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Abstract. We present a novel approach to probabilistic description logic programs for the Seman-
tic Web, which constitutes a tight combination of disjunctive logic programs under the answer set
semantics with both description logics and Bayesian probabilities. The approach has a number of
nice features. In particular, it allows for a natural probabilistic data integration, where probabilities
over possible worlds may be used as trust, error, or mapping probabilities. Furthermore, it also pro-
vides a natural integration of a situation-calculus based language for reasoning about actions with
both description logics and Bayesian probabilities. We show that consistency checking and query
processing are decidable resp. computable, and that they can be reduced to consistency checking
resp. cautious/brave reasoning in tightly integrated disjunctive description logic programs. We also
analyze the complexity of consistency checking and query processing in probabilistic description
logic programs in special cases. In particular, we present aspecial case of these problems with
polynomial data complexity.
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1 Introduction

TheSemantic Web[1, 8] aims at an extension of the current World Wide Web by standards and technologies
that help machines to understand the information on the Web so that they can support richer discovery, data
integration, navigation, and automation of tasks. The main ideas behind it are toadd a machine-readable
meaning to Web pages, to use ontologies for a precise definition of shared terms in Web resources, to use
knowledge representation technology for automated reasoning from Webresources, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where theOntology layer, in form of theOWL
Web Ontology Language[21, 12] (recommended by the W3C), is currently the highest layer of sufficient
maturity. OWL consists of three increasingly expressive sublanguages,namelyOWL Lite, OWL DL, and
OWL Full. OWL Lite and OWL DL are essentially very expressive description logics with an RDF syn-
tax [12]. As shown in [11], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge base
(un)satisfiability in the description logicSHIF(D) (resp.,SHOIN (D)). As a next step in the develop-
ment of the Semantic Web, one aims especially at sophisticated representation and reasoning capabilities
for the Rules, Logic, andProof layersof the Semantic Web. Several recent research efforts are going in
this direction.

In particular, there is a large body of work on integrating rules and ontologies, which is a key requirement
of the layered architecture of the Semantic Web. One type of integration is to build rules on top of ontolo-
gies, that is, for rule-based systems that use vocabulary from ontologyknowledge bases. Another form of
integration is to build ontologies on top of rules, where ontological definitions are supplemented by rules or
imported from rules. Both types of integration have been realized in recenthybrid integrations of rules and
ontologies, calleddescription logic programs(or dl-programs), which have the formKB = (L,P ), where
L is a description logic knowledge base andP is a finite set of rules involving either queries toL in a loose
coupling [6, 5] or concepts and roles fromL as unary resp. binary predicates in a tight coupling [19, 16].

Other works explore formalisms foruncertainty reasoning in the Semantic Web(an important recent
forum for approaches to uncertainty in the Semantic Web is the annualWorkshop on Uncertainty Reasoning
for the Semantic Web (URSW); there also exists a W3C Incubator Group onUncertainty Reasoning for the
World Wide Web). There are especially extensions of description logics, web ontology languages, and dl-
programs by probabilistic uncertainty (to encode ambiguous information, such as “John is a student with the
probability 0.7 and a teacher with the probability 0.3”, which crucially differs from vague/fuzzy information,
such as “John is tall”). In particular, [15] extends dl-programs by probabilistic uncertainty. It combines dl-
programs as in [6, 5] with Poole’s independent choice logic (ICL) [17, 18]. Poole’s ICL is a powerful
representation and reasoning formalism for single- and also multi-agent systems, which combines logic and
probability, and which can represent a number of important uncertainty formalisms, in particular, influence
diagrams, Bayesian networks, Markov decision processes, and normal form games [17]. Moreover, Poole’s
ICL also allows for natural notions of causes and explanations as in Pearl’s structural causal models.

In this paper, we continue this line of research. We presenttightly integrated probabilistic disjunctive
description logic programs(or simplyprobabilistic dl-programs) under the answer set semantics, which are
a tight integration of disjunctive logic programs under the answer set semantics, the expressive description
logicsSHIF(D) andSHOIN (D), and Bayesian probabilities. To our knowledge, this is the first such
approach. The main contributions of this paper can be summarized as follows:

• We present a novel approach to probabilistic dl-programs, which is based on the approach to disjunc-
tive dl-programs under the answer set semantics from [16]. The latter is atight coupling as in [19],
but it assumes no structural separation between the vocabularies of the description logic and the logic
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program components.

• In the same spirit as [15], this approach is developed as a combination of dl-programs with Poole’s
powerful ICL. However, rather than being based on a loose coupling of rules and ontologies, it is
based on a tight coupling. Furthermore, rather than being based on normal dl-programs, it is based on
disjunctive dl-programs.

• We present an approach to probabilistic data integration for the Semantic Web, which is based on
the novel approach to probabilistic dl-programs, where probabilistic uncertainty over possible worlds
may be used as trust, error, or mapping probabilities. This application takes inspiration from a number
of recent probabilistic data integration approaches in the database and web community [20].

• Since Poole’s ICL is actually a formalism for reasoning about actions in dynamic systems, our ap-
proach to probabilistic dl-programs also provides a natural way of combining a language for reason-
ing about actions with both description logics and Bayesian probabilities, especially towards Web
Services.

• We show that consistency checking and query processing in probabilisticdl-programs are decidable
resp. computable, and that they can be reduced to consistency checkingand cautious/brave reasoning
in tightly integrated disjunctive dl-programs. This directly reveals algorithms for solving the former
two problems.

• We also analyze the complexity of consistency checking and query processing in probabilistic dl-
programs in special cases, which turn out to be complete for the classesNEXPNP andco-NEXPNP,
respectively. Furthermore, we show that in the special case of stratifiednormal probabilistic dl-
programs relative to the description logicDL-Lite, these two problems have both a polynomial data
complexity.

Note that the results here crucially differ from the ones in [15]. First, differently from the probabilistic
dl-programs here, the ones in [15] have a loose query-based couplingbetween the ontology componentL
and the rule componentP . As a consequence, the alphabets ofL andP are disjoint, which is a limita-
tion in many applications1 (see also Examples 3.1 and 5.3). Second, query processing in the probabilistic
dl-programs in [15] requires a computationally expensive linear programming step. Third, [15] does not
allow for disjunctions in rule heads. Fourth, [15] does not investigate possible applications in probabilistic
data integration and in probabilistic reasoning about actions. Fifth, [15] provides neither complexity nor
tractability results.

The rest of this paper is organized as follows. Sections 2 and 3 recall thedescription logicsSHIF(D)
andSHOIN (D) resp. disjunctive dl-programs under the answer set semantics from [16]. In Section 4,
we introduce our new approach to probabilistic dl-programs. Sections 5 and 6 describe its application in
probabilistic data integration resp. probabilistic reasoning about actions. In Sections 7 and 8, we focus on
its computational aspects. Section 9 summarizes our main results. Note that detailed proofs of all results are
given in Appendix A.

1As noted by David Poole (personal communication).
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2 Description Logics

In this section, we recall the expressive description logicsSHIF(D) andSHOIN (D), which stand be-
hind the web ontology languages OWL Lite and OWL DL [11], respectively.Intuitively, description logics
model a domain of interest in terms of concepts and roles, which representclasses of individuals and bi-
nary relations between classes of individuals, respectively. A description logic knowledge base encodes
especially subset relationships between concepts, subset relationshipsbetween roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

2.1 Syntax

We first describe the syntax ofSHOIN (D). We assume a set ofelementary datatypesand a set ofdata val-
ues. A datatypeis either an elementary datatype or a set of data values (calleddatatype oneOf). A datatype
theoryD= (∆D, ·D) consists of adatatype domain∆D and a mapping·D that assigns to each elemen-
tary datatype a subset of∆D and to each data value an element of∆D. The mapping·D is extended to
all datatypes by{v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, andI be pairwise disjoint denumerable sets of
atomic concepts, abstract roles, datatype roles, andindividuals, respectively. We denote byR−

A the set of
inversesR− of all R∈RA.

A role is an element ofRA ∪R
−
A ∪RD. Conceptsare inductively defined as follows. Everyφ∈A is a

concept, and ifo1, . . . , on ∈ I, then{o1, . . . , on} is a concept (calledoneOf). If φ, φ1, andφ2 are concepts
and ifR∈RA ∪R

−
A, then also(φ1 ⊓ φ2), (φ1 ⊔ φ2), and¬φ are concepts (calledconjunction, disjunction,

and negation, respectively), as well as∃R.φ, ∀R.φ, >nR, and6nR (called exists, value, atleast, and
atmost restriction, respectively) for an integern> 0. If D is a datatype andU ∈RD, then∃U.D, ∀U.D,
>nU , and6nU are concepts (calleddatatype exists, value, atleast, andatmost restriction, respectively) for
an integern> 0. We write⊤ and⊥ to abbreviate the conceptsφ ⊔ ¬φ andφ ⊓ ¬φ, respectively, and we
eliminate parentheses as usual.

An axiomhas one of the following forms: (1)φ⊑ψ (calledconcept inclusion axiom), whereφ andψ
are concepts; (2)R⊑S (calledrole inclusion axiom), where eitherR,S ∈RA orR,S ∈RD; (3) Trans(R)
(calledtransitivity axiom), whereR∈RA; (4) φ(a) (calledconcept membership axiom), whereφ is a con-
cept anda∈ I; (5)R(a, b) (resp.,U(a, v)) (calledrole membership axiom), whereR∈RA (resp.,U ∈RD)
anda, b∈ I (resp.,a∈ I andv is a data value); and (6)a= b (resp.,a 6= b) (equality(resp.,inequality) ax-
iom), wherea, b∈ I. A knowledge baseL is a finite set of axioms. For decidability, number restrictions inL

are restricted to simple abstract roles [13].
The syntax ofSHIF(D) is as the above syntax ofSHOIN (D), but without the oneOf constructor

and with the atleast and atmost constructors limited to0 and1.

Example 2.1 A university database may use a knowledge baseL to characterize students and exams. For
example, suppose that (1) every bachelor student is a student; (2) every master student is a student; (3) every
student is either a bachelor student or a master student; (4) professorsare not students; (5) only students
give exams and only exams are given; (6)john is a student,mary is a master student,java is an exam, and
john has given it. These relationships are expressed by the following axioms inL:

(1) bachelor student ⊑ student ; (2) master student ⊑ student ;
(3) student ⊑ bachelor student ⊔master student ; (4) professor ⊑ ¬student ;
(5) > 1 given ⊑ student ; > 1 given−1 ⊑ exam;
(6) student(john); master student(mary); exam(java); given(john, java) .
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2.2 Semantics

An interpretationI = (∆I , ·I) relative to a datatype theoryD= (∆D, ·D) consists of a nonempty (abstract)
domain∆I disjoint from∆D, and a mapping·I that assigns to each atomic conceptφ∈A a subset of∆I ,
to each individualo∈ I an element of∆I , to each abstract roleR∈RA a subset of∆I ×∆I , and to each
datatype roleU ∈RD a subset of∆I ×∆D. We extend·I to all concepts and roles, and we define the
satisfactionof an axiomF in an interpretationI = (∆I , ·I), denotedI |=F , as usual [11]. We sayI
satisfiesthe axiomF , or I is a modelof F , iff I |=F . We sayI satisfiesa knowledge baseL, or I is a
modelof L, denotedI |=L, iff I |=F for all F ∈L. We sayL is satisfiableiff L has a model. An axiomF
is a logical consequenceof L, denotedL |= F , iff every model ofL satisfiesF .

3 Description Logic Programs

In this section, we recall a novel approach todescription logic programs(or dl-programs) KB = (L,P )
from [16], whereKB consists of a description logic knowledge baseL and a disjunctive logic programP .
Their semantics is defined in a modular way as in [6, 5], but it allows for a muchtighter integration ofL
andP . Note that differently from [19], we do not assume any structural separation between the vocabularies
of L andP . The main idea behind their semantics is to interpretP relative to Herbrand interpretations that
are coherent withL, whileL is interpreted relative to general interpretations over a first-order domain. Thus,
we modularly combine the standard semantics of logic programs and of description logics, which allows for
building on the standard techniques and results of both areas. As anotheradvantage, the novel dl-programs
are decidable, even when their components of logic programs and description logic knowledge bases are
both very expressive. See especially [16] for further details on the new approach to dl-programs and for a
detailed comparison to related works.

3.1 Syntax

We assume a first-order vocabularyΦ with nonempty finite sets of constant and predicate symbols, but no
function symbols. We useΦc to denote the set of all constant symbols inΦ. We also assume pairwise disjoint
denumerable setsA, RA, RD, andI of atomic concepts, abstract roles, datatype roles, and individuals,
respectively, as in Section 2. We assume that (i)Φc is a subset ofI, and (ii)Φ andA (resp.,RA ∪RD) may
have unary (resp., binary) predicate symbols in common.

LetX be a set of variables. Aterm is either a variable fromX or a constant symbol fromΦ. An atomis
of the formp(t1, . . . , tn), wherep is a predicate symbol of arityn> 0 from Φ, andt1, . . . , tn are terms. A
literal l is an atomp or a negated atomnot p. A disjunctive rule(or simplyrule) r is an expression of form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

whereα1, . . . , αk, β1, . . . , βn+m are atoms andk,m, n> 0. We callα1 ∨ · · · ∨ αk the headof r, while
the conjunctionβ1, . . . , βn,not βn+1, . . . ,not βn+m is its body. We defineH(r)= {α1, . . . , αk} and
B(r)=B+(r)∪B−(r), whereB+(r)= {β1, . . . , βn} andB−(r)= {βn+1, . . . , βn+m}. A disjunctive pro-
gramP is a finite set of disjunctive rules of the form (1). We sayP is positiveiff m= 0 for all disjunctive
rules (1) inP . We sayP is anormal programiff k6 1 for all disjunctive rules (1) inP .

A disjunctive description logic program(or disjunctive dl-program) KB = (L,P ) consists of a descrip-
tion logic knowledge baseL and a disjunctive programP . We sayKB is positiveiff P is positive. It is a
normal dl-programiff P is a normal program.
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Example 3.1 Consider the disjunctive dl-programKB = (L,P ), whereL is the description logic knowl-
edge base from Example 2.1, andP is the following set of rules, which express that (1)bill is either a master
student or a Ph.D. student, (2) the relation of propaedeuticity enjoys the transitive property, (3) if a student
has given an exam, then he/she has given all exams that are propaedeutic to it, and (4)unix is propaedeutic
for java, andjava is propaedeutic forprogramming languages:

(1) master student(bill) ∨ phd student(bill) ;

(2) propaedeutic(X,Z) ← propaedeutic(X,Y ), propaedeutic(Y, Z) ;

(3) given(X,Z) ← given(X,Y ), propaedeutic(Z, Y ) ;

(4) propaedeutic(unix , java); propaedeutic(java, programming languages) .

The above disjunctive dl-program also shows the advantages and flexibility of the tight integration between
rules and ontologies (compared to the loose integration in [6, 5]): Observethat the predicate symbolgiven

in P is also a concept inL, and it freely occurs in both rule bodies and rule heads inP (which is both not
possible in [6, 5]). Moreover, we can easily useL to express additional constraints on the predicate symbols
in P . For example, we may use the two axioms> 1 propaedeutic ⊑ exam and> 1 propaedeutic−1 ⊑
exam in L to express thatpropaedeutic in P relates only exams.

3.2 Semantics

We now define the answer set semantics of disjunctive dl-programs as a generalization of the answer set se-
mantics of ordinary disjunctive logic programs. In the sequel, letKB = (L,P ) be a disjunctive dl-program.

A ground instanceof a ruler∈P is obtained fromr by replacing every variable that occurs inr by
a constant symbol fromΦc. We denote byground(P ) the set of all ground instances of rules inP . The
Herbrand baserelative toΦ, denotedHBΦ, is the set of all ground atoms constructed with constant and
predicate symbols fromΦ. We useDLΦ to denote the set of all ground atoms inHBΦ that are constructed
from atomic concepts inA, abstract roles inRA, and concrete roles inRD.

An interpretationI is any subset ofHBΦ. Informally, every suchI represents the Herbrand interpreta-
tion in which alla∈ I (resp.,a∈HBΦ− I) are true (resp., false). We say an interpretationI is amodelof a
description logic knowledge baseL, denotedI |=L, iff L∪ I ∪ {¬a | a∈HBΦ− I} is satisfiable. Observe
that a negative concept membership¬C(a) can be encoded as the positive concept membership(¬C)(a).
The following theorem shows that also negative role memberships¬R(b, c) can be reduced to positive con-
cept memberships and concept inclusions.

Theorem 3.2 Let L be a description logic knowledge base, and letR(b, c) be a role membership axiom.
Then,L∪{¬R(b, c)} is satisfiable iffL∪{B(b), C(c), ∃R.C ⊑¬B} is satisfiable, whereB andC are two
fresh atomic concepts.

We say an interpretationI is amodelof a ground atoma∈HBΦ, orI satisfiesa, denotedI |= a, iff a∈ I.
We sayI is a modelof a ground ruler, denotedI |= r, iff I |=α for someα∈H(r) wheneverI |=B(r),
that is,I |=β for all β ∈B+(r) andI 6|=β for all β ∈B−(r). We say an interpretationI is amodelof a set
of rulesP iff I |= r for everyr∈ ground(P ). We sayI is amodelof a disjunctive dl-programKB = (L,P ),
denotedI |=KB , iff I is a model of bothL andP .

We now define the answer set semantics of disjunctive dl-programs by generalizing the ordinary answer
set semantics of disjunctive logic programs. We generalize the definition via the FLP-reduct [7] (which
coincides with the answer set semantics defined via the Gelfond-Lifschitz reduct [10]). Given a dl-program
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KB = (L,P ), theFLP-reductof KB relative to an interpretationI ⊆HBΦ, denotedKB I , is the dl-program
(L,P I), whereP I is the set of allr∈ ground(P ) such thatI |=B(r). An interpretationI ⊆HBΦ is an
answer setof KB iff I is a minimal model ofKB I . A dl-programKB is consistent(resp.,inconsistent) iff
it has an (resp., no) answer set.

We finally define the notions ofcautious(resp.,brave) reasoningfrom disjunctive dl-programs under
the answer set semantics as follows. A ground atoma∈HBΦ is a cautious(resp.,brave) consequence
of a disjunctive dl-programKB under the answer set semantics iff every (resp., some) answer set ofKB

satisfiesa.

3.3 Properties

We now summarize some important properties of disjunctive dl-programs under the above answer set se-
mantics. In the ordinary case, every answer set of a disjunctive programP is also a minimal model ofP ,
and the converse holds whenP is positive. The following theorem shows that this carries over to disjunctive
dl-programs.

Theorem 3.3 LetKB = (L,P ) be a disjunctive dl-program. Then, (a) every answer set ofKB is a minimal
model ofKB , and conversely (b) ifKB is positive, then every minimal model ofKB is an answer set ofKB .

The next theorem shows that the answer set semantics of disjunctive dl-programs faithfully extends its
ordinary counterpart. That is, the answer set semantics of a disjunctivedl-program with empty description
logic knowledge base coincides with the ordinary answer set semantics of itsdisjunctive program.

Theorem 3.4 Let KB = (L,P ) be a disjunctive dl-program withL= ∅. Then, the set of all answer sets of
KB coincides with the set of all ordinary answer sets ofP .

The following theorem shows that the answer set semantics of disjunctive dl-programs also faithfully ex-
tends (from the perspective of answer set programming) the first-order semantics of description logic knowl-
edge bases. That is,α∈HBΦ is true in all answer sets of a positive disjunctive dl-programKB = (L,P )
iff α is true in all first-order models ofL∪ ground(P ). In particular,α∈HBΦ is true in all answer sets of
KB = (L, ∅) iff α is true in all first-order models ofL. Note that the theorem holds also whenα is a ground
formula constructed fromHBΦ using the operators∧ and∨.

Theorem 3.5 LetKB = (L,P ) be a positive disjunctive dl-program, and letα be a ground atom fromHBΦ.
Then,α is true in all answer sets ofKB iff α is true in all first-order models ofL∪ ground(P ).

4 Probabilistic Description Logic Programs

In this section, we present atightly integratedapproach toprobabilistic disjunctive description logic pro-
grams (or simply probabilistic dl-programs) under the answer set semantics. Differently from [15] (in
addition to being a tightly integrated approach), the probabilistic dl-programs here also allow for disjunc-
tions in rule heads. Similarly to the probabilistic dl-programs in [15], they are defined as a combination of
dl-programs with Poole’s ICL [17, 18], but using the tightly integrated disjunctive dl-programs of Section 3,
rather than the loosely integrated dl-programs of [6, 5]. Poole’s ICL is based on ordinary acyclic logic pro-
gramsP under different “choices”, where every choice along withP produces a first-order model, and one
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then obtains a probability distribution over the set of all first-order models byplacing a probability distribu-
tion over the different choices. We use the tightly integrated disjunctive dl-programs under the answer set
semantics of Section 3, instead of ordinary acyclic logic programs under their canonical semantics (which
coincides with their answer set semantics). We first introduce the syntax ofprobabilistic dl-programs and
then their answer set semantics.

4.1 Syntax

We now define the syntax of probabilistic dl-programs and probabilistic queries addressed to them. We first
introduce choice spaces and probabilities on choice spaces.

A choice spaceC is a set of pairwise disjoint and nonempty setsA⊆HBΦ−DLΦ. Any A∈C is
an alternativeof C and any elementa∈A an atomic choiceof C. Intuitively, every alternativeA∈C
represents a random variable and every atomic choicea∈A one of its possible values. Atotal choice
of C is a setB⊆HBΦ such that|B ∩ A|= 1 for all A∈C (and thus|B|= |C|). Intuitively, every total
choiceB of C represents an assignment of values to all the random variables. Aprobabilityµ on a choice
spaceC is a probability function on the set of all total choices ofC. Intuitively, every probabilityµ is a
probability distribution over the set of all variable assignments. SinceC and all its alternatives are finite,µ
can be defined by (i) a mappingµ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a)= 1 for all A∈C, and (ii)µ(B) =

Πb∈Bµ(b) for all total choicesB of C. Intuitively, (i) defines a probability over the values of each random
variable ofC, and (ii) assumes independence between the random variables.

A probabilistic dl-programKB = (L,P,C, µ) consists of a disjunctive dl-program(L,P ), a choice
spaceC such that no atomic choice inC coincides with the head of any rule inground(P ), and a probabil-
ity µ onC. Intuitively, since the total choices ofC select subsets ofP , andµ is a probability distribution
on the total choices ofC, every probabilistic dl-program is the compact representation of a probability dis-
tribution on a finite set of disjunctive dl-programs. We sayKB is normal iff P is normal. Aprobabilistic
query to KB has the form∃(c1(x) ∨ · · · ∨ cn(x))[r, s], wherex, r, s is a tuple of variables,n> 1, and
eachci(x) is a conjunction of atoms constructed from predicate and constant symbols inΦ and variables
in x. A correct (resp.,tight) answerto such a query is a ground substitutionθ (acting onx, r, s) such
that (c1(x) ∨ · · · ∨ cn(x))[r, s] θ is a consequence (resp., tight consequence) ofKB , where the notions of
consequenceand tight consequenceare defined in the next paragraph. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [15].

Example 4.1 ConsiderKB = (L,P,C, µ), whereL andP are as in Examples 2.1 and 3.1, respectively,
except that the following two (probabilistic) rules are added toP :

given(X, operating systems) ← master student(X), given(X, unix ), choicem ;

given(X, operating systems) ← bachelor student(X), given(X, unix ), choiceb .

Let C = {{choicem,not choicem}, {choiceb,not choiceb}}, and let the probabilityµ onC be given by
µ : choicem, not choicem, choiceb, not choiceb 7→ 0.9, 0.1, 0.7, 0.3. Here, the new (probabilistic) rules
express that if a master (resp., bachelor) student has given the examunix , then there is a probability of
0.9 (resp.,0.7) that he/she has also givenoperating systems. Note that probabilistic facts can be en-
coded by rules with only atomic choices in their body. Our wondering about the entailed tight inter-
val for the probability thatjohn has given an exam onjava can be expressed by the probabilistic query
∃(given(john, java))[R,S]. Our wondering about which examsjohn has given with which tight probabil-
ity interval can be expressed by∃(given(john, E))[R,S].
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4.2 Semantics

We now define an answer set semantics of probabilistic dl-programs, and we introduce the notions of con-
sistency, consequence, and tight consequence.

Given a probabilistic dl-programKB =(L,P,C, µ), a probabilistic interpretationPr is a probabil-
ity function on the set of allI ⊆HBΦ. We sayPr is an answer setof KB iff (i) every interpretation
I ⊆HBΦ with Pr(I)> 0 is an answer set of(L,P ∪ {p← | p∈B}) for some total choiceB of C, and (ii)
Pr(

∧
p∈B p)=

∑
I⊆HBΦ, B⊆I Pr(I) = µ(B) for every total choiceB of C. Informally,Pr is an answer set

of KB = (L,P,C, µ) iff (i) every interpretationI ⊆HBΦ of positive probability underPr is an answer set
of the dl-program(L,P ) under some total choiceB of C, and (ii)Pr coincides withµ on the total choices
B of C. We sayKB is consistentiff it has an answer setPr .

We define the notions of consequence and tight consequence as follows. Given a probabilistic query
∃(q(x))[r, s], the probability of q(x) in a probabilistic interpretationPr under a variable assignmentσ,
denotedPrσ(q(x)) is defined as the sum of allPr(I) such thatI ⊆HBΦ andI |=σ q(x). We say(q(x))[l, u]
(wherel, u∈ [0, 1]) is a consequenceof KB , denotedKB‖∼ (q(x))[l, u], iff Prσ(q(x))∈ [l, u] for every
answer setPr of KB and every variable assignmentσ. We say(q(x))[l, u] (wherel, u∈ [0, 1]) is a tight
consequenceof KB , denotedKB ‖∼tight(q(x))[l, u], iff l (resp.,u) is the infimum (resp., supremum) of
Prσ(q(x)) subject to all answer setsPr of KB and allσ.

5 Probabilistic Data Integration

A central aspect of the Semantic Web is data integration. In this section, we show how probabilistic dl-
programs can be used for data integration with probabilities. Thus, probabilistic dl-programs are a very
promising formalism for probabilistic data integration in the Rules, Logic, and Proof layers of the Seman-
tic Web.

5.1 Overview

A data integration system(in its most general form) [14]I =(G ,S ,M ) consists of (i) aglobal(or mediated)
schemaG , which represents the domain of interest of the system, (ii) asource schemaS , which represents
the data sources that take part in the system, and (iii) amappingM , which establishes a relation between
the source schema and the global schema. Here,G is purely virtual, while the data are stored inS . The
mappingM can be specified in different ways, which is a crucial aspect in a data integration system. In
particular, when every data structure inG is defined through a view overS , the mapping is said to beGAV
(global-as-view), while when very data structure inS is defined through a view overG the mapping isLAV
(local-as-view). A mixed approach, calledGLAV [9, 2], associates views overG to views overS .

In our framework, we assume that the global schemaG, the source schemaS, and the mappingM are
each encoded by a probabilistic dl-program. More formally, we partition the vocabularyΦ into the setsΦG ,
ΦS , andΦc: (i) the symbols inΦG are of arity at least1 and represent the global predicates, (ii) the symbols
in ΦS are of arity at least1 and represent source predicates, and (iii) the symbols inΦc are constants.
Let AG, RA,G, andRD,G be pairwise disjoint denumerable sets of atomic concepts, abstract roles, and
datatype roles, respectively, for the global schema, and letAS , RA,S , andRD,S (disjoint fromAG, RA,G,
andRD,G) be similar sets for the source schema. We also assume a denumerable set ofindividualsI that
is disjoint from the set of all concepts and roles and a superset ofΦc. A probabilistic data integration
systemPI = (KBG ,KBS ,KBM ) consists of a probabilistic dl-programKBG = (LG, PG, CG, µG) for the
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global schema, a probabilistic dl-programKBS=(LS ,PS ,CS , µS) for the source schema, and a probabilistic
dl-programKBM = (∅, PM , CM , µM ) for the mapping:

• KBG (resp.,KBS) is defined over the predicates, constants, concepts, roles, and individuals of the
global (resp., source) schema, and it encodes ontological, rule-based, and probabilistic relationships
in the global (resp., source) schema.

• KBM is defined over the predicates, constants, concepts, roles, and individuals of the global and the
source schema, and it encodes a probabilistic mapping between the predicates, concepts, and roles of
the source and those of the global schema.

Note that our very general setting allows a specification of the mapping that can freely use global and source
predicates together in rules, thus having a formalism that generalizes LAV and GAV in some way. The only
limitation is having a disjunction of atoms in the head; this does not allow us to fully capture GLAV data
integration systems.

Note also that correct and tight answers to probabilistic queries on the global schema are formally de-
fined relative to the probabilistic dl-programKB = (L,P,C, µ), whereL=LG ∪LS , P =PG ∪PS ∪PM ,
C =CG ∪CS ∪CM , andµ=µG ·µS ·µM . Informally,KB is the result of mergingKBG, KBS , andKBM .
In a similar way, the probabilistic dl-programKBS of the source schemaS can be defined by merging the
probabilistic dl-programsKBS1

, . . . ,KBS1
of n> 1 source schemasS1, . . . , Sn.

The fact that the mapping is probabilistic allows for a high flexibility in the treatmentof the uncertainty
that is present when pieces of data come from heterogeneous sourceswhose informative content may be
inconsistent and/or redundant relative to the global schemaG , which in general incorporates constraints.
Some different types of probabilistic mappings that can be modeled in our framework are summarized below.

5.2 Types of Probabilistic Mappings

In addition to expressing probabilistic knowledge about the global schema and about the source schema, the
probabilities in probabilistic dl-programs can especially be used for specifying the probabilistic mapping in
the data integration process. We distinguish three different types of probabilistic mappings, depending on
whether the probabilities are used astrust, error, or mapping probabilities.

The most simple way of probabilistically integrating several data sources is to weight each data source
with a trust probability(which all sum up to1). This is especially useful when several redundant data sources
are to be integrated. In such a case, pieces of data from different datasources may easily be inconsistent
with each other.

Example 5.1 Suppose that we want to obtain a weather forecast for a certain place byintegrating the
potentially different weather forecasts of several weather forecastinstitutes. For ease of presentation,
suppose that we only have three weather forecast institutesA, B, andC. In general, one trusts cer-
tain weather forecast institutes more than others. In our case, we suppose that our trust in the insti-
tutesA, B, andC is expressed by the trust probabilities0.6, 0.3, and 0.1, respectively. That is, we
trust most inA, medium inB, and less inC. In general, the different institutes do not use the same
data structure to represent their weather forecast data. For example, instituteA may use a single rela-
tion forecast(place, date,weather , temperature,wind) to store all the data, whileB may have one rela-
tion forecast place(date,weather , temperature,wind) for every place, andC may use several different
relationsforecast weather(place, date,weather), forecast temperature(place, date, temperature), and
forecast wind(place, date,wind). Suppose that the global schemaG has the relationforecast rome(date,
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weather , temperature,wind), which may e.g. be posted on the web by the tourist information of Rome.
The probabilistic mapping of the source schemas ofA, B, andC to the global schemaG can then be
specified by the followingKBM = (∅, PM , CM , µM ):

PM = {forecast rome(D,W, T,M)← forecast(rome, D,W, T,M), instA;

forecast rome(D,W, T,M)← forecast rome(D,W, T,M), instB;

forecast rome(D,W, T,M)← forecast weather(rome, D,W ),

forecast temperature(rome, D, T ), forecast wind(rome, D,M), instC} ;

CM = {{instA, instB, instC}} ;

µM : instA, instB, instC 7→ 0.6, 0.3, 0.1 .

The mapping assertions state that the first, second, and third rule above hold with the probabilities0.6, 0.3,
and0.1, respectively. This is motivated by the fact that three institutes may generallyprovide conflicting
weather forecasts, and our trust in the institutesA,B, andC are given by the trust probabilities0.6, 0.3, and
0.1, respectively.

A more complex way of probabilistically integrating several data sources is to associate each data source
(or each derivation) with anerror probability.

Example 5.2 Suppose that we want to integrate the data provided by the different sensors in a sensor net-
work. For example, suppose that we have a sensor network measuring the concentration of ozone in several
different positions of a certain town, which may e.g. be the basis for the common hall to reduce or forbid
individual traffic. Suppose that each sensori∈{1, . . . , n} with n> 1 is associated with its position through
sensor(i, position) and provides its measurement data in a single relationreading i(date, time, type, result).
Each such reading may be erroneous with the probabilityei. That is, any tuple returned (resp., not returned)
by a sensori∈{1, . . . , n} may not hold (resp., may hold) with probabilityei. Suppose that the global
schema contains a single relationreading(position, date, time, type, result). Then, the probabilistic map-
ping of the source schemas of the sensorsi∈{1, . . . , n} to the global schemaG can be specified by the
following probabilistic dl-programKBM =(∅, PM , CM , µM ):

PM = {aux (P,D, T,K,R)← reading i(D,T,K,R), sensor(i, P ) | i∈{1, . . . , n}} ∪

{reading(P,D, T,K,R)← aux (P,D, T,K,R), not error i | i∈{1, . . . , n}} ∪

{reading(P,D, T,K,R)← not aux (P,D, T,K,R), error i | i∈{1, . . . , n}} ;

CM = {{error i,not error i} | i∈{1, . . . , n}} ;

µM : error1,not error1, . . . , errorn,not errorn 7→ e1, 1−e1, . . . , en, 1−en .

Note that if there are two sensorsj andk for the same position, and they both return the same tuple as a read-
ing, then this reading is correct with the probability1− ejek (since it may be erroneous with the probability
ejek). Note also that this modeling assumes that the errors of the sensors are independent from each other,
which can be achieved by eventually unifying atomic choices. For example, ifthe sensorj depends on the
sensork, thenj is erroneous whenk is erroneous, and thus the atomic choices{error j ,not error j} and
{errork,not errork} are merged into the new atomic choice{error jerrork, not error jerrork,not error j

not errork}.

Finally, when integrating several data sources, it may be the case that the relationships between the
source schema and the global schema arepurely probabilistic.



INFSYS RR 1843-07-05 11

Example 5.3 Suppose we want to integrate the schemas of two libraries, and that the global schema contains
the conceptlogic programming , while the source schemas contain only the conceptsrule-based systems

resp.deductive databases in their ontologies. These three concepts are overlapping to some extent, but
they do not exactly coincide. For example, a randomly chosen book fromrule-based systems (resp.,
deductive databases) may belong to the arealogic programming with the probability0.7 (resp.,0.8).
The probabilistic mapping from the source schemas to the global schema can then be expressed by the
following KBM =(∅, PM , CM , µM ):

PM = {logic programming(X)← rule-based systems(X), choice1 ;

logic programming(X)← deductive databases(X), choice2} ;

CM = {{choice1,not choice1}, {choice2,not choice2}} ;

µM : choice1,not choice1, choice2,not choice2 7→ 0.7, 0.3, 0.8, 0.2 .

Observe that the above rules express a probabilistic mapping between the concepts of two ontologies, and
thus they show especially the advantages of tightly integrated probabilistic dl-programs in probabilistic data
integration (since such a mapping cannot be expressed via the loosely integrated probabilistic dl-programs
in [15]).

6 Probabilistic Reasoning about Actions

Poole’s ICL [17, 18] is in fact a situation-calculus based language for reasoning about actions under proba-
bilistic uncertainty. As a consequence, our approach to probabilistic dl-programs also constitutes a natural
way of integrating Bayesian probabilities and description logics in reasoningabout actions, especially to-
wards Web Services.

Example 6.1 Consider a mobile robot that should pick up some objects. We now sketch howthis scenario
can be modeled using a probabilistic dl-programKB = (L,P,C, µ). The ontology componentL encodes
background knowledge about the domain. For example, concepts may encode different kinds of objects and
different kinds of positions, while roles may express different kinds ofrelations between positions (in a3×3
grid), which is expressed by the following description logic axioms inL:

ball ⊑ light object ; light object ⊑ object ; heavy object ⊑ object ;

central position ⊑ position; object(obj1 ); heavy object(obj2 );

ball(obj3 ); light object(obj4 ); position(pos1 ); . . . ; position(pos9 );

central position(pos5 ); west of (pos1 , pos2 ); . . . ; ∃west of .⊤⊑ position;

∃west of −.⊤⊑ position; north of (pos1 , pos4 ); . . . ; neighbor(pos1 , pos2 ); . . . .

The rules componentP encodes the dynamics (within a finite time frame). For example, the following rule
in L says that if the robot performs a pickup of objectO, both the robot and the objectO are at the same
position, and the pickup ofO succeeds (which is an atomic choice associated with a certain probability),
then the robot is carryingO at the next time point (here, action function symbols are removed through
grounding):

carrying(O, T + 1)← do(pickup(O), T ), at(robot ,Pos, T ), at(O,Pos, T ),

pickup succeeds(O, T ), object(O), position(Pos) .
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The subsequent rule inP says that if the robot is carrying a heavy objectO, performs no pickup and no
putdown operation, and keeps carryingO (which is an atomic choice associated with a certain probability),
then the robot also keeps carryingO at the next time point (we can then use a similar rule for light object
with a different probability):

carrying(O, T + 1)← carrying(O, T ), not do(pickup(O), T ), not do(putdown(O), T ),

keeps carrying(O, T ), heavy object(O), position(Pos) .

In order to encode the probabilities for the above rules, the choice spaceC contains all ground instances
of {keeps carrying(O, T ), not keeps carrying(O, T )} and {pickup succeeds(O, T ), not pickup suc-
ceeds(O, T )}. We then define a probabilityµ on each atomic choiceA∈C (for example,µ(keeps carry-
ing(obj1 , 1))= 0.9 andµ(not keeps carrying(obj1 , 1))= 0.1) and extend it to a probabilityµ on the set
of all total choices ofC by assuming independence between the atomic choices ofC.

7 Algorithms and Complexity

In this section, we characterize the consistency and the query processing problem in probabilistic dl-programs
in terms of the consistency and the cautious/brave reasoning problem in disjunctive dl-programs (which are
all decidable [16]). These characterizations show that the consistencyand the query processing problem in
probabilistic dl-programs are decidable and computable, respectively, and they directly reveal algorithms for
solving these problems. We also give a precise picture of the complexity of deciding consistency and correct
answers when the choice spaceC is bounded by a constant (which always holds for data integration using
trust probabilities (where|C|=1), and which is generally also reasonable when using error probabilities).

7.1 Algorithms

The following theorem shows that a probabilistic dl-programKB =(L,P, C, µ) is consistent iff(L,P ∪
{p←| p∈B}) is consistent, for every total choiceB ofC. This implies that deciding whether a probabilistic
dl-program is consistent can be reduced to deciding whether a disjunctive dl-program is consistent.

Theorem 7.1 Let KB = (L,P,C, µ) be a probabilistic dl-program. Then,KB is consistent iff(L,P ∪
{p← | p∈B}) is consistent, for every total choiceB ofC.

The next theorem shows that computing tight answers for probabilistic queries∃(q)[r, s] to KB , where
q ∈HBΦ, can be reduced to computing all answer sets of disjunctive dl-programs and then solving two
linear optimization problems. The theorem holds also whenq is a ground formula constructed fromHBΦ.

Theorem 7.2 Let KB = (L,P,C, µ) be a consistent probabilistic dl-program, and letq be a ground atom
from HBΦ. Then,l (resp.,u) such thatKB ‖∼tight (q)[l, u] is the optimal value of the following linear
program overyr (r∈R), whereR is the set of all answer sets of(L,P ∪ {p ← | p∈B}) for all total
choicesB ofC:

min (resp., max)
∑

r∈R, r |= q yr subject toLC in Fig. 1.

The following theorem shows that computing tight answers for∃(q)[r, s] to KB , whereq ∈HBΦ, can
be reduced to brave and cautious reasoning from disjunctive dl-programs. Informally, to obtain the tight
lower (resp., upper) bound, we have to sum up allµ(B) such thatq is a cautious (resp., brave) consequence
of (L,P ∪ {p←| p∈B}). The theorem holds also whenq is a ground formula constructed fromHBΦ.
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∑

r∈R, r 6|=
V

B

−µ(B) yr +
∑

r∈R, r|=
V

B

(1− µ(B)) yr = 0 (for all total choicesB of C)

∑

r∈R

yr = 1

yr > 0 (for all r∈R)

Figure 1: System of linear constraintsLC for Theorem 7.2.

Theorem 7.3 Let KB = (L,P,C, µ) be a consistent probabilistic dl-program, and letq be a ground atom
from HBΦ. Then,l (resp.,u) such thatKB‖∼tight (q)[l, u] is the sum of allµ(B) such that (i)B is a total
choice ofC and (ii) q is true in all (resp., some) answer sets of(L,P ∪ {p← | p∈B}).

7.2 Complexity

The following theorem shows that deciding whether a probabilistic dl-program is consistent is complete
for NEXPNP (and so has the same complexity as deciding consistency in ordinary disjunctive logic pro-
grams) when the size of its choice space is bounded by a constant. Here, the lower bound follows from the
NEXPNP-hardness of deciding whether an ordinary disjunctive logic program has an answer set [4].

Theorem 7.4 GivenΦ and a probabilistic dl-programKB = (L,P,C, µ), whereL is defined inSHIF(D)
or SHOIN (D), and the size ofC is bounded by a constant, deciding whetherKB is consistent is complete
for NEXPNP.

The following theorem shows that deciding correct answers for probabilistic queries∃(q)[r, s], where
q ∈HBΦ, to a probabilistic dl-program is complete forco-NEXPNP when the size of the choice space is
bounded by a constant. The theorem holds also whenq is a ground formula constructed fromHBΦ.

Theorem 7.5 GivenΦ, a probabilistic dl-programKB =(L,P,C, µ), whereL is defined inSHIF(D) or
SHOIN (D), and the size ofC is bounded by a constant, a ground atomq from HBΦ, and l, u∈ [0, 1],
deciding whether(q)[l, u] is a consequence ofKB is complete forco-NEXPNP.

8 Tractability Results

In this section, we describe a special class of probabilistic dl-programs for which the problems of deciding
consistency and of query processing have both a polynomial data complexity. These programs are normal,
stratified, and defined relative toDL-Lite [3], which allows for deciding knowledge base satisfiability in
polynomial time.

We first recallDL-Lite. Let A, RA, andI be pairwise disjoint sets of atomic concepts, abstract roles,
and individuals, respectively. Abasic concept in DL-Liteis either an atomic concept fromA or an exists
restriction on roles∃R.⊤ (abbreviated as∃R), whereR∈RA ∪R

−
A. A literal in DL-Lite is either a basic

conceptb or the negation of a basic concept¬b. Concepts in DL-Liteare defined by induction as follows.
Every basic concept inDL-Lite is a concept inDL-Lite. If b is a basic concept inDL-Lite, andφ1 andφ2

are concepts inDL-Lite, then¬b andφ1 ⊓ φ2 are also concepts inDL-Lite. An axiom in DL-Liteis either
(1) a concept inclusion axiomb⊑ψ, whereb is a basic concept inDL-Lite andφ is a concept inDL-Lite, or
(2) afunctionality axiom(functR), whereR∈RA ∪R

−
A, or (3) a concept membership axiomb(a), whereb
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is a basic concept inDL-Lite anda∈ I, or (4) a role membership axiomR(a, c), whereR∈RA anda, c∈ I.
A knowledge base in DL-LiteL is a finite set of axioms inDL-Lite.

Every knowledge base inDL-Lite L can be transformed into an equivalent one inDL-Lite trans(L) in
which every concept inclusion axiom is of formb⊑ ℓ, whereb (resp.,ℓ) is a basic concept (resp., literal) in
DL-Lite [3]. We then definetrans(P )=P ∪ {b′(X)← b(X) | b⊑ b′ ∈ trans(L), b′ is a basic concept} ∪
{∃R(X)←R(X,Y ) |R ∈ RA ∩Φ} ∪ {∃R−(Y )←R(X,Y ) |R∈RA ∩Φ}. Intuitively, we make explicit
all the relationships between the predicates inP that are implicitly encoded inL.

We define stratified normal dl- and stratified normal probabilistic dl-programsas follows. A normal
dl-programKB = (L,P ) is stratifiediff (i) L is defined inDL-Lite and (ii) trans(P ) is locally stratified. A
probabilistic dl-programKB = (L,P,C, µ) is normal iff P is normal. A normal probabilistic dl-program
KB = (L,P,C, µ) is stratifiediff every of KB ’s represented dl-programs is stratified.

The following result shows that stratified normal probabilistic dl-programs allow for consistency check-
ing and query processing with a polynomial data complexity. It follows from Theorems 7.1 and 7.3 and that
consistency checking and cautious/brave reasoning in stratified normal dl-programs have all a polynomial
data complexity [16].

Theorem 8.1 GivenΦ and a stratified normal probabilistic dl-programKB , (a) deciding whetherKB has
an answer set, and (b) computingl, u∈ [0, 1] for a given ground atomq such thatKB ‖∼tight(q)[l, u] has
both a polynomial data complexity.

9 Conclusion

We have presented a tight combination of disjunctive logic programs under the answer set semantics, de-
scription logics, and Bayesian probabilities. We have described applications in probabilistic data integration
and in reasoning about actions. We have shown that consistency checking and query processing are decid-
able resp. computable, and that they can be reduced to consistency checking and cautious/brave reasoning
in disjunctive dl-programs. We have also analyzed the complexity of consistency checking and query pro-
cessing in probabilistic dl-programs in special cases. In particular, we have presented a special case of these
problems with polynomial data complexity.

Appendix A: Proofs

Proof of Theorem 7.1. Recall first thatKB is consistent iffKB has an answer setPr , which is a proba-
bilistic interpretationPr such that (i) every interpretationI ⊆HBΦ such thatPr(I)> 0 is an answer set of
(L,P ∪{p← | p∈B}) for some total choiceB of C, and (ii)Pr(

∧
p∈B p)=µ(B) for every total choiceB

of C.

(⇒) Suppose thatKB is consistent. We now show that(L,P ∪ {p ← | p∈B}) is consistent, for every
total choiceB of C. Towards a contradiction, suppose the contrary. That is,(L,P ∪ {p ← | p∈B}) is
not consistent for some total choiceB of C. It thus follows thatPr(

∧
p∈B p)= 0. But this contradicts

Pr(
∧

p∈B p)=µ(B). This shows that(L,P ∪ {p← | p∈B}) is consistent, for every total choiceB of C.

(⇐) Suppose that(L,P ∪ {p ← | p∈B}) is consistent, for every total choiceB of C. That is, there
exists some answer setIB of (L,P ∪ {p← | p∈B}), for every total choiceB of C. Let the probabilistic
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interpretationPr be defined byPr(IB)=µ(B), for every total choiceB of C. Then,Pr is an interpretation
that satisfies (i) and (ii). That is,Pr is an answer set ofKB . This shows thatKB is consistent.2

Proof of Theorem 7.2. We show that every answer setPr of KB corresponds to a solution of the system
of linear constraintsLC . Observe first that only the interpretationsI ⊆HBΦ that are an answer set of
(L,P ∪{p←| p∈B}) for some total choiceB of C can be assigned a positive probability under an answer
setPr of KB . The set of all such interpretationsI corresponds to the set of all variables inR. The last two
equations ofLC ensure that the probability associated with each such interpretation is non-negative and that
all probabilities sum up to1. The first equation ensures that the probabilities associated with all the answer
sets of each(L,P ∪ {p ←| p∈B}) sum up toµ(B), since it is equivalent to

∑
r∈R, r|=

V

B yr =µ(B).
Finally, the probability ofq, which has to be minimized (resp., maximized) to obtain the tightest lower
(resp., upper) bound ofPr(q), is represented by the objective function

∑
r∈R, r|=q yr. 2

Proof of Theorem 7.3. The statement of the theorem follows from the observation that the probability
µ(B) of all total choicesB of C such thatq is true in all (resp., some) answer sets of(L,P ∪{p←| p∈B})
contributes (resp., may contribute) to the probabilityPr(q), while the probabilityµ(B) of all total choicesB
of C such thatq is false in all answer sets of(L,P ∪ {p←| p∈B}) does not contribute toPr(q). 2

Proof of Theorem 7.4. We first show membership inNEXPNP. By Theorem 7.1, we check whether
(L,P ∪ {p←| p∈B}) is consistent, for every total choiceB of C. SinceC is bounded by a constant, the
number of total choices ofC is also bounded by a constant. As shown in [16], deciding whether a disjunctive
dl-program has an answer set is inNEXPNP. Hence, deciding whetherKB is consistent is inNEXPNP.

Hardness forNEXPNP follows from theNEXPNP-hardness of deciding whether a disjunctive dl-
program has an answer set [16], since by Theorem 7.1 a disjunctive dl-programKB = (L,P ) has an answer
set iff the probabilistic dl-programKB = (L,P, C, µ) has answer set, for any choice spaceC and probability
functionµ. 2

Proof of Theorem 7.5. We first show membership in co-NEXPNP. We show that deciding whether(q)[l, u]
is not a consequence ofKB is in NEXPNP. By Theorem 7.3,(q)[l, u] is not a consequence ofKB iff
there exists a setB of total choicesB of C such that either (a.1)q is true in some answer set of(L,P ∪
{p←| p∈B}), for everyB ∈B, and (a.2)

∑
B∈B µ(B)>u, or (b.1)q is false in some answer set of(L,P ∪

{p←| p∈B}), for everyB ∈B, and (a.2)
∑

B∈B µ(B)< l. As shown in [16], deciding whetherq is true in
some answer set of a disjunctive dl-program is inNEXPNP. It thus follows that deciding whether(q)[l, u]
is not a consequence ofKB is in NEXPNP, and thus deciding whether(q)[l, u] is a consequence ofKB is
in co-NEXPNP

Hardness for co-NEXPNP follows from the co-NEXPNP-hardness of deciding whether a ground atom
q is true in all answer sets of a disjunctive dl-program [16], since by Theorem 7.3 a ground atomq is true
in all answer sets of a disjunctive dl-programKB = (L,P ) iff (q)[1, 1] is a consequence of the probabilistic
dl-programKB = (L,P,C, µ), for any choice spaceC and probability functionµ. 2

Proof of Theorem 8.1. As shown in [16], deciding the existence of (and computing) the answer set of
a stratified normal dl-program has a polynomial data complexity. Observe then that in the case of data
complexity, the choice spaceC is fixed. By Theorems 7.1 and 7.3, it thus follows that the problems of (a)
deciding whetherKB has an answer set, and (b) computingl, u∈ [0, 1] for a given ground atomq such that
KB ‖∼ tight (q)[l, u], respectively, have both a polynomial data complexity.2
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