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Abstract. We present a novel approach to probabilistic descriptigiclprograms for the Seman-
tic Web, which constitutes a tight combination of disjumetlogic programs under the answer set
semantics with both description logics and Bayesian pritibab. The approach has a number of
nice features. In particular, it allows for a natural prolistic data integration, where probabilities
over possible worlds may be used as trust, error, or mappiigppilities. Furthermore, it also pro-
vides a natural integration of a situation-calculus basedliage for reasoning about actions with
both description logics and Bayesian probabilities. Weastitat consistency checking and query
processing are decidable resp. computable, and that tmepecaeduced to consistency checking
resp. cautious/brave reasoning in tightly integratedudisiive description logic programs. We also
analyze the complexity of consistency checking and queoggssing in probabilistic description
logic programs in special cases. In particular, we presesgezial case of these problems with
polynomial data complexity.
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1 Introduction

TheSemantic Wefl, 8] aims at an extension of the current World Wide Web by standaditeghnologies
that help machines to understand the information on the Web so that theypgeortsicher discovery, data
integration, navigation, and automation of tasks. The main ideas behind it adel ta machine-readable
meaning to Web pages, to use ontologies for a precise definition of shameslite\Web resources, to use
knowledge representation technology for automated reasoning fromeafebrces, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, whe€@rtodogy layerin form of theOWL
Web Ontology Languag@l, 12] (recommended by the W3C), is currently the highest layer dicsrit
maturity. OWL consists of three increasingly expressive sublanguagelyOWL Lite OWL DL, and
OWL Full. OWL Lite and OWL DL are essentially very expressive description logiitk an RDF syn-
tax [12]. As shown in [11], ontology entailment in OWL Lite (resp., OWL DEfuces to knowledge base
(un)satisfiability in the description logi§HZF (D) (resp.,SHOZN (D)). As a next step in the develop-
ment of the Semantic Web, one aims especially at sophisticated representaticgaaoning capabilities
for the Rules Logic, andProof layersof the Semantic Web. Several recent research efforts are going in
this direction.

In particular, there is a large body of work on integrating rules and onsoghich is a key requirement
of the layered architecture of the Semantic Web. One type of integration isldorbles on top of ontolo-
gies, that is, for rule-based systems that use vocabulary from ontktaayyledge bases. Another form of
integration is to build ontologies on top of rules, where ontological definitioms@applemented by rules or
imported from rules. Both types of integration have been realized in régénid integrations of rules and
ontologies, calledlescription logic programsor dl-programg, which have the fornrkB = (L, P), where
L is a description logic knowledge base afds a finite set of rules involving either queriesian a loose
coupling [6, 5] or concepts and roles frabnas unary resp. binary predicates in a tight coupling [19, 16].

Other works explore formalisms famcertainty reasoning in the Semantic Weln important recent
forum for approaches to uncertainty in the Semantic Web is the alivirshop on Uncertainty Reasoning
for the Semantic Web (URSWhere also exists a W3C Incubator Groupldmcertainty Reasoning for the
World Wide Wejp There are especially extensions of description logics, web ontologyéayes, and dl-
programs by probabilistic uncertainty (to encode ambiguous informatioh aaitlohn is a student with the
probability 0.7 and a teacher with the probability 0.3", which crucially diffeosf vague/fuzzy information,
such as “John is tall”). In particular, [15] extends dl-programs by abdlistic uncertainty. It combines dI-
programs as in [6, 5] with Poole’s independent choice logic (ICL) [18], IPoole’s ICL is a powerful
representation and reasoning formalism for single- and also multi-ageetsy, which combines logic and
probability, and which can represent a number of important uncertaimyalsms, in particular, influence
diagrams, Bayesian networks, Markov decision processes, andIformagames [17]. Moreover, Poole’s
ICL also allows for natural notions of causes and explanations as ifidsauctural causal models.

In this paper, we continue this line of research. We pregghtly integrated probabilistic disjunctive
description logic programgor simplyprobabilistic dI-programyunder the answer set semantiegich are
a tight integration of disjunctive logic programs under the answer set sEsiahe expressive description
logics SHZF(D) andSHOZN (D), and Bayesian probabilities. To our knowledge, this is the first such
approach. The main contributions of this paper can be summarized as follows

e We present a novel approach to probabilistic dI-programs, which isllmasthe approach to disjunc-
tive dl-programs under the answer set semantics from [16]. The lattaightacoupling as in [19],
but it assumes no structural separation between the vocabularies efsitréption logic and the logic



2 INFSYS RR 1843-07-05

program components.

e In the same spirit as [15], this approach is developed as a combinatiorpodgtams with Poole’s
powerful ICL. However, rather than being based on a loose couplingles and ontologies, it is
based on a tight coupling. Furthermore, rather than being based onlmthonagrams, it is based on
disjunctive dl-programs.

e We present an approach to probabilistic data integration for the Semanticwhiedh is based on
the novel approach to probabilistic dI-programs, where probabilisticrtaioty over possible worlds
may be used as trust, error, or mapping probabilities. This application tadpsaition from a number
of recent probabilistic data integration approaches in the database armbmenunity [20].

e Since Poole’s ICL is actually a formalism for reasoning about actions immija systems, our ap-
proach to probabilistic dI-programs also provides a natural way of conmtbalanguage for reason-
ing about actions with both description logics and Bayesian probabilitieeciedly towards Web
Services.

e We show that consistency checking and query processing in probaliligitograms are decidable
resp. computable, and that they can be reduced to consistency chanKisgutious/brave reasoning
in tightly integrated disjunctive dl-programs. This directly reveals algorithmsdtving the former
two problems.

e We also analyze the complexity of consistency checking and query pginges probabilistic dI-
programs in special cases, which turn out to be complete for the cl&eEN" andco-NEXPNY,
respectively. Furthermore, we show that in the special case of stratifiedal probabilistic dI-
programs relative to the description lodit-Lite, these two problems have both a polynomial data
complexity.

Note that the results here crucially differ from the ones in [15]. Firstediffitly from the probabilistic
dl-programs here, the ones in [15] have a loose query-based colyglingen the ontology componeht
and the rule componer®. As a consequence, the alphabets.ofind P are disjoint, which is a limita-
tion in many applicatioris(see also Examples 3.1 and 5.3). Second, query processing in théifistioa
dl-programs in [15] requires a computationally expensive linear progragstgp. Third, [15] does not
allow for disjunctions in rule heads. Fourth, [15] does not investigatsiplesapplications in probabilistic
data integration and in probabilistic reasoning about actions. Fifth, [Ibdjigees neither complexity nor
tractability results.

The rest of this paper is organized as follows. Sections 2 and 3 recalétuweiption logicsSHZF (D)
and SHOZN (D) resp. disjunctive dl-programs under the answer set semantics frdmIfi&ection 4,
we introduce our new approach to probabilistic dl-programs. Sectionsl B aescribe its application in
probabilistic data integration resp. probabilistic reasoning about actiarSedtions 7 and 8, we focus on
its computational aspects. Section 9 summarizes our main results. Note thatdwtaalts of all results are
given in Appendix A.

!As noted by David Poole (personal communication).
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2 Description Logics

In this section, we recall the expressive description logi¢&Z (D) and SHOZN (D), which stand be-
hind the web ontology languages OWL Lite and OWL DL [11], respectivieliuitively, description logics
model a domain of interest in terms of concepts and roles, which reprelssses of individuals and bi-
nary relations between classes of individuals, respectively. A déserifpgic knowledge base encodes
especially subset relationships between concepts, subset relatiobhshigen roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

2.1 Syntax

We first describe the syntax SFHOZN (D). We assume a set efementary datatypemd a set oflata val-
ues A datatypeis either an elementary datatype or a set of data values (@Htadype oneOf A datatype
theoryD = (AP, .P) consists of alatatype domaim\P and a mappingP that assigns to each elemen-
tary datatype a subset &P and to each data value an element™®. The mapping® is extended to
all datatypes by{vq, .. .}D = {vP, ...}. Let A, Ry, Rp, andI be pairwise disjoint denumerable sets of
atomic conceptsabstract roles datatype rolesandindividuals respectively. We denote iy, the set of
inversesR~— of all Re R 4.

Aroleis an element oR4 UR, URp. Conceptsare inductively defined as follows. Evepyc A is a
concept, and iby, ..., 0, €1, then{oy,...,0,} is a concept (calledneOj. If ¢, ¢1, andp, are concepts
andifRe Ry UR, then alsq ¢ M ¢2), (¢1 U ¢2), and—¢ are concepts (callecbnjunction disjunction
and negation respectively), as well asR.¢, VR.¢, >nR, and <nR (called exists valug atleast and
atmost restrictionrespectively) for an integet > 0. If D is a datatype an@ € Rp, then3U.D, VU.D,
>nU, and<nU are concepts (calledhtatype existssalue atleast andatmost restrictionrespectively) for
an integem > 0. We write T and L to abbreviate the conceptsl) —=¢ and¢ M —¢, respectively, and we
eliminate parentheses as usual.

An axiomhas one of the following forms: (k) C « (calledconcept inclusion axiojnwhere¢ and
are concepts; (2 C S (calledrole inclusion axio where eithel?, S € R4 or R, S € Rp; (3) Trans(R)
(calledtransitivity axion), whereR € R 4; (4) ¢(a) (calledconcept membership axignwhere¢ is a con-
ceptand: €I; (5) R(a,b) (resp.,U (a,v)) (calledrole membership axiomwhereR € R 4 (resp.,U € Rp)
anda,b el (resp.,a €I andw is a data value); and (&)= b (resp.,a # b) (equality (resp.,inequality) ax-
iom), wherea, b € I. A knowledge basé is a finite set of axioms. For decidability, number restrictions in
are restricted to simple abstract roles [13].

The syntax ofSHZF (D) is as the above syntax SfHOZN (D), but without the oneOf constructor
and with the atleast and atmost constructors limite@land1.

Example 2.1 A university database may use a knowledge base characterize students and exams. For
example, suppose that (1) every bachelor student is a student; (2 ne@ster student is a student; (3) every
student is either a bachelor student or a master student; (4) professanst students; (5) only students
give exams and only exams are given; {@)n is a studentmary is a master studenfgva is an exam, and
john has given it. These relationships are expressed by the following axioms in

(1) bachelor_student T student; (2) master_student C student;

(3) student T bachelor_student L master_student; (4) professor C —student;
(5) > 1 given C student; > 1 given™! C exam;

(6) student(john); master_student(mary); exam(java); given(john, java) .
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2.2 Semantics

An interpretationZ = (AZ, ) relative to a datatype theoly = (AP, -P) consists of a nonemptgbstrac)
domainAZ disjoint from AP, and a mapping’ that assigns to each atomic concet A a subset ofAZ,

to each individuab € I an element ofAZ, to each abstract rolB € R 4 a subset oiAZ x AZ, and to each
datatype rold/ € R a subset ofA7 x AP, We extend? to all concepts and roles, and we define the
satisfactionof an axiomF in an interpretatior? = (A%, -7), denotedZ |= F, as usual [11]. We sa§
satisfiesthe axiomF', or Z is amodelof F, iff 7 |= F'. We sayZ satisfiesa knowledge basé, orZ is a
modelof L, denoted’ |= L, iff Z = F for all F € L. We sayL is satisfiableiff L has a model. An axion®’

is alogical consequencef L, denoted |= F, iff every model ofL satisfiest".

3 Description Logic Programs

In this section, we recall a novel approachdescription logic programgor dl-program9 KB = (L, P)
from [16], whereK B consists of a description logic knowledge bdsand a disjunctive logic prograrh.
Their semantics is defined in a modular way as in [6, 5], but it allows for a rtigbhter integration ofL
andP. Note that differently from [19], we do not assume any structuralrisejosm between the vocabularies
of L andP. The main idea behind their semantics is to intergteelative to Herbrand interpretations that
are coherent witlt,, while L is interpreted relative to general interpretations over a first-order dormhhus,
we modularly combine the standard semantics of logic programs and of desctlggics, which allows for
building on the standard techniques and results of both areas. As aadti@rtage, the novel dl-programs
are decidable, even when their components of logic programs and desctqmic knowledge bases are
both very expressive. See especially [16] for further details on theapproach to dl-programs and for a
detailed comparison to related works.

3.1 Syntax

We assume a first-order vocabulabywith nonempty finite sets of constant and predicate symbols, but no
function symbols. We usé.. to denote the set of all constant symbol®inWe also assume pairwise disjoint
denumerable setA, R 4, Rp, andI of atomic concepts, abstract roles, datatype roles, and individuals,
respectively, as in Section 2. We assume thab(i)s a subset of, and (ii)® andA (resp..R 4 URp) may
have unary (resp., binary) predicate symbols in common.

Let X' be a set of variables. fermis either a variable fromX’” or a constant symbol fron. An atomis
of the formp(t1,...,t,), wherep is a predicate symbol of arity > 0 from &, andty, ..., t, are terms. A
literal [ is an atonp or a negated atomot p. A disjunctive rule(or simplyrule) r is an expression of form

arp V- Vag 517‘ . -aﬁn’n()tﬁn-i-lv-”an()tﬁn-‘rmv (1)
whereay, ..., o, 51, ..., Ontm are atoms and, m,n >0. We callay V --- V oy the headof r, while
the conjunctionfy, ..., B,, not Bui1, ..., not Buim IS its body We defineH (r)={aq,...,ax} and

B(r)=B*(r)UB~(r),whereB*(r)={31,...,0,} andB~(r) ={Bn+1, - - -, Bntm }- A disjunctive pro-
gram P is a finite set of disjunctive rules of the form (1). We s@ys positiveiff m = 0 for all disjunctive
rules (1) inP. We sayP is anormal programiff k£ <1 for all disjunctive rules (1) inP.

A disjunctive description logic prograifor disjunctive dl-program KB = (L, P) consists of a descrip-
tion logic knowledge basé and a disjunctive progran?. We sayKB is positiveiff P is positive. It is a
normal dl-programiff P is a normal program.
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Example 3.1 Consider the disjunctive dl-prograiiB = (L, P), whereL is the description logic knowl-
edge base from Example 2.1, aRds the following set of rules, which express that 1) is either a master
student or a Ph.D. student, (2) the relation of propaedeuticity enjoys tigitiva property, (3) if a student
has given an exam, then he/she has given all exams that are projaeualéuand (4)uniz is propaedeutic
for java, andjava is propaedeutic foprogramming_languages:

(1) master_student(bill) V phd_student(bill) ;

(2) propaedeutic(X,Z) « propaedeutic(X,Y), propaedeutic(Y, Z);

(3) given(X,Z) «— giwven(X,Y), propaedeutic(Z,Y);

(4) propaedeutic(uniz, java); propaedeutic(java, programming _languages) .

The above disjunctive dl-program also shows the advantages andliftgxibthe tight integration between
rules and ontologies (compared to the loose integration in [6, 5]): Ob#eat¢he predicate symbgiven

in P is also a concept ik, and it freely occurs in both rule bodies and rule headB ifwhich is both not
possible in [6, 5]). Moreover, we can easily Uséo express additional constraints on the predicate symbols
in P. For example, we may use the two axiomd propaedeutic T exam and>1 propaedeutic™! T
exam in L to express thapropaedeutic in P relates only exams.

3.2 Semantics

We now define the answer set semantics of disjunctive dI-programs aeatization of the answer set se-
mantics of ordinary disjunctive logic programs. In the sequelklBt= (L, P) be a disjunctive dI-program.

A ground instanceof a ruler € P is obtained fromr by replacing every variable that occursrirby
a constant symbol frond.. We denote byyround(P) the set of all ground instances of rulesih The
Herbrand baseelative to®, denotedHBg, is the set of all ground atoms constructed with constant and
predicate symbols fronk. We useDLgs to denote the set of all ground atomshiB ¢ that are constructed
from atomic concepts i\, abstract roles iR 4, and concrete roles iR p.

An interpretation! is any subset ofiBs. Informally, every sucl represents the Herbrand interpreta-
tion in which alla € I (resp.,a € HBg — I) are true (resp., false). We say an interpretafiemamodelof a
description logic knowledge bade denoted! =L, iff LUI U {—a|a € HBg — I} is satisfiable. Observe
that a negative concept membershi@'(a) can be encoded as the positive concept membe(stif (a).
The following theorem shows that also negative role membershifi$, c¢) can be reduced to positive con-
cept memberships and concept inclusions.

Theorem 3.2 Let L be a description logic knowledge base, and b, c) be a role membership axiom.
Then,LU {=R(b, c)} is satisfiable iffL. U {B(b), C(c), IR.C C —B} is satisfiable, wherd& andC' are two
fresh atomic concepts.

We say an interpretatiohis amodelof a ground atona € HBg, or I satisfies:, denoted = q, iff a € I.
We say! is amodelof a ground ruler, denoted! |=r, iff I =« for somea € H(r) whenever! = B(r),
that is, ! =3 for all 3 € B™(r) and [~ 3 for all 3€ B~ (r). We say an interpretatiohis amodelof a set
of rulesP iff I |=r for everyr € ground(P). We sayl is amodelof a disjunctive dl-progrankB = (L, P),
denoted! = KB, iff I is a model of both, and P.

We now define the answer set semantics of disjunctive dl-programs leyaligimg the ordinary answer
set semantics of disjunctive logic programs. We generalize the definition ei&liR-reduct [7] (which
coincides with the answer set semantics defined via the Gelfond-LifscHiiztrgL0]). Given a dl-program
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KB = (L, P), theFLP-reductof KB relative to an interpretatiohC HBg, denotedk B, is the dl-program
(L, P), where P! is the set of allr € ground(P) such thatl = B(r). An interpretation/ C HBg is an
answer sebf KB iff I is a minimal model ofkB’. A dl-programKB is consisten{resp. inconsistentiff
it has an (resp., no) answer set.

We finally define the notions afautious(resp.,brave reasoningfrom disjunctive dl-programs under
the answer set semantics as follows. A ground atomHBg is acautious(resp.,brave consequence
of a disjunctive dl-progrankK B under the answer set semantics iff every (resp., some) answer & of
satisfiesu.

3.3 Properties

We now summarize some important properties of disjunctive dl-programg tiiel@above answer set se-
mantics. In the ordinary case, every answer set of a disjunctivegrogris also a minimal model ofP,
and the converse holds whéhis positive. The following theorem shows that this carries over to disjumctiv
dl-programs.

Theorem 3.3 Let KB = (L, P) be a disjunctive dl-program. Then, (a) every answer séfBfis a minimal
model ofK B, and conversely (b) iKB is positive, then every minimal model/6f3 is an answer set ok B.

The next theorem shows that the answer set semantics of disjunctivegitkms faithfully extends its
ordinary counterpart. That is, the answer set semantics of a disjuntfpregram with empty description
logic knowledge base coincides with the ordinary answer set semanticslidjitactive program.

Theorem 3.4 Let KB = (L, P) be a disjunctive dI-program witth = (). Then, the set of all answer sets of
KB coincides with the set of all ordinary answer setgof

The following theorem shows that the answer set semantics of disjuntfiregrams also faithfully ex-
tends (from the perspective of answer set programming) the first-sedeantics of description logic knowl-
edge bases. That is,€ HBg is true in all answer sets of a positive disjunctive dI-progr&i = (L, P)
iff «vis true in all first-order models af U ground(P). In particular,a € HBg is true in all answer sets of
KB =(L,0) iff «is true in all first-order models df. Note that the theorem holds also whers a ground
formula constructed front/ B4 using the operators andV.

Theorem 3.5 Let KB = (L, P) be a positive disjunctive dl-program, and tebe a ground atom froni/B .
Then,« is true in all answer sets &k B iff « is true in all first-order models of U ground(P).

4 Probabilistic Description Logic Programs

In this section, we presenttayhtly integratedapproach tgrobabilistic disjunctive description logic pro-
grams (or simply probabilistic dl-program$ under the answer set semanticBifferently from [15] (in
addition to being a tightly integrated approach), the probabilistic dl-programesdiso allow for disjunc-
tions in rule heads. Similarly to the probabilistic dl-programs in [15], they afiee as a combination of
dl-programs with Poole’s ICL [17, 18], but using the tightly integrated disjwe dl-programs of Section 3,
rather than the loosely integrated dI-programs of [6, 5]. Poole’s ICL$ga@n ordinary acyclic logic pro-
gramsP under different “choices”, where every choice along witlproduces a first-order model, and one
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then obtains a probability distribution over the set of all first-order modefsdnging a probability distribu-
tion over the different choices. We use the tightly integrated disjunctiveatjrpms under the answer set
semantics of Section 3, instead of ordinary acyclic logic programs underctrenical semantics (which
coincides with their answer set semantics). We first introduce the synfarolbébilistic dI-programs and
then their answer set semantics.

4.1 Syntax

We now define the syntax of probabilistic dl-programs and probabilistidegiaddressed to them. We first
introduce choice spaces and probabilities on choice spaces.

A choice space” is a set of pairwise disjoint and nonempty séts” HBg — DLgs. Any A€ C is
an alternative of C' and any element € A an atomic choiceof C. Intuitively, every alternatived € C'
represents a random variable and every atomic cheieel one of its possible values. #otal choice
of C'is a setB C HBg such thaB N A|=1 for all A€ C (and thusB|=|C]). Intuitively, every total
choiceB of C represents an assignment of values to all the random variablpsbability 1+ on a choice
spaceC is a probability function on the set of all total choices(@@f Intuitively, every probabilityu is a
probability distribution over the set of all variable assignments. Sinemd all its alternatives are finitg,
can be defined by (i) a mapping (JC — [0, 1] suchthaty " . , u(a)=1forall Ac C, and (i) u(B) =
[Ty pu(b) for all total choicesB of C. Intuitively, (i) defines a probability over the values of each random
variable ofC, and (ii) assumes independence between the random variables.

A probabilistic dl-programKB = (L, P, C, ) consists of a disjunctive dl-prografd, P), a choice
spaceC' such that no atomic choice @ coincides with the head of any rule imound(P), and a probabil-
ity x onC'. Intuitively, since the total choices @f select subsets aP, andy is a probability distribution
on the total choices af’, every probabilistic dl-program is the compact representation of a pilapalis-
tribution on a finite set of disjunctive dl-programs. We g&# is normaliff P is normal. Aprobabilistic
queryto KB has the formd(ci(z) V --- V cu(x))[r, s], wherex, r, s is a tuple of variablesp > 1, and
eache;(x) is a conjunction of atoms constructed from predicate and constant symbbland variables
in x. A correct (resp.,tight) answerto such a query is a ground substituti@r{acting onx, r, s) such
that(ci(x) V -+ V en(x))[r, s] 6 is a consequence (resp., tight consequenc&®f where the notions of
consequencandtight consequencare defined in the next paragraph. Note that the above probabilistic
queries can also be easily extended to conditional expressions as.in [15]

Example 4.1 ConsiderKB = (L, P,C, 1), whereL and P are as in Examples 2.1 and 3.1, respectively,
except that the following two (probabilistic) rules are addeé’to

given (X, operating _systems) < master_student(X ), given(X, unizx), choice,, ;

given(X, operating_systems) «— bachelor_student(X), given(X, uniz), choicey, .

Let C' = {{choicen, not_choicen,}, { choicey, not_choicey} }, and let the probability. on C' be given by

1 choice,,, not_choice,,, choicey, not_choice, — 0.9, 0.1, 0.7, 0.3. Here, the new (probabilistic) rules
express that if a master (resp., bachelor) student has given thewexamthen there is a probability of
0.9 (resp.,0.7) that he/she has also givemerating_systems. Note that probabilistic facts can be en-
coded by rules with only atomic choices in their body. Our wondering abautetttailed tight inter-
val for the probability thatohn has given an exam ofuva can be expressed by the probabilistic query
(given(john, java))[R, S]. Our wondering about which examjishn has given with which tight probabil-
ity interval can be expressed Bygiven(john, E))[R, S].
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4.2 Semantics

We now define an answer set semantics of probabilistic dl-programs, amttneduce the notions of con-
sistency, consequence, and tight consequence.

Given a probabilistic di-progrankB = (L, P, C, 11), a probabilistic interpretationPr is a probabil-
ity function on the set of all C HBgs. We sayPr is ananswer sebf KB iff (i) every interpretation
I C HBg with Pr(I)>0is an answer set dfL., P U {p < | p € B}) for some total choicé of C, and (ii)
Pr(Npepp) = 2_icups, scr Prl) = u(B) for every total choices of C'. Informally, Pr is an answer set
of KB= (L, P,C, p) iff (i) every interpretation/ C HBg¢ of positive probability undePr is an answer set
of the dI-program(L, P) under some total choicB of C', and (ii) Pr coincides withu on the total choices
B of C. We sayKB is consistentff it has an answer sePr.

We define the notions of consequence and tight consequence as folBiven a probabilistic query
(q(x))[r, s], the probability of ¢(x) in a probabilistic interpretatio®r under a variable assignmemt
denotedPr, (q(x)) is defined as the sum of &lr(I) such thatl C HB¢ andl =, q(x). We say(q(x))[l, u]
(wherel,u €[0,1]) is aconsequencef KB, denotedKB|r (q(x))[l, u], iff Pr,(q(x)) € [l,u] for every
answer setPr of KB and every variable assignment We say(q(x))[l, u] (Wherel,u € [0, 1]) is atight
consequencef KB, denotedKB |Mi9ht(q(m))[l,u], iff I (resp.,u) is the infimum (resp., supremum) of
Pr,(q(x)) subject to all answer sefd- of KB and allo.

5 Probabilistic Data Integration

A central aspect of the Semantic Web is data integration. In this section, avelsbw probabilistic dI-
programs can be used for data integration with probabilities. Thus, phisbialdl-programs are a very
promising formalism for probabilistic data integration in the Rules, Logic, andfRayers of the Seman-
tic Web.

5.1 Overview

A data integration systeifin its most general form) [14] = (G, S, M) consists of (i) aylobal (or mediatedl
schema@, which represents the domain of interest of the system, §juace schem4, which represents
the data sources that take part in the system, and (iiippping}, which establishes a relation between
the source schema and the global schema. Hgris, purely virtual, while the data are stored$h The
mappingM can be specified in different ways, which is a crucial aspect in a datgratien system. In
particular, when every data structure@his defined through a view ovéf, the mapping is said to HBAV
(global-as-view)while when very data structure is defined through a view over the mapping it AV
(local-as-view) A mixed approach, calleGLAV [9, 2], associates views ovéf to views overs.

In our framework, we assume that the global schémé#he source schem®, and the mapping/ are
each encoded by a probabilistic dI-program. More formally, we partitionadlcabulary® into the setsp ,
dg, andd..: (i) the symbols ind ; are of arity at least and represent the global predicates, (ii) the symbols
in &g are of arity at least and represent source predicates, and (iii) the symbofs.iare constants.
Let A¢, R4 g, andRp ¢ be pairwise disjoint denumerable sets of atomic concepts, abstract notes, a
datatype roles, respectively, for the global schema, and {etR 4 5, andR p g (disjoint fromAq, R4,
andRp ) be similar sets for the source schema. We also assume a denumerablsdefiadalsI that
is disjoint from the set of all concepts and roles and a supersét.ofA probabilistic data integration
systemP! = (KB, KBg, KB)y) consists of a probabilistic dl-prografB ¢ = (L¢, Pa, Ca, ) for the
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global schema, a probabilistic dI-progratiB s=(Lg,Ps,Cs, nus) for the source schema, and a probabilistic
dl-programKB s = (0, Pas, Car, par) for the mapping:

e KBq (resp.,KBy) is defined over the predicates, constants, concepts, roles, andliradé/of the
global (resp., source) schema, and it encodes ontological, rulestase probabilistic relationships
in the global (resp., source) schema.

e KB, is defined over the predicates, constants, concepts, roles, and ualé/af the global and the
source schema, and it encodes a probabilistic mapping between the gdicacepts, and roles of
the source and those of the global schema.

Note that our very general setting allows a specification of the mappingahdteely use global and source
predicates together in rules, thus having a formalism that generalizeshd\&AV in some way. The only
limitation is having a disjunction of atoms in the head; this does not allow us to fullyEBGLAV data
integration systems.

Note also that correct and tight answers to probabilistic queries on thalgollema are formally de-
fined relative to the probabilistic dl-prografB = (L, P, C, i), whereL = Lg U Lg, P = P5 U Ps U Py,
C=CqaUCsUCh,andu = pug - s - pasr- Informally, KB is the result of mergingB ¢, KBg, andKB ;.

In a similar way, the probabilistic dI-prograiiB ¢ of the source schem@ can be defined by merging the
probabilistic dl-program#Bg,, ..., KBg, of n > 1 source schema$,, ..., S,.

The fact that the mapping is probabilistic allows for a high flexibility in the treatroé&tite uncertainty
that is present when pieces of data come from heterogeneous sadrees informative content may be
inconsistent and/or redundant relative to the global schémerhich in general incorporates constraints.
Some different types of probabilistic mappings that can be modeled in onefark are summarized below.

5.2 Typesof Probabilistic Mappings

In addition to expressing probabilistic knowledge about the global schethatmut the source schema, the
probabilities in probabilistic dl-programs can especially be used for spegifiie probabilistic mapping in
the data integration process. We distinguish three different types oélpitdbic mappings, depending on
whether the probabilities are usedtasst, error, or mapping probabilities

The most simple way of probabilistically integrating several data sources isight\each data source
with atrust probability(which all sum up td). This is especially useful when several redundant data sources
are to be integrated. In such a case, pieces of data from differensaatees may easily be inconsistent
with each other.

Example 5.1 Suppose that we want to obtain a weather forecast for a certain plaodedgyating the
potentially different weather forecasts of several weather fordoatitutes. For ease of presentation,
suppose that we only have three weather forecast institdfeB, and C'. In general, one trusts cer-
tain weather forecast institutes more than others. In our case, we sugipsour trust in the insti-
tutes A, B, and C' is expressed by the trust probabilitiess, 0.3, and 0.1, respectively. That is, we
trust most inA, medium in B, and less inC. In general, the different institutes do not use the same
data structure to represent their weather forecast data. For exangileyténd may use a single rela-
tion forecast(place, date, weather, temperature, wind) to store all the data, whil& may have one rela-
tion forecast_place(date, weather, temperature, wind) for every place, and’ may use several different
relations forecast _weather(place, date, weather), forecast_temperature(place, date, temperature), and
forecast _wind(place, date, wind). Suppose that the global schetddas the relatiofforecast _rome(date,
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weather, temperature, wind), which may e.g. be posted on the web by the tourist information of Rome.
The probabilistic mapping of the source schemasipfB, andC to the global schemé& can then be
specified by the following<B y; = (0, Prr, Cr, piar):

Py = {forecast_rome(D, W, T, M) « forecast(rome, D,W,T, M), inst s;
forecast_rome(D, W, T, M) «— forecast_rome(D, W, T, M), instp;
forecast_rome(D, W, T, M) «— forecast_weather(rome, D, W),

forecast_temperature(rome, D, T), forecast_wind(rome, D, M), instc} ;
Cy = {{insta,instp,instc}};
a2 insta, instp, inste — 0.6, 0.3, 0.1.

The mapping assertions state that the first, second, and third rule addweithothe probabilitie®.6, 0.3,

andO0.1, respectively. This is motivated by the fact that three institutes may generaNyde conflicting
weather forecasts, and our trust in the institide$3, andC are given by the trust probabiliti€ss, 0.3, and
0.1, respectively.

A more complex way of probabilistically integrating several data sources sstic&ate each data source
(or each derivation) with aarror probability.

Example 5.2 Suppose that we want to integrate the data provided by the differerdrseénsa sensor net-
work. For example, suppose that we have a sensor network measwiogntentration of ozone in several
different positions of a certain town, which may e.g. be the basis for the conmalbto reduce or forbid
individual traffic. Suppose that each senser{1,...,n} with n > 1 is associated with its position through
sensor (i, position) and provides its measurement data in a single relatieding, (date, time, type, result).
Each such reading may be erroneous with the probakijlityhat is, any tuple returned (resp., not returned)
by a sensor € {1,...,n} may not hold (resp., may hold) with probability. Suppose that the global
schema contains a single relatioding (position, date, time, type, result). Then, the probabilistic map-
ping of the source schemas of the sensarq1,...,n} to the global schemé&' can be specified by the
following probabilistic dl-progrank B y; = (0, Pas, Chr, piar )

Py = {auz(P,D,T,K,R) < reading;(D,T, K, R), sensor(i, P)|i€{l,...,n}} U
{reading(P,D,T, K, R) «+ auz(P,D,T, K, R), not_error; |i€{l,...,n}} U
{reading(P,D,T, K, R) < not auz(P,D,T,K,R), error;|i€{1,...,n}};

Cy = {{error;, not_error;}|ie{l,...,n}};

Wrp i errori, not_errory, ..., errory, not_error, — e, l—ei, ..., en, 1—ey,.

Note that if there are two sensgrandk for the same position, and they both return the same tuple as a read-
ing, then this reading is correct with the probability- e;e;, (since it may be erroneous with the probability
ejer). Note also that this modeling assumes that the errors of the sensorsependent from each other,
which can be achieved by eventually unifying atomic choices. For example ensol depends on the
sensork, thenj is erroneous wheh is erroneous, and thus the atomic choi¢esror;, not_error;} and
{errory, not_error;,} are merged into the new atomic choigeror; errory, not_error;errory, not_error;
not_errory}.

Finally, when integrating several data sources, it may be the case thatldtienships between the
source schema and the global schemaparely probabilistic



INFSYS RR 1843-07-05 11

Example 5.3 Suppose we want to integrate the schemas of two libraries, and that thesgliobaa contains

the conceplogic_programming, while the source schemas contain only the concepits based _systems

resp. deductive_databases in their ontologies. These three concepts are overlapping to some extent, bu
they do not exactly coincide. For example, a randomly chosen book fidmbased_systems (resp.,
deductive_databases) may belong to the aretgic_programming with the probability0.7 (resp.,0.8).

The probabilistic mapping from the source schemas to the global schemaerabeahexpressed by the
following KBy = (0, Pas, Cagy pins):

Py = A{logic_programming(X) < rule-based_systems(X), choicey ;
logic_programming(X) < deductive_databases(X), choices} ;

Cy = {{choicer, not_choicey }, { choices, not_choicea}} ;

parr o choicer, not_choicey, choices, not_choices — 0.7, 0.3, 0.8, 0.2.

Observe that the above rules express a probabilistic mapping betweesnttepts of two ontologies, and
thus they show especially the advantages of tightly integrated probabilistiogitgms in probabilistic data
integration (since such a mapping cannot be expressed via the loosehaiategrobabilistic dl-programs
in [15]).

6 Probabilistic Reasoning about Actions

Poole’'s ICL [17, 18] is in fact a situation-calculus based languagesfasoning about actions under proba-
bilistic uncertainty. As a consequence, our approach to probabilisticodkams also constitutes a natural
way of integrating Bayesian probabilities and description logics in reas@iingt actions, especially to-
wards Web Services.

Example 6.1 Consider a mobile robot that should pick up some objects. We now sketcthimgcenario
can be modeled using a probabilistic dI-progr&B = (L, P, C, i1). The ontology componert encodes
background knowledge about the domain. For example, concepts magecticferent kinds of objects and
different kinds of positions, while roles may express different kindglaitions between positions (irBa3
grid), which is expressed by the following description logic axioms:in

ball C light _object; light_object T object; heavy_object C object;
central _position C position; object(obj;); heavy_object(objs);

ball(objs); light_object(objy); position(pos;); ...; position(posg);
central _position(poss); west_of (posy, posz); ...; Jwest_of . T C position;
Jwest_of ~.T C position; north_of (posy,posy); ...; neighbor(posy, posz); ... .

The rules componen? encodes the dynamics (within a finite time frame). For example, the following rule
in L says that if the robot performs a pickup of objéxtboth the robot and the obje€t are at the same
position, and the pickup a succeeds (which is an atomic choice associated with a certain probability),
then the robot is carryin@ at the next time point (here, action function symbols are removed through
grounding):

carrying(O,T + 1) < do(pickup(O),T), at(robot, Pos,T'), at(O, Pos,T),
pickup _succeeds(O,T), object(O), position(Pos) .
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The subsequent rule iR says that if the robot is carrying a heavy objéxtperforms no pickup and no
putdown operation, and keeps carryigwhich is an atomic choice associated with a certain probability),
then the robot also keeps carryiggat the next time point (we can then use a similar rule for light object
with a different probability):

carrying (O, T + 1) < carrying(O,T), not do(pickup(O),T), not do(putdown(O),T),
keeps_carrying(O,T), heavy_object(O), position(Pos) .

In order to encode the probabilities for the above rules, the choice gpa@omtains all ground instances
of {keeps_carrying(O,T), not_keeps_carrying(O,T)} and {pickup_succeeds(O,T), not_pickup_suc-
ceeds(0,T)}. We then define a probability on each atomic choicd € C' (for example u(keeps_carry-
ing(objz, 1)) =0.9 and u(not_keeps_carrying(obj;, 1)) =0.1) and extend it to a probability on the set
of all total choices of” by assuming independence between the atomic choic@s of

7 Algorithmsand Complexity

In this section, we characterize the consistency and the query pragpssiiem in probabilistic dl-programs

in terms of the consistency and the cautious/brave reasoning problem imatiiggud|-programs (which are

all decidable [16]). These characterizations show that the consisaéenicthe query processing problem in
probabilistic dl-programs are decidable and computable, respectivdlyheyndirectly reveal algorithms for
solving these problems. We also give a precise picture of the complexityiafing consistency and correct
answers when the choice spaces bounded by a constant (which always holds for data integration using
trust probabilities (wher&”| = 1), and which is generally also reasonable when using error probabilities)

7.1 Algorithms

The following theorem shows that a probabilistic dl-progr&id = (L, P, C, 1) is consistent iff(L, P U
{p < | p € B}) is consistent, for every total choié@of C'. This implies that deciding whether a probabilistic
dl-program is consistent can be reduced to deciding whether a disgidéiprogram is consistent.

Theorem 7.1 Let KB = (L, P,C, ) be a probabilistic dl-program. ThenkB is consistent iff L, P U
{p < | p € B}) is consistent, for every total choidg of C'.

The next theorem shows that computing tight answers for probabilistitegu®q)[r, s] to KB, where
q € HBg, can be reduced to computing all answer sets of disjunctive dl-prograch¢han solving two
linear optimization problems. The theorem holds also whiena ground formula constructed frofhB .

Theorem 7.2 Let KB = (L, P,C, 1) be a consistent probabilistic dl-program, and lebe a ground atom
from HBg. Then,l (resp.,u) such thatKB |~ ,, (¢)[l, u] is the optimal value of the following linear
program overy, (r € R), whereR is the set of all answer sets 0L, P U {p < | p€ B}) for all total
choicesB of C:

min (resp., maXEreR’r':qyr subject toL.C' in Fig. 1.

The following theorem shows that computing tight answersa) [r, s] to KB, whereq € HBg, can
be reduced to brave and cautious reasoning from disjunctive dlqoregr Informally, to obtain the tight
lower (resp., upper) bound, we have to sum up.&B) such thay is a cautious (resp., brave) consequence
of (L, PU{p < |pe B}). The theorem holds also wheris a ground formula constructed frofB .
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—uw(B)y, + >, (1—pu(B))y, = 0 (forall total choicesB of C)
reR, rE=\B reR, r=A\B
Zyr =1

reR
y» = 0 (forallreR)

Figure 1: System of linear constraini€’ for Theorem 7.2.

Theorem 7.3 Let KB = (L, P, C, 1) be a consistent probabilistic dl-program, and tebe a ground atom
from HBg. Then, (resp.,u) such thatKB|r~; ,,, (9)[l, u] is the sum of all(B) such that ()5 is a total
choice ofC' and (ii) ¢ is true in all (resp., some) answer setg&f P U {p < | p€ B}).

7.2 Complexity

The following theorem shows that deciding whether a probabilistic dl-prags consistent is complete
for NEXPN (and so has the same complexity as deciding consistency in ordinary diggutugic pro-
grams) when the size of its choice space is bounded by a constant. Hel@yér bound follows from the
NEXPNP-hardness of deciding whether an ordinary disjunctive logic prograsrah answer set [4].

Theorem 7.4 Given® and a probabilistic dl-progrankB = (L, P, C, i), whereL is defined inSHZF (D)
or SHOZN (D), and the size of is bounded by a constant, deciding whetf@ is consistent is complete
for NEXPNP,

The following theorem shows that deciding correct answers for mibstc queries3(q)[r, s|, where
q € HBg, o a probabilistic dl-program is complete fes-NEXPNY when the size of the choice space is
bounded by a constant. The theorem holds also whsm ground formula constructed fromB .

Theorem 7.5 Given®, a probabilistic dl-programk'B = (L, P, C, i), whereL is defined inSHZF (D) or
SHOIN (D), and the size of is bounded by a constant, a ground atgnfrom HBg4, andl,u € [0, 1],
deciding whethe(q)[l, u] is a consequence d&B is complete foro-NEXPNY,

8 Tractability Results

In this section, we describe a special class of probabilistic dI-programeghiich the problems of deciding
consistency and of query processing have both a polynomial data cammplexese programs are normal,
stratified, and defined relative @L-Lite [3], which allows for deciding knowledge base satisfiability in
polynomial time.

We first recallDL-Lite. Let A, R 4, andI be pairwise disjoint sets of atomic concepts, abstract roles,
and individuals, respectively. Basic concept in DL-Lités either an atomic concept fro or an exists
restriction on rolesiR. T (abbreviated asR), whereRc R4 UR ;. A literal in DL-Lite is either a basic
concepth or the negation of a basic concepi. Concepts in DL-Liteare defined by induction as follows.
Every basic concept iDL-Lite is a concept irDL-Lite. If b is a basic concept iDL-Lite, and¢; and¢s
are concepts iDL-Lite, then—b and¢; M ¢- are also concepts iDL-Lite. An axiom in DL-Liteis either
(1) a concept inclusion axiomC v, whereb is a basic concept iDL-Lite and¢ is a concept iDL-Lite, or
(2) afunctionality axiom(funct R), whereR € R4 UR , or (3) a concept membership axidita ), whereb
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is a basic concept iDL-Lite anda € 1, or (4) a role membership axiof(a, ¢), whereR € R4 anda, c€ 1.
A knowledge base in DL-Lité is a finite set of axioms iDL-Lite.

Every knowledge base iDL-Lite L can be transformed into an equivalent on®ic-Lite trans(L) in
which every concept inclusion axiom is of for ¢, whereb (resp.,f) is a basic concept (resp., literal) in
DL-Lite [3]. We then defingrans(P)=P U {V/'(X)—b(X)|bCV € trans(L), b’ is a basic conceptU
{3R(X)—R(X,)Y)|Re RaNP}U{IR™(Y)— R(X,Y) | Re R4N}. Intuitively, we make explicit
all the relationships between the predicate®ithat are implicitly encoded if.

We define stratified normal dI- and stratified normal probabilistic dl-prograsnfolliows. A normal
dl-programKB = (L, P) is stratifiediff (i) L is defined inDL-Lite and (ii) trans(P) is locally stratified. A
probabilistic dI-programKB = (L, P, C, 1) is normaliff P is normal. A normal probabilistic dl-program
KB = (L, P,C, ) is stratifiediff every of KB’s represented dl-programs is stratified.

The following result shows that stratified normal probabilistic dl-prograliogvdor consistency check-
ing and query processing with a polynomial data complexity. It follows frdradfems 7.1 and 7.3 and that
consistency checking and cautious/brave reasoning in stratified nokpdgtams have all a polynomial
data complexity [16].

Theorem 8.1 Given® and a stratified normal probabilistic dl-prograii B, (a) deciding whethek B has
an answer set, and (b) computing: € [0, 1] for a given ground atong such thatkB |, ., (q)[l, u] has
both a polynomial data complexity.

9 Conclusion

We have presented a tight combination of disjunctive logic programs undem$wer set semantics, de-
scription logics, and Bayesian probabilities. We have described applisatigmnobabilistic data integration
and in reasoning about actions. We have shown that consistencyiropackl query processing are decid-
able resp. computable, and that they can be reduced to consisten&ingheed cautious/brave reasoning
in disjunctive dl-programs. We have also analyzed the complexity of consistdecking and query pro-
cessing in probabilistic dI-programs in special cases. In particular, weegrasented a special case of these
problems with polynomial data complexity.

Appendix A: Proofs

Proof of Theorem 7.1. Recall first thatK'B is consistent iffKB has an answer sétr, which is a proba-
bilistic interpretationPr such that (i) every interpretatiohC HBg such thatPr(7) > 0 is an answer set of
(L, PU{p < | p€ B}) for some total choic& of C, and (ii) Pr(A,c s p) = n(B) for every total choice3
of C.

(=) Suppose thakB is consistent. We now show thék, P U {p < | p€ B}) is consistent, for every
total choiceB of C'. Towards a contradiction, suppose the contrary. ThatlisP U {p «— | p€ B}) is
not consistent for some total choide of C. It thus follows thatPr(A .5 p) =0. But this contradicts
Pr(\,epp)=p(B). This shows thatL, P U {p « | p € B}) is consistent, for every total choidg of C.

(<) Suppose thatL, P U {p — | p€ B}) is consistent, for every total choid@ of C. That is, there
exists some answer s&t of (L, P U {p — | p€ B}), for every total choice3 of C. Let the probabilistic
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interpretationPr be defined byPr(Ip) = 1(B), for every total choice3 of C. Then,Pr is an interpretation
that satisfies (i) and (ii). That ig}r is an answer set dkB. This shows thak'B is consistentd

Proof of Theorem 7.2. We show that every answer st of KB corresponds to a solution of the system
of linear constraintd,C. Observe first that only the interpretatiohs HB4 that are an answer set of
(L, PU{p | pe B}) for some total choicé of C' can be assigned a positive probability under an answer
setPr of KB. The set of all such interpretatioiorresponds to the set of all variablesfin The last two
equations of. C' ensure that the probability associated with each such interpretation isagaive and that

all probabilities sum up tdé. The first equation ensures that the probabilities associated with all therans
sets of eact{L, P U {p < |p€ B}) sum up tou(B), since it is equivalent tQ_, . .. p yr = n(B).
Finally, the probability ofg, which has to be minimized (resp., maximized) to obtain the tightest lower
(resp., upper) bound d?r(q), is represented by the objective funct@eR,r':q Y. O

Proof of Theorem 7.3. The statement of the theorem follows from the observation that the probability
w(B) of all total choicesB of C such thay is true in all (resp., some) answer set§ bf PU{p < |p € B})
contributes (resp., may contribute) to the probabikttyq), while the probability.(B) of all total choicesB

of C' such thay is false in all answer sets 6L, P U {p < | p € B}) does not contribute t&r(q). O

Proof of Theorem 7.4. We first show membership iNEXPNY. By Theorem 7.1, we check whether
(L,PU{p «—|pe B}) is consistent, for every total choide of C. SinceC' is bounded by a constant, the
number of total choices @f is also bounded by a constant. As shown in [16], deciding whether a disjein
dl-program has an answer set isNEXPN. Hence, deciding whethdtB is consistent is iNEXPN .

Hardness foNEXPNY follows from the NEXPNP-hardness of deciding whether a disjunctive dI-
program has an answer set [16], since by Theorem 7.1 a disjunéfregramKB = (L, P) has an answer
set iff the probabilistic dl-programB = (L, P, C, 1) has answer set, for any choice spéatand probability
functionp. O

Proof of Theorem 7.5. We first show membership in SSEXPNY. We show that deciding whethéy)[l, u]
is not a consequence @B is in NEXPNY. By Theorem 7.3(¢)[l,u] is not a consequence @B iff
there exists a sdf of total choicesB of C such that either (a.1) is true in some answer set 0f, P U
{p+|peB}), foreveryB € B,and (a.2)) | gz u(B) > u, or (b.1)q is false in some answer set(@f, PU
{p —|peB}), foreveryB c B, and (a.2)) | 5.z 11(B) < l. As shown in [16], deciding whetheris true in
some answer set of a disjunctive dl-program iNIBXPNT'. It thus follows that deciding whethég)]l, u]
is not a consequence &fB is in NEXPY', and thus deciding whethég)[/, u] is a consequence @B is
in coNEXPNF

Hardness for cWEXPNY follows from the coNEXP-hardness of deciding whether a ground atom
q is true in all answer sets of a disjunctive dl-program [16], since by fdmad/.3 a ground atom is true
in all answer sets of a disjunctive dl-prograi3 = (L, P) iff (¢)[1, 1] is a consequence of the probabilistic
dl-programKB = (L, P, C, 11), for any choice spac€ and probability function:. O

Proof of Theorem 8.1. As shown in [16], deciding the existence of (and computing) the answefse

a stratified normal dl-program has a polynomial data complexity. Observetlia¢ in the case of data
complexity, the choice spacé is fixed. By Theorems 7.1 and 7.3, it thus follows that the problems of (a)
deciding whethe KB has an answer set, and (b) computinge [0, 1] for a given ground atom such that
KB |~ yigne (@)1, ul, respectively, have both a polynomial data complexity.
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