB ), it follows that Tn
KB (∅)= lfp(TKB ). 2

Proof of Theorem 5.6. Observe first that M0 = T̂n0

KB0
(∅), where n0 > 0 such that T̂n0

KB0
(∅)= T̂n0+1

KB0
(∅).

Since T̂ i
KB0

(∅)= T j
KB0

(∅) for all j > 0, it follows by Corollary 5.3 and Theorem 5.4 that (a) M0 is the

least model of KB0 if KB0 is satisfiable, and (b) M0 =HBP if KB0 is unsatisfiable. Observe then

that for i> 1, it holds that Mi = T̂ni

KB i
(Mi−1), where ni > 0 such that T̂ni

KB i
(Mi−1)= T̂ni+1

KB i
(Mi−1). Let

KB i = (Li, Pi), and let KB i
′= (Li, P

′
i ), where P ′i is the strong dl-transform of Pi relative to Li and

Mi−1. Then, T̂ j
KB i

(Mi−1)= T j

KBi
′(∅)∪Mi−1 for all j > 0. Hence, by Corollary 5.3 and Theorem 5.4,

(a) Mi = MKBi
′ ∪Mi−1 if KB i

′ is satisfiable, and (b) Mi =HBP if KB i
′ is unsatisfiable. Equivalently, (a)

Mi is the least model of KB i with Mi|HB⋆
Pi−1

= Mi−1|HB⋆
Pi−1

if such a model exists, and (b) Mi =HBP

if no such model exists. In summary, Mk 6=HBP iff Mi 6=HBP for all i∈{0, . . . , k} iff KB is consistent.

Furthermore, in this case, Mk = MKB . 2

Proof of Theorem 5.8. Let P ⋆ be defined in the same way as Pguess, except that every pair of rules in (3)

is replaced by the following two rules:

da(c)← DL[S1op1p1, . . . , Smopm pm; Q](c);
¬da(c)← not da(c) .

Then, I ⊆HBP is a weak answer set of KB iff I⋆ is a weak answer set of (L, P ⋆), where I⋆⊆HBP ⋆ =
HBPguess is obtained from I by adding (i) all da(c) such that a(c)∈DLP and I |=L a(c), and (ii) all ¬da(c)
such that a(c)∈DLP and I 6|=L a(c), and conversely I is obtained from I⋆ by restriction to HBP . By

Theorem 4.16, the latter is equivalent to I⋆ being an answer set of (L, P ⋆I⋆

L ), where P ⋆I⋆

L is defined as

in Theorem 4.16. This is in turn equivalent to I⋆ being an answer set of Pguess such that da(c)∈ I⋆ iff

I⋆ |=L a(c), for all a(c)∈DLP . In summary, I ⊆HBP is a weak answer set of KB iff I can be completed

to an answer set I⋆⊆HBPguess of Pguess such that da(c)∈ I⋆ iff I⋆ |=L a(c), for all a(c)∈DLP . 2

D Appendix: Proofs for Section 6

Proof of Theorem 6.3. By DCA and UNA, without loss of generality we can restrict to Herbrand interpre-

tations of L.

1) Let M be a strong answer set of KB ECWA

〈P,Z〉. Consider the Herbrand interpretation M ′ of L such that for

each ground atom p(c), M ′ |= p(c) iff p+(c) ∈ M . We show that M ′ is a 〈P,Z〉-minimal model M ′ of L.
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Consider rule (9). Since M does not satisfy its body, L(M ; λ′) must be satisfiable. Let N be any Herbrand

model of L(M ; λ′). Since for each ground atom p(c), M contains either p(c) or p+(c), by construction of

L(M ; λ′) it holds for each p from Q ∪ Z that N |= ¬p(c) iff p(c) ∈M and that N |= p(c) iff p+(c) ∈M .

Furthermore, p(c) ∈M implies N |= ¬p(c). So, N must be a model of L such that N ≤P,Z M ′. Assuming

that M ′ 6≤P,Z N , we derive a contradiction. Indeed, under this assumption there exists some ground fact

p(c), where p is from P , such that N |= ¬p(c) but M ′ |= p(c); equivalently, p+(c) ∈ M . This means that

rule (6) has been applied to derive p+(c); that is, L(M ; λ) |= p(c). However, since L(M ; λ) ⊆ L(M ; λ′),
N is a model of L(M ; λ). Since N |= ¬p(c), it follows that L(M ; λ) 6|= p(c). This is a contradiction. Thus,

M ′ ≤P,Z N holds. Since N ≤P,Z M ′ and M ′ and N coincide on all predicates from Z, it follows that

M ′ = N . Since N was an arbitrary Herbrand model of L(M ; λ′), it follows that M ′ is a 〈P,Z〉-minimal

model of L.

2) Let M ′ be a 〈P,Z〉-minimal Herbrand model of L, and define

M = {p+(c) |M ′ |= p(c)} ∪{p(c) |M ′ |= ¬p(c)}.

We show that M is a strong answer set of KB ECWA

〈P,Z〉. By construction of M and the fact that M ′ is a model of

L, rule (9) is eliminated in building the strong dl-transform sPM
L of P relative to L and M . Next, for each

ground atom p(c) such that p is from Q ∪ Z , by construction sPM
L contains the fact p+(c) (emerging from

rule (8)) iff p+(s) ∈ M . Furthermore, for each ground atom p(c), sPM
L contains the fact p(c) (emerging

from rule (5) or (7)) iff p(s) ∈M .

Consequently, M is a strong answer set of KB if and only if for each ground atom p(c) where p is from

P , we have p+(c) ∈ M iff M |= DL[λ; p](c). By definition of λ and M , M ′ is a model of L(M ; λ).
Since M ′ is a 〈P,Z〉-minimal Herbrand model of L and L ⊆ L(M ; λ), M ′ is also a 〈P,Z〉-minimal

Herbrand model of L(M ; λ). This means that M ′ |= p(c) iff L(M ; λ) |= p(c). By definition of M and

M |= DL[λ; p](c), it follows that p+(c) ∈ M iff M |= DL[λ; p](c). Hence, M is a strong answer set of

KB ECWA

〈P,Z〉. 2

Proof of Theorem 6.6. 1) Let M be a strong answer set of KB , and consider scen(M) = L ∪ {wi(c) |
w+

i (c) ∈M}. First we show that scen(M) is a scenario. By the rules of form (10), w(c) can be in scen(M)
only if there is some instance ai(c

′):wi(c) of a possible hypothesis in H such that L |= ai(c
′). Furthermore,

scen(M) is satisfiable. Indeed, if this were not the case, then the rules of form (11) would include in M all

literals ¬w+
i (c) where wi(c) is an instance of wi(~Yi), for all 1 ≤ i ≤ n. Hence, no rule instance of (10) is

applicable, and thus M contains no positive literals w+
i (c). Hence, L(M ; λ) = L, which implies that L is

unsatisfiable. This is a contradiction. It remains to show that scen(M) is maximal.

Towards a contradiction, suppose that S ⊃ scen(M) is a maximal scenario. Then, S contains some

ground atom wi(c) /∈ scen(M), and since S is satisfiable, we have that scen(M) 6|= ¬wi(c); that is,

L(M ; λ) 6|= ¬wi(c). Hence, ¬w+
i (c) is not in M , since it is not derivable by the rules of form (11).

This means that the strong reduct sPM
L contains a rule w+

i (c) ← DL[ai](c
′) such that M |=L ai(c

′).
Hence, w+

i (c) ∈ M , which means wi(c) ∈ scen(M). This is a contradiction, which proves maximality of

scen(M).
2) For the maximal scenario L ∪ S, define

M = {w+
i (c) | wi(c) ∈ S} ∪ {¬w+

i (c) | S |= ¬wi(c)},

where wi(c) ranges over all instances of wi(~Yi), 1 ≤ i ≤ n. We show that M is a strong answer set of KB .

First, we show that M is a model of the strong reduct sPM
L . By definition of M , clearly all rule instances

of (11), which belong to sPM
L , are satisfied. Furthermore, each rule in sPM

L stemming from a rule of form
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(10) is satisfied: if M |=L DL[ai](c
′) and S 6|= ¬wi(c), then, by maximality of L ∪ S, wi(c)∈S, and thus

w+
i (c)∈M by construction. Finally, M is the least model of sPM

L : any model N ⊆ M contains w+
i (c)

iff w+
i (c)∈M ; since thus L(N ; λ)=L(M ; λ), N also contains ¬w+

i (c) iff ¬w+
i (c)∈M . This proves that

M is a strong answer set of KB . 2

Proof of Theorem 6.11. For sets of formulas S and S′, we denote by conc(S, S′) the set of all ground

atoms wi(c) such that there is an instance ai(c
′) :wi(c) of a default from D such that ai(c

′) ∈ S and

¬wi(c) /∈ S′. Then, we recall that by Reiter’s characterization of extensions in terms of generating defaults

[86], E = Cn(L ∪ conc(E, E)) holds for each extension of T .

1) Suppose E = L(M ; λ′) is an extension of T . Define M = {in w i(c) | wi(c) ∈ E} ∪{out w i(c) |
wi(c) /∈ E} ∪{w+

i (c) | wi(c) ∈ conc(E, E)}. We show that M is an answer set of KBdf .

First note that, by construction, L(M ; λ) ⊆ L(M ; λ′) and E = Cn(L(M ; λ′)). Furthermore, since

L(M ; λ) = L ∪ conc(E, E), it follows from Reiter’s lemma that E = Cn(L(M ; λ)) (thus λ and λ′

semantically amount to the same for M ).

It is therefore easy to see that M satisfies all rules in sPM
L . It remains to show that M is the least model

of sPM
L . Let N ⊆ M be the least model of sPM

L . Clearly, N and M coincide on all predicates in wi

and out wi , i = 1, . . . , n. Let S = Cn(L ∪ {wi(c) | w+
i (c) ∈ N}) = Cn(L(N ; λ)) (⊆ E). Since

N is a model of sPM
L , the rules stemming from (19) imply that {w+

i (c) | wi ∈ conc(S, E)} ⊆ N , and

thus conc(S, E) ⊆ S; therefore, S satisfies conditions 1-3 of ΓT (E). By minimality of ΓT (E), it follows

S = ΓT (E) = E. Since conc(S, E) = conc(E, E), it follows that M ⊆ N . Hence, M = N is the least

model of sPM
L . This proves that M is a strong answer set of KBdf .

2) Let M be a strong answer set of KBdf , and let E = Cn(L(M ; λ′)). By the guessing rules (16)

and (17), M contains for each ground instance wi(c) of wi(~Yi) exactly one of in w i(c) and out w i(c).
Moreover, since wi ⊎ in w i occurs in λ′, by the rules (18) in w i(c) belongs to M iff L(M ; λ′) |= wi(c)
(equivalently, wi(c) ∈ E). Furthermore, by the rules (19), Cn(L(M ; λ)) = Cn(L(M ; λ′)) must hold.

Thus, it remains to show that E = ΓT (E). We first show that E satisfies conditions 1-3 of ΓT (E),
which means ΓT (E) ⊆ E. Since L(M ; λ′) contains L, conditions 1 and 2 are clearly satisfied. As for 3,

we show that E is closed under the application of defaults, i.e., concl(E, E) ⊆ E. Let δ′i = ai(c
′):wi(c)

be an instance of default δi such that ¬wi(c) /∈ E and ai(ci) ∈ E. Since L(M ; λ) ≡ L(M ; λ′), we have

M |=L DL[λ; ai](c
′) and M 6|=L DL[λ′; wi](c). Hence, by the rules of form (19), M must contain w+

i (c) ,

which implies that wi(c) ∈ L(M ; λ). Consequently, wi(c) ∈ E. This proves concl(E, E) ⊆ E. Thus E,

satisfies conditions 1-3 of ΓT (E).

We finally show that E ⊆ ΓT (E). Let N result from M by removing each atom w+
i (c) such that

wi(c) /∈ conc(ΓT (E), E). Since conc(ΓT (E), E) ⊆ ΓT (E), N is a model of the strong reduct sPM
L . Since

M is the least model of sPM
L , M = N follows, and ΓT (E) contains each wi(c) such that w+

i (c) ∈ M ;

hence, L(M ; λ) ⊆ ΓT (E). Since Cn(L(M ; λ)) = Cn(L(M ; λ′)) = E, it follows E ⊆ ΓT (E). 2

Proof of Theorem 6.17. 1) Let M be a strong answer set of KBdls . Then M 6|=L DL[λ;⊥](b) must

hold, which means that L(M ; λ) is satisfiable, i.e., has some first-order model I. For each ground atom

p(c) ∈ ga(P ), M contains exactly one of p+(c) and p−(c). Therefore, we have p(c) ∈ L(M ; λ) iff

p+(c) ∈M and ¬p(c) ∈ L(M ; λ) iff p+(c) /∈M . Since M satisfies all instances of the rules of form (26),

it follows that I satisfies P ↓. Hence, I |= (L, P ↓). Thus by Lemma 6.16, it follows that a model J of

(L, P ) exists such that I |= p(c) iff p+(c) ∈M , for every p(c) ∈ ga(P ).

2) Let M for I as described. We first show that M is a model of the strong reduct P ′ = sP dlsM
L . Clearly

M satisfies each rule in P ′ which stems from (24) or (25). Next, since I satisfies each ground instance of

every rule r in P . M satisfies each rule in P ′ which stems from (26). Finally, since L is satisfiable, from
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the definition of M also L(M ; λ) is satisfiable. Hence, also the rule fail ← DL[λ;⊥](b) in P ′ is satisfied

by M . This shows that M is a model of P ′. Moreover, M is the least model of P ′, since p+(c) is in M iff

p+(c) ← is in P ′ and similarly p−(c) is in M iff p−(c) ← is in P ′, and fail /∈ M . Thus, M is a strong

answer set of KBdls . 2

E Appendix: Proofs for Section 7

Proof of Theorem 7.1. We prove the upper complexity bounds for stratified and general dl-programs, and

the lower bounds for positive and general dl-programs.

In the stratified case, by Theorem 4.10, KB has a strong answer set iff KB is consistent. By Theo-

rem 5.6, the latter is equivalent to Mk 6=HBP , where Mk is defined by (a sequence of) fixpoint iterations

and can be computed in exponential time. Hence, deciding whether KB has a strong answer set is in EXP.

As for deciding whether KB has a weak answer set, we explore (one by one) the exponentially many possi-

ble inputs of the dl-atoms in ground(P ). For each input, evaluating the dl-atoms and removing them from

ground(P ) is feasible in exponential time. Since we are then left with an ordinary stratified program KB ′,

by Theorem 4.16, we try to compute MKB ′ by (a sequence of) fixpoint iterations, and check compliance

with the inputs of the dl-atoms, which can both be done in exponential time. In summary, deciding whether

KB has a weak answer set is also in EXP.

In the general case, we can guess an (exponential size) interpretation I ⊆HBP and compute the trans-

form sP I
L (resp., wP I

L). Since evaluating all dl-atoms in ground(P ) and removing (i) all default-negated

literals and dl-atoms, and (ii) all not necessarily monotonic (resp., all) other dl-atoms from ground(P ) is

feasible in exponential time, computing the transform sP I
L (resp., wP I

L) is also feasible in exponential time.

Since we are then left with a positive ground KB ′, we try to compute MKB ′ by a fixpoint iteration, and

check compliance with the guessed I , which can both be done in exponential time. In summary, deciding

whether KB has a strong (resp., weak) answer set can be done in nondeterministic exponential time.

Hardness for EXP of deciding answer set existence in the positive case holds by a reduction from the

EXP-complete problem of deciding whether a description logic knowledge base L in SHIF(D) is sat-

isfiable, since the latter is equivalent to the positive dl-program KB = (L, {¬p← , p←DL[ ;⊤⊑⊥]()}),
where p is a fresh propositional symbol, having a strong answer set, which is by Theorems 4.10, 4.15, and

4.17 in turn equivalent to KB having a weak answer set.

Hardness for NEXP of deciding answer set existence in the general case follows immediately from

Theorems 4.8 and 4.14, and the fact that deciding whether an ordinary normal program has an answer set is

NEXP-complete [17]. 2

For the proofs of Theorems 7.2 and 7.4, we recall the concept of a domino system, which is defined

as follows. A domino system D= (D, H, V ) consists of a finite nonempty set D of tiles and two rela-

tions H, V ⊆D×D expressing horizontal and vertical compatibility constraints between the tiles. For

positive integers s and t, and a word w = w0 . . . wn−1 over D of length n 6 s, we say that D tiles the

torus U(s, t)= {0, 1, . . . , s− 1} × {0, 1, . . . , t− 1} with initial condition w iff there exists a mapping

τ : U(s, t)→D such that for all (x, y)∈U(s, t): (i) if τ(x, y)= d and τ((x + 1)mod s, y)= d′, then

(d, d′)∈H , (ii) if τ(x, y)= d and τ(x, (y + 1)mod t)= d′, then (d, d′)∈V , and (iii) τ(i, 0)=wi for all

i∈{0, . . . , n}. Condition (i) is the horizontal constraint, condition (ii) is the vertical constraint, and condi-

tion (iii) is the initial condition.

Proof of Theorem 7.2. We prove the upper complexity bounds for positive and general dl-programs, and

the lower bounds for positive and stratified dl-programs.
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To prove the NEXP-membership in the positive case, observe that a positive KB has a strong (resp.,

weak) answer set iff there exists an interpretation I and a subset S⊆{a∈DLP | I 6|=L a} such that the

ordinary positive program PI,S , which is obtained from ground(P ) by deleting each rule that contains

a dl-atom a∈S and all remaining dl-atoms, has a model included in I . A suitable I and S, along with

proofs I 6|=L a for all a∈S, can be guessed and verified in exponential time.

As for the general case, observe first that for each dl-program KB , the number of ground dl-atoms a
is polynomial, and every ground dl-atom a has in general exponentially many different concrete inputs Ip

(that is, interpretations Ip of its input predicates p = p1, . . . , pm), but each of these concrete inputs Ip has

a polynomial size. Furthermore, notice that during the computation of the canonical model of a positive

dl-program by fixpoint iteration, any ground dl-atom a needs to be evaluated only polynomially often, as its

input can increase only that many times.

We can thus guess inputs Ip for all dl-atoms, and evaluate them with a NEXP oracle in polynomial time.

For the (monotonic) ones remaining in sP I
L, we can further guess a chain ∅ = I0

p ⊂ I1
p ⊂ · · · ⊂ Ik

p = Ip,

along which their inputs are increased in a fixpoint computation for sP I
L, and evaluate the dl-atoms in it

in polynomial time with a NEXP oracle. We then ask a NEXP oracle if an interpretation I exists which

is the answer set of sP I
L (resp., wP I

L) compliant with the above inputs (and thus the valuations) of the dl-

atoms and such that their inputs increase in the fixpoint computation as in the above chain. This yields the

NPNEXP = PNEXP upper bound.

Hardness for NEXP of deciding (strong or weak) answer set existence in the positive case holds by a

reduction from the NEXP-complete problem of deciding whether a description logic knowledge base L in

SHOIN (D) is satisfiable, using the same line of argumentation as in the proof of Theorem 7.1.

Hardness for PNEXP of deciding answer set existence in the stratified case is proved by a generic reduc-

tion from Turing machines M , exploiting the NEXP-hardness proof for ALCQIO by Tobies [95] (which

is based on a reduction from simple Turing machines to domino systems by Börger et al. [13]). Infor-

mally, the main idea behind the proof is to use a dl-atom to decide the result of the j-th oracle call made

by a polynomial-time bounded M with access to a NEXP oracle, where the results of the previous oracle

calls are known and input to the dl-atom. By a proper sequence of dl-atom evaluations, the result of M ’s

computation on input v can then be obtained.

More concretely, let M be a polynomial-time bounded deterministic Turing machine with access to a

NEXP oracle, and let v be an input for M . Since every oracle call can simulate M ’s computation on v
before that call, once the results of all the previous oracle calls are known, we can assume that the input of

every oracle call is given by v and the results of all the previous oracle calls. Since M ’s computation after

all oracle calls can be simulated within an additional oracle call, we can assume that the result of the last

oracle call is the result of M ’s computation on v. Finally, since any input to an oracle call can be enlarged by

“dummy” bits, we can assume that the inputs to all oracle calls have the same length n = 2 · (k + l), where

k is the size of v, and l = p(k) is the number of all oracle calls: We assume that the input to the m+1-th

oracle call (with m∈{0, . . . , l−1}) has the form

vk 1 vk−1 1 . . . v1 1 c0 1 c1 1 . . . cm−1 1 cm 0 . . . cl−1 0 ,

where vk, vk−1, . . . , v1 are the symbols of v in reverse order, which are all marked as valid by a subsequent

“1”, c0, c1, . . . , cm−1 are the results of the previous m oracle calls, which are all marked as valid by a

subsequent “1”, and cm, . . . , cl−1 are “dummy” bits, which are all marked as invalid by a subsequent “0”.

Let M ′ be a nondeterministic Turing machine with time- (and thus space-) bound 2n, deciding a

NEXP-complete language L(M ′) over the alphabet Σ (consisting of 0, 1, and the blank symbol ′′ ′′).

By Theorem 6.1.2 of [13], there exists a domino system D = (D, H, V ) and a linear-time reduction
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trans that takes any input b∈Σ∗ to a word w∈D∗ with |b|= n = |w| such that M ′ accepts b iff D tiles

the torus U(2n+1, 2n+1) with initial condition w. Here, D is defined as the set of all triples of elements

from Σ∪Q×Σ∪{#, e}, where Q is the set of all states of M ′, and # and e are two fresh symbols.

Moreover, the linear-time reduction trans that transforms any string b = b0 b1 . . . bn−1 over Σ into a string

w =w0w1 . . . wn−1 over D (of the same length) is defined as follows (where q0 is the start state of M ′):

w0 = (#, (q0, b0), b1),
w1 = ((q0, b0), b1, b2),
w2 = (b1, b2, b3),

...

wn−1 = (bn−2, bn−1,
′′ ′′) .

As shown in [95], Lemma 5.18 and Corollary 5.22, for domino systems D=(D, H, V ) and initial con-

ditions w = w0 . . . wn−1, there exist description logic knowledge bases Ln, LD, and Lw in SHOIN (D)
(which can be constructed in polynomial time in n from D and w) such that Ln ∪LD ∪Lw is satisfiable

iff D tiles U(2n+1, 2n+1) with initial condition w. Informally, Ln encodes the torus U(2n+1, 2n+1), LD
represents the domino system D, and Lw encodes the initial condition w. Intuitively, the elements of the

torus U(2n+1, 2n+1) are encoded by objects, and any mapping τ : U(2n+1, 2n+1)→D satisfying the com-

patibility constraints is encoded by the membership of these objects to concepts Cd with d∈D, while Lw

explicitly represents some such memberships to encode the initial condition w. More precisely, Lw has

the form {Ci,0⊑Cwi
| i ∈ {0, 1, . . . , n − 1}}, where every Ci,0 is a concept containing exactly the object

representing (i, 0)∈U(2n+1, 2n+1).

Let the stratified dl-program KB = (L, P ) now be defined as follows:

L = Ln ∪LD ∪{Ci,0 ⊓ Si,d⊑Cd | i∈{0, 1, . . . , n− 1}, d∈D} ∪
{Ci,0(oi) | i∈{0, 1, . . . , n− 1}} ,

P = {¬bl
2l−2(0)←}∪

⋃l
j=0 P j ,

where P j = P j
v ∪P j

q ∪P j
w←b ∪P j

s←w for every j ∈{0, . . . , l}. Informally, every set of dl-rules P j generates

the input of the j+1-th oracle call, which includes the results of the first j oracle calls. Here P l prepares,

for simplicity, the input of a “dummy” (non-happening) l+1-th oracle call which contains the result of the

l-th (i.e., the last) oracle call. More concretely, the bitstring a−2k · · · a2l−1 is the input of the j+1-th oracle

call iff bj
−2k(a−2k), . . . , b

j
2l−1(a2l−1) are in the canonical model of KB . The components P j

v , P j
q , P j

w←b,

and P j
s←w of P j , with j ∈{0, . . . , l}, are defined as follows:

1. P 0
v writes v into the input of the first oracle call, and every P j

v copies v into the input of the j+1-th

oracle call, for j ∈{1, . . . , l}:

P 0
v = {b0

−2i(vi)← | i∈{1, . . . , k}}∪ {b0
−2i+1(1)← | i∈{1, . . . , k}},

P j
v = {bj

−i(x)← bj−1
−i (x) | i∈{1, . . . , 2k}} .

2. P 0
q initializes the rest of the input of the first oracle call with “dummy” bits, and every P j

q with

j ∈{1, . . . , l} writes the result of the j-th oracle call into the input of the j+1-th oracle call and
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carries over all the other result and dummy bits from the input of the j-th oracle call:

P 0
q = {b0

i (0)← | i∈{0, . . . , 2l−1},

P j
q = {bj

i (x)← bj−1
i (x) | i∈{0, . . . , 2l−1}, i 6∈ {2j−2, 2j−1}}∪

{bj
2j−2(0)←DL[∀i, d : Si,d ⊎ sj−1

i,d ;⊤⊑⊥]();
bj
2j−2(1)←not bj

2j−2(0);
bj
2j−1(1)←} .

3. Every P j
w←b with j ∈{0, . . . , l} realizes the above-mentioned linear-time reduction trans , which

transforms any input bj of the Turing machine M into an initial condition wj of the same length

of M ’s domino system D. That is, P j
w←b is a positive program consisting of (n− 2) · 8 + 2 · 4 ground

rules, which are straightforward (and thus omitted here).

4. Every P j
s←w with j ∈{0, . . . , l} transforms the initial condition wj ofD into an input sj to the j+1-th

dl-atom via the predicates sj
i,d:

P j
s←w = {sj

i,d(oi)←wj
i (d) | i∈{0, 1, . . . , n− 1}, d∈D} .

Observe then that M accepts v iff the last oracle call returns “yes”. The latter is equivalent to bl
2l−2(1) being

derived from KB and thus bl
2l−2(0) being not derived from KB , which is in turn equivalent to KB having a

strong (resp., weak) answer set. In summary, M accepts v iff KB has a strong (resp., weak) answer set. 2

Proof of Theorem 7.3. We prove the upper complexity bounds for stratified and general dl-programs, and

the lower bounds for positive and general dl-programs.

As for the upper complexity bounds, deciding whether l belongs to every (resp., some) strong or weak

answer set of KB = (L, P ) can be reduced to the complement of answer set existence (resp., answer set ex-

istence itself) by adding to P the two rules p← l and ¬p← l (resp., the two rules p←not l and ¬p←not l),
where p is a fresh propositional symbol. Adding these rules does not change KB ’s property of being strat-

ified or general. By Theorem 7.1, answer set existence is in EXP in the stratified case and in NEXP in the

general case. Thus, deciding whether l belongs to every (resp., some) strong or weak answer set of KB is

in EXP when KB is stratified, and in co-NEXP (resp., NEXP) when KB is a general dl-program.

The lower complexity bounds hold by a reduction from the complement of answer set existence (resp.,

answer set existence itself), since a dl-program KB = (L, P ) has no (resp., some) strong or weak answer set

iff the classical literal p belongs to every (resp., some) strong or weak answer set of KB ′= (L, P ∪{¬p←})
(resp., KB ′=(L, P ∪{p←}), where p is a fresh propositional symbol. Adding the rule ¬p← (resp., p← )

does not change KB ’s property of being positive or general. By Theorem 7.1, answer set existence is hard

for EXP in the positive case and hard for NEXP in the general case. Thus, deciding whether l belongs to

every (resp., some) strong or weak answer set of KB is hard for EXP when KB is positive and hard for

co-NEXP (resp., NEXP) when KB is a general dl-program. 2

Proof of Theorem 7.4. We prove the upper complexity bounds for positive and general dl-programs, and

the lower bounds for positive and stratified dl-programs.

We first prove the upper complexity bounds for all above cases except for brave reasoning from positive

dl-programs. Using the same line of argumentation as in the proof of Theorem 7.3, deciding whether l
belongs to every (resp., some) strong or weak answer set of KB = (L, P ) can be reduced to the complement

of answer set existence (resp., answer set existence itself) by adding to P the two rules p← l and ¬p← l
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(resp., the two rules p←not l and ¬p←not l), where p is a fresh propositional symbol. In all cases except

for brave reasoning from positive dl-programs, adding these rules does not change KB ’s property of being

positive or general. By Theorem 7.2, answer set existence is in NEXP in the positive case and in PNEXP in

the general case. Thus, deciding whether l belongs to every strong or weak answer set of KB is in co-NEXP

when KB is positive, and in PNEXP when KB is a general dl-program. Furthermore, deciding whether l
belongs to some strong or weak answer set of KB is in PNEXP when KB is a general dl-program.

Membership in PNEXP of brave reasoning under the weak answer set semantics in the positive case

follows from the membership in PNEXP of deciding weak answer set existence in the stratified case, since

(as argued above) a classical literal l∈HBP belongs to some weak answer set of the positive dl-program

KB = (L, P ) iff the stratified dl-program KB ′= (L, P∪{p←not l, ¬p←not l}), where p is a fresh propo-

sitional symbol, has a weak answer set.

As for the membership in Dexp of brave reasoning under the strong answer set semantics in the positive

case, observe first that a classical literal l∈HBP belongs to some strong answer set of the positive dl-

program KB iff (i) KB has some strong answer set, and (ii) KB has no strong answer set I with l 6∈ I . The

latter is equivalent to: (i) there exists an interpretation I and a subset S⊆{a∈DLP | I 6|=L a} such that the

ordinary positive program PI,S , which is obtained from ground(P ) by deleting each rule that contains a

dl-atom a∈S and all remaining dl-atoms, has a model included in I , and (ii) there exists no interpretation

I with l 6∈ I and subset S⊆{a∈DLP | I 6|=L a} such that the ordinary positive program PI,S , which is

obtained from ground(P ) by deleting each rule that contains a dl-atom a∈S and all remaining dl-atoms,

has a model included in I . As argued in the proof of Theorem 7.2, (i) and (ii) are in NEXP and co-NEXP,

respectively. This shows that brave reasoning in the positive case under the strong answer set semantics is

in Dexp.

The lower complexity bounds for all above cases except for brave reasoning from positive dl-programs

hold by a reduction from answer set non-existence (resp., existence), using the same line of argumentation as

in the proof of Theorem 7.3, since a dl-program KB = (L, P ) has no (resp., some) strong or weak answer set

iff the classical literal p belongs to every (resp., some) strong or weak answer set of KB ′= (L, P ∪{¬p←})
(resp., KB ′= (L, P ∪{p←}), where p is a fresh propositional symbol. Adding the rule ¬p← (resp., p← )

does not change KB ’s property of being positive or stratified. By Theorem 7.2, answer set existence is

NEXP-hard in the positive case and PNEXP-hard in the stratified case. Hence, deciding whether l belongs to

every strong or weak answer set of KB is co-NEXP-hard when KB is positive and PNEXP-hard when KB

is stratified. Moreover, deciding whether l is in some strong or weak answer set of KB is PNEXP-hard when

KB is stratified.

Hardness for Dexp of brave reasoning under the strong answer set semantics in the positive case holds by

a reduction from a Dexp-hard problem involving domino systems. More concretely, by a slight adaptation

of the proof of Corollary 5.14 in [95], it can be shown that there exists a domino system D= (D, H, V )
such that the following problem is hard for Dexp:

(⋆) Given two initial conditions v = v0 . . . vn−1 and w = w0 . . . wn−1 over D of length n, decide whether

(1) D tiles the torus U(2n+1, 2n+1) with initial condition v, and (2) D does not tile the torus U(2n+1,
2n+1) with initial condition w.

We reduce (⋆) to brave reasoning under the strong answer set semantics in the positive case. As shown in

[95], Lemma 5.18 and Corollary 5.22, for domino systemsD= (D, H, V ) and initial conditions v = v0 . . . vn−1

and w =w0 . . . wn−1, there exist description logic knowledge bases Ln, LD, Lv, and Lw in SHOIN (D)
(which can be constructed in polynomial time in n from D, v, and w) such that (a) Ln ∪ LD ∪Lv is satis-

fiable iff D tiles the torus U(2n+1, 2n+1) with initial condition v, and (b) Ln ∪LD ∪Lw is unsatisfiable iff
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D does not tile U(2n+1, 2n+1) with initial condition w. Informally, Ln encodes the torus U(2n+1, 2n+1),
and LD represents the domino system D, while Lv and Lw encode the initial conditions v and w, re-

spectively. Intuitively, the elements of the torus U(2n+1, 2n+1) are encoded by objects, and any map-

ping τ : U(2n+1, 2n+1)→D satisfying the compatibility constraints is encoded by the membership of

these objects to concepts Cd with d∈D, while Lv and Lw explicitly represent some of such member-

ships to encode the initial conditions v and w, respectively. More concretely, Lv and Lw are of the form

{Ci,0⊑Cvi
| i∈{0, 1, . . . , n−1}} and {Ci,0⊑Cwi

| i∈{0, 1, . . . , n−1}}, respectively, where every Ci,0 is

a concept containing exactly the object representing the element (i, 0)∈U(2n+1, 2n+1). Let the dl-program

KB =(L, P ) be defined as follows:

L = Ln ∪LD ∪{Ci,0 ⊓ Si,d⊑Cd | i∈{0, 1, . . . , n− 1}, d∈D} ∪
{Ci,0(oi) | i∈{0, 1, . . . , n− 1}} ,

P = {¬p← , p←DL[∀i, d : Si,d ⊎ si,d ;⊤⊑⊥]()} ∪
{si,d(oi)← | i∈{0, 1, . . . , n− 1}, d∈D, vi = d} ∪
{q←DL[∀i, d : Si,d ⊎ s′i,d ;⊤⊑⊥]()} ∪
{s′i,d(oi)← | i∈{0, 1, . . . , n− 1}, d∈D, wi = d} .

Observe that the dl-program KB is positive. Furthermore, KB has a strong answer set iff (1) Ln ∪LD ∪Lv

is satisfiable, and the strong answer set of KB contains q iff (2) Ln ∪ LD ∪Lw is unsatisfiable. That is, q
belongs to some strong answer set of KB iff (1) D tiles the torus U(2n+1, 2n+1) with initial condition v,

and (2) D does not tile the torus U(2n+1, 2n+1) with initial condition w.

Hardness for PNEXP of brave reasoning under the weak answer set semantics in the positive case is

proved by a generic reduction from Turing machines. The proof is similar to the proof of PNEXP-hardness

of deciding strong (resp., weak) answer set existence in the stratified case (in the proof of Theorem 7.2).

The main difference that must be taken into account in the construction is that rather than deciding whether

a stratified dl-program has a strong (resp., weak) answer set, we now decide whether a literal holds in some

weak answer set of a positive dl-program. Intuitively, we use a set of weak answer sets for guessing the

outcomes of all oracle calls, and a literal q in one of these weak answers to identify the correct guess.

More concretely, let M be a polynomial-time bounded deterministic Turing machine with access to a

NEXP oracle, and let v be an input for M . Let the positive dl-program KB =(L, P ) be defined as the

stratified dl-program KB = (L, P ) in the proof of Theorem 7.2, except that we now add the rule

q ← guess ok1, . . . , guess ok l, call ok1, . . . , call ok l , (29)

and that every P j
q , j ∈{1, . . . , l}, is now defined as P j

q,id ∪P j
q,guess ∪P j

q,call, where:

1. Every P j
q,id, j ∈{1, . . . , l}, copies all the persisting results and dummy bits from the input of the j-th

oracle call into the input of the j+1-th oracle call:

P j
q,id = {bj

i (x)← bj−1
i (x) | i∈{0, . . . , 2l−1}, i 6∈ {2j−2, 2j−1}} .

2. Every P j
q,guess, j ∈{1, . . . , l}, allows for guessing the outcome of the j-th oracle call, that is, exactly

one fact among bj
2j−2(0) and bj

2j−2(1). The guess is verified through the predicate guess ok j , which
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should evaluate to true:

P j
q,guess = {bj

2j−2(1)←DL[Bj ⊎ bj
2j−2; B

j ](1);
bj
2j−2(0)←DL[Bj ⊎ bj

2j−2; B
j ](0);

¬bj
2j−2(1)← bj

2j−2(0);
guess ok j ← bj

2j−2(0);
guess ok j ← bj

2j−2(1)} .

3. Every P j
q,call, j ∈{1, . . . , l}, allows for choosing among the two possible outcomes of the j-th oracle

call exactly the one that matches the result of the actual outcome. That is, call ok j is true iff either (a)

bj
2j−2(0) holds and the actual outcome is “no” or (b) bj

2j−2(1) holds and the actual outcome is “yes”:

P j
q,call = {¬bj

2j−2(1)←DL[∀i, d : Si,d ⊎ sj−1
i,d ;⊤⊑⊥]();

call ok j← bj
2j−2(0),DL[∀i, d : Si,d ⊎ sj−1

i,d ;⊤⊑⊥]();
call ok j← bj

2j−2(1);
bj
2j−1(1)←} .

Hence, M accepts v iff (i) the last oracle call returns “yes” and (ii) the bj
2j−2(x)’s with j ∈{1, . . . , l} are a

correct guess that matches the actual outcomes of the oracle calls. The latter is equivalent to the existence

of a weak answer set of KB that contains all guess ok j and call ok j with j ∈{1, . . . , l}, or, equivalently,

that contains q. In summary, M accepts v iff q holds in some weak answer set of KB . 2

F Appendix: Proofs for Section 8

Proof of Theorem 8.4. We can reformulate this theorem as follows: Let U be a splitting set for a dl-

program KB = (L, P ). A set A of literals is an answer set of KB if and only if A is an answer set of

P \bU (P )∪M , where M is an answer set of bU (P ). The proof is given for the strong answer set semantics;

for the weak answer set semantics, it is similar.

(⇒) Let A be an answer set for KB. Let P ′ = sbU (P )A
L and let S be the least model of P ′. Note that S

must exist. Furthermore, since P ′ ⊆ sPA
L , it follows that S ⊆ A. On the other hand, since U is a splitting

set for P , we must have that P ′ = sbU (P )S
L. Indeed, consider the set of literals A′ = {a ∈ B−(r)∩A from

some ground instance r of a rule in bU (P ) such that a∈A}. Every literal in A′ must occur in the head of a

ground instance of some rule r′ from P ; by the definition of dependencies and of a splitting set, each such r′

must belong to bU (P ). Therefore, a ∈ S must hold. Consequently, S is the least model of sbU (P )S
L, which

means that S is an answer set of bU (P ).

Furthermore, A is an answer set of R = P \ bU (P )∪S. Indeed, let M be the least model of sRA
L . Since

both M and A contain S and are models of sRA
L , M ⊆ A must hold. On the other hand, if M ⊂ A, then M

would be a model of sPA
L , since M satisfies s(P \ bU (P ))A

L and each rule in sbU (P )A
L . Indeed, each literal

a ∈M \S must occur in some rule head of s(P \ bU (P ))A
L , but by dependencies and splitting can not occur

in the body of any rule in sbU (P )A
L . However, this would contradict that A is an answer set of KB . This

shows that A is an answer set of P \ bU (P ) ∪M , where M is an answer set of bU (P ).

(⇐) Let A be an answer set of R = P \ bU (P ) ∪ M were M is an answer set for bU (P ). Note

that A ⊇ M , since all literals in M appear in R as facts. The strong reduct sPA
L is given by sPA

L =
s(P \ bU (P ))A

L ∪ sbU (P )A
L . Each rule in the left part of the union belongs to sRA

L . Furthermore, the right
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part sbU (P )A
L must coincide with sbU (P )M

L , since each literal in a ∈ A \M must occur in the head of a

rule in sPA
L , but by dependencies and the splitting set condition can not occur in the body of any ground

instance of any rule from bU (P ). Furthermore, since M |=L sbU (P )M
L , it follows that A |=L sbU (P )M

L .

Consequently, A is a model of sPA
L . Moreover, A must coincide with the least model N of sPA

L . If

N ∩M ⊂M would hold, then N ∩M would be a model of sbU (P )M
L (=sbU (P )A

L), which contradicts that

M is an answer set of bU (P ). On the other hand, if N ∩M = M (=A∩M ) but N ⊂A, then N would be

a model of sRA
L smaller than A, which contradicts that A is an answer set of R. It follows N = A. This

shows that A is an answer set of KB . 2

Proof of Theorem 8.5. Let V and S be as described. Assume that S is not a splitting set. Then there exists

some a∈S and some b∈V such that a→ b. By condition (ii), a ∈ V holds. Since S ∩ V = ∅, this is a

contradiction.

To show that bS(P ) has a single answer set (if consistent), it is not hard to see that in absence of

(possibly) non-monotonic dl-atoms, (L, bS(P )) has some stratification (otherwise), literals a, b ∈ S must

exist such that a→n b and b→+ a, which is impossible. In presence of (possibly) non-monotonic dl-atoms,

the program P can be replaced by the program P ′ described in the discussion after the theorem. As easily

seen, P ′ must also be stratifiable. 2
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